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Abstract

In this thesis we seek to investigate the Complexity = Volume conjecture in the context of
Janus deformed geometries. This work is based on the arXiv submissions [1] and [2]. We discuss
the case of Janus AdS3 geometries, both at vanishing and finite temperature. The leading
divergence of the volume complexity associated to the Janus interface is logarithmic, and its
coefficient is a function of the deformation parameter. Contrarily to the BTZ background, the
finite-temperature Janus deformation complexity is not topological and is therefore temperature-
dependent. We also consider the time-evolution of the extremal-volume for the time-dependent
Janus BTZ black hole. This background is dual to a pair of entangled CFTs with different
couplings. The complexity rate for the early time out-of-equilibrium state is always smaller
compared to the pure BTZ black hole. However, when the equilibrium is restored at late
times, the CFT couplings don’t influence the complexification rate. Finally, we compute the
volume complexity for the AdS5 Janus interface. In this case, the leading divergence is inversely
proportional to the square of the cutoff parameter. Interestingly, when the boundary is separated
into two subregions, a subleading logarithmic divergence appears. Similarly to entanglement
entropy, this behavior my be ascribed to short range correlations entangling degrees of freedom
across the dividing surface.
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Opening Remarks

The idea that quantum gravity in an asymptotically AdS spacetime can be described through
a conformal field theory living at the boundary [3], has been widely celebrated as one of the
greatest achievements of early 21st century theoretical physics. As it stands, the AdS/CFT
correspondence provides a powerful non-perturbative framework to investigate the properties of
a subset of theories of quantum gravity.

Relatively recent progress in this field has unveiled remarkable connections between the
theory of quantum information and quantum gravity. This all started back in the 70’s, when
Bekenstein and Hawking discovered that black holes can be treated as thermodynamic objects
with an entropy proportional to the area of the horizon [4, 5]. Later, this idea was applied and
generalized to the AdS/CFT correspondence. In fact, in holography the entropy of a spatial
subsystem in the boundary CFT is realized through the Ryu-Takayanagi formula [6]; via this
formula we can attain the entropy by computing the area of a codimension-1 surface embedded
in the bulk spacetime and anchored to the subregion at the boundary.

Lately, another quantum information quantity has attracted a tremendous amount of atten-
tion: computational complexity. It was first introduced to explain the evolution in time of the
Einstein-Rosen bridge [7], as this growth can’t be accounted for by entanglement entropy since
the wormhole keeps on growing long after the thermalization time. Or, as Susskind himself put
it, entanglement is not enough.

Quantum complexity is usually defined in quantum circuits as the minimum number of
k−local gates connecting a generic state in the Hilbert space to a reference state in the same
Hilbert space. Two proposals have emerged as to what bulk quantity is dual to the complexity
of states in the boundary. The first proposal, known as the CV conjecture (or the complexity =
volume conjecture), states that complexity is dual to the maximal volume of a codimension-one
sub-manifold attached to the boundary [7]. The other proposal is the so-called CA conjecture
(or the complexity = action conjecture), which relates the complexity of states to the bulk
action evaluated on a spacetime region known as the Wheeler-de Witt patch [8], that is, the
bulk domain of dependence of a Cauchy surface anchored at the boundary state.

To this date, it is still not clear which conjecture should be favored, for this reason, it
is crucial that we understand the differences between the conjectures. Despite exhibiting the
same behavior at late times [9, 10], the two proposals differ in the early time behavior [11]. A
more radical difference was discovered when considering a theory deformed by a defect. In fact,
in [12] it was shown that for the AdS3 Randall-Sundrum model the CV complexity features
a logarithmic divergence coming from the defect whilst the CA complexity is devoid of such
divergence. It was later shown in [13] that this is not always true, for in the d > 2 dimensional
case the BCFT dual geometry does not distinguish CA from CV. However, this begs the question:
what happens in different defect geometries? Particularly, what happens in interface theories?

This leads us neatly to the content of this master thesis. The starting point is a three-
dimensional dilatonic deformation of AdS space known as the Janus geometry [14]. This ge-
ometry is known to have a clear holographic dual, since it can be embedded into type IIB
supergravity in 10 dimensions over AdS3 × S3 ×M4, where M4 is a compact internal mani-
fold. The resulting geometry is very similar to an AdS2 foliation of AdS3, the only difference
is that the AdS2 slices are multiplied by a non-trivial function of the remaining coordinate and

4



On the Holographic Complexity of Janus Geometries Chapter 0

a deformation parameter γ. On the CFT side this geometry is dual to two CFTs with differ-
ent couplings separated by an interface. Since the three-dimensional BTZ black hole is locally
equivalent to vacuum AdS3 space, there exist two generalizations of the Janus geometry where
an horizon appears: the static Janus BTZ black hole, and the time dependent Janus BTZ black
hole. The former is obtained by simply replacing the AdS2 factor with a Rindler-like metric [15],
whilst the latter represents a time dependent black hole geometry describing non-equilibrium
physics [16]. The Janus deformation can also be implemented in AdS5 × S5, not only in a way
that completely breaks supersymmetry [17] but also in a way that preserves SO(2, 3) × SU(3)
symmetry [18]. We will solely focus on the non-supersymmetric solution.

In this thesis we answer the question of how Janus interfaces affect complexity in the afore-
mentioned CV conjecture. The thesis is structured in the following way. In chapters 1, 2, 3, and
4 all preliminary material is collected. In chapter 1 after having introduced CFTs, AdS space-
times, and discussed black hole thermodynamics a lightning review of AdS/CFT is presented.
In the chapters 2 and 3 we discuss respectively entanglement entropy and complexity from a
holographic point of view. In chapter 4 we discuss the geometries which will be the object of
study in the subsequent chapters. In chapter 5, which is based on the work [1], we apply CV
in the context of three-dimensional Janus geometries, and in chapter 6, which is based on a
work we will publish in the near future [2], we apply CV in the five-dimensional Janus geometry.
Finally, we discuss our findings in chapter 7.
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Chapter 1

The AdS/CFT Correspondence

1.1 Conformal Field Theories

Apart from being one of the two ingredients in the AdS/CFT correspondence, CFTs can be
regarded as one of the hallmarks of modern theoretical physics. A conformal field theory is
a theory (classical or quantum mechanical) that is invariant under the conformal group. We
will soon see what this means in some detail, but one immediate consequence is that CFTs are
scale-invariant theories. As such, CFTs characterize fixed points in renormalization group flows:
CFTs are in some sense the only true QFTs. Conformal field theories are also very useful in
modeling many body quantum systems near-criticality, that is, near or at a second order phase
transition.

We will now summarize some of the most important facts about CFTs. This section follows
the notes by F. Alday [19].

1.1.1 Conformal Symmetry

Consider a spacetime M equipped with metric gµν , a conformal transformation is an invertible
map x→ x(x′) that leaves the metric invariant up to a local rescaling factor, that is,

g′µν(x′) = Λ(x)gµν(x). (1.1)

The conformal group Conf(M) is the set of all such transformations.
When M = Rd the conformal group can be easily classified by looking at infinitesimal

conformal transformations, xµ → xµ + εµ(x). It turns out that in order for this to be a proper
infinitesimal conformal transformation the function ε(x) can at most be a quadratic function of
x, meaning that

εµ(x) = aµ + bµνx
ν + cµνρx

νxρ, (1.2)

with the following constraints:

� aµ is free of constraints, and correspond to infinitesimal translations;

� bµν = αηµν + mµν , with mµν = −mνµ. The trace b is the generator of infinitesimal
dilations, while mµν is the generator of infinitesimal Lorentz transformations; and

� cµνρ = ηµρbν + ηµνbρ − ηνρbµ, where bµ ∈ Rd. These correspond to infinitesimal special
conformal transformations.

From these infinitesimal transformations we can move to the finite versions, namely:

� translations
xµ → xµ + aµ;
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� rigid rotations
xµ →Mµ

νx
ν ;

� dilations
xµ → λxµ;

and

� special conformal transformations

xµ → xµ − bµx2

1− 2b · x+ b2x2
.

Any conformal transformation is either one of the above or a combination thereof. It is fairly
straightforward to check that the set of conformal transformations possesses the structure of a
group. In d-dimensions the nuber of generators is in total

(d+ 1)(d+ 2)

2
. (1.3)

One can at this point determine an explicit representation of these generators by examining the
way a conformal transformation acts on a given field, and it turns out that:

� translations are generated by Pµ = −i∂µ;

� rigid rotations are generated by Lµν = i(xµ∂ν − xν∂µ);

� dilations are generated by D = −ixµ∂µ; and

� SCT are generated by Kµ = −i(2xµxν∂ν − x2∂µ).

One can quite readily determine the corresponding commutational relations which then define
the so-called conformal algebra, that is, the Lie algebra corresponding to the conformal group,

[D,Pµ] = iPµ , [D,Kµ] = iKµ , [Kµ, Pν ] = 2i (ηµνD − Lµν)

[Lµν , Pρ] = −i (ηµρPν − ηνρPµ) , [Lµν ,Kρ] = −i (ηµρKν − ηνρKµ)

[Lµν , Lρσ] = −i (Lµρηνσ − Lµσηνρ − Lνρηµσ + Lνσηµρ) ,

[D,Lµν ] = 0 , [Pµ, Pν ] = 0 , [Kµ,Kν ] = 0 , [D,D] = 0 .

The conformal algebra in d dimensions is isomorphic to SO(d+ 1, 1), or equivalently SO(d, 2).

1.1.2 Some Consequences of Conformal Invariance in QFTs

In a quantum field theory, the degrees of freedom are local field operators, which we can be
imagined as multi-component operators φα(x), and the symmetries are realized by operators
acting on these local operators. When we also have conformal invariance to play with we
can classify the operators based on the way in which the generators of the stability group of
Conf(Rd) (i.e., the subgroup that leaves the origin invariant) act on the given field. We call a
field φα(x) that satisfies the following

[D,φα(0)] = i∆φα(0), [Lµν , φα(0)] = i(Sµν)βαφβ(0), [Kµ, φα(0)] = 0, (1.4)

a primary operator of scaling dimension ∆.
With the aid of the Heisenberg representation φα(x) = e−iPxφα(0)eiPx, it is possible to work

out the way in which the generators of the conformal algebra act on a given operator, and from
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there it’s possible For example a spinless scalar primary field of scaling dimension ∆ transforms
under a conformal transformation x→ x′ as

φ(x)→
∣∣∣∣∂x′∂x

∣∣∣∣−∆/d

φ(x), (1.5)

which can be written as
φ(x)→ Λ(x)∆/2φ(x). (1.6)

where we relabelled the jacobian as |∂x′/∂x| = Λ(x)−d/2. By acting on a primary operator with
derivatives we get a descendant operator, the scaling dimension of which is determined by the
number of derivatives plus the scaling dimension of the primary it descended from.

Correlation functions are the main object of study of QFTs, these may be defined in the
path integral formulation as

〈φ(x1) · · ·φ(xn)〉 =
1

Z

∫
Dφφ(x1) · · ·φ(xn)e−S[φ]. (1.7)

If the theory is invariant under some symmetry transformation φ′(x′) = F(φ(x)), then we have

〈φ(x′1) · · ·φ(x′n)〉 = 〈F(φ(x1)) · · · F(φ(xn))〉. (1.8)

So, if the theory is invariant under the full conformal group, for correlators involving spinless
primary fields transforming according to (1.5), we must have

〈φ(x′1) · · ·φ(x′n)〉 =

∣∣∣∣∂x′∂x

∣∣∣∣−∆1/d

x=x1

· · ·
∣∣∣∣∂x′∂x

∣∣∣∣−∆n/d

x=xn

〈φ(x1) · · ·φ(xn)〉 (1.9)

This has some serious consequences on the general form of two- and three-point functions. In
fact, it turns out that the most general two-point correlator is given by

〈φ1(x1)φ2(x2)〉 =
1

|x12|2∆
(1.10)

if ∆1 = ∆2 = ∆, and there are no correlations if the scaling dimensions differ. In the case of
three-point correlation functions, we have

〈φ1(x1)φ2(x2)φ3(x3)〉 =
C123

|x12|∆1+∆2−∆3 |x23|∆2+∆3−∆1 |x13|∆3+∆1−∆2
, (1.11)

where C123 is a constant with non-trivial physical content.
A very important property of CFTs is the so-called state/operator correspondence, which

states that: the set of all primary operators and descendants at any given point x is in a
one-to-one correspondence with an eigenbasis of Hilbert space of the CFT quantized on Sd−1.

1.2 Anti-de Sitter Spacetime

The other ingredient that makes up AdS/CFT is Anti-de Sitter spacetime. AdS is a maximally
symmetric solution to the Einstein equation with negative cosmological constant, as opposed to
dS (de Sitter) spacetime which is a maximally symmetric solution with positive cosmological
constant. The positive cosmological constant solution was initially introduced by Willem de
Sitter and has been used as a cosmological model for an expanding universe. This section
borrows ideas from [20, 21].
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1.2.1 Maximally Symmetric Spaces: Euclidean Spheres and Euclidean AdS

A manifold M is said to be maximally symmetric if it is homogeneous and isotropic. By
homogeneous we mean that given two points p and q inM, there exist an isometry φ belonging
to the isometry group of M such that φ(p) = φ(q); by isotropic we mean that for any point
p ∈ M, and for any two tangent vectors v, w ∈ Tp(M), such that vµv

µ = wµw
µ, there exist an

isometry φ belonging to the isometry group of M such that φ(p) = p and φ∗(v) = w. It can
be shown that an n-dimensional maximally symmetric space posseses exactly n(n+ 1)/2 Killing
vectors, which is the largest possible number of linearly independent Killing vectors.

In a d-dimensional Euclidean space with ambient metric

ds2 = dx2
1 + · · ·+ dx2

d+1 , (1.12)

the maximally symmetric solution with positive curvature is a d-dimensional sphere, that is,
Sd = {x ∈ Rd|x2

1 + · · · + x2
d+1 = L2}. The embedding is in this case said to be isometric, since

the isometry group of Rd+1, i.e., SO(d+ 1), leaves the sphere ivariant.
Likewise, a d-dimensional hyperboloid, is the maximally symmetric solution with negative

curvature. However, if we wish to have an isometric embedding, we have to change the ambient
metric to the Minkowski space

ds2 = −dX2
d+1 + dX2

1 + · · ·+ dX2
d , (1.13)

this is because the locus defining a d-dimensional hyperboloid, Hd = {X ∈ Rd,1| −X2
d+1 +X2

1 +
· · ·+X2

d = −L2}, is invariant under SO(d, 1) transformations, which is the isometry group of d-
dimensional Minkowski space. What we have just defined is the so-called Euclidean AdS space.
One can find the induced metric on the Hyperboloid by introducing the global coordinates

xd+1 = L cosh ρ, xi = LΩi sinh ρ, (1.14)

where
∑

i(Ωi)
2 = 1. Using the fact that ΩidΩi = 0 we find

ds2 = L2(dρ2 + sinh2 ρ dΩ2
d−1), (1.15)

where dΩ2
d−1 is the metric on the unit d − 1-dimensional sphere. As expected, the metric is

invariant under transformations in SO(d, 1) and is homogeneous, meaning that points can be
mapped into each other via transformations in SO(d, 1).

1.2.2 Lorentzian AdS

We can now define the spacetime we are really interested in, that is, the Lorentzian AdSd+1

spacetime. To do this, we have to consider the funny-looking embedding space

ηabdX
adXb = −dX2

0 + dX2
1 + · · ·+ dX2

d − dX2
d+1. (1.16)

We call AdSd+1 the spacetime defined by the hyperboloid

ηabX
aXb = −L2 ⊂ Rd,2. (1.17)

Despite the fact that the embedding space has two time-like coordinates, the AdS space has only
one time coordinate. The reason we need two time-like coordinates for the embedding space is
so that the embedding is isometric, just as in the case of the Euclidean hyperboloid. This means
that the AdS spacetime inherets the isometry group of Rd,2, i.e., SO(d, 2). Since the number of
generators of SO(d, 2) is (d+ 1)(d+ 2)/2, the same as the maxiaml number of killing vectors of
a d+ 1-dimensional spacetime, we conclude that AdS is maximally symmetric.

9
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As for the Euclidean AdS space, we can find the induced metric by considering the global
coordinate

X0 = L cosh ρ cos τ, Xi = LΩi sinh ρ, Xd+1 = L cosh ρ sin τ, (1.18)

where
∑

i(Ωi)
2 = 1, we thus find that the Lorentzian AdS metric is given by

ds2 = L2(− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2
d−1). (1.19)

For τ ∈ [0, 2π] and ρ ∈ R+ the hyperboloid is covered exactly once. We can avoid closed time-
like curves by unrwrapping the τ coordinate and extend it to R, this way we get the so-called
universal cover. The metric in global coordinates is sometimes written using the coordinates

ds2 = −
(

1 +
r2

L2

)
dt2 +

(
1 +

r2

L2

)−1

dr2 + r2 dΩ2
d−1 , (1.20)

where r ∈ [0,∞) and t ∈ R. The limit r → ∞ corresponds to what is called the asymptotic
boundary of AdS, which is a conformal boundary with topology R× Sd−1.

Another set of coordinates which are extremely useful in practice are the so called Poincarè
coordinates defined by

Xµ =
L

z
xµ, Xd+1 +Xd =

L

z
, −Xd+1 +Xd = v, (1.21)

so the metric takes the form

ds2 =
L2

z2
(dz2 − dt2 + dx2

1 + · · ·+ dx2
d). (1.22)

These coordinates cover only a part of the AdS spacetime, and the geometry covered is referred
to as the Poincarè patch. Note that for each z-slice, the spacetime appears to be flat Minkowski
space Rd−1,1 = Md. In this case the boundary of AdS is reached in the limit z → 0. On the
other hand, z → ∞ corresponds to a horizon, since the killing vector ∂t has zero norm, and is
referred to as the Poincarè horizon.

So far we have made no mention of gravity in defining this spacetime but it turns out that
Lorentzian AdS is a solution to Einstein’s equation

Rµν −
1

2
Rgµν = 8πGTµν , (1.23)

with the energy-momentum tensor given by

Tµν =
d(d− 1)

16πGL2
gµν . (1.24)

The causal structure of AdSd+1 is better understood if we comppactify the r coordinate in (1.20)
by intruducing θ = tan r ∈ (0, π/2), therefore,

ds2 =
1

cos2 θ
(−dt2 + dθ2 + sin2 θ dΩ2

d−1) . (1.25)

The overall Weyl factor 1/ cos2 θ does not influence the profile of null geodesics which implies
that AdSd+1 is causally equivalent to a solid cylinder (see figure 1.1.)

10
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t

r

r

Figure 1.1: a light ray sent from r = 0 to the boundary bounces back to the center in a finite
proper time. This is why we often think of AdS as being a finite box.

1.2.3 Asymptotically AdS Spacetimes

To discuss anything but the most trivial case in AdS/CFT, we need to discuss more than just
AdS space. In fact, some of the most interesting examples of the duality involve spacetimes
which deviate from the vacuum solution in a way or another. In general, the presence of non-
trivial matter will inevitably cause some kind of perturbation, however, what seems essential
for the correspondence to work is to require that the perturbations don’t modify the asymptotic
structure of AdSd+1. It is then natural to define a set of asymptotically-AdS spacetimes, which
posses a boundary topology equivalent to R× Sd−1, and whose metric approaces

ds2 = −
(

1 +
r2

L2

)
dt2 +

(
1 +

r2

L2

)−1

dr2 + r2 dΩ2
d−1 (1.26)

close to the boundary. It is sometimes interesting to discuss spacetimes which factorize into an
asymptotically AdSd+1 part and a compact manifold M part.

A very interesting example (we’ll come back to it later) is the AdS-Schwarzschild solution

ds2 = f(r)dτ2 +
1

f(r)
dr2 + r2dΩ2

d−1, where f(r) = 1 +
r2

L2
− µ

rd−2
. (1.27)

The parameter µ can be interpreted as a mass parameter, and the blackening function is defined
so that in the limit r → ∞ it approaces 1, which in turn means the metric approaces AdSd+1.
Interestingly, for finite r-values the AdS-Schwarzschild solution describes two asymptotically
AdS boundaries connected by a wormhole.

1.2.4 Quantization of a Scalar Field in AdSd+1

Let’s consider the action governing the dynamics of a massive scalar field

S = −1

2

∫
dd+1x

√
−g
(
∂µφ∂νφg

µν +m2φ2
)
, (1.28)

with the background metric being AdSd+1. The variation of this action leads to the following
equation of motion

1√
−g

∂µ(
√
−g gµν∂νφ)−m2φ = 0. (1.29)

11
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In global coordinates it is convenient to solve the equation in the basis

fω`~m(r, t,Ω) = ψω`(r)e
−iωtY`~m(Ω), (1.30)

where Y`~m(Ω) are spherical harmonics, and ψω`(r) obeys the equation

(1 + r2)ψ′′ +

(
d− 1

r
(1 + r2) + 2r

)
ψ′ +

(
ω2

1 + r2
− `(`+ d− 2)

r2
− L2m2

)
ψ = 0. (1.31)

This equation can be solved exactly ∀r ∈ [0,∞) with hypergeometric functions, however, one
can gain lots of insight by focusing on the r → 0 and r →∞ limits. Indeed, for small r we find

ψ′′ +
d− 1

r
ψ′ +

`(`+ d− 2)

r2
ψ = 0, (1.32)

which is solved by

ψ`(r) = N` · r
−
(
d−2
2
± 1

2

√
(d−2)2+4`(`+d−2)

)
, (1.33)

whilst close to the boundary the equation becomes

r2ψ′′ + (d+ 1)rψ′ − L2m2ψ = 0 , (1.34)

which is solved by

ψ`(r) = N · r−( d2±
1
2

√
d2+4m2L2). (1.35)

For the small r solution, we have to choose the positive sign in the exponet, so that it is smooth
at r = 0. The sign of the close-to-boundary solution is instead fixed by the boundary conditions
we impose at the AdS boundary. When m2 ≥ 0 and d ≥ 2 the only sign that preserves SO(d, 2)
symmetry and unitarity is the plus sign, thereby giving the solution

ψω`(r) ∼ r−∆ , (1.36)

where

∆ =
d

2
+

1

2

√
d2 + 4m2L2. (1.37)

This is what we call the standard quantization. In AdS/CFT the equation (1.37) is called the
mass-dimensin relation. If L2m2 < −d2 the negative sign solution can be allowed by unitarity,
in that case we call it the alternate quantization. (Notice that even when L2m2 < −d2 the
standard quantization, meaning the positive sign solution, is still allowed by unitarity.)

Returning to the standard quantization, the restrictions imposed at r = 0 and r =∞ imply
that ω is quantized. In fact the exact solution shows that

ωn` = ∆ + `+ 2n , where n ∈ N. (1.38)

This confirms the intuition that AdS, unlike Minkowski space, should be viewed as a finite box.
We can now write the solution to our scalar field theory in terms of creation and annihilation
operators

φ(r, t,Ω) =
∑
n,`,~m

(
fω`~m an`~m + f∗ω`~m a

†
n`~m

)
. (1.39)

The solutions ought to be normalized according to the Klein-Gordon norm

(f, g) = −i
∫

Σt

ddx
√
−g gtt (g∗∂tf − g∂tf∗) , (1.40)

and the creation and annihilation operators ought obey the algebra

[an`~m, a
†
n′`′ ~m′ ] = δnn′δ``′δ~m~m′ . (1.41)

12
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1.3 Black Hole Thermodynamics and Holography

One of the most fascinating predictions of General Relativity is the existence of solutions char-
acterized by regions of spacetime with such a strong gravitational ”pull” that nothing, not even
light, can escape! For most of the 20th century the great majority of people (inducing Einsein
himself) believed these solutions to be unphysical and an unattractive feature of GR, something
to be fixed. It wasn’t until the end of the 20th century that a few people started to take these
solutions seriously. From there on more and more people got convinced of the importance of
these mysterious objects, until we finally got a glance of the unthinkable [22]. There are still a
great number of mysteries hazing around these bizarre systems (information paradox, firewalls,
islands... you name it!), also known as black holes.

There is one peculiarity about black holes which is central to the story we are telling in this
thesis, that is, the realization that the entropy of a black hole scales with the area rather than
the volume: this is what inspired the holographic principle.

1.3.1 Black Hole Temperature

There are a number of different black hole solutions to the Einstein equations, the simplest of
which is the Schwarzschild solution

ds2 = −f(r)dt2 + f(r)−1dr2 + r2(dθ2 + sin2 θdφ2), (1.42)

where r ∈ [0, rs) ∪ (rs,∞], t ∈ R, θ ∈ [0, π], φ ∈ [0, 2π], and f(r) = 1 − rs/r = 1 − 2GM/r is
the blackening factor. The region in close proximity to the null hypersurface defined at r = rs,
i.e., the black hole event horizon, is of particular importance. That is because the horizon splits
the spacetime into two distinct causal regions, and as is well known, whatever crosses the the
horizon to go into the interior of the black hole cannot escape the interior. As we will now see,
this has drastic consequences when we consider quantum fluctuations near the horizon.

Consider the near horizon expansion

f(r) = f ′(rs)(r − rs) + · · · , (1.43)

for r ∈ (rs, rs + ε), and where ε is an infinitesimal. An observer in proximity of the horizon can
measure the proper distance ρ from the horizon, according to

dρ =
dr√
f(r)

. (1.44)

Using the near horizon expansion of the blackening factor, and then integrating, we find

ρ ' 2√
f ′(rs)

√
r − rs, (1.45)

plugging this back into the metric we get

ds2 = −
(

1

2
f ′(rs)

)2

ρ2dt2 + dρ2 + r2
sdΩ2

2 = −ρ2dη2 + dρ2 + r2
sdΩ2

2. (1.46)

What we have just found is that in the near-horizon limit the geometry can be approximately
described by Rindler× S2 (which is strictly speaking not a solution to the Einstein equation.)

The Rindler portion is described by the metric

ds2
Rind = dρ2 − ρ2dη2, (1.47)
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ρ = constant

η = constant

x

t

I

II

III

IV

Figure 1.2: Rindler coordinates cover the region I of R1,1. One can extend the coverage to
the regions II, III, and IV with Kruskal-like coordinates. The resulting space is akin to the
maximally extended Schwarzschild solution with I and III being the asymptotic regions, and II
and IV being the part and future interiors.

which by taking η → iφ gives R2 in polar coordinates. Furthermore, with the coordinate
transformation

x = ρ cosh η, t = ρ sinh η, (1.48)

we recover R1,1. Notice that the Rindler coordinates cover just a portion of R1,1, namely the
patch x > 0 and |t| < 0 (see figure 1.2.)

A QFT at finite temperature is periodic under Euclidean time evolution, meaning that if we
do a Wick rotation t→ −iτ , then τ ∼ τ+β, where β is the inverse temperature. This periodicity
is for example exhibited in the thermal Green’s function: Gβ(τ, x) = Gβ(τ − β, x). So if we
perform a Wick rotation in the near-horizon geometry above, namely η → iφ, we find that the
Rindler portion of the metric becomes simply R2 in polar coordinates. Unless φ is periodic
with period 2π, polar coordinates in R2 are singular when ρ = 0. Since the limit ρ → 0 of the
near-horizon geometry describes the the Schwarzchild horizon itself, which is non-singular, we
conclude that φ must be periodic. This suggests that the Wick rotated near-horizon geometry
describes a thermal QFT with temperature given by the periodicity. In particular, undoing the
various coordinate transformations we find that

T =
|f ′(rs)|

4π
. (1.49)

One interpretation of this result is that an accelerating observer in flat Minkowski space
observes a thermal spectum of particles with temperature given by (1.49): this is known as the
Unruh effect [23].
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The other interpretation [5] is far more suggestive with far-reaching consequences: the
Schwarzchild black hole we started with emits particles with a black body spectrum of tem-
perature given by (1.49), known as the Hawking temperature. This argument might seem a little
sketchy at first, but the conclusion is nonetheless correct, as confirmed by a more sophisticated
account [5]. The conclusion hold for more complicated black holes as well.

1.3.2 Black Hole Thermodynamics and the Holographic Principle

We now know that black holes radiate particles in a thermal spectrum, with temperature (1.49).
One immediate consequence is that we should be able to associate an entropy to a black hole

dS

dT
=

1

T (E)
. (1.50)

This makes sense; black holes are, after all, by definition perfect absorbers, and should therefore
emit just like any other object in thermal equilibrium at temperature (1.49) with entropy (1.50).
For a Schwarzschild black hole we can consider E = M , where M is the mass of the black hole,
and therefore

S(E) =

∫
dE

T (E)
=

4πr2
s

4GN
.

Since the area of the event-horizon is given by

A =

∫
d2x
√
−det γ = 4πr2

s ,

with γ being the induced metric on the horizon, we conclude that

S =
A

4GN
, (1.51)

which is the celebrated Bekenstein-Hawking entropy formula.
From the perspective of the no-hair theorem, which states that a stationary black hole is fully

described by its mass M , its angular momentum J , and its gauge charge Q, black holes appear
as fundamental objects with no internal structure. The fact that black holes have non-zero
temperature and entropy might thereby come as a surprise. But from the perspective of the
second law of thermodynamics it makes perfect sense, else: if a lump of matter with a certain
entropy is ingurgitated by a black hole, an external observer would come to the conclusion that
the this entropy simply disappeared from the universe, violating the second law. This goes hand
in hand with the so-called area theorem, which states that the event horizon area A of a black
hole can never decrease with time,

δA ≥ 0, (1.52)

which is completely analogous to the second law δS ≥ 0.
We should by now be convinced that black holes are thermodynamic systems. As such, we

should, at least in principle, be able to apply the Boltzmann formula

S = kB logN , (1.53)

which relates the entropy S of a system to the number of microscopic degrees of freedom N ,
to black holes. What the underlying microstates are in the case of black holes is still an open
question, related to the so-called information paradox. As it stands, the Bekenstein formula for
the entropy of a black hole may catch an eye or two. Indeed, that the entropy is proportional
to the area is a remarkable feature. Since entropy is tied to the number of degrees of freedom of
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a system through the Boltzmann formula – more generally the Vonn-Neumann formula, see 2 –
we should come to the conclusion that for black holes the number of degrees of freedom scales as
the area. This is in stark contrast to ordinary QFTs on a lattice, where the number of degrees
of freedom scales as the volume. It turns out that if taken seriously, this apparent contradiction
can teach us something deep and valuable about gravity.

In fact, let’s consider an isolated system of mass M , entropy S, and let’s suppose the whole
system is contained inside a spherical surface of area A. Let MA be the mass of the black hole
whose horizon area is A. Clearly we must have M ≤MA. Keeping A fixed we may add MA−M
energy to the system; this will inevitably turn the system into a black hole of mass MA and
horizon area A. Hence, according to the second law of thermodynamics, the following inequality
must hold for the subsystems

SBH ≥ S + S′, (1.54)

where SBH is the entropy of the black hole with horizon area A, and S′ the entropy of the matter
added subsequently. This implies the following:

S ≤ SBH, (1.55)

that is, the maximal entropy inside a region bounded by a surface of area A is

Smax =
A

4GN
.

This heuristic argument (for a more detailed account see [24]) indicates that not only all the
information stored within the interior of a black hole is fully encoded on the surface of the
event horizon but also that the amount of information stored by any physical system in a region
cannot exceed the area of the boundary surface of said region. This is what sparked the idea of
holography.

The holographic principle states that: in a quantum theory of gravity, given a region of
spacetime, the degrees of freedom are fully localized on the boundary surface of the region so that
the number of degrees of freedom inside the region is no more than one per unit of Planck area.

As alluded to earlier, this principle is violated in non-gravitational systems such as ordinary
QFTs. In a three-dimensional spin chain lattice with lattice spacing a, for instance, the number
of degrees of freedom scales as V/a3 � A/`2P . So according to the holographic principle, quantum
gravity leads to a huge reduction in the number of degrees of freedom.

1.4 AdS/CFT

We are now ready to turn our attention to the AdS/CFT correspondence.
At the most basic level AdS/CFT states the equivalence between the language of quantum

field theory and the langauge of (super)gravity, via a so-called dictionary. As we will see in mo-
ment, the quantum field theory lives on the boundary of the spacetime on which the gravitational
theory is defined, thus making the correspondence a realization of the holographic principle. This
fact alone should be reason enough to be interested in AdS/CFT, but the range of potential
applications goes way beyond holography, from condensed matter theory (AdS/CMT) to the
quark-gluon plasma (fluid/gravity duality.)

We won’t introduce the duality in a historically accurate way, we will rather treat it as a
truth handed to us by some deity (perhaps by the Roman god Janus) and from there discuss
the implications. We will closely follow the approach of [25, 26, 21]. For a more in-depth and
historically accurate introduction [27, 28] are great references.
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1.4.1 Formulation of the Correspondence

Without further ado, let’s introduce the glorious AdS/CFT correspondence.

Statement 1: any conformal field theory defined on R × Sd−1 is dynamically equivalent to
a semiclassical theory of gravity in asymptotically AdSd+1 ×M, where M is a compact mani-
fold1.

This statement on its own is quite cryptic and vague, so we need to contextualize it a bit.
The first question one might ask is what is meant by dynamically equivalent. By this we

mean that observables on the two sides of the correspondence are in a one-to-one map through
the holographic dictionary, in this sense, the duality can be viewed as an isomorphism between
the Hilbert spaces on each side: φ : HAdS → HCFT. The holographic dictionary, much like
ordinary dictionaries, is expanding, and occasionally new entries are introduced. Much of this
thesis will be dedicated to one of the most recent additions to the dictionary, the CV-duality.
More on that later.

We implicitly already know the first line of the dictionary. Indeed, since the conformal group
in d dimensions and the isometry group of AdSd+1 are both isomorphic to SO(d, 2) we claim
that the generators implementing these symmetries on each sides are related by the isomorphism
φ,

φ ◦ UAdS = UCFT ◦ φ . (1.56)

This implies that the spectrum of the Hamiltonians is equivalent on either side, and that any
operator on one side can be transformed into an operator on the other side throug φ. It is
generally convenient to choose a basis in which φ = I.

To formulate more entries to the dictionary we need an additional statement.

Statement 2: a d-dimensional CFT whose spectrum is spanned by a complete set of primary
operators Oi has a semiclassical dual near the vacuum if there exist a local bulk action S[φi,Λ],
where Λ is a UV cutoff and φi are a finite set of bulk fields that satisfy the bulk equations of
motion and (scalar fileds, gauge fields, metric, etc.) such that∫

Dφi eiS[φi,Λ]Oi1(x1) · · ·Oin(xn) ' 〈Oi1(x1) · · ·Oin(xn)〉CFT , (1.57)

to all orders in 1
LΛ . Here xi are coordinates on the boundary, and the Oi on the left are given

by
lim
r→∞

r∆iφi(r, x) = Oi(x) , (1.58)

where ∆i is the scaling dimension of Oi, and r the radial AdS coordinate.

The equation (1.58) is the analogous of the LSZ formula in flat QFT and is referred to as
the extrapolate dictionary. This relation is of utmost importance in AdS/CFT as it provides a
prescription for relating bulk fields to boundary operators. For instance, it allows to relate the
bulk metric gMN to the boundary stress tensor Tµν .

However, statement 2 is still not enough, after all, as we alluded to earlier, we expect the
most interesting bulk geometries to be described by a CFT somewhat far from the vacuum.
Black holes are a perfect example of such scenario. Therefore we need one more statement.

Statement 3: a CFTd has a semiclassical dual if in addition to having a semiclassical dual
near the vacuum, the relation (1.57) holds for a more general set of asymptotically-AdS boundary
conditions which allow for a fixed but arbitrary boundary metric.

1M is usually a trivial manifold so we will act as if it doesen’t exist.
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In practice AdS/CFT is telling us that the boundary value of a bulk field φ(x) = limr→∞ φ(r, x)
acts as a source in the CFT, that is,

LCFT → LCFT +

∫
ddxφ(x)O(x). (1.59)

This implies that correlation functions in the boundary are completely specified by the generating
functional

ZCFT = eW [φ] =
〈
e
∫

ddxφ(x)O(x)
〉

CFT
, (1.60)

and its derivatives

〈O(x1) · · ·O(xn)〉 =
δnW

δφn

∣∣∣∣
φ=0

. (1.61)

AdS/CFT may therefore be summarized in a single line:

ZCFT[φ(x)] = ZAdS[φ(r, x)|∂AdS = φ(x)] . (1.62)

This is the celebrated Gubser, Klebanov, Polyakov, Witten dictionary [29, 30].

1.4.2 Infrared vs. Ultraviolet

The extra dimension on the gravity side turns out to have a very important interpretation within
the correspondence. Recall that the AdS metric in Poicarè coordinates is given by

ds2 =
L2

z2
(dz2 + dxµdxµ).

where the coordinates on the boundary are given by xµ = (~x, t). If we express the local bulk
proper time and proper distance with respect to the boundary coordinates we find,

dτ =
L

z
dt, and d` =

L

z
dx,

which, if inverted, implies that from the boundary point of view we will have

ECFT =
L

z
Elocal, and dCFT =

z

L
dlocal.

This suggests the following: identical processes in the bulk theory at different values of the radial
coordinate z (that is, processes with same Elocal and same dlocal) are mapped to processes in the
boundary theory with energy ECFT ∼ 1/z, and dCFT ∼ z. The factor 1/z should therefore be
identified with an energy scale in the CFT. This also means that the limits z → ∞ and z → 0
correspond respectively to UV and IR regimes in the boundary theory.

This relation is at the heart of AdS/CFT. In fact, it tells us that in the semiclassical limit
the correspondence is a strong/weak duality. This is practically very important, since it allows
us to treat strong coupling regimes in the boundary, which are computationally prohibitive, with
weak coupling regimes in the semiclassical bulk.

1.4.3 Mass Dimension Duality

In section 1.2.4 we found the solutions of the AdS equations of motion and quantized the
corresponding bulk fields. In light of AdS/CFT we can give a holographic interpretation to the
relation (1.37).
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IR process (z >> 0)

UV process (z ' 0)

Figure 1.3: degrees of freedom deep in the bulk correspond to IR processes in the boundary,
vice versa, degrees of freedom close to the boundary correspond to UV physics in the boundary.

Assuming that the bulk metric is expressed in Poincarè coordinates, the solutions to the
bulk equations of motion close to the boundary are

φ(z, x) = A(x)zd−∆ +B(x)z∆ , (1.63)

where ∆ is given by (1.37), and x is a boundary coordinate. Let’s further assumem2L2 ≥ −d2/4
and that we are in standard quantization.

As discussed in 1.2.4, the modes corresponding to z∆ are normalizable, and as such are used
to build up the bulk Hilbert space. Since, according to AdS/CFT, the bulk Hilbert space is
equivalent to the boundary Hilbert space, the normalizable modes will be dual to boundary
primary operators. On the other hand, non-normalizable modes are not part of the bulk Hilbert
space, so if present should be interpreted as defining the background, that is, from the boundary
perspective they deform the theory as sources. So, if A(x) = φ0(x), that is,

φ0(x) = lim
z→0

z∆−dφ(z, x), (1.64)

we will have the deformation

LCFT → LCFT +

∫
ddxφ0(x)O(x) (1.65)

in the boundary theory. This also suggests that ∆ is precisely the scaling dimension of the
boundary operator O(x). This becomes clear if we act with the bulk isometry (z, x)→ (λz, λx),
which results in

O(x)→ λ−∆O(x). (1.66)

Interestingly, this means that, in standard quantization, we can classify the boundary operators
through (1.37) in the following way:

� if m = 0, ∆ = d, that is, O(x) is a marginal operator;

� if m2 < 0, ∆ < d, that is, O(x) is a relevant operator; and

� if m2 > 0, ∆ > d, that is, O(x) is an irrelevant operator.

1.4.4 AdS/CFT at Finite Temperature

According to AdS/CFT, when the bulk geometry is pure AdS the dual boundary theory is in a
vacuum state. On the other hand, when the bulk geometry deviates from pure AdS, we expect
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the boundary theory to be in an excited state. In general we can define deformations of the bulk
that maintain the correct boundary structure2 as

ds2 =
L2

z2

(
dz2 + Γµν(x, z)dxµdxν

)
, (1.67)

where for z → 0,

Γµν(xµ, z) = ηµν +O(zd). (1.68)

It is extremely interesting to understand which bulk geometry describes a thermal state in the
CFT side. Let’s for simplicity we consider the AdS5/CFT4 duality, and we start with the case in
which the thermal CFT is defined on Rd−1×S1

β, where S1
β is a circle of radius β. Two candidates

could come to mind as to what geometry is dual to the thermal state: a thermal gas in AdS, or
an Euclidean black hole in AdS. Both solutions look in principle promising, since thy both are:

� asymptotically AdS;

� finite T theories that satisfy the laws of thermodynamics; and

� translationally and rotationally invariant along the boundary directions.

However, the thermal gas solution, which is defined by Wick rotating pure AdS and requiring
smoothness at the origin, is unstable and must therefore be ruled out. We are left with the black
hole solution.

The black hole solution is a solution of Einstein’s equation with an event horizon whose
topology is Rd−1. To describe it, we can start by considering the ansatz in Lorentzian signature

ds2 =
L2

z2

(
−f(z)dt2 + d~x2

)
+
L2

z2
g(z)dz2, (1.69)

which solves Einstein’s equation if

f(z) =
1

g(z)
= 1−

(
z

z0

)d
. (1.70)

The constant z0 describes the position of the event horizon. Going to Euclidean signature, and
requiring regularity at the origin, we find the thermodynamic temperature β = 4πz0/d. This is
the temperature of the boundary theory, and we again see the IR/UV connection since T ∼ z−1

0 .
So in this simple case, the holographic dual of a thermal CFT state in Rd−1 × S1

β is a black
brane solution in AdS.

The story becomes more interesting when we consider a CFT defined on Sd−1 × S1
β. In this

case we have two dimensionful parameters, namely T , and R (the radius of Sd−1), which means
that the physics will depend on the product RT . Now the thermal solution in AdS is allowed,
so there are two possibilities.

� One possibility is global AdSd+1 with the Euclidean metric

ds2 =

(
1 +

r2

L2

)
dτ2 +

(
1 +

r2

L2

)−1

dr2 + r2dΩ2
d−1. (1.71)

We require τ ∼ τ + β, so that the temperature is the inverse of the compactified time τ .
Note that, since there is no horizon, there is no further restriction on the value of β, and
therefore the temperature is just a free parameter in this solution.

2We discuss this in section 1.2.3, but essentially we want the geometry to asymptotically resemble AdS.
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� The other possibility is AdS-Schwarzschild with the Euclidean metric

ds2 = f(r)dτ2 +
1

f(r)
dr2 + r2dΩ2

d−1, where f(r) = 1 +
r2

L2
− µ

rd−2
. (1.72)

We can interpret µ as some sort of chemical potential related to the size of the black
hole. The temperature in this case is β = 4π/f ′(r0), where r0 is the value for which the
blackening factor vanishes. In particular we find

β =
4πr0L

2

dr2
0 + (d− 2)L2

=⇒ T (r0) =
dr2

0 + (d− 2)L2

4πr0L2
. (1.73)

Taking a closer look the profile of (1.73), one realizes that the AdS-Schwarszchild solution
only exists above the temperature Tmin =

√
d(d− 2)/2πL, and that above this temperature

it actually corresponds to two solutions with different horizon radii. We refer to the geometry
of the smallest of the two radii as the ”small” black hole solution, while the larger one as the
”large” black hole solution. The two solutions are degenerate when we reach Tmin. Moreover,
the small solution is of negative specific heat, since for decreasing r0 the temperature increases,
contrarily, the large solution is of positive specific heat.

We therefore have the following situation:

1. for temperatures below Tmin, thermal AdS is the only solution; and

2. for temperatures above Tmin, we have three possible solutions, namely, thermal AdS, the
small black hole, and the large black hole.

Since the small black hole solution is characterized by negative specific heat, it has to be ruled
out: no sensible CFT has negative specific heat. We are thus left with the thermal AdS solution,
and the large black hole solution. To decide which of these two solutions dominates at a given
temperature, we have to compare the free energies. The solution which dominates will minimize
the free energy, and since e−βF ∼ e−SE [Φc], where SE [Φc] is the euclidean action evaluated on a
classical on-shell solution, the dominant solution will be the one with largest SE [Φc]. It turns
out that there exist a temperature Tc, below which the thermal AdS solution dominates, and
above which the large black hole solution dominates. Furthermore, at Tc there is a first order
phase transition, since at this point the derivative of F is not continuous. This transition was
studied by Hawking and Page years before anyone cared about AdS spacetime, and is therefore
referred to as the Hawking-Page transition.

To summarize:

� a thermal CFT state in Rd−1 × S1
β is dual to the black brane solution (i.e., a black hole

solution whose horizon is topologically Rd−1) in AdS; and

� a thermal CFT state in Sd−1 × S1
β is dual to the thermal AdS solution up to a transition

temperature Tc after which it becomes dual to the large AdS-Schwarzschild solution.

When the dual geometry is characterized by the presence of a horizon, we naturally expect
the entropy to be non-zero, and it seems not so unreasonable to associate this entropy to the
entropy of the thermal CFT state. This connection between geometry and entropy shouldn’t
come as a surprise given what we know about classical black holes; it emerges effortlessly if
we accept that black holes are thermodynamic systems and that the horizon area is (up to
constants) the entropy of the black hole. Given AdS/CFT, it seems that we now have some
hope of understanding the microscopic origin of the black hole entropy. In the next chapter we
will come back to this connection between geometry and entropy and we will further generalize
this aspect of the duality.
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Chapter 2

Holographic Entanglement Entropy

In this chapter, we review some developments in AdS/CFT that came about in the 00s and that
sparked enormous interest around the idea that gravity and quantum information could be one
and the same. A slogan that has emerged from these developments is that gravity is quantum
entanglement [31].

First we review the basics of entanglement entropy for ordinary quantum mechanical systems,
then we will move to quantum field theories, and, finally, we will make full circle by discussing
the holographic interpretation of boundary entanglement entropy.

2.1 Entanglement Entropy

In quantum mechanics physical systems are described by states defined on a Hilbert spaceH.
Let’s suppose that this space can be factorized into the tensor product of two subspaces HA and
HB, namely H = HA ⊗HB.

Definition (1): given a state |Ψ〉 ∈ H in the full Hilbert space, we say that this state has
quantum entanglement if and only if it can’t be decomposed into a direct product of states in HA
and states in HB, that is, |Ψ〉 6= |ψ〉A ⊗ |ψ〉B, where |ψ〉A ∈ HA and |ψ〉B ∈ HB.

We can equivalently phrase this definition in terms of the density matrix.

Definition (2): given a state |Ψ〉 ∈ H we say that this state is entangled if and only if the
density matrix ρ = |Ψ〉〈Ψ| is not separable, i.e., if it cannot be written as

ρ =
∑
k

pkρ
(k)
A ⊗ ρ

(k)
B , (2.1)

where
∑

k pk = 1 and pk > 1.

It is easy to prove the equivalency of the two definition. The orthodox example of an entangled
state, is that of a two-qubit system in the state

|Ψ〉 =
1√
2

(|1〉A|0〉B − |0〉A|1〉B) =
1√
2

(|10〉 − |01〉). (2.2)

Conversely, the two-qubit state

|Φ〉 =
1√
2

(|0〉A + |1〉A)⊗ 1√
2

(|0〉B + |1〉B), (2.3)

is not entangled. The simplest way to quantify the amount of entanglement in a given state is
through the Entanglement Entropy. In a bipartite system H = HA⊗HB, we define the reduced
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density matrix

ρA = TrBρ =
∑
k

〈ψ(B)
k |ρ|ψ

(B)
k 〉, (2.4)

where |ψ(B)
k 〉 form a basis in HB, and the Von-Neumann entanglement entropy may be defined

as
SA = −Tr(ρA log ρA). (2.5)

This quantity satisfies a few key properties:

� SA = 0 if and only if ρ is separable;

� if ρ is a pure state density matrix then SA = SB;

� if ρ is a mixed state density matrix with entropy S(ρ), then

|SA − SB| ≤ S(ρ) ≤ SA + SB, (2.6)

where th second inequality is often called sub-additivity;

� suppose the Hilbert space can be decomposed into a tensor product of sub-spaces of the
kind H = HA ⊗HB ⊗HC ⊗HD ⊗ · · · , then the following inequality holds

SAB + SBC ≥ SB + SABC , (2.7)

which is called strong sub-addititvity.

Going back to the two-qubit example, we can consider the maximally-entangled state

|χ〉 =
1√
2

(|0〉A|0〉B + |1〉A|1〉B) , (2.8)

for which the Vonn-Neumann entropy reads

SA = −2 · 1

4
log

1

4
= log 2 . (2.9)

This simple example provides an interpretation of entanglement entropy: it is a measure of how
entangled a system is. In fact, for a system split in to two k-qubit subspaces, a maximally
entangled state has SA = k log 2. So SA counts the number of entangled bits between the two
subsystems.

The logarithm that appears in the definition of Vonn-Neumann entropy makes it difficult to
compute for more complicated systems (particularly in quantum field theory). Fortunately we
can define a related quantity,

S
(n)
A = − 1

n− 1
log TrρnA. (2.10)

known as Renyi entropy. If all n Renyi entropies are known we can recover the VN entropy in
the limit

SA = lim
n→1

S
(n)
A . (2.11)

This is a non-trivial statement that can be proven rigorously.
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∂A

B A

Figure 2.1: a time-slice of the Lorentzian manifold M divided into two regions, A and B. The
regions are drawn as circles, but they could be any shape.

2.2 Entanglement Entropy in QFTs

Consider a quantum field theory defined on a Lorentzian manifold M with Hilbert space H.
Consider then a fixed time-slice on the manifold, and divide the induced space-like surface into
two distinct regions, A and B (see fig. 2.1.) The codimension-2 surface separating the two
regions is what we call the enatngling surface.

We may be tempted to then define entanglement entropy mirroring what we discussed for
ordinary quantum mechanics and call it a day. But in contrast to ordinary quantum mechanics,
in QFT it is in general not possible to separate the Hilbert space into a tensor product HA⊗HB.
This is because of diverging UV modes appearing at arbitrarily small scales across the boundary
surface ∂A, i.e., the entangling surface. In any event, we can still define EE but we must also
handle the divergences.

We can deal with these diverging modes, as usual, by placing the quantum field theory on a
lattice with lattice spacing ε. With the theory on a lattice, the Hilbert space of a finite region
is finite-dimensional, and we are thus able to associate a tensor factor HA to a region A on the
spatial manifold. Now we can define EE as per the definition in the section above. The notion
of entanglement entropy in a QFT acquires a geometrical meaning. We can for example ask
questions like how entangled a spatial region A is with respect to the complement of A, and so
forth.

Computing the entanglement entropy in a QFT can be a daunting task, but the general
structure is usually dominated by short-range correlations across the entangling surface, that is,

SA ∼
∫
∂A

dd−2σ
√
hF [Kab, hab] , (2.12)

where F is a theory-dependent functional, Kab is the extrinsic curvature, and hab the induced
metric on the entangling surface. The previous expression can be expanded in powers of resulting
in the so-called area law,

SA = N
Area(∂A)

εd−2
+ · · · , (2.13)

where N is a constant that depends on the details of the theory, and d > 2. This captures only
the leading divergence and is telling us something quite interesting: the vacuum state of any
QFT in d > 2 dimensions is a highly entangled state. In 1 + 1 dimensions the entanglement
entropy of a spatial region of length L can be computed exactly in the case of a CFT, the result
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is found to be

SA =
c

3
log

L

ε
. (2.14)

There are a plethora of ways to prove this, and one of them involves the so-called replica trick.

2.2.1 Replica Trick

The replica trick is a procedure to compute the Von-Neumann entanglement entropy from the
path integral formalism [32, 33, 34]. The trick relies on the fact that it’s generally easier to
compute the quantity TrρnA, as opposed to TrρA log ρA, and this quantity can be computed
naturally from the Euclidean path integral. In the end the Von-Neumann entropy will be
determined by

SA = − ∂

∂n
log TrAρ

n
A|n=1. (2.15)

In complete analogy to wave functions in ordinary quantum mechanics, it is possible to define
wave functionals in quantum field theory. In QM the wave function corresponding to a state
|Ψ〉 is given by projecting the state onto the continuous ”eigenvectors” defined by the position
operator, namely Ψ(x) = 〈x|Ψ〉. Similarly, in a QFT the dynamical degrees of freedom are field
operators φ(x) (in the position representation), so for a state |Ψ〉 in this QFT we can define
the wave functional by projecting the state onto the eigenbasis defined by the field operators in
position representation, that is,

Ψ[φ(x)] = 〈φ(x)|Ψ〉. (2.16)

If we consider the wave functional corresponding to the vacuum of the theory, this will be given
by the Euclidean path integral

Ψ0[φ(x)] =

∫ φ(τ=0,x)=φ(x)

τ<0
Dφ(τ, x)e−SE [φ]. (2.17)

We can also represent density matrices in the Euclidean path integral language. Density matrices
are operators that act on the space of two fields to the complex numbers, meaning that density
matrices can be understood, up to an overall normalization factor, as Euclidean path integrals
with two open cuts (i.e., two unspecified boundary conditions.) The matrix elements of the
density matrix will be given by

ρ(φ1(xA), φ2(xA)) = 〈φ1(x)|ρ|φ2(x)〉 = Ψ0[φ1(x)]Ψ∗0[φ2(x)]. (2.18)

Since we are interested in the entanglement entropy of a spatial sub-region A, we will have to
trace out the degrees of freedom outside of A, this is in practice realized by integrating over all
the fields localized in the complement of A, which we call B, thus

〈φ1(xA)|ρA|φ2(xA)〉 =

∫
Dφ(xB)Ψ0[φ1(x)]Ψ∗0[φ2(x)], (2.19)

where xA stands for x ∈ A, and xB stands for x ∈ B. Using the path integral representation of
the wave functionals we arrive at the following

〈φ1(xA)|ρA|φ2(xA)〉 =
1

Z1

∫
Dφ(τ, x)e−S[φ]

∏
x∈A

δ(φ(τ = 0+, x)−φ1(x)) ·δ(φ(τ = 0−, x)−φ2(x)),

(2.20)
where Z1 represents the vacuum partition function. If we were considering, for example, a
(1 + 1)-dimensional CFT in the Euclidean space R2, Z1 would be the vacuum partition function
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of R2. At this point we take n copies of (2.20) gluing each copy to the subsequent one along the
cut A, this allows us to compute the trace of ρnA as

TrρnA =
1

(Z1)n

∫
Dφ1(xA) · · · Dφn(xA) (2.21)

× ρ(φ1(xA), φ2(xA))ρ(φ2(xA), φ3(xA)) · · · ρ(φn(xA), φ1(xA)), (2.22)

which can be rewritten as a path integral over a Riemann surface Rn with n sheets, that is,

TrρnA =
1

(Z1)n

∫
(τ,x)∈Rn

Dφ(τ, x)e−S[φ] =
Zn

(Z1)n
. (2.23)

Thus, we find that the entanglement entropy can be computed as

SA = − ∂

∂n

[
log

Zn
(Z1)n

]
n=1

. (2.24)

2.3 Thermofield Double State

In QFT a thermal mixed state ρ = e−βH can always be treated as a pure state in a bigger
Hilbert space, through a very useful procedure called purification. The idea is the following.

Suppose that the mixed state is defined in some Hilbert space H1, which is spanned by
the energy eigenbase of some Hamiltonian H. Firstly, we double the degrees of freedom of
this quantum system, so that we have two exact copieas of the original Hilbert space H1. We
dub the second copy H2 and the total Hilbert space spanned by the tensor product of the two
copies H = H1 ⊗ H2. Note that at the level of Lagrangians and field operators, we have two
exact copies of the original QFT, so that for every field operator in the original Lagrangian we
have two fields in the doubled QFT, which live in separate spacetimes and are not coupled in
the Lagrangian in any way at all. Say the Hamiltonian H is characterized by the spectrum of
eigensates H|n〉 = En|n〉, then, the second step is to construct the state

|TFD〉 =
1√
Z(β)

∑
n

e−β
En
2 |n, 1〉|n, 2〉, where |n, i〉 ∈ Hi, (2.25)

which is the so-called thermofield double state. Clearly |TFD〉 is a pure state in H. This is
actually a particular instance of what is known as a Smith decomposition. We can define the
corresponding density matrix ρTFD = |TFD〉〈TFD|, and by tracing out the degrees of freedom
of the second copy we see that

ρ1 = Tr2ρTFD (2.26)

=
∑
m

〈m, 2|

∑
n,n′

e−β
En+En′

2 |n, 1〉|n, 2〉〈n′, 1|〈n′, 2|

 |m, 2〉 (2.27)

= e−βH . (2.28)

We therefore conclude that, by ignoring the degrees of freedom contained in the second copy,
the thermofield double state is indistinguishable from a thermal mixed state in H1.

For local operators O1 in H1, we have

〈TFD|O1|TFD〉 =
1

Z(β)
Tr1e

−βH1O1. (2.29)

If consider the local operators O1 ∈ H1, and O2 ∈ H2, the expectation value 〈TFD|O1O2|TFD〉
may in general be non-vanishing, despite there being no correlations at the level of Lagrangians.
This is an interesting quantum effect due to entanglement.
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2.3.1 Eternal Black Holes and Thermofield Double States

In AdS/CFT, when the gravitational side is pure AdS, states in the bulk are dual to vacuum
states in the boundary. However, when the boundary theory is in a highly energetic thermal
state, the geometry in the bulk theory is characterized by a horizon: a black hole in AdS is dual
to a greatly excited thermal state in the boundary. This opens the possibility of studying the
properties that define the spacetime of a black hole through the thermal state of the dual CFT.

In 2001 Maldacena proposed that the geometry of an eternal (two-sided) black hole in AdS
is dual to two copies of the CFT in a temofield double state [35]. This seemingly bold proposal,
makes sense if we think about the maximally extended geometry of a Schwarzschild black hole
in AdS. Indeed, as depicted in the picture 2.2, for a maximally extended AdS-Schwarzschild
black hole there are two distinct asymptotic regions, and it is only natural to assume that
there is a dual CFT description in each boundary (say CFTR and CFTL). The boundaries are
causally disconnected, but we can still define a classical geometry connecting the two regions.
This geometry is what we refer to as a wormhole, or Einstein-Rosen bridge. As we know,
a thermofield double state describes two correlated but uncoupled systems; meaning that the
two boundary CFTs, although not interacting at the level of the lagrangian, can have non-
vanishing expectation values 〈TFD|OLOR|TFD〉, where OL is an operator in CFTL, and OR is
an operator in CFTR. This correlation is purely quantum mechanical, and is due to the fact that
the two theories are entangled. In this sense we can argue that the geometry of the Einstein-
Rosen bridge is created by entangling the two conformal field theories at the boundaries of the
maximally extended geometry.

Left Boundary Right Boundary

r = 0

Interior

Interior

r = 0

Figure 2.2: Penrose diagram of an eternal AdS black hole. The region shaded in red represents
the interior.

The ”total” Hamiltonian H = HL −HR acting on the doubled Hilbert space H = CFTL ⊗
CFTR, has an interesting interpretation according to this picture. On the CFT side, the ter-
mofield double state is left invariant under the time evolution dictated by H:

e−iHt|TFD〉 =
1√
Z(β)

∑
n

e−β
En
2 e−i(HL−HR)t|n,L〉|n,R〉 = |TFD〉 . (2.30)
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From the bulk prospective, H can be viewed as the dual to the generator of time isometries ∂t.
This proposal relating termofield double states to AdS black holes can be motivated formally

via path integrals, and its generalizations have been given the slogan ER=EPR. This conjecture
has only been quantitatively motivated at a semiclassical level, but, depending on who is inter-
rogated, is believed to be true in a more general and fundamental sense; it is believed to be a
property of any UV complete theory of quantum gravity.

2.4 Holographic Entanglement Entropy

As we have seen in this chapter, in the context of quantum mechanics and QFT the concept
of entanglement entropy naturally arises when we consider subdivisions of the Hilbert space.
Particularly, in QFTs this subdivision acquires a geometric ”flare”. As such, given the AdS/CFT
correspondence it would be interesting to understand how this subdivision on the boundary is
reflected in the bulk. The precise bulk interpretation of boundary entanglement entropy was
first found by Ryu and Takayanagi [6] and was later generalized by Hubeny, Rangamani, and
Takayanagi [36]. Ever since, a vast literature has emerged trying to explore the connection
between quantum information and holography.

Let’s consider a holographic theory whose bulk manifold is described by a static metric.
Given a spatial subregion A on the boundary spacetime and a codimension-2 surface ΓA em-
bedded in the bulk, such that ∂ΓA = A and such that ΓA is homologous to A, then the Ryu-
Takayanagi proposal states that

SA = MinΓA

[
Area(ΓA)

4GN

]
. (2.31)

This ansatz can be generalized to the case in which the bulk geometry is time dependent. In
that case we must consider a foliation of the bulk manifold, pick a time slice Σ, and extremize
the area of a codimension-2 surface bulk surface ΓA(t) (which, again, has to be homologous
to the spatial subregion A, and share the same boundary as A) before proceeding with the
minimization. That is,

SA = MinΓA(t)

[
ExtrΓA(t)

(
Area(ΓA(t))

4GN

)]
. (2.32)

2.4.1 Heuristic Motivation of the RT Formula

We can sketch a proof of the Ryu-Takayanagi formula using the replica trick presented earlier. In
holography this means making n copies of the bulk manifold, sew them together cyclically, and
evaluate the gravitational partition function on the resulting manifold. This should in principle
yield the boundary entanglement entropy via (2.24) [6, 33], that is, if we believe one of the
fundamental principles of AdS/CFT, namely

ZAdS = ZCFT . (2.33)

Suppose the replicated bulk geometry is Bn, from the above we expect

Z[Mn] = e−S[Bn] , (2.34)

where Mn is the n-sheeted manifold that implements the replica trick entanglement entropy
for the boundary region A. For simplicity we restrict ourselves to the AdS3 case. The three-
dimensional case is particularly simple since we can assume that the back-reacted geometry Bn
that approaches Mn on the boundary is an n-sheeted AdS3 geometry. The manifold Mn and
Bn are both characterized by a deficit angle δ = 2π(1−n): in the former case the deficit appears
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along the boundary ∂A, whilst in the latter it appears along some surface (curve) ΓA. The Ricci
scalar in conical spaces is given by [37]

R = 4π (1− n) δ(ΓA) +RAdS , (2.35)

where the support of the delta-function is defined along the surface (curve) ΓA, and RAdS is
the Ricci scalar of empty AdS3. Plugging this into the gravitational action and evaluating the
integral, one finds

S = −1− n
4G

Area(ΓA) + terms linear in n , (2.36)

hence, by plugging the gravitational partition function in (2.24), we find

SA = − ∂

∂n

[
1− n
4G

Area(ΓA)

]
n=1

=
Area(ΓA)

4G
. (2.37)

The last step consists in the realization the the area is minimal: this is because of the action
principle applied to (2.36).

This argument can be applied in higher dimensions as well, with all the caveats that come
from having more dimensions [6, 33].

2.4.2 An Example

Let’s see the holographic entanglement entropy formula in action with a simple example. Con-
sider a 2d CFT and the spatial subregion A = [− `

2 ,
`
2 ] in its vacuum state. The semiclassical

dual geometry is pure AdS3, and the metric reads

ds2 =
L

z2
(−dt2 + dx2 + dz2). (2.38)

This geometry is obviously static, meaning that we can set t = 0 and express x as a function of
z so that on the time-slice t = 0 the induced metric reads

dl2 =
L2

z2

(
1 + x′(z)

)
dz2. (2.39)

The area of the induced codimension-2 surface (in this case a curve) is obtained by integrating
the determinant of the induced metric. If we parametrize the curve so that x(0) = `/2, we find
that the lenght of the curve is given by

Area(ΓA) = 2

∫ z0

ε
dz
L

z

√
1 +

(
dx

dz

)2

. (2.40)

We have introduced a cutoff parameter ε since the lenght of a curve reaching the boundary at
z = 0 is infinite. This is equivalent to stating that the entanglement entropy in the boundary
CFT is a UV divergent quantity. At this point we must find the curve that minimizes the action,
i.e., the geodesic. This is a simple variational problem, and it turns out that the geodesic is
given by

x(z) =

√
`2

4
− z2. (2.41)

Plugging this in the Ryu-Takayanagi formula we arrive at

SA =
1

3

3L

2GN
log

`

ε
. (2.42)

If we identify the central charge c with the factor 3L/2GN we recover the expected result from
CFT2
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A−`/2

z

x`/2

Figure 2.3: the geodesic in empty AdS3 connecting the boundaries of the boundary subregion
is a semicircle penetrating into the bulk.

2.4.3 Holographic Proof of Strong Sub-additivity

If the holographic prescription for computing entanglement entropy is correct, then we must
confirm that basic properties of entanglement entropy are not violated. We can for example
check whether or not strong sub-additivity is violated.

For simplicity, let’s consider the static case with AdS3 geometry in the bulk, and let’s consider
the spatial bondary regions A and B. The RT surfaces are geodesic lines parametrized by (2.41).
We denote with γA the RT surface of region A, with γB the RT surface of region B, with γA∪B
the RT surface of region A∪B, and finally with γA∩B the RT surface of region A∩B. The RT
surfaces are drawn in the figure 2.4 below. A quick glance at the figure allows us to conclude
that:

S(A) + S(B) ≥ S(A ∪B) + S(A ∩B).

The same proof in QFT is quite technical and not at all straight forward, so it is quite remarkable
that we were able to do it with such ease in the holographic setting! With some care one can
extend this result to the time dependent case and to higher dimensional correspondences.

z

A

B

γA∪B

γA

γA∩B

γB

Boundary

Figure 2.4: graphical proof of strong subadditivity of entanglement entropy in holography.
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Chapter 3

Holographic Complexity

In this chapter we explore a quantum information quantity which has recently made its way into
the realm of inquiry of high energy physics: quantum complexity.

3.1 Quantum Computational Complexity

In the field of information theory the notion of complexity, or hardness, is a fundamental one.
Broadly speaking, given a computational problem the complexity is a measure of the inherent
difficulty in carrying out such computation. This notion naturally carries over to the sub-field of
quantum information theory, where computations can be viewed in therms of quantum circuits
[38].

A quantum circuit is a collection of quantum gates and wires connected to each other so as
to form an a-cyclic network. The gates are represented by operators and the wires are the qubits
the gates act on. When the gates are represented by unitary operators the circuit is said to be
unitary. We will focus on the unitary case, as this choice does not result in a loss of generality.
The circuit will have a certain number of input qubits and a certain number of output qubits,
and when the circuit is unitary these coincide. At last, we say that a gate is k-local if the gate
acts on no more than k ∈ N qubits. We can now give a rudimentary definition of what we mean
by quantum complexity.

Definition: given a reference state |ψr〉 and a target state |ψt〉 in a K-qubit system, where
K ∈ N, we define the complexity of |ψt〉 with respect to the reference state as the minimal num-
ber of k-local gates necessary in a circuit that has |ψr〉 as input and |ψt〉 as output.

It may be noted that this definition is ambiguous with respect to K: relative complexity of
two states depends in on the number of qubits on which a gate can act. This kind of ambiguity
is what we call a multiplicative ambiguity, since a k-local gate can always be reproduced by a
certain number of (k − 1)-local gates.

One can also define the relative complexity of states in a slightly different way, which is
useful when trying to extend the notion of complexity to quantum field theories;

definition: given a reference state |ψr〉 and a target state |ψt〉 in a K-qubit system, where
K ∈ N, and a small tolerance parameter ε > 0, we define the complexity of |ψt〉 with respect to
the reference state and with tolerance ε as the minimal number of k-local gates necessary in a
circuit such that

‖gn · · · g1|ψr〉 − |ψt〉‖2 ≤ ε , (3.1)

where {g1, · · · , gn} are the gates that make up the circuit, and ‖·‖ a norm in CP(2K − 1).
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This last definition introduces an additional ambiguity, namely the tolerance parameter, which
is what we call an additive ambiguity. The reason is that with such definition an additive
logarithmic term appears in the complexity (see [39]).

Finally, complexity may also be defined via the unitary operators that act on the qubits.
The definition is a simple extension of the above definitions,

definition: given a unitary operator U ∈ SU(2K), where K ∈ N, we define the complexity
of U as the minimal number of k-local gates necessary in a circuit such that

U = gn · · · g1 · I , (3.2)

where {g1, · · · , gn} are the gates that make up the circuit.

If one replaces the identity operator in (3.2) with a generic unitary operator V ∈ SU(2K),
one gets the definition of relative complexity of two unitaries C(U, V ). One can show that this
quantity satisfies the conditions to be a right-invariant1 metric on the group manifold SU(2K).

I

U

Figure 3.1: Complexity of a unitary in SU(2K).

The fact that the relative complexity is a metric suggests that perhaps quantum complexity
can be understood as a right-invariant geometry. In this sense, the circuit complexity of a
unitary operator can be related to a geodesic problem in a particular curved geometry. This
elegant idea was initially suggested by Michael Nielsen et al. [40, 41]. In this framework, the
problem of finding the minimal size quantum circuit that implements a given unitary K-qubit
operation U ∈ SU(2K) is translated to a Hamiltonian control problem. In other words, we look
for a time-dependent Hamiltonian H(t) that generates U under time evolution,

U(t) = P exp

[∫ t′

0
dt′H(t′)

]
, where H(t′) =

∑
i

Y i(t′)Mi , (3.3)

Mi are the generalized Pauli matrices, and P implements a time ordering of the Hamiltonian
so that the circuit is built form the right to the left, and then we minimize the so-called cost

1To be right-invariant means that if W ∈ SU(2K) is another unitary then C(U, V ) = C(UW,VW ). One can
easily check that this is the case with the relative complexity. On the other hand, the relative complexity is not
left-invariant, meaning that C(U, V ) 6= C(WU,WV ).
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functional, defined as

F(U(t)) =

∫ 1

0
dt F (U(t), U̇(t)) (3.4)

with the boundary conditions U(0) = I and U(1) = 1. The function F (U, v) needs to satisfy
various conditions and there are a number of possible choices examined in [42].

3.1.1 Growth Rate of Complexity

Let’s assume we are given a Hilbert space constructed with K qubits. A seemingly natural
question to ask, given that we have just defined complexity, is: how ”complex” can a given state
be?

To answer this question, we may start by writing down the most general state in this 2K-
dimensional Hilbert space,

|ψ〉 =
2K∑
i=1

αi|i〉 . (3.5)

There are of course infinite possible states in this space, since we can pick a from continuous
infinity of possible parameters αi. Nonetheless, we can give an estimate of ”how infinite” by
regularizing the infinity. In fact, if for some reason our choice was restricted to a set of discrete
values, say there are m such values2, we could in principle count the number of possible states.
In fact, with this restriction the number of possible states Cm is

Cm = m2K = exp(2K logm). (3.6)

Note how the dependence on m is weaker relative to the number of qubits K. The maximal
complexity is for this qubit system exponential in k. (It should be noted that almost all states
in this Hilbert space are exponentially complex.)

It is interesting to compare (3.6) with the classical counterpart. Classically, a similar counting
procedure for a K-bit system allows to conclude that the maximal complexity is proportional
to K. The difference is enormous.

Further, the time it takes for a K-qubit system to reach thermal equilibrium is polynomial
in K whilst the time it takes to reach maximal complexity is exponential in K. These time-
scales are vastly separated different from a quantum-mechanical perspective. A K-qubit system
complexifies in a linear fashion: the complexity grows linearly for a long time, until it saturates
at log C ' K. It was argued by Susskind [39], that the slope of the curve during the linear
growth regime is given by

dC
dt

= TS, (3.7)

where T is the temperature and S the entropy. This guess is based on two basic observations.
Firstly, complexity is an extensive quantity: it is proportional to the number of degrees of
freedom in the system. Therefore, entropy may be used to estimate the size of the system,
hence, the growth rate should be proportional to S. Second of all, the slope should have units of
inverse time. The rate could therefore be proportional to the energy of the system, however, the
ground states of systems such as extremal black holes have non-vanishing entropy and energy,
but no matter what complexity they have is constant in time. Temperature seems to be the
only reasonable quantity.

The claim that complexity grows linearly with time can be Justified using Nielsen’s approach
[42], but that this happens all the way to tC = eK is a conjecture.

2We can think of m as our regulator.
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3.2 Complexity from Holgraphy

When a gravitational system collapses to form a black hole the horizon grows monotonically
until a final value is reached. If we believe that black holes follow the laws of thermodynamics,
the growth of the event horizon can be traced back to the second law of thermodynamics:
entropy increases until thermal equilibrium is reached. This is a well-known phenomenon that
in principle can be observed by an asymptotic observer.

There is another similar phenomenon that takes place within the bounds set by the event
horizon, and which cannot be traced to the irreversibility of thermodynamics: the growth in
time of the interior of the black hole. The reason we cannot describe this evolution with the
second law of thermodynamics, is that the growth continues for times much greater than the
thermalization time (which is the time it takes to reach thermal equilibrium.)

Motivated by the Holographic principle, Susskind and others have proposed that this growth
can be accounted for by the growth of complexity in the dual boundary description. There are
two competing conjectures as to what bulk quantity is dual to the complexity of states in the
boundary: the complexity = volume (CV) and the complexity = action (CA) conjectures.

3.2.1 Growth of the Einstein-Rosen bridge: Complexity = Volume

Consider an eternal black hole geometry which, as we know, is dual to the thermofield double
state introduced in section 2.3. To track the evolution of the region beyond the horizon we
have to choose a foliation of the geometry. We imagine that for each t = tL = tR a space-like
surface is attached to the two boudaries, moreover, we restrict to only slices of maximal spatial
volume. In principle one could choose different times at the two boundaries, but the symmetry
properties of this gravitational setup, namely the invariance under the shifts tL → tL + ∆t and
tR → tR−∆t, allow us to choose tL = tR. From the boundary theory perspective this symmetry
is manifested through the invariance of the thermofield double state under the time evolution of
the Hamiltonian H = HR −HL.

The metric describing the geometry of interest is given by

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
d−2, (3.8)

where the blackening factor is

f(r) =
r2

L2
+ 1− µ2

rd−3
, (3.9)

and where L is the AdS radius. It is particularly easy to show that the volume of the Einstein-
Rosen bridge grows in the limit t→∞. For a given time-slice the volume reads

V(t) =

∫
dt
√
|f(r)|r2(d−2), (3.10)

subject to the condition δV = 0. In the limit t → ∞ the maximal slices are simply given by
constant r curves, since the system is translationally and rotationally invariant. The value of r
in this late time limit is therefore is found by maximizing the integrand, that is,

∂

∂r

√
|f(r)|r2(d−2) = 0 =⇒ rf =

µ√
2
. (3.11)

The maximal volume for late times is then given by

V(t) = 2Ωd−2 r
d−2
f

√
|f(rf )| t . (3.12)
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From (3.12) we can determine the rate of growth of the maximal volume at late times, i.e.,

dV
dt

= 2ωd−2r
d−2
f

√
|f(rf )|, (3.13)

which can be expressed as

dV
dt

=
2L

d− 1
AHκ . (3.14)

Having used the explicit expression for f(r) and then related all to the surface gravity κ and the
area of the event horizon AH . We can then compare this with the growth rate of complexity

dC
dt
∼ ST. (3.15)

If, motivated by the holographic principle, we relate S to the area of the event horizon and T
to the surface gravity, we get

dC
dt
∼ AHκ

8πG
, (3.16)

in this sense, by comparing (3.14) and (3.16), we can conclude that the growth rate of com-
plexity is proportional to the growth rate of the volume. This is the essence of the CV conjecture.

CV conjecture: in a holographic theory the complexity of a state in the boundary theory
is dual to the extremal volume of a time-slice B anchored to the boundary state at time t,

CV =
V(B)

GN`
, (3.17)

where ` is a length scale associated with the bulk geometry, GN Newton’s constant, and V(B) the
maximal volume of the time-slice B.

The maximal volume slice in an eternal AdS black hole geometry looks something like the
yellow curve in fig. 3.2. It should be clear that such volume diverges when we approach the
boundaries of the spacetime, so some kind of regularization is needed. We will see later how
this is done in practice, for now, it suffices to say that the structure of the UV divergences was
found in [43],

CV =
Ld−1

(d− 1)GN

∫
dd−1σ

√
h

[
1

δd−1
− (d− 1)

2(d− 2)(d− 3)δd−3

(
Raa −

1

2
R− (d− 2)2

(d− 1)2
K2

)
+ · · ·

]
,

(3.18)

where hαβ is the induced metric on the bulk extremal surface. When d = 3 the first sub-leading
divergence appears as a logarithmic term,

Clog
V = log

(
δ

L

)
L2

8GN

∫
d2σ
√
h(4Raa − 2R−K2) . (3.19)

We only commented on the late-time behavior of the volume of the ERB, but a comprehensive
analysis for all times in the case of AdS black holes was carried out in [11].

3.2.2 Complexity = Action

The complexity = volume conjecture has since its conception passed a number of tests which
seem to corroborate the proposal. First of all, the maximal volume slice naturally reproduces
the growth rate of complexity, for the quantity ST provides a rough estimate of the rate of
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r =∞ r =∞

r = 0

tRtL WDW patch

r = 0

Figure 3.2: Penrose diagram of an eternal AdS black hole. The region shaded in red represents
the WDW patch, while the yellow curve represents the maximal volume slice.

complexification of a strongly coupled system. Secondly, shock wave geometries have proven
that in the maximal volume slice construction correctly captures cancellations that are expected
from complexity [9].

Despite it being a quite robust proposal, the CV-duality presents some undesirable features.
One of these features is related to the length-scale `, which has to be picked by hand depending
on the geometry, in an seemingly arbitrary manner. Moreover, it is not clear why the maximal
slice should be preferred over any other slice. In an attempt to construct the bulk dual of com-
plexity that inherits the niceties of the CV-duality but excludes these unsatisfactory elements,
the CA-duality was introduced [8, 10].

CA conjecture: in a holographic theory the complexity of a state in the boundary theory
is dual to the bulk action evaluated on the spacetime region formed by the union of all spacelike
surfaces anchored at the boundary at time t (also known as the Wheeler-DeWitt patch),

CA =
IWDW

π
, (3.20)

where IWDW is the gravitational action evaluated on the WDW patch.

The Wheeler-DeWitt patch of an AdS black hole is depicted in the figure 3.2. By integrating
over the Wheeler-DeWitt patch we circumvent the problem of singling out an extremal time-slice
as the domain of dependence of the maximal slice selected by the CV-duality coincides with the
WDW patch. Furthermore, no arbitrary length scale is needed in (3.20).

We can motivate the CA-duality by looking at the geometry dual to the thermofield double
state. We pick the boundary state at times tR and tL on the left and right boundaries of the
eternal black hole geometry,

|ψ(tL, tR)〉 = e−i(HLtL+HRtR) 1√
Z

∑
α

e
βEα
2 |Eα〉L|Eα〉R. (3.21)
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The geometry behind the horizon can be viewed as a d-dimensional world-volume W approxi-
mated by a d-dimensional cylinder of length tL + tR. Cross sections of this world-volume have
spatial area GNS on a time interval roughly equal to LAdS so that the world volume of the tube
is |W| ∼ GNSLAdS. Since the maximal volume of the wormhole is V ∼ GNS, the complexity
equals volume formula my be rewritten as

V(tL, tR)

GNLAdS
∼ |W(tL, tR)|

GNL2
AdS

, (3.22)

and since the cosmological constant is proportional to −1/L2
AdS the above expression can be

expressed in terms of the classical action of the world-volume W. This is what inspired the
CA-duality.

As for the maximal volume, the gravitational action diverges when approaching the boundary.
The general structure of the UV divergences is slightly more complicated than the one found
for the volume and can be found in [43].

3.2.3 Subregion Complexity

It is possible to extend the holographic complexity proposals above so that the complexity is
calculated for a mixed state on the boundary. Mixed states are produced by restricting boundary
states on subregions, in particular, holographic mixed states are encoded in the bulk by the
entanglement wedge relative to the subregion [44, 45]. As such, we expect that the prescription
for holographic complexity of mixed states will involve the entanglement wedge.

This problem was first picked up in [46], where a CV-like duality was proposed for time
independent geometries. Later, the proposal was generalized to non-static geometries [43] and
a CA counterpart was also introduced.

Subregion CV-duality states that: given a subregion A on a boundary time slice Σ, the
subregion complexity corresponding to A is given by the maximal volume of a bulk timeslice RA
bounded by A and the HRT surface atached to ∂A, that is

CV(A) =
V(RA)

GN`
(3.23)

where V is the above-mentioned volume, GN Newton’s constant, and ` is a length-scale associated
to the bulk geometry.

Similarly, subregion CA-duality states that: given a subregion A on a boundary time
slice Σ, the subregion complexity for A is given by the bulk action evaluated on the intersection
of the entanglement wedge corresponding to the subregion A and the Wheeler-DeWitt patch
corresponding to the boundary slice Σ, that is

CA(A) =
I(W)

π
(3.24)

where I is the above-mentioned action, and W is the intersection of the Wheeler-DeWitt patch
and the entanglement wedge.

3.3 Complexity in Quantum Field Theories

At the time Ryu and Takayanagi came up with a proposal for how entanglement entropy should
be understood in holography we had a good understanding of how to define entanglement entropy
in many body quantum systems. The same cannot be said of Coplexity. We are in fact far from
having a clear picture, and in some sense we are working backwards: starting from the bulk
geometry and working our way towards the boundary theory. Nevertheless, some progress has
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been made using Nielsen’s geometric approach, particularly for free theories [47] and weakly
interacting theories [48]. In [47] the authors considered the free field theory defined by

H =

∫
dd−1x

[
π(x)2 + ∂µφ(x)∂µφ(x) +m2φ(x)2

]
, (3.25)

which on a lattice looks like

H =
1

2

∑
~n

{
p(~n)2

δd−1
+ δd−1

[
1

δ2

∑
i

[φ(~n)− φ(~n− x̂i)]2 +m2φ(~n)2

]}
. (3.26)

As for the cost function defining the Hamiltonian control problem, they chose

F(U) =

∫ 1

0
ds
√
GIJY I(s)Y J(s) , (3.27)

which geometrically corresponds to looking for geodesics in a Riemannian geometry. In this
setup they found that the leading divergence of the complexity of the ground state relative to a
Gaussian reference state is given by

C ∼
(

V

δd−1

) 1
2

. (3.28)

In holography we expect the leading divergence to be Cholo ∼ V/δd−1, therefore, the free theory
computation differs by the power of 1/2 appearing in (3.28). In [47] it was noted that with
a different cost function, hence a different norm, the correct power can be attained. Another
possibility, pointed out in [49], is that the discrepancy is a result of strong couplings. In fact,
whereas the result (3.28) is valid for a free theory, the holographic quantity we are comparing
it to arises from a strongly coupled boundary theory.

Further developments along these lines can be found in, e.g., [50, 51, 52]. A different ap-
proach is that of path integral optimization, where computational complexity is associated to
an optimization problem for Euclidean path-integrals [53]. In particular, the problem is reduced
to the minimization of a functional, which in two dimensions reduces to the Liouville action.
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Chapter 4

Janus Geometries

Conformal field theories have over the years proven to be remarkably important in the quest to
understand quantum field theories. The large number of symmetries inherent to CFTs is what
make them so powerful. In fact, these symmetries are often all we need to completely constrain
correlation functions, making CFTs the perfect playground to investigate non-perturbative as-
pects of QFTs. Most notably, CFT appear to be the natural endpoints of RG flows, and therefore
characterize the UV and IR limits of ordinary QFTs.

However, if we wish to apply CFTs to the real-world it would seem that we find ourselves at
an impasse. Indeed, real-world systems are characterized by impurities, defects, domain walls,
and are generally finite in size (that is to say there are boundaries.) All these features conspire
to break symmetries, most notably translational and rotational symmetries. This is one of the
may reasons why it is interesting to study conformal field theories with boundaries and defects
(DCFT and BCFT respectively.)

Janus solutions are dilatonic deformations of AdS that holographically describe interface
conformal field theories. While it was originally found as a non-supersymmetric dilatonic defor-
mation of AdS5×S5 [17], it was later discovered that a similar non-supersymmetric deformation
could be performed on AdS3 × S2 × M4 [14]. AdS5 × S5 can also be deformed preserving
SO(2, 3) × SU(3) symmetry [18]; here we will only consider the non-supersymmetric deforma-
tions. On the bulk side, these solutions feature a thick AdSd−1-sliced domain wall in AdSd with a
non-trivial dilaton field that, as we’ll soon see, approaches different constant boundary values on
each side of the geometry. On the boundary, the N = 4 SYM theory is deformed by an exactly
marginal operator dual to the dilaton, so that the Yang-Mills coupling jumps discontinuously
at the interface between the two asymptotic regions [54].

Interestingly, Janus black hole-like solutions can also be found [14, 15, 55]. Here we’ll discuss
the time dependent Janus BTZ solution and the static Janus BTZ solution.

4.1 Three-dimensional Janus

This section is dedicated to the study of the Janus deformation of AdS3×S3×M4, whereM4 is a
compact manifold. The starting point is an ansatz for a dilatonic deformation of AdS3×S3×M4

in the Einstein frame, namely

ds2 = e
φ
2 f(µ)

(
dµ2 + ds2

AdS2

)
+ e

φ
2 ds2

S3 + e−
φ
2 ds2

4 , (4.1)

where φ(µ) is a non trivial dilaton field. From this ansatz one can write down the ten-dimensional
IIB supergravity equations of motion, but it turns out that the same equations can be derived
from a dimensionally reduced action. The ansatz for the dimensional reduction is

ds2 = e
φ
2 gabdx

adxb + e
φ
2 ds2

S3 + e−
φ
2 ds2

4, (4.2)
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where the metric gab(x) and the dilaton φ(x) are general functions of the three-dimensional
coordinates xa. The equations of motion of interest are derived from the three-dimensional
action

I =
1

16πG3

∫
d3x
√
g

(
R3 − gab∂aφ∂bφ+

2

L2

)
, (4.3)

where L is the AdS radius and G3 the three-dimensional Newton constant, which couples three-
dimensional Einstein gravity with negative cosmological constant to a non-trivial scalar field.

The resulting EOMs can be solved exactly and lead to the Janus AdS3 geometry

ds2
3 = L2(f(y)ds2

AdS2
+ dy2) , where f(y) =

1

2

(
1 +

√
1− 2γ2 cosh 2y

)
, (4.4)

and with the dilaton field given by

φ(y) = φ0 +
1√
2

log

(
1 +

√
1− 2γ2 +

√
2γ tanh y

1 +
√

1− 2γ2 −
√

2γ tanh y

)
. (4.5)

It is clear that the solution depends on the parameter γ which is defined in the interval
[−1/

√
2, 1/
√

2]. Plugging γ = 0 in (4.4) and (4.5), we get

ds2
3 = L2(cosh2 y ds2

AdS2
+ dy2) and φ(y) = φ0 , (4.6)

therefore, given that the instanton field assumes a constant value, we expect the geometry to be
that of pure AdS3. For this reason, we will henceforth refer to γ as the deformation parameter.

As a matter of fact, the geometry described in (4.6) is precisely that of vacuum AdS3, albeit
expressed in an unusual way. This can be explicitly seen if we turn to the the usual Poincarè
representation of AdS3,

ds2
AdS3

=
L2

ξ2
(−dt2 + dξ2 + dη2), (4.7)

where ξ ∈ [0,∞] is the radial coordinate. With the coordinate transformation

tanh y =
η√

ξ2 + η2
, and ξ =

√
ξ2 + η2, (4.8)

where y ∈ R and z ∈ [0,∞], we obtain

ds2
AdS3

= L2

(
dy2 + cosh2 y

dz2 − dt2

z2

)
(4.9)

= L2
(
dy2 + cosh2 y ds2

AdS2

)
, (4.10)

which is precisely the metric found in (4.6). The resulting AdS3 geometry is written in terms of
AdS2 slices. At first glance it might seem as there are three boundary components to the AdS2

sloced geometry: two (1 + 1)-dimensional half-spaces that are reached in the limits y → ±∞,
and the AdS2 boundary of each slice reached in the limit z → 0. However, these seemingly
disconnected components are glued continuously along the (0 + 1)-dimensional worldline at
z = 0. The picture 4.1 should hopefully provide some more context.

In light of this, the AdS3 Janus deformation can be viewed as an AdS2 foliation of AdS3

where each slice is warped by a non-trivial function of the y coordinate and the deformation
parameter γ. The AdS3 Janus geometry is therefore an AdS2 sliced domain wall solution [56].

The Janus geometry can also be expressed using the coordinate

dµ =
dy√
f(y)

, (4.11)
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η

ξ

Figure 4.1: foliation of the AdS3 geometry in terms of AdS2 slices, where red lines correspond
to constant z-values and the yellow lines correspond to constant y-values.

which is defined on the interval [−µ0, µ0], where

µ0 =

∫ ∞
0

dy√
f(y)

=
1

κ+
K
(
κ−
κ+

)
, (4.12)

K(x) is the first kind of complete elliptic integral, and κ2
± = 1/2

(
1±

√
1− 2γ2

)
. In the µ-

coordinate system the three-dimensional Janus metric reads

ds2 = L2f(µ)
(
dµ2 + ds2

AdS2

)
, (4.13)

where

f(µ) =
κ2

+

sn2
(
κ+(µ+ µ0), κ−κ+

) , (4.14)

and the dilaton field is expressed by

φ(µ) = φ0 +
√

2 log

[
dn

(
κ+(µ+ µ0),

κ−
κ+

)
− κ−
κ+

cn

(
κ+(µ+ µ0),

κ−
κ+

)]
. (4.15)

The dual interpretation of this system is a two-dimensional CFT deformed by an exactly
marginal operator O(x) (dual to the bulk massless dilaton φ) with terms J+

∫
d2xO(x) and

J−
∫
d2xO(x) in the two sides of the boundary. Notably, we have J± = limy→±∞ φ(y), meaning

that the Janus deformation connects two theories with different coupling constant. Since the
Janus deformation is associated with a marginal operator, it does not change the central charge
of the CFT.

4.1.1 Conformal Diagram of the Janus Geometry

In order to understand the causality properties of the Janus space, it is useful to build the
conformal diagram. This can be obtained if we manage to rewrite the metric in such a way
that a conformal factor appears. If we parametrize the (4.13) metric using Poincaré coordinates
along the AdS2 slices, we obtain

ds2 =
L2

z2
f(µ)

(
z2dµ2 + dz2 − dt2

)
. (4.16)
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This has the structure ds2 = Ω2ds2
M3
, with conformal factor Ω =

√
fL/z and boundary metric

given simply by three-dimensional Minkowski space, where the spatial part is written in polar
coordinates with angle µ and radius z > 0. The resulting conformal diagram is depicted in
Fig. 4.2.

−µ0 µ0

J

Figure 4.2: conformal diagram (taken from [17]) for the Janus AdS3 geometry with Poincaré
coordinates on the AdS2 slices. The polar angle corresponds to the coordinate µ ∈ [−µ0, µ0] and
the radial coordinate is z ∈ [0,∞]. The joint J corresponds to the place where the two parts
with the topology of half R2 meet. It can be seen as a domain wall on the boundary.

In particular, the boundary contains two halves of R2 defined by µ = ±µ0, so that the total
boundary becomes full R2. Since µ0 ≥ π/2, the junction between the half-boundaries meets at
a joint1 J with an obtuse angle.

We can also choose global coordinates on the slicing. In that case resulting metric reads

ds2 =
L2

cos2 λ

(
−dt2 + cos2 λ dµ2 + dλ2

)
, (4.17)

and the associated conformal diagram is given in Fig. 4.3.

−µ0 µ0

N

S

Figure 4.3: conformal diagram (again, taken from [17]) for the Janus AdS3 geometry with global
coordinates on the AdS2 slices.

We notice again that the boundary consists of two parts, defined by µ = ±µ0, which topologically
correspond to two halves of S1 joined through the north and south poles.

1While this joint seems singular, it can be shown that it is only an artifact of the coordinate system and there
isn’t any irregularity.
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4.1.2 Fefferman-Graham Expansion of the Janus AdS3 Geometry

The gravitational observables that come into play in holographic computations, such as in the
CV conjecture, present divergent results and need to be regularized. A standard procedure for
regularizing an asymptotically AdS metric is to introduce a constant cutoff along the radial
direction in a Fefferman-Graham expansion of the metric (a good reference for the Fefferman-
Grahm procedure is Appendix B of [57], and [58] for the case we will be interested in.) This
requires finding a coordinate transformation (the so-called Fefferman-Grahm frame) in which
the metric takes the form

ds2 =
L2

ξ2

(
dξ2 + gij(x, ξ)dx

idxj
)
, (4.18)

close to the boundary. Here ξ ∈ [0,∞), and gij(x, ξ) can be expanded in ξ around 0. We will
now implement this procedure to regularize the AdS3 Janus geometry.

Let’s start by considering the AdS2-sliced metric for the pure AdS3 geometry, given by

ds2 = L2

(
dy2 + cosh2 y

dz2 − dt2

z2

)
. (4.19)

In this case, since the metric is related to the vacuum AdS3 geometry in Poincarè coordinates
through the coordinate transformation we examined earlier, the Fefferman-Grahm coordinates
are simply given by

tanh y =
η√

ξ2 + η2
, and ξ =

√
ξ2 + η2. (4.20)

If we now turn to the Janus geometry, we can see that in the boundary regions y → ±∞ the
metric reduces to

ds2
±∞ = L2

(
dy2 +

√
1− 2γ2

4
e±2y dz

2 − dt2

z2

)
. (4.21)

We can shift the y coordinate so that the constant is absorbed, that is,

ỹ = y ± 1

2
log
√

1− 2γ2, ds2
±∞ = L2

(
dỹ2 +

1

4
e±2ỹ dz

2 − dt2

z2

)
. (4.22)

At this point we can introduce the Fefferman-Graham coordinates:

� when ỹ →∞, ξ → 0, and η > 0 we have

e−2ỹ =
1

4

ξ2

η2
, z = η

(
1 +

1

2

ξ2

η2

)
; (4.23)

� and when ỹ → −∞, ξ → 0, and η < 0 we have

e2ỹ =
1

4

ξ2

η2
, z = |η|

(
1 +

1

2

ξ2

η2

)
. (4.24)

The metric then becomes

ds2
±∞ =

L2

ξ2

(
dξ2 + dη2 − dt2

)
+O(ξ) . (4.25)

This is valid when we are far from the interface located at η = 0. When we get close to the
interface the coordinate transformation defined above is no longer valid – as can be seen from the
coordinate transformations (4.23) and (4.24). A different cutoff must be introduced in proximity
to the interface. We will deal with this problem later on in section 5.1.

The regime where the FG expansion is valid corresponds to ξ/η � 1, which implies that at
lowest order η ' z. By setting the cutoff at ξ = ε and considering finite η ' z = z0, we get

ε =
2 z0

(1− 2γ2)
1
4

e−y∞ . (4.26)
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4.1.3 Holographic Boundary Entropy of the AdS3 Janus Solution

In the next chapter we will be concerned with the computation of the extremal volume of Janus
AdS3. As a preparation to this computation, and to see in practice the regularization procedure
we just discussed, we now consider the computation of the holographic entanglement entropy
[58, 59].

We can start by considering an entangling region A on the boundary CFT which crosses the
interface symmetrically. Following the Ryu-Takayanagi prescription, to compute the entropy we
must evaluate the length of a geodesic curve connecting the two boundaries of the region A. In
this case the geodesics are incredibly simple: they are the curves at constant z. We chose the
constant so that the entangling region becomes the interval [−z0, z0], in this way the geodesic
length is given by

Γ(γ) = L

∫ y∞

−y∞
dy = 2Ly∞, (4.27)

therefore, using the Fefferman-Grahm coordinates found in the previous section, we arrive at

Γ(γ) = 2L

(
− log ε− 1

2
log
√

1− 2γ2 + log(2z0)

)
. (4.28)

The entanglement entropy of the boundary defect theory is then found by subtracting the
geodesic length in AdS3 and dividing by Newton’s constant, that is,

S =
Γ(γ)− Γ(0)

G3
= − L

4G3
log
√

1− 2γ2. (4.29)

A−η0

ξ

ηη0

Figure 4.4: constant z = z0 curve connecting the boundaries of the entangling region A.

We can also consider the case in which the entangling region lies entirely on one side of the
defect [60]. The appropriate embedding of the t = 0 curve is in this case y = y(z). For this
choice the geodesic length reads

Γ(γ) =

∫
dz

√
f(y)

z2
+

(
dy

dz

)2

, (4.30)

which if extremized leads to the following Euler-Lagrange equation

f ′(y)

(
1

z2
+

(∂zy)2

f(y) + z2(∂zy)2

)
− 2

z

f(y)(∂zy + z∂2
zy)

f(y) + z2(∂zy)2
= 0. (4.31)

A simple solution to this equation, which corresponds to an absolute minimum of the functional
(4.30), is given by y = 0. This solution correspond to having the entangling region entirely on
one side of the interface as depicted in fig. 4.5.
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A
η

y = 0

Figure 4.5: the red curve represents the RT surface corresponding to the entangling region A
placed on one side of the interface.

In this case the holographic entanglement entropy is given by

S(γ) =
L

4G3

√
f(0)

∫ zIR

ε

dz

z
(4.32)

=
L

4
√

2G3

√
1 +

√
1− 2γ2 log

zIR
ε
, (4.33)

where zIR is an infrared regulator and ε a UV regulator. If we subtract the vacuum result we
find that

S = S(γ)− S(0) =
c

6

√1 +
√

1− 2γ2

2
− 1

 log
L

ε
, (4.34)

where c = 3L/2G3, and we have identified zIR with the AdS radius.

4.2 Five-dimensional Janus Deformations

The Janus deformation considered in the previous section can also be performed in AdS5×S5. In
this case it is possible to deform the space without breaking SO(2, 3)×SU(3)×U(1)β×SL(2,R)
symmetry, resulting in a super-symmetric solution [18]. We will restrict our interest to the non-
supersymmetric solution.

The non-supersymmetric Janus deformation of AdS5 × S5 is a solution of type IIB super-
gravity with a non-trivial dilaton profile, which is regular and classically stable against all small
and a certain class of large perturbations [17, 56]. The CFT dual is given by N = 4 Super
Yang-Mills (SYM) theory on both sides of a planar codimension-one interface, whose coupling
constant varies discontinuously across the interface where the half-spaces are glued together
[18]. The two different values of the gauge coupling correspond to the two asymptotic values
of the dilaton in the Janus solution. The SO(2, 3) symmetry of the Janus solution maps to the
conformal symmetry preserved by the interface on the CFT side. This symmetry is manifest
at the classical level, but was also shown to persist at the first non-trivial quantum level. The
SO(6) symmetry of the Janus solution maps to an (accidental) internal symmetry2 on the CFT
side. It should be noted that the interface in the Janus solution carries no degrees of freedom
in addition to the ones inherited from N = 4 SYM.

4.2.1 Non-SUSY Janus AdS5

The non-SUSY five-dimensional Janus solution [18, 61] is a one-parameter deformation of AdS5

described in terms of the metric

ds2 = L2
[
(γ)−1h2(w)dw2 + h(w)ds2

AdS4

]
, (4.35)

2Since the Janus solution breaks all the supersymmetries, the global SO(6) symmetry is no longer an R-
symmetry.
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where γ is the deformation parameter, with range 3/4 ≤ γ ≤ 1, and the four-dimensional AdS
slice is written in Poincaré coordinates according to Eq. (5.3). The warp factor h(w) is defined
as [18, 61]

h(w) = γ

(
1 +

4γ − 3

℘(w) + 1− 2γ

)
= γ

(
1 +

4γ − 3

℘(w)− ℘(w0)

)
, (4.36)

and ℘(w) is the Weierstrass elliptic ℘–function3. The elliptic invariants (g2, g3) of the Weierstrass
℘−function are

g2 = 16γ(1− γ) , g3 = 4(γ − 1) , (4.37)

and w0 is defined as the positive solution of

℘(w0) = 2γ − 1 . (4.38)

The dilaton of the non-SUSY Janus solution is

φ(w) = φ0 +
√

6(1− γ)

(
w +

4γ − 3

℘′(w)

(
ln
σ(w + w1)

σ(w − w1)
− 2ζ(w1)w

))
, (4.39)

where σ and ζ denote the Weierstrass functions defined in Eq. (A.13) of Appendix A.2, φ0 is a
real constant and w1 is defined by the equation

℘(w1) = 2(1− γ) . (4.40)

When γ = 1, the solution reduces to AdS5 with constant dilaton φ = φ0, while γ = 3/4 leads to
a linear dilaton solution.

The Janus solution is defined in the interval −w0 < w < w0. The function h(w), introduced
in Eq. (4.36), has simple poles at w = ±w0. As w → ±w0, the Janus solution asymptotes to
AdS5 with constant dilaton φ± = φ(±w0), where φ+ 6= φ− unless γ = 1. In other words, for
generic γ the Janus solution has two asymptotically AdS5 regions in which the dilaton takes two
different values.

The conformal structure of the Janus AdS5 solution is easily determined by means of the
change of variables

dµ =

√
h(w)

γ
dw , (4.41)

which brings the metric into the form

ds2 = L2 h(µ)
(
dµ2 + ds2

AdS4

)
. (4.42)

Up to a conformal factor, the boundary metric is four-dimensional Minkowski spacetime. In
other words, the conformal structure is the same as for the three-dimensional Janus solution,
and is shown in Fig. 4.2.

4.3 BTZ-like Janus Solutions

It is possible to obtain a gravity solution similar to the Janus deformation of AdS3 geometry by
replacing the factor of empty AdS space in three-dimensional Janus metric with the BTZ black
hole metric. This procedure is allowed because the BTZ solution is simply a discrete quotient of
AdS space [62] and still satisfies Rab = −2gab. This can also be recognized in the fact that AdS3

and the BTZ background are locally isomorphic, so it is possible to get the BTZ geometry by
means of a coordinate transformation in AdS3.

3We refer the reader to Appendix A.2 for more details on the Weierstrass elliptic function.
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4.3.1 Static Janus BTZ Background

We explain in more detail how to perform the Janus deformation of the BTZ black hole while
retaining a static solution, following [15, 55]. Starting from the Janus AdS metric

ds2 = L2
(
dy2 + f(y) ds2

AdS2

)
= L2 f(µ)

(
dµ2 + ds2

AdS2

)
, (4.43)

one can parametrize the two-dimensional AdS slices using global coordinates

ds2
AdS2

=
1

cos2 λ

(
dλ2 − dτ2

)
. (4.44)

In this coordinate system, λ ∈ (−λ∞, λ∞) with λ∞ ∈ [0, π/2) and the two half-boundaries are
located at y = ±∞.

At this point, one can perform the coordinate change

w =
cos τ

cosλ
, tanh

rh t

L2
=

sin τ

sinλ
, (4.45)

which brings the AdS2 factor to the form

ds2
AdS2

→ ds2
Rindler = −

(w2 − 1) r2
h

L4
dt2 +

dw2

w2 − 1
. (4.46)

This is a Rindler-AdS metric which corresponds to the case of a hyperbolic geometry and allows
to get a black hole solution where the horizon is located at w = 1 and has size rh. Plugging this
back into the Janus metric we find

ds2 = L2f(µ)

[
dµ2 + f(µ)

(
−

(w2 − 1)r2
h

L4
dt2 +

dw2

w2 − 1

)]
, (4.47)

which is the so-called static Janus BTZ solution. For vanishing deformation parameter the above
metric reduces to the ordinary BTZ solution in three-dimensions (see fig. 4.6).

This can be seen by using the coordinate transformation

rh
r

=
cosµ√

w2 − sin2 µ
, sinh

rhx

L2
=

sinµ√
w2 − sin2 µ

, (4.48)

which brings the combination of Eq. (4.43) with (4.46) to

ds2
BTZ = −

r2 − r2
h

L2
dt2 +

L2dr2

r2 − r2
h

+
r2

L2
dx2 . (4.49)

With the identification x ∼ x + 2π, the above describes the BTZ black hole with vanishing
angular momentum. The horizon is at r = rh and r = 0 corresponds to a singularity of the
orbifold type. When γ is non-vanishing, this periodic indentification is forbidden for translational
invariance is broken along the x direction. On the other hand, time-translation invariance is not
broken by the deformation, and, as for the undeformed BTZ geometry, the killing vector in the
Kruskal extension corresponds to the time translations

tL → t±∆t , tR → tR ∓∆t , (4.50)

which on the boundary equates to evolving in time with the Hamiltonian HL −HR.
From the point of view of the AdS slicing of the black hole metric (described in fig. 4.6),

it may appear that there are many disconnected boundaries. However, a careful analysis shows
that the regions x → −∞ and x → ∞ both merge to a point at the spatial section of the
global AdS3 geometry, and then the left (right) boundary is a connected region. The only causal
disconnected regions are the left boundary with respect to the right one.
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w = 1r = rh

R
x = 0

w =∞

w =∞
x = 0

L

x

x

Figure 4.6: picture representing the AdS slicing of the BTZ black hole at constant time. The
lines at constant w are depicted in red, while the curves at constant µ in orange. The coordinate
x runs along the left (L) and right (R) disconnected boundaries. The coordinate r covers the
region outside the horizon and runs on the vertical axis: starting from the middle line located
at r = rh, it increases towards the L and R boundaries.

For generic γ the asymptotic region of the solution can be mapped to the BTZ spacetime
using the coordinate change

r

rh
'
√

(w2 − 1)f(y) + 1 , sinh
rhx

L2
' sign(x)

√
f(y)− 1

(w2 − 1)f(y)− 1
. (4.51)

It is important to observe that while this black hole solution is a deformation of the BTZ
background, it still has many common features with the original solution. Indeed, the left and
right CFTs on the boundaries are described by a thermofield (TFD) double state

|ψ(tL, tR)〉 = e−i(tLH⊗1+tR 1⊗H)|ψ(0, 0)〉 , |ψ(0, 0)〉 =
1√
Z

∑
n

e−
β
2
En |n〉 ⊗ |n〉 , (4.52)

and in particular the case where tL = −tR is time-independent, corresponding to the timelike
Killing symmetry of the geometry. Due to this invariance, it is not restrictive to consider a case
where the boundary time is tL = tR = tB/2.

4.3.2 Time-dependent Janus BTZ Background

The case considered in Section 4.3.1 is not the only possibility to introduce a Janus deformation
inside a black hole geometry. Contrarily to the above-mentioned scenario, here we will consider
a solution whose horizon size and the dilaton value at the horizon will vary with time.

The starting point for constructing the time dependent Janus BTZ black hole is the BTZ
metric

ds2
BTZ = −

r2 − r2
h

L2
dt2 +

L2dr2

r2 − r2
h

+
r2

L2
dx2 . (4.53)
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The Janus deformation is obtained by imposing

tanµ = ± cosh(rht)

√(
r

rh

)2

− 1 . (4.54)

This identification is the responsible for the time-dependence of the final configuration, since it
relates the µ coordinate with time and radial distance.

We can cover the whole region of the geometry by introducing the Kruskal variables

V = erh(t+r∗) , U = −e−rh(t−r∗) , (4.55)

with tortoise coordinate

r∗(r) =
1

2rh
log

(
r − rh
r + rh

)
, (4.56)

which brings the metric to the form

ds2 =
f(µ)

(1 + U2)(1 + V 2)
(−4dUdV + r2

0(1− UV )2dθ2) . (4.57)

This is the metric for the time dependent Janus deformation of the BTZ black hole. It is useful
to compactify by introducing the coordinates

V = tanw1 , U = tanw2 , (4.58)

and, finally, go back from null coordinates to timelike and spacelike ones defining

τ = w1 + w2 , µ = w1 − w2 . (4.59)

After performing these transformations and using the condition (4.54), we obtain [14, 16]

ds2
3 = f(µ)

(
−dτ2 + dµ2 + r2

h cos2 τdθ2
)
, (4.60)

which, according to the dµ = dy/
√
f(y) change of variable, can be written as

ds2
3 = dy2 + f(y)

(
−dτ2 + r2

h cos2 τdθ2
)
, (4.61)

with the same dilaton solution given in Eq. (4.5). The metric describes a time dependent con-
figuration with two disconnected boundaries separated by event horizons; the Pensrose diagram
of this multi-boundary solution is depicted in 4.7.

The coupling on the two sides of the diagram is given by eφ+ and eφ− , respectively ond the
left and right, and the two CFTs are correlated through the bulk in a non-trivial way. In fact,
the dilaton does not divide each boundary component into two halves, rather, it takes one value
in one component of the boundaries and the other in the other component. It is important to
observe that the TFD state defined on the two CFTs living at the boundaries are different from
the standard BTZ and also from the Janus deformation discussed in Section 4.3.1. Indeed, the
initial state is determined by

|ψ(0, 0)〉 =
1√
Z

∑
m,n

〈ELm|ERn 〉 e−
β
4

(ELm+ERn )|ELm〉 ⊗ |ERn 〉 . (4.62)

This expression reduces to the usual one in Eq. (4.52) only if the Hamiltonian defined on the
two sides of the spacetime satisfy HL = HR.

Notice that if we take the metric in Eq. (4.60) and we set γ = 0, we can recover the standard
metric for the stationary BTZ black hole. In fact, if the parameter γ is vanishing, the function
f(µ) defined in equation (4.14) reduces to

f(µ) =
1

cos2 µ
. (4.63)
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Shadow regionµ = −µ0 µ = µ0

τ = π/2

τ = −π/2

Figure 4.7: Penrose diagram of the Janus deformation of the BTZ black hole. The µ variable
runs along horizontal lines from −µ0 to µ0, while τ runs vertically from −π/2 to π/2. The
shaded region represents the so-called shadow region.

The Penrose diagram for this case becomes a square which locally is just AdS space, and the
metric reduces to

ds2
3 =

1

cos2 µ

(
−dτ2 + dµ2 + r2

h cos2 τdθ2
)

(4.64)

which describes the static BTZ black hole.
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Chapter 5

Volume Complexity for
Three-dimensional Janus Geometries

In this chapter we apply the CV conjecture to the three-dimensional defect geometries considered
in the previous chapter, that is, we consider an extremal spacelike codimension-one slice attached
to the boundary and we evaluate the induced volume for Janus AdS3, static Janus BTZ, and
time-dependent Janus BTZ. This chapter centers around the arXiv submission [1].

Since the maximal volume slice extends all the way to the boundary, the corresponding
holographic complexity will be divergent and it will be necessary to regularize the UV modes.
In the case of entanglement entropy, divergences arise due to the arbitrarily short correlations
between degrees of freedom on each side of the entangling region. The leading divergence scales
with the area law and either the finite term (in odd spacetime dimensions) or the coefficient of
the logarithmic divergence (in even spacetime dimensions) have a universal interpretation which
is not sensitive to the ambiguities in the choice of the regulator. As discussed in the section
3.2.1, in the case of CV-duality, the outcome of a similar classification is a leading divergence
proportional to the bondary volume of the time slice, and a set of subleading terms defined in
terms of integrals over the same slice [43]. However, this structure may change when defects,
interfaces, or boundaries are present. This problem was already addressed in some specific
cases [12, 13, 63]. Interestingly, it was found that in the case of the three-dimensional Randall-
Sundrum model the structure of the divergences is modified by the defect only in CV-duality
[12], suggesting that defects could possibly distinguish CA from CV. From what is known to
date, it seems that this is an artifact of three-dimensional geometries [13]. As we will see in
a bit, the Janus AdS3 volume features a logarithmic divergence akin to the one found for the
three-dimensional Randall-Sundrum model.

The chapter is structured in the following way. In section 5.1 we discuss three different
prescription for regularizing divergences in general AdSd-sliced domain wall geometries. In
section 5.2 and 5.3, we compute the subregion volume complexity at vanishing boundary time
for the AdS3 Janus deformation and the BTZ static Janus deformation respectively. Finally,
the time-dependent BTZ Janus solution is considered in section 5.4.

5.1 Regularization Schemes for AdSd-Sliced Defect Geometries

In order to deal with the UV divergences that arise when considering an extremal surface hanging
from the boundary, we introduce three regularization prescriptions. As a cross check, we compute
the volume with the three different prescriptions and we show that they only differ by finite terms
in the three-dimensional case we are about to consider (see appendix B.) Each regularization is
equally valid to describe the relevant physics of the system.

For later purposes, we consider a general interface theory described by a codimension-one
defect embedded in a AdSd+1 bulk geometry, whose isometries get reduced from the conformal
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group SO(d, 2) to the subgroup SO(d− 1, 2). The natural way to parametrize this geometry is
to perform a slicing of spacetime in terms of AdSd slices. The metric takes the form [61, 64]

ds2 = L2
(
A2(y)ds2

AdSd
+ ρ2(y)dy2

)
, (5.1)

with y being a non-compact coordinate such that when y → ±∞

A(y)→ L±
2
e±y±c± , ρ(y)→ 1 . (5.2)

Here L± and c± are constants (which can take two different values at the boundaries y =
±∞), and we are assuming that there isn’t any other internal direction in the spacetime. We
parametrize the AdSd slices using Poincaré coordinates

ds2
AdSd

=
1

z2

(
dz2 − dt2 + d~x2

d−2

)
, (5.3)

where (t, z) are the time and radial coordinates on each slice and ~x collects all the other orthog-
onal directions. In the following, we will introduce three regularization techniques inspired by
the similar discussion for the entanglement entropy developed in [64]. In all the computations
of this Section, the volume will be determined from

V =

∫
dz

∫
dy

∫
d~x
√
h , (5.4)

where
√
h is the determinant of the induced metric. The integration along the orthogonal spatial

directions ~x is usually trivial, while the part along the (y, z) coordinates contains the relevant
information about the defect.

5.1.1 Fefferman-Graham Regularization

We perform the Fefferman-Graham (FG) expansion of the geometry near the asymptotically
AdSd+1 region of spacetime, which brings the metric to the form

ds2 =
L2

ξ2

[
dξ2 + g1(ξ/η)

(
−dt2 + d~x2

)
+ g2(ξ/η) dη2

]
, (5.5)

where ξ is a radial coordinate for the asymptotic AdS region in Poincaré coordinates, η is a
field theory direction orthogonal to the defect, and g1, g2 are two functions encoding the change
of coordinates from the original metric (5.1) with slicing (5.3) to this one. The transformation
consists in a change of coordinates (z, y) → (ξ, η). We perform an expansion of Eq. (5.5) such
that the asymptotic metric reads

ds2 =
L2

ξ2

(
dξ2 + dη2 + d~x2 − dt2 +O(ξ)

)
. (5.6)

The natural prescription to regularize divergences using the FG form of the metric is to introduce
a UV cutoff by cutting the spacetime with the surface located at ξ = δ, and expand all the results
in a series around δ = 0. The problem of this procedure is that in the region where ξ/η � 1,
the FG expansion breaks down and the coordinates (ξ, η) are ill-defined [57] (as we mentioned
in section 4.1.2.)

For this reason, the defect geometry is characterized by the existence of two patches, defined
away from the region of the defect on the left and right sides of the spacetime, where the FG
expansion is valid: we call them FG patches. We do not have access to a natural UV cutoff
in the middle region close to the defect. To overcome the problem, the original proposal from
[61] is to interpolate the cutoff determined by requiring ξ = δ in the left and right FG patches
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Defect

ξ = δ

Left FG Patch

ξ = δ

Right FG Patch

Γ

Figure 5.1: interpolation between two FG patches with a continuous curve Γ.

with an arbitrary curve in the middle region. The only constraint is that the curve should be
continuous at the value y = y0 where the FG expansion breaks down. The corresponding curve
is pictorially represented in Fig. 5.1.

This method was later applied in [12], with the additional requirement that the interpolation
is smooth, i.e., the curves in the middle region are perpendicular to the surface which delimits
the FG patches. We apply this procedure to the case of Janus AdS3 geometry in Appendix B.1.

5.1.2 Single Cutoff Regularization

This technique is inspired by the Fefferman-Graham method, but has the advantage of not
introducing any arbitrary interpolating curve in the middle region. Instead, it uses the FG map
to induce a minimal value on the z coordinate, in such a way that the integration does not
reach the region z → 0 where the expansion breaks down. We explain how the procedure works
starting from empty AdSd+1 space, which can be written using the slicing (5.1) if we choose
A(y) = cosh y and ρ(y) = 1. In this case, the FG coordinate transformation which brings the
metric to the Poincaré form in Eq. (5.6) is exact and reads

η = z tanh y , ξ =
z

cosh y
. (5.7)

If we placethe cutoff surface at ξ = δ, we get the condition

δ =
z

cosh y
, (5.8)

which selects a maximal value of y = y∗(z) for the first non-trivial integration in Eq. (5.4). On
the other hand, reversing this formula gives a constraint on the minimal value of the integration
along z, determined by

zmin = δmin
y∈R

(cosh y) = δ . (5.9)

In this way, we observe that the choice of a single cutoff δ from the FG expansion restricts the
integration along both the (y, z) coordinates and regularizes the volume.

In the presence of a defect, the procedure is the same, except that the conditions determined
from the FG representation of the metric get modified to

δ =
z

A(y)
, zmin = δmin

y∈R
[A(y)] . (5.10)

At the end of the procedure, we will perform a Laurent expansion of the result in powers of δ/z.
We apply this technique for all the computations in the main text.
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5.1.3 Double Cutoff Regularization

The previous techniques regularized all the integrals with the choice of a single UV cutoff inspired
by the FG expansion. On the other hand, we can consider the two directions (y, z) separately and
a cutoff along each of them. This method is based on the observation that, after the subtraction
of the vacuum geometry, we should obtain a holographic quantity intrinsic to the defect: for this
reason, a natural cutoff can be imposed on the AdSd slicing at z = δ, instead of selecting the
asymptotic radial direction in the AdSd+1 bulk geometry. This choice by itself is not sufficient
to regularize the full integral (5.4), since the metric factor A(y) is still singular at infinity: for
this reason we also determine a maximum value of y where the integration ends by requiring

A(y) =
1

ε
. (5.11)

Notice that while the δ cutoff has a physical meaning, the ε cutoff is a mathematical artifact
introduced at intermediate steps, and the result, after the vacuum subtraction, should therefore
be ε-independent. As a consequence, we are allowed to remove the ε cutoff at the end of the
computation by taking the limit ε→ 0. We elaborate on this procedure in Appendix B.2.

5.2 Volume of Janus AdS3

Before we dive into the computation of the volume, a comment is in order. It turns out that in
addition to the diverging UV modes, the volume is characterized diverging IR modes. We could
regularize this divergence by introducing an IR cutoff at some constant value of the Fefferman-
Graham (FG) coordinates, however, this approach is not very practical for Janus geometries,
since the FG coordinates are known just as an expansion near the boundary. Another possibility,
which turns out to be more convenient, is to consider a particular limit of subregion complexity.
Subregion volume complexity [46] is on the bulk side defined as the volume of an extremal slice
delimited by a Ryu-Takayanagi surface anchored to a boundary subregion. The precise meaning
of subregion complexity in the dual CFT is still an open question. Some proposals, such as
fidelity, purification complexity, and basis complexity, were in discussed [46, 65]. In any event,
the RT surface that defines the subregion volume can effectively be used as an infrared regulator:
the total complexity will then be identified by the limit in which the subregion covers the entire
boundary.

The natural choice of boundary subregion for Janus AdS3 is an interval of length ` centered
around the interface. The total complexity can then be defined as the ` → ∞ limit of the
subregion volume, with the length ` playing the role of IR regulator.

The interval is located at the FG radial coordinate ξ = δ and placed symmetrically along
the orthogonal direction to the interface, i.e., η ∈ [−`/2, `/2]. There is an ambiguity in the
regularization of the UV divergences: we can either put the subregion on the cutoff surface
ξ = δ and build the corresponding RT surface, or we can put the interval on the real boundary
ξ = 0 and then cut the RT surface with the line at ξ = δ. Since the difference between the two
cases results in a difference in the finite term, we will only focus on the former case.

As as argued by Gutperle et al. in [64], on a fixed time slice the Janus geometry features a
particularly simple class of geodesics given by curves at constant z. Using the FG expansion in
Eq. (4.23) and putting the boundary conditions ξ = δ and η = `

2 , we determine the constant z̄
value where the surface is located:

z̄ =
`

2

(
1 +

2δ2

`2

)
. (5.12)

Notice that the limit δ → 0 is completely regular, which means that we can also make it vanish
in the above expression without affecting the divergent and the finite structure of the result.

54



On the Holographic Complexity of Janus Geometries Chapter 5

The prescription for the extremal volume tells us to consider a solution at t = 0 anchored at the
boundary and delimited by the RT surface.

The UV divergencies will be regularised according to the single cutoff prescriptions described
in section 5.1. The correspondence between the generic form (5.1) of the metric with a conformal
defect and the Janus background is

A2(y) = f(y) , ρ(y) = 1 , L2
± =

√
1− 2γ2 , c± = 0 . (5.13)

In this way the requirement in Eq. (5.10) to regularize the UV divergences becomes

z√
f(y)

= δ . (5.14)

This single condition identifies both a maximum value of the coordinate y = y∗(z), obtained by
inverting the previous expression, and a minimum value of the coordinate z = zmin, determined
from the second identity in Eq. (5.10). Concretely, they are given by

y∗(z) = f−1

(
z2

δ2

)
, zmin = H(γ) δ , H(γ) =

√
f(0) =

√
1 +

√
1− 2γ2

2
. (5.15)

The integral which computes the subregion volume in Eq. (5.4) takes the form

V(γ, `) = 2L2

∫ z̄

zmin

dz

z

∫ y∗(z)

0
dy
√
f(y) . (5.16)

With the change of variables

τ =
f(y)

H2
, ζ =

z2

H2δ2
, ζ̄ =

z̄2

H2δ2
, (5.17)

we can express the integral as

V(γ, `) =
L2H3

√
2

∫ ζ̄

1

dζ

ζ

∫ ζ

1

√
τ dτ√

γ2 + 2H2τ(H2τ − 1)
(5.18)

=
L2H3

√
2

∫ ζ̄

1
dτ

∫ ζ̄

τ

dζ

ζ

τ1/2√
γ2 + 2H2τ(H2τ − 1)

. (5.19)

It is useful to introduce

m =
1−

√
1− 2γ2

1 +
√

1− 2γ2
. (5.20)

Since 0 ≤ γ ≤ 1/
√

2, we have 1/
√

2 ≤ A ≤ 1 and 0 ≤ m ≤ 1. We can directly evaluate the
ζ-integral, which leads us to

V(γ, `) =
L2H

2

∫ ζ̄

1
(log ζ̄ − log τ)

√
τ

(τ − 1)(τ −m)
dτ . (5.21)

This integral contains two terms. The log ζ̄ term is trivial and can be evaluated promptly.
Conversely, the log τ term is non-trivial and needs to be expanded for slamm δ. To expand in δ
we do the following: we first determine the leading divergence of the integrand at infinity, and
then we proceed to split the integral by adding and subtracting said leading term. In this way,
we end up with a renormalized finite part and a purely diverging part. Hence

V(γ, `) =
L2H

2

∫ ζ̄

1
dτ
√
τ (log ζ̄ − log τ)

[(
1√

(τ − 1)(τ −m)
− 1

τ

)
+

1

τ

]
(5.22)

= L2

[
`

δ
+ η(γ) log

(
`

2H δ

)
+ χ(γ)

]
, (5.23)
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where

η(γ) = H

[∫ ∞
1

τ1/2

(
1√

(τ − 1)(τ −m)
− 1

τ

)
dτ − 2

]
= 2A (K(m)− E(m)) , (5.24)

χ(γ) = H

[
−2− 1

2

∫ ∞
1

τ1/2 log τ

(
1√

(τ − 1)(τ −m)
− 1

τ

)
dτ

]
. (5.25)

At this point we can subtract the volume of undefomed AdS3, which is recovered by setting
γ = 0. Since

η(0) = 0 , and χ(0) = −π , (5.26)

the vacuum volume is

V(0, `) = L2

(
`

δ
− π

)
. (5.27)

As a cross-check, we can perform the AdS3 computation directly. The cutoff now reads

y∗ = arccosh
(z
δ

)
, zmin = δ , (5.28)

and therefore

V(0, `) = 2L2

∫ z̄

δ

dz

z

∫ arccosh(z/δ)

0
dy cosh y = L2

(
`

δ
− π

)
. (5.29)

The difference between the regularised volumes of the Janus geometry and AdS3 is

∆V(γ, `) ≡ V(γ, `)− V(0, `) = L2

[
η(γ) log

(
`

2H δ

)
+ χ(γ) + π

]
. (5.30)

The only divergence in Eq. (5.30) is logarithmic, which is interpreted as the contribution from
the defect, and it is proportional to the function η(γ). Note that for small γ

η(γ) ≈ π

4
γ2 , (5.31)

and that η is divergent for γ → 1/
√

2, which corresponds to the linear dilaton limit. A plot
of η(γ) is shown in figure 5.2. It is interesting to compare η(γ) with the Janus ground state
degeneracy g, computed in [59]

log g =
L

4G
κ(γ) , κ(γ) = log

1√
1− 2γ2

. (5.32)

Interestingly, we have that with good approximation η ≈ κπ/4, see figure 5.2. The log di-
vergencies of complexity have a very similar (but not identical) functional dependence on γ as
log g.

Note that the `-dependent part of eq. (5.30) is proportional to the entanglement entropy of
the segment without the defect, i.e.,

SAdS =
c

3
log

(
`

δ

)
. (5.33)
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η(γ)

γ

Figure 5.2: plot of η(γ) as defined in Eq. (5.24), which is the coefficient of the log divergencies
due to the defect.

5.2.1 Remarks on Time-dependence

We want to show that it is not restrictive to study the CV conjecture in the Janus AdS3

background using a time slice at constant boundary time. One could be tempted to assign
different time arrows on each of the two y = ±∞ boundaries (as customary for the left and right
side of the Kruskal diagram). However, this is not consistent because the two boundaries are
not causally disconnected. We are then forced to evolve the time in a unique way according to
the asymptotic Killing vector of the metric. This forces us to take the boundary condition of
the extremal volume at constant time t. This is true also for the RT surface that is needed for
the subregion, which is also time independent.

Let us now show that the whole solution is at constant t. Let us parametrize the codimension-
one slice expressing the time as a function t(y, z). From the metric in eq. (4.4), the volume
functional is

V = L2

∫
dz dyL , L =

√
f(y)

z

√
1− (∂yt)

2 − f(y)

z2
(∂zt)

2 . (5.34)

The t = t0 function, where t0 is a constant, is a solution of the Euler-Lagrange equation.
Moreover, this solution has the property to maximize the volume functional.

5.3 Volume of the Static Janus BTZ Black Hole

In this Section we compute the subregion complexity for a symmetric interval with length `
centered around the defect of the static Janus BTZ geometry at vanishing boundary time. The
metric is

ds2 = L2

[
dy2 + f(y)

(
−

(w2 − 1)r2
h

L4
dt2 +

dw2

w2 − 1

)]
, (5.35)

which is obtained by substituting the Rindler-like metric (4.46) in (4.43), and performing the
µ–to–y change of variable dµ = dy/

√
f(y).
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The RT surface on a constant time slice lies at a constant value w = w̄ [55]. We locate the
interval along the coordinate x ∈ [− `

2 ,
`
2 ] orthogonal to the defect and at the radial distance

r = L2/δ determined by the FG expansion. The value of w̄ can be obtained by combining the
two equations (4.51) with r = L2/δ, x = `/2 and solving for w̄, which gives

w̄ =

√√√√√ 1 + sinh2
(
`rh
2L2

)
δ̂2 + sinh2

(
`rh
2L2

) , δ̂ =
rhδ

L2
. (5.36)

The UV divergences are regularized with the single cutoff prescription presented in Section 5.1.
The natural choice of cutoff is found by performing a FG expansion of the metric to relate the
asymptotic behavior of the deformed BTZ black hole with the non-deformed counterpart. Such
asymptotic behavior is identified by

r

rh
'
√

(w2 − 1)f(y) + 1 . (5.37)

The cutoff surface at r = L2/δ induces the following value of y coordinate

y∗(w) =
1

2
arcosh

(
2− δ̂2

(
w2 + 1

)
δ̂2 (w2 − 1)

√
1− 2γ2

)
. (5.38)

This in turn induces a cutoff in the w coordinate, which is found by maximizing the inverse of
the previous function

w(y) =

√√√√ 2
δ̂2

+
√

1− 2γ2 cosh(2y)− 1√
1− 2γ2 cosh(2y) + 1

, (5.39)

with respect to y. The maximum occurs at y = 0, and thus

wmax =

√√√√ 2
δ̂2

+
√

1− 2γ2 − 1√
1− 2γ2 + 1

. (5.40)

This UV cutoff is the analog of zmin in the Janus AdS3 case, see Eq. (5.15).
The extremal volume (5.4) for the static Janus BTZ geometry reads

V(γ, `) = 2L2

∫ wmax

w̄
dw

∫ y∗(w)

0
dy

√
f(y)

w2 − 1
, (5.41)

where we have included a factor of 2 due to the parity of the integrand in the y coordinate.
After performing the following changes of variable

τ =
f(y)

H2
, z =

L4 − δ2r2
h

H2δ2r2
h(w2 − 1)

, z̄ =
L4 − δ2r2

h

H2δ2r2
h(w̄2 − 1)

, (5.42)

the integral reduces to the form

V(γ, `) =
L2H

2

∫ z̄

1

dz√
1 + α2z

∫ z

1
dτ

√
τ

(τ − 1)(τ −m)
(5.43)

=
L2H

2

∫ z̄

1
dτ

√
τ

(τ − 1)(τ −m)

∫ z̄

τ

dz

z
√

1 + α2z
, (5.44)

where we defined

α ≡ Hrh δ√
L4 − δ2r2

h

. (5.45)
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The integration over z yields three kind of terms, according to which we split the extremal
volume as

V(γ, `) = V1 + V2 + V3 , (5.46)

with the following definitions:

V1 ≡ L2H

∫ z̄

1
dτ log

(
1 +

√
1 + α2τ

)√ τ

(τ − 1)(τ −m)
, (5.47)

V2 ≡ −
L2H

2

∫ z̄

1
dτ log τ

√
τ

(τ − 1)(τ −m)
, (5.48)

V3 ≡ −L2H

∫ z̄

1
dτ log

(
1 +
√

1 + α2z̄√
z̄

)√
τ

(τ − 1)(τ −m)
. (5.49)

The last two terms give (almost) exactly the same integral as in the Janus AdS3 case, therefore,
we refer to section 5.2 for their evaluation. The first term is slightly different but can be
evaluated in a similar way: the trick is, again, to add and subtract the leading contibution to
the divergence at infinity. In practice we have

V1 = LH2

∫ z̄

1
dτ
√
τ log

(
1 +

√
1 + α2τ

)[(√ 1

(τ − 1)(τ −m)
− 1√

τ

)
+

1√
τ

]
, (5.50)

which can be evaluated as the previous integrals in the limit δ → 0. At the end of it all, the
combined result is

V(γ, `) = L2

{
`

δ
+ η(γ) log

[
2L2

Hδrh
tanh

(
`rh
4L2

)]
+ C(γ)

}
+O(δ) , (5.51)

where η(γ) and C(γ) were defined in euation (5.24).
The subregion volume in the BTZ background is still given by the AdS3 result in eq. (5.29).

This is because the subregion volume complexity of the BTZ background does not depend on
temperature and it is topologically protected by the Gauss-Bonnet theorem [66]. This is however
not the case for the Janus deformed geometry. In the small temperature regime rh` � 1, we
recover the Janus AdS result in Eq. (5.23).

Using the expression for temperature and the central charge

T =
rh

2πL2
, c =

3L

2G
. (5.52)

we get that the subregion complexity, in terms of field theory quantities, is

C(T, γ, `) =
V(γ`)

LG
=

2

3
c

{
`

δ
+ η(γ) log

[
H

πTδ
tanh

(
π`T

2

)]
+ C(γ)

}
. (5.53)

The temperature dependence of volume complexity is

∆C(T, γ, `) ≡ C(T, γ, `)− C(0, γ, `) =
2

3
c η(γ)Φ(`T ) (5.54)

where

Φ(`T ) = log

[
2

π`T
tanh

(
π`T

2

)]
. (5.55)

At zero temperature the contribution of the defect to C(γ, `) is proportional to the entangle-
ment entropy of the segment without defect. However, the proportionality is spoiled at finite
temperature. In fact, the BTZ entanglement entropy for a segment of length ` is

SBTZ(T, `) =
c

3
log

[
2L2

rh δ
sinh

(
`rh
2L2

)]
=
c

3
log

[
1

π T δ
sinh (π`T )

]
. (5.56)
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and is an increasing function of T . Instead ∆C(`, γ) is a decreasing function of T .
Taking into account the two sides of the Kruskal diagram, the complexity relative to the

formation of the static Janus BTZ backround starting from Janus AdS3 is given by the `� 1/T
limit of 2∆C, i.e.,

∆Cthermal =
4

3
c η(γ) log

(
2

π`T

)
, (5.57)

where, again, we interpret ` as an infrared regulator. In this limit, the complexity of formation
is negative.

It is also interesting to consider the complexity of formation of the defect in the BTZ back-
ground. In this case, we subtract from Eq. (5.53) the γ = 0 result

C(γ, T, `)− C(0, T, `) =
2

3
c

{
η(γ) log

[
1

πHTδ
tanh

(
π`T

2

)]
+ χ(γ) + π

}
. (5.58)

Then, considering the `T � 1 limit and multiplying by an additional factor of two to account
for the two sides of the Kruskal diagram, we obtain the complexity of formation of the defect
starting from the static BTZ background

∆Cdefect =
4

3
c

[
η(γ) log

(
1

πaTδ

)
+ χ(γ) + π

]
. (5.59)

Notice that, since the volume complexity in the BTZ black hole is topological, the above result
can be also interpreted as the complexity of formation of the Janus static BTZ starting from
the vacuum AdS3 spacetime.

5.4 Volume of the Time-dependent Janus BTZ Geometry

We now consider CV-duality in the context of the time dependent Janus BTZ solution discussed
in 5.4.

This gravity solution corresponds to a domain wall configuration for the dilaton field along
the radial direction of AdS, which connects the left (L) and right (R) sides of the Penrose
diagram 4.7. The dilaton does not divide each boundary into two halves, rather, it takes two
different values on each boundary. Hence, the field theory dual of this solution is not an interface
CFT, but it corresponds to a couple of entangled CFTs with two different and constant values
of the dilaton source, eφ− and eφ+ , on each side of the Penrose diagram.

As for the static Janus BTZ background, the arguments made in section 5.2.1 no longer
hold. This is because the geometry is causally split by the event horizons, as a consequence we
expect the volume to be time dependent.

5.4.1 Volume at Vanishing Boundary Time

In analogy to the cases of the previous Sections, we start by considering the scenario where
the boundary times are tL = tR = 0 and the extremal volume sits on a time slice at constant
τ = 0. This can be interpreted as the complexity of formation of the Janus BTZ background
starting from a simpler spacetime, which we can take to be either the simple BTZ black hole or
a deformation of empty AdS space depending from the limit that we perform on the parameters
of the geometry.

We consider the metric

ds2 = dy2 + f(y)
(
−dτ2 + r2

h cos2 τ dθ2
)
, (5.60)

and by simply setting τ = 0 we get the induced metric determinant
√
h = rhL

2
√
f(y) . (5.61)
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In this way the extremal volume is simply given by

V(γ, rh) = 2rhL
2

∫ 2π

0
dθ

∫ y∗

0
dy
√
f(y) , (5.62)

where we introduced a factor of 2 due to the symmetry of the problem and we also put a UV
cutoff along the y coordinate.

In order to determine the value of the cutoff consistently with a FG expansion, we notice
from [67] that near the conformal boundary, the metric approaches the AdS space in Poincaré
coordinates with radial direction ξ and time coordinate t if we identify

ξ =
2

rh (1− 2γ2)
1
4

e−|y| cosh (rht) . (5.63)

If we set ξ = δ and we call the boundary values of the coordinates on the AdS2 slice as y = y∞
and t = t∞, since everywhere t = 0 we get

δ =
2

rh (1− 2γ2)
1
4

e−y
∗ ⇒ y∗ = − log

(
rh(1− 2γ2)

1
4

2
δ

)
. (5.64)

Notice from Eq. (5.62) that the angular part of the integral simply gives a factor of 2π and does
not need to be regularized. For this reason, differently from the previous cases on the constant
time slice t = 0, here we only have one meaningful regularization determined by the UV cutoff
δ introduced with the FG expansion. The result of the integral is

V(γ, rh) = 4πrhL
2

∫ y∗

0
dy
√
f(y)

= 2
√

2πirhL
2

√
1 +

√
1− 2γ2 E

(
i log

[
1

2
(1− 2γ2)

1
4 rh δ

] ∣∣∣∣∣1−m
)

=
4πL2

δ
+ 2
√

2πrhL
2

√
1 +

√
1− 2γ2 (K(m)− E(m)) +O(δ) ,

(5.65)

where

m ≡ 1−
√

1− 2γ2

1 +
√

1− 2γ2
. (5.66)

We observe that both the finite and the divergent parts in δ are determined unambiguously.
Setting γ = 0 we recover the non-deformed BTZ solution, that is,

V(γ = 0, rh) =
4πL2

δ
+O(δ) , (5.67)

If we subtract from the γ 6= 0 result the BTZ volume we get

∆V(γ, rh) ≡ V(γ, rh)− V(γ = 0, rh) = 2πrhL
2η(γ) +O(δ) . (5.68)

We can indeed verify that this quantity is positive. The same result can be obtained if we set
rh = 0, which should correspond to considering a deformation of the empty AdS solution in the
subtraction.

5.4.2 Growth Rate of the Volume

Let’s now move to the case in which tL 6= 0 and tR 6= 0. In order to do that, we need to describe
the codimension-one surface by expressing all the coordinates in terms of two parameters λ and
ρ, meaning that

τ = τ(λ, ρ) , y = y(λ, ρ) , θ = θ(λ, ρ) . (5.69)
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However, we can simplify the situation by exploiting some of the symmetries inherent to the
problem. First of all, we decide to take one of the parameters to be ρ = θ; secondly, the fact
that the metric is invariant under rotations along the angular direction implies that it is not
restrictive to assume that the volume is independent of θ. For this reason, we parametrize the
volume using θ, τ(λ), y(λ), where λ is a kind of radial coordinate of the system. In this way we
obtain the induced infinitesimal distance

ds2
ind = L2

[(
ẏ2 − f(y)τ̇2

)
dλ2 + f(y) r2

h cos2 τ dθ2
]
, (5.70)

with determinant √
h = rhL

2 cos τ
√
f(y) (ẏ2 − f(y)τ̇2) . (5.71)

Consequently, the volume is given by

V = 2πrhL
2

∫ λmax

λmin

dλ cos(τ(λ))
√
ẏ2 − f(y)τ̇2 = 2πrhL

2

∫ λmax

λmin

dλL(y, ẏ, τ, τ̇) . (5.72)

We impose the extremality condition by computing the Euler-Lagrange equations, which implies

2 sin τ ẏ3−3 cos τ f ′(y)ẏ2τ̇ + 2 cos τ f(y)τ̇
(
f ′(y)τ̇2 + ÿ

)
−2f(y)ẏ

(
sin τ τ̇2 + cos τ τ̈

)
= 0 . (5.73)

We exclude the trivial solution
τ̇ = 0 , ẏ = 0 , (5.74)

as it gives a vanishing volume at all times. At this point, one can use the invariance under
reparametrization to normalize the integrand in a more convenient way. One possible choice is
to take λ = y, which results in the following expression for the volume

V = 2πrhL
2

∫ ymax

ymin

dy f(y) cos [τ(y)]
√

1− f(y)τ̇2 . (5.75)

The differential equation (5.73) becomes

2 sin τ − 3 cos τ f ′(y)τ̇ + 2 cos τ f(y)f ′(y)τ̇3 − 2f(y)
(
sin τ τ̇2 + cos τ τ̈

)
= 0 . (5.76)

To solve the EOM we need to impose some kind of boundary conditions. We consider for
simplicity1 the case where the boundary times satisfy

τB ≡ τL = τR . (5.77)

In this case, the geometry is still symmetric between the left and right sides of the Penrose
diagram, and it is reasonable to expect a turning point for the extremal volume slice (just as
was found in [11].) For these reasons, we impose the boundary conditions

τ(ymax) = τR , τ(−ymax) = τL ,
dτ

dy

∣∣∣
y=0

= 0 . (5.78)

In particular, we define
τmin ≡ τ(y = 0) . (5.79)

Changing the boundary time, also the value of τmin gets modified.

1Notice that in this case the assumption of taking the times symmetrically on the two boundaries is restrictive
due to the absence of time translation invariance.
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Numerical Solutions to the EOM

We approach the solution of the differential equation (5.73) numerically, as it seems not possible
to solve it analytically.

First of all, we need an appropriate choice of the UV cutoff, which here is naturally deter-
mined by y = y∗ defined in equation (5.63) evaluated at ξ = δ. We find

ymax(τB) = log

(
2

rh δ

1

cos τB(1− 2γ2)
1
4

)
. (5.80)

This choice corresponds to the FG coordinates such that the metric on the boundary is the BTZ
black hole solution, and, indeed, the cutoff is time-dependent as a result of the non-stationarity
of the Janus deformation. Imposing the boundary conditions at these values of the y coordinate,
we get the numerical solutions corresponding to a Janus deformation with γ = 1/2 in figure 5.3.

One may wonder which curves have turning point inside of the shadow region. This part
of the spacetime is determined by the intersection of the curves at constant value of the null
coordinates

w1 =
1

2
(τ + µ) , w2 =

1

2
(τ − µ) . (5.81)

If we impose the condition that these null lines pass through the points

(µ, τ) =
(
−µ0,−

π

2

)
, (µ, τ) =

(
µ0,

π

2

)
, (5.82)

then the curves of interest that determine the shadow region in the region of space with positive
time are given by

− µ+ µ0 = τ +
π

2
, µ+ µ0 = τ +

π

2
. (5.83)

The corresponding equation in the (y, τ) coordinate system is obtained after performing the
transformation

tanh y = sn

(
α+µ

∣∣∣∣∣α2
−
α2

+

)
, α2

± =
1±

√
1− 2γ2

2
, (5.84)

and using the definition

µ0 =
1

α+
K
(
α2
−
α2

+

)
≥ π

2
. (5.85)

The shadow region is shaded in red in fig. 5.3.

Divergent Part of the Volume

We can now numerically evaluate the integral corresponding to the extremal volume

V(γ, τB) = 4πrh

∫ ymax(τB)

0
dy f(y) cos [τ(y)]

√
1− f(y)τ̇2 , (5.86)

by plugging in the numerical solutions for τ(y). The volume is expected to be divergent, as per
our previous considerations. A typical feature of black hole solutions like the BTZ background
is that the divergences are time-independent, while the finite part brings the information about
the time evolution of the system. This can be heuristically understood from the fact that the
turning point τmin is time-dependent, but it is determined at y = 0, which is far away from the
boundary and then from the UV divergences. We suspect that the same phenomenon occurs for
this non-stationary balck hole deformation, since the choice of the UV cutoff determined from
the FG expansion is such that we recover the static BTZ background at the boundary.
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τ

y

Figure 5.3: solutions of the EOM (5.73). each curve is attached to the boundary at a different
time τB = τL = τR. The shadow region is depicted in red.

Motivated by these observations, we shed light on the dependence of the volume from the
UV cutoff by considering a fixed boundary time τB and choosing different values of

δi = 10−
i+2
2 , (5.87)

with i ∈ {1, . . . , 10}. If we conjecture that the leading divergence of the extremal volume scales
as

Vi ≡ V(δi, τB) =
4π

δi
+O(δ0

i ) , (5.88)

this would imply that the ratio between the volume evaluated for two consecutive values of the
cutoff (5.87) is constant

Vi+1

Vi
=
√

10 ' 3.162 . (5.89)

We numerically tested this argument by computing these ratios for various choices of the bound-
ary time: the result (see the table below) strongly suggests that the leading divergence indeed
scales as δ−1.

Boundary time τB Ratio Vi+1/Vi
0.2 3.159± 0.006
0.4 3.158± 0.007
0.6 3.157± 0.010
0.8 3.154± 0.014
1.0 3.151± 0.020
1.2 3.144± 0.029

Table 5.1: Numerical value of the ratios Vi+1/Vi evaluated at various boundary times τB. We
determined the mean value and the standard deviation from the results obtained by varying

i ∈ {1, . . . 10} in the function δ = 10−
i+2
2 . The results must be compared with the analytic

expectation
√

10 ' 3.162.
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We also notice that these ratios have a bigger error and deviate more from the analytic
result as we increase the boundary time. We can explain this phenomenon in the following
way. According to [16], the time-dependent metric originated by the Janus deformation should
perturbe the black hole until the system reaches the thermal equilibrium at late times, going
back to the original BTZ solution. From the analytic computation in Section 5.4.1, we found
that the volume of the BTZ black hole solution is

VBTZ(τB = 0) =
4π

δ
+O(δ) , (5.90)

without any finite part. On the other hand, we know from previous analysis [11] that the finite
part of the volume monotonically grows with time. Putting all these considerations together,
we expect that the finite part of the Janus deformation also increases with time, and this is
responsible for the deviation of the ratios from the expected result obtained only from the
estimation of the divergences.

Time Dependence of the Volume

First of all, we checked that the extremal volume computed numerically at τB = 0 agrees with
the exact result found in Eq. (5.65). To renormalize the diverging volume we subtract the γ = 0,
i.e., the BTZ volume, volume at all times. Furthermore, to understand how the volume depends
on the boundary time we have to relate τ with t, which can be done by means of the coordinate
transformation

tanh (rht) = sin τ , (5.91)

which holds close to the boundary. In figure 5.4 we plot the volumes as a function of the
boundary time for different values of the deformation parameter. The result is a monotonically
increasing function of time, which reaches a linear growth for late times.

Vren

γ = 0

γ = 0.5

γ = 0.7

γ = 0.67

tB

Figure 5.4: plot of the volume as a function of time for different values of γ.

It can be seen that, within numerical uncertainties, the growth rates of the volumes for
different γ tend to the same value for late times. This should not come as a surprise, since we
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expect that

lim
tB→∞

dVren

dtB
∼ TS . (5.92)

Indeed, we can verify numerically that this is precisely the case. According to [16], the time-
dependent Janus deformation of the BTZ solution has a temperature given by

T =
rh
2π

, (5.93)

which is valid when the system reaches equilibrium. For arbitrary values of τ , as pointed out in
[16], the time dependent Janus geometry represents an out of equilibrium system, and (5.93) is
not valid. However, as the system reaches an equilibrium state for late times, we expect to be
able to use (5.93) in this limit. In addition, the area of the horizon is given by [14]

A(τ) = 2πrh
α+ sin (π/2− τ)

sn (α+ (π/2− τ) , k)
−→
tB→∞

2πrh . (5.94)

This implies that at late times

TS =
r2
h

4G
, (5.95)

which is the same value that one gets for the BTZ background. We numerically checked that in
the late time limit the growth rate of the volumes for all γ considered asyptotes to

lim
tB→∞

dVren

dtB
= 4πTS , (5.96)

which matches with the volume rate at late times found in the literature [11]. A plot of the
growth rate in function of the boundary time is shown below.

dVren
dtB

tB

γ = 0

γ = 0.5

γ = 0.7

γ = 0.67

Figure 5.5: plot of the time derivative of the volume as a function of time for various values of
the deformation parameter.
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We remark that the divergence of the volume is universal because it does not depend on γ.
For this reason, it is meaningfull to compare the finite part of the volume with different values
of the Janus deformation. To that end, we define

∆V(γ, tB) = V(γ, tB)− V(0, tB) . (5.97)

At tB = 0, we have that ∆V = ∆V0, given by eq. (5.68). The quantity ∆V0 is positive and,
in particular, for γ →

√
2/2 it diverges. Since the time derivative of the volume is a decreasing

function of γ, we have that ∆V(γ, tB) is a decreasing function of time. The asymptotic rate
does not depend on γ and so ∆V approaches a constant at late times.

For γ 6= 0 the system at tB = 0 starts in a out-of-equilibrium state and then thermalizes
at late times. The resulting rate of complexification is lower compared to the γ = 0 case:
the computational power gets decreased by the time-dependent perturbation which brings the
system out of equilibrium. The initial ∆V0 is partially washed out at later times, but it does
not approach zero asymptotically. It is surprising that the late-time volume rate is universal, in
spite of the fact that different boundary values of the dilaton are dual to theories with different
couplings.
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Chapter 6

Volume Complexity for Janus AdS5

In this chapter, we study holographic complexity according to the CV conjecture in the non-
SUSY Janus deformed AdS5 space. We will see that, compared with the lower dimensional
counterpart, a different divergence structure appears. In [13] it is pointed out that for a boundary
CFT the behavior of the divergent terms for the CV conjecture depends on the dimensionality
of the space. Since a BCFT can be related to a CFT with a codimension-one defect or interface
via the unfolding trick, we expect an analogous behavior also in the Janus interface case.

The strategies adopted in this chapter mirror those we have already discussed in the previous
one, albeit with the extra caveats that come from extra dimensions. In section 6.1 we discuss
the AdS5 Janus extremal volume at vanishing boundary time, and in section 6.2 we discuss the
subregion volume delimited by a ball-shaped geodesic dome. The material presented is based
on [2].

6.1 Volume of the AdS5 Janus Deformation

We evaluate the extremal volume using the metric in Eq. (4.35). Since the integral that defines
the volume diverges near the asymptotic boundary, i.e., when w → ±w0 and z → 0, we have to
regularize it introducing suitable cutoffs. In this section we adopt the single cutoff regularization
procedure described in Section 5.1, which relates the UV cutoff along the w and the z directions.

6.1.1 Determination of the Cutoffs

First of all, re-write the metric of Janus AdS5 space into the general form given in Eq. (5.1),
where the coordinate y is non-compact and the prefactor of the dy2 terms is the unity. This can
be easily achieved by performing the following change of coordinates

dy = γ−1/2h(w)dw ⇒ y = γ−1/2

∫ w

0
dw′ h(w′) , (6.1)

which brings the metric (4.35) into the form

ds2 = L2
(
dy2 + h(y)ds2

AdS4

)
. (6.2)

The infinitesimal line element for Janus AdS5 is now of the form expressed in (5.1), once we
identify

A(y) =
√
h(y) , ρ(y) = 1 . (6.3)

If we set the cutoff surface atcξ = δ we get the constraint

δ =
z√
h(y)

, (6.4)
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which induces a lower bound on the z-variable, zmin, that is,

zmin = δmin
y∈R

(√
h(y)

)
= δ
√
γ , (6.5)

where we used the fact that h takes minimum value at y = 0, where h(0) = γ. The previous
prescription (which can be equivalently employed using the compact coordinate w) defines a
cutoff w± such that

h(w±) =
z2

δ2
⇒ w± = h−1

(
z2

δ2

)
, (6.6)

which regularizes the divergences stemming from the poles of the function h(w) located at
w = ±w0. In this way, the cutoff w± can be expanded in a power series of δ/z (see reference
[61])

w±

(
δ

z

)
= ±w0 ∓

∞∑
k=1

bk
δ2k

z2k
, (6.7)

and all the coefficients of the series can be recursively determined order by order by imposing
the condition (6.6). The previous expression only contains even powers of δ/z due to the parity
of the function h(w), and the first coefficients of the series are given by

b1 =

√
γ

2
, b2 =

√
γ

8
, b3 =

√
γ

16
, b4 =

5
√
γ

128
, . . . (6.8)

Whereas the location of the cvutoff is fixed via a Taylor expansion, the identity (6.6) is exact
and formally re-sums all the coefficients of the series above.

6.1.2 Computation of the Volume

It is not restrictive to study the CV conjecture in the deformed AdS5 background using a time
slice at zero boundary time1. The extremal volume is computed by the integral

V =
2V2√
γ

∫ zIR

δ
√
γ

dz

z3

∫ w+( δz )

0
h(w)

5
2 dw , (6.9)

where we introduced a factor of 2 because ℘(w) is even in w, and we denoted with V2 the two-
dimensional infinite volume along the orthogonal spatial directions. Since the integral along the
z direction is in principle divergent at infinity, we regularize it introducing a cutoff zIR. At the
end we will remove this cutoff wherever possible.

We begin with the change of variables τ = h(w). The corresponding change of measure is
evaluated using three identities:

� the inverse of the change of variables

℘ =
τ − 2γ(γ + τ − 1)

γ − τ
; (6.10)

� the differential of Eq. (4.36)

h′(w) = − γ(4γ − 3)

(℘+ 1− 2γ)2 ℘
′(w) ; (6.11)

1It can be shown that the extremal slice at constant time is always a solution of the equations of motion at
all times. By translational invariance along the time direction, we choose for convenience to study the case with
vanishing boundary time.
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ζ

τ

1

1

ζIR

ζIR

τ
=
ζ

Figure 6.1: the domain of integration is depicted in red. We can swap the order of the integrals
by adjusting the extremes of integration.

� and the following property of the Weierstrass ℘−function, which gets rid of all the ℘′

terms,
(℘′)2 = 4℘3 − g2℘− g3 . (6.12)

The extrema of integration are determined by the conditions h(0) = γ and h(w±) = z2/δ2. In
this way we get ∫ w+(ε)

0
dw h5/2(w) =

γ5/2

2

∫ z2

γδ2

1
dτ

√
τ5

γ(τ4 − 1)− (τ3 − 1)
, (6.13)

where we further rescaled τ → τ/γ.
At this point, we perform another change of variables ζ = z2/(γδ2), which brings the volume

(6.9) into the form

V =
γV2

2δ2

∫ ζIR

1

dζ

ζ2

∫ ζ

1
dτ τ5/2f(τ) , (6.14)

where we defined

f(τ) ≡ 1√
γ(τ4 − 1)− (τ3 − 1)

, ζIR ≡
z2

IR

γδ2
. (6.15)

A careful analysis of the integration region (see figure 6.1) reveals that we can swap the order
of integration according to the rule∫ ζIR

1
dζ

∫ ζ

1
dτ F (τ, ζ)→

∫ ζIR

1
dτ

∫ ζIR

τ
dζ F (τ, ζ) , (6.16)

for any given integrand function F (τ, ζ). The evaluation of the ζ integration is trivial

V =
γV2

2δ2

∫ ζIR

1
dτ τ5/2f(τ)

(
1

τ
− 1

ζIR

)
. (6.17)

The remaining integral is divergent in the limit δ → 0, which corresponds to the limit ζIR →∞.
However, the integrand is well-behaved and we can series-expand f(τ) around infinity (where it
is analytic). Thus, we can add and subtract the lowest orders of f(τ) expansion as follows:

τ5/2f(τ)

(
1

τ
− 1

ζIR

)
= τ3/2

[(
f(τ)− 1

√
γτ2
− 1

2γ3/2τ3

)
+

1
√
γτ2

+
1

2γ3/2τ3

]
− τ5/2

ζIR

[(
f(τ)− 1

√
γτ2
− 1

2γ3/2τ3

)
+

1
√
γτ2

+
1

2γ3/2τ3

]
.

(6.18)

70



On the Holographic Complexity of Janus Geometries Chapter 6

In this way, the terms in the round parenthesis define a renormalized and finite integral where
the limit δ → 0 can be performed directly (whatever the choice of zIR is). The divergent parts
of the integrals are trivially evaluated as∫ ζIR

1
dτ

(
1
√
γτ

+
1

2γ3/2τ3/2

)
=

1

γ3/2

(
2γ
√
ζIR −

1√
ζIR

+ 1− 2γ

)
, (6.19)

∫ ζIR

1
dτ

(√
τ

γ
+

1

2γ3/2
√
τ

)
=

1

γ3/2

(
2γ

3
ζ

3/2
IR +

√
ζIR −

2

3
γ − 1

)
. (6.20)

The non-trivial part is encoded by the renormalized integrals

A(γ) ≡
∫ ∞

1
dτ τ3/2

(
f(τ)− 1

√
γτ2
− 1

2γ3/2τ3

)
, (6.21)

B(γ) ≡
∫ ∞

1
dτ τ5/2

(
f(τ)− 1

√
γτ2
− 1

2γ3/2τ3

)
, (6.22)

where we have taken the limit δ → 0, which brings the upper extremum of integration to infinity.
These functions are finite and well-defined for γ ∈ (3/4, 1], whilst for γ = 3/4 they diverge, since
h(w)→ γ and the interval along which we integrate degenerates due to w0 →∞. Furthermore,
we can expand around γ = 1 (i.e., around the vacuum), since all the coefficients of the Taylor
series can be computed analitically order by order. These functions are numerically displayed
in figure 6.3. Summing all the contributions from the equations (6.19) and (6.22) with the

A(γ)

B(γ)

γ

Figure 6.2: numerical plot of the functions A(γ) and B(γ) defined in Eqs. (6.21) and (6.22).
The limit γ → 3/4 is singular, while the limit γ → 1 can be performed analitically from the
Taylor expansion around that point, giving A(1) = 1 and B(1) = 5/3.

appropriate pre-factors, we obtain the extremal volume

V = V2

[
2

3

zIR

δ3
+ F(γ)

1

δ2
− 1

zIRδ
− 1

z2
IR

G(γ)

]
+O(δ) . (6.23)

where

F(γ) ≡ γA(γ)

2
−√γ +

1

2
√
γ
, G(γ) ≡ γ2B(γ)

2
−
√
γ

2
− 1

3
γ3/2 . (6.24)
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G(γ)

F(γ)

γ

Figure 6.3: numerical plot of the functions F(γ) and G(γ) defined in (6.24).

Subtraction of Pure AdS5

To identify the defect’s contribution to the extremal volume, we need to subtract the result that
stems from vacuum AdS5. With this goal in mind, we proceed to set γ = 1 in (4.35), which
results in

h(w) =
1

1− w2
, w0 = 1 , (6.25)

that is,

ds2 =
dw2

(1− w2)2
+

1

1− w2
ds2

AdS4
, (6.26)

where ds2
AdS4

is the metric of a unit-radius AdS4 in Poincaré slicing according to (5.3). Thus,
the FG coordinates of empty AdS5 are

ξ = z
√

1− w2, η = zw . (6.27)

The extremal volume at t = 0 for the AdS5 vacuum is therefore given by

VAdS5 = 2V2

∫ zIR

zmin

dz

z3

∫ w∗

0

dw

(1− w2)5/2
, (6.28)

where the cutoff w∗ can be derived from the FG coordinates in Eq. (6.27) setting ξ = δ

w∗ =

√
1− δ2

z2
. (6.29)

The value of zmin can be obtained as

zmin = min

(
δ√

1− w2

)
= δ . (6.30)

Computing the integral in Eq. (6.28), we get

VAdS5 = 2V2

[
1

3

zIR

δ3
− 1

2

1

zIRδ

]
+O(δ) . (6.31)
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x⊥

x‖

z

Figure 6.4: time slice of the Janus AdS5 spacetime with a ball-shaped subregion centered on the
interface. The Ryu-Takayanagi surface is represented by the spherical dome while the blue line
represents the interface located at x⊥ = 0.

Subtracting the result for empty AdS space to Eq. (6.23), we obtain the complexity of formation
of the Janus AdS5 solution

∆C(γ) =
V2

G

(
F(γ)

δ2
− G(γ)

z2
IR

)
+O(δ) . (6.32)

It is interesting to compare this result with the double cutoff result discussed in B.3. One can
promptly see that the finite term calculated in this section matches the finite term in (B.29) wilst
the leading divergences don’t match. This is a first suggestion that the universal information
encoded by the complexity of formation is associated to the finite term, since a change of the
energy scale does not affect it. We should also notice that the finite term is inversely proportional
to the IR regulator, and then in the smooth limit zIR →∞ the corresponding expression vanishes:
so no universal information is contained in the complexity of formation for the entire geometry,
except for the scaling of divergences proportionally to δ−2.

6.2 Subregion Volume for the Janus AdS5 Geometry

In this Section, we move to the case of subregion complexity with the hope of gaining further
insight into the structure of the divergences. As we will see, as a result of the separation of the
boundary into two regions an additional logarithmic divergence will appear .

6.2.1 Ball-shaped Subregion on the Boundary

Following ideas similar to those investigated for the entanglement entropy in [61, 64], a particu-
larly convenient scenario in which we can study subregion complexity corresponds to considering
a ball-shaped region of radius R centered on the interface, see figure 6.4. It is possible to show
that the RT surface corresponding to this subregion is given by

z2 + r2 = R2 , (6.33)
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where this equation is written in terms of the metric (4.35) with the two-dimensional subspace
parametrized with polar coordinates

d~x2 = dr2 + r2dθ2 . (6.34)

Remarkably, this space-like geodesic is also a geodesic in vacuum AdS5 space.
The RT surface delineates the region where the extremal codimension-one Cauchy slice

extends. This will accordingly delineate the integration domain. Contrarily to what happens
when considering the entire boundary, the resulting volume won’t need IR regulators. The
aforementioned subregion volume is computed by

V(γ,R) =
2
√
γ

∫ 2π

0
dθ

∫ zmax

zmin

dz

z3

∫ √R2−z2

0
dr r

∫ w+

0
dw h

5
2 (w) , (6.35)

where a factor of 2 is included to account for symmetry in the w integration. The integral along
the angular direction is trivial, while the one along the radial direction of the polar coordinates
gives an additional factor that will modify the last integration along z. In other words,

V(γ,R) =
2π
√
γ

∫ R

zmin

dz
R2 − z2

z3

∫ w+

0
dw h

5
2 (w) . (6.36)

Notice that the maximum value that can be reached by z is R, since the square root defining
the maximum of radial coordinate r would otherwise be imaginary. On the other hand, the
minimum of z is determined in the same way as for the total volume, that is, according to
eqation (6.5) for the single cutoff prescription, and to zmin = δ for the double cutoff.

6.2.2 Extremal Volume: Single Cutoff

Here we compute the extremal volume for the ball-spahed region in the Janus AdS5 geometry
using the single cutoff method. Once again, it is very useful to perfom the change of variables
τ = h(w)

γ , so that the integral we need to compute becomes

V(γ,R) = πγ2

∫ R

√
γδ

dz
R2 − z2

z3

∫ z2

γδ2

1
dτ τ5/2f(τ) , (6.37)

where f(τ) is defined in equation (6.15). Performing a further change of variables ζ = z2/(γδ2),
we are left with

V(γ,R) = πγ2

∫ R2

γδ2

1
dζ

R2 − γδ2ζ

2γδ2ζ2

∫ ζ

1
dτ τ5/2f(τ) . (6.38)

As explained in equation (6.16), we can swap the integrals in ζ and τ being mindful to make
suitable changes in the extremes of integration, getting

V(γ,R) = πγ2

∫ R2

γδ2

1
τ5/2f(τ)

∫ R2

γδ2

τ
dζ

R2 − γδ2ζ

2γδ2ζ2
. (6.39)

At this point, it is possible to evaluate first the integral in the ζ variable as∫ R2

γδ2

τ
dζ

R2 − γδ2ζ

2γδ2ζ2
=

1

2

(
2 log

(√
γδ

R

)
− 1 +

R2

γδ2τ
+ log τ

)
. (6.40)

Concerning the integration over τ , we have to compute three different types of integrals. The
first one is ∫ R2

γδ2

1
dττ5/2f(τ) , (6.41)
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following the same steps of the computation for the total volume, we can write it as

B(γ) +

∫ R2

γδ2

1
dτ

(√
τ

γ
+

1

2γ3/2
√
τ

)
= B(γ) +

2R3

3γ2δ3
+

R

2γδ2
− 1

γ3/2
− 2

3
√
γ
, (6.42)

where B(γ) is defined in Eq. (6.22) and we have taken the δ → 0 limit. The second integral in
τ is given by ∫ R2

γδ2

1
dτ τ3/2f(τ), (6.43)

which amounts to

A(γ) +

∫ R2

γδ2

1
dτ

(
1
√
γτ

+
1

2γ3/2τ3/2

)
= A(γ) +

2R

γδ
+

1

γ3/2
− 2
√
γ
− δ

γR
. (6.44)

Here, A(γ) is defined in equation (6.21). The result is multiplied by a factor of R2/(γδ2) coming
from the ζ integral, so the result should be expanded up to order δ to keep track of the correct
orders in the δ divergences. The last integral in τ that has to be taken into account is

∫ R2

γδ2

1
dτ τ5/2 log τf(τ) . (6.45)

The integrand can be rewritten as

τ5/2 log τf(τ) = τ5/2 log τ

[(
f(τ)− 1

√
γτ2
− 1

2γ3/2τ3

)
+

1
√
γτ2

+
1

2γ3/2τ3

]
(6.46)

in such a way that the term in the round brackets gives a finite integral. Defining

C(γ) =

∫ ∞
1

dτ τ5/2 log τ

(
f(τ)− 1

√
γτ2
− 1

2γ3/2τ3

)
, (6.47)

the integral presented in Eq. (6.45) becomes

C(γ) +

∫ R2

γδ2

1
dτ

(
log τ

√
τ

√
γ

+
log τ

2γ3/2
√
τ

)
(6.48)

and finally gives

C(γ)− log

(√
γδ

R

)(
4R3

3γ2δ3
+

2R

γ2δ

)
− 4R3

9γ2δ3
− 2R

γ2δ
+

2

γ3/2
+

4

9
√
γ
. (6.49)

Putting together all the terms, we get the following expression for the extremal subregion volume

V(γ,R) =
4π

9

R3

δ3
− 2π

R

δ
+ π

R2

δ2
F(γ) + 2π log

(√
γδ

R

)
G(γ) +Q(γ), (6.50)

where F(γ) and G(γ) were defined in (6.24), and

Q(γ) =
π

2

(
γ2C(γ)− γ2B(γ) + 3

√
γ +

10

9
γ3/2

)
. (6.51)
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Subtraction of the Vacuum AdS Solution

Now, we can perform the subtraction of the AdS vacuum solution, which corresponds to set
γ = w0 = 1. The volume reads

Vball(w0 = 1, γ = 1) = 2π

∫ R

δ
dz

R2 − z2

z3

∫ √
1− δ2

z2

0

dw

(1− w2)
5
2

=
4π

9

R3

δ3
− 2π

R

δ
+

2π2

3
+O(δ) .

(6.52)
Subtracting the undeformed AdS5 solution to the extremal volume obtained in Eq. (6.50), we
get the complexity of formation in the Janus subregion case

∆Csub(γ,R) =
π

G

[
R2

δ2
F(γ) + 2 log

(√
γδ

R

)
G(γ) +

Q(γ)

π
− 2π

3

]
. (6.53)

A comment on the limit R → ∞ is in order. The limit to corresponds to the case where the
subregion coincides with the entire boundary, and hence, the result (6.53) should tend to the
result found in (6.32). In order to verify that this is what actually happens, we notice that in
polar coordinates the two-dimensional volume along the spatial directions ~x = (r, θ) is

V2 = πR2 , (6.54)

which becomes infinite in the limit R→∞. For this reason, when comparing the two quantities
we should check that

∆VAdS5

V2
= lim

R→∞

∆Vball

πR2
. (6.55)

The limit on the RHS of eq. (6.55) suppresses logarithmic and finite terms, and allows only to
compare the divergent parts which are proportional to the volume of the subregion2. Employing
Eq. (6.55), we immediatly recognize that the terms proportional to 1/δ2 in Eq. (6.32) and (6.53)
exactly match. In conclusion, the difference between the total and the subregion case for the
complexity=volume conjecture involving the Janus deformation of AdS5 spacetime, is given by
the presence of an additional finite term and a logarithmic divergence. A similar difference also
happens for the complexity=action computation involving the (2+1)-dimensional vacuum AdS
or the BTZ black hole solutions.

Finally, we can compare the result attained in this section with the result attained from a
different regularization scheme. In B.3.2, we employ the double cutoff procedure to compute
the subregion volume; the result is displayed in eq. (B.34). Comparing the two results, it is
clear that in the subregion case the universal contribution can be associated to the prefactor of
the log divergence. This shouldn’t surprise us: when a log divergence is present any ambiguity
associated to the cutoff choice can be factored out of the logarithm (by using the most basic
properties of logarithms) which then modifies the finite part. Hence, the log prefactor is universal
while the finite part is ambiguous.

2Notice that the same observations held when comparing the complexity=action for the BTZ black hole when
the subregion on the boundary is taken was sent to infinity [68].
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Chapter 7

Closing Remarks

The main objective of this thesis has been to fill the gap in our understanding of complexity
within the context of interface theories, by studying the CV proposal applied to Janus deformed
theories. Let’s summarize and comment our findings.

Three-dimensional Janus

In chapter 5 we examined three-dimensional Janus solutions. In particular, we studied subregion
volume complexity for an interval of length ` centered around the Janus interface. At zero
temperature, we found that the increment of subregion complexity compared to the vacuum
CFT is

∆C(γ, `) =
2

3
c η(γ) log

(
l

δ

)
+ finite terms , (7.1)

where c is the CFT central charge and η(γ) is

η(γ) = 2

√
1 +

√
1− 2γ2

2
[K(m)− E(m)] , m =

1−
√

1− 2γ2

1 +
√

1− 2γ2
. (7.2)

A plot of η(γ) is shown in figure 5.2. We can contrast this with the ground state degeneracy g
of the Janus solution computed in [59], given by

∆S = log g =
c

6
κ(γ) , κ(γ) = log

1√
1− 2γ2

. (7.3)

γ ∈ [0,
√

2/2] parameterizes the excursion of the dilaton between the two sides of the interface,

which diverges for γ →
√

2
2 .

It is interesting to compare ∆C for the Janus interface with recent results found for other
defect geometries, namely:

� the AdS3 Randall-Sundrum, which was considered in [12, 59] . In this setup a two-
dimensional brane of tension λ is embedded in AdS3, resulting in the metric

ds2 = L2
[
dy2 + cosh2(|y| − y∗)ds2

AdS2

]
(7.4)

where

λ =
tanh y∗

4πGL
. (7.5)

� and the BCFT model, considered in [13, 63, 69, 70]. In particular, the BCFT2 defined on
a half-line is dual to AdS3 in Poincarè coordinares

ds2 =
L2

z2

(
−dt2 + dz2 + dx2

)
, (7.6)
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where the geometry is restricted to the region Q = {(x, z) : x(z) = −z cotα}, and α ∈
(0, π/2]. The parameter α is the angle at which the Q brane meets the boundary.

In the table 7.1 the resulting complexities of formation are displayed. By comparing the different
entries we conclude that:

i. the leading divergence in ∆C is always logarithmic, with a positive coefficient η that is a
function of the deformation parameter of the model;

ii. in all three cases, the log divergence in ∆C is not related in any universal way to the defect
boundary entropy ∆S. Nonetheless, the two quantities share a similar behavior, that is,
they diverge for the same critical value;

iii. for small values of the deformation parameters, in all the models η/κ is of order 1, i.e.,

η(γ)

κ(γ)
=
π

4
,

ηRS

κRS

=
ηBCFT

κBCFT

= 1 ; (7.7)

iv. in the Janus case η/κ remains very close to π
4 for the whole range of the deformation

parameter γ. On the contrary, in the other two models η � κ close to the critical values
y∗ →∞ and α→ 0.

Theory ∆C (no finite terms) η κ

Janus
2

3
c ηJ log

(
`

δ

)
2

√
1+
√

1−2γ2

2 [K(m)− E(m)] log
1√

1− 2γ2

Randall-Sundrum
2

3
c ηRS log

(
`

δ

)
2 sinh y∗ 2y∗

BCFT
2

3
c ηBCFT log

(
`

δ

)
cotα log

(
cot

α

2

)
Table 7.1: comparison between different defect theories.

In absence of the interface, the subregion volume complexity for the BTZ background is
topologically protected by the Gauss-Bonnet theorem [66] and, therefore, does not depend on
temperature. This is no longer true in the presence of the Janus interface. The difference ∆CT
between the finite and the zero temperature subregion complexity is:

∆C(γ, `, T ) =
2

3
c η(γ) log

[
2

π`T
tanh

(
π`T

2

)]
. (7.8)

This is a decreasing function of temperature. It would be interesting to compute this quantity
also in the RS and in the BCFT models, in order to see if there is some universality property.

As the `→∞ limit covers the entire boundary timeslice, we can define the total complexity
trough the ` → ∞ limit of subregion complexity. The complexity of formation for the defect
is then defined as the difference between the total complexity and its value at γ = 0. At zero
temperature, the result is given by (7.1), where ` is to be understood as an infrared regulator.
At finite temperature, such expression generalizes to

∆Cdefect =
4

3
c η(γ) log

(
1

T δ

)
+ finite terms , (7.9)

which is still logarithmically divergent. Note that in this case there is no need of an infrared
regulator. At finite temperature, it is also meaningful to consider the thermal complexity of
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formation of the Janus BTZ black hole in a geometry which already contains a defect. In this
case we compute the difference between the total complexity and its value at temperature T = 0,
to obtain

∆Cthermal =
4

3
c η(γ) log

(
2

π`T

)
. (7.10)

Compared to (7.9), this quantity is UV finite, but it requires an IR regulator `.
We also numerically computed the time evolution of the volume complexity for the time-

dependent Janus BTZ black hole. In this case the boundary theory is not an interface CFT,
but corresponds to two entangled CFTs with different values of the dilaton field on each of the
boundaries. At tB = 0, the boundary theories start from an out-of-equilibrium state and the
time-dependent Janus black hole background is the gravity dual of the thermalisation process.
The rate of growth of the volume as a function of the boundary time tB is shown in figure 5.5.

At late times, the growth rate of the volume saturates at the same constant value (propor-
tional to TS) for all the values of γ. So the coupling does not influence the computational power
of the CFT at equilibrium. This could come as a surprise given that γ determines the boundary
values of the dilaton, which are dual to the couplings of the boundary CFTs. We find that at
early times, where the dual field theory is in an out-of-equilibrium state for γ 6= 0, the Janus
deformation always decreases the complexity growth rate compared to the BTZ case. Being out
of equilibrium decreases the computational power of the CFT.

Non-SUSY Five-dimensional Janus

In chapter 6, we computed holographic complexity of formation for the Janus deformation of
AdS5 spacetime with respect to vacuum space both for the entire boundary and for the case
of a symmetric ball-shaped subregion located symmetrically around the interface. We did so
with two different prescriptions for regularizing the UV modes: the single cutoff prescription
and the double cutoff prescription (see appendix B.3.) The coefficients of the UV divergences
are collected in Table 7.2.

Complexity of formation Single cutoff Double cutoff

Entire boundary
L3

G

V2

δ2
F(γ)

L3

G

V2

δ2
G(γ)

Subregion: δ−2 term
L3

G

πR2

δ2
F(γ)

L3

G

πR2

δ2
G(γ)

Subregion: log δ term
2πL3

G
log

(√
γδ

R

)
G(γ)

2πL3

G
log

(
δ

R

)
G(γ)

Table 7.2: Coefficients of the divergences entering the complexity of formation for the non-SUSY
Janus AdS5 geometry.

First of all, we notice that the structure of the divergences differs between the subregion case
and the setting in which we consider the entire boundary. The latter only admits a power-law
divergence δ−2, which is consistent with the result computed in [13] for a BCFT, while the former
has a richer structure, where an additional logarithmic divergence and a non-vanishing finite
terms appear. We suspect that this logarithmic term originates, as in the case of holographic
entanglement entropy, from infinitely short correlations between degrees of freedom on each
side of the subregion division. A similar difference is also present in the complexity = action
computation involving the (2+1)-dimensional vacuum AdS or BTZ black hole solutions [68].

Comparing the entries in Table 7.2, the only result independent of the regularization scheme
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is the coefficient of the logarithmic divergences in the subregion case1. In addition, the finite
term in the total volume case also matches between single and double cutoff prescriptions – see
equations (6.32) and (B.29) – but it vanishes once we take the limit zIR → ∞. This behavior
suggests that similarly to the entanglement entropy computation, universal properties about
complexity are encoded by logarithmic or finite terms since they are invariant under rescalings
of the UV cutoff. When both terms are present, only the coefficient of the logarithm is universal.
In fact, a transformation of the UV cutoff in the logarithm amounts to an additional finite part,
which then becomes ambiguous. This remark is also consistent with the three-dimensional
analysis considered above, given that the complexity of formation for Janus AdS3 comprises a
logarithmic divergence and a finite term – both at finite and at vanishing temperature – of which
the finite term is the ambiguous one.

(Possible) Future Developments

There are some potential developments to the work presented in this thesis. The most natural
step forward, would be to extend the analysis in chapter 5 and 6 to the CA case. This would
ultimately allow us to compare the structure of the UV divergences in the two conjectures, and
in so doing determine whether holographic complexity for interfaces distinguishes CA from CV
or not. To date, the literature on defect theories seems to indicate that this should be the case in
three dimensions [12] but not in higher dimensions [13]. We don’t have much reason to believe
that this pattern is broken in the case of Janus geometries, but only time will tell.

The work presented here only dealt with the gravitational side of the story. Therefore,
another interesting avenue could be to consider holographic complexity for interfaces from the
field theory side. Potentially there are a number of ways in which such study could be carried
out. One possibility is to use the path integral approach [53], as done by [13]. Alternatively,
one could generalize the method used in [52] to the case of interfaces, by studying the geometry
that arises in a dual CFT where part of the original symmetry group is broken.

Finally, the computation of the extremal volume could also be pursued in the higher dimen-
sional generalizations of the time-dependent Janus BTZ black hole proposed in [16].

1Notice that the results only differ by the term πL3

G
log γ, which amounts to a finite part.
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Appendix A

Useful Special Functions

A.1 Jacobi Elliptic Functions and Elliptic Integrals

We work with the standard Jacobi elliptic functions and elliptic integrals defined along the lines
of [71]. We use the incomplete elliptic integrals

F(x|m) =

∫ x

0

dθ√
1−m sin2 θ

, (A.1)

E(x|m) =

∫ x

0
dθ
√

1−m sin2 θ , (A.2)

Π (n;x |m) =

∫ x

0

dθ(
1− n sin2 θ

)√
1−m sin2 θ

. (A.3)

of the first, second and third kind, respectively. The complete elliptic integrals are defined as

F
(π

2

∣∣∣m) = K(m) , E
(π

2

∣∣∣m) = E(m) , Π
(
n;
π

2

∣∣∣m) = P(n|m) . (A.4)

We also use the Jacobi amplitude ϕ = am(x|m) which is the inverse of F(x|m)

x = F(am(x|m)|m) . (A.5)

The Jacobi elliptic functions are defined as

sn (x|m) = sinϕ, cn (x|m) = cosϕ and dn (x|m) =

√
1−m sin2 ϕ, (A.6)

such that sn (K(m)|m) = 1 and cn (K(m)|m) = 0. The reciprocals of the latter functions are

ns (x|m) :=
1

sn (x|m)
, nc (x|m) :=

1

cn (x|m)
, nd (x|m) :=

1

dn (x|m)
. (A.7)

Periodicity:

� sn (x|m) is a doubly periodic function with respect to x with periods 2iK(1 − m) and
4K(m).

� cn (x|m) is a doubly periodic function with respect to x with periods 4iK(1 − m) and
4K(m).

� dn (x|m) is a doubly periodic function with respect to x with periods 4iK(1 − m) and
2K(m).
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Some useful identities between the various elliptic functions are

sn−1(x|m) = F(sin−1(x)|m) , (A.8)

sn (x|m)2 + cn (x|m)2 = 1 . (A.9)

The following asymptotic behavior is useful for x→∞

− iE(ix|1−m) =

√
1−m

2
ex + (K(m)− E(m)) +O(e−x) . (A.10)

A.2 Weierstrass Elliptic Functions

The Weierstrass ℘ is an elliptic function of order 2 defined by the series

℘(z, ω1, ω2) =
1

z2
+

∑
(m,n) 6=(0,0)

[
1

(z − 2mω1 − 2nω2)2
− 1

(2mω1 + 2nω2)2

]
, (A.11)

which is doubly periodic in the complex plane with half-periods ω1, ω2. It is a meromorphic
and even function of z with double poles at the lattice point defined by its periods. One can
alternatively define the elliptic ℘–function in terms of its invariants g2, g3, which can be computed
as Eisenstein series involving the half-periods ω1, ω2. However, in this case it is simpler to define
the ℘–function as the solution to the differential equation

(∂w℘)2 = 4℘3 − g2℘− g3 . (A.12)

We also define the Weierstrass ζ and σ–functions as

℘(z) = −ζ ′(z) , ζ(z) =
σ′(z)

σ(z)
. (A.13)
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Appendix B

Alternative Regularizations

In the main text we performed the computations of the volume following the single cutoff pre-
scription for regularizing the UV modes. In this appendix we discuss the alternatives presented
in 5.1. We consider both the FG and the double cutoff regularizations for Janus AdS3, in sections
B.1 and B.2 respectively, whilst for Janus AdS5 we focus solely on the double cutoff procedure.

B.1 Janus AdS3 Volume: Fefferman-Graham Regularization

This method consists in using the FG expansion (5.5) to identify a UV cutoff in terms of the
proper radial coordinate near the boundary. In particular, it is required that when ξ → 0 the
asymptotic behavior respects the limits

g1(ξ/η)→ 1 , g2(ξ/η)→ 1 . (B.1)

The change of coordinates from (y, z) to (ξ, η) breaks down when ξ/η � 1, which corresponds to
approaching the interface. This condition is equivalent to the statement that there exists a value
of y = y0 such that the FG expansion breaks down. Since f(y) is a monotonically increasing
function in the region y ≥ 0, this equivalently implies that there exists a value of α ≥ 1 such
that

A(y0) = αA(0) , (B.2)

where A(y) was introduced in Eq. (5.1). This criterion selects a particular y = y0 such that the
FG expansion breaks down:

y0 = A−1(αA(0)) . (B.3)

There exist universal quantities that do not depend on the choice of the curve connecting the
two FG patches [61]. For this reason, in the region where y ∈ [−y0, y0] we can introduce an
arbitrary curve interpolating between the two regions. As proposed in [12], we will select an
interpolating curve connecting smoothly the two patches.

In the following, we show that this prescription gives the same result as the single cutoff
method applied in Section 5.2, except for an ambiguity in the finite part.

B.1.1 Integration in the FG Patches

We consider the FG expansion defined in Eq. (4.26) with a UV cutoff located at ξ = δ and the
condition y � 1. In this way we find

δ

z
=

1√
f(y)

, ⇒ y∗ =
1

2
arccosh

(
2z2

δ2
− 1√

1− 2γ2

)
, (B.4)
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which is equivalent to the single cutoff prescription (5.10) after using the dictionary (5.13).
According to Eq. (B.3), we determine the minimal value of y = y0 such that the FG expansion
is valid by solving

√
f(y0) = α

√
f(0) ⇒ y0 =

1

2
arccosh

(
2α2f(0)− 1√

1− 2γ2

)
. (B.5)

Therefore, the integration in the FG patch region is given by

V1(γ, `) = 2

∫ z̄

zFG
min

dz

z

∫ y

y0

dy
√
f(y) , (B.6)

where z̄ was defined in (5.12), and we include a factor of 2 due to the symmetry of the problem.
The minimal value z = zFG

min is determined as

zFG
min = δ min

y∈[y0,y∗]

(√
f(y)

)
= α δ

√
1 +

√
1− 2γ2

2
, (B.7)

where we used the fact that in a single FG patch the function f(y) is monotonically increasing.
Notice that this value of zFG

min differs from zmin in Eq. (5.15) (determined for the single cutoff
prescription) only by the factor α.

B.1.2 Interpolation in the Middle Region

Now we consider the middle region where we do not have access to a FG expansion. We show
that the surfaces at constant y and the ones at constant z are orthogonal to each others. Since
the normal one-forms to such surfaces are given by

v = dy , w = dz , (B.8)

one can easily show that v · w = 0. Even though the coordinates (ξ, η) are not defined in the
middle region, the original variables (y, z) are still a valid coordinate choice. According to [12],
the curve interpolating the FG patches should be chosen in such a way to be perpendicular to
the surface located at y = y0. On the time slice t = 0, this condition entails that we need to
select curves at constant z.

The integral in this region reads

V2(γ, `) = 2

∫ z̄

zFG
min

dz

z

∫ y0

0
dy
√
f(y) . (B.9)

Despite the distinction between the FG patches and the middle region, the additivity property
of integrals allow us to write

V(γ, `) ≡ V1(γ, `) + V2(γ, `) = 2

∫ z̄

zFG
min

dz

z

∫ y∗

0
dy
√
f(y) , (B.10)

which is exactly the integral (5.16) that we evaluated for the single cutoff prescription, except
that now we integrate from zFG

min ≥ zmin. However, it can be shown by explicit computation that
this change only amounts to a shift of the finite part, while the leading divergences are the same.
Subtracting vacuum AdS3, the result is

∆V(γ, `) = η(γ) log

(
`

2αH δ

)
+ C(γ) + π +O(δ) . (B.11)

This procedure also shows that the value y = y0 where the FG patch ends does not play any
special role.
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B.2 Janus AdS3 Volume: Double Cutoff Regularization

In this Appendix, we compute the extremal volume for a symmetric subregion of length ` at
vanishing time for the Janus AdS3 geometry using the double cutoff regularization scheme.
Following the procedure described in Section 5.1, we take one cutoff at z = δ, whereas the other
one is determined as

f(y) =
1

ε2
. (B.12)

Solving the previous equations for y = y∗, we find

y∗(ε) = f−1

(
1

ε2

)
. (B.13)

This value is the same as the one in Eq. (5.15), once we identify ε = δ/z. The main difference in
using this method is that ε does not depend on z. Thus, the two integrals defining the volume
are independent and factorize. Therefore, the extremal volume for the subregion is given by

V(γ, `) = 2

∫ z̄

δ

dz

z

∫ y∗(ε)

0
dy
√
f(y) , (B.14)

where we have included a symmetry factor of 2. Following the analysis in Section 5.2 and
performing the change of variables

τ =
f(y)

H2
, (B.15)

the integral computing the volume reads

V(γ, `) = L2H log
( z̄
δ

)∫ 1
H2ε2

1
dτ

√
τ

(τ − 1)(τ −m)
. (B.16)

A direct evaluation gives

V(γ, `) = L2

(
η(γ) +

2

ε

)
log
( z̄
δ

)
, (B.17)

where η(γ) is defined in Eq. (5.24). Subtracting the volume of pure AdS3 space which is given
by

V(0, `) = L2 2

ε
log
( z̄
δ

)
+O(ε) , (B.18)

we get the volume relative to the defect

∆V(γ, `) = L2 η(γ) log

(
`

2 δ

)
+O(δ) . (B.19)

We observe that the dependence on ε disappears after the subtraction of the empty AdS3

solution, consistently with what we expected [64]. The remaining logarithmic divergence matches
with the single cutoff computation (5.30), which differs only in the finite part. This is to be
expected given that the leading divergence is logarithmic.

B.3 Janus AdS5: Double Cutoff Regularization

We employ the double cutoff prescription to regularize the UV divergences of the extremal
volume. The advantage of this procedure is that the integrals are not nested, since we introduce
two different regulators for the z and w directions. Specifically, we put a cutoff at the radial
direction z = δ along one of the AdS4 slicings, and following the logic of section 6.1.2 we impose

h(w±) =
1

ε2
. (B.20)
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This result comes from the FG expansion of the metric where in addition we set ε = δ/z. In this
way the Taylor expansion (6.7) defining the location of the cutoff becomes

w± (ε) = ±w0 ∓
∞∑
k=1

bk ε
2k , (B.21)

with the same coefficients determined in Eq. (6.8).

B.3.1 Computation of the Volume

The extremal volume at vanishing boundary time is determined by

V =
2V2√
γ

∫ zIR

δ

dz

z3

∫ w+(ε)

0
h(w)

5
2 dw . (B.22)

It is evident that in this case the integrations are independent. We start with the simplest one∫ ∞
δ

dz

z3
= −

[
1

2z2

]∞
δ

=
1

2δ2
− 1

2z2
IR

. (B.23)

Following the same steps described in section 6.1.2, we change variables into τ = h(w) to obtain

V =
γ2V2

2δ2

∫ 1
γε2

1
dτ τ5/2f(τ) . (B.24)

The last integration is performed, again, by renormalizing the integrand at infinity, and evalu-
ating the divergent parts separately. In this way the volume contains the function B(γ) defined
in Eq. (6.22). Now, the ε → 0 limit is regular and can be taken immediately. The non-trivial
reminders of this manipulation are evaluated using the identity∫ 1

γε2

1
dτ

(√
τ

γ
+

1

2γ3/2
√
τ

)
=

1

γ2

(
2

3ε3
+

1

ε
−√γ − 2

3
γ3/2

)
, (B.25)

which gives

V =
V2

2

(
1

δ2
− 1

z2
IR

)(
2

3ε3
+

1

ε
+ γ2B(γ)−√γ − 2

3
γ3/2

)
+O(ε) . (B.26)

In order to subtract the extremal volume of a spacelike slice anchored at the boundary of the
vacuum AdS5 geometry, we repeat the steps explained in Section 6.1.2, with the difference that
the cutoff along the y coordinate is located at

y∗ = arccosh

(
1

ε

)
⇒ w∗ =

√
1− ε2 . (B.27)

In this way the volume reads

VAdS5 = 2V2

∫ ∞
δ

dz

z3

∫ √1−ε2

0

dw

(1− w2)5/2
=
V2

δ2

[
w(3− 2w2)

3(1− w2)3/2

]√1−ε2

0

=
V2

δ2

(
1

3ε3
+

1

2ε

)
+O(ε) .

(B.28)

After subtracting the vacuum solution from the extremal volume (B.26) in the presence of the
defect, we get the complexity of formation

∆CAdS5 =
V2

2G
G(γ)

(
1

δ2
− 1

z2
IR

)
, (B.29)

where G(γ) is defined in 6.24. Comparing this result with Eq. (6.32), we notice that the divergent
part is different, while the finite part matches. This is a first suggestion that the universal
information encoded by the complexity of formation is associated to the finite term, since a
change of the energy scale does not affect it. We should also notice that the finite term is
inversely proportional to the IR regulator, so that in the limit zIR →∞ it actually vanishes.
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B.3.2 Subregion Volume

We can also evaluate the ball-shaped subregion volume in Eq. (6.36) using the double cutoff
prescription. In this case we have to choose zmin = δ. Since, again, the integrals along the z and
w directions factorize, we can evaluate them separately. First of all we have∫ R

δ
dz

R2 − z2

z3
=
R2

2δ2
+ log

(
δ

R

)
− 1

2
. (B.30)

The integration along w simplifies using the change of variables τ = γ−1h(w), and therefore we
need to evaluate

Vball = πγ2

(
R2

2δ2
+ log

(
δ

R

)
− 1

2

)∫ 1
γε2

1
dτ τ5/2f(τ) . (B.31)

On the other hand, this integral is now completely equivalent to the one considered in section
B.3, hence,

Vball = π

(
R2

2δ2
+ log

(
δ

R

)
− 1

2

)(
γ2B(γ) +

2

3ε3
+

1

ε
−√γ − 2

3
γ3/2

)
+O(ε) . (B.32)

The corresponding volume in the empty AdS geometry is easily obtained by considering the
following

VAdS5 = 2π

∫ R

δ
dz

R2 − z2

z3

∫ √1−ε2

0

dw

(1− w2)5/2
= 2π

(
R2

2δ2
+ log

(
δ

R

)
− 1

2

)(
1

3ε3
+

1

2ε

)
+O(ε) .

(B.33)
After subtracting the vacuum solution from the full result (B.32), we get the complexity of
formation

∆Cball =
π

G

(
R2

δ2
+ 2 log

(
δ

R

)
− 1

)
G(γ) +O(δ) , (B.34)

where, again, G(γ) is defined in (6.24). We can easily check that in the limit R→∞, we obtain
a correct comparison with the case considered in section B.3, since

lim
R→∞

V2

πR2
∆Cball =

V2

2Gδ2
G(γ) , (B.35)

which matches with Eq. (B.29).
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