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Abstract

On the low field side of magnetically confined fusion devices, field perpendicu-
lar transport is dominated by advective turbulent motion in the vicinity of the
last closed flux surface. Minimizing this turbulence is paramount in designing
profitable fusion reactors, and producing sustainable energy on a commercial
scale. This thesis investigates the transport properties and derived effects of
deuterium atoms and molecules in turbulent edge plasma. Detailed knowl-
edge about the behavior of neutrals in fusion plasma is necessary to assess
the efficiency of fueling systems and understand recycling processes and their
influence on the plasma.

This work presents the development and implementation of the discrete
particle model PISAM (Plasma Interacting Super Atoms and Molecules)
and its coupling to the fluid model HESEL (Hot Edge SOL ELectrostatic),
designed to describe plasma edge turbulence at the outboard midplane of a
Tokamak. To account for the introduction of neutral source terms in HESEL,
the neutral augmented HESEL equations (nHESEL) are derived from first
concepts. As part of this derivation, several mistakes, regarding higher-order
terms, in their current formulation are corrected.

PISAM is the manifestation of an attempt to close the gap between phys-
ically inadequate but numerically tractable fluid models and precise but slow
kinetic Monte Carlo solvers. Numerical tractability is ensured by performing
justified approximations to reformulate the description of neutrals interacting
with a fusion plasma as an embarrassingly parallel problem. The implementa-
tion of PISAM is in close analogy with our understanding of gas as a collection
of free particles with short-range interactions. This simplicity combined with
the application of the most recent quantum mechanical data describing the
interactions between neutrals and plasma particles makes PISAM a reliable
alternative to current neutral models. The MPI parallel Python implementa-
tion of PISAM is coupled with a C++ implementation of HESEL using MPI.
An MPI coupling of python with C++ is in itself pioneering work and is shown
to yield excellent communication speed and reliable operation in simulations
conducted using the coupled PISAM-HESEL model on the HPC cluster Mar-
coni. The results of these simulations serve as a persuading verification of
PISAM’s ability to supply HESEL with source terms from inelastic plasma-
neutral interactions. The source terms provided by PISAM illuminate the
underlying mechanisms of transport phenomena mediated by neutrals with
great clarity. The measured influences of neutrals on the plasma field profiles
are found to be in great qualitative agreement with previous measurements
and detailed kinetic simulations.
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Introduction 1

1 Introduction

Due to economic growth and an increasing human population the demand
for electronic devices, household heat and electricity, non-local groceries, and
personal transport is rising, [1]. As a consequence, the demand for energy
is as well, [2]. Unfortunately, this development in itself seems inevitable. If
the heating of the globe is to be minimized, the energy needed to meet this
increased demand must be supplied by cheap sustainable energy sources. The
current sustainable energy sources all have drawbacks making them unfit to
sustain a reliable power grid by themselves. The output of wind and solar
power is highly volatile to weather conditions meaning that energy conserva-
tion methods, far more efficient than those available today, are a necessity to
ensure the security of the power supply. Furthermore, the small asynchronous
turbines of windmills are unfit to sustain a stable AC current in the power
grid, by current technologies, [3]. Fission energy overcomes these problems,
but leaves undesired radioactive waste, and generally meets public skepticism
due to previous accidents such as those of Chernobyl and Fukuyama, [4].
Certain characteristics of fusion power have elevated it to the status of the
ultimate sustainable energy source. The reasons for this optimism as well as
the current challenges are outlined in the following section.

1.1 Fusion Power

Fusion devices currently being designed and build produce energy through
deuterium(2H)-tritium(3H) fusion

D + T → α(3.5MeV) + n(14.1MeV), (1.1)

where α denotes a 4He nucleus. This fusion reaction is targeted due to its
ease of initiation in comparison to other fusion reactions [5, 6].
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Limitations in Supporting Fuel Consumption of Fusion

Reactors

The fusion reaction of (1.1) immediately leads to a drawback of fusion power
regarding long-term sustainability. Tritium is β− unstable with a half-life of
12.33 years, [7], resulting in very little tritium being present on earth. As a
consequence tritium is bred from 6Li, [8]

6Li + n → α + T. (1.2)

The reserves of lithium on earth are limited, and the metal is already requested
by several industries. By current lithium extraction techniques, the timescale
on which the lithium need of fusion can be supplied is of the order of hun-
dreds of years [9]. However, at that time the technology of magnetic plasma
confinement might be mature enough for other fusion reactions to be ignited
in fusion reactors. Should we become able to master deuterium-deuterium fu-
sion, the abundance of deuterium in seawater would make fusion a practically
inexhaustible energy source.

Energy Balance of a Fusion Reactor

The general challenge in fusion research is to contain the energy of the plasma
to an extent where the energy loss at the confinement boundary is balanced
by the energy supply from fusion reactions. This section is concerned with the
mathematical formulation of this condition. As the ratio of neutron and α-
particle masses is 1/4, the neutron of (1.1) carries 4/5 of the released energy.
As neutrons are not charged, and thus unaffected by the magnetic field, they
escape the plasma and collide with the wall containing the fusion device. These
collisions produce the heat used for electricity creation. Surprising as it may
seem, most fusion research is more concerned with the 3.5MeV alpha particles
than the more energetic neutrons directly used for power production. Fusion
plasma must be extremely hot for a sufficient amount of fusion reactions to
occur, and thus inevitably lose heat to its colder surroundings. For ignition
to occur this heat loss must be balanced by the heating delivered by the
α-particles. The α-particle heat source is given by

Eα = EαnDnT ⟨σDTv⟩, (1.3)

where σDT is the cross section of the reaction (1.1), v is the relative velocity
of colliding deuterium and tritium ions, and the brackets ⟨⟩ denote an average
over velocity space. The expression ⟨σv⟩ is generally referred to as the rate of
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the reaction with cross section σ. These concepts, as well as the derivation of
expressions like (1.3) are thoroughly accounted for in chapter 2 and 3. The
rate of deuterium-tritium fusion in a plasma with a Maxwellian velocity dis-
tribution is peaked at a temperature of 70keV 1, [6]. (1.3) can be somewhat
misconceiving as it seems that fusion power can be achieved by simply crank-
ing up the plasma density. In reality, however, increasing the density leads
to cooling of the plasma unless the energy density is equally increased. It is
thus instructive to rewrite (1.3) in terms of the pressure, better reflecting the
limitation of magnetically confined fusion devices

Eα =
1

16
p2
σDT

T 2
, (1.4)

where the pressure p = 2nT , and n is the electron density. The ion species
are assumed to have equal densities, and the plasma is assumed quasi-neutral
such that nD = nT = n/2. The rate of heat loss in a fusion reactor is usually
approximated by

Ek =
3

2

p

τE
, (1.5)

where τE represents the e-folding relaxation time of the plasma energy due to
loss of heat to the surroundings, usually excluding the unavoidable Bremsstrahlung
losses, [5],

EB =
CB

4

p2

T 3/2
, (1.6)

where CB = 5.35 · 103 is a numerical constant. At the usual production
temperature and pressure of a fusion reactor, Bremsstrahlung losses are small
compared to other heat losses, [5].

In actual fusion devices, the plasma is heated externally e.g. in a Tokamak2

a toroidal current, necessary to create a poloidal magnetic field, gives rise to
ohmic heating. External heating shall however be neglected in the current
simple analysis of energy balance, thus describing the condition for what is
referred to as ignition within fusion research. The requirement of ignition can
be written

Eα = EB + EK . (1.7)

1In kinetic theory and fusion research it is customary to do the contraction TkB →
T , where kB is the Boltzmann constant. This convention is adopted in this work, with
the immediate consequence that unless explicitly stated any temperature T in this thesis
actually reads kBT , and has units of energy.

2The Tokamak is introduced in the next section
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Combining (1.4), (1.5), (1.6) and (1.7) yields the well known Lawson criterion
[10], [5]

pτe ≥
3
2
p2

Eα

16
⟨σDTv⟩ − CB

4
T 1/2

. (1.8)

The RHS of (1.8) has its minimum at around 15keV, indicating that this
temperature sets the lowest demands for a fusion reactor in terms of the
Lawson parameter pτE. As briefly mentioned, true ignition expressed by the
Lawson criterion is not obtainable in current devices as they are dependent on
external heating to some extent. As a figure of merit for fusion reactors the
Q-factor, defined as the ratio of output power to input power, is introduced.
This is approximated by [5] as

Q = 5
pτE

(pτE)I − pτE
, (1.9)

where (pτE)I is the Lawson parameter required for ignition. (1.9) shows,
as expected, that the Q-factor diverges towards infinity when the Lawson
parameter goes towards (pτE)I corresponding to non-assisted steady-state fu-
sion. (1.9) makes it clear that the goal of fusion research is to design fusion
reactors with a Lawson parameter as close as possible to that required for
ignition. This is attempted by the use of magnetic confinement devices. The
most widespread of these is known as a Tokamak, which is described in the
following section. In a later section, the effects influencing τE shall be dis-
cussed, as an understanding of these is clearly paramount in reactor design.
For now, I will note that a more sophisticated analysis of the energy balance
of a fusion reactor, including the temperature dependence of τE, reveals that
it can be operated in a stable equilibrium, [5] i.e. an increase in temperature
will give rise to a larger increase in heat loss than in fusion energy release,
and vice versa. The result is that runaway power creation, known to cause
meltdowns in fission reactors, does not pose a safety risk to fusion reactors.

1.2 The Tokamak

This section presents the confinement device known as a Tokamak. The gen-
eral idea of magnetic confinement is introduced, and it is shown how the
demand for stable equilibria naturally leads to the Tokamak.

In chapter 2, the momentum equation of a fluid is derived. At this point,
I shall simply state, that in a simplified case where the fluid in question is
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non-viscous, shows no explicit collisional effects3, and is subject to a force F ,
the equation of motion can be written

mn

(
∂

∂t
+ u ·∇

)
u = −∇p+ F , (1.10)

where u is the fluid velocity. In modern fusion reactors such as ITER, the
maximum pressure will be of the order of 106Pa, [11], meaning that significant
pressure gradients towards the center of the device are inevitable. In dealing
with pressured gasses for everyday and industrial purposes the ∇p-term of
(1.10) is usually counteracted by a solid container. This approach is futile in
containing a fusion plasma with a temperature of ∼ 20keV, as no material will
withstand such temperatures. Instead, containment is achieved by utilizing
the magnetic part of the Lorentz Force with the fact that plasma consists of
charged particles. Inserting the Lorentz force, nq(E + u×B) where q is the
charge of the plasma particles, into (1.10) and taking the cross product with
the magnetic unit vector b̂ yields

u⊥ =
E × b̂

B
+

b̂×∇p

nqB
+

m

qB
b̂×

(
∂

∂t
+ u ·∇

)
u, (1.11)

The terms on the RHS are known as the E ×B-drift, the diamagnetic drift,
and the polarization drift, respectively. (1.11) reveals that in the simplified
case of a homogeneous uniform magnetic field, the problematic ∇p -term
has been reduced to a transverse diamagnetic current, advecting fluid along
isobaric surfaces and thus causing no further trouble than partially canceling
the external magnetic field4. This founding idea of magnetic confinement has,
however, introduced less fortunate drift terms. The problematic E ×B-drift
causes bulk plasma motion across field lines. In the ideal MHD ordering where
the E×B-drift causes the only field-perpendicular motion of the plasma, [5],
multiple field geometries capable of producing an equilibrium exists. These
set the starting point of any reactor magnetic confinement device.

The most simple equilibrium geometry is an infinite cylinder where a
plasma can be held in equilibrium by what is referred to as a θ-pinch, since
the current producing the magnetic field flows in the azimuthal direction.
For a finite cylinder, the nonuniform magnetic field at the ends causes prob-
lems making the cylindrical field geometry intractable. In order to achieve

3As we shall see it is not sensible to consider a fluid without collisions, hence the notion
of explicit collisional effects.

4In an inhomogeneous magnetic field the diamagnetic drift gives rise to a charge depen-
dent drift causing stability issues, which shall be detailed later.
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Figure 1.1: The left figure shows the detailed cross-sectional geometry of a Toka-
mak, where the Outboard Midplane (exaggerated in size) is marked by the black
box. The right figure shows a schematic illustration of a Tokamak. The figures are
available at [12] and [13] respectively.

equal properties over the full surface of the confined plasma Poincare’s hairy
ball theorem, [14] suggests that the geometry of the magnetic field should be
toroidal. Bending a solenoid into a torus does, however, destroy the uniformity
and homogeneity of the magnetic field. It can be shown, [5], that in toroidal
geometry, the θ-pinch gives rise to no equilibria. A Poloidal component of the
magnetic field, as shown by the green arrows of 1.1, is a necessity. The means
of creating this poloidal field separates the Tokamak, from the other toroidal
confinement device still being researched, the Stellarator, [15]. The Tokamak,
which shall be discussed here, achieves the poloidal component of the mag-
netic field by inducing a toroidal current in the plasma, shown as the green
arrow in the toroidal direction in figure 1.1. Unfortunately, even by combining
toroidal and poloidal magnetic fields, it is not practically possible to produce
a fusion plasma confined in static equilibrium. The inevitable motion of the
plasma gives rise to heat transport which is the subject of the next section.

1.3 Anomalous Transport

As evident from (1.9) the energy confinement time, τ , is a key aspect of a fusion
reactor. Calculating τE is however tremendously complicated and it is usually
determined by empirical measurements, [16]. The total energy loss is partly
constituted by the classical losses of energy loss due to diffusion and heat
conduction. These losses can be calculated from the transport coefficients.
Determining the transport coefficients is a complex task in itself, which is the
very goal of kinetic theory. For two-fluid plasmas, approximations of these
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coefficients were first presented by Braginskii in his celebrated article of 1965,
[17]. Calculating the energy loss from diffusion and conduction by use of the
transport coefficients shows that they only account partly for the total energy
loss. The actual energy loss of a Tokamak is found to exceed that predicted by
diffusion and conduction losses by a factor of order unity, [18–20]. This dis-
crepancy is due to multi-scale turbulence on the plasma edge producing a net
radial flux of particles and energy due to the advection [21]. The magnitude
of the radial advective energy caused by turbulence depends on the specific
device, but also on the specific setup and experiment. In 1982 a regime of
high containment was discovered on the Tokamak ASDEX, [22]. This regime
of high containment was characterized by a decrease in edge turbulence and
heat transport making the reactor operate at an increased pressure with an
improved energy confinement time, which according to the former discussion
of energy balance is obviously very desirable. This operation mode is known
as H-mode, while a reactor not operating in this desired mode is said to be
in L-mode. The exact mechanisms of transport reduction in H-mode are still
not completely uncovered. There is however substantial evidence that edge
turbulence is decreased by a radially sheared poloidal flow at the plasma edge,
thus limiting transport [23–25]. A subject raising further unanswered ques-
tions is the physics governing transitions between L-mode and H-mode, which
remains one of the most actively researched areas in magnetically confined
fusion programs across the world [26–29].

In this thesis, edge plasma at the outboard midplane5 is modeled using the
HESEL model [30], a successor of the ESEL model [31]. Specifically, the influ-
ence of neutral gas on edge plasma dynamics is investigated. Before venturing
into the subject of plasma-neutral interactions, the relevant mechanism for
turbulence creation at the outboard midplane is introduced. This mechanism
is known as interchange dynamics, leading to the ballooning instability, [32],
and is the subject of the following section.

1.4 Interchange Dynamics

This section introduces the basic theory of interchange dynamics known to give
rise to a wide range of collective plasma phenomena in plasma confinement
experiments including global confinement loss, [33–36], and radial propagation
of localized blobs across the LCFS (Last Closed Flux Surface) and into the

5See figure 1.1
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SOL (Scrape Off Layer) [37–40], the latter of which is the concern of this
thesis. To understand the origin of interchange dynamics, consider the single
fluid momentum equation for a quasi-neutral plasma in a magnetic field B,
[41], (

∂

∂t
u+∇ · u

)
u+∇ · π = −∇p+ J ×B, (1.12)

where u is the fluid velocity, p is the scalar pressure, π is the viscous stress
tensor and J is the current density6. In static equilibrium, the LHS of (1.12)
vanishes leaving

∇p = J ×B. (1.13)

By Amperes law the current density can be written µ0J = ∇×B, which lets
one express the Lorentz force term of (1.12)

J ×B =
B2

µ0

(−∇⊥ lnB + κ) , (1.14)

thus defining the magnetic curvature vector κ = (b̂ · ∇)b̂ where b̂ is the
field aligned unit vector. This leads to the definition ∇⊥ = ∇ − b̂(b̂ · ∇).
Furthermore, the standard notation ∇ ln s = ∇s

s
, where s is an arbitrary

scalar field, is applied. (1.13) and (1.14) imply that in equilibrium, a confined
plasma with a magnetic pressure, B2/µ0, that is large compared to the plasma
pressure, p, is subject to the condition

∇⊥ lnB ≈ κ. (1.15)

This approximation amounts to neglecting the cancellation of the magnetic
field by the diamagnetic current. Denoting

(
∂
∂t
u+∇ · u

)
u + ∇ · π by f ,

taking the curl of (1.12) and manipulating the resulting equation using (1.14)
one can derive the expression, [42],

B · (∇× f − 2κ× f) = B2B ·∇
(
J∥
B

)
+ 2B · κ×∇p, (1.16)

known as the Shear-Alfvén law. (1.16) is often referred to as the vorticity
equation as the LHS, describing the plasma response to the forces on the
RHS, is primarily constituted by the vorticity of the E×B-drift, which dom-
inates plasma advection in most conditions relevant to magnetically confined
plasma. The first term on the RHS of (1.16) describes vorticity creation due
to parallel currents. This work focuses on turbulence creation due to perpen-
dicular dynamics, and so only the second term shall be discussed here.

6See appendix A for a definition of these quantities
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--

++

Figure 1.2: Pressure gradient driven instability of a plasma in a nonuniform mag-
netic field. This figure was originally printed in [41], and is reprinted here by cour-
tesy of Odd Erik Garcia.

Figure 1.2 serves to illustrate how the second term of (1.16) can lead to
instability. The grey part of the image shows a small section of magnetized
plasma. This plasma is subject to a perturbation, making the pressure in
this region larger than the neighboring regions along the vertical axis of the
figure. When pressure gradients have components perpendicular to κ, the last
term of (1.16) dictates that plasma must exhibit vorticity characterized by a
curl of velocity oriented along the magnetic axis. This vorticity is indicated
in figure 1.2 by the curved velocity arrows, causing advection in a direction
anti-parallel to κ. If the plasma advected into the grey area is characterized
by a larger pressure than the fluid leaving it, the initial pressure perturbation
is increased and the process is self-enhancing i.e. unstable. Denoting the
equilibrium pressure by peq, we thus conclude, that if κ and ∇peq have parallel
components i.e. κ ·∇peq > 0, the plasma perturbation in figure 1.2 is unstable
while the opposite is true if κ · ∇peq < 0. To understand the underlying
mechanism leading to the advective interchange motions, we shall step into
the particle picture. It is well known that ∇B and curvature drifts give rise
to charge dependent guiding center drifts perpendicular to the magnetic field.
The current arising from these drifts is given by, [41],

JB =
p

B

(
b̂× lnB + b̂× κ

)
. (1.17)

As indicated by (1.15) both terms contribute equally to JB. The drifts cause
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positive charges to move vertically downwards in figure 1.2 while negative
charges move up as indicated. This charge separation creates an electric field
causing particles to E ×B-drift in a direction anti-parallel to κ.

The analysis of interchange motion given above reveals three character-
istics of interchange dynamics important to the current work. Firstly, tur-
bulence creation through interchange dynamics is driven by the equilibrium
pressure gradient, which can be affected in gas puffing experiments. Secondly,
the orientation of the curvature vector relative to the equilibrium pressure
gradient determines the stability of interchange dynamics, resulting in the
outer edge of a Tokamak being unstable to these dynamics while the inside is
stable. The outside is said to exhibit unfavorable curvature while the curva-
ture on the inside is favorable. More specifically κ ·∇peq is maximized at the
outboard midplane, making this region most susceptible to interchange insta-
bility. A consequence is that the radial advection due to interchange motions
is poloidally asymmetric i.e. it is maximized at the outboard midplane and
decreases in the positive and negative poloidal directions. Thirdly the con-
siderations in terms of particle motion have revealed that ∇B and curvature
drifts in conjunction with the E ×B-drift explain the mechanism behind in-
terchange dynamics. Given this mechanism, it is clear that no equilibria exist
for a plasma in a purely toroidal magnetic field. This problem can however be
solved by adding a poloidal field component. To understand the stabilizing
effect of a poloidal field component, consider a positively charged particle in
the lower half of a Tokamak. The ∇B and curvature drift will make this
particle drift across magnetic field lines with a velocity whose radial compo-
nent is positive. The opposite will be true if the same particle is in the upper
half of the Tokamak. Adding a poloidal component to the magnetic field will
thus help to cancel the effect of ∇B and curvature drifts as a charged particle
moves along magnetic field lines. In the vicinity of the LCFS the poloidal
component of the magnetic field is relatively small compared to the toroidal
component suppressing the cancellation of the polarization current causing
the interchange instability. Outside the LCFS the magnetic field lines do
not close on themselves but interfere with divertors, completely diminishing
the stabilization of interchange dynamics. At the outboard midplane where
the interchange instability is most significant this gives rise to large blobs of
plasma escaping into the SOL, a phenomenon known as ballooning.
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1.5 Neutrals and Plasmas

Several internal sources of neutral particles exist in a fusion reactor. Outside
the LCFS temperatures can be sufficiently low for neutral atoms to be created
by recombination. More importantly, turbulent transport advects plasma ra-
dially across the LCFS. The majority of this unconfined plasma will move
along the magnetic field lines until impacting on a divertor where recycling
creates neutral particles. The neutral source due to recombination is generally
small compared to that of divertor recycling implying that the neutral densi-
ties of these naturally occurring sources are largest in the divertor regions 7,
and thus expected to be small at the outboard midplane. The focus of this
thesis is thus neutrals supplied from external sources, which is common for
fueling and imaging purposes.

The plasma of a fusion reactor in production is gradually contaminated
by helium from fusion processes and impurities entering from plasma-wall
interactions. To accomplish steady-state fusion the plasma must be able to
exhaust these impurities, and new fuel has to be supplied. Fueling can be
achieved by multiple methods, the simplest of which is gas puffing, where
cold gas is injected into the reactor chamber and ionized by the plasma. For
fueling to be successful, ionization has to take place within the LCFS. One of
the applications of the current work is to analyze the ability of gas puffing to
supply the confined plasma with new fuel. To ensure the required penetration
depth the alternative methods of super-sonic molecular beam injection, [43],
and high speed frozen fuel pellets, [44], have been designed.

Neutrals can also be added to the plasma for diagnostic purposes. The
image contrast is created from the excitement and decay of neutrals causing
emission of radiation [45]. Furthermore, high energy neutral beams are used
as a common method for plasma heating. The use of this method gave rise to
the first discovery of H-mode [22, 46]. Finally, neutral gas can be used to cool
the plasma outside the LCFS to protect the material surfaces. The neutral
model presented in this work is, in principle, capable of simulating all of these
phenomena.

From the brief revision on anomalous transport given above it is clear
that an understanding of turbulent transport at the plasma edge is of great
importance in designing future fusion reactors. The focus of this thesis is to
investigate how the injection of neutral gas at the outboard midplane affects
edge dynamics, along with the ability of the neutral particles to penetrate

7The ends of the red line on the left of figure 1.1.
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beyond the last closed flux surface, thus fueling the plasma. These efforts
are motivated by experimental findings, [47], suggesting that gas puffing with
molecular deuterium reduces the pressure gradient in the edge region, which
could affect the radial flux due to advection caused by interchange dynamics.
Furthermore, gas puffing is believed to be able to cause a transition from H-
mode to L-mode [48–50], an event that must be avoided when fueling modern
reactors.

1.6 Modeling Neutrals

Modeling of neutrals has been part of fusion research for decades and has been
approached with fluid as well as kinetic models. Several applications coupling
fluid models to edge turbulence models have already been published e.g. the
coupling of a 2D fluid neutral model with HESEL, [51, 52], which is closely
related to this work. However, due to the long mean free path of neutrals in
the plasma edge region, [53], a fluid description of neutrals is not strictly valid.
For this reason, most neutral models are based on kinetic approaches. These
often seek to solve the Boltzmann equation8 by Monte Carlo methods. A well-
known result of such an approach is the EIRENE model [54]. Originally the
neutral models were used to model the behavior of neutrals, without letting the
neutrals influence the plasma dynamics. Later on, they were self-consistently
coupled to plasma dynamics as in [55]. Attempts to couple EIRENE and
similar kinetic neutral codes to plasma edge turbulence codes have been found
to lead to excessive computational costs, [56]. In the last decade, however,
several successful attempts in coupling kinetic neutral codes with plasma edge
turbulence codes have been published [57–60]. A common characteristic of
these is that they, unlike the present work, only include a single mono-atomic
neutral species.

As an alternative kinetic method for neutral modeling, this work uses
a DSMC(Direct Simulation Monte Carlo)-like simulation scheme [61]. In
DSMC models a system of physical particles is modeled by a statistically
representative9 number of super-particles, each representing a large number
of physical particles. In each time step, the particle motions are calculated
deterministically, while the collisions are treated statistically. The current
model deviates from usual DSMC calculations as it neglects elastic collisions

8To be introduced in chapter 2 and chapter 3.
9The understanding of representative in the current context is detailed in chapter 7.
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between neutrals. This might seem strange but is not uncommon even in
highly sophisticated modeling of neutrals in edge plasma [60]. The result of
neglecting collisions between neutrals is that the problem can be expressed as
embarrassingly parallel i.e. it can be divided into arbitrarily many sub-tasks
without the need to communicate and without loss of generality. This fact
alone makes DSMC a highly interesting alternative to the usual kinetic meth-
ods whose parallelism is limited by the grid dimensions and relies on extensive
communication between the subdomains. Another advantage of DSCM is its
close analogy with our perception of the physical system it describes, as a
neutral gas is a large number of particles moving in straight lines between
collisions characterized by a small spatial and temporal extent. This direct
coupling makes the implementation of complicated chemical reactions and in-
terpretation of the produced results easier and more intuitive than is the case
for comparable Monte Carlo solvers. As the model presented in this thesis
tracks super-atoms and -molecules that only interact with the plasma and not
with each other, it shall be named PISAM (Plasma Interacting Super Atoms
and Molecules).
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2 Plasma Fluid Theory

This chapter introduces the Boltzmann equation and derives the transport
equations of the defining properties of a plasma subject to electric and mag-
netic fields, including elastic as well as inelastic collisions. This chapter thus
presents the first step in the derivation of the nHESEL equations. The reader
that is not well acquainted with the notion of the phase space distribution
function, f , and the definitions of density, n, fluid velocity, u, temperature
T , scalar pressure, p and the viscous stress tensor π, in the context of kinetic
theory should consult appendix A. In the following the velocity of a particle
in a common reference frame, S, is denoted v while the random velocity shall
be defined w = v − u, where u is also expressed with respect to S.

2.1 The Boltzmann Equation

The development of the phase space distribution function is given through
phase space conservation as expressed by Louville’s theorem, [62],

∂f̃

∂t
+ v ·∇f̃ + ã ·∇vf̃ =

∂f̃

∂t
+ v ·∇f̃ +

F̃

m
·∇vf̃ = 0. (2.1)

Where f̃ denotes the microscopic phase space distribution function, and ã

denotes accelerations on all length scales, including those of collisions. The
apparent simplicity of (2.1) is misleading due to the fact that it describes
the evolution of the microscopic phase space distribution which is essentially
a sum of Dirac delta functions [63]. Furthermore, the magnetic and electric
fields going into the force term, if (2.1) is applied to describe a plasma, will be
spiky as it includes the rapidly fluctuating micro fields that arise when charged
particles come very close to each other [17]. Solving (2.1) thus amounts to
solving the electromagnetic many-body problem, a completely hopeless task.
Instead f̃ shall be replaced by f which represents a smoothed density function
over a volume containing a large number of particles. Likewise, F̃ shall be
replaced by the macroscopic force F representing the force averaged over a
large number of particles and thus not including the rapidly fluctuating forces
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arising due to collisions between these particles. To account for any processes
with spatial and temporal scales too short to be resolved by f and F a collision
operator C is introduced, yielding what is known as the Boltzmann equation

∂f

∂t
+ v ·∇f +

F

m
·∇vf = C = E + I, (2.2)

where the last equality indicates a division of the collision operator into contri-
butions from elastic and inelastic collisions respectively. The following chapter
is devoted to the theory of binary collisions and will introduce the collision op-
erators in detail. For now, note that the collision operator includes collisions
with all species in the fluid, including the species itself.

2.2 Transport equations

Multiplying the Boltzmann equation, (2.2), by a physical quantity ϕ and
integrating over velocity space, one can derive the spatial transport equation
for the macroscopic quantity ⟨ϕ⟩, where ⟨·⟩ denotes an average over velocity
space. Rather than deriving a transport equation for the most general case
ϕ = ϕ(r,v, t), we shall simplify the task by assuming that ϕ = ϕ(v) i.e. it
is a function of velocity only. The reason for such a simplification is that the
macroscopic variables in which we want to express our fluid equations, n, u,
and T 10are all moments of velocity. By the use of (A.3), and utilizing that
since integrating runs over the full velocity space the integration limits are
independent of t and r, the first two terms of the transport equation become∫

ϕ
∂f

∂t
dv =

∂n⟨ϕ⟩
∂t

and
∫

ϕvi
∂f

∂ri
dv =

∂n⟨viϕ⟩
∂ri

(2.3)

where Einstein notation for dummy indices has been employed in the latter,
which will be assumed for the rest of this thesis. To rewrite the third term, it
is assumed that f falls off rapidly with |v| → ∞, which is certainly the case
for a Maxwellian distribution. Moreover, assume that F is divergence-free in
velocity space i.e. ∇v · F = 0, which is notably true for the Lorentz force,
and obviously true for any force not depending on velocity. The third term is
now readily evaluated:

10These will simply be referred to as the macroscopic variables.
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1

m

∫
ϕF ·∇vfdv =

1

m

∫
∇v · (ϕfF ) dv − 1

m

∫
f∇vϕ · Fdv

− 1

m

∫
ϕf∇v · Fdv (2.4)

=
1

m

∮
ϕfF · ds− n

m
⟨Fi

∂ϕ

∂vi
⟩ = − n

m
⟨Fi

∂ϕ

∂vi
⟩.

The collisional terms shall be denoted∫
ϕ(E + I)dv = E(ϕ) + I(ϕ), (2.5)

and the transport equation for ϕ = ϕ(v) can thus be written

∂n⟨ϕ⟩
∂t

+
∂n⟨viϕ⟩
∂ri

− n

m
⟨Fi

∂ϕ

∂vi
⟩ = E(ϕ) + I(ϕ). (2.6)

The fluid equations are now obtained by setting ϕ equal to 1, mv and 1
2
mv2

respectively. It is worth noting from (2.6), that the time evolution of n⟨ϕ⟩ de-
pends on the higher order velocity moment through ⟨viϕ⟩, such that no closed
set of equations can be formed from (2.6) without further approximation. This
generally indicates that the fluid description is somewhat too reductionistic
to express the dynamics of fluid systems such as liquids, gases, and plasmas,
in accordance with the Boltzmann equation.

Moments of velocity

We shall now derive the transport equations for the relevant moments of
velocity, corresponding to the summational invariants of elastic collisions. For
clarity the species subscript, s shall be introduced, and the meaning of the
collisional contributions shall be specified through

E(ϕ)
s =

∑
s′

E
(ϕ)
ss′ and I(ϕ)s =

∑
s′

I
(ϕ)
ss′ (2.7)

The Continuity Equation

Setting ϕ = 1 in (2.6) yields

∂ns

∂t
+

∂nsui,s

∂ri
=

∂ns

∂t
+ ui,s

∂ns

∂ri
+ n

∂ui,s

∂ri
= I(1)s . (2.8)

where it has been utilized that elastic collisions do not contribute to the conti-
nuity equation due to particle conservation. (2.8) can be written equivalently
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in vector form as

∂ns

∂t
+∇·(nsus) =

(
∂

∂t
+ us ·∇

)
ns+ns∇·us =

dsn

dt
+ns∇·us = I(1)s , (2.9)

where the advective derivative ds
dt

=
(

∂
∂t
+ us ·∇

)
has been introduced. Index

notation and vector notation shall be used interchangeably depending on the
context.

The Momentum Equation

Inserting ϕ = mv in (2.6) and considering only the i’th component of the
resulting equation yields

ms
∂nui,s

∂t
+ms

∂ns⟨vjvi⟩s
∂rj

− n⟨Fj
∂vi
∂vj

⟩s = E
(mv)
i,s + I

(mv)
i,s . (2.10)

Now impose

⟨vjvi⟩s = ui,suj,s + ⟨wiwj⟩s = ui,suj,s +
pij,s

msns

and
∂vi
∂vj

= δij, (2.11)

where p denotes the pressure tensor and it was used that ⟨wi⟩ = 0 per defini-
tion, to obtain

msns
∂ui,s

∂t
+msui,s

∂ns

∂t
+msuj,sui,s

∂ns

∂rj
+msnsui,s

∂uj,s

∂rj

+msnsuj,s
∂ui,s

∂rj
+

∂pij,s

∂rj
− ns⟨Fi⟩s = E

(mv)
i,s + I

(mv)
i,s .

(2.12)

Multiplying the continuity equation, (2.8) by ui,sms and subtracting it from
(2.12) gives the i’th component of the momentum equation in its usual form

msns

(
∂

∂t
+ uj,s

∂

∂rj

)
ui,s +

∂pij,s

∂rj
− ns⟨Fi⟩s = E

(mvi)
i,s + I

(mvi)
i,s −mui,sI

(1).

(2.13)
Finally inserting the Lorentz force and employing the definition of the pressure
tensor given in (A.10) the vector form of the momentum equation can be
written

msns
dsus

dt
+∇ps +∇ · πs − nsqs (E + us ×B) = E(mv)

s + I(mv)
s −msusI

(1)
s .

(2.14)
Emv

s denotes the friction force exerted on species s by elastic collisions with
other species. Note that collisions with species s itself do contribute to this
term due to momentum conservation in elastic collisions i.e. Emv

ss = 0, mean-
ing that single species fluid equations only considering elastic collisions become
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particularly simple, due to the fact that the fluid equations are expressed in
terms of summational invariants of elastic collisions. Imv

s is the rate of change
of momentum density due to inelastic collisions, and msusI

(1)
s , coming from

the continuity equation, accounts for the fact that the mean velocity is depen-
dent on the number density through 1/ns. To emphasize this point consider
the following decomposition of dsus

dt

msns
dsus

dt
=msns

ds
dt

1

ns

∫
vfsdv

=ms
ds
dt

(∫
vfsdv

)
+msns

−1

n2
s

dsns

dt

∫
vfsdv (2.15)

=
dsnsmsus

dt
−msus

dsns

dt

The change in momentum density due to inelastic collisions is given by I
(mv)
s

while the change in particle density due to inelastic collision is given by I
(1)
s .

Inserting these into the far right hand side of (2.15) for dsnsmsus

dt
and dsns

dt

respectively, reproduces the last two terms of (2.14). From these terms, one
might also notice that, as expected, adding particles moving with fluid velocity
does not change the fluid velocity.

The Energy Equation

Setting ϕ = 1
2
msv

2 in (2.6) one finds

1

2
ms

∂ns⟨v2⟩s
∂t

+
1

2
ms

∂ns⟨viv2⟩s
∂ri

− ns

2
⟨Fi

∂v2

∂vi
⟩s = E( 1

2
mv2) + I(

1
2
mv2). (2.16)

The relevant expectation values are readily evaluated using that ⟨wi⟩ = 0, and
the definitions (A.9) and (A.5):

⟨v2⟩s = u2
s +

3ps
msns

⟨viv2⟩s = ⟨(ui,s + wi)(u
2
s + w2 + 2uj,swj)⟩s

= ui,su
2
s + ui,s

3ps
msns

+
2qi,s
msns

+ 2uj,s

pij,s

msns

(2.17)

where the heat flux vector q is given by

q =
1

2
mn⟨wiw

2⟩, (2.18)

such that the rate of flow of thermal energy across a unit area of a surface
which moves with fluid velocity u = v −w, and has normal unit vector n̂ is
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given as n̂ · q. Inserting the expression of (2.17) and (2.18) in (2.16) yields
the energy equation of species s

∂

∂t

(
1

2
msnsu

2
s +

3

2
ps

)
+

∂

∂ri

(
1

2
msnsui,su

2
s +

3

2
ui,sps + qi,s + uj,spij,s

)

= ns⟨Fivi⟩s + E
( 1
2
mv2)

s + I
( 1
2
mv2)

s .

(2.19)
It is practical to write an equation expressing only the change of thermal
energy, rather than the change of total energy. Furthermore, we will express
this change through the advective derivative as is the case for the other fluid
equations. This is achieved by multiplying the continuity equation (2.8) by
1
2
msu

2
s, taking the dot product of the momentum equation (2.14) with us,

which amounts to multiplying (2.13) by ui, and subtracting the two resulting
equations from the energy equation, (2.19). Moreover, the Lorentz force is
inserted, such that the force term simplifies to ns⟨viFi⟩s = qsnsui,sEi. After a
bit of tensor algebra one finds(

∂

∂t
+ ui,s

∂

∂ri

)
3

2
ps +

5

2
ps
∂ui,s

∂ri
+ πij,s

∂uj,s

∂ri
+

∂qi,s
∂ri

= E
( 1
2
mv)

s + I
( 1
2
mv)

s − ui,sE
(mv)
i,s − ui,sI

(mv)
i,s +

1

2
msu

2I(1)s ,

(2.20)
which is equivalently written in vector notation as

3

2

dsps
dt

+
5

2
ps∇ · us + πs : ∇us +∇ · qs

= E
( 1
2
mv)

s − us ·E(mv)
s + I

( 1
2
mv)

s − us · I(mv)
s +

1

2
msu

2
sI

(1)
s .

(2.21)

Note how energy conservation is ensured through subtraction of the energy
change due to the change in fluid velocity, us. The implication is, that adding
a particle with velocity v to a species, s such that v has an anti-parallel
component to us will result in a transfer from macroscopic translational energy
to heat. It is also worth noting from the last three terms of (2.21), that
adding particles moving with fluid velocity does not alter the pressure. This is
expected since pressure depends on the random velocity, which is per definition
zero for a particle moving with the fluid velocity. So far the collision operators
have only been introduced as abstract mathematical entities. The following
chapter quantifies these operators.
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3 Collision Theory

To advance from the transport equations derived in the previous chapter to
a self-consistent fluid model applicable in the description of edge turbulence
in toroidal magnetized plasmas, an understanding of the effect of binary col-
lisions in fluids is needed. Furthermore, the PISAM model relies heavily on
collision theory to calculate the rate of plasma-neutral reactions. This chap-
ter is devoted to first concept derivations presenting formulas, geometries, and
assumptions specific to PISAM as well as the presentation of the Boltzmann
collision operator and its effect on fluid equilibria. The latter is a vital part
of the fluid closure presented in the following chapter. T

This chapter is structured such that the mathematically simplest collisions
between neutral particles and electrons are presented first, after which the
assumptions are gradually relaxed, toward the description of collisions between
particles of species modeled as fluids.

3.1 Collision Rate of a Single Particle

Interacting with a Fluid

Let p be a particle of species 1 moving towards a target with relative velocity
g. The target occupies an area, A, in the plane normal to g and has thickness
dx. The Target consists of particles of species 2 with density n. Let the cross
section σ12 be defined such that the probability, P, for particle p to undergo
a collision as it moves through the target, is given as the ratio of the sum of
the cross sections in the target with the total size of the target, such that

P =
Anσ12(g)dx

A
= nσ12(g)dx. (3.1)

We now proceed to derive the expression for the reaction rate of a particle
moving through space occupied by species 2, distributed with respect to the
phase space distribution function f2(r,v, t).
Consider the particle p moving with velocity v1 with respect to some inertial
frame S. Let the phase space distribution function of species 2 be defined with



Collision Theory 21

respect to the same frame S. Consider collisions of p with particles of species
2 moving with velocity v2, such that g12 = v1 − v2. Let a cylinder, C, be
defined by the cross sectional area σ12(g) and height |g12dt| = gdt, such that
it has volume VC = σ12gdt. Following Chapman and Cowling [64] a collision
between the particle p and a particle of species 2 of the specific type where the
former has velocity v1 and the latter has a velocity within the range dv2 of v2

11 will occur within the short time span t, dt if the cylinder, C, is occupied by
a particle of species 2 with v2, dv2 at time t. We shall neglect the probability
that any such cylinder is occupied by multiple particles of species 2, such that
only binary collisions are considered. According to the definition of the phase
space given in appendix A the probability of the specified occupation of C is

PC(r,v1,v2, t) = VCf2(r,v2, t)dv2 = σ12(g)gf2(r,v2, t)dv2dt. (3.2)

Dividing by dt and integrating over all velocities v2 yields

Γ12(r,v1, t) =

∫
σ12(g)gf2(r,v2, t)dv2 = n2⟨σ12g⟩2, (3.3)

which is the number of collisions per unit time, for a collision with cross section
σ12, between a particle p with velocity v1 and a species 2 distributed by f2

at position r at time t. Γ shall be referred to as the collision frequency while
⟨σg⟩ shall be referred to as the collision rate or reaction rate. In consistency
with the drift ordering presented in chapter 4 it shall be assumed that the
thermal velocity of the plasma particles is significantly larger than the fluid
velocity such that v2 = u2 + w2 ≈ w2. In accordance with the Chapman
Enskog closure scheme, it is further assumed that the phase space distribution
function of the plasma species is approximately Maxwellian. The justification
of this assumption is rigorously accounted for in the current and the following
chapter.

Electron-Neutral Collisions

In PISAM a certain set of plasma-neutral interactions are considered. This
set is presented in chapter 5. The collisions of this set can be divided into two
subcategories of electron-neutral and ion-neutral collisions. At the relevant
conditions, neutral energies are less than or similar to electron energies making
the velocity ratio in electron-neutral collisions rv ≳

√
mi/me ≳ 60. In these

collisions it is thus assumed that the relative velocity is equal to the electron

11For brewity particles of species s that has a velocity within the range dvs of vs, will
simply be termed "A particle of species s with vs, dvs".
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velocity, i.e. vrel ≈ we. With these assumptions, the collision frequency of
(3.3) can be written

Γne(r, t) = ne⟨σwe⟩ = ne

√
2

π

(
me

Te

)3/2 ∫
exp

(
−mew

2
e

2Te

)
σ(we)w

3
edwe, (3.4)

where the Maxwell Boltzmann distribution has been inserted, and the sym-
metry of the integrand, provided by the assumption g ≈ we, has been utilized
in the integration over the solid angle. The spherical symmetry of (3.4) means
that no net transfer of momentum between electrons and neutrals occurs when
averaging over many electron-neutral collisions, meaning that all energy ex-
changed between electrons and neutrals is in the form of heat. This symmetry
vastly simplifies the task of making a momentum- and energy-conserving cou-
pling of PISAM with a plasma fluid model.

Ion-Neutral Collisions

In ion-neutral collisions, the particles going into the collisions have comparable
mass. Furthermore, if a neutral particle is a product of a charge exchange
reaction it will have an energy similar to the ion energies. In conclusion,
the velocity of colliding ions and neutrals can be similar, thus breaking the
spherical symmetry leading to (3.4).
To see the consequences of this symmetry break, consider a particle n moving
with velocity vn and an ion i moving with velocity wi, where the use of w
indicates neglection of the fluid velocity. Let the velocity of the neutral particle
in the lab frame be defined through the components vx, vy, vz. In spherical
coordinates the orientation of the velocity vector is expressed by ϕ = tan−1 vy

vx

and θ = cos−1 vz
vn

. A sketch of the situation is shown in figure 3.1. Define the
neutral frame, which shall be denoted with primes, through rotations of the
lab frame according to the angles ϕ and θ, such that the neutral velocity in the
neutral frame is vx′ = 0, vy′ = 0, vz′ = vn. Specifically, the neutral frame is
obtained from rotating the lab frame by the angle ϕ around the z-axis followed
by a rotation of angle θ around the y-axis. The rotation of the coordinate axes
around the y-axis and z-axis are defined by the linear transformations

Ry(α) =

cosα 0 − sinα

0 1 0

sinα 0 cosα

 and Rz(α) =

 cosα sinα 0

− sinα cosα 0

0 0 1

 (3.5)

respectively, where α is an angle. The transformation between the basis vec-
tors of the lab frame and the neutral frame is written

r′ = Ry(θ)Rz(ϕ)r and r = Rz(−ϕ)Ry(−θ)r′, (3.6)
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x̂

ŷ

ẑ

vn = vnẑ
′

ϕ

θ

wi

θ′

O

Figure 3.1: The lab frame is shown as the unprimed coordinate axes, while the
neutral frame is denoted by primes. The angle θ′, is the polar angle of wi in the
neutral frame. As the cross section only depends on the relative speed, and the
ion velocity distribution is assumed spherically symmetric all random ion velocities
connecting a point on each of the black circles through Origo will contribute equally
to the reaction rate.

where r is an arbitrary vector expressed in the basis of the lab frame and r′

is the same vector expressed in the basis of the neutral frame.
By the definition of the neutral frame

v′
n = vnẑ′ and w′

i =
[
sin(θ′) cos(ϕ′)x̂′ + sin(θ′) sin(ϕ′)ŷ′ + cos(θ′)ẑ′

]
wi.

(3.7)
In this frame the relative velocity is

g′ = v′
n −w′

i =

− sin(θ′) cos(ϕ′)wi

− sin(θ′) sin(ϕ′)wi

vn − cos(θ′)wi

 , (3.8)

yielding an expression for the relative speed

g(wi, θ
′)2 = v2n + w2

i − 2vnwi cos(θ
′). (3.9)

The independence of ϕ′ in (3.9) indicates that in the neutral frame, neutral-
ion collisions are axially symmetric, as illustrated by the black circles of figure
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3.1. Inserting the Maxwell-Boltzmann distribution in (3.3) and integrating
over ϕ′ which is trivial due to axis symmetry, yields

⟨σg⟩ = 1√
2π

(
mi

Ti

)3/2 ∫
exp

(
−miw

2
i

2Ti

)
σ(g)gw2

i sin(θ
′)dwidθ′. (3.10)

This expression shall be applied to sample the velocities of ions going into
charge exchange reactions. The sampled velocities are expressed in the neutral
frame but can be transformed to the lab frame by use of (3.5) and (3.6). By
this method, PISAM ensures momentum and energy conservation in each and
every vertex of ion-neutral collisions. The implementational details of this
approach are covered in chapter 5.

Since reaction rates are historically provided for 2H it is advantageous to
be able to scale a given rate accordingly when modeling heavier isotopes. this
scaling can be obtained by applying the substitutions

vn =

√
2En

mn

and wi =

√
2Ei

mi

(3.11)

in (3.10). For a simple plasma with only one ion species, we can further
assume mn = mi = m, and the rate of (3.10) can thus be written as

⟨σg⟩ =
√

2

πm

(
1

Ti

)3/2 ∫
exp

(
−Ei

Ti

)
σ(g)G(Ei, En) sin(θ

′)dEidθ′. (3.12)

Where
G(Ei, En) =

√
Ei(En + Ei − 2

√
EnEi cos θ′). (3.13)

It thus becomes clear that for simple plasmas the mass dependency of the rates
of ion-neutral collisions scales as m−1/2, and they are thus easily adjusted.

3.2 Elastic Binary Collisions in Fluids

To account for elastic binary collisions in fluids the considerations leading to
(3.3) must be generalized. This generalization leads to the Boltzmann collision
operator

E12(r,v1, t) =

∫
dv2

∫ π

0

sinχdχ
∫ 2π

0

dϵ
(

dσ
dΩ

)
12

g(f ′
1f

′
2 − f1f2), (3.14)

describing the rate of change of the phase space density of species 1 per unit
phase space volume per unit time at r,v1, t, due to elastic collisions. In (3.14)
χ is the scattering angle, ϵ is the azimuthal angle defining the plane in which
the motion of the colliding particles is confined, g is the magnitude of the rela-
tive velocity, and

( dσ
dΩ

)
12

is the differential cross section. The un-primed phase
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space distribution functions are evaluated at v1 and v2 respectively while the
primed phase space distribution functions are evaluated at the velocities of
the corresponding inverse encounter. For an exact introduction to these terms
and quantities, and a derivation of the Boltzmann Collision operator presented
with rare clarity, see appendix B.

The current section shall apply the Boltzmann collision operator to inves-
tigate the steady state of a mixture of fluids dominated by elastic collisions.
This analysis reveals how elastic collisions relax the phase space density func-
tions towards a common Maxwellian. This result has already been applied
repeatedly and will serve as the very foundation of the fluid closure used in
the next chapter. Understanding the conditions of applicability of this closure
is necessary to substantiate the assertion that a fluid description of neutrals
in the SOL is inadequate. Furthermore, the rate of relaxation towards the
Maxwellian state will be used at the end of this chapter to estimate the effect
of neglecting neutral-neutral collisions in PISAM. With this motivation, a gen-
eralized proof, including multiple fluid species, of the relaxation of the phase
space density functions of collisional fluids towards a common Maxwellian is
presented in the following section.

Steady State of a Fluid

The derivation presented in this section has found inspiration from several
authors [64], [65], [66], but has been generalized from only treating one species
to include an arbitrary number of species.

Consider a fluid system consisting of the species s ∈ {1, 2, ..., n} subject to
no external forces. Assume that the state of the system is uniform such that
fi is independent of r. The Boltzmann equation for species i becomes

∂fi
∂t

=
∑
j

Eij. (3.15)

Where i and j are species indices. Boltzmann, and many others after him
[64], [66], have introduced the function

H =
∑
i

∫
fi ln fidvi. (3.16)

The time derivative of H is

∂H

∂t
=
∑
i

∫
(1 + ln fi)

∂fi
∂t

dvi =
∑
i

∫
(1 + ln fi)

∑
j

Eijdvi. (3.17)

Inserting the Boltzmann collision operator yields
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∂H

∂t
=
∑
i

∑
j

(
∂H

∂t

)
ij

= (3.18)

∑
i

∑
j

∫
dvi

∫
dvj

∫ π

0

sinχdχ
∫ 2π

0

dϵ
(

dσ
dΩ

)
ij

∫
(1 + ln fi)g(f

′
if

′
j − fifj).

(3.19)

The strategy is to rewrite (3.20), to prove that H is a monotonic decreasing
function. At first, a simplification of the terms where i = j shall be sought
using various index transformations. In this case, a notation distinguishing the
two particles of species i, going into a collision must be introduced. Following
the convention of [64] this shall be accomplished by writing one of the velocities
without a species subscript, such that

(
∂H
∂t

)
ii

reads(
∂H

∂t

)
ii

=

∫
dv
∫

dvi

∫ π

0

sinχdχ
∫ 2π

0

dϵ
(

dσ
dΩ

)
ii

∫
(1 + ln fi)g(f

′
if

′ − fif).

(3.20)
The terms of (3.20) representing collisions of particles both belonging to
species i can be rewritten utilizing that v and vi can be interchanged since
they are both "dummy" variables with the same integration bounds and are
thus treated symmetrically in the integral. After performing this swapping(
∂H
∂t

)
ii

can be written(
∂H

∂t

)
ii

=

∫
dv
∫

dvi

∫ π

0

sinχdχ
∫ 2π

0

dϵ
(

dσ
dΩ

)
ii

∫
(1 + ln f)g(f ′f ′

i − ffi).

(3.21)
Another way of rewriting (3.20) is obtained utilizing the symmetry of direct
and inverse collisions. By arguments similar to those leading to (B.7) it can
be shown that vi and vj can be replaced by v′i and v′j and vice versa such that(
∂H
∂t

)
ii

reads(
∂H

∂t

)
ii

=

∫
dv
∫

dvi

∫ π

0

sinχdχ
∫ 2π

0

dϵ
(

dσ
dΩ

)
ii

∫
(1 + ln f ′

i)g(fif − f ′
if

′).

(3.22)
Swapping the dummy indices of (3.22) yields(
∂H

∂t

)
ii

=

∫
dv
∫

dvi

∫ π

0

sinχdχ
∫ 2π

0

dϵ
(

dσ
dΩ

)
ii

∫
(1 + ln f ′)g(ffi − f ′f ′

i).

(3.23)
Adding (3.20), (3.21), (3.22) and (3.23),

(
∂H
∂t

)
ii

can be put in the form

2

(
∂H

∂t

)
ii

=
1

2

∫
dv
∫

dvi

∫ π

0

sinχdχ
∫ 2π

0

dϵ
(

dσ
dΩ

)
ii

∫
ln

(
ffi
f ′f ′

i

)
g(f ′f ′

i−ffi).

(3.24)
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The "cross terms" of (3.20), i.e. the terms where i ̸= j, can be combined in
the pairs (i, j) and (j, i) to yield

(
∂H

∂t

)
ij

+

(
∂H

∂t

)
ji

= (3.25)∫
dvi

∫
dvj

∫ π

0

sinχdχ
∫ 2π

0

dϵ
(

dσ
dΩ

)
ij

∫ (
2 + ln(fifj)

)
g(f ′

if
′
j − fifj),

were the symmetry of binary collisions was used to impose
( dσ

dΩ

)
ij
=
( dσ

dΩ

)
ji
.

Switching primed and unprimed velocities of this expression yields

(
∂H

∂t

)
ij

+

(
∂H

∂t

)
ji

= (3.26)∫
dvi

∫
dvj

∫ π

0

sinχdχ
∫ 2π

0

dϵ
(

dσ
dΩ

)
ij

∫ (
2 + ln

(
f ′
if

′
j

))
g(fifj − f ′

if
′
j).

Adding (3.25) and (3.26) yields

(
∂H

∂t

)
ij

+

(
∂H

∂t

)
ji

= (3.27)

1

2

∫
dvi

∫
dvj

∫ π

0

sinχdχ
∫ 2π

0

dϵ
(

dσ
dΩ

)
ij

∫
ln

(
fifj
f ′
if

′
j

)
g(f ′

if
′
j − fifj).

To directly apply this result rewrite the sum of (3.19)

∑
i

∑
j

(
∂H

∂t

)
ij

=
∑
i

∑
j≥i

[(
∂H

∂t

)
ij

+

(
∂H

∂t

)
ji

]
(1− 1

2
δij) (3.28)

Combining (3.24), (3.27), and (3.28), ∂H
∂t

can finally be written as

∂H

∂t
=

1

2

∑
i

∑
j≥i

(1− 1

2
δij)

∫
dvi

∫
dvj

∫ π

0

sinχdχ (3.29)

∫ 2π

0

dϵ
(

dσ
dΩ

)
ij

∫
ln

(
fifj
f ′
if

′
j

)
g(f ′

if
′
j − fifj).

This is a neat way of formulating ∂H
∂t

, but once again caution must be shown
when interpreting the terms where i = j. In this case, the instances of fifi and
f ′
if

′
i should be read fi(r,vi, t)fi(r,v, t) and fi(r,v

′
i, t)fi(r,v

′, t) respectively
i.e. distinguishing the two particles coming into and the particles going out
of the collision.

The reward of all this work is that (3.29) reveals that regardless of the
sign of (f ′

if
′
j −fifj) the integrand of (3.29) will always be negative, indicating
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that H is a monotonic decreasing function. Moreover, it can be shown that
H is bounded from below [64], meaning that the system must tend to some
equilibrium of ∂H

∂t
= 0 if affected only by elastic collisions. ∂H

∂t
= 0 is obviously

satisfied exactly when

fifj = f ′
if

′
j ⇒ ln(fi) + ln(fj)− ln(f ′

i)− ln
(
f ′
j

)
= 0. (3.30)

Before moving on to determine fi notice what this equation actually states;
In equilibrium, each pair of direct and inverse collisions of any two species
of particles are exactly balanced. This absolutely breathtaking result is an
example of detailed balancing recognized as a general principle of statistical
mechanics. (3.30) shows that for two particles of any two species, the quan-
tity ln(fi(vi)) + ln(fj(vj)) is conserved during binary collisions for a system
in equilibrium i.e. ∂H

∂t
= 0. Such summational invariants must be linear com-

binations of the fundamental invariants of particle number, momentum and
energy [64], [66], such that ln(fi) is of the form(

ln fi
)
(v) = α

(0)
i +α

(1)
i ·miv + α

(2)
i

1

2
miv

2, (3.31)

where α
(k)
i for k = 0, 1, 2 are constants. Inserting the form of ln f from (3.31)

in (3.30) it is easily shown that for energy and momentum to be conserved
α

(1)
i and α

(2)
i , must be equal for all species i.e. α

(1)
i = α(1) and α

(2)
i = α(2).

Rewriting (3.31) and solving for fi yields

fi = ln a
(0)
i exp

(
−α(2)1

2
miw

′2
)

(3.32)

Where ln a(0) is a new constant, and w′ = v − α(1)

α(2) is a convenient abbrevi-
ation. The constants a

(0)
i , α(1) and α(2), are determined by demanding that

fi corresponds with the definitions of density, fluid velocity, and temperature,
given by (A.2) and (A.4) and repeated here for convenience,

ni =

∫
fidvi, ui =

1

ni

∫
vifidvi, Ti =

m

3n

∫
(v − u)2fdv. (3.33)

This system of five scalar equations is solved to determine α
(0)
i , α(2), and w′

in terms of the macroscopic variables. Inserting these expressions in (3.32)
and demanding that

∫
fidvi = ni yields

fi(v) = ni

( mi

2πT

)3/2
exp

(
−mi(v − u)2

2T

)
(3.34)

Which is recognized as the Maxwellian velocity distribution. Notice that in
equilibrium all species move with the same fluid velocity and have the same
temperature.



Collision Theory 29

Relaxation time

Plasma species:
As shown above, all species in a composite fluid tend to a Maxwellian of
common temperature and fluid velocity. The time for a distribution function
to reach a near Maxwellian state is termed the relaxation time. For a single
gas of species s the relaxation time is of the order of the collision time, [17].
The collision time can be approximated by the expression

τss =
1√

2nsσssv̄s
, (3.35)

provided by [66]. Here v̄ is the average particle speed which can be approx-
imated by the thermal velocity vt,s ∝

(
T
m

)1/2. Assuming that Te and Ti are
similar, the ratio of relaxation times for ions and electrons can be approxi-
mated by

τii
τee

≈
(
mi

me

)1/2

, (3.36)

showing that the electrons are driven significantly faster towards a Maxwellian
due to self-collisions than is the case for the ions. The relaxation time for con-
vergence towards a common equilibrium can be approximated by considering
the energy exchange rate in binary collisions of particles with a large mass
ratio. The energy transfer rate is suppressed by approximately me/mi as
compared to the transfer of energy in collisions between particles of equal
mass [17]. Since the collision time τie is of the order of τee, (due to the relative
velocity being of the same order) we find the relations

τee ≈ τii

(
me

mi

)1/2

≈ τie
me

mi

. (3.37)

Ions and electrons thus reach species-internal equilibrium a lot faster than
they reach a common equilibrium. It is thus not uncommon to have electrons
and ions at different temperatures, both well approximated by Maxwellian
velocity distributions. This is one of the main reasons for modeling plasma as
two individual interacting fluids as it is done in HESEL and countless other
plasma models.

Relaxation of Neutrals

PISAM injects neutrals into the chamber of a Tokamak which, close to the
wall, is under vacuum-like conditions. Currently, PISAM does not include



Collision Theory 30

neutral-neutral collisions meaning that as the particles enter the reaction
chamber they move along straight lines until plasma density becomes large
enough for interactions to be plausible. The neutrals enter the system with
a Maxwellian velocity distribution, but the fast particles quickly escape the
injection zone, while the slow particles build up around the injection point,
resulting in skewed Maxwellian distributions. To assess whether this devi-
ation from a Maxwellian represents physical reality or is a shortcoming of
the model, consider the collision time of neutral-neutral collisions between
hydrogen molecules. The cross section of elastic collisions between hydrogen
molecules is approximately 5 · 10−18m2 at relevant temperatures, [67]. Little
is currently known about the plasma density close to the wall of toroidal con-
tainment devices. Previous theoretical, [68] and experimental, [69], findings
suggests that it can be as high as 1019m−3, depending on the puffing rate.
Using (3.35) with an injection temperature of 0.3ev12 yields a collisions time
of ∼ 1ms. Assuming that the injected molecules travel approximately 5 cm in
the radial direction before being dissociated by electron impact, around 99%13

of molecules will be dissociated within a millisecond. In conclusion, neglecting
neutral-neutral collisions is an acceptable approximation.

12This is the temperature used in current simulations.
13This number is obtained by integration of the marginal Maxwellian velocity distribu-

tion with respect to the radial direction.
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4 The nHESEL Equations

This chapter presents the nHESEL (neutral augmented Hot Edge SOL ELec-
trostatic) equations. HESEL is a 2D14 fluid model developed to describe
plasma edge turbulence at the outboard midplane of a Tokamak. In the
nHESEL model, the equations of HESEL are modified to account for source
terms originating from inelastic plasma neutral collisions. The nHESEL equa-
tions were first presented in [70]. In this chapter, it is shown that the nHESEL
equations of [70] have several flaws, regarding higher-order terms, and the cor-
rected set of equations is presented. The following chapter thus outlines the
path from the transport equations of chapter 2 all the way to the nHESEL
equations. This includes the method of fluid closure, the application of drift
ordering, and an account of the assumptions leading from the drift-reduced
Braginskii equations to the final nHESEL equations. Terming HESEL as a
2D model can be somewhat misleading. A precise understanding of the di-
mensionality of HESEL is necessary when coupling it with PISAM, and shall
thus be detailed at the end of this chapter.

4.1 Fluid Closure

It is apparent from (2.6) that no set of closed equations can be obtained from
moments of the Boltzmann equation. A closure thus has to be applied to
establish the relation between the macroscopic variables and πs, E

( 1
2
mv)

s , E(mv)
s

and qs for a fluid theory to be complete. Note that the fluid closure presented
in this chapter does not include the inelastic source terms. A closure can be
stated phenomenologically e.g. by assuming a constant temperature or local
thermodynamic equilibrium, or it can be an asymptotic closure. The latter
aims to approximate solutions of the Boltzmann equation as a function of
macroscopic variables. This solution can then be inserted in (A.11), (2.5) and
(2.18) to approximate πs, E

( 1
2
mv)

s , E(mv)
s and qs thus closing the continuity,

14The meaning of 2D is detailed at the end of the chapter.
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momentum and energy equations.
As derived in the former chapter on collision theory, any fluid affected only
by binary collisions will tend to a Maxwellian velocity distribution. This is
the foundation of the Chapman Enskog closure scheme presented in [64] and
applied to the case of a two-fluid magnetic plasma by Braginskii in [17]. The
general idea is to expand the phase space distribution function fs of species s
as

fs(r,v) = f 0
s + f 1

s + f 2
s + ... (4.1)

where f 0
s (r,v) is a Maxwellian distribution specified by the macroscopic vari-

ables, ns, us and Ts. fn
s , for n ∈ N, give perturbations to this Maxwellian.

The magnitude of these perturbations is found to decrease rapidly with in-
creasing n under certain conditions of applicability, which shall be outlined
later in this chapter, as well as assumptions on the ordering of the terms in
the Boltzmann equation. Due to the rapid decrease of fn

s and the mathe-
matical complexity involved in determining fn

s for n > 1 the series of (4.1) is
truncated after f 1

s in almost any practical application.
To simplify the Boltzmann equation, the coulomb collision operator can

be rewritten utilizing the effect of Debye shielding. By these means Braginskii
shows that the collision operator of coulomb collisions in plasma is approxi-
mately bilinear, thus resembling the form of the Boltzmann collision operator
of (3.14). Given that fn

s << f
(n+1)
s and assuming that the magnetic term

and the collision term of the Boltzmann equation are large compared to the
remaining terms (i.e. time and space derivatives of fs and the electric part
of the Lorentz force), the Boltzmann equation can, in principle, be solved by
an iterative procedure successively determining higher order approximations
to fs. In the following, the collisional term and the magnetic term shall be
referred to as "large terms", while the remaining terms in the Boltzmann
equation are referred to as "small". Let the ordering be such that the small
terms of fn

s are of the order of the large terms of f
(n+1)
s . Notice that the

magnetic term e
ms

v ×B ·∇vfs vanishes for a spherically symmetric velocity
distribution function i.e. the proof provided in the last chapter for the equi-
librium state of collisional fluids apply also to magnetic plasma, and so the
equilibrium distribution of a magnetic plasma is indeed Maxwellian. Having

determined f
(n)
s =

n∑
i=0

f i
s, the next approximation, fn+1

s , is determined, by the

following series of steps (The following describes the case of a two-fluid system
of species 1 and 2):

• For s ∈ {1, 2} insert f (n+1)
s = f

(n)
s +fn+1

s into the Boltzmann equation of
species s. Remember that all the terms of f (n)

s are already approximated
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in terms of the macroscopic variables.

• Do only account for fn+1
s in the large terms of the Boltzmann equation.

In the Collision operator only terms linear in fn+1
s are kept while the

quadratic terms are discarded. This applies in self-collision terms as well
as cross-collision terms. As a consequence of the ordering, only small
terms include derivatives of fs. Since the small terms only account for
f
(n)
s , the spatial derivatives of fs in the small terms are already expressed

in terms of the macroscopic variables.

• Use the transport equations (the continuity, momentum, and energy
equations), to eliminate the time derivative of f

(n)
s . Denote that the

approximate expressions π
n
s , (E

( 1
2
mv)

s )n, (E
(mv)
s )n and qn

s thus comes
into the time derivative of fs.

• At this point a set of two linear integro-differential equations is obtained.
By advanced mathematical techniques, these equations are solved for
fn+1
s

15.

• The obtained approximations for fn+1
s are then added to f

(n)
s and used

to determine π
(n+1)
s , (E( 1

2
mv)

s )(n+1), (E(mv)
s )(n+1) and q

(n+1)
s .

• f
(n+1)
s , π

(n+1)
s , (E

( 1
2
mv)

s )(n+1), (E
(mv)
s )(n+1) and q

(n+1)
s is then used to

evaluate f
(n+2)
s .

For a two-fluid magnetic plasma with the assumption of quasi neutrality
and truncating (4.1) after f 1

s one arrives at the Braginskii equations (Here
slightly modified to include inelastic collisions):

den

dt
+ n∇ · ue = I(1)e , (4.2)

men
deue

dt
+∇pe +∇ · πe + ne (E + ue ×B) (4.3)

= R+ I(mv)
e −meueI

(1)
e

3

2

depe
dt

+
5

2
pe∇ · ue + πe : ∇ue +∇ · qe (4.4)

= −∆Q+R · (ui − ue) + I
( 1
2
mv)

e − ue · I(mv)
e +

1

2
meu

2
eI

(1)
e ,

15In a magnetized plasma governed by coulomb collisions, further approximations to
the collision operator are needed to solve these equations. Braginskii accomplishes this by
utilizing the large mass ratio of ions and electrons to justify certain lower-order expansions.
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for electrons and

din

dt
+ n∇ · ui = I

(1)
i , (4.5)

min
diui

dt
+∇pi +∇ · πi − ne (E + ui ×B) (4.6)

= −R+ I
(mv)
i −miuiI

(1)
i ,

3

2

dipi
dt

+
5

2
pi∇ · ui + πi : ∇ui +∇ · qi (4.7)

= ∆Q+ I
( 1
2
mv)

i − ui · I(mv)
i +

1

2
miu

2
i I

(1)
i , (4.8)

for ions. Note that the source terms due to elastic collisions have been rewrit-
ten in accordance with Braginskiis notation. R denotes the friction force
arising from electron-ion collisions. ∆Q is the heat transfer from electrons
to ions resulting from these collisions while R · (ui − ue) is the rate of heat
transfer from kinetic to thermal energy of the electrons due to collisions with
ions. The latter term is negligible for the ions do the large mass difference
between ions and electrons. The value of Braginskiis work lies expressing πs,
∆Q, R and qs in terms of macroscopic variables. These are given in [17] and
shall not be repeated here.

Conditions of Applicability

If a fluid is to be described as approximately Maxwellian, which is the very
foundation of the closure scheme discussed above, the mean free path of parti-
cles constituting the fluid must be small compared to the characteristic length
scale of changes of the macroscopic variables. The intuition behind this state-
ment is the following: If the mean free path l̃ is larger than or comparable
to the characteristic length scale, L, of changes of the macroscopic variables,
the particles contained at the volume dr at point r had their last collision,
at positions in space r′, such that |r′ − r| ∼ L. Consequently, these particles
represent the conditions of completely different macroscopic properties, and
thus cannot form a Maxwellian formulated by the local macroscopic proper-
ties. A further condition is, that the collision time τ must be small compared
to the characteristic rate of change of the macroscopic variables. Assume on
the other hand, that the collision frequency ν is larger than or comparable
to the characteristic rate of change ωchar. In that case, particles contained in
the volume dr at point r at time t had their last collision in plasma condi-
tions representing different macroscopic properties, as they happened at times
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separated by a time difference that is larger than or comparable to 1/ωchar.
That is to say, only when ωchar << ν the range of times at which these colli-
sions happened will be so small that all the particles represent the same fluid
conditions.

Magnetized Plasma

In a magnetized plasma the condition l̃ << L is relaxed to the condition
l̃∥ << L∥ and ρ << L⊥. In the presence of a magnetic field, the motion
perpendicular to the field lines is bounded by the Larmor radius ρ. The
mean free path in the field-perpendicular plane is given as l̃ = vt,⊥τ = ρΩcτ ,

where vt,⊥ =
√

T
m

is the most probable velocity obtained from projecting a
velocity sampled from a 3D Maxwellian onto an arbitrary 2D plane, and Ωc

is the cyclotron frequency. The mean free path is thus effectively reduced by
a factor Ωcτ by the introduction of a magnetic field.

In most fusion plasmas the condition l̃∥ << L∥ is not satisfied meaning
that the classical transport theory obtained from Braginskii’s closure is not
adequate in describing parallel dynamics [63]. Instead, Neo-classical transport
theory might be employed to correct the transport equations, at the cost of
a significantly increased mathematical complexity. Neo-classical effects are
inherently three-dimensional, but as we shall see, HESEL tries to adjust for
neo-classical effects by a synthetic adjustment of the perpendicular diffusion
coefficients.

One further assumption is required for the Braginskii equations to be ap-
plicable. The gyration motion of the charged particles constituting the plasma
is not taken into account in the simplification of the coulomb collision operator
used to derive the Braginskii equations. The underlying assumption is that
the spatial dimension of collisions is small compared to the Larmor radius.
The largest distance for coulomb collisions in plasma is the Debye length, as
fields are shielded outside this range. The assumption is thus that the Larmor
radius is significantly larger than the Debye radius, δD =

√
T

4πe2n
. The con-

ditions of applicability of the Braginskii equations can thus be summarized
as

l̃∥
L∥

≪ 1,
ρ

L⊥
≪ 1,

ωchar

ν
≪ 1,

δD
ρ

≪ 1 (4.9)

4.2 Drift Ordering

As mentioned above, the conditions of applicability of the Braginskii equations
are not necessarily satisfied along the direction of the magnetic field. HESEL,
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however, only self-consistently includes perpendicular dynamics, for which the
Braginskii closure is valid. To obtain the perpendicular part of the momentum
equation the cross product of (2.14) is taken with b̂, which is the unit vector
along the magnetic field. Dividing by qnB and rearranging yields

u⊥ = −∇ϕ× b̂

B
+

b̂×∇p

qnB
+

1

Ωc

b̂× du

dt
+

b̂×∇ · π
qnB

− b̂×E(mv)

qnB
− b̂× I(mv)

qnB
− b̂×muI(1)

qnB

= uE + uD+up + uπ + uR + uIR + uIn,

(4.10)

where it has been assumed that the field is electrostatic and species subscripts
have been omitted to ease notation. The last line of (4.10) simply serves
to name the terms for future reference. In order to simplify the Braginskii
equations in a manner that focuses attention on the turbulence phenomena
of interest, drift ordering is imposed. In drift ordering, it is assumed that
the characteristic spatial and temporal scales of change of the macroscopic
variables are slow compared to those set by the gyro motion. Furthermore, it
is assumed that the fluid speeds, u⊥, are small compared to thermal speeds,
vt,⊥. Following Fitzpatrick, [63], this amounts to the following restriction on
the conditions of (4.9):

ρi
L⊥

≪ 1,
ρi

l̃⊥
≪ 1,

u

vt
<< 1,

δD
ρ

≪ 1 (4.11)

The reason for letting the ions set the scales is that they gyrate slower
and with a larger radius than electrons, and they thus set the most strict
conditions on the system. Under this ordering it can be shown [71], [63], that
to lowest order (4.10) reduces to

u⊥,0 = −∇ϕ× b̂

B
+

b̂×∇p

qnB
= uE + uD, (4.12)

with uE and uD denoting the E×B-drift and diamagnetic drift respectively.
At this point, it is instructive to consider the contribution to the continuity
equation from diamagnetic drift in a uniform and homogeneous magnetic field

∇ · (nuD) = ∇ · b̂×∇p

qB
=

1

qB

(
∇p ·∇× b̂− b̂ ·∇×∇p

)
= 0 (4.13)

Reflecting the fact that the diamagnetic drift is not a guiding center drift.
Under the same conditions, the advective contribution from the diamagnetic
drift to the pressure equation is

uD ·∇p =
b̂×∇p

qnB
·∇p = 0. (4.14)
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This reflects the fact that the diamagnetic drift moves fluid along isobaric
surfaces and thus cannot advect pressure. In conclusion, the advection of
density and energy-density is dominated by the E×B-drift in drift ordering.
The diamagnetic drift does however play an important role when the magnetic
field is non-uniform, as it includes the ∇B- and curvature drifts. Terms like
∇ · (nuD) and ∇ · (puD) are thus retained in the following.

The first order correction to (4.12) is obtained by inserting (4.12) itera-
tively into the remaining drifts of (4.10). So as an example: To obtain the
first order contribution to u⊥ from b̂×∇·π

enB
, one should evaluate π⊥, as given

by Braginskii in [17], with u⊥ = u⊥,0. The resulting approximation of π is
then inserted in the expression for the drift i.e. b̂×∇·π

enB
. This procedure can be

used to write approximate expressions for all the drifts of (4.10), the results
are presented in [70] and shall not be repeated here. Such analysis reveals that
the viscous stress tensor is mass dependent with the proportionality m3/2 [30].
Furthermore, we have already seen that up is proportional to m. Due to the
small electron mass, these drifts are neglected for electrons. Similarly the
drifts uIR and uIn, arising due to inelastic collisions are proportional to the
electron mass, and are also neglected for consistency.
With these assumptions, the Braginskii equations can be reduced as follows.
The electron continuity equation becomes

∂n

∂t
+∇ · (nuE + nuD,e + nuR + nb̂u∥,e) = I(1), (4.15)

Here the material derivatives, d
dt

have been written explicitly for clarity. De-
note that the resistive drift due to elastic electron-ion collisions is identical
for electrons and ions due to momentum conservation. Also, the particle
source term is identical for ions and electrons due to particle conservation.
The species subscript on these terms is hence omitted. Subtracting the elec-
tron continuity equation from the ion continuity equation yields the vorticity
equation

∇ · (nup,i + nuD,i − nuD,e + b̂J∥/e+ nuπ,i + nuIR,i + nuIn,i) = 0 (4.16)

Where J∥ = en(u∥i − u∥e) and e is the elementary charge. The pressure
equation for electrons is written

3

2

∂pe
∂t

+
3

2
∇ ·

(
pe
[
uE + uD,e + uR + b̂u∥e

])
+ pe∇ ·

[
uE + uD,e + uR + b̂u∥e

]
+∇ · qe

= −∆Q+E(mv)
e · (ui − ue) + I

( 1
2
mv)

e ,

(4.17)
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where the terms including the momentum and particle sources due to inelastic
collisions are neglected in consistency with the electron momentum equation
where the corresponding terms were also neglected. The particle source de-
pendent term, 1

2
meu

2
eI

(1) is also neglected due to the ratio ue/vt,e being very
small for the light electrons. For the ions, the pressure equation becomes

3

2

∂pi
∂t

+
3

2
∇ ·

(
pi
[
uE + uDi + upi + uπi + uR + uIR,i + uIn,i + b̂u∥i

])
+ pi∇ ·

[
uE + uDi + upi + uπi + uR + uIR,i + uIn,i + b̂u∥i

]
+∇ · qi

+ π
c
i⊥ : ∇ui⊥,0 = ∆Q+ I

( 1
2
mv)

i − ui⊥,0 · I(mv)
i +

1

2
miu

2
i⊥,0I

(1),

(4.18)
In the case of the ions, the pressure sources arising from momentum and parti-
cle source terms, brought into the ion pressure equation through substitution
with the momentum and continuity equations are retained. Only the lowest
order drifts contribute to these terms as they should be considered small due
to drift ordering. Also, derivatives of the drifts arising from inelastic mo-
mentum and particle sources are retained in consistency with (4.16). The
perpendicular part of the ion viscous stress tensor π⊥,i = π

c
⊥,i+π

∗
⊥,i has been

divided into a collisional and a gyro viscous part. It has been applied in (4.18)
that π

∗
⊥,i : ∇ui⊥,0 = 0 when π⊥,i is evaluated using the lowest order drifts

of (4.12), [72]. This concludes the analysis of the influence of plasma neu-
tral collisions on the drift-reduced fluid equations. To arrive at the HESEL
equations a series of assumptions and arithmetic simplifications are applied.
These are covered in the next section.

4.3 Specifications for the HESEL Model

In contradiction to what is claimed by [70], the steps leading from the drift
fluid equations (4.15), (4.16), (4.17) and (4.18) to the nHESEL equations do
influence the terms arising from plasma neutral interactions. To be able to
account for this influence the approximations and manipulations applied to
(4.15), (4.16), (4.17) and (4.18) is reviewed in some detail. For detailed calcu-
lations of these steps the reader should however refer to some of the original
ESEL/HESEL papers, [73], [30].



The nHESEL Equations 39

Domain and Field Geometry

The domain of HESEL is the outboard midplane of a Tokamak. This allows
for the use of slab coordinates i.e. rather than toroidal coordinates the prob-
lem is expressed in a cartesian coordinate system with x pointing in the radial
direction, y pointing in the poloidal direction, and z pointing in the toroidal
direction. The Origo is placed such that the axis defined by x = 0 corre-
sponds to the LCFS and the axis defined by y = 0 intersects the geometrical
and magnetic axes16. The magnetic field is directed along the z-axis with a
magnitude given by

B(x) =
RBt

R + a+ x
, B(0) = B0 =

RBt

R + a
, (4.19)

where Bt is the toroidal magnetic field at the magnetic axis and R and a are
the major and minor torus radii. B0 is the magnetic field at the LCFS and
is hence subscripted with 0. This amounts to assuming a vacuum magnetic
field where the partial cancellation of the magnetic field from the diamagnetic
current is neglected.

Thin Layer Approximation and Similar Approximations

The thin layer approximation neglects particle density variations in the polar-
ization flux entering the vorticity equation. Utilizing gyro viscous cancellation
and neglecting magnetic field inhomogeneity this assumption amounts to:

∇ ·
(
n[up,i + uπ∗,i]

)
≈ − n0

Ωi0

∇ ·
(
dt
0∇⊥ϕ

∗) (4.20)

where n0 is the reference density, uπ∗,i is the gyro viscous drift and Ωi0 is
the ion gyro frequency evaluated at reference temperature, Ti0, and reference
magnetic field, B0. Furthermore, we have introduced

ϕ∗ =
ϕ

B0

+
pi

qin0B0

and dt
0 =

∂

∂t
+ uE0 ·∇, (4.21)

where ϕ∗ is referred to as generalized potential and dt
0 is the advective deriva-

tive with the E ×B-drift evaluated at B0. Effectively the lowest order drift
going into the polarization drift has thus been approximated as

u⊥,0 ≈ b̂×∇⊥ϕ
∗. (4.22)

Do note that the thin layer approximation is debatable when modeling edge
plasma primarily, due to the large density variations over the simulation do-
main.

16See figure 1.1
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The approximation of the lowest order perpendicular drift given in (4.22),
is also used when evaluating the collisional part of the viscous stress tensor in
the vorticity equation and the ion pressure equation. Similar to the approxi-
mation of (4.20), the density is taken to be equal to n0 when evaluating the
divergence of the collisional viscous drift flux in the vorticity equation. With
these approximations, it becomes clear that the term ∇ · (nuπ,i) in the ion
continuity equation gives rise to diffusion of the generalized vorticity, ∇2

⊥ϕ
∗.

This diffusion results in a heating term exactly accounted for by the viscous
work term pi∇ · uπc - an elegant feature of the HESEL model. Finally it is
shown in [30] that the viscous pressure flux ∇ · (piuπ,i) can be neglected.

In the ion and electron pressure equations the diamagnetic drift contribu-
tion to ∇ · q is canceled by the terms depending on diamagnetic advection,
entering through the polarization drift, such that diamagnetic advection is not
present in the pressure equations. This arithmetic feature is formally known
as diamagnetic cancellation. Finally, (4.22) is used in the evaluation of
the divergence of the polarization drift in the ion pressure equation.

Approximations to Perpendicular Diffusion

The perpendicular diffusion is due to a random walk-like process mediated
by electron-ion collisions and has a diffusion coefficient De ∝ n/

√
Te. This

diffusion coefficient is assumed to be constant in the HESEL model i.e.

De ≈ νei0ρ
2
e0, (4.23)

where νei0 is the ion electron collision frequency at reference density, n0 and
temperature Te0. ρe0 is the electron gyro radius at reference temperature
Te0 and field B0. When neglecting thermal force contributions, which partly
cancel, the divergence of resistive flux, ∇ · (nvuR) in the electron continuity
equation is approximated as

∇ · (nuR) ≈ −De(1 + τ)∇2
⊥n (4.24)

where τ = Ti0/Te0. Similarly, the resistive drift going into the electron and
ion pressure equations is approximated as

uR ≈ −De(1 + τ)∇⊥ lnn. (4.25)

giving rise to a large number of simplifications similar to that of (4.24).
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Approximations to Heat Transport Terms

The heat transport is simplified in a manner similar to that outlined above on
the simplification of diffusion from electron-ion collisions. The perpendicular
heat conduction coefficient is evaluated at reference temperatures and thus
assumed constant. Likewise, the ion collision frequency is assumed constant
when evaluating the heat transfer term, ∆Q.

The diffusion coefficients are assumed to be enhanced by neoclassical ef-
fects. Neoclassical transport theory accounts for the long distance that charged
particles can travel along the magnetic field lines of a toroidal containment
device. Remember that this long mean free path is exactly the point on
which the conditions of applicability of the Braginskii equations are violated
in most fusion plasmas. In a toroidal containment device, the magnetic field
has toroidal as well as poloidal components, the ratio of which determines the
so-called safety factor usually denoted q. This means that particles traveling
along the field lines exhibit a spiral motion. The combination of this spiral
motion with guiding center drifts, such as ∇B and curvature drifts can be
shown to give rise to an enhanced transport across the field lines [74], [75]. To
account for this enhanced transport the diffusion coefficients are multiplied
by a common factor

De,i →
(
1 +

R

a
q2
)
De,i (4.26)

where q is the safety factor. This concludes the approximations made to
account for the relation between the perpendicular parts of the drift-reduced
Braginskii equations and the HESEL equations.

Parameterization of Parallel Dynamics

In HESEL, parallel dynamics are accounted for by parameterization i.e. the
parallel dynamics are not solved in a self-consistent way, as is shown for the
perpendicular dynamics above. Instead, the various phenomena giving rise to
parallel transport are approximated using other theoretical or empirical results
to express them through the macroscopic variables. Due to ballooning the
turbulent plasma source mainly resides on the high field side of the LCFS at
the outboard midplane [30]. It is thus assumed that all parameterized parallel
terms act as sinks. As blobs move into the SOL they expand along the open
field lines at velocities comparable to the ion sound speed cs =

√
(Te + Ti)/mi,

giving rise to a particle density damping rate approximated by

1

τn
=

2vb
Lb

(4.27)
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where vb is the expansion velocity of each end of the blob, and Lb is the typical
field-parallel blob length. As vorticity is mainly transported by blobs in the
SOL region the damping rate of vorticity is assumed to be equal to that of
density,

1

τw
=

1

τn
. (4.28)

The divergence of the parallel current present in the vorticity equation is
approximated by sheath damping, [30, 76],

∇ ·
(
b̂J∥/e

)
≈ en0cs

Lc

[
1− exp

(
log

√
mi

2πme

− eϕ

Te

)]
= S, (4.29)

where Lc is the outer divertor length. Electron heat conduction is assumed to
be given solely by Spitzer-Härm conduction, [77], which shall be approximated
as

∇∥ · qe,T∥ ≈ −T
7/2
e

τSH
, with

1

τSH
= 3.16

n0

meνei0T
3/2
e0 L2

c

. (4.30)

Parallel heat conduction is neglected for ions as advection is dominant in the
SOL [30]. The parallel advection of ion and electron pressure is parameterized
through

1

τpe
=

1

τpi
=

9

2

1

τn
. (4.31)

These damping rates are derived from the physical conditions of the SOL and
should not be applied equally over the full simulation domain. The extent to
which these damping rates are applied over the various parts of the domain
is determined by a smoothed step function

σ(x) =
σs

2

[
1 + tanh

(
x− xs

δs

)]
+

σw

2

[
1 + tanh

(
x− xw

δs

)]
(4.32)

Where σi, i ∈ {s, w}, are magnitude terms, xs is the x-position of the LCFS,
while xw indicate the onset of a wall region17 with increased damping, and δs

is a smoothness parameter. This concludes the parameterization of parallel
dynamics.

4.4 Model equations

In this section, the final manipulations to obtain the HESEL equations are
presented. In order to highlight characteristic quantities the transport equa-

17See figure 5.20
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tions are gyro-Bohm normalized through

Ωi0t → t,
x

ρs0
→ x,

Te,i

Te0

→ Te,i,
eϕ

Te0

→ ϕ,
n

n0

→ n,
u

ρs0Ωi0

→ u,

(4.33)
where Ωi0 = eB0/mi is the characteristic ion gyro frequency and ρs0 =

√
Te0

miΩ2
i0

is the hybrid ion thermal gyro radius18. To reduce the equations we explicitly
apply slab coordinates which combined with (4.19) can be used to obtain

−∇ ·

(
∇f × b̂

B

)
= − 1

B0R

∂

∂y
f, (4.34)

where f is an arbitrary scalar field. (4.34) makes it natural to introduce the
curvature operator, K given in normalized form as

K(f) = −ρs0
R

∂

∂y
f. (4.35)

In this form, the curvature operator only accounts for the radial variation in
magnetic field strength and not for the curl of b̂. It can be debated whether a
more adequate physical description of edge turbulence would be achieved by
including a finite ∇× b̂ when calculating (4.34) and (4.35). This is discussed
at the end of this chapter. In order for my results to be comparable with other
HESEL simulations the current expressions of (4.34) and (4.35) are used in
my simulations. To express the positive change in generalized vorticity, ∇2

⊥ϕ
∗,

a global sign is applied in the vorticity equation of (4.16). One must be aware
that this sign also applies to the inelastic drift term entering the vorticity
equation when neutrals are included. Furthermore, the vorticity equation is
substituted into the ion pressure equation to eliminate the divergences of the
polarization and viscous drifts. Once again this influences the way neutral
sources are expressed in the model. With these manipulations accounted for
the full system of equations revised nHESEL equations, can be presented:

d

dt
n+ nK(ϕ)−K (pe) = Λn + Σn (4.36)

∇ ·
(
d0

dt
∇⊥ϕ

∗
)
−K (pe + pi) = Λw + Σw (4.37)

3

2

d

dt
pe +

5

2
peK(ϕ)− 5

2
K
(
p2e
n

)
= Λpe + Σpe (4.38)

3

2

d

dt
pi +

5

2
piK(ϕ) +

5

2
K
(
p2i
n

)
− piK (pe + pi) = Λpi + Σpi (4.39)

18The use of ρs0 rather than ρi0 is a historical remnant from earlier fusion research where
it was typical to assume that ions were cold.
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Where the advective derivatives are defined solely through E ×B-advection

d

dt
=

∂

∂t
+B−1{ϕ, ·}, d0

dt
=

∂

∂t
+ {ϕ, ·}, (4.40)

which has been written using the anti-symmetric bracket

{f, g} =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
. (4.41)

Terms related to diffusion and parallel damping are denoted Λi, i ∈ {n,w, pe, pi},
and are given by

Λn = De(1 + τ)∇2
⊥n− σ(x)

n

τn
(4.42)

Λw =
3

10
Di∇2

⊥∇2
⊥ϕ

∗ − σ(x)
∇2

⊥ϕ
∗

τn
+ σ(x)S, (4.43)

Λpe = De(1 + τ)∇ · (Te∇⊥n) +De
11

12
∇ · (n∇⊥Te)

+De(1 + τ)∇⊥ lnn · ∇⊥pi

− 3me

mi

νei0 (pe − pi)− σ(x)

[
9

2

pe
τn

+
T

7/2
e

τSH

]
, (4.44)

Λpi =
5

2
De(1 + τ)∇ · (Ti∇⊥n)−De(1 + τ)∇⊥ lnn · ∇⊥pi

+ 2Di∇ · (n∇⊥Ti)
3

10
Di

[(
∂2
xxϕ

∗ − ∂2
yyϕ

∗)2 + 4
(
∂2
xyϕ

∗)2]
+

3me

mi

νei0 (pe − pi) + σ(x)

(
piS − 9

2

pi
τn

)
. (4.45)

The terms entering the equations due to plasma-neutral interactions are given
by

Σn = I(1) (4.46)

Σw = ∇ · (nuI,i) (4.47)

Σpe = I
( 1
2
mv)

e (4.48)

Σpi = I
( 1
2
mv)

i − ui⊥,0 · I(mv)
i +

1

2
u2
i⊥,0I

(1)

+ pi∇ · (nuI,i)− pi∇ · (uI,i)−
3

2
∇ · (piuI,i) , (4.49)
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where uI,i = uIR,i +uIn,i. Be aware that (4.46)-(4.49) are written in normal-
ized units. Similar expressions were provided by [70] but with errors in the
expressions for Σw and Σpi. In that sense (4.46)-(4.49) is a new contribution
to the literature. In the next, chapter the PISAM model is presented. PISAM
serves to calculate I(1), I(mv)

i , I(
1
2
mv)

i and I
( 1
2
mv)

e and thus provides the final
closure of the nHESEL equations. The combined model, where PISAM is
used to close the nHESEL equations, shall be called PISAM-HESEL.

4.5 Dimensionality of HESEL

The primary reason that HESEL is referred to as a 2D model is that the
toroidal axis is truncated due to an assumption of symmetry. The result is
not, as the term 2D might imply, that the parallel velocity is not accounted for,
but rather, that the field-aligned velocity is not self-consistently incorporated.
Instead, it is parameterized and enters the equations as damping terms. Fur-
thermore one may point out that the fluid closure on which HESEL is based is
conducted using full 3D approximations for the phase space distribution func-
tion i.e. the particles of which the plasma consists shall certainly be thought
of as moving in three-dimensional space. In consistency with this observation,
PISAM has to be implemented as a full 3D model.

As mentioned, the foundation of the interchange dynamics is a vertical
current created by the charge dependent ∇B- and curvature drifts. These
are both derived consequences of the 3D toroidal geometry. As given by (1.17)
these drifts contribute equally to the vertical current in a vacuum field. In
HESEL however, only the contribution from one of these drifts is included. In
this light, it seems that the turbulence predicted by HESEL is underestimated.
On the other hand, the fact that HESEL is 2D permits cancellation of the
vertical current produced by ∇B- and curvature drifts. This means that no
stable equilibrium solutions to the HESEL equations exist, as nothing can
prevent interchange instability. In conclusion, the HESEL equations might
not resemble physical reality any closer if the seemingly correct factor of 2 is
added to (4.34) and (4.35).
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5 PISAM

This chapter introduces all the possible types of inelastic collisions between
plasma and neutral particles included in PISAM. Great effort has been put
into the detailed argumentation regarding the choice of included reaction chan-
nels, given in this chapter. As part of presenting the chemical reactions, the
momentum and energy exchange of each single reaction channel is evaluated,
when necessary. Furthermore, the velocities of neutral fragments resulting
from the relevant inelastic collisions are provided. The development of PISAM
is somewhat iterative as simulation data from early PISAM versions have been
used to develop the current model. This method is especially helpful in the
determination of the exact source terms produced in each reaction. The simu-
lation referred to in the rest of this chapter uses non-interacting neutrals with
dynamic plasma frames from a simulation of nHESEL performed by Thrysøe,
[70]. The reference quantities at the LCFS of this simulation are

n0 = 3 · 1019m−3 Te,0 = Ti,0 = 40eV B0 = 2T, (5.1)

such that the time and length scales are set by

Ωi0 = 9.59 · 107s−1, ρs0 = 6.5 · 10−4m. (5.2)

These values are chosen such as to be in correspondence with typical values
of medium-sized Tokamaks, [78, 79], and not for the specific PISAM-HESEL
simulations of this report, which are conducted at lower density and magnetic
field, as will be presented in chapter 8. As discussed in chapter 7 the time
step used for PISAM is Ω−1

i0 . In this simulation, 2.5 · 1010 super-particles are
injected in the domain each second yielding approximately 4 · 105 and 1 · 105

super-molecules and -atoms in the domain at saturation, which is sufficient
for the statistics of the current chapter, but a very low resolution compared
to that used in PISAM-HESEL simulations.
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5.1 Overview of Reaction Channels

Five types of reactions are included in this model, three for atoms and two
for molecules. These are summarized schematically as

e+ D(1s) → 2e+ D+ (5.3)

e+ D(1s) → e+ D(1s) + hν (5.4)

D+ + D(1s) → D(1s) + D+ (5.5)

e+ D2(X
1Σ+

0 , v = 0) → e+ D(n′l′) + D(n′′l′′) (5.6)

or → e+ D(n′l′) + D(n′′l′′) + hν

e+ D2(X
1Σ+

0 , v = 0) → 2e+ D+ + D(n′l′) (5.7)

Where the first three are reactions for the ground state of the deuterium
atom and the last two are reactions for the electronic and vibrational ground
state of the deuterium molecule. The primes in (5.7) should be read for the
individual reactions, and not across reactions. The following sections are
concerned with the physical details of each of these reactions as well as the
decisions made to implement them numerically. As most data is available
for 1H atoms and 1H2 molecules, it is in many situations necessary to apply
data from experiments on hydrogen rather than deuterium. Whenever this is
the case it is explicitly stated in the following by use of the word hydrogen.
All reactions shall, however, be written for deuterium reflecting the physical
situation described.

5.2 Atoms

Figure 5.1 gives an overview of the reactions between plasma particles and
deuterium atoms included in PISAM. This section is concerned with the de-
tails of each of these reactions, and the reasons for including them.

Excitation and Ionization of the Deuterium Atom

A plot of various excitation rates as well as the single-step ionization rate
for the ground state (1s) of the hydrogen atom is shown in figure 5.2. Since
the electronic states are practically identical for hydrogen and deuterium [80],
only minor deviations from the true reaction rates of the deuterium atom are
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Figure 5.1: An overview of the reactions of deuterium atoms with plasma particles
included in PISAM. The orbitals are merely added to illustrate the difference in
electronic states and do not necessarily match the physical orbitals.

expected. As evident from figure 5.2 the two reactions most frequently caused
by electron impact on deuterium atoms in the ground state are

e+ D(1s) → e+ D(2p) and e+ D(1s) → 2e+ D+, (5.8)

where the first is an excitation to the (2p) state and the second is a one-step
ionization.

Excitation to D(2p)

It is clear from the high reaction rate of the (2p) excitation channel that the
(2p) state is strongly coupled to the ground state. This strong coupling also
results in the (2p) state having a lifetime of only 1.6ns [81], which, as we shall
see, is shorter than or comparable to the time step of PISAM. Due to this
short lifetime, it shall be assumed that the (2p) state decays instantaneously,
such that this excitation merely results in a sink of electron energy.

Ionization of D(1s)

Even though the excitation rates to the (2s) state and (3n) states shown in
figure 5.2 are low in comparison to the reactions of (5.8), they do affect the
ionization rate slightly, due to multi-step ionization processes. Furthermore,
D(2s) atoms are created by certain dissociative processes of the deuterium
molecule, and a short account of its behavior at relevant conditions is thus
presented here. Unlike the (2p) state, the (2s) state is weakly coupled to the
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Figure 5.2: Excitation and ionization rates for the ground state (1s) of the hydrogen
atom. The ionization rates plotted here represent the rate of single-step ionization.
This plot is based on analytical fits provided by [82] and [83].

ground state making it metastable with a lifetime of ≈ 2ms, [84]. However,
due to the very low fine structure energy difference between the (2s) and (2p)

states, the reaction rate for excitation of D(2s) to D(2p) by electron impact
is relatively high, especially at low temperatures. The rates of the dominant
reaction channels of D(2s) by electron impact are shown in figure 5.3. At SOL
relevant temperatures the reaction rate of e + D(2s) → e + D(2p) is around
3 · 10−12m3

s
. At a typical density of ne = 10191/m3 this gives a lifetime of

∼ 30ns. Due to this short lifetime, transport of the (2s) state shall not be
included in the model. When deuterium atoms in the 2s state are created
by molecular dissociation19 it is assumed that they decay to the ground state
instantaneously, thus neglecting the fact that such a D(2s) atom might be
further excited rather than decay, see figure 5.3.

Excitation into the (2s) state or higher excited states may result in ion-
ization rather than decay back into the ground state. As the most common
intermediate states have relatively short lifetimes in the approximate range
(10 − 500)ns [85], the rate of such multi-step ionization processes depends
strongly on the plasma density. A double polynomial fit parameterized in
electron temperature and density is provided in [82], and plotted in figure 5.4.
At SOL relevant temperature and density the effective ionization rate differs
from the single-step ionization rate by around 25 %, which is a considerable

19The process of molecular dissociation is described later in this chapter.
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Figure 5.3: Excitation and ionization rates for the metastable (2s) state of the
hydrogen atom. The ionization rate plotted here represents the rate of single-step
ionizations. This plot is based on analytical fits provided by [82] and [83].
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Figure 5.4: Effective reaction rates for ionization of the hydrogen atom in the
ground state as a function of electron density and temperature. The black line gives
the rate of single-step ionization, solely as a function of electron temperature. This
plot is based on analytical fits provided by [82], based on [86].

amount. The rates of figure 5.4 are used as the ionization rates for atoms in
PISAM. For simplicity and to minimize computations, the energy loss from
electrons due to excitation to an excited state followed by radiative decay back
to the ground state is only included for D(2p) as the intermediate state. The
energy of the produced photons is assumed to be lost from the system.
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Figure 5.5: Charge exchange rate for the ground state of a deuterium atom with
various energies En. This plot is based on an analytical fit provided by the database
HYDHEL, [83], scaled for the mass of deuterium ions using the scaling of (3.12).

Charge Exchange of Deuterium Atoms and Deuterium

Ions

The charge exchange (CX) reaction between a deuterium atom in its ground
state and a deuterium ion can be expressed as

D(1s) +D+ → D+ +D(1s). (5.9)

It shall be assumed that the velocities of the ion and neutral particle going
into CX are simply switched, which is also the assumption used in highly
detailed neutral codes such as EIRENE [87]. This implies that the velocity
distribution of ions going into the reaction is also the velocity distribution of
neutrals going out of the reaction and vice versa. It should be noted that
this treatment is not strictly momentum- and energy-conserving due to the
mass difference of the reactants of one electron mass. The approximation is
however good due to the large mass ratio, mi/me ≈ 3.7 · 103, for deuterium
atoms. CX is the only collision between two heavy particles included in the
model. Since the particles going into the reaction have similar masses and
energies one cannot assume that the neutral particle is at rest, as has been
done for electron-neutral collisions. The reaction rate is thus a function of
ion temperature as well as the energy of the relevant deuterium atom. Figure
5.5 shows the reaction rate for CX at SOL relevant temperatures and various
deuterium atom energies.
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Implementation

To get the correct distribution of the neutral atoms created in CX reactions,
and to supply the correct source terms to the plasma fluid equations, the
break of spherical symmetry in CX reactions, due to the comparable velocities
of ions and atoms must be accounted for. This demands an evaluation of
the integrand in (3.10). The relative magnitude of the integrand gives the
distribution of the speed and the angle, θ′20, of ions going into CX reactions.
This distribution is a function of ion temperature and neutral energy. The new
neutral speed and angle θ′ resulting from a specific CX reaction are obtained
by sampling from the distribution specific to the temperature and neutral
energy relevant to the reaction. The azimuthal angle, ϕ′, in the neutral frame
is obtained from uniform sampling over the range [0, 2π]. Knowing the speed
of the ion going into the CX reactions and the angles θ′ and ϕ′ fully defines
the velocity of the new neutral particle in the neutral frame of figure 3.1. This
velocity is finally transformed into the coordinates of the lab frame using (3.5)
and (3.6). The velocity of the deuterium ion created in the CX reaction is
simply the velocity of the incoming deuterium ion which is known to PISAM
prior to the collision. With the incoming and outgoing velocities completely
determined the momentum- and energy exchange is easily evaluated.

As calculating the contributions from a velocity range wi, dwi to ⟨σcxg⟩ for
a certain neutral energy En and at a certain ion temperature Ti in each indi-
vidual CX reaction would add a large computational overhead, a table where
the contributions are already calculated is loaded into PISAM at initialization.
The procedure for creating this 4D table is as follows:

• Make appropriate ranges and resolutions of the ion temperature Ti and
neutral energy En. In the implementation of PISAM these are sampled
logarithmically since the contributions vary the most for low relative
velocities. Furthermore, decide on a resolution of the angle θ′ that runs
from 0 to π.

• Calculate the range of neutral velocities corresponding to the range of
En.

• For each temperature make an appropriate range of velocities wi. I have
chosen this velocity range to run from zero up to 3 times the thermal
velocity vt,i =

√
2Ti/mi. The velocity range thus depends on Ti, such

20See figure 3.1.
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(a) (b)

Figure 5.6: Energy potentials of low lying electronic states of molecular hydrogen
in atomic units. (a) The first eight triplet states of H2 calculated by Staszewska
and Wolniewicz [88] (b) The ground state and eleven of the low-lying excited singlet
states of H2, based on [89–94]. These figures were published in [95].

that "wasting" resolution on calculating the contribution from velocities
that are completely suppressed by the exp

(
−mw2

2T

)
dependency in the

Maxwell-Boltzmann distribution is avoided.

• With the ranges of θ′, wi and vn at hand make 3D meshgrids corre-
sponding to any possible combination of θ′, wi and vn within the given
ranges. Use these to make a similar grid of the relative speeds according
to (3.9).

• Using the polynomial fit for the CX cross section given in [82], calculate
the cross section of the corresponding speeds velocities. Finally, the
integrand of (3.10) can be evaluated, such that for each temperature Ti

a 3D grid holding the contributions from all possible combinations of
the values in the ranges En, wi, θ is produced.

Validation of the results leading to the 4D CX reaction rate distribution table
is given in appendix 5.2. This appendix includes plots quantifying the spatial
asymmetry in CX reactions, as well as the discrepancy between the Maxwell-
Boltzmann speed distribution, and the speed distribution of ions going into
charge exchange reactions. To sample from the 2D distributions defined for
each combination of Ti and En, the following procedure is applied:

• Let the 2D distribution be denoted by D, where the velocities vary over
the 0’th axis and the θs over the 1’st axis. Sum all the values of D along
the velocity axis, to get the 1D marginal distribution with respect to θ.
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Figure 5.7: An overview of the reactions of deuterium molecules with plasma par-
ticles included in PISAM. The orbitals are merely added to illustrate the difference
in electronic states and do not necessarily match the physical orbitals.

• Calculate the cumulative sum of the marginal distribution with respect
to θ and denote this 1D-array by A.

• Create a uniformly distributed random number r between zero and the
last (and largest) element in A and calculate the index, i, of A holding
the largest value smaller than r.

• To get the sampled value for θ a linear interpolation is made by setting
θ = dθ · i + dθ · (A[i + 1] − A[i])/(r − A[i]), where dθ is the resolution
with which the table is sampled along the θ-axis.

• Now retrieve the conditional distribution given the θ you just calculated
i.e. D[:, i].

• Use the same technique for sampling a single variable distribution as the
one just applied to sample θ, to get the sampled value of wi.

5.3 Molecules

An overview of the potentials of the electronic states of molecular hydrogen
relevant to the following discussion is presented in figure 5.6. Figure 5.7
illustrates the reactions between plasma particles and deuterium molecules
included in PISAM. This section is concerned with the chemical rates and
kinematic details of each of these reactions.
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Figure 5.8: Reaction rates for dissociation through triplet channels, due to ex-
citation by electron impact on the ground state D2(X

1Σ+
g , v = 0) of the neutral

deuterium molecule. The x-axis shows electron temperature. The excitation cross
sections are collected from the database [98]. All excited triplet states eventually
dissociate through b3Σ+

u , due to fast decay rates to this repulsive state.

Molecular Dissociation Into Neutral Fragments (MD)

Dissociation of D2 can proceed through a large number of channels, all of
which are dependent on electronic excitation processes. These channels can
be separated into the categories of excitation to triplet and singlet states of
the deuterium molecule. These two categories dissociate by fundamentally
different processes. The excited triplet states dissociate through the repul-
sive D2(b

3Σ+
u ) stave, whereas the dissociation through singlet states is caused

by excitation or decay into the vibrational continuum of an electronic state
possessing bound vibrational states. The former generally give rise to neutral
fragments with energy in the order of a few eV [96, 97], while the latter yields
cold fragments with typical energies of 0.15− 0.3eV as argued below.

Dissociation Through Triplet States

Figure 5.8 shows the rate of dissociation through the most frequent triplet
channels. Based on the reaction rates and the fact that the electron energy
loss is similar in magnitude for all relevant triplet excitations, only the three
most frequent channels are included in the model, for simplicity. The channels
of dissociation through triplet states included in the present kinetic neutral
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model can be schematically represented as:

e+ D2(X
1Σ+

g , v = 0) → e+ D2(b
3Σ+

u ) → e+ 2D(1s) (5.10)

e+ D2(X
1Σ+

g , v = 0) → e+ D2(a
3Σ+

g , vi) (5.11)

→ e+ D2(b
3Σ+

u ) + hν → e+ 2D(1s) + hν

e1 + e2 + D2(X
1Σ+

g , v = 0) → e′1 + e2 + D2(c
3Πu, vi) (5.12)

→ e′1 + e′2 + D2(a
3Σ+

g , vi)

→ e′1 + e′2 + D2(b
3Σ+

u ) + hν

→ e′1 + e′2 + 2D(1s) + hν,

where the subscripts and primes in the last reaction are added to indicate
that two different electrons are responsible for the two excitations happening
at two different times.

Direct Excitation to b3Σ+
u

(5.10) shows the excitation into the repulsive b3Σ+
u state, leading to imme-

diate dissociation. The excitation energy from the ground state at its most
probable inter-nuclear separation of R0 = 1.40a0 is 10.62eV [99], which shall
be used as the electron energy loss for reactions through this channel. The
average temperature of dissociation through triplet channels found in the cur-
rent simulation is 13.2eV. According to the calculations presented in [96] the
most probable value of the kinetic fragment energy at around 13eV is approx-
imately 2.75eV, which is applied in PISAM.

Dissociation Through a3Σ+
g and c3Πu

The a3Σ+
g state is radiatively coupled to the b3Σ+

u state with a transition fre-
quency of a lifetime of ∼ 10ns, [80]. Due to this short lifetime, the decay
shall be assumed to be instantaneous. (5.12) shows the more complicated
channel of dissociation proceeding through the c3Πu state. c3Πu is coupled to
the ground X1Σ+

g state by weak magnetic dipole and electric quadrupole in-
teractions making it metastable with a lifetime of ∼ 1 ms, [80]. However, due
to the small energy difference of ∆E00 = 0.017 eV between (c3Πu, v = 0) and
(a3Σ+

g , v = 0), electron impact excitation of (a3Σ+
g , v = 0) from (c3Πu, v = 0)

is expected to be large, [80]. The results of a theoretical calculation of the
cross section for this transition were presented in [100] based on the distorted
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wave approximation, and later fitted to the analytical expression, [80],

σexc(c
3Πu, v = 0 → a3Σ+

g , v
′ = 0) =

2.08

x1.20

(
1− 1

x

)3.80

· 10−15m2 (5.13)

The rate as a function of electron temperature is obtained by integration over a
Maxwellian distribution as given by (3.4). [80] gives an approximate method
for calculating the cross section of transitions with v = 0 and v′ > 0. As
these fall off rapidly with increasing v′ they shall be omitted in the following
estimate. To properly apply (5.13) to provide an estimate for the lifetime of
c3Πu at the relevant plasma conditions further assumptions are needed since
[80] only reports the cross section for transitions from the vibrational ground
state of c3Πu i.e. v = 0. As can be seen from figure 5.9, giving the cross
section of excitation to (c3Πu, v) from (X1Σ+

g , v = 0), only a relatively small
portion of molecules will inhabit the v = 0 vibrational state of c3Πu relative to
other excited states. I shall assume here that the cross section of excitations
of the type (c3Πu, v) → (a3Σ+

g , v
′ = v) will be similar in magnitude to that

obtained from (5.13) as the energy difference between these states is similar.
It is thus assumed that the reaction rate of decay from any vibrational state
of c3Πu into a3Σ+

g is the same as that found from integration of (5.13) over the
electron velocity distribution. This is expected to be a conservative estimate
for a number of reasons:

• Only transitions for which v = v′ are considered.

• Besides electron impact excitation of a3Σ+
g from c3Πu, vibrational states

of c3Πu with v > 0 are expected to have a finite probability of predissoci-
ation into lower lying vibrational states of a3Σ+

g . As I have not been able
to find any estimates of this cross section it is omitted when estimating
the reaction rate of c3Πu.

• From the two theoretical methods applied for calculating σexc(c
3Πu, v =

0 → a3Σ+
g , v

′ = 0), the distorted wave approximation gives the lower
cross section of the two.

The excitations to c3Πu from (X1Σ+
g , v = 0) have been monitored in the

simulation at the beginning of this chapter. The average temperature and
density of excitations from D2(X

1Σ+
g , v = 0) to c3Πu was found to be 24.4eV

and 2.1 · 1019m3 respectively. After integration (5.13) yields a reaction rate
of approximately 1.2 · 10−12m3

s
at 24.4eV, giving a lifetime of the c3Πu-state

of around 40ns at relevant densities. Due to this relatively short lifetime,
the decay of c3Πu to a3Σ+

g and thus to b3Σ+
u shall be assumed instantaneous.
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Figure 5.9: Cross sections for the transition (X1Σ+
g , v = 0) → (c3Πu, vf ) provided

by [98], for the 5 lowest vibrational states.

Furthermore, due to the very small energy difference between a3Σ+
g and c3Πu

their rates are simply added in PISAM, treating them as one reaction to
reduce the number of rates computed in each time step.

The excitation energy of these two triplet states is set to the average
excitation energy of the a3Σ+

g state and c3Πu state as their excitation cross
sections are very similar. Based on [101] and [102] this energy is determined
to be 12.64eV, thus giving the electron energy loss.

The inter-nuclear separation of the a3Σ+
g state corresponding to the low-

est potential energy of this state is around 2.2a0, [95]. At this separation,
the potential energy of the b3Σ+

u state is significantly lower than for typical
ground state nuclei separation distances. The kinetic energy of the neutral
fragments is thus also expected to be lower, which is indeed the case as shown
in [97], giving the distribution of fragment energies for decays from (a3Σ+

g , v)

to (b3Σ+
u ). Figure 5.10 gives the probability distribution of the electron im-

pact energy of electrons giving rise to excitation to a3Σ+
g and c3Πu. Weighing

these energies by their probability gives an average of around 20eV. The cross
sections of excitation to the different vibrational states of a3Σ+

g and c3Πu from
D2(X

1Σ+
g ) are provided by [98]. These cross sections are evaluated at 20eV

to get an estimate of how the vibrational states of these excited electronic
states are distributed. As accounted for above, I shall assume that the tran-
sition from c3Πu to a3Σ+

g conserves the vibrational quantum number. The
effective distribution of vibrational states in a3Σ+

g is thus given as the average
of the distributions of the vibrational states in the excited electronic states
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Figure 5.10: The probability distribution of the electron impact energy of electrons
giving rise to excitation of a3Σ+

g and c3Πu. The data shown in this plot results from
a simulation of PISAM on dynamic fields representative of plasma edge conditions.

c3Πu and a3Σ+
g , when excited from the ground state (X1Σ+

g , v = 0). This ef-
fective distribution is used to weigh the fragment energy distributions of [97].
Averaging this final distribution yields an estimate of the fragment energy of
0.75eV, which shall is applied in PISAM.

Dissociation Through Singlet States

The rates of the most frequent singlet channels are shown in figure 5.11. Due
to its low reaction rate the EF1 channel is not included in the model. The rate
of the C1 channel is also very low and could be omitted. The energy transfer
characteristics of this channel are however so close to that of the B1 channel
that they can be considered as one reaction. It is thus computationally "free"
to include it. Channels for dissociation through singlet states included PISAM
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Figure 5.11: Reaction rates for dissociation through singlet channels, due to ex-
citation by electron impact on the ground state D2(X

1Σ+
g , v = 0) of the neutral

deuterium molecule. The x-axis shows electron temperature. The excitation cross
sections are collected from the database [98], and the dissociation fractions of each
excitation are obtained from [95].

can be summarized schematically as:

e+ D2(X
1Σ+

g , v = 0) → e+ D2(B
1Σ+

u , vi)

→ e+ D2(X
1Σ+

g , ϵk) + hν (ERDD) (5.14)

→ e+ D(1s) + D(1s) + hν

e+ D2(X
1Σ+

g , v = 0) → e+ D2(C
1Πu, vi)

→ e+ D2(X
1Σ+

g , ϵk) + hν (ERDD) (5.15)

→ e+ D(1s) + D(1s) + hν

e+ D2(X
1Σ+

g , v = 0) → e+ D2(B
′1Σ+

u , ϵk) (DE) (5.16)

→ e+ D(1s) + D(2s)

e+ D2(X
1Σ+

g , v = 0) → e+ D2(D
1Πu, vi) (PD) (5.17)

→ e+ D2(B
′1Σ+

u , ϵk) → e+ D(1s) + D(2s)

Where ϵk is the continuum energy of unbound vibrational states. The energy
of the fragments of a dissociation resulting from such an unbound continuum
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state is ϵk/2, for homonuclear diatomic molecules. The important singlet
dissociation channels, at SOL relevant conditions, can be split into two sub-
categories: Dissociative excitation (DE) where the ground state is directly
excited into the vibrational continuum of an excited electronic state, or exci-
tation to a bound vibrational state of an excited electronic state, that decays
to the vibrational continuum of a lower lying state. The latter can be fur-
ther subdivided into two subclasses: Excitation radiative decay dissociation
(ERDD) where the decay into the continuum of a lower-lying state causes
photon emission, and predissociation (PD) where this decay happens without
emission of radiation. Common for the dissociation channels through singlet
states is that not all excitations lead to dissociation. The fractions of excita-
tions to various singlet states caused by electron impact on (X1Σ+

g , v = 0),
that eventually lead to dissociation are given in [95]. These fractions were
used alongside the accurate excitation cross sections of [98] to produce figure
5.11 by integration over the Maxwellian electron velocity distribution.

Dissociation Through B′1Σ+
u and D1Πu

As we are only considering the vibrational ground state of the electronic
ground state of D2 the only relevant channel for DE is (5.16) through B′1Σ+

u

[80, 103, 104]. As indicated in (5.17) the PD channel is initialized by excitation
of the D1Πu state that dissociates due to non-radiative decay to the B′1Σ+

u

state, and thus produces the same neutral fragments i.e. D(1s) and D(2s).
As argued by [105] the main contributors to the production of the metastable
D(2s) by electron impact on (X1Σ+

g , v = 0) are exactly the channels (5.16) and
(5.17). Experimental measurements of these metastable atoms are presented
in [105] and report an energy of approximately 0.3eV. PISAM thus assumes
that in the CM-frame of electron molecule collisions the channels for dissocia-
tion (5.16) and (5.17) give rise to isotropically distributed deuterium atoms of
0.3eV. Based on the results regarding the reaction probabilities of the D(2s)

state of the deuterium atom presented above, these deuterium atoms are as-
sumed to decay to the ground state immediately after creation. To calculate
the electron energy loss, it is further assumed that all the lost electron energy
goes to the excitation of the molecule. The dissociation threshold of B′1Σ+

u

is 16.65eV above the ground state energy [103]. As the typical kinetic energy
of the fragments from this channel is 0.3eV per fragment, the electron loss is
assumed to be 17.25eV

Dissociation Through B1Σ+
u and C1Πu

Excitation to the states C1 and B1 might lead to bound vibrational states or
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directly to dissociative states of the vibrational continuum. The latter how-
ever is very improbable for electron impact on the ground state (X1Σ+

g , v =

0), whereas the cross section for (DE) through B1Σ+
u and C1Πu rise very

quickly with increasing vibrational quantum number electron for scattering
on (X1Σ+

g , vi), [103]. However, as this model is restricted to treating the vi-
brational ground state of deuterium, only excitation into bound vibrational
levels of the excited states are relevant. The states B1Σ+

u and C1Πu decay
to the ground state X1Σ+

g by emission of radiation with short lifetimes of
approximately 1ns [106], [107]. A fraction of these decays are into the vi-
brational continuum of the ground state and thus lead to dissociation of the
ground state into 2D(1s) atoms [80]. The energy of the neutral fragments
resulting from these dissociation channels can be estimated by use of the
spectra presented in [108] and [97]. These authors report composite spec-
tra of emission from decays to the vibrational continuum of X1Σ+

g from the
singlet states B1Σ+

u , C1Πu, D1Πu and B′1Σ+
u , where B1Σ+

u is stated as the
main contributor. These spectra are peaked around a significant resonance
at approximately 1580 Å corresponding to a photon energy of 7.85eV. The
energies of the states B1Σ+

u and C1Πu, which are the channels included for
this mechanism, lie close at 12.75eV and 13.22eV, relative to the ground state
at its most probable internuclear separation of R0 = 1.40a0, respectively, [89],
[90]. As B1Σ+

u is dominant I shall simply use 12.75eV for the electron en-
ergy loss. The dissociation energy of the deuterium molecule is 4.56eV [109].
The most probable value of the continuum energy ϵk is thus estimated as
12.75eV − 7.85eV − 4.56eV = 0.34eV giving a fragment energy of 0.17eV,
which shall be used in PISAM. This should however be considered a rough
estimate.

PISAM implementation of Molecular Dissociation

• As described above, the channels of dissociation are split into four
groups:

– (1) Dissociation through b3Σ+
u

– (2) Dissociation through a3Σ+
g and c3Πu

– (3) Dissociation through B1Σ+
u and C1Πu

– (4) Dissociation through B′1Σ+
u and D1Πu

Together these shall be referred to as MD (Molecular Dissociation).
In the implementation of PISAM these channels only differ in electron
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energy loss and fragment kinetic energy. Given these energies they all
proceed through the following steps:

• Save the incoming velocity of D2 relative to the lab frame.

• Determine the fragment speed from the fragment kinetic energy of the
relevant channel.

• Sample random spherical polar angles, by the proper uniform sampling
of the unit sphere i.e the azimuthal angle is sampled uniformly over the
range [0, 2π] and the polar angle is given by θ = cos−1(1− 2r) where r

is a uniformly sampled random number in the range [0, 1].

• Use the sampled angles to calculate the velocity of one of the created
neutral atoms in the CM frame. Assign the other neutral atom the exact
opposite velocity. Add these to the velocity of the incoming molecule in
the lab frame, to get the velocities of the fragments in the lab frame.

• Breed the new neutral atoms in the position of the molecular excitation
with the calculated fragment velocities.

• Subtract the electron loss for the relevant channel from the electron
energy source term at the grid cell of the plasma simulation where the
molecular excitation leading to dissociation takes place.

Ionization of Molecular Deuterium

Molecular dissociation as described in the former section is the dominant pro-
cess for breeding atoms in the low energy region (T ≲ 10). Above this tem-
perature, ionization of molecular deuterium becomes the dominating process
for removing molecules and breeding new ions and atoms. At SOL-relevant
temperatures and densities, ionization of the deuterium molecule is usually a
single-step process. A few ionizations will, however, happen through multiple
excitations. The database AMJUEL [82] provides an analytical fit for the ef-
fective molecular ionization rate including multi-step processes, based on the
works of [110]. This fit is aimed at the hydrogen molecule H2, but since the
electronic states are practically identical for H2 and D2 [80], only minor devi-
ations from the true D2 ionization rate are expected. The effective ionization
rate is plotted in figure 5.12. The small deviation from single-step ioniza-
tion, when allowing for multi-step processes suggests that at SOL relevant
temperatures and densities the vast majority of ionizations happen as single-
step processes, but the effective rate shall be used for precision as the added
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Figure 5.12: Effective reaction rates for ionization of molecular hydrogen as a
function of electron density and temperature. The black line gives the rate of single-
step ionizations, solely as a function of electron temperature. This plot is based on
analytical fits provided by [82, 110]

overhead is minimal. Any multi-step ionization processes are assumed to be
instantaneous, such that the transport of exited molecules is not taken into ac-
count. The ionization energy of D2 is 15.48 eV, [111], which is the electron en-
ergy loss applied for molecular ionizations in PISAM. When the ground state
D2(1sσg, v = 0) is ionized by electron impact the created D+

2 -ion will most
likely not be in its vibrational ground state. The distribution of the vibrational
states of the created molecular deuterium ions can be approximated by the
Franck Condon factors of the reaction e+D2(X

1Σ+
g , v = 0) → 2e+D+

2 (1sσg, v
′)

given by [112, 113]. For any cross sections used for transitions from the ground
state, D+

2 (1sσg, v), of the molecular deuterium ion, it shall be assumed that
molecular deuterium ions are distributed in accordance with the Franck Con-
don factors of figure 5.13. The cross sections presented for reactions of elec-
trons with D+

2 is thus a Franck Condon weighted average over the cross sections
of the relevant process for each initial bound vibrational level of D+

2 (1sσg).
The potential curves of the relevant electronic states of D+

2 are shown in figure
5.14.

Molecular Ion Dissociation (MID)

The deuterium molecular ion can dissociate by electron impact through a
number of processes, [113]:
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Figure 5.13: Normalized Franck Condon factors of the ionization of the ground
state of the deuterium molecule into various vibrational levels of the electronic ground
state of the deuterium molecular ion, given by [112]. These are assumed to give the
distribution of vibrational states of the deuterium molecular ions at creation.

Figure 5.14: Potential curves of the electronic states of H+
2 determined by spherical

(points) and spheroidal (lines) electronic structure calculations. The potential curves
are assumed to be identical to the potentials of D+

2 , for the practical purposes of this
thesis. This figure was published in [114].
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e+ D+
2 (1sσg, v) → 2e+ 2D+, Dissociative ionization (DI) (5.18)

e+ D+
2 (1sσg, v) → e+ D+∗

2 (5.19)

→ e+ D+ + D(nl), Dissociative excitation (DE1)

e+ D+
2 (1sσg, v) → D∗∗

2 (5.20)

→ e+ D+ + D(nl), Resonant dissociative excitation (DE2)

e+ D+
2 (1sσg, v) → D∗∗

2 (5.21)

→ D(nl) + D(n′l′), Resonant dissociative recombination (DR)

Where D+∗
2 denotes an electronically excited state of the deuterium molecular

ion and D∗∗
2 denotes a doubly excited state of the deuterium molecule. I shall

use DE to describe the combined processes of DE1 and DE2. The rates of the
different channels are plotted in figure 5.15. Please note that the rate of DE in
figure 5.15 is a compilation of theoretical, [98], and experimental, [115, 116],
data. The theoretical data used for DE at electron impact energies Ee > 10eV

resembles only the rate of DE1-dissociation as DE2-dissociation is completely
neglectable at these high energies [117]. The only reliable data in the low
energy region is given by the experimental results of [115, 116], and includes
both DE1 and DE2 as these are not separable in present experiments. The
composite DE-rate of figure 5.15 is used in PISAM. It shall be argued below
why considering DE1 and DE2 as one reaction is reasonable.

Dissociative Ionization (DI)
(5.18) describes an ionization of the Deuterium molecular ion. As both
electrons are knocked off the nuclei, the remaining system of two positively
charged nuclei is obviously repulsive. Due to its low reaction rate in compar-
ison to the competing processes, see figure 5.15, it is not included in PISAM.

Non resonant Dissociative Excitation (DE1)
In the process of (5.19) the molecular ion is excited to an electronic state
above the ground state. All of these states are repulsive, as seen in figure
5.14, and the molecule dissociates. The vast majority of the D+

2 -ions disso-
ciated through DE1, is excited to either the (2pσu) state or the 2pπu state,
[80]. The rates of these channels are plotted in figure 5.16. Since reliable



PISAM 67

0 5 10 15 20 25 30 35 40
Te, [eV]

10−16

10−15

10−14

10−13

⟨σ
v⟩
, [

m
3 s
]

Dissociation Rates for Molecular Deuterium
DE
DR
DI

0

5

10

15

20

25

30

R
at
io

⟨σv⟩DE
⟨σv⟩DR

Figure 5.15: Frack Condon weighted reaction rates of dissociative processes in the
Deuterium Molecule. The DE cross sections used for calculating the DE rate are
based on theoretical data [98] for electron energies E > 10eV, and on experimental
data [115], [116] for electron energies E < 10eV. The DR and DI cross sections are
obtained from analytical fits provided in [80]. The black line shows the ratio ⟨σv⟩DE

⟨σv⟩DR
.

theoretical values are only available for electron impact energies of Ee > 10eV

the values plotted in figure 5.16 are using cross sections of zero for Ee < 10eV,
and should thus merely be used in means of comparison of the two dominant
DE1 processes. Weighing the ratio ⟨σv⟩2pσu

⟨σv⟩2pπu
by the temperatures plotted in

figure 5.17 gives an average ratio of ∼ 8. Based on this relatively large dif-
ference, and the relatively small energy difference between the two electronic
states 2pσu and 2pπu of approximately 2eV, it shall be assumed that all DE1
dissociations happen by excitation to 2pσu.

Resonant Dissociative Excitation (DE2)
(5.20) describes resonant electron capture giving rise to doubly excited states
of the deuterium ion. In DE2 the doubly excited state decays by autoion-
ization into the vibrational continuum of the ground state (1sσg) of D+

2 , by
emission of an electron, producing a deuterium ion and a deuterium atom in
the ground state, [118]. This process is possible as soon as the electron impact
energy exceeds the dissociation energy of the ground electronic state of D+

2 ,
[117]. The dissociation energy depends on the vibrational state of the deu-
terium molecular ion and ranges from 0−2.7eV, [113]. According to [117] the
ratio σDE2

σDE1
decreases abruptly to near zero when the electron impact energy

exceeds the DE1-threshold for excitation to the lowest excited electronic state
of D2 i.e. D2(2pσu). The DE1-threshold for the lowest vibrational states of
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Figure 5.16: Frack Condon weighted reaction rates of the most frequent DE-
processes in the deuterium molecular ion. These rates are calculated for electrons
impact by electrons with E > 10eV. The black line shows the ratio ⟨σv⟩2pσu

⟨σv⟩2pπu
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D+
2 (1sσg, v) is given in table 1. Considering the results for the ratio σDE2

σDE1
of

[117] along with the values in table 1 and the Frack Condon factors of figure
5.13 it can be assumed that at electron impact energies Ee ≳ 6eV a negligible
fraction of dissociation processes go through doubly excited states i.e. DE2
dissociation. The probability distribution of electron impact energy of elec-
trons going into DE-processes in D+

2 is shown in figure 5.18. The black line
is drawn at 6eV , and it is found that around 6% of the DE-processes happen
due to electron impacts with energies below this threshold. Based on these
considerations, it shall be assumed when calculating the electron energy loss,
that the vibrational states of D+

2 (1sσg) from which (DE) processes originate
are distributed with respect to the cross sections of the dominant DE1 channel
i.e. (2pσu).

Resonant Dissociative Recombination (DR)
Rather than decaying by autoionization, the D∗∗

2 might be exited to its vibra-
tional continuum at creation, or it can decay to the vibrational continuum of
one of the singlet states of D2, similar to the predissociation process described
in the previous section. These channels constitute the processes termed DR.
As seen from figure 5.15 DR dominates at low temperatures (Te ≲ 3eV). The
ratio ⟨σv⟩DE

⟨σv⟩DR
plotted in figure 5.15 does however decrease rapidly with increas-

ing temperature. Using the temperatures of figure 5.17, the weighted average
of the ratio ⟨σv⟩DE

⟨σv⟩DR
is 22.3. This large ratio suggests that DR can safely be



PISAM 69

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Te, [eV] ×102

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P(
T)

×10−2
Temperature at Molecular Ionization E ents

P(Te)mol− ion

Figure 5.17: Probability distribution of the electron temperature at molecular ion-
ization events. The data shown in this plot results from a simulation of PISAM on
dynamic fields representative of plasma edge conditions. The details of the simula-
tion are provided at the beginning of this chapter.

v 0 1 2 3 4 5 6
∆EDE(eV ) 9 7.1 5.8 4.9 4.1 3.3 2.8

Table 1: Electron impact threshold energies for excitation into the 2pσu state of
D+

2 from the electronic ground state D2(1sσg, v) [117].

neglected.

Implementation of Molecular Ionization and the Dissociation of
D+

2 in the Model

In the discussion presented above on the dissociation of the molecular deu-
terium ion, it is argued that one can reasonably assume that all D+

2 -ions dis-
sociate through DE1 and DE2, where DE1 is dominant. The kinetic energy
release (KER) cross section of DE processes in H+

2 at 15 eV electron impact
was measured by [116] and is shown in figure 5.19. Measurements, [116],
and theoretical analysis, [114], at higher energies suggest that the probability
distribution of fragment energies is very similar for hydrogen and deuterium,
justifying the use of the distribution of figure 5.19. The energy distribution of
the individual fragments in the CM frame is half of the released kinetic energy
due to the similar masses of the fragments. It is assumed that the deuterium
molecular ion is at rest in the CM frame as the mass ratio mD2

me
≈ 7.3 · 103.

From figure 5.18 it is apparent that 15 eV is a typical velocity for electrons
going into DE processes under the relevant conditions, meaning that the KER
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Figure 5.18: The probability distribution of electron impact energy of electrons
going into DE-processes in D+

2 . The data shown in this plot results from a simulation
of PISAM on dynamic fields representative of plasma edge conditions.

distribution of figure 5.19 is well suited for use in PISAM. Using the experi-
mental data of figure 5.19 has the advantage that it includes all DE-processes
(including resonant and higher excited states), and it thus represents exactly
the processes included in PISAM.

Electron Energy Loss and Dissociation Fragment Energy
Knowing the fragment energy, the total electron energy loss of ionization fol-
lowed by dissociation, is readily evaluated using energy conservation.
At each ionization of a deuterium molecule the ionization energy of 15.48 eV,
[111], is lost from the impacting electron. The molecular deuterium ion is
then dissociated by electron impact through the reaction

e[ECM ] + D+
2 (1sσg, v) → e[E ′] + D+

2 (2pσu)[Eex] (5.22)

→ e[E ′] + D+[Ef ] + D(1s)[Ef ].

Where the square brackets denote the particle energy in the center of mass
(CM) frame of the collision. ECM is the initial electron energy in the CM
frame, which is also the total energy in the CM frame due to the assumption
that D2+ is at rest in this frame. E ′ = ECM − Eloss denotes the energy of
the electron in the CM-frame after the collision, where Eloss is the potential
energy of the excited deuterium molecule relative to its initial state, which
must equal the energy lost by the electron, and Ef is the kinetic energy of the
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Figure 5.19: Kinetic energy release (KER) cross section of (DE) from 15 eV
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fragments. Under the current assumptions energy conservation demands:

ECM = ECM − Eloss + 2Ef + Ediss(v) ⇒ Eloss = 2Ef + Ediss(v) (5.23)

Where Ediss(v) is the dissociation energy of D+
2 (1sσg, v) into the products

D+ and D(1s). As we are already capable of sampling the fragment en-
ergy all we need to determine Eloss is the dissociation energy. The disso-
ciation energy of the various vibrational states of D+

2 (1sσg) are given in [113].
To approximate ⟨Ediss⟩21, a weighted average of Ediss(v) according to the
Franck Condon factors of figure 5.13 and the cross sections of the reaction
e+D+

2 (1sσg, v) → e+D+
2 (2pσu) evaluated at 15eV given by [98], has been cal-

culated. This calculation results in an average dissociation energy of 1.61eV.
Denote that this implies the assumption that all DE channels have the same
dependency of the initial vibrational state on their cross section as the (2pσu)

state. This assumption is justified by the previous argument of (2pσu) being
the dominant channel.

When breeding new particles from molecular ion dissociations PISAM sam-
ples fragment energies, from the KER of 15 eV electron impact on D+

2 (1sσg, v),
shown in figure 5.19. On the basis of this sampling, the electron loss is calcu-
lated, and a new deuterium atom with the corresponding energy is created.
Also, the fragment energy equals the energy gain of the protons.

21The brackets denote averaging over the vibrational states.
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Transport of D+
2

The most probable density and temperature of electrons at the positions
where ionization of D2 occurs is determined by simulation to approximately
2.0 ·1019 1

m3 and 16eV respectively. The DE collision frequencey of D+
2 (1sσg, v)

at this density and temperature is ∼ 1.6·106 1
s
, giving a lifetime of ≈ 6.25·10−7s.

This lifetime is equal to 20-60 ion gyration periods depending on the magnetic
field of the simulation. The velocity of the molecular deuterium ions at cre-
ation is assumed to be equal to the velocity of the deuterium molecule prior
to ionization. These are initialized at 0.3eV in the current neutral model,
such that their most probable speed is ≈ 3.7 · 103m

s
. A typical deuterium ion

will thus move ≈ 2mm before dissociating corresponding to 2-5 ion gyration
radii depending on the simulation parameters. Due to this relatively short
mean free path, it shall be assumed that dissociation follows instantaneously
after molecular ionization, even though the molecules are rather long-lived
compared to Ω−1

i .

Model Steps for Molecular Ionization

• Save incoming D2 velocity in the lab frame.

• Sample total fragment energies from the distribution of figure 5.19, and
calculate the fragment speed.

• Sample random spherical polar angles, by the proper uniform sampling
of the unit sphere i.e the azimuthal angle is sampled uniformly over the
range [0, 2π] and the polar angle is given by θ = cos−1(1− 2r) where r

is a uniformly sampled random number in the range [0, 1].

• Use the sampled angles to calculate the velocity of the created neutral
atom in the CM frame. Assign the proton the exact opposite velocity.
Add these to the velocity of the incoming molecule in the lab frame, to
get the velocities of the fragments in the lab frame.

• Breed the new neutral atom in the position of the molecular ionization
with the calculated fragment velocity.

• Add the contributions to the source terms at the grid cell of the plasma
simulation where the molecular ionization took place.
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Figure 5.20: Simulation domain of the PISAM-HESEL model, with boundary con-
ditions for plasma and neutrals. In the present slab coordinate system, the x-axis
corresponds to the radial axis, and the y-axis corresponds to the poloidal axis. The
dashed line indicates the last closed flux surface.

6 Numerical Implementation

This chapter is concerned with concrete details of the numerical implementa-
tion of the PISAM-HESEL model. A thorough account of the boundary con-
ditions of the combined model is given, as they are important in the analysis
of particle and energy transport mediated by neutrals presented in chapter
8. Moreover, the parallelization of PISAM and the innovative method for
coupling Python and C++ with MPI, used to set up efficient communication
between PISAM and HESEL, are described. For additional design and imple-
mentation details of PISAM and HESEL the reader is referred to appendix D
and the articles [76, 119], respectively.

6.1 Implementation of PISAM in Python

Besides presenting the boundary conditions specific to PISAM, this section
derives the correct method of calculating the reaction probabilities of a particle
with multiple possible reaction channels. Lastly, the choice of using Python
for the implementation of PISAM, with its advantages and drawbacks, is
discussed.
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Neutral Injection and Boundary Conditions

The domain of PISAM-HESEL is shown in figure 5.20. Neutral molecules
enter the domain uniformly distributed over the outer radial boundary. The
flux of molecules and their initial temperature are user input parameters. The
molecules are injected with velocities sampled from the 3D Maxwellian distri-
bution corresponding to the injection temperature. Obviously, only negative
radial velocities are allowed. If a particle traveling radially outwards reaches
the outer radial boundary it is absorbed by probability γ, and otherwise re-
flected. If a neutral particle crosses the inner radial boundary, termed the
"inner edge", it is removed from the simulation. The boundaries along the
y-axis, corresponding to the poloidal direction, are periodic. To avoid an
unnatural build-up of radially slow molecules the "wall" boundary condition
indicated in figure 5.20 is imposed. Any particle traveling so far in the poloidal
or toroidal direction that it collides with the reactor wall is absorbed by prob-
ability γ and otherwise reflected. If caused by the wall boundary condition
a reflection corresponds to the particle being returned to its birthplace (or
place of last interaction) from where it will continue with unchanged velocity.
Only particles with a negative radial velocity are subject to the wall boundary
condition. In its implementation, it has been assumed that the cross section
of a Tokamak is circular22. Basic geometry shows that the condition of being
inside the device wall is

y <
√
2x̃a− x̃2 and z <

√
2x̃R− x̃2, (6.1)

where y and z are the slab coordinates in the poloidal and toroidal direction
respectively, a and R are the minor and major radii, and x̃ is the distance
between the outer radial boundary and the outer wall at y = 0 as shown
in figure 5.20. x̃ can be set according to the relevant simulation, and how
aggressive the dampening of radially slow molecules should be. The smallest
sensible choice of x̃, corresponding to that where the outer radial boundary is
only exactly enclosed by the wall is min(x̃y

min, x̃
z
min), where

x̃y
min = a−

√
a2 −

L2
y

16
, and x̃z

min = R−
√

R2 − L2
z

16
(6.2)

where Ly and Lz are the domain sizes along the poloidal and toroidal axes
respectively. This minimum has been applied in the current simulations.

22In reality the cross section is significantly elongated as shown in figure 1.1, so this
boundary condition will remove slightly more molecules from the system due to absorption
than what is realistic.
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Calculating Decay Probabilities from Decay Frequencies

As described in chapter 3 the collision frequency of a single particle due to
a reaction with cross section σ(g) is n⟨σ(g)g⟩, where n is the density of the
species with which the particle reacts, and g is the relative speed of the react-
ing particles. As the numerical model progresses in discrete time steps ∆t one
needs to be able to calculate the probability of a specific reaction during each
time step. To derive the relation between reaction frequency and probability,
consider a particle that is capable of reacting with surrounding particles in
k different ways, each with reaction frequency Γi for i ∈ {1, 2, .., k}. Let the

total reaction frequency, Γ, be defined as Γ =
k∑

i=1

Γi. Consider an ensemble

of such particles all moving with the same velocity and in identical surround-
ings. Assume that the surroundings are constant during ∆t such that Γi are
constant within each time step. The number of particles, N , that has not yet
reacted is then constrained by the differential equation

dN
dt

= −ΓN. (6.3)

Let the number of particles that have not reacted at t = 0 be denoted N0.
Then (6.3) is solved by

N(t) = N0e−Γt. (6.4)

During an infinitesimal time step dt, N can be assumed constant, such that
the number of reactions of type i during dt is given by N(t)Γidt. The total
number of reactions of type i during a time step ∆t is then given by

Ci =

∫ ∆t

0

N(t)Γidt = Γi

∫ ∆t

0

N0e−Γtdt =
Γi

Γ
N0

(
1− e−Γ∆t

)
. (6.5)

From the view of a single particle, the probability of undergoing a specific
reaction i during ∆t is then

Pi =
Ci

N0

=
Γi

Γ

(
1− e−Γ∆t

)
, (6.6)

which is the way PISAM calculates reaction probabilities.

Advantages and Drawbacks of using Python

The advantage of implementing sub-modules for BOUT++ in Python rather
than in C++ is the ease and speed with which Python code can be written
in comparison to C++ code. The ease of writing Python code is due to the
dynamic type system and the automatic garbage collection. These features
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are however also the very root of the drawbacks of Python - very little memory
control and bad performance, especially when using loops.

The first of these issues means that it requires advanced domain knowledge
to know exactly when memory is being allocated due to copying of existing
variables, and that information about the deallocation of memory is not ac-
cessible to the user. The consequence is that memory usage is rarely optimal,
with spending more memory than you need and reusing less than you could.

The issue of bad performance when using for-loops is obviously critical in
the current application where millions of particles are iterated over during each
timestep. This issue can be effectively handled by vectorization of the for-
loops using numpy. numpy routines are implemented in efficient C and Fortran
code, and run usual tasks (e.g. element-wise arithmetic operations), on arrays
as small as 1000 elements, 50-100 times faster than the corresponding pure
Python implementation [120].

A thorough effort has been made to utilize this major speedup maximally,
such that no core functionalities in the implementation of the kinetic neutral
model uses Python for-loops when executing a time step.

6.2 Implementation of HESEL in BOUT++

HESEL is implemented in the BOUT++ framework, [121], which is a C++
tool developed for solving plasma transport equations in user-defined magnetic
field geometries. BOUT++ relies on finite difference schemes to determine
gradients. An array of different PDE solvers are available for solving the re-
sulting equations. In the current work, the variable time step solver PVODE
has been applied in the simulations. HESEL is parallelized over the radial
axis, such that the domain of each partition have dimensions (Nx/N

C++
C , Ny),

where Nx and Ny are the grid dimension in the radial and poloidal directions
respectively and NC++

C is the number of cores running HESEL. In the fol-
lowing, details on the boundary conditions and regional forcing and damping
across the domain of HESEL are presented.
The poloidal boundaries of HESEL are periodic. A Dirichlet boundary con-
dition is imposed on the inner edge, IE23, such that

n = nIE, pe = pe,IE pi = pi,IE. (6.7)

These are realized by the use of forcing profiles in the inner edge region with
values at the boundary satisfying those of (6.7). The forcing is imposed on the

23The left boundary of figure 5.20.
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fields by adding artificial source terms to the model equations. These source
terms take the form

Sforce (x) =
1− tanh

[
δf
(
x− xs+xIE

2

)]
τforce

(f − fforce ) , (6.8)

where f denotes the relevant field, δf is a smoothness parameter, xs and xIE

are the radial coordinates of the LCFS and inner edge boundary respectively,
and 1/τforce is the damping frequency of the force terms. Usually 1/τforce ∼
Ωi0

50
. fforce denotes the forcing profile of the specific field. These are usually

given by

nforce = nEI , pe,i,force = pe,i,EI +
x− xIE

xs − xIE

(pe0,i0 − pe,i,IE) , (6.9)

where p0 denotes the reference pressure at the LCFS.
The outer radial boundary is subject to a Neumann boundary condition set
by

∂n

∂x
= 0,

∂pe,i
∂x

= 0. (6.10)

The modified vorticity ∇2
⊥ϕ

∗ is not explicitly subject to profile forcing. At
the inner edge and the outer radial boundary, it retains Dirichlet values of
zero.

6.3 Parallelization and Coupling

This section explains how PISAM is parallelized using MPI and how PISAM
and HESEL are coupled through MPI.

Parallelization of PISAM

In the current implementation where neutral-neutral collisions are not con-
sidered PISAM is an embarrassingly parallel application. To explain the par-
allelization, imagine calling PISAM with a physical particle flux F , and a
super-particle weight W . The injection rate of super-particles, f , is then given
as f = LyLzF/W , where Ly and Lz are the lengths of the domain along the
poloidal and toroidal axes respectively. Instead of initializing one instance of
PISAM with an injection rate of super-particles equal to f , NPython

C instances
are initiated, where NPython

C is the number of cores running PISAM, each with
an injection rate of super-particles equal to f/NPython

C i.e. NPython
C instances

of Simulator, H_atoms, H_molecules and Domain are created. For an intro-
duction to these classes see appendix D. All instances of PISAM cover the full
simulation domain, such that all instances of Domain hold equal values for the



Numerical Implementation 78

plasma fields at all times. During a time step ∆t, each instance of PISAM
is run without communication with other instances. At the end of each time
step, the sources from each instance are summed before they are passed to
the plasma part of the code. The summation is carried out by collective com-
munication using MPI.Reduce(), with the intracommunicator grouping the
ranks in the Python part of the program. How these communicators are set
up is covered in the following section. Apart from its simplicity, this method
of parallelization has the advantages of being potentially indefinitely parallel
and securing an even workload on all processors.

Coupling of PISAM with HESEL

Figure 6.1 illustrates how the communication within each part of the program,
i.e. PISAM and HESEL, is achieved, and how PISAM and HESEL communi-
cate with each other. The C++ and Python parts of PISAM-HESEL are called
simultaneously on n1 and n2 processors respectively, using a command of
the form mpirun -n n1 cpp_program : -n n2 Python Python_program.
This call initiates a World Communicator with n1 + n2 ranks. The ranks
belonging to each program can be identified by using the application num-
ber provided by MPI, which is utilized in a call to MPI.Split(), splitting
the World_Communicator into two Sub_Communicator’s. After this proce-
dure, the communicator of BOUT + + is set to be the Sub_Communicator

of the C++ part instead of World_Communicator, which is the default. The
Sub_Communicator of the Python part is used to distribute the plasma fields
to each rank of the Python part, before performing each time step. More-
over, it performs the reduction of the sources of each rank to the total sources
obtained during each time step. To establish the communication between
PISAM and HESEL both Sub_Communicator’s call MPI_Intercomm_create
with an identification tag to create an Inter_Communicator from the two
Sub_Communicator’s. This Inter_Communicator has two primary jobs; Send-
ing the plasma fields from HESEL to PISAM and sending the sources calcu-
lated by PISAM to HESEL. As mentioned in 6.2, HESEL is parallelized along
the radial axis, which must be accounted for when communicating between
PISAM and HESEL. To accommodate for this subdivision of the spatial do-
main, the fields of HESEL are passed to PISAM by a call to MPI_Gather(),
rooted on rank_0 in the Python part, thus gathering the fields from the full
spatial domain in this rank, from which they can be passed to the other ranks
running PISAM using MPI_Broadcast() with the Sub_Communicator of the
Python part. In a similar manner, the Sub_Communicator of the Python part
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mpirun -n n1 cpp_program : -n n2 python python_program

n1 ranks

cpp side python side

n2 ranks

World Communicator

n1 + n2 ranks

Split World Communicator

using application number

Sub communicator

python 

Intercommunicator

Parallel processes 

on cpp side

Parallel processes 

on python side

Sub communicator

 cpp

Figure 6.1: An illustration of the method for simultaneously launching parallel
Python and C++ programs and setting up the communication between them using
MPI.

sums all sources from the instances of PISAM by a call to MPI_Reduce()

rooted on rank_0, from which MPI_Scatter() is called to distribute the
sources to the spatial domains corresponding to each rank of the HESEL.

The solution presented here for coupling Python and C++ using MPI
is pioneering work, that has not been successfully attempted before, to my
knowledge. At least I haven’t been able to find anybody using this approach
on the world wide web. It has been implemented on the HPC cluster Marconi,
[122], with the Python part and the C++ part both spanning multiple nodes.
The performance is robust and with blazing speed.
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7 Timestep Determination and
Estimation of Neglected Collisions

This chapter presents the results of a PISAM simulation conducted with static
plasma fields. Aside from providing a first verification of PISAM, the results
shall be used to substantiate the choice of the simulation time step of PISAM.
Similarly, the results will be used to set the super-particle weight for future
experiments. Furthermore, the output of the simulation will be the foundation
for estimating the source terms of collision processes not currently included
in PISAM. The simulation from which the static fields are sampled was con-
ducted with the same simulation parameters as the simulation presented at
the beginning of chapter 5. Characteristic quantities are repeated here for
convenience

n0 = 3 · 1019m−3 Te,0 = Ti,0 = 40eV B0 = 2T, (7.1)

such that the time and length scales are set by

Ωi0 = 9.59 · 107s−1, ρs0 = 6.5 · 10−4m. (7.2)

The flux of neutral molecules of the current simulation is 5 · 1020m−2s−1, and
the domain spans roughly 6 cm in the radial as well as the poloidal direction.
The domain size along the toroidal dimension is set to unity length i.e. 1
m. The time step used for the neutrals is 5ns. At the conditions of the
static fields, illustrated by figures 7.1 and 7.2, and a super-particle weight
of 1.44 · 106, around 224 · 106 super-molecules are present in the simulation
domain at saturation. The analog value of atoms is 82.3 · 106.

7.1 Qualitative Verification

Figures 7.3 and 7.4 show snapshots of the densities of neutrals in physical
units for molecules and atoms respectively. In these figures, the plasma blobs
of figure 7.1 are clearly seen to affect the distribution of neutrals in the cor-
responding spatial regions. The radial profiles of the neutral densities are
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Figure 7.1: Plasma density field used in the simulation that is referred to in this
chapter.
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Figure 7.2: Poloidally averaged plasma profiles of the static fields used in the
simulation that is referred to in this chapter.
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Figure 7.3: A snapshot of the molecule density after saturation on the static fields
of figures 7.1 and 7.2, and with the simulation parameters given at the beginning of
this chapter.

plotted in figure 7.5. From this figure it is apparent that a large number of
molecules accumulate at the radial boundary, creating a density profile that
falls off almost exponentially with the distance from the outer radial bound-
ary. Qualitatively similar exponential profiles at the domain boundary are
found when using the 2D model of Thrysøe as well as EIRENE in a similar
setup [70]. Another feature evident from 7.3, 7.4 and 7.5 is that atoms pen-
etrate deeper into the plasma than the molecules. The main contributor to
deep atom penetration is fast atoms that have undergone charge exchange.

7.2 Time Step Determination

In determining the time step used in the neutral simulation multiple consider-
ations are relevant. Most of these considerations shall be thoroughly treated
in the discussion section. For now, it will suffice to set the relevant scales
for the Courant condition and decide on a reasonable time step based on the
speed distribution of neutrals. As described in chapter 4, HESEL, which is
based on Braginskii’s closure, [17], assumes that the characteristic length-scale
of change of the plasma fields, L, is much larger than the ion gyro radius ρi

i.e. ρi << L. One can thus safely let ρi set the Courant condition of the
system, meaning that the inequality

vn,max∆t ≤ ρi, (7.3)
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Figure 7.4: A snapshot of the atom density after saturation on the static fields of
figures 7.1 and 7.2, and with the simulation parameters given at the beginning of
this chapter.
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Figure 7.5: A snapshot of the poloidally averaged density profiles after saturation
on the static fields of figures 7.1 and 7.2, and with the simulation parameters given
at the beginning of this chapter.
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should be satisfied, where vn,max is the maximum neutral speed. The CX
neutrals will however be distributed with speeds similar to those of a Maxwell-
Boltzmann distribution24, with its characteristic long tail. This implies that
(7.3) must be relaxed to avoid very short time steps. Instead, the neutral
speed for the Courant condition shall be set to the characteristic thermal
speed of the Maxwell-Boltzmann distribution best describing the atoms that
have undergone CX, see figure 7.6. With the thermal speed of species s given
as vt,s =

√
2Ts/ms the Courant condition becomes

vt,n∆t ≤ ρi ⇒ vt,n∆t ≤ v⊥t,i

Ωi

⇒ ∆t ≤
√

Ti

2Tn

1

Ωi

⇒ ∆t̃ ≤
√

Ti

2Tn

(7.4)

Where signifies that time has been gyro Bohm normalized, and it was used
that v⊥t,s = vt,s√

2
. A snapshot of the speed distributions of atoms from the

current simulation is shown in figure 7.6. The atoms have been divided into
two groups; those that have undergone a charge exchange (blue) and those
that have not (orange). The individual distributions have been fitted to the
Maxwell-Boltzmann distributions giving a measure for the temperature of the
atoms. For the simulation at hand, the full domain of the simulation extends
from -2.3 cm to 3.5 cm with LCF located at 0. This domain has been divided
into 5 equally sized partitions and the speed distribution has been evaluated
for each individual partition. It is clear from figure 7.6 that especially the CX
atoms are represented by significantly higher temperatures closer to the center
of the device. This result was anticipated as the ion temperature follows a
similar evolution. By comparison of figure 7.2 and figure 7.6 CX atoms are
found to be colder than the ions surrounding them in most of the domain. It
is thus assumed that

√
Ti/2Tn ≲ 1 and in correspondence with (7.4) the time

step of PISAM is set to

∆t =
1

Ωi

=
mi

eB
, (7.5)

Which shall be evaluated at reference values of the LCFS. The typical mag-
netic field strength at the LCFS in medium-sized Tokamaks is in the range
1T− 5T, [78, 79], and so the time step of PISAM is in the range

∆t =
1

Ωi0

≈ 4ns− 20ns. (7.6)

24The exact distribution is given by the integrand of (3.10) and is plotted at various ion
temperatures and neutral energies in appendix 5.2.
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Figure 7.6: Speed distributions of atoms in specific parts of the radial domain. The
full domain of the simulation extends from -2.3 cm to 3.5 cm with LCF located at
0. These histograms represent a snapshot of the atom speeds after saturation on the
static fields of figures 7.1 and 7.2, and with the simulation parameters given at the
beginning of this chapter. The orange bars give the speed distribution of atoms that
have not undergone charge exchange, while the blue bars give the speed distribution
of atoms that have undergone charge exchange. Both of these distributions are fitted
to a Maxwell-Boltzmann distribution to give a measure of the temperature of the
neutral atoms.

7.3 Particle Weight and Source Smoothing

Numerous investigations on the relation between grid spacing, particles per
cell, and the statistical error in DSMC models have been conducted [123–125].
These are however not applicable to PISAM as its main purpose is to supply
a fluid model with the source terms originating from inelastic plasma-neutral
collisions, and not just monitor the transport of the neutrals themselves. It is
somewhat precarious to couple a fluid model and a discrete particle model like
PISAM, as the former is by assumption continuous in its variables and sources,
and the latter is by definition discrete. This peculiarity shall be discussed in
chapter 9. For now simply note, that if only a few reactions contributing
to some source term (like cx reactions contribute to the ion energy source)
happen in each time step, this source term will be similar to a sum of Dirac
delta functions, sputtered across the simulation domain. Such jagged source
terms do not represent the presence of neutrals adequately and are certainly
not well fit for a fluid model. As a measure of the adequacy of PISAM in
supplying HESEL with source terms, the smoothness of the source terms is
used. Smoothness is a vague term, but one approach is to consider a source
term smooth if the relative statistical noise, ξ, of each cell is below some
threshold ξt. The relative statistical noise ξ shall be defined as the ratio of the
mean value, µ, of the source term in a given cell, with the standard deviation
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due to statistic noise. It is utilized that the binomial distribution becomes
a Poisson distribution in the limit where the time step goes to 0 and the
number of particles in each cell goes to infinity. The relative statistical error
of a Poisson distribution describing a process with a rate λ is λ−1/2. The
condition on ξ can thus be written

ξ < ξt ⇒

√
W

nnρxρyρzn⟨σv⟩∆t
< ξt, (7.7)

where W is the super particle weight, ρx, ρy, ρz are the grid sizes in each of
the three dimensions, nn is the neutral density, n is the plasma density and
⟨σv⟩ denotes the total rate of processes contributing to the relevant source.
(7.7) is helpful in highlighting the quantities determining the relative statis-
tical error but is inadequate in setting the correct weight for the particles in
PISAM as the neutral density of molecules varies so much over the domain
that the statistical noise would seem immense when applying (7.7), in the
parts of the domain where molecules are sparse. Even if W is approximated
using (7.7), in the parts of the domain with the highest inelastic collision
frequencies, the calculation leads to very small particle weights, demanding
extensive computational resources, for any acceptable ξt.

Smoothing

To be able to meet the demand of well-behaved continuous source terms,
while keeping the particle weight high enough for the numerical workload to
be compatible with the available computational resources, smoothing is ap-
plied to the source terms produced by PISAM before passing them to HESEL.
Multiple approaches to smoothing are known in the field of Image analysis.
Obviously, the current application requires that the smoothing method con-
serves the total sum of each source term to ensure the conservation of particles,
momentum, and energy. One way of achieving this is through 2D convolution
of each source with a Gaussian kernel. This approach has an unfavorable scal-
ing, O(p2), where p is the number of pixels, making it too slow for the current
application. Instead, it is utilized that in the continuum limit (i.e. the pixel
size goes towards 0) a convolution of a Gaussian kernel in the spatial domain is
equivalent to multiplication with a Gaussian kernel in the Fourier domain, as
the Fourier transform of a Gaussian is itself a Gaussian. Using the fast Fourier
transform, this approach has the far more tractable scaling O(p ln p), [126],
and is the method applied in PISAM. The smoothing procedure is outlined
as follows:
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• 0) Make an array, G with the dimensions of the simulation domain,
with values representing a centered normalized Gaussian with the de-
sired standard deviation, σb. σb is the amount of blurring in the spatial
domain. Apply the fast Fourier transform on G to obtain F(G).

• 1) Let S be a source term obtained in a time step of PISAM. Apply the
fast Fourier transform on S to obtain F(S).

• 2) Do element wise multiplication of F(A) and F(S).

• 3) The smoothed source, S, is now obtained using the inverse fast Fourier
transform of F(A) · F(S) i.e. S(S) = F−1

(
F(G) · F(S)

)
.

• Steps 1-3 are repeated for each source at the end of each time step of
PISAM.

Locality of Inelastic Collisions

As σb is increased the locality of each inelastic collision event is diminished.
In the field-perpendicular plane, where PISAM particles are tracked, it was
assumed when deriving the fluid model, that the resolved dynamics have a
large length scale in comparison to the ion gyro radius ρi. To respect this
assumption, PISAM should not be able to pass source terms to an area of the
plasma not represented by the same macroscopic variables as the area where
the event contributing to the source terms happened 25. If this is to be strictly
respected, the width of the blur should not be larger than ρi i.e. σb < ρi/2

if the condition is to be met with ≈ 95% accuracy. Satisfying this strict
condition turns out not to be accessible with current numerical resources.

Realizing that the delocalization caused by smoothing will defy the un-
derlying assumption of HESEL it is useful to express σb in terms of ρs, to
explicitly quantify this defiance. This is achieved by introducing σ̃b = σb

ρs
.

The hybrid ion gyro radius, ρs, is used rather than ρi as it is practical to use
the normalization applied in HESEL.

To adjust (7.7) in order to account for blurring, the cell area in the radial
poloidal plane ρxρy shall be substituted by aσ̃2

bρ
2
s, where a is an appropriate

constant scaling factor, and it has been assumed that ρx = ρy. In rewriting
(7.7) to derive a relation for the specific problem at hand, it shall further be

25See the section Conditions of Applicability in chapter 4 for a clarification of this rea-
soning.
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assumed that the neutral density is proportional to the flux, Cf , of molecules
over the outer radial boundary,

nn(x, y) = η(x, y)Cf . (7.8)

Where η(x, y) is the inverse characteristic neutral radial velocity modified by
a damping profile, the exact expression for η is however not of importance
here. By applying ρs =

√
Temi

eB
and utilizing (7.6), the statistical uncertainty ξ

of (7.7) can be written

ξ =

√
1

η⟨σv⟩aσ̃2
bρz

·

√
WB3e3

m2
iT

2
e nCf

, (7.9)

which reveals the strong scaling of B3/2 on the statistical error with magnetic
field. In the current application the source terms do not need to be resolved
in the field aligned direction (z-direction) as HESEL is 2D. ρz shall thus be
set to unity length. Evaluated at characteristic reference values of the LCFS
the relative statistical error yields

ξ0 =

(
⟨η⟩y(xs)⟨σv⟩0aσ̃2

b

)−(1/2)

·

√
WB3

0e
3

m2
iTe0n0Cf

, (7.10)

where ⟨·⟩y denotes an average over the poloidal axis. Except for the rate ⟨σv⟩0
which has a non-trivial dependence on Te0,i0, the parameters in ξ0 influenced
by user input, all reside in the second factor. As a consequence of this analysis,
the convergence of smoothness shall be formulated in terms of

P =

√
WB3

0e
3

m2
iTe0n0Cf

(7.11)

where mi and e are included to make P unitless26.

Numerical Measure of Smoothness

(7.7) is only approximate, and capturing the true effects of blurring and the
fact that multiple processes contribute differently to the same sources is math-
ematically complex. Rather than stepping onto these treacherous paths, a nu-
merical smoothness measure shall be introduced. Specifically, the smoothness
of a 2D array, A, shall be defined as the average 2D Laplacian of A divided by
the average value of A. The 2D Laplacian of A is given by the convolution of A

26As written here, P actually has units of m−3/2, but since ρz equals unit length it can
be used to cancel the units of both terms of (7.9) as these are purely spatial.
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Figure 7.7: The plots show the normalized sum of the Laplacian of a particular
source obtained at various values of σ̃b and P . The Laplacian is calculated by 2D
convolution with a Laplacian kernel. The tiny error bars show the standard deviation
from the mean of repeated simulations. (a): Electron energy density source. (b): Ion
energy density source.

with an appropriate Laplacian kernel. To learn how the smoothness depends
on P and the blurring magnitude σ̃b, simulations on the static fields of figures
7.1 and 7.2, have been conducted with various values of these parameters. For
each value of P the smoothness of every source has been evaluated at four
different values of σb. A total of 11 different values of P were scanned. The
44 evaluations of smoothness were normalized by the least smooth source ob-
tained. The results obtained from the electron and ion energy density sources
are shown in figure 7.7 on the left and right sides respectively.

The conservative choice of blurring, σ̃b = 0.5 corresponds to the blue curves
in figure 7.7. Noting the logarithmic x-axis of figure 7.7, it is clear that con-
vergence is very slow, and that a compromise between locality and numerical
efficiency must be sought. The electron energy density source smoothness
seems to have reached convergence at 1/P = 0.8 · 1010 with σs = 2. The
convergence of the ion energy density source is generally slower as CX atoms
penetrate deep into the plasma where they are present with a small density
and exchange much energy and momentum in each reaction. In the interest
of good numerical performance, the value of 1/P sufficient for the electron
energy density source to converge shall be deemed acceptable, even though
the ion energy density source smoothness has not converged at this P . To
evaluate the validity of this choice visually, a plot of the ion energy source
contribution obtained at 1/P ≈ 0.8 · 1010 and σs = 2 is shown in figure 7.8.
This grainy source term reflects the compromise between physical adequacy
and numerical performance chosen for the PISAM-HESEL simulations pre-
sented in chapter 8. In the simulations of the coupled PISAM-HESEL model,
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Figure 7.8: The ion energy density source term obtained in one timestep of a
simulation of PISAM with 1/P = 0.811 · 1010 and smoothing magnitude σs = 2.

the super-particle weight shall thus be set according to

W = 1.56 · 10−20m
2
iTi,0n0Cf

B3
0e

3
(7.12)

7.4 Elastic Collisions Between Neutrals and

Plasma Particles

This section investigates the consequences of neglecting elastic collisions be-
tween neutrals and plasma particles. The effects of elastic electron-neutral
collisions are expected to be small as the energy exchange is suppressed by the
large mass ratio. The relative momentum transfer of the neutrals is equally
suppressed by the mass ratio while the relative momentum transfer of an
electron colliding elastically with a neutral is of order unity. This causes an
energy transfer from the kinetic energy of electron fluid velocity to electron
heat. This effect is however so small compared to the analogous effect of
electron-ion collisions that it can certainly be neglected. In elastic ion-neutral
collisions, on the other hand, the relative energy and momentum transfers
are both of order unity. An estimate of the energy source terms arising from
elastic plasma-neutral interactions is given below, while the discussion of the
effects of momentum transfer in ion-neutral collisions is postponed to chapter
9. The contributions to the energy source terms can be estimated by the el-
ementary theory of binary collisions combined with the assumption that the
particles of the colliding species are in individual thermodynamic equilibrium
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i.e. if the colliding species are termed 1 and 2, the velocity distributions of
each species is a Maxwellian characterized by the macroscopic variables n1,
u1, T1 and n2, u2, T2 respectively. For such fluids, the energy exchange rate
is given by [127, 128],

dQ
dt

= −3n1
m1m2

(m1 +m2)2
(T1 − T2)ν12 (7.13)

Where
Q =

∫ ∞

0

1

2
m1v

2
1f1dv1, (7.14)

such that Q is the total energy ascribed thermal and fluid velocity. The
frequency ν12 is defined by

ν12 =
4

3
n2

(
8

π

)1/2

K−1/2q̄D. (7.15)

Furthermore the following quantities have been defined

K =

(
2T1

m1

+
2T2

m2

)−1

(7.16)

qD(g) =

∫
(1− cos θ)

dσ
dΩ

(g)dΩ (7.17)

q̄D = K3

∫ ∞

0

g5qD(g) exp
(
−Kg2

)
dg (7.18)

Such that qD(v) is the momentum transfer cross section and q̄D is the weighted
average over the momentum transfer cross section, in accordance with the
Maxwellian velocity distributions of each species. In the following let the
subscript 1 indicate a plasma species and the subscript 2 indicate a neutral
species. To estimate the energy exchange rate due to elastic plasma neutral
collisions it is assumed that the neutrals are cold. q̄D shall be given as the
momentum transfer cross section at the most probable energy of the plasma
species i.e. T1. A simplified formula, still adequate for the relevant estimation
can thus be written

dQ
dt

≈ 8

√
2

π
n1n2T1

m1m2

(m1 +m2)2

√
2T1

m1

qD(T1) (7.19)

Elastic Electron-Neutral Collisions

Using (7.19) for elastic electron-molecule collisions with the profiles of figure
7.2 and 7.5 and the momentum transfer cross section of [129] yields an esti-
mate of the electron energy sources due to elastic electron-neutral collisions.
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Figure 7.9: The profile of the ion energy density source term produced by PISAM
during one time step, along with an estimate of the predicted source terms arising
from elastic collisions between electrons and molecules. The simulation was con-
ducted with a super particle size 7.2 · 107. The inflow rate of deuterium molecules
was 5 · 1020m−2s1 to accomplish a molecule density at the outer radial boundary of
approximately 1018m−3.

The source profiles are created by taking the absolute value of the sources
distributed in the 2D plain followed by an average over the poloidal axis.
This estimate is plotted in figure 7.9 along with the sources obtained from
the inelastic collisions currently adopted in the model. As expected from the
large mass ratio, figure 7.9 shows that the electron energy density source due
to elastic electron-molecule collisions is several orders of magnitude smaller
than that of inelastic collisions. The simulation results used in this section
are obtained at a higher super-particle weight than the simulation results pre-
sented earlier in this chapter. The other simulation parameters are however
identical.

The literature on cross sections of elastic collisions between electrons and
hydrogen atoms is sparse. It is however expected to be slightly smaller than
that of hydrogen molecules [128], and can thus be safely neglected.

Elastic Ion-Neutral Collisions

The momentum transfer cross section of elastic ion-molecule collisions is pro-
vided in [130], while that of ion-atom collisions is obtained from [131], partially
from extrapolation. Applying a similar procedure to elastic ion-neutral colli-
sions as for the electron-neutral collisions results in the estimates plotted in
figure 7.10. The source profiles are created by taking the absolute value of the



Timestep Determination and Estimation of Neglected Collisions 93

−0.02 −0.01 0.00 0.01 0.02 0.03
Radial Coordinate, [m]

1021

1022

1023

1024


(1 2m

v2
) , 
[e

V
m

3 s
]

Energy Source  from Ion-Neutral Colli ion 

Inela tic ion-neutral
Ela tic ion-molecule
Ela tic ion-atom
Ela tic ion-neutral
LCF

Figure 7.10: The profile of the ion energy density source term produced by PISAM
during one time step, along with an estimate of the predicted source terms arising
due to elastic collisions between ions and molecules. The simulation was conducted
with a super particle size 7.2 · 107. The inflow rate of deuterium molecules was
5 · 1020m−2s1 to accomplish a molecule density at the outer radial boundary of ap-
proximately 1018m−3.

sources distributed in the 2D plain followed by an average over the poloidal
axis. For comparison, the ion energy density source profile is plotted along-
side. The data of figure 7.9 shows that the ion energy density source due to
elastic ion-neutral collisions is only about one order of magnitude smaller than
the energy source due to inelastic collisions, in the region outside the LCFS.
At the outer radial boundary, the two contributions are similar in magnitude.

7.5 Radiative Recombination

The primary source of neutrals in the conditions PISAM is tailored to sim-
ulate is external gas injection. For some devices recycling from the divertor
might also give rise to significant neutral densities at the outboard mid-plane.
Moreover, it seems intuitive that a large rate of neutral production could be
provided by recombination of the ions and electrons making up the plasma.
This section gives a brief argumentation of why such recombination events are
not included in the model. The rate of radiative recombination as a function
of electron temperature is provided by [86]. This rate is used with the profiles
of figure 7.2 to calculate the atom creation rate due to radiative recombina-
tion. The result is shown in figure 7.11 along with the profile of atom creation
due to the inelastic electron-neutral collisions included in PISAM. This figure
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Figure 7.11: The profile of the atom creation rate of PISAM alongside an estimate
of the predicted atom creation rate arising due to radiative recombination of ions
and electrons. The simulation was conducted with a super particle size 7.2 · 107.
The inflow rate of deuterium molecules was 5 · 1020m−2s1 to accomplish a molecule
density at the outer radial boundary of approximately 1018m−3.

concludes that the atom creation rate due to the processes currently included
in PISAM is orders of magnitude larger than the rate of recombination in the
relevant part of the domain.
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8 Results

This chapter presents high-resolution results of the source terms produced by
PISAM with static fields, as well as source terms and plasma field profiles
obtained using the PISAM-HESEL model in full functionality. The results
obtained using static fields clarify many of the mechanisms in the influence
of neutrals on edge plasma dynamics. The dynamic simulations provide a
persuading qualitative verification of PISAM and its coupling to HESEL, and
give rise to exciting ideas for future experiments.

8.1 PISAM with Static Fields

The data shown in this section are the results of a simulation conducted
using the static fields of figures 7.1 and 7.2, with 1/P = 2.3 · 1010, which, in
the present case, results in around 2.5 · 109 super-particles in the domain at
saturation.

Plasma Density Source

The plasma density source obtained in one randomly sampled time step of this
simulation is shown in figure 8.1. The LCFS is located at x = 0 suggesting
that for this highly turbulent frame, the vast majority of the density source is
provided at the low field side of the LCFS. This indicates that for turbulence
as significant as that of figure 7.1, gas puffing might not be the right option for
fueling. The unbeneficial ionization on the low field side of the LCFS is self-
enhancing, as the increased density results in an increased collision frequency
of molecular dissociation and atomic ionization. This mechanism suggests that
there may be a maximum obtainable fueling rate in gas puffing experiments,
which would be interesting to investigate in dynamic simulations.

Electron Energy Density Source

The electron energy source obtained in one randomly sampled time step is
shown in figure 8.2. As argued in chapter 5, the electron energy density
source terms due to inelastic plasma-neutral collisions are negative in any
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Figure 8.1: Plasma density source of one randomly sampled time step in a simu-
lation of PISAM conducted on the static plasma frames of figure 7.1 and figure 7.2,
with 1/P = 2.3 · 1010 and σb = 0.5.

collision included in PISAM. Any event contributing to plasma density is a
heat sink for electrons, and it is thus not surprising that the density source
of figure 8.1 is highly correlated with the electron energy density source of
figure 8.2. The combined result of the plasma density source and electron
energy density source is thus to fill the SOL with cold plasma. Note that due
to the low collisionality of a fusion plasma, which is especially true at SOL
conditions, the fluid velocity parallel to the field lines is comparable to the
thermal velocity. Cold plasma thus hangs in the SOL for longer as it spends
more time drifting along the field lines before reaching the divertor. This
effect contributes to the self-enhancing mechanism suggested in the previous
section.

Ion Energy Density Source

The ion energy source obtained in one randomly sampled time step is shown
in figure 8.3. The vast majority of this source originates from CX reactions or
ionization of CX atoms. As noted in chapter 7, the image’s graininess indicates
the sparsity of CX atoms in combination with the large energy exchange that
one reaction can entail. It is noted that similar to the effect of neutrals
on electron temperature, the SOL ions are cooled due to charge exchange
reactions. Figure 8.3 indicates that charge exchange reactions have the effect
of moving energy back within the high field side of the LCFS, thus improving
energy confinement. On the other hand, the ion energy source of 8.3 would
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Figure 8.2: Electron energy density source of one randomly sampled time step in a
simulation of PISAM conducted on the static plasma frames of figure 7.1 and figure
7.2, with 1/P = 2.3 · 1010 and σb = 0.5.
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Figure 8.3: Ion energy density source of one randomly sampled time step in a
simulation of PISAM conducted on the static plasma frames of figure 7.1 and figure
7.2, with 1/P = 2.3 · 1010 and σb = 0.5.

seem to enhance the pressure gradient at the LCFS thus further destabilizing
the plasma with respect to ballooning.

8.2 PISAM-HESEL

The following section presents simulation results from running the coupled
PISAM-HESEL model with its full functionality. The reference quantities at
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the LCFS used in the simulations are

n0 = 1.85 · 1019m−3, Te,0 = Ti,0 = 60.0eV, B0 = 0.88T, (8.1)

such that the time and length scales are set by

Ωi0 = 4.23 · 107s−1, ρs0 = 1.7 · 10−3m. (8.2)

The simulation-specific parameters of the neutrals are

Cf = 1.5 · 10211/sm2, W = 9.0 · 106, (8.3)

Tn = 0.3eV, γ = 0.2, σ̃b = 2, (8.4)

where Cf is the injection flux of deuterium molecules, W is the super particle
weight, Tn is the temperature defining the Maxwellian velocity distribution
of the injected molecules, γ is the wall absorption coefficient and σ̃b is the
applied blur in units of ρs0. The reason for and effects of using the fairly
high value of Tn is discussed in chapter 9. With these values, the smoothness
of the source terms is characterized by 1/P = 0.76 · 1010, with P defined in
(7.11). The results plotted in this section all represent the mean of eight runs
seeded with different perturbations on the initial plasma density profile. The
runs using the HESEL model without the influence of neutrals have a dura-
tion of 1000Ω−1

i0 , while those using PISAM-HESEL have a duration of 450Ω−1
i0 .

The first 100Ω−1
i0 are considered to be a transient period and were not included

when calculating the presented profiles. The shadows on the profile plots show
two times the standard deviation of the values, from the eight different runs,
averaged to obtain each particular data point. The orange curves represent
results obtained from running HESEL without the influence of neutrals, while
the blue curves represent results obtained from running PISAM-HESEL. Some
figures show green curves with the results from running nHESEL with the in-
fluence of neutrals modeled by Thrysøes fluid model [70]. These simulations
did however never converge, but stacked neutrals at tremendous densities at
the edge of the domain. Even though unsuccessful, some results of these sim-
ulations are shown when they provide information on the difference between
the results of using PISAM and the fluid model of Thrysøe. Moreover, many
of the following figures indicate the part of the domain where profile forcing
is invoked. An explanation of the applied profile forcing is given in chapter
6.3.

Source Terms Provided by PISAM

To assess the validity of the density source provided by PISAM, consider the
condition of conservation of the particles entering and exiting the domain at
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Figure 8.4: The left figure shows the distribution of neutral losses in a simulation
on static fields representative of the conditions of the PISAM-HESEL simulations
from which results are reported in this chapter. The right figure is analogous but
shows the distribution of energy. AI = Atomic Ionization, MID = Molecular Ion
Dissociation, W = Wall, RB = Outer Radial Boundary, IE = Inner Edge.

saturation
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(8.5)

where V = LxLyLz is the domain volume, with Lx, Ly, and Lz are the domain
sizes in the radial, poloidal, and toroidal directions respectively. γ is the ab-
sorption coefficient, Cf is the flux of molecules over the outer radial boundary
and fS is the phase space distribution function of species s. The surfaces So,
Si, and Sw denote the surfaces of the outer radial domain boundary, the inner
radial domain boundary, and the wall boundary. The notation used for the
inelastic source terms I(·) is introduced in chapter 2. The notation used for
the velocity integrals should be read∫

v+x

dv =

∫ ∞

vx=0

∫ ∞

−∞

∫ ∞

−∞
dv,

∫
v−x

dv =

∫ 0

vx=−∞

∫ ∞

−∞

∫ ∞

−∞
dv. (8.6)

(8.5) states that the average inflow rate per unit volume must equal the sum
of particle density source and the loss rate at the boundaries per unit volume.
The latter is divided into three terms, corresponding to the second, third,
and fourth terms of (8.5). The second term gives the loss due to particles
with a positive radial velocity being absorbed on the outer radial boundary.
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Figure 8.5: Radial density source profiles resulting from averaging the density
source terms provided by PISAM in time and over the poloidal axis. The blue curve
represents results obtained running PISAM, while the green curve represents results
obtained from running Thrysøe’s fluid model [70].

Only atoms are included in this term as molecules cannot have positive radial
velocities in the current implementation. The third term gives the loss of
particles from molecules absorbed due to the wall boundary condition. Only
molecules are included, as very few atoms are absorbed through this channel.
The fourth term gives the loss due to particles leaving the domain through
the inner edge. Only atoms are included in this term as practically not a
single molecule will ever make it that far into the plasma at current molecule
injection temperatures. The distribution of particle losses due to the terms on
the LHS of (8.5) is shown on the left of figure 8.4. The necessary diagnostics
were not fully implemented when dynamic PISAM-HESEL simulations were
conducted. The results of figure 8.4 are thus obtained using static fields
representative of the simulation conditions of the dynamic runs from which
results are presented in this chapter. Including the atoms that escape through
the inner edge, a total of ∼ 72% of the injected nuclei end up as plasma ions.
Only ∼ 55% of the nuclei contribute to the plasma density within the domain.
The radial profile of the plasma density source, made from these ∼ 55%, is
shown in figure 8.5. Inspecting the shape of the density source from PISAM, it
is apparent that some atoms and molecules ionize at large radial distances from
the LCFS (x ≈ 3cm). These reactions are caused by blobs of plasma escaping
into the SOL. Many atoms do however make it to the LCFS where density and
temperature rise rapidly and we see the peak of the density source, due to a
large rate of ionization. On the high field side of the LCFS, the density source
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has a steep cutoff resembling a damped random walk27 of the CX atoms.
The left figure of 8.6 shows the electron energy density source. To validate

the magnitude of this source, we note that for each molecule dissociated, the
electrons have to supply around 12eV28, while each ionization of an atom
claims 13.6eV. The average electron energy density sink rate can then be
approximated using the ratios of neutral removal shown in figure 8.4, and are
found to be in good correspondence with the average value of the blue curve on
the left of figure 8.6, thus verifying that PISAM works as intended with regard
to energy exchange in electron neutral reactions. It is of no surprise that the
shape of the electron energy density source profile is highly correlated with
the density source profile as any inelastic collision contributing to the density
source must have energy supplied from the electrons. The main difference
between the two profiles except for their scale, is that the bump in the SOL is
more distinct in the electron energy density source profile than in the density
source profile. The reason is that molecular dissociation reactions are sinks
of electron energy, but do not contribute to the density source. To assess the
validity of the ion energy density source produced by PISAM, and shown on
the right of figure 8.6, consider the energy conservation for the nuclei injected
into the system as molecules

− 1
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where Ẽfrag is the weighted average of fragment energy, in the lab frame,
after dissociation (MD and MID). The LHS of (8.7) is the rate at which
kinetic energy is transferred to the neutral atoms from ions and electrons,
plus the rate of energy entering the system in the form of the kinetic energy
of molecules that are not absorbed on the wall. The RHS of (8.7) is the rate
at which energy is lost when neutrals are removed from the domain either due

27This is a slightly biased random walk, as shown in Appendix 5.2.
28A rough weighted average based on the rate and energy losses for MD and MID given

in chapter 5.
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Figure 8.6: Radial energy density source profiles resulting from averaging the energy
source terms provided by PISAM in time and over the poloidal axis. The electron
and ion energy source profiles are depicted in the left and right figures respectively.
The blue curve represents results obtained from running PISAM, while the green
curve represents results obtained from running Thrysøe’s fluid model [70]. As the
legend indicates the results of [70] report the energy density source associated with
the random velocity w = v − u, rather than the full velocity, v. The difference is
however expected to be small as thermal velocities are assumed large in comparison
with fluid velocities, and most momentum transfer cancels by symmetry.

to ionization or boundary losses. (8.7) indicates that if no atoms were lost at
the boundaries the average value of the ion energy density profile of figure 8.6
should be 2ẼfragCf/Lx ≈ 7.2 · 1022. Two valuable observations can be drawn
from comparing this number with the blue curve in figure 8.6. Firstly, the large
fluctuations of the measured ion energy density source terms indicate that the
energy transport due to CX reactions is very large in comparison to the energy
exchange between electrons and ions mediated by neutrals. Secondly, since the
blue curve in figure 8.6 integrates to a negative number or order 1023eV/m2 a
large amount of energy carried by neutrals leaves the systems due to boundary
losses. The right side of figure 8.4 shows the distribution between the channels
from which energy carried by neutrals can be transferred to plasma particles
or completely removed from the system. The initial kinetic energy of the
deuterium molecules is not included in figure 8.4 as it is very small compared
to the kinetic energy that the neutrals draw from the plasma. It is found
that ∼ 35% of the kinetic energy transferred to the neutrals from the plasma
is transported all the way inside the inner edge of the domain. This energy
is carried by only ∼ 23% of the created atoms, with an average energy of
∼ 50eV. The source term profiles have served to validate that PISAM behaves
as expected, nicely resembling the results found with the static fields of the
former section. Furthermore, they have shown how efficient charge exchange
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reactions are in transporting particles and especially energy radially inwards.
In the next section, the influences of these sources on the plasma fields are
presented.

Plasma Density and Temperature Profiles

Figure 8.7 shows the plasma density profiles obtained running HESEL with
and without the influence of neutrals. The profiles show a significant increase
in SOL plasma density when neutrals are present. The increased magnitude
and broadening of the density profile is a well-known phenomenon known
as shoulder formation. The shoulder shape found here is similar to those
found in experimental measurements on ASTEX reported in [132]. Figure
8.8 shows the plasma temperature profiles obtained running HESEL with and
without the influence of neutrals. For the electrons, the largest fractional
temperature discrepancy occurs in the SOL. At the LCFS where the electron
energy density source is peaked, we barely see any change. This is expected
to be due to the large advection transport in this highly turbulent part of
the domain. For the ions, whose temperature profiles are shown on the right
of figure 8.8, a far larger discrepancy between running the models with and
without neutrals is reported. Furthermore, it is noted that even though the
ion energy density source is positive at x ≲ −0.5cm the neutrals are cooled
over the full domain. These observations are explained by the large ion heat
conduction perpendicular to the field lines, which is due to the large ion mass.
The results of figure 8.8 are in good correspondence with the simulation results
reported in [133] based on the B2 EIRENE code [54].

8.3 Influence of Neutrals on the Electric Field

Figure 8.9 shows the profile of the radial electric field. The sign of the radial
electric field is found to switch just inside the LCFS for both profiles, indi-
cating that the current simulation resembles a reactor operating in H-mode
[22, 23, 46], with a large poloidal flow oriented vertically downwards on the
inside of the LCFS and an opposite poloidal flow just outside the LCFS. This
poloidal shear flow is not changed significantly when introducing neutrals,
and thus the current results do not find that gas puffing should cause a tran-
sition from H-mode to L-mode, for the specific circumstances under which
the current simulations are conducted. As mentioned in chapter 4 the main
contributor to advection of density and heat is the E×B-drift. Furthermore,
discussion of interchange motion in chapter 1 revealed how charge-separating
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Figure 8.7: Radial density profiles resulting from averaging the plasma density in
time and across the poloidal axis.

Figure 8.8: Radial temperature profiles resulting from averaging the plasma density
in time and over the poloidal axis. The electron and ion temperature profiles are
depicted in the left and right figures respectively.
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drifts create a poloidal electric field at the outboard midplane giving rise to
radial advection. It is thus of interest to investigate the influence of neutrals
on the poloidal component of the electric field. Profiles of the poloidal electric
field in themselves do however not contribute with interesting information, as
averaging this field component in time and over the poloidal axis yields almost
exactly zero. Instead, the radial flux reflecting the correlation between per-
turbations in the poloidal component of the electric field and perturbations in
density is considered. The profiles of the radial flux due to E ×B-advection
are shown in figure 8.10. In the SOL the presence of neutrals is found to
increase the particle flux, which is explained by the increased density in the
SOL, shown in figure 8.7. The mechanism for decreasing the flux on the in-
side of the LCFS is not currently fully understood. The Shear-Alfvén law of
(1.16) showed that the interchange instability depends on the radial compo-
nent of the pressure gradient. No significant change to the radial part of the
pressure gradients has however been found when adding neutrals. This sug-
gests that either the magnitudes of the perturbations in density and poloidal
electric field have decreased or sinϕ, where ϕ is the phase difference between
perturbations in density and the component poloidal of the electric field, has
decreased. Albeit, density perturbations are expected to be enhanced in the
presence of neutrals due to the increased ionization rate in dense regions of the
plasma. To understand this puzzling behavior a mode analysis of the density
and poloidal electric field perturbations should be performed, to investigate
the influence of neutrals on their phase and magnitude.

At the LCFS there is no significant change to the radial flux. Since the
ions are colder when neutrals are present as shown in figure 8.8 the energy
transport across the LCFS due to ExB-advection is decreased when neutrals
influence the edge plasma. Furthermore, the analysis of the ion energy density
source showed how CX atoms carry significant amounts of energy far inside
the LCFS. On the other hand, we know that the cooling outside in the SOL
will increase the conduction losses of ion energy across the LCFS due to the
increased ion temperature gradient. An analysis of the full energy flux across
the LCFS with and without neutrals would be interesting to perform using
PISAM.

8.4 Neutral Densities

Finally, we shall consider the neutral densities. The profiles of these are shown
in figure 8.11. It is interesting to view the atom density profiles knowing that
around a fourth of the created atoms escape the domain through the inner
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Figure 8.9: Profiles of the radial electric field resulting from averaging in time and
over the poloidal axis.

Figure 8.10: Profiles of the radial particle flux resulting from averaging in time
and over the poloidal axis.
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Figure 8.11: Profiles of the neutral densities resulting from averaging in time and
over the poloidal axis. The atom densities are depicted on the right while the molecule
densities are depicted on the left.

radial boundary. The low density at the boundary indicates that the atoms
escaping through the inner radial boundary are moving at significantly greater
speeds than the average atoms. Furthermore, it is noted only CX atoms make
it further than ∼ 1cm inside the LCFS. Only a few results of the neutral densi-
ties in gas puffing experiments at the outboard midplane have been published,
none of which are directly comparable to the current simulation. Measure-
ments of the neutral molecule density in gas puffing experiments are expected
to be lower near the outer radial boundary than what is shown on the right-
hand side of figure 8.11. The reason is that usual gas puffing experiments use
room temperature gas (∼ 0.025eV), while this simulation uses an injection
temperature of 0.3eV. This does however not alter the density and energy
balance equations of (8.5) and (8.7) as these depend on the flux of injected
molecules. To know the exact effect of altering the injection temperature, ex-
periments at various injection temperatures would have to be conducted. The
expected effects are however discussed in the following chapter. This remark
concludes the presentation of the current results of PISAM-HESEL. In the
next chapter, the shortcomings of PISAM are presented and the future work
to account for these is laid out.
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9 Discussion

Many of the decisions in the design of PISAM have already been thoroughly
addressed. Two topics regarding the collisions included in PISAM and how
they are implemented do however deserve further attention. The first of these
concerns the inclusion of multiple vibrational states of D2(X

1Σ+
g ). The second

regards the neglection of the fluid velocity when evaluating collision frequen-
cies in (3.4) and (3.10). The considerations on these topics are followed by
reflections upon some of the many questions and challenges that arise when a
3D discrete particle model is coupled to a 2D fluid model. These reflections
naturally lead to a discussion of the injection temperature of molecules in
PISAM-HESEL simulations. At the end of the chapter, the conditions allow-
ing PISAM to be applied in other domains than the outboard midplane of a
Tokamak are discussed.

9.1 Including Vibrational States

As mentioned in the presentation of PISAM in chapter 5, only the vibrational
ground state of the electronic ground state of D2 molecules is currently in-
cluded in the model. The primary channel of molecular dissociation is direct
excitation to the unbound b3Σ+

u state. [134] finds a strong relation between
the vibrational state, v, of D2 and the threshold energy of excitation to b3Σ+

u .
Furthermore, the maximum cross sections differ by almost an order of mag-
nitude depending on v. Similarly, the maximum cross sections of excitation
to B1Σ+

u , C1Πu, and D1Πu all differ by around two orders of magnitude de-
pending on v, [103]. Generally, it should thus be expected that dissociation
would occur further away from the LCFS than is the case in the current im-
plementation, and thus the electron energy sink due to electron-D2 would be
broadened further outwards in the SOL.

Including all the 21 bound vibrational states of the D2-molecule is not
in principle technically challenging, as PISAM is designed to ease such im-
plementation. It is also expected that the effect of vibrational states can be
implemented in PISAM at fairly low computational costs. The number of
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different possible transitions does, however, become very large. Even if only
the 2 most probable transitions for each vibrational state are included, 42 new
reactions have to be added. The reaction rates of all of these 42 transitions
must be known, which in itself demands rigorous research. Furthermore, the
effect of wall interactions on the vibrational state must be taken into account
when reflections occur, and last but not least the distribution of the vibra-
tional states in the deuterium gas, as it initially enters the reaction chamber,
must be known.

9.2 Momentum Transfer Mediated by Neutrals

As described in chapter 3, the fluid velocity is neglected in the evaluation of
reaction rates in (3.4) and (3.10). In (3.4), describing the reaction rates of
electron-neutral collisions, this is a good approximation due to the large ratio
of the deuterium ion and -molecule mass to electron mass. For ions, however,
the fluid velocity of the poloidal shear flows characteristic of H-mode can
be up to 10% of their thermal velocity. By neglecting the fluid velocity in
(3.10) ions are not allowed to transfer a net momentum to the neutrals. If
on the other hand, the fluid velocity was taken into consideration in (3.10),
charge exchange reactions would contribute with a viscosity-like effect, as the
conduction-like effect caused by CX atoms currently seen in figure 8.6. Such
a viscosity term is relevant in asserting whether neutrals influence H-mode,
as it would act to slow down the poloidal shear flow creating the transport
barrier governing H-mode. Allowing for elastic ion-neutral collisions would
further contribute to such an effect, but with far less significance than charge
exchange reactions, as the momentum transfer cross section is much smaller.
In conclusion, for PISAM to be capable of asserting whether neutral injection
can cause a transition from H-mode to L-mode the fluid velocity must be
accounted for when calculating the velocity distribution of ions going into
charge exchange reactions.

9.3 Coupling of Models with Different

Dimensionalities

HESEL is considered a 2D model since the fluid velocities are only self-
consistently solved for in 2 dimensions while the parallel velocity only enters
as damping terms. This poses a problem in the distribution of energy and
momentum in plasma-neutral interactions. As evident from (2.14) and (2.21),
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proper introduction of the inelastic source terms in the transport equations
requires knowledge of the fluid velocity vector u. As HESEL is 2D the field-
aligned component of u is unknown. To circumvent this lack of knowledge
it is assumed that the field-aligned fluid velocity is zero. This is certainly
not the case in the SOL where blobs expand with velocities similar to the
acoustic velocity [30]. The justification for this assumption is that the av-
erage field-aligned fluid velocity in the SOL is expected to be small. If one
wishes to secure proper energy and momentum exchange in inelastic colli-
sions, the parallel velocity component must either be approximated explicitly
by parameterization or included self consistently in a full 3D model.

9.4 Coupling a Discrete Model with a

Continues Model

The very foundation of PISAM-HESEL is that a discrete model can be cou-
pled to a continuous model without violating the governing physics. Even
though the validity of this idea seems somewhat intuitive, it is an intricate
matter giving rise to the following paradox:

The precision of PISAM increases as the internal time step, including the
update of the plasma fields, decreases. The same can be said for the fluid
model, where the error in solving the differential equations decreases as the
time interval between which the fields and source terms are updated decreases.
The paradox is that the same is not true for the coupled model. The reason
is the relation between the size of the time step and the statistical noise of
the source terms supplied to HESEL by PISAM. In the limit where the time
interval between the evaluation of source terms from inelastic plasma-neutral
collisions goes towards zero, the source terms passed from PISAM to HESEL
tend towards sputtered delta functions, revealing the discrete nature of PISAM.
Such source terms are meaningless to apply in a fluid model that is intrinsi-
cally continuous, treating all sources as rates determined by local macroscopic
properties.

The thorough reflection on the time step size of PISAM, presented in chapter
7, outlined a first approach in seeking a compromise to overcome the challenges
resulting from the paradox described above. Given further time and computa-
tional resources, a natural next step would be to investigate the convergence
of the results of the PISAM-HESEL model, when scanning over various values
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of 1/P 29.

9.5 Optimal Conditions and Injection

Temperature

PISAM is developed to supply source terms from chemical reactions between
gas and plasma constituents. The optimal conditions for using PISAM must
be viewed in this light. The consequence of the paradox of the previous
section is that the time interval between which source terms are evaluated by
PISAM should be short enough for the dynamics concerning plasma-neutral
interactions to be resolved, but also long enough for smooth sources to be
obtained. In a simple case where the parameters determining the reaction
rates are approximately uniform, this balance can be expressed from (7.7) as

∆tmin =
W

nn0ρxρyρzn0⟨σv⟩0ξ2t
< τ (9.1)

Where nn and n refer to the "particle"-species and the "fluid"-species respec-
tively, the zeros indicate reference quantities at the LCFS, ξt is the maximally
allowed relative statistic uncertainty, ∆tmin is the minimum time step satis-
fying the criterion set by ξt, and τ is the characteristic timescale of change
of the dynamics of interest. ξt would have to be determined by convergence
tests. In the following, it is assumed that this value is given. (9.1) states that
PISAM must produce a certain amount of reactions in each time step in each
grid cell, for the statistical noise of the source term to reach a level that is ac-
ceptable in the context of a fluid model. The only parameter in (9.1) that can
be adjusted without altering the physical system described is the super par-
ticle weight. The numerical complexity of PISAM is O(1/W ), meaning that
setting a very low weight requires extensive computational resources. The
conclusion is that the reaction rate of the particles modeled by PISAM must
be sufficiently high in comparison to the characteristic spatial and temporal
rates of change, for PISAM to be an efficient simulation tool. If this condition
is not satisfied a lot of numerical resources will be spent on pushing particles
around that do not contribute significantly to the physics of interest. This
undesirable scenario is realized close to the outer radial boundary when using
PISAM at the outboard midplane. To avoid having a lot of molecules build up
close to the edge where they are very weakly interacting with the plasma the

29This quantity is defined in chapter 7.
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injection temperature has been set to 0.3eV, and the wall boundary condition
has been implemented. The effect of this increased temperature is a lower
density of molecules at the outer radial boundary and a faster saturation of
the system. If the molecules were injected at room temperature instead, a
number of changes would occur. The average radial distance of atom creation
from the LCFS would increase, causing a decreased flux of, especially non-
CX, atoms over the LCFS. Furthermore, the behavior of blobs in the SOL
would be affected. If the molecule density in the SOL is higher, the ionization
rate around blobs going into the SOL is likewise higher meaning that blobs
can be sustained further into the SOL before being diminished by the par-
allel sink terms. Since saturation would be slower, the next blobs venturing
into the same part of the SOL as the former would experience a relatively
low molecule density. The variance in blob size is thus expected to be larger
at low injection temperatures. The energy balance of (8.7) is however unaf-
fected by the increased temperature as the vast majority of neutral energy
is drawn from the plasma. The rate of this plasma-neutral energy exchange
almost solely depends on the molecule flux over the outer radial boundary.
In conclusion, the qualitative effects of altering the injection temperature can
be predicted, but simulation is necessary to assert their significance quantita-
tively. Low-temperature simulations are however numerically expensive with
PISAM which is generally much better suited for the simulation of supersonic
molecular beam injection than conventional gas puffing.

9.6 Future Experiments

The convincing results reported above only represent a small glance at the
physics possible to uncover with PISAM-HESEL. As the next step, the diag-
nostics needed to monitor the flux of particles and energy across the LCFS
should be implemented. This would allow PISAM to assert the fueling effi-
ciency, especially, in supersonic molecular beam injection, for which PISAM
should be perfectly suited, and compare the results to those obtained using a
fluid model in [135].

Noting the change of the radial particle flux, ion temperature gradient,
and thus energy transport due to the presence of neutrals, it would be natural
to analyze the net effect of neutrals on energy confinement. Monitoring the
radial energy flux due to the transport of neutrals would allow for such an
analysis.
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9.7 Beyond the Outboard Midplane and

Beyond Fusion Plasma

Currently, the boundary conditions and injection routine of PISAM are specif-
ically set up for the outboard midplane of a Tokamak. This can however fairly
easily be altered such that PISAM can be used to describe neutral-plasma in-
teractions in the divertor region, which is currently a subject being extensively
researched [136–139]. There is no reason that PISAM should be restricted to
use in fusion plasma. In any situation where weakly self-interacting particles
are strongly coupled to a fluid model through chemical reactions, a modified
version of PISAM can be used to evaluate the effects of such interactions. The
coupling method developed as part of this thesis means that PISAM can be
coupled to any MPI program, and since it is implemented in Python, writing
modifications and extensions to PISAM is easily accessible.
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10 Conclusion

For steady-state fusion to be realized the reactor must be fueled while oper-
ating, which is achieved by injection of neutrals into the reaction chamber.
Furthermore, recycling from the divertors causes transport of neutrals to the
plasma edge and SOL. An understanding of the penetration of such neutrals
into the plasma is necessary to assert the efficiency of various fueling tech-
niques. Moreover, the neutrals mediate a transport of momentum and energy
within the plasma, an effect primarily ascribed to charge exchange reactions.
Energy transport across the LCFS mediated by neutrals directly affects the
energy confinement time, which is one the most important figures of merit
of magnetic fusion reactors. Perhaps more importantly, the neutral-mediated
momentum and energy transport is suspected to play a role in transitions from
H-mode to L-mode, potentially causing a large decrease in energy confinement
time. To address the challenge of investigating neutral transport phenomena
in turbulent edge plasma without the need for extensive computational re-
sources, the discrete particle model PISAM has been developed.

This thesis has presented PISAM and the 2D turbulent edge plasma model
HESEL in thorough detail, using arguments drawn from first concepts. Start-
ing from the Boltzmann equation, the introduction of inelastic neutral source
terms in the governing transport equations has been reviewed. These equa-
tions were closed by the methods of Braginskii [17]. Branginskiis equations
altered with inelastic source terms were further reduced using drift order-
ing and a parameterization of the parallel velocity, which along with arith-
metic simplifications and certain gradient truncations lead to the nHESEL
equations. The detail in which these steps were performed revealed several
mistakes, regarding higher-order terms, in the previously published nHESEL
equations, which this work has served to revise. The main achievement of this
thesis is the development and implementation of the discrete particle model
PISAM and its MPI coupling to HESEL. The purpose of PISAM is to calcu-
late the inelastic source terms necessary to close the nHESEL equations. The
difficulty in building a successful discrete particle model for the current appli-
cation lies in describing the governing physics in great detail, without creating
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a model that is numerically too exhaustive. This is achieved in PISAM by
immense research in the field of electron impact on the deuterium molecule.
PISAM manages to compress an impressive amount of reaction channels into
a numerically light implementation by a clever grouping of reaction channels
whenever physically meaningful. By the use of symmetry arguments, PISAM
manages to implement energy and momentum conservation without the need
to sample over differential cross sections, with the only exception being charge
exchange reactions. To deal with these reactions the axial symmetry of CX is
utilized to create an extremely effective algorithm that correctly samples ions
participating in CX reactions with energetic neutrals in full 3D. Furthermore,
all quantum mechanical data, such as state energies and cross sections used
in PISAM, originate from the most recent theoretical progress that has been
shown to improve the correspondence with measurements.

All these details of PISAM are implemented in Python by the use of fully
vectorized numpy-code achieving high performance and easy accessibility to
other researchers. The embarrassingly parallel nature of PISAM has been
utilized to parallelize the implementation to run with an even workload on an
arbitrary number of cores. This parallel Python program has been coupled
to a C++ implementation of HESEL by the use of MPI intercommunicators.
Coupling an MPI parallel Python program with an MPI parallel C++ program
in this innovative fashion is in itself pioneering work. The resulting one-of-
a-kind solution has been implemented on the HPC cluster Marconi, where
PISAM has been successful in running stably on more than 1000 cores while
coupled to HESEL also running on multiple nodes.

The founding idea of having a discrete particle model supply sources to a
fluid model has been discussed in great detail. Arguments relying on theoret-
ical work as well as simulation data have been used to ensure the validity of
the approach. This theoretical work revealed a strong scaling relation of the
largest applicable super-particle weight with the magnetic field strength, i.e.
Wmax ∝ B−3/2.

Results from using PISAM have been reported applying it on static fields,
as well as on dynamic fields in coupling with HESEL. These results have
provided a persuading verification of PISAM. The results on the static fields
are in beautiful correspondence with the prior expectations and furthermore
clearly illustrate the transport mechanisms arising when neutrals are injected
into the reaction chamber of a fusion reactor.

In presenting the results of PISAM-HESEL these were divided into two
groups. Namely, profiles showing the source terms produced by PISAM, and
profiles showing the influence of these sources on the plasma fields. The ion
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energy density source profile showed a clear inwards radial transport of energy
mediated by charge exchange reactions. A similar effect was not produced by
the fluid model of [70], indicating that this model lacks energy conservation
in the transfer of kinetic energy between plasma and neutrals.

The influence of neutrals on the profiles of plasma density and tempera-
ture was found to be in good qualitative agreement with prior measurements
and simulation results, [132, 133]. The current simulation results show no dis-
turbance of the poloidal shear flow governing the high containment mode in
which the simulated reactor is operating. The ion fluid velocity should how-
ever be included when sampling ions going into CX reactions, before drawing
conclusions concerning H-mode transitions. On the other hand, the ExB flux
resulting from interchange dynamics shows significant changes in most of the
simulation domain. Especially the lowered flux on the high field side of the
LCFS is an interesting result motivating further investigations.
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A : Definitions in Kinetic Theory

This appendix introduces the basic concepts of density, fluid velocity, temper-
ature, and pressure in the context of kinetic theory.

A.1 Average Macroscopic Variables

Let the phase space distribution function fs(r,v, t) of particle species s, be
defined such that the number of particles within the phase space volume drdv
at the point (r,v, t) is given by

fs(r,v, t)drdv. (A.1)

It thus follows that the density is obtained by integrating over velocity space,
i.e.

ns(r, t) =

∫
fs(r,v, t)dv. (A.2)

More generally the mean value, which will also be referred to as the expecta-
tion value, ⟨ϕ⟩(r, t), of any physical quantity ϕ(r,v, t), is defined by

⟨ϕ⟩(r, t) = 1

ns(r, t)

∫
ϕ(r,v, t)fs(r,v, t)dv. (A.3)

In the work presented in this thesis, ϕ will be a tensor of order 0, 1, or 2.
In fluid theory the goal is to express the evolution of certain macroscopic
quantities i.e. density n, fluid velocity u and temperature T , by the current
state of those exact quantities, where u and T are defined by

u = ⟨v⟩ = 1

n

∫
vfdv,

1

2
m⟨w2⟩ = m

2n

∫
w2fdv =

3

2
kT, (A.4)

where the random velocity w is defined as w = v−u, and the subscript s as
well as the explicit dependence on free parameters have been omitted to ease
the notation. Through (A.4) this work employs the kinetic theory definition
of temperature as presented, among others, by Chapman and Cowling in
[64]. The macroscopic quantities, n, u, and T are of certain interest as their
microscopic counterparts particle number, particle momentum, and particle
energy are summational invariants of elastic collisions. A fact that is seen to
introduce certain simplifications in the fluid equations derived in chapter 2.
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A.2 Generalized Pressure

Following [64] let dS be a small surface element containing the point P within
a fluid, and let n̂ be the positive normal unit vector of this surface element.
Furthermore, let dS share the motion of the fluid at point P , i.e. let dS

have velocity u(rP , t). The pressure pn across dS towards its positive side is
defined as the rate of flow of momentum across dS per unit area in the positive
direction. Through simple geometrical arguments, it is shown that pn = n̂ ·p,
where the pressure tensor, p, is the expectation value of the random velocity
dyad multiplied by mass density, such that

pij = mn⟨wiwj⟩ = m

∫
wiwjfdv. (A.5)

The component of the pressure pn along n̂ is given by

n̂ · pn = pijninj = p : n̂n̂, (A.6)

where Einstein notation is used, the notation a : b is used for the double
scalar product of second-order tensors, and ab denotes the dyad formed by the
vectors a and b. If n̂ is parallel to a coordinate axis, say x, the x-component
of the pressure on a surface dS in the yz-plane is

x̂ · px = pxx = mn⟨w2
x⟩. (A.7)

The sum of normal pressures across three planes parallel to the coordinate
planes is thus

pxx + pyy + pzz = mn⟨w2⟩. (A.8)

As the orientation of the coordinate axes is arbitrary the mean of normal
pressures across any three orthogonal planes is

p =
1

3
mn⟨w2⟩ = 1

3
Tr(p) = nT, (A.9)

where Tr(t) is the trace of tensor t. p as defined by (A.9) shall be denoted as
the scalar pressure. In the last equality of (A.9) the definition of T in (A.4)
was used, showing that these formal definitions of p and T give the relation
between scalar pressure and temperature known from the ideal gas law.

A.3 The Viscous Stress Tensor

It is practical to divide the pressure tensor into its isotropic and anisotropic
parts, thus expressing it as

p = pI + π (A.10)
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where I is the second order unit tensor and the viscous stress tensor π is
defined by

πij = pij − pδij = mn⟨wiwj −
1

3
w2δij⟩. (A.11)

This division is necessary in the simplification of the fluid equations sought
when employing a fluid ordering, since the isotropic parts of p are usually
significantly larger than the anisotropic parts, and hence the drifts arising
from these quantities will not contribute to the same order. The reason for
this difference in magnitude arises since collisions will drive the distribution
function in velocity space toward a Maxwellian, as proven in chapter 3. As a
Maxwellian is spherically symmetric around u the expectation value of odd
powers of wi will be zero if f is purely Maxwellian. Only perturbations to
the Maxwellian distribution can contribute to the off-diagonal elements of π,
and such perturbations are generally assumed to be small for collisional fluids.
The notion of a fluid as collisional is specified in the discussion of fluid closure
in chapter 4.
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B : Derivation of the Boltzmann
Collision Operator

The Boltzmann collision operator seeks to describe the rate of change of phase
space density due to elastic binary collisions. Consider the phase space dis-
tribution function fi of species i in a composite system consisting of n species
belonging to the set s = {1, 2, .., n}. A particle of species i can participate in
a binary collision with a particle of any species j ∈ s including species i itself,
which is accounted for by a division of the collision operator

Ei =
n∑

j=0

Eij. (B.1)

Eij gives the rate of change of the phase space density of particle species i due
to collisions with particles of species j. In the following, only the derivation
of E12 shall be considered. The remaining terms in the collision operator Ei
are obtained from E12 by simple index substitution. Let G and g12 = v1 − v2

refer to the center of mass velocity and relative velocity of the two colliding
particles. Then

v1 = G+
µ

m1

g12, v2 = G− µ

m2

g12, (B.2)

where µ is the reduced mass. Velocities of particles after a collision shall be
denoted by primes, not to be confused with the primes introduced in chapter
3 to denote the neutral frame.

The goal of the following is to determine the net change, N , in the number
of particles belonging to the phase space volume drdv1 located at r, v1, in the
short time interval dt, due to collisions between particles of species 1 and 2.
This net change is a result of two competing processes. Any particle initially
present in drdv1 that participates in a collision during dt will be removed from
drdv1 as its velocity is changed as a result of the collision. On the other hand,
two particles of species 1 and 2 respectively, both inside the spatial volume
dr have a possibility of colliding such that the velocity v′

1 of the particle of
species 1 after the collision is within the range v1 + dv1, thus increasing the



Appendix B: Derivation of the Boltzmann Collision Operator 133

number of particles in drdv1. The net change of particles in drdv1 is divided
into the change caused by each of these processes

N = N+ −N−. (B.3)

The collisions contributing to N− are termed direct while those contributing
to N+ are termed inverse. To simplify notation, the phase space distribution
function fs(r,vs, t) of species s evaluated at position r, velocity vs and time
t shall be denoted fs. Here vs is the velocity of the particle of species s going
into a direct collision. Furthermore, the net change in the phase space volume
dr, dv1 owing to collisions with particles v2, dv2 is denoted dN .

dN− is easily determined by expanding the argument leading to (3.2). This
is accomplished by multiplying (3.2) by the number of particles of species 1
in the phase space volume v1, dv1 i.e. f1drdv1. dN− can thus be written as

dN−(v1,v2, χ, ϵ) = gf1f2σ12drdv1dv2dt. (B.4)

In elastic binary collisions of particles interacting by a central force, (v′
1,v

′
2)

are uniquely determined by (v1, v2), ϵ and χ. Here ϵ is an azimuthal angle
giving the orientation of the plane in which g12 is confined. Momentum and
energy conservation ensure that the CM velocity, G, and the magnitude of
the relative velocity, g, are conserved i.e. in the CM frame the collision results
merely in a rotation of the relative velocity vector. The angle of this rotation
defines χ. Introducing the differential cross section

( dσ
dΩ

)
, giving the relative

probability of scattering into the solid angle sinχdϵdχ, (B.4) can be rewritten
to yield

dN− =

∫ π

0

sinχdχ
∫ 2π

0

dϵ
(

dσ
dΩ

)
12

gf1f2drdv1dv2dt. (B.5)

To get the total number of collisions where a particle of species 1 has initial
velocity v1, dN− is integrated over all velocities v2 yielding

N− = drdv1dt
∫

dv2

∫ π

0

sinχdχ
∫ 2π

0

dϵ
(

dσ
dΩ

)
12

uf1f2. (B.6)

To determine N+ the symmetry of direct and inverse encounters is exploited.
For each direct collision specified by the quantities (v1,v2,v

′
1,v

′
2), there is a

corresponding inverse collision (v′
1,v

′
2,v1,v2), with the same χ and ϵ and thus

the same differential cross section, [64]. Let v′
1, dv′

1 and v′
2, dv′

2 be velocity
ranges, such that each collision with initial velocities in the ranges v1, dv1 and
v2, dv2 specified by χ, ϵ result in velocities within v′

1, dv′
1 and v′

2, dv′
2. Given

the transformation of (B.2) and the fact that g12 is merely rotated during an
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elastic binary collision, with the rotation specified by χ and ϵ, it is clear that
a unique mapping between (v1,v2) and (v′

1,v
′
2) exists when χ and ϵ are spec-

ified. It can be shown that the determinant of the Jacobian of the coordinate
transformation defined by this mapping is unity i.e. dv1dv2 = dv′

1dv′
2. The

number of inverse collisions defined by (v′
1,v

′
2, χ, ϵ), such that the relative ve-

locity is rotated into the orientation of the direct collision, happening within
dr during dt is thus given by

gf ′
1f

′
2

(
dσ
dΩ

)
12

sinχdϵdχdrdv1dv2dt, (B.7)

such that dN+ can be written in analogy with (B.5) as

dN+ =

∫ π

0

sinχdχ
∫ 2π

0

dϵ
(

dσ
dΩ

)
12

gf ′
1f

′
2drdv1dv2dt, (B.8)

where f ′
1 is read f1(r,v

′
1(v1,v2, χ, ϵ), t). N+ is obtained by integration over

the unit sphere and all velocities v2

N+ = drdv1dt
∫

dv2

∫ π

0

sinχdχ
∫ 2π

0

dϵ
(

dσ
dΩ

)
12

gf ′
1f

′
2. (B.9)

The Boltzmann collision operator of collisions between particles of species
1 and 2 is now obtained by combining (B.3), (B.6), (B.9), and dividing by
drdv1dt to get the change of particles in phase space at r,v1, t per unit phase
space volume per unit time

E12(r,v1, t) =

∫
dv2

∫ π

0

sinχdχ
∫ 2π

0

dϵ
(

dσ
dΩ

)
12

g(f ′
1f

′
2 − f1f2). (B.10)
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Figure C.1: The CX reaction rate of a deuterium atom with energy En from the
HYDHEL database plotted as solid lines, along with the reaction rates calculated
using the 4D distribution obtained from calculating the integrand of C.1.

C : Asymmetry of Charge
Exchange Reactions

As described in chapters 3 and 5 charge exchange reactions should be treated
with specific care for two reasons. Firstly, since the colliding particles have
similar mass resulting in a significant momentum exchange, which due to
the spatial asymmetry of charge exchange reactions is not expected to cancel
when averaging over many collisions. Secondly, the energy and momentum
exchange, in CX reactions, is strongly dependent on the velocity of the react-
ing particles, meaning that the distribution of the velocities of ions going into
charge exchange reactions must be determined. The method for determin-
ing this distribution was outlined in chapter 5. This appendix will validate
the approach and show relevant speed- and angular distributions and their
dependence on ion temperature and neutral energy.
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Figure C.2: The marginal probability distribution with respect to θ′ at various
neutral energies, En, and ion temperatures, Ti. In (a) the ion temperature is kept
constant at 10 eV, while (b) shows results obtained at a constant neutral energy of
50 eV. The black line shows π/2 to give a sense of the asymmetry.

C.1 Validation

To validate the 4D CX reaction rate distribution obtained from calculating
the integrand of 3.12, the total reaction rates obtained at a number of dif-
ferent temperatures and energies have been calculated by summing over the
contributions from all ion velocities wi and poloidal angles θ′30. These total
reaction rates are plotted in figure C.1 along with the reaction rates given as
a polynomial fit in the database HYDHEL [140], which is the rates used for
CX in the EIRENE code as well as in PISAM. Figure C.1 shows a convincing
correspondence between the total reaction rate calculated from summing over
the 4D CX reaction rate distribution, and the fit given in HYDHEL, thus
providing a solid validation of the calculations.

C.2 Asymmetry

Figure C.2 shows the marginal probability distribution of velocities going into
CX reactions, with respect to θ′, at various neutral energies, En, and ion tem-
peratures, Ti. If the neutral energy is neglected as in (3.4) these distributions
would be symmetrical around π/2. Albeit a slight bias towards the high θ′-
side is seen in figure C.2. This bias is most significant in situations where
the ion temperature and neutral energy are equal. The symmetry is equally
restored for Ti >> En and Ti << En. Generally, the effect of monitoring

30See figure 3.1
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Figure C.3: The marginal probability distribution with respect to wi at various
neutral energies, En, and ion temperatures, Ti. In (a) the neutral energy is kept
constant at 0.1 eV, while (b) shows results for a constant neutral energy of 142 eV.
The black lines show the Maxwell-Boltzmann speed distribution at the corresponding
temperature.

the deflection angles in CX is seen to be quite small. It is however an im-
portant feature to investigate as it is common in the literature to model the
transport of CX neutrals by diffusion, as in [141] and [142]. If however, one
found highly asymmetric distributions of the deflection angle θ′, in CX reac-
tions, meaning that neutrals would have a tendency to turn around in each
CX reaction, the CX atoms would exhibit something inherently different than
a random walk, and thus the diffusion model might not be justified. Figure
C.3 shows the marginal probability density function with respect to the ion
random velocity wi, along with the Maxwell-Boltzmann distributions defined
by the corresponding ion temperatures. 3(a) gives the marginal PDFs for a
low neutral energy of En = 0.1eV at various ion temperatures. As expected
the distribution of ions going into charge exchange reactions is shifted towards
higher velocities as compared to the corresponding Maxwell-Boltzmann distri-
bution. 3(a) gives the marginal PDFs for the high neutral energy En = 142eV

at varying temperatures. Only the distribution representing comparable ion
and neutral energies is shifted with respect to the corresponding MB distri-
bution. The reasoning is that when En is large in comparison with the ion
temperature, the vast majority of collisions happen due to the speed of the
neutral particle itself, not the ion speed. The neutral particle bumps into the
ions, which are practically standing still from the neutral’s point of view.
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Figure D.1: This diagram shows the most important design features regarding the
structure of the implementation of PISAM. The boxes represent Python classes, with
equal coloring indicating inheritance. The colored arrows represent the exchange of
information between the classes.

D : Design of the PISAM
Implementation

In designing the implementation of PISAM there have been two main focus
points; 1) Maximizing performance and 2) making it easy to add further par-
ticles and reactions. These are accomplished by an object-oriented approach
demanding each type of particle to provide certain information and implement
certain methods. A diagram of the overall structure of the implementation is
shown in figure D.1. The colored arrows represent the most important infor-
mation exchange between the classes of which PISAM consists. Below, a brief
presentation of each class and its functionality is reviewed:
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• Species:
The species class is the main class of PISAM. It holds the minimal
attributes required for each type of particle added to the system e.g.
mass, inflow rate, inflow temperature, etc. Furthermore, it stores the
positions, velocities, and surrounding temperatures for each particle of
the species it represents.

It implements the step() function called for each species in each time
step. This function outlines all the processes making up a simulation
timestep.

1 def step(self):
2 #Get initial positions and velocities of new particles flowing
3 #into the system in this timestep.
4 new_xs, new_ys, new_vxs, new_vys, new_vzs = self.init_pos_vs()
5 #Inject the particles, filling the vacant parts of memory
6 #where information about removed particles reside.
7 self.inflow(new_xs, new_ys, new_vxs, new_vys, new_vzs)
8 #Get the indices of the grid cell of the plasma simulation
9 #That each particle is in.

10 self.set_plasma_inds()
11 #Read the fields surrounding each particle
12 self.set_Te()
13 self.set_Ti()
14 self.set_n()
15 #Calculate the rates of each reaction for each particle
16 #based on the relevant field values and tables.
17 self.get_rates()
18 #calculate the probability of reacting
19 self.probs_arr[:, 0:self.max_ind] =
20 self.get_probs_from_rates(self.probs_arr[:, 0:self.max_ind])
21 #For each particle determine what reactions happen if any,
22 #by sampling using uniform random numbers.
23 specify_interaction = self.calc_interaction(self.probs_arr)
24 #Perform the interactions. This involves removing and breeding
25 #new particles, calculating the source terms, etc.
26 self.do_interaction(specify_interaction)
27 #Move the particles according to their speed and apply
28 #the relevant boundary conditions.
29 self.translate()

• D_atoms and D_molecules:
These are both sub-classes of Species, and serve to implement the char-
acteristics of the reactions of atoms and molecules respectively i.e. the
rate of each reaction, and the actions performed in each collision.
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• Domain:
The Domain class holds all the information that is domain specific rather
than particle specific. The Domain thus monitors the values of the
plasma fields n, Te, and Ti and makes this information accessible to
each instance of Species. Furthermore, Domain stores the source terms
obtained in each time step on a grid equal in shape to the grid of the
plasma simulation. Domain also keeps track of the total time passed in
the simulation which is used in the synchronization with HESEL.

• Tables and Table_Dict:
The Tables class implements a number of different tables. These all
store discrete numerical data in up to four dimensions. The data is
sampled from functions representing reaction rates, fragment kinetic en-
ergy distributions, etc. The reason for creating such tables rather than
using splines representing the relevant functions is the large overhead
from calculating each required value using splines. As the probability
of each reaction for each particle has to be evaluated at each time step,
the performance of this part of the program is paramount. Many of the
tables are logarithmically rather than linearly sampled to get precise
function descriptions using a minimal amount of data points. Due to
this irregularity, all Tables implement a get_indices() function that
returns the indices along a dimension d given an array of values along
that dimension, allowing users to read table data safely and efficiently.
The Table_Dict class is a wrapper class for Tables, storing the large
number of tables used by each species in a single object to increase
readability and flexibility.

• Simulator:
The Simulator class controls all the processes in a full simulation. It
instantiates Domain and any instance of Species applied in the simu-
lation and finalizes the simulation by saving the data obtained during
the simulation, as well as the state of the Domain and Species objects
at simulation end. Simulator is responsible for exchanging the neces-
sary information with the binding layer between PISAM and HESEL,
making it possible to synchronize the temporal evolution of PISAM and
HESEL.
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