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Resumé

Med introduktionen af Soliton-modellen er forst̊aelse af lydudbredelse i lipid-
membraner blevet vital for forst̊aelsen af hvordan nerver sender signaler
langs deres axoner. Målet med dette speciale er at bygge en forst̊aelse for
hvordan lavfrekvent lydudbredelse i lipidmembraner, og hermed hvordan
denne lydudbredelse afhænger af frekvens. Min indgangsvinkel er af ter-
modynamisk nature og dækker over b̊ade analytisk og numerisk arbejde.
Det numeriske arbejde dækker udforsking af lipidmembraners relaksations
egenskaber og en undersøgelse af hvordan lipidfaseovergangen p̊avirkes af et
varme reservoir af endeligt størrelse. Med det sidst nævnte numeriske arbe-
jde er det muligt at koble lipidmembraners reaktion p̊a lyd til lydhastigheden
og hermed muliggøre en detajleret forst̊aelse af lyd udbredelse in lipidmem-
braner. Jeg finder, at lydudbredelse i lipidmembraner er kraftigt afhængig
af frekvens, ogs̊a ved meget lave frekvenser, og ligeledes er kraftigt afhængig
af densitet.

Abstract

With the emergence of the Soliton model, understanding low frequency
sound propagation in lipid membranes has become essential for understand-
ing how nerve signals propagate. My thermodynamic approach employs
both analytic arguments regarding sound propagation as well as numerical
explorations of membrane relaxation behavior, and how the lipid melting
transition is affected by a finite heat reservoir. Based on the last mentioned
numerical work, a connection between the response of the lipid membrane
to sound and the speed of sound is made, enabling me to estimate the fre-
quency dependence of sound in lipid membranes for low frequencies. I find
dispersion, even at very low frequencies, to be very strong and to strongly
depend on lateral density.
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Chapter 1

Introduction

Biological membranes are ubiquitous in the living world. Despite their di-
versity, membranes are remarkably similar in structure and composition,
and exhibit similar thermodynamic properties. They exist as thin, almost
two-dimensional lipid bilayers whose primary function is to separate the in-
terior of cells and organelles (sub-cellular compartment) from their external
environments. This separation in turn leads to the creation of chemical and
biological gradients, which play a pivotal role in many cellular and sub-
cellular processes, e.g. Adenosine Tri-Phosphate (ATP) production. Given
the importance of such chemical gradients across membranes, it is unsur-
prising that cells have invested heavily in infrastructure pertaining to inter-
and intra-membrane signaling and transport.

Figure 1.1: A idealized illustration of an animal cell, showing the outer membrane
and the inner organelles. From [1].

Even the propagation of nerve signals which allows cells to communicate
quickly over long distances has been attributed to biological membranes,
specifically the membrane of nerves, an ability that is vital for higher life-
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Chapter 1. Introduction

forms as animals [2, 3].

In 1952, Hodgkin and Huxley [2] proposed the now commonly accepted the-
ory for propagation of nerve signals. Their model is based on the equilibra-
tion of a trans-membrane ionic gradient through specific ion-conducting pro-
teins (ion-channels), resulting in a transient voltage change over the mem-
brane. This voltage change causes an avalanche phenomena by which the
nerve signal propagates down the axon. Hodgkin and Huxleys’ theory can
be schematically represented as a sequence of Kirchhoff circuits, where the
membrane acts as a capacitor and the ion-channels function as resistors. In
this representation, neuronal propagation is modeled as being dissipative in
nature – meaning that the process generates heat. Experimental measure-
ments of signal propagation in neurons do however not show a net generation
of heat, suggesting, contrary to Hodgkin and Huxleys’ predictions, that the
process is adiabatic [4–7].

To resolve this contradiction, Heimburg and Jackson [3] have recently
proposed a model where nerve signals are treated as a propagation of local-
ized density pulses (solitons) in the nerve axon membrane. The foundation
of the Soliton model is the adiabatic nature of the propagation of nerve
signals. With this alternative model the Heimburg and Jackson are able to
make correct predictions regarding the propagation velocity of the nerve sig-
nal in myelinated nerves, along with a number of new predictions regarding
excitation of nerves and the role of general anesthetics [8]. In addition, the
Soliton model explains a number of observations about nerve signal propa-
gation, which are not included in the Hodgkin and Huxley model, such as
changes in the thickness of the membrane, changes in the length of the nerve
and the existence of phase transition phenomena [9].

Biological membranes exhibit a phase-transition between an ordered and
a disordered lipid phase near physiological conditions [10]. It has also been
shown, that organisms alter their detailed lipid composition in order to pre-
serve this phase-transition despite different growth conditions [11–13]. Near
a phase transition the behavior of the membrane changes quite drastically:
The thermodynamic susceptibilities, such as heat capacity, display spikes
and the characteristic relaxation times of the membrane show a drastic slow
down [14–18]. The biological implications of membrane phase-transitions
continues to be an area of active research.

As previously noted, the existence of a phase transition in a membrane
drastically affects, among other, its compressibility, which in turn affects
how sound propagation in a membrane, see Fig. (1.2).
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Chapter 1. Introduction

Figure 1.2: The speed of lateral sound at the theoretical low frequency limit
(0 Hz) and at 5 MHz, from ultra-sonic experiments, as a function of lateral density.
Left, large unilamellar vesicles of DPPC at T = 45 ◦C. Right, lung surfactant at
T = 37 ◦C. Figure has been adopted from [3].

Fig. (1.2) clearly suggests that the speed of sound in lipid membranes
is a function of frequency (dispersion) and a non-linear function of density.
In order for solitons to exist in a given medium, the speed of sound in the
medium necessarily has to have a non-linear relationship with the density,
an effect which again has to be countered by dispersion. It is exactly the
cancellation of the non-linear and dispersion effects that causes the soliton.
These criteria are met in artificial lipid membranes as well in naturally oc-
curring membranes entirely due to the presence of the phase transition. It
is these observations that allow Heimburg and Jackson [3] to predict the
presence of solitons in lipid membranes.

With the introduction of the Soliton model [3], understanding sound prop-
agation in lipid membranes has become important for understanding nerve
signals. From the duration of nerve signals (milliseconds) the relevant fre-
quency regime for nerve signals can be estimated to be below 1000 Hz. The
details of the dispersion in this regime is however not known. The few ex-
perimental efforts in this low frequency regime have been aimed at exploring
the relaxation behavior of the lipid membrane [17, 18]. In the present form
of the Solition model, the dispersion effects have been assumed to be small
and independent of density, and the assumed values for the dispersion are
estimated from the physical length of nerve pulses. These approximation
have been necessary due to the lack of data regarding the dispersion at low
frequencies in lipid membranes.

Beyond this apparent use, the dispersion of sound in a medium is strongly
related to the dynamical properties of the membrane in general, and there-
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Chapter 1. Introduction

fore holds significant importances for the understanding the properties of
lipid membranes. An example of this, is the intimate relationship between
sound propagation and a mediums viscosity.

The main goal of this thesis is to explore the dispersion effects of sound
propagation in lipid membranes at low frequencies and through these stud-
ies to create a toolbox to understand this process from a thermodynamical
point of view.

The thesis is structured as following: Starting out the reader will be in-
troduced to the Background Theory (chapter 2), containing an introduction
of the lipid membrane, nerve theory and theory of sound. This lead to the
Analytical Approach (chapter 3), where the frequency dependence of the
lateral speed of sound in lipid membranes is estimated analytically, based
on thermodynamics and linear response theory. The analytical efforts are
backed by simulations (Monte Carlo) and modeling, directly or conceptu-
ally, in the following chapter on Simulations (chapter 4). Ending with the
discussion of the findings and the process leading to these in Discussion and
Conclusion (chapter 5).
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Chapter 2

Background Theory

In the following chapter the relevant theory and concepts will be introduced.
Starting out, the medium of interest (the lipid membrane) will be introduced
along with insight into nerves and how nerve signals are believed to be
conducted. Ending with a general introduction to sound.

2.1 Lipid Membranes

Overton [19] proposed in 1899 that cells are surrounded by a “fatty oil”.
In 1925 Gorter and Grendel [20] extended this, by finding that cells “are
covered by a layer of fatty substances that is two molecules thick”. Further,
it became clear in 1935 from experiments made by Danielli and Harvey [21]
that the fatty layer is made up of both lipids and proteins. These discover-
ies lead to years of speculation about the organization of these fatty layers.
In 1972 Singer and Nicolson [22] proposed the Fluid Mosaic model. The
Fluid Mosaic model describes the structure of the fatty layer as a homoge-
neous bilayer of lipids (“a two-dimensional oriented viscous solution” [22]),
wherein proteins and other macro-molecules can be anchored or immersed
due to mainly hydrophobic interactions, see Fig. (2.1), left, for visualization.
The idea of the Fluid Mosaic model was extended in 1984 by Mouritsen and
Bloom [23] in the Mattress model. In the Mattress model the bilayer is
viewed as a pseudo 2-dimensional heterogeneous solution, where mismatch-
ing between the hydrophobic regions of the lipids and the proteins induce
inhomogeneities in the bilayer, see Fig. (2.1), right.

Both models describes the membrane as a dynamic structure. Already be-
fore the introduction of the Mattress model it became evident that the me-
chanical and fluid dynamical properties of natural occurring membranes are
crucial for the cells and biology [17]. In the efforts of understanding these
properties, it became apparent that membranes can be found in a number of
smectic phases and that the phase transitions between these often are close
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2.1. Lipid Membranes Chapter 2. Background Theory

Figure 2.1: Patches of membrane in accordance with; left, the Fluid Mosaic model,
right, the Mattress model. Bottom, modern veiw of the membrane, where the
membrane is considered to be a highly heterogeneous and dynamic structure. The
illustration has been provided by Andreas Blicher.

to physiological conditions. These phases, the transitions and their mechan-
ical and dynamical implications for the physical properties of membranes
have been the focus of both intense experimental and theoretical studies.

The lipid composition of biological membranes varies, different types of tis-
sue can have very different compositions – also growth criteria can alter the
composition. It has been shown that E. coli grown at different temperatures
alter their lipid composition such that their membranes show similar physical
properties at their respective growth conditions [11]. Similar lipid composi-
tion changes have also been observed for trouts. Specifically, changes in lipid
composition of liver tissue of trouts raised at different temperatures [12].
It has further been observed that lipid composition changes take place in
deep-sea bacteria grown at different pressure [13]. All these experimental
findings indicate that the physical properties of biological membranes are
tightly controlled, further underlining the importance of these properties for
the functionality of the membrane and therefore biology.

Before exploring membrane properties and their different phases further,
an introduction to lipids is necessary.

6



2.1. Lipid Membranes Chapter 2. Background Theory

2.1.1 Introduction to Lipids

A variety of lipids is found in biological membranes, these can be divided
up into sterols (e.g. cholsterol), sphingolipids and phospholipids. In cell
membranes the majority of lipids are phospholipids, these have, as the ma-
jority of all lipids in membranes, a polar and non-polar region making them
amphiphilic molecules.

The non-polar region is in phospholipids composed of two hydrocarbon
chains typically containing 16 or 18 carbons molecules [24]. The length can
though vary from 12 to 22 molecules and the chain can be either saturated,
unsaturated (containing double bonds) or one of each which is the most com-
mon. The hydrocarbon chains are linked through ester bonds to adjacent
carbons of a glycerol backbone. The last carbon in the glycerol backbone
is, in the case of a phospholipid, linked to a negativity charged phosphate
group via another ester bond. To this phosphate group the head group is
attached, making up the polar region of the lipids. The head group can be
a number of different biological compounds such as choline, ethanolamine,
serine and glycerol. Both serine and glycerol head groups will result in a net
negative charge of the polar region, whereas with choline and ethanolamine
the region will be zwitterionic1, all at neutral pH. In the majority of biolog-
ical membranes about 10− 20% of the lipids are charged, up to 40% can be
found in the membranes of mitochondria [25].

The naming conversion for phospholipids is based on the lipid chains and
on the head group. For example, two palmitic acids linked to a choline
group is called dipalmitoylphosphatidylcholine (DPPC), DPPC is depicted
in Fig. (2.2) (a).

Figure 2.2: (a): Illustration of a 1,2-dipalmitoylphosphatidylcholine (DPPC) lipid.
(b): A patch of a bilayer. (c): Unilamellar vesicle. The illustration has been
provided by Andreas Blicher

Due to the amphiphilic nature of the majority of lipids, they will when
mixed with a polar solvent (e.g. water) self-organize to minimize unfavor-

1Zwitterionic means no net charge but the charges are separated making it very polar.
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2.1. Lipid Membranes Chapter 2. Background Theory

able polar-nonpolar interactions. This self-organization will result in the
formation of macroscopic structures, such as micelles, planar bilayers (see
Fig. (2.2) (b)) or vesicles (see Fig. (2.2) (c)). In general other non-lamellar
structures can be formed, but they are rarely observed in excess water. Es-
pecially vesicles is of general interest in the context of biological membranes.
These bilayer structures are energetically favorable and are identical in struc-
ture to native biological membranes - thus representing a valuable model
system for studying physical properties of biological membranes. Through-
out this thesis large unilamellar vesicles of DPPC will be used as a model
system for biological membranes.

2.1.2 Membrane Phases

Lipid bilayers can be found in a number of smectic phases2 vary with lipid
composition. Common for these phases is that they are neither crystalline
nor fluid, they share properties from both classes.

Lipid bilayers are considered to have four smectic phases. The customarily
designated procedure for the lipid bilayer phase is following: For describ-
ing the long-range ordering an upper-case letter is used; L one-dimensional
lamellar, and P for two-dimensional oblique. A lower-case subscript is used
to describe the short-range ordering of the lipid chains; α disordered (fluid);
β, ordered - not tilted with respect to the normal of the bilayer (gel); β′,
ordered, tilted (gel) [26]. The four phases are presented below in the gener-
alized sequence of thermotropic transitions [27]:

• Lc: Crystalline phase, in which the lipids are ordered in three dimen-
sions.

• L′β: Crystalline molecular order. Chains are mostly “all-trans” 3 or-
dered and tilted. Lipids are in this phase is packed in a distorted
quasihexagonal lattice. This phase is often called the solid phase or
simply the gel phase.

• P′β: So called “ripple” phase. The membrane is partially solid, par-
tially fluid organized in a periodic structure in the plane of the lamel-
lae. The lipid chains are tilted but packed in a regular hexagonal
lattice. This phase forms prior to chain melting.

• Lα: Lipid chains are disordered. Order of lattice is lost. This phase is
often called the liquid-disordered phase or simply the fluid phase.

The main interest in this thesis is the main lipid melting transition between
L′β and Lα, where the ripple phase will be ignored. The ripple phase has been

2By a phase is meant a state of a medium that share physical properties.
3Spatial orientation of the two chains.
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2.1. Lipid Membranes Chapter 2. Background Theory

shown to be easily abolished by the presence of various biomolecules in the
membrane, and is rarely seen in biological membranes [28]. The topology of
the gel and fluid phases is illustrated in Fig. (4.7).

Figure 2.3: Top, illustrates the lateral ordering of the gel phase (left) and the fluid
phase (right). The bottom depicts the ordering of the lipid chains. The illustration
is provided by Andreas Blicher

2.1.3 Membrane Phase Transition

A phase transition is defined as a transformation from one phase of a system
to another, e.g. ice to water. Depending on the nature of the transition, a
system undergoing a phase transition can display a number of extraordinary
properties, such as drastic changes in the susceptibilities and in the relax-
ation behavior of the system.

The lipid melting transition has been found take place just under the physio-
logical growth temperature in naturally occurring membranes, see Fig. (2.4).
As previously mentioned, organisms have been found to adapt their lipid
composition such that their membranes conserve their physical properties
at different growth condition, this includes the lipid melting transition. Or-
ganisms shift their membranes lipid melting transition such as to conserve
the relation between the transition and their growth conditions, even under
extreme conditions [11]. The close relation between that lipid melting tran-
sition and growth conditions indicates the importance of the transition for
the function of biological membranes and therefore biology in general. This
has motivated extensive research of the nature of the main lipid melting
transition between the gel- and fluid-phase [26,29,30].
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2.1. Lipid Membranes Chapter 2. Background Theory

Figure 2.4: The calorimetric profile of a intact E. coli membrane. The red shaded
region is associated to the lipid transition, whereas the blue region is associated to
protein unfolding. Notice that the lipid transition is immediately below the growth
temperature. The figure is adopted from [11].

The lipid melting transition4 is a exothermic transition occurring over a
narrow but finite temperature range, which is driven by the entropy gain of
collective melting of lipid chains. The exothermic transition is easily mon-
itored by differential scanning calorimetry (DSC), where the heat capacity
show a spike during the transition of finite extent. The transition associated
heat capacity is referred to as the excess heat capacity. During the tran-
sition a number of other susceptibilities likewise display spikes, of major
importance for this thesis is the compressibility and lateral compressibility.

The thermodynamics of the lipid melting transition can be described
by considering the lipids as being in only two distinct states, gel- and fluid
state. This however does not imply that the membrane is well described by
only two distinct states. During the transition, the membrane can be found
in a number of intermediate states where the two lipid states are mixed.
The mixing of the two states is a result of the cooperativity of the transition
being finite. The extent of the cooperativity in the transition is reflected in
the width of the transition, which varies from more than 30 K for naturally
occurring membrane to around 0.1 K for multilamellar vesicles. In both
cases the lipid melting transition should though be considered as a highly
cooperative process.

4In the literature the main lipid phase transition is classified as a weak first order
transition, which is close to the critical point where the transition becomes second-order
[17,29].
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Figure 2.5: Fluorescence image of a lipid vesicle. The coloring indicates domains
of lipids in the gel state (red) and in the fluid state (green). The image is from [31].

The topography of the membrane during the lipid melting transition is
dominated by the formation of domains of various sizes and compositions
(see Fig. (2.5)), though phase separation is not observed5. The domains
are stabilized by the interplay between configuration entropy and interfacial
associated free energy. The fluctuations of these cooperative domains dis-
play very slow relaxation times in the transition region [32]. The extent of
this slow down during the lipid melting transition result in the character-
istic relaxation time to be in the second regime for pure lipid membranes [18].

The transition temperature is defined as the temperature where both lipid
states (gel- and fluid state) are equally probable

pfluid(Tm)

pgel(Tm)
= exp

(
− ∆G

RTm

)
= 1⇒ (2.1)

∆G = ∆H − Tm∆S = 0⇔ Tm =
∆H

∆S
, (2.2)

where Tm is the transition temperature, ∆S is the entropy change and the
∆H is the enthalpy change associated with the transition. The change
in enthalpy is experimentally readily available from differential scanning
calorimetry, where the enthalpy change is the integral of the excess heat
capacity. Commonly the peak of the transition is a close approximation to
the transition temperature and can in the literature be referred to as such.

From Eq. (2.2), any physical parameter that can alter either ∆H or ∆S will
shift the position of the transition. Since most lipids have either a charged
or a zwitterionic head group, changes in electrical fields will induce a change

5This observation is at odds with a true first order phase transition, which display
complete phase separation that renders interface phenomenas unimportant.
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in the position of the transition. Lipids in the gel- and the fluid states have
different in-plane packing and physical sizes (see Fig. (4.7)), resulting in a
area increase of about 25% and a volume increase of about 4% [33]. From
this, changes in pressure and lateral pressure will also result in a shift of
the position of the transition. In general a number of different factors have
been found to have strong influence on the transition properties, among
these are: Membrane hydration [34], salt concentration (especially of diva-
lent cations) [35], the presence of cholesterol, peptides, neurotransmitters,
antibiotics and general anesthetics (e.g. alcohol, chloroform etc.) [36, 37].
High bending curvature of the membrane and vesicle size can also affect
the lipid melting transition [38]. These “handles” on the lipid membrane
transition illustrate the diversity and also the generality of the lipid melting
transition.

Proportionality Relations

A number of extraordinary relations between thermodynamical variables of
the lipid membranes system have been found to hold in the transition range.
Ebel et al. [33] showed through extensive experimental work, that the change
in system enthalpy is proportional to the change in volume,

∆V = γV ·∆H, (2.3)

where the proportionality constant for large unilamallar vesicles (LUV) of
DPPC is γV = 8.599 · 10−10 m3/J [39]. This relation holds for artificial
lipid membranes as well as for natural occurring membranes [33]. Recently
it have been shown by Molecular Dynamics (MD) simulations that this pro-
portionality relation is valid in general, not just in the transition region [40].

Based on the cooperative nature of this proportionality relation, Heim-
burg [39] proposed that a similar proportionality relation should hold be-
tween change in enthalpy and change of area. The relation has been justified
indirectly by lipid monolayer experiments [41].

∆A = γA ·∆H, (2.4)

where the proportionality constant for LUV of DPPC is γA = 8.93·10−1 m2/J
[39]. This relation is of great interest for this thesis since it posses a direct
link between the easily measurable excess heat capacity, ∆cP , and the tran-
sition associated part of the isothermal lateral compressibility, ∆κAT .

∆κAT =
γ2
AT

〈A〉
∆cP (2.5)

See Appendix: Susceptibilities (appendix A.1) for details of derivations.
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2.2 Theory of Nerve Signals

In this section, the textbook theory for conduction of nerve signals will be
introduced, and discussed in the context of experimental findings that con-
tradict this theory. These contradictions have lead to the proposal of a
alternative theory which also will be introduced.

Already in the ancient Greece, Galen of Pergamon philosophized over the
human (or animal) ability to control its limbs, to feel pain etc. He deducted
that the head is the controlling unit of the body. As soon as this realization
was made, the next question was how the head is able to communicate with
the rest of the body [42]. It was found that signaling is conducted through
a cell-type called nerves or neurons. The “typical” nerve attributed long
distance communication (e.g. brain to leg) can be schematically depicted as
shown in Fig. (2.6)

Figure 2.6: A schematic illustration of a nerve. Nerve cells are in principal not
that different from other cells, having a nucleus, a cell membrane, mitochondria etc.
Unique to nerves are dendrites, axon and axon terminals. Dendrites are attributed
a sensory role, where a nerve signal is started. The axon are attributed conduction
of the nerve signal through the length of the nerve – possibly over meters. In the
axon terminals the nerve signal is transmitted onto other tissue. The Illustration
have been adopted from Wikipedia – Neuron.

When considering the propagation of nerve signals (also refereed to as
nerve pulses) the main point of interest is the axon. The length of a nerve
axon can span from nanometers to meters. Geometrically the axon can be
forked, but a single cylindric geometry is commonly assumed for simplifica-
tion. There can be a number of support tissues surrounding the axon – of
special interest is the myelin sheaths or layers, they are formed by Schwann
that are cells wrapped around the nerve axon. Myelinated nerves have been
found to transmit signals much faster (∼ 100 m/s) then non-myelinated
nerves (∼ 1−5 m/s) [11]. From the propagation velocities and the duration
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of the nerve pulses, the physical length of a nerve pulse can be calculated
to be in the range from millimeters to centimeters, marking nerve pulses as
macroscopic phenomenas.

2.2.1 Hodgkin & Huxley Model

In 1791 Luigi Galvani discovered that he could get the legs of dead frogs
to move by stimulating the spine electrically. With this finding, the road
was paved for describing nerve signaling as being of electrical nature. In
1952 Hodgkin and Huxley [2] presented a mathematical model for the ini-
tiation and propagation of nerve pulses in giant squid axons. Their effort
was originally only intended as an empirical description of the experimen-
tally found transient voltage change of a nerve signal (or action potential)
by Cole and Curtis [43]. Their description however gained widespread ac-
ceptance throughout the neural field, resulting in them receiving the Nobel
prize in medicine in 1963.

The giant squid axon was early on found to have a significantly high potas-
sium concentration inside the nerve compared to outside and a higher sodium
concentration outside than inside. These concentration differences give rise
to a voltage difference (through the Nernst potential) over the nerve mem-
brane. Hodgkin and Huxley [2] assumed that the cell membrane acts like
a barrier, in which trans-membrane ion channels are embedded. These ion
channels is assumed to be voltage gated and specific in their conduction of
ions – either conducting sodium or potassium. In their view, the membrane
is considered impermeable to ions and is assumed to be equivalent in func-
tion to a capacitor with constant capacitance. This is schematically depicted
in Fig. (2.7) A.

Figure 2.7: A: Illustration of the axon membrane in view of the Hodgkin-Huxley
model. B: The equivalent electrical circuit of the membrane, where the ion channels
are replaced with resistors and the membrane acts as a capacitor. The figure has
been adopted from [11]

Hodgkin and Huxley’s basic idea was that a local depolarization will
lower the potential difference over the membrane causing a local flux of ions
through the channels. This will result in further depolarization of the mem-
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brane which in turn will cause additional channels to conduct ions, hereby
creating a cascade effect through which the nerve signal is propagated. The
beauty of their model is that the axon membrane can be depicted as a
rather simple basic electrical circuit unit. The equivalent circuit can be seen
in Fig. (2.7) B. Though the basic equivalent circuit seem quite straightfor-
ward, the detailed dynamics of the ion channels is rather complicated. The
ion channels have a complex time and voltage dependence which have to be
empirically fitted for any system under consideration.

Hodgkin and Huxley proposed the following differential equation for de-
scribing the propagation of the voltage pulse in a nerve (giant squid axon),

a

2Ri

∂2U

∂x2
= Cm

∂U

∂t
+ gK(U − EK) + gNa(U − ENa) + gl(U − El), (2.6)

where U is the voltage, which is a function of time and position, Ri is the
resistivity along the interior of the nerve, Cm is the capacitance of the mem-
brane and a is the radius of the axon. Here the geometry of the axon has
been assumed to be a perfect cylinder. EK and ENa are the respective rest-
ing potentials associated to potassium and sodium, with El being the leak
potential. gK , gNa are conductance of potassium and sodium respectively,
and gl is the leak conductance, all being complicated functions of voltage
and time.

The authors themselves are in their original paper very humble about the
generally appliance of their model, being well aware of the empirical nature
of it. The empirical aspect of their model makes its application to any new
system a tedious job, where many of the parameters can not be measured in
experiments directly. Despite the empirical nature of the Hodgkin-Huxley
model (HH-model), it is able to reproduce the voltage pulse in the giant squid
axon quite nicely with good estimation of the pulse propagation speed.

Discrepancies of the Hodgkin-Huxley Model

The assumptions made by Hodgkin and Huxley imply that the membrane is
constant structure with no drastic changes in geometry or any other phys-
ical property. These assumption seem in conflict with the dynamic nature
of lipid membrane, especially in the vicinity of the lipid melting transition.
Experimental findings even indicates the occurrence of a phase transition
during the nerve pulse [44,45]. Furthermore, the very complex and selective
gating of the ion channels can in itself be questioned. Tasaki et al. [46]
showed that the axon of a giant squid can still accommodate propagation of
nerve pulses with no monovalent cations in the exterior solution (e.g. Na,
K). In the literature this contradicting observation has been attributed to
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secondary selectivity of the ion channels, which though seem an unsatisfac-
tory explanation.

In the equivalent circuit terminology, the ion channels are viewed as resis-
tors through which ion (charges) flow. This is a strictly dissipative process
independent of flow direction. The HH-model describes the action potential
as being produced entirely by ion flows6, making the propagation of nerve
signals a stringently dissipative process. Hill et al. [4] published in 1958
a review on the heat production of a nerve pulse, showing that during a
nerve pulse heat is first release and then entirely reabsorbed, following the
profile of the electrical pulse within experimental errors. This fundamental
finding have later been confirmed in great detail for nerves originating from
a number of different myelinated [7] and non-myelinated [5, 6] nerves. The
re-absorption of the produced heat strictly classifies the nerve pulse as an
adiabatic process (see Fig. (2.8), b), which is very much at odds with the
dissipative nature of the HH-model.

Figure 2.8: During the nerve pulse the thickness and the heat of the nerve axon
changes. a: Shows that thickness change scales with the electrical nerve pulse.
Experiment was conducted on giant squid axons. The figure has been adopted
from [47]. b: Shows the integral of the heat released during a nerve pulse, showing
no net production of heat. Experiments were conducted on non-myelinated fibers
of the pike olfactory nerve. The figure has been adopted from [5].

The Hodgkin-Huxley model solely describes the electrical aspect of a
nerve pulse. It have been shown that the electrical pulse is coupled with
a swelling of the membrane [47] (see Fig. (2.8), a), along with a change in
internal pressure in the axon membrane [48]. The adiabatic nature of the
nerve pulse combined with the mechanical changes and the physical size of
the pulse, indicates that the nerves pulses could be a type of sound wave.

6In newer revisited versions of the HH-model the action potential is not only attributed
to ion flows, though it is still the essential mechanism.
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This deduction lead to the proposal of the Soliton model by Heimburg and
Jackson in 2005 [3].

2.2.2 Soliton Model

As part of the classical physical approach, there is a general consensus that
when trying to explain a phenomena the explanation should be of the same
length scales as the characteristic length scale of the phenomena – trying
to explain waves on water based on molecular interaction is an impossible
task. With this and the unexplained experimental findings in mind, Heim-
burg and Jackson [3] proposed that nerve signals are localized density waves
(soliton)7, relaying their theory on thermodynamics and hydrodynamics.
A soliton is a localized wave packet that has a constant shape and ampli-
tude as it propagates. For the existence of solitary waves the medium has
to display non-linearity and dispersion, which chancels one another. With
non-linearity is meant that the speed of sound is a non-linear function of
density and dispersion is the frequency dependency of the speed of sound.
In the vicinity of the lipid melting transition the lipid membrane met both
of these requirements.

The Soliton model is based on the equation of sound. By assuming the
nerve axon is a infinitely long homogeneous cylinder, the 3-dimensional ge-
ometry of the nerve axon degenerate into a 1-dimensional problem. The
1-dimensional equation of sound can be written as,

∂2

∂t2
∆ρA =

∂

∂x

(
c2 ∂

∂x
∆ρA

)
, (2.7)

where ∆ρA(x, t) = ρA(x, t) − ρA0 8 is the lateral density of the nerve mem-
brane and c is the speed of sound also referred to as the phase velocity. As
illustrated in Fig. (1.2) (in the Introduction, chapter 1), the phase velocity
in plane of the lipid membrane is a non-linear function of density in the
vicinity of the lipid melting transition. To capture the non-linear behavior,
Heimburg and Jackson expand the squared phase velocity into a power series
to second order

c2 = c2
0 + p(∆ρA) + q(∆ρA)2 + . . . , (2.8)

where c0 is the phase velocity in the fluid phase, far from the transition.
p < 0 and q > 0 are the taylor expansion coefficients which are determined

7Recently experiments have verified the existence of lateral density solitons in quasi
2-dimensional sheets [49].

8ρA0 is the lateral density of the membrane in the fluid phase and is used as the zero
point for the lateral density.
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from the density dependent phase velocity of a given considered system9.
Experimentally it is very difficult to probe the frequency dependence of
the phase velocity below kHz10. Having no detailed data on the frequency
dependence of the phase velocity at low frequencies, Heimburg and Jackson
chose the dispersion term to take the simplest possible form (−h ∂4

∂x4
∆ρA),

resulting in the final formulation of the model

∂2

∂t2
∆ρA =

∂

∂x

((
c2

0 + p(∆ρA) + q(∆ρA)2
) ∂

∂x
∆ρA

)
− h ∂

4

∂x4
∆ρA, (2.9)

where h > 0 is the dispersion constant.

The low-amplitude periodic solution of Eq. (2.9) (c = c0) has the form
∆ρA = ρA0 exp(iω(t − x/v)), where v is the velocity of the soliton (group
velocity). Inserting this expression into Eq. (2.9) the group velocity takes
the form:

v2 = c2
0 + hk2 ≈ c2

0 + h
ω2

c2
0

(2.10)

This approximation holds for v ≈ c0, using k ≡ ω/v. From Eq. (2.10) it
is clear that the dispersion constant acts as the taylor expansion coefficient
of the second order term of the frequency dependent phase velocity, around
ω = 0. The sign of the frequency is of no importance since it is only repre-
sents a phase shift, meaning that the phase velocity must be an even function
of frequency. By this argument the chosen dispersion term truly poses the
simplest meaningful choice, as the lowest order, non-trivial, expansion of the
phase velocity’s frequency dependence.

Assuming that the general solution to Eq. (2.9) propagates with a constant
velocity (z = x− vt, where v ≤ c0), is localized and vanishes for |z| → ∞, it
can be solved analytically [50]:

∆ρA(z) =
p

q

1−
(
v2−v2min
c20−v2min

)
1 +

(
1 + 2

√
v2−v2min
c20−v2min

cosh
(
c0
h z
√

1− v2

c20

)) , (2.11)

where vmin =
√
c2

0 −
p2

6q is the minimum group velocity. This type of lo-

calized solution is referred to as solitary wave or simply soliton and is the
namesake of the model. From Eq. (2.11) it can be seen that the solution
is symmetric around the top point, and that the width of the soliton scales

9For LUV of DPPC at T = 318.15 K the parameters takes the values ρA0 = 4.035 ·
10−3 g/m2, c0 = 176.6 m/s, and the expansion coefficients: p = −16.6 · c20/ρA0 and
q = 79.5 · c20/(ρA0 )2.

10Ultrasonic experiments can commonly probe a frequency regime from kHz to GHz.
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with the dispersion constant. Heimburg and Jackson chose h = 2 m4/s2,
based on the physical length (distance) of measured nerve pulses. Using
this value, the Soliton model predicts a minimum velocity of solitons in
DPPC membranes to be vmin ≈ 0.65 · c0 = 115 m/s – a number which is
very close to the pulse velocity measured in myelinated nerves. The mini-
mum velocity corresponds to the maximum amplitude or density change of
∆ρAmax/ρ

A
0 ≈ 0.21. Soliton profiles for a number of different propagation

velocities are presented in Fig. (2.9).
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Figure 2.9: Soliton profiles for LUV of DPPC, for velocities between the lower
limit v = 0.65 · c0 and v = 0.95 · c0. Profiles have been produced by numerical
integration by the Euler method and have been mirrored around their top point.

Lautrup et al. [51] have shown that the Soliton model is stable over
ranges of physical relevance (several meters) with respect to noise and het-
erogeneities in the membrane – which is essential for a model that describe
a biological system. They further showed that the soliton can be produced
(excited) by arbitrary localized non-solitonic excitation, meaning that any
perturbation of a sufficient amplitude should be able initialize a soliton, and
hereby a nerve pulse.

The soliton is locally pushing the lipid membrane into its lipid melting tran-
sition as it propagates. Remember that the state of the membrane is coupled
to thickness, charge density, etc. and that these change drastically during
the transition. This means that during the propagation the soliton will dis-
play a number of secondary effect such as geometric changes and changes
in electrical properties, though the detailed nature of this coupling has yet
to be worked out. The propagation of the soliton will result in changes in
thickness of the membrane and also have a electrical component, both ob-
served during the propagation of nerve signals. The most important feature
of the Soliton model is its ability to predict the reversible heat changes in
phase with the action potential. It should however be emphasized that the
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present form of the Soliton model only describes nerve pulses in myelinated
nerves where all propagation is kept in 1-dimension.

The essential feature of the membrane that makes propagation of solitons
possible, is the existence of the lipid phase transition. As described in Mem-
brane Phase Transition (section 2.1.3), there is a great number of “handles”
by which the transition can be influenced. Among these handles are general
anesthetics. Based on this Heimburg and Jackson have made a number of
prediction about the nature of anesthetics [11].

At present the low frequency dispersion behavior of lipid membranes is un-
known. The exploration of the dispersion of sound in lipid membranes is es-
sential to the justification of the thermodynamical approach to nerve pulses
and the Soliton model.
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2.3 Sound

In 1816 Laplace corrected the calculations done by Newton of the velocity
of sound, by stating that sound propagation is a adiabatic process. Meaning
that a sound wave (density wave) in a fluid is followed by local temperature
variations. Stokes (1845) [52] and Kirchhoff (1868) [53] extended the the-
ory, by including absorption due to internal friction and heat conduction.
In 1928 Herzfeld and Rice [54] extended the theory of sound further, by in-
troducing a finite transfer rate between different degrees of freedom, which
can lead to hysteresis and dissipation.

The goal of this section is to introduce and familiarize the reader with propa-
gation of sound on a basic level and extend this formalism to include complex
phenomenas such as dispersion and attenuation.

2.3.1 Introduction to Sound

The lipid membrane can in the fluid phase be considered to be a quasi two
dimensional fluid whereas the gel phase share similarities with solids [17].
Sound can propagate in fluid as well as in solids, and that governing equa-
tion, the equation of sound, is universal. The generality of the equation of
sound means that only the macroscopic thermodynamic properties of the
system is important for the propagation of sound.

In it simplest form the equation of sound or the wave equation is formu-
lated as follows11:

∂2φ

∂t2
+ c2∇2φ = 0 (2.12)

where

c =

√(
∂p

∂ρ

)
S

=
1
√
κSρ

(2.13)

is the speed of sound, or phase velocity, κS is the adiabatic compressibility
and φ = φ(x, t) is a scalar function. In context of the Soliton model the
scalar function is the lateral density. A derivation of the equation of sound,
based on fluid dynamics, is found in Equation of Sound (appendix B).

The general solution to the equation of sound, Eq. (2.12), has the form:

φ = A exp(iω(t− x/ĉ)) (2.14)

where ω is the angular frequency of the wave, x denotes the position of
the wave, A is the amplitude and ĉ is the complex phase velocity of sound.

11In the derivation of the equation of sound the two basic assumptions are: perturbation
are small and that sound propagation is an adiabatic process.
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The phase velocity of sound will for any real system be a complex quantity
(ĉ = Re(c) + iIm(c)) due to the dispersion and absorption of sound in real
mediums. The real part of the phase velocity will result in a phase shift
of the wave (dispersion) and the imaginary part will result in a lowering of
the amplitude or intensity of the sound over propagation distance (attenua-
tion). This can clearly be seen by inserting the complex phase velocity into
Eq. (2.14).

φ = A exp

(
i

(
ωt− x ωRe(c)

Re(c)2 + Im(c)2

))
exp

(
−x ωIm(c)

Re(c)2 + Im(c)2

)
(2.15)

The real and imaginary part of the phase velocity are coupled12 so there
can be no attenuation without some level of dispersion and the visa versa,
which is illustrated in Fig. (2.10).
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Figure 2.10: A illustration of solutions to Eq. (2.12) for three different complex
phase velocities, where the blue line represent the ideal case (no attenuation and
dispersion), the red line is some level of attenuation and dispersion and last the
green line is with heavy attenuation and dispersion.

That the phase velocity is complex means that the adiabatic compressibility
is a complex quantity [56]. The complex adiabatic compressibility will be
referred to as the dynamic adiabatic compressibility. The dynamic adiabatic
compressibility is only equal to the equilibrium adiabatic compressibility in
the ideal case (no attenuation and dispersion).

12The real and imaginary part of the phase velocity are related through the Kramers-
Krönig relation [55].
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2.3.2 Effects that Distort the Propagation of Sound

Until this point the physical phenomenas that result in dispersion and at-
tenuation have not been discussed. This section is devoted to introducing
these physical phenomenas and their effect on the propagation of sound.

In 1928 Herzfeld and Rice [54] extended the theory of sound by arguing
that internal vibrational modes of polyatomic molecules require time to
come into thermal equilibrium with translational degrees of freedom. If the
density (or pressure) perturbation is on the same timescale as these internal
mean relaxation times or faster, the temperature response of the system will
lag behind the perturbation, resulting in hysteresis and dissipation of sound.

Herzfeld and Rice considered three phenomenas that effects the propagation
of sound: Internal friction, heat conduction (introduced by Stokes (1845) [52]
and Kirchhoff (1868) [53]) and their own addition, finite transfer rates be-
tween translational and internal degrees of freedom. In their view these
phenomenas affects the propagation of sound qualitatively as follows:

• Internal friction affect the propagation of sound by retarding move-
ment, thereby elongating a given wave-length and increasing the phase
velocity of the wave.

• Heat conduction is the mediums ability to transfer heat. The heat
conducted during one period of the wave increase with frequency, due
to the steepness of the temperature gradient. This will in effect lower
the phase velocity with increasing frequencies.

• Finite transfer rates between translational and internal degrees of free-
dom will in effect keep the internal degrees freedom from taking up all
the heat. This will decrease the effective heat capacity13 and increase
the phase velocity with increasing frequencies14.

These effects predict in total an increase in the phase velocity of sound
with increasing frequency. This approach fathered the modern description
of sound and is the basis of understanding attenuation and dispersion. Be-
yond these, there has been added a number of “geometric” considerations
to the theory of sound, such as orientations in the medium (e.g. nematic
phases) and boundary effects, which will though not be considered in the
present thesis.

From the basic concepts of Herzfeld and Rice any “event” that can dras-

13Note that the effective heat capacity will be referred to as the dynamic heat capacity.
14The coupling between the dynamic heat capacity and the phase velocity will be dis-

cussed in Adiabatic Compressibility (section 3.2).
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tically alter the extent of these phenomenas will have large effect on the
attenuation and dispersion of sound in a given medium.

2.3.3 Sound Propagation near Phase Transitions

As discussed in Membrane Phase Transitions (section 2.1.3) the physical
properties of a system can change drastically during a phase transition,
which in accordance with the above can lead to distortion of sound propa-
gation in the system.

In 1962 Fixman [57] applied the basic concepts from Herzfeld and Rice to
describe the viscosity of critical mixtures. He was motivated by the intimate
relation between viscosity and attenuation. Critical mixtures of fluids show
a shape second-order transition, which among other is signified by a critical
slowing down of the relaxation rates of the order-parameters. He consid-
ered instead of rates between translational and internal degrees of freedom
as Herzfeld and Rice, a continuum of long-wavelength order-parameter fluc-
tuations. With this he made the connection between the “transfer rates”
and relaxation rates of order-parameters in systems. The slow-down during
a transition means a drastic change in relaxation rates, which will result
in large changes in the dynamic heat capacity of the system and thereby
the phase velocity. There can also be changes in internal friction and gen-
eral heat conduction during a phase transition but these will be secondary
effects, since these effects occur on very small length- and timescales [58,59].

From this, it the slow down of the characteristic relaxation rate during
the lipid melting transition that, for low frequencies, exclusively causes the
dispersion of sound.

The slow-down during phase transitions meant historically that investigation
of otherwise too fast relaxation rates became experimentally accessible with
ultra sound. This lead to a great interest in describing sound propagation
in materials undergoing first and second-order transitions [60–62].

Kawasaki [60] and Kroll and Ruhland [61] share the approach in attempt-
ing to calculate the second viscosity coefficient (or ”bulk” viscosity). Ferrell
and Bhattacharjee [62,63] have in their work added the idea of dynamic scal-
ing (critical exponents). With this approach, they provide a scaling function
of the frequency dependent dynamic heat capacity, from which they are able
to calculate the speed of sound. Tanaka et al. [64] showed experimentally
that the theory made by Ferrell and Bhattacharjee is applicable to the large
frequency regime for classical binary mixtures, unlike many of the previous
mentioned approaches. In 1997 the same authors [65] published a scaling
theory (BF-theory) for the isotropic-to-nematic phase transition, which is
classified as a weak first-order transition. The BF-theory was originally
developed for the 3-dimensional isotropic-to-nematic phase transition but
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Halstenberg et al. [58] showed both experimentally and theoretically that
it could be applied to the lipid melting transition of lipid bilayers in the
ultrasonic regime.

The experimental and theoretical findings of Grabitz et al. [18] showed
however that the relaxation behavior throughout the full range of the lipid
melting transition fits very nicely to a single exponential decay. This ob-
servation simplifies the dynamics of the main melting transition from dy-
namic scaling theory to the simple relaxation behavior of equilibrium fluctu-
ations [66]. Responses of systems with this type of relaxation behavior are
generally governed by linear response theory, introduced by Eigen [67]. Mi-
taku and Date [16] used in 1982 this approach to analyze the dispersion and
attenuation of small DMPC15 vesicles in the ultrasonic regime, with poor
correspondence between data and theory. A similar approach was used by
Van Odsol et at. [17, 36] to analyze kinetics of different membranes phase
transitions in the frequency regime 0.1 Hz to 150 Hz – with great agree-
ment between result and theory. From these findings, the simple relaxation
behavior seem insufficient to describe high frequency behavior, but for low
frequencies it described the system behavior quite well. For the frequency
regime of interest in this thesis additional complication of the simple single
exponential relaxation seem beyond the scope.

151,2-Dimyristoylphosphatidylcholin
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Chapter 3

Analytic Approach

The primary goal of this thesis is to estimate the speed of sound in the plane
of a lipid membrane as a function of frequency. Sound can in short be de-
scribed as propagation of low amplitude density (or pressure1) waves, which
are directly coupled to a following temperature wave due to the adiabatic
nature sound.

The propagation of sound can be approached in two ways; mechanically or
through thermodynamics. These approaches are intimately related and can
in many cases be considered as equivalents. The thermodynamics of lipid
membranes have been explored extensively during the last decades and a
number of phenomenological simplifications have been found. In this thesis,
sound propagation will be considered from a thermodynamic perspective.

The beauty of thermodynamics is its ability to describe vastly com-
plex system by relatively few macroscopic properties, temperature, pressure,
heat capacity, etc. With the development of non-equilibrium thermodynam-
ics [66,67]2 understanding and describing dynamics of complex systems has
become possible and hereby sound propagation.

The first challenge of this thesis is to find the response of lipid membranes
to sound at different frequencies. The response of a system to periodic pres-
sure perturbations is, if the system has a finite relaxation time, a frequency
dependent problem3. The frequency dependence of sound is further compli-
cated by the adiabatic nature of sound. The second challenge is to find a
relationship between the system’s response and speed of sound in the mem-
brane. When this is achieved, the speed of sound can be found along with
its frequency dependence.

1Density and pressure are in sound propagation intimately related, since they are the
direct product of one another. Sound can be described by pressure waves as well as by
density waves.

2Other authors contributing greatly is: Einstein, Prigogine, Greene, Callen, ect.
3See Perturbation Simulations (section 4.2.2) for numerical exploration of this problem
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3.1 Adiabatic Pressure Perturbations

Sound is the propagation of a pressure wave that is followed by a temperature
wave due to its adiabatic nature. From a thermodynamical point of view,
these changes in pressure and temperature couple to a change in the heat
of the system

dQ = cPdT − LPdP, (3.1)

where dQ is the change in the heat of the system, cP is the heat capacity
and LP is the latent heat of expansion, defined as LP = (dH/dP )T − V .
Eq. (3.1) can be rewritten to the form [68]:

dQ = cPdT − TV αPdP, (3.2)

where αP = −
(
dV
dT

)
p
/V is the thermal expansion coefficient. A full deriva-

tion can be found in the appendix: C.1. Using the Maxwell relation,
(dV/dS)V = (dT/dP )S ,

TV αP = −T
(
dS

dT

)
P

(
dV

dS

)
P

=

(
dQ

dT

)
P

(
dT

dP

)
S

= cP

(
dT

dP

)
S

. (3.3)

The expression for the change in heat can now be written as

dQ = cP (T, P )

(
dT −

(
dT

dP

)
S

dP

)
. (3.4)

Adiabatic is defined as no transfer of heat between the considered system
and the outside, this is well approximated by the entropy of the system being
constant. The entropy being constant means that the “position”4 in a phase
transition is constant during the perturbations in pressure and temperature.
Since the position in the transition is fixed the Clausius-Clapeyron relation5

can be used
dP

dT
=

∆H

T∆V
, (3.5)

where ∆H and ∆V are the enthalpy and volume changes associated to the
transition, respectively. Note that these are constant system properties for
a given transition. Inserting Eq. (3.5) into Eq. (3.4),

dQ = cP (T, P )

(
dT −

(
T∆V

∆H

)
dP

)
. (3.6)

4By position is meant, the fraction of completion of the phase transition.
5The use of the Clausius-Clapeyron relation can be justified by the weak first-order

nature of the lipid melting transition.
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From this it is clear that the heat capacity acts as a transfer function that
couples adiabatic changes in pressure to changes in heat. Using Eq. (3.6)
the change in heat can be found by integration:∫

dQ =

∫
cP (T, P )dT −

∫
cP (T, P )

(
T∆V

∆H

)
dP (3.7)

Until this point, the heat capacity is a constant system property and trans-
fer rates have not been considered. In any real system transfer rates are
finite and changes happen in finite time. Thus, the changes in pressure and
temperature can be represented as rates:∫

dQ =

∫
cP (t)Ṫ dt−

∫
cP (t)

(
T∆V

∆H

)
Ṗ dt (3.8)

Note that T = Tequilibrium which holds in the approximation of small abso-
lute changes in temperature, which is a standard assumption in propagation
of sound.

If changes in pressure or temperature happen faster than the transfer rate
(or relaxation rate) the energy transferred during this change will only be a
part of the otherwise transferred amount. Considering Eq. (3.6), the finite
transfer rate will potentially lower the effective transfer function, in this
case the heat capacity6. This also means that the heat capacity must have
a relaxation term, ΨcP , and Eq. (3.8) must be written as a convolution:

δQ(t) =

∫ t

∞

(
cP (∞) + ∆cP

(
1−ΨcP (t− t′)

))(
Ṫ (t′) +

T∆V

∆H
Ṗ

)
dt′ (3.9)

where δQ(t) is the change in heat, cP (∞) is the part of the heat capacity
that relaxes at much greater rates than changes in pressure and temperature
considered. In the lipid bilayer system cP (∞) is the heat capacity contri-
bution from lipid chains, often referred to as the background contribution.
∆cP is the part of the heat capacity which has relaxations rates comparable
to the perturbations, in the lipid membrane system this is the excess heat
capacity. In Eq. (3.9) it has been assumed that the mechanisms of relax-
ation are the same for pressure and temperature. This assumption has been
justified experimentally and numerically in the literature [18, 33, 39, 69]. In
the lipid melting transition changes in extensive variables are found to be
proportional and having a common relaxation mechanism.

Eq. (3.9) can be rewritten using the convolution theorem and Fourier trans-
formation to the form

δQ = cP (ω)

(
T (ω) +

T∆V

∆H
P (ω)

)
, (3.10)

6Note how this fits into the picture of the course of dispersion and attenuation of sound.
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where,

cP (ω) = cP (∞)−∆cP

∫ ∞
0

eiωtΨ̇cP (t)dt. (3.11)

In Eq. (3.10), T (ω) and P (ω) are assumed to be periodic (sinusoidal). The
derivations are based on [17].

Note that no structural or system specifications have been used in the deriva-
tion, only the nature of the phase transition of the lipid bilayer. Note further
that the frequency dependent heat capacity is a complex function, and will
therefore be referred to as the dynamic heat capacity. All the above deriva-
tions can be carried out with lateral pressure instead of pressure, the choice
of using pressure is entirely for convenience of notation. From Eq. (3.11)
the frequency dependent transfer function (dynamic heat capacity)7 can
be found, giving a full description of how the lipid bilayer respond to adia-
batic pressure perturbations. cP (∞) and ∆cP are both experimentally easily
available and well known in the literature [39]. The only unknown factor is
the relaxation function, ΨcP . From the above consideration, the relaxation
function must be related to the rate of energy transfer. The fluctuation-
dissipation theorem ensures that the rates of energy transfer are equivalent
to the relaxation behavior of the fluctuation of energy. Using that the heat
capacity is a measure of the fluctuation of enthalpy, the relaxation func-
tion of the heat capacity must be the relaxation function of the enthalpy
fluctuations [17]. In the lipid melting transition changes in volume, area
and enthalpy are proportional functions, leaving only one independent fluc-
tuating variable. This supports that the relaxation function for pressure
and temperature being the same and that this relaxation function can be
deduced from the enthalpy fluctuations.

Single relaxation rate

The relaxation behavior of the fluctuations of enthalpy in pure lipid vesicles
has been considered theoretically, numerically and experimentally by Grab-
itz et al. [18]. They found that the relaxation of enthalpy is well described
by a single exponential function,

(H − 〈H〉)(t) = (H − 〈H〉)(0) · exp

(
− t
τ

)
, (3.12)

7It is important note the difference between the dynamic heat capacity (frequency
dependent) and the normally known equilibrium heat capacity. The equilibrium heat
capacity is a constant system property whereas the dynamic heat capacity is an effective
heat capacity that can be lower or equal to the equilibrium heat capacity due to finite
transfer rates in real systems.
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where (H − 〈H〉)(0) serves only as a proportionality constant and τ is the
relaxation time. Note that this is a simple linear response function8. The
authors further found that the relaxation time, for a number of different
pure lipid membranes, is proportional to its respective excess heat capacity,

τ =
T 2

L
∆cP , (3.13)

where L is a phenomenological coefficient. They found L = 13.9·108J ·K/(s·
mol) for LUV of DPPC. Extensive numerical explorations of the relaxation
behavior of the lipid melting transition can be found in Relaxation Simula-
tions (section 4.2), including verification of the single exponential relaxation
behavior, the proportionality relation and response of the lipid membrane
to periodic perturbations. Beyond this, a theoretical validation of the sin-
gle exponential relaxation behavior is shown in Relaxation Time (appendix
A.2).

Using the relaxation function of the enthalpy fluctuation as the relaxation
function of the dynamic heat capacity,

ΨcP = exp

(
− t
τ

)
, (3.14)

Eq. (3.11) can be solved and the dynamic heat capacity can be found.

cP (ω) = cP (∞)−∆cP

∫ ∞
0

eiωt
(
−1

τ

)
e
−t
τ dt

= cP (∞) + ∆cP

(
1 + iωτ

1 + (ωτ)2

)
(3.15)

Note that all variables in the dynamical heat capacity are known quantities
from experiments.

Van Osdol et al. [70] have made adiabatic pressure perturbation experi-
ments on unilaminar and multilaminar vesicles made of DPPC. In these
experiments they analyzed the relaxation behavior of the lipid membrane
by measuring how the effective heat capacity and the compressibility change
as a function of frequency. Though the data available for unilaminar vesicles
is very limited and has large errors, it still illustrates the tendency of the
effective heat capacity, which fits very nicely with the proposed functional
form for the dynamic heat capacity. The adopted data and the fits are shown
in Fig. (3.1).

8See Linear Response (appendix D) for a basic introduction to the concept and for
visualization see Perturbation Simulations (section 4.2.2, results).
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Figure 3.1: Left: Shows the heat capacity profiles for 4 different frequencies. Right :
The top points from the heat capacity profiles have been fitted to the amplitude of
the proposed dynamic heat capacity yielding an estimated relaxation time of about
0.18s. By amplitude is meant the amplitude of the polar form of the dynamic
heat capacity where background contributions have not been taken into account.
Data have been adopted from [70] and recalculated to the isobar heat capacity in
accordance with theory, mentioned in the article. The errors on these plots are
beyond proper estimation.

3.2 Adiabatic Compressibility

In the Theory of Sound (section: 2.12) it was noted that the dynamic heat
capacity could be related to the phase velocity, though no remark was made
as to how.

The adiabatic lateral compressibility is defined as

κAS =
1

〈A〉

(
d 〈A〉
dΠ

)
S

, (3.16)

where Π is the lateral pressure. Using the Maxwell equations [68] the adia-
batic lateral compressibility can be rewritten to

κAS = κAT −
T

〈A〉 csystemP

(
d 〈A〉
dT

)2

Π

, (3.17)

where

κAT =
1

〈A〉

(
d 〈A〉
dΠ

)
T

= κAT (∞) +
γ2
AT

〈A〉
∆cP . (3.18)

32



3.2. Compressibility Chapter 3. Analytic Approach

In the last equality the experimentally found phenomenological proportion-
ality between ∆Hex and ∆Aex (Eq. (2.4)) has been used [33]. κAT (∞) is the
part of isothermal lateral compressibility of the lipid membrane that relaxes
at much greater rates than changes in the pressure and temperature consid-
ered. csystemP is the heat capacity of the total thermodynamical system.

In the literature [65, 71] on attenuation and dissipation of sound in criti-
cal mediums a rewritten version of Eq. (3.17) is often used to relate the
dynamic heat capacity to the adiabatic compressibility. This can be done in
a straight forward manner, by deploying the Pippard-Buckingham-Fairbank
relations (PBFR) [72, 73]. These are a number of relations that state, that
close to a first or second order phase transition the critical phenomena will
dominate the behavior of the system, leading to linear relationships between
the relevant susceptibilities. The experimentally found phenomenological
proportionalities verifies the validity of the PBFR in the lipid membranes
since these pose an even stronger relationship, proportionality over linearity.
The issue of this approach is that the heat capacity that goes into Eq. (3.17)
is that of the total system. In the mentioned literature the medium in con-
sideration takes up the full system, whereas in the lipid membrane system a
pseudo 2-dimensional system (the bilayer) embedded in a full 3-dimensional
system is considered, making the total system heat capacity a complicated
variable.

The total thermodynamical system in consideration in this project is made
up of a water reservoir containing large unilaminar lipid vesicles. These vesi-
cles being large, justifies the assumption that there are no bending effects
and that they contain enough water for the properties of the two sides of
the bilayer to be identical. Using these assumptions, the thought experi-
ment system is but one layer of the lipid bilayer (membrane) that through
the head group is connected to a water reservoir. Imagine a standing tem-
perature wave in the bilayer. The transfer of heat from the wave to the
surrounding water will be time dependent. Approaching ω → 0, the amount
of water (heat reservoir) participating will effectively go to infinity. In the
other extreme, (ω →∞), no heat will be transfered to the surrounding wa-
ter reservoir. These considerations in effect lead to having the heat capacity
of the total system to be frequency dependent. This was proposed by Hal-
stenberg et al. [69] and was used by Heimburg and Jackson [3], where they
were able to make nice predictions regarding the experimentally found high
frequency limit and the low frequency limit using Eq. (3.17), where

csystemP (ω) = clipidP + creservoirP (ω). (3.19)

clipidP = ∆cP + cP (∞) is the complete heat capacity (in equilibrium) of the
lipid membrane. creservoirP (ω) is the heat capacity of the participating heat
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reservoir. In this approach it is the size of the heat reservoir that is frequency
dependent. The wanted relationship between adiabatic lateral compressibil-
ity and frequency is somewhat contained within the dynamic heat capacity.
If the considered medium were spanning the full thermodynamical system,
the dynamical heat capacity would be the heat capacity of the full system.
When the dynamic heat capacity now is only the effective heat capacity of
the membrane and not the full system, how does this relate to the adiabatic
lateral compressibility? Within this question is the question of how a finite
heat reservoir affects the effective heat capacity of the membrane. If such
a relation could be established, the dynamic heat capacity could be used
to describe the frequency dependency of the heat reservoir and thereby the
frequency dependency of the adiabatic lateral compressibility.

Using the proportionality relation between ∆Hex and ∆Aex (Eq. (2.4)) in
Eq. (3.17) and assuming that the changes in area, as a function of tem-
perature in the phase transition region, are completely dominated by the
transition associated change in area, the following approximation can be
made [69]:

κAS ≈ κAT (∞) +
γ2
AT

〈A〉
∆cP −

γ2
AT

〈A〉
(∆cP )2

csystemP

= κAT (∞) +
γ2
AT

〈A〉

(
∆cP −

(∆cP )2

csystemP

)
. (3.20)

The nature of the last parenthesis is unknown, though it has the unit of a
heat capacity. Posed at this point as an ansatz,

ceffectiveP = ∆cP −
(∆cP )2

csystemP

, (3.21)

is the effective heat capacity of the lipid membrane in a adiabatically iso-
lated heat reservoir. Based on the ansatz and the argument that leads to
Eq. (3.19), the effective heat capacity must be the dynamic heat capacity.
From this, the dynamic heat capacity can be related directly to the adiabatic
lateral compressibility through Eq. (3.20):

κAS = κAT (∞) +
γ2
AT

2 〈A〉
·∆cP (ω), (3.22)

where the ∆cP (ω) is the dynamic heat capacity without background. The
factor of 2 is due to Eq. (3.20) being the adiabatic lateral compressibility of a
single monolayer. Since the area is an extensive variable the compressibility
of the bilayer is half of that of a monolayer. A justification of the ansatz
will be made in Finite System Simulations (section 4.3).
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3.3 Speed of Sound

Assuming the posed ansatz (Eq. (3.21)) to be true, it is possible to relate
the dynamic heat capacity to the frequency dependent adiabatic lateral com-
pressibility of the lipid membrane. From the adiabatic lateral compressibility
(Eq. (3.22)) the lateral phase velocity (cA) can be found using Eq. (2.13):

cA =
1√
κASρ

A

The frequency dependent adiabatic lateral compressibility, κAS , is complex
and will be referred to as the dynamic compressibility, κA, for simplicity of
notation. The lateral phase velocity is a complex quantity: The real part
is associated to the dispersion and the complex part results in attenuation.
The goal of this thesis is to estimate the dispersion in lipid membranes,
being the real part of the lateral phase velocity. For this, the real part of
the lateral phase velocity squared can be isolated as follows:

Re(cA) + iIm(cA) =
1√

ρA (Re(κA) + iIm(κA))
⇒ (3.23)

Re(cA)2 = (ρA)−1

(
Re(κA) +

√
Re(κA)2 + 4Im(κA)2

2 (Re(κA)2 + Im(κA)2)

)
, (3.24)

where

Re(κA)+iIm(κA) =

(
κAT (∞) +

γ2
AT

2 〈A〉
Re(∆cP (ω))

)
+i

(
γ2
AT

2 〈A〉
Im(∆cP (ω))

)
,

(3.25)
and ∆cP (ω) is the phase transition associated part of the dynamic heat ca-
pacity. The derivation leading to the functional form of Eq. (3.24) is carried
out in detail in Real Part of the Phase Velocity (appendix C.2).

By inserting Eq. (3.15) into Eq. (3.25) the squared real part of lateral phase
velocity, Eq. (3.24), takes the form:

Re(cA)2 =

1
c21

+ 1
c22

1
(1+(ωτ)2)

+

√(
1
c21

+ 1
c22

1
(1+(ωτ)2)

)2
+ 4

(
1
c22

ωτ
(1+(ωτ)2)

)2

2

((
1
c21

+ 1
c22

1
(1+(ωτ)2)

)2
+
(

1
c22

ωτ
(1+(ωτ)2)

)2
) ,

(3.26)
where for the convenience of notation,

c2
1 ≡

(
ρAκAT (∞)

)−1
(3.27)

35



3.3. Speed of Sound Chapter 3. Analytic Approach

and

c2
2 ≡

(
ρA

γ2
AT

2 〈A〉
∆cP

)−1

, (3.28)

recognizing c1 as the background lateral phase velocity and c2 as the lateral
phase velocity component related to the lipid melting transition.

The limiting cases predicted by Eq. (3.26) is the same as predicted by He-
imburg and Jackson [3]:

ωτ → 0: Re(cA)2 =
(

1
c21

+ 1
c22

)−1

ωτ →∞: Re(cA)2 = c2
1

In the low frequency limit the phase transition associated contribution on
the phase velocity is fully accounted for, whereas in the high frequency limit
the phase transition associated contribution disappears.

The dynamic heat capacity (Eq. (3.15)) is based on the relaxation behavior
of the system to be well described by a single exponential. This single expo-
nential relaxation behavior poses the simplest possible frequency dependence
of the lateral phase velocity imaginable – often referred to as a Debye term
in the ultrasonic field. The lipid membrane system is special in its pseudo 2-
dimensional nature and the solution can therefore not be considered trivial.
Despite the simplicity of this approach, it should still be possible to make
a good estimate of the lipid membrane’s behavior in the low frequency range.

Due to the found analytic form of Eq. (3.26) not only the phase veloc-
ity limits are accessible. The area, the lateral density and the background
isothermal compressibility are all directly proportional to the fluid frac-
tion9 [39]. Using the proportionality relation Eq. (3.13) the relaxation times
can be found from the excess heat capacity. Then, Eq. (3.26) can be solved
from the excess heat capacity and the fluid fraction, see Fig. (3.2).

The excess heat capacity and fluid fraction used have been found by Monte
Carlo simulations using the Doniach model, see Simulation of the Doniach
Model (section 4.1.4).

9The fluid fraction is the fraction of a considered lipid system that is in the fluid phase.
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Figure 3.2: Left: The real part of the lateral phase velocity squared as a function
of density at different angular frequencies along with the limiting cases: ω → 0 and
ω →∞. The calculations of the lateral phase velocity is based on single exponential
relaxation behavior. Right: The generic function, f(ωτ), that takes the phase
velocity, at a given lateral density, from the low frequency limit (f(ωτ) = 0) to the
high frequency limit (f(ωτ) = 1).

As is clearly indicated by Fig. (3.2) the real part of the phase velocity
is estimated to depend very strongly on frequency. This is expected from
the data of Van Osdol et al. [70] (Fig. (3.1)). However, a number of ex-
periments have been conducted, probing the phase velocity in vesicles of
DPPC with ultrasound [16, 69, 74]. In all these experiments some degree
of the phase transition associated dip in phase velocity, even in the MHz
regime, is observed. This is in disagreement with the posed estimate, which
converges towards the high frequency limit long before the kHz regime. For
high frequencies a number of effects has to be considered, in regard to this
apparent discrepancy. As noted in Sound Propagation near Phase Tran-
sitions (section 2.3.3), there are secondary effects such as internal friction
and general heat conduction that can have a phase transition component,
which becomes accessible in the ultrasonic regime. This however does not
fully explain the discrepancy between the high and low frequency behavior
of the relaxation. From this, estimates of Eq. (3.26) at frequencies of order
of magnitude faster than the relaxation times should, as previously noted,
be used with care.
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3.4 Dispersion

The goal of the project is to estimate the frequency dependency of the
lateral phase velocity (estimate the dispersion). In the Soliton model for
nerve signals, the dispersion has been considered to be small and only the
first order term of the lateral phase velocity’s frequency dependence has
been considered.

(cA)2 = c2
0 + hk2 ≈ c2

0 +
hω2

c2
0

, (3.29)

where the approximation holds for cA ≈ c0 using k ≡ ω/c.

From the estimate (Eq. (3.26)) of the squared lateral phase velocity, the
dispersion constant, h, can be estimated by Taylor expanding around ω = 0
to second order.

Re(cA)2 ≈
(

1

c2
1

+
1

c2
2

)−1

+
1

c2
2

(
1

c2
1

+
1

c2
2

)−2

τ2ω2

= c2
0 +

c4
0

c2
2

τ2ω2, (3.30)

where
1

c2
0

=
1

c2
1

+
1

c2
2

. (3.31)

From this the dispersion constant takes the form:

h =
1

c2
2

(
1

c2
1

+
1

c2
2

)−3

τ2 =
c6

0

c2
2

τ2 (3.32)

The estimated dispersion constants are shown in Fig. (3.3), calculated from
numerically found system variables.

The estimated dispersion constant is a function of density (or temperature),
spanning a value range from 102 outside the phase transition to 108 at the
peak of the phase transition. The dispersion constant density dependents
is justified by the lateral phase velocity’s strong relation to both the ex-
cess heat capacity and the relaxation rate. Note that the presence of the
non-phase transition associated compressibility, κA(∞), effectively lowers
the estimated dispersion constant.

Heimburg and Jackson [3] estimated the dispersion constant h = 2 m4/s2

based on the physical width of a nerve pulse. The here found estimate of dis-
persion in a lipid membrane of DPPC differs very much from their estimate.
Heimburg and Jackson have however showed that lung surfactant display
squared phase velocity limits similar to that of DPPC membranes and it is
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Figure 3.3: Left: The dispersion constant estimates base on a single exponential
relaxation, as a function of density. Right: Same as to the left just as a function of
temperature for illustration.

reasonable to assume relaxation times that are of the order of a hundred
times slower. This would mean a lowering of estimated dispersion constant
of 104, assuming that used relations hold for the more complicated system of
biological membranes. Taking this into account along with the density de-
pendence of the dispersion constant, the estimated dispersion seem realistic
in regard to the Soliton model.
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Chapter 4

Simulations

Simulations are used to explore the thermodynamic properties of the main
melting transition of lipid membranes, including the relaxation dynamics.
In exploring the dynamics of the lipid membrane, a perturbation model ex-
tension1 is introduced. With this model extension, the response of a lipid
membrane to periodic perturbations is explored. In the course of the Adia-
batic Compressibility (section 3.2) an ansatz was made regarding the heat
capacity of the lipid membrane in a adiabatically isolated heat reservoir.
In the pursuit of exploring the behavior of such a finite system, a model
extension is here proposed and explored.

Starting out, the basic lipid membrane model is introduced along with the
simulation methods used.

4.1 Modeling of Membranes

Phospholipid vesicles are important as models for biological membranes.
In these artificial membranes general properties of lipid membranes can
be studied in a reasonably well-defined system. Theoretically, mainly two
classes of models have been proposed to describe the phase transition be-
havior of these phospholipid bilayer systems: One being phenomenological
models, e.g. based on Landau theory, and the other being statistical me-
chanical microscopic models. The models used in the simulations of this
thesis will be of the second class.

4.1.1 Doniach Model

A lipid membrane can be modeled using the molecular interaction (molecular
dynamics simulation), but also course grain modeling is possible. The level

1By model extension is meant that these are models extending a existing lipid mem-
brane model.
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of simplification of a given model should reflect the level of detail needed.
Beyond this, the computational limitations on the number of states that
can be explored during a simulation, sets a natural limit for system size
and time frame. The lipid melting transition has been shown to be the
collective behavior of hundreds of lipids [75], having relaxation time as slow
as seconds [18]. The length and time scale of the lipid melting transition
strictly limits the detail level of the potential models. Models like molecular
dynamics (MD) simulations are both on length and time scale off by many
orders of magnitude. The specific form of the model for the lipid membrane
used in this thesis was proposed by Ivanova et al. [76]. This model is based
on the model proposed by Doniach [77] and will therefore be referred to as
the Doniach model. The Doniach model is conceptually based on the famous
Ising model [78].

The Ising model is essentially a two state model that only takes nearest
neighbor interactions into account, originally made for describing transition
in ferromagnets. The Ising Hamiltonian in the original form is given by

H = − ε
2

∑
〈i,j〉

σiσj − g
∑
i

σi, (4.1)

where σi = ±1 are the allowed state values. The first sum is over nearest
neighbors, indicated by 〈i, j〉, and ε is the nearest neighbor interaction pa-
rameter. The first sum accounts for the cooperative behavior of the system
and in effect the possibility of a phase transition. The last sum takes into
account the influence of an external field, where g denotes the strength and
interaction with this applied field.

The Doniach model compared to more detailed models, such as the 10-
state Pink model [79], is 100-1000 times faster and it has been shown that
the choice of model has no significant effect on the overall physical behavior
of the system [80]. This can be attributed to the extent of the cooperative
nature of the transition, which makes the detailed single lipid model super-
fluous. Furthermore, the Doniach model contains only a few parameters,
which can be determined through calorimetric experiments [76].

The following assumptions are needed for describing the lipid melting tran-
sition with the Ising model [77,81].

• Each lipid can only be in one of the two following states:

– A gel state with low enthalpy, Hg, and low entropy, Sg.

– A fluid state with high enthalpy, Hf , and high entropy, Sf .

• The lipids only interact with nearest neighbors. This is justifiable since
the majority of interactions between lipids are attributed to Van Der
Waals interactions, which fall off according to 1

R5 .
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• All lipids, independent of state, are hexagonally packed (2D), meaning
that each lipid molecule has Nz = 6 nearest neighbors. Experiments
have shown that lipid membranes, mainly in the gel state have this
packing [27, 82]. For simplicity we assume that the lipids in the fluid
state are similarly packed2.

These assumptions lead to the following Gibbs free energy [11]:

G = Gg +Nf (∆H − T∆S) +Nfgωfg. (4.2)

Gg denotes the Gibbs free energy of the system when all lipids are in the gel
state. ∆H and ∆S are the changes in enthalpy and entropy between the gel
and fluid states, respectively. Nf is the number of lipids in the fluid state
and Nfg is the number of interactions between gel and fluid state lipids. ωfg
is the interaction parameter between gel and fluid state lipids.

The two parameters, ∆H and ∆S, can be found by calorimetric measure-
ments, leaving the cooperativity parameter ωfg as a free parameter. The
free parameter is estimated by fitting the simulated heat capacity curves to
the experimentally obtained ones. It is important to note that the model as-
sumes that the two layers in the bilayer structure are completely uncoupled.
It has lately been shown experimentally that the layers are in fact coupled
and independent domain formations in the separate layers are not or rarely
found [83]. This however does not pose a problem in the present thesis since
no detail information is needed about the separate layers and the coupling
is indirectly included in the fitted cooperativity parameter ωfg.

This model has been used with success to model the lipid melting tran-
sition in lipid membranes, both pure lipid systems and including additional
components, such as peptide (Gramicidin A) [84] or anaesthetics [85]. The
main feat of interest of the Doniach model is its ability to model the relax-
ation behavior of the lipid melting transition in the single lipid membrane
systems [18]. This ability enables the investigation of the dynamical prop-
erties of the lipid membrane.

2This assumption and its justification has been discussed in the literature [77].
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4.1.2 Monte Carlo Method

The Monte Carlo method is a numerical method for exploring properties of
statistical mechanical models.

Though the field of statistical mechanics is very well developed and elegant,
most models are difficult to solve analytically – in many cases it is impossi-
ble. Consider a system containing N particles, which can be in one of two
states. For this system the total number of states will be 2N . For a small
system containing only N = 100, the number of states will be 2100 ' 1030.
In many cases the number of states can be degenerated, simplifying the
problem, but the task of exploring such a state space3 is still often a cum-
bersome job. The computational capacities of computers have aided greatly
in the field’s explorations. Though even with the great computational ca-
pacities of modern computers a brute force exploration of state space can be
a impossible task. Methods have thus been developed to explore state space
in an efficient manner. Each state in a system has a specific probability in a
given thermodynamic, but commonly only a tiny fraction of states are very
likely4. From this, sampling over a small fraction of states, can result in
accurate estimations of physical properties. The Monte Carlo method is a
method to, in an efficient way, sample the most likely states of a system.

The basic scheme of the Monte Carlo method is to use Markov processes
as the generating engine. A Markov process is a process that given a state
µ generates a new state ν of the system in a random fashion. The proba-
bility of generating the state ν given µ is called the transition probability
p (µ→ ν). The transition probability must not vary over time, and the tran-
sition probability must only depend on the properties of µ and ν, and not
on any state the system previously has passed through. This ensures that
the probability of generating ν given µ is conserved. Furthermore, it is de-
manded that it is possible to reach any state, from a given state, through a
finite number of iterations, and that the transition probability from µ → ν
is equal to the transition probability from ν → µ. By doing this repeat-
edly a Markov chain of states that complies with conditions of ergodicity
and detailed balance is generated. This scheme ensures that independent of
starting state, it will eventually generate a succession of states that has the
probability given by the Boltzmann distribution. The process of reaching
the Boltzmann distribution is called “equilibration” due to its direct analog
to the processes a real system goes through to equilibrate [86].

3A mathematical space, made up of the possible states of a system.
4An example not falling in this category is a system where the temperature goes to

infinity, resulting in all states of the system becoming equally likely.

44



4.1. Modeling Chapter 4. Simulations

Rejection Algorithm

The goal of the Monte Carlo method is to explore the state space of a system
in an efficient manner. This is done by applying a rejection algorithm.

Given a state, the Markov process will generate a new state, accompanied
by a transition probability. The rejection algorithm is used to calculate the
transition probability, such that the most likely states will have a higher
chance to be generated, hereby making the search for the most likely states
more efficient.

Over the years a number of different rejection algorithms have been pro-
posed. They range in efficiency and other properties. The first and the
most famous is the Metropolis algorithm [87]:

A (µ→ ν) =

{
exp (−∆G/RT ) if ∆G > 0

1 otherwise
(4.3)

Where A (µ→ ν) is the acceptance ratio, R is the gas constant, T is the
temperature, and ∆G is the difference in free energy between state µ and
ν. The acceptance ratio is related to the transition probability,

p (µ→ ν) = g (µ→ ν)A (µ→ ν) (4.4)

where g (µ→ ν) is the selection probability, the probability that a given
change is selected.

The choice of rejection algorithm should reflect the features of interest in a
given system. The Metropolis is a very efficient algorithm in general, both
in the vicinity of a phase transition and away from it5. In the Metropolis
and other single-flip algorithms the “time” it takes to simulate one corre-
lation time scales with system size. By single-flip algorithm is meant an
algorithm that only allows the flip of a single state in the system at a time.
Another group of algorithms is cluster algorithms, e.g. the Wolff algorithm.
In cluster algorithms the collective flipping of a cluster of, in the present
context, lipids is considered. For this group of algorithms the “time” used
to simulate one correlation time scales with cluster size6.

As previously mentioned, other factors than simulation speed plays a
role in selecting the right rejection algorithm for a given problem. The sim-
ulation efforts of this thesis cover both exploration of the thermodynamical
properties of the lipid melting transition and the associated dynamical prop-
erties. Due to this diversity in simulation efforts, the Glauber algorithm has

5In the phase transition the number of likely states blows up and covers a large number
of states.

6For greater details on different rejection algorithms see [86].
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been chosen [88]. The Glauber algorithm, sometimes referred to as the “heat
bath” algorithm, is a very stable and robust single-flip algorithm that can
be deployed both in and outside the phase transition region. This algorithm
is slower than the Metropolis algorithm, but it mimics the state change ki-
netics seen in nature very well. It has been used by Grabitz et al. [18] to
successfully simulate the relaxation kinetics of lipid membranes (DPPC) in
the lipid melting transition.

The acceptance ratio for a given state change using the Glauber algorithm,

A (µ→ ν) =
exp (−∆G/RT )

1 + exp (−∆G/RT )
≡ K

1 +K
, (4.5)

where K is the equilibrium constant.

The weighting of states using a rejection algorithm ensures that mainly the
most relevant states are reached in finite iterations (Monte Carlo cycles).
Common for all rejection algorithms is that the Monte Carlo simulation can
reach all states in the system in finite time, for a finite system. This en-
sures, by the ergodic theorem [11], that averaging over one system for a long
period of time is equal to averaging over a large number of snapshots of
independent systems, making Monte Carlo simulations a powerful tool for
estimating the properties of a statistical model.

4.1.3 Implementation of the Simulation

The goal of using the Monte Carlo method is to explore the important part of
state space of a given model. This is done by constructing a series (a Markov
chain) of configurations (states), which goes towards the most likely states
of the system.

The Markov chain is generated using the following general scheme:

1. Given a system configuration, S1, a trial move is proposed to the
configuration, S2. In this implementation only single flips of lipid
states are considered, meaning that S2 will only differ from S1 by a
flip of a single lipid.

2. The change in the Gibbs free energy associated to the proposed flip
is calculated by the Doniach model (Eq. (4.2)). From this, the accep-
tance ratio, A(S1 → S2), can be found using the Glauber algorithm
(Eq. (4.5)).

3. The proposed flip is either accepted or not by comparing the accep-
tance ratio between S1 and S2 with a random number, n ∈ [0 : 1],
such that if A(S1 → S2) ≥ n the flip is accepted.

46



4.1. Modeling Chapter 4. Simulations

4. If the flip has been accepted, the number of lipids in each lipid state
is updated along with the system enthalpy.

This scheme is referred to as one Monte Carlo step. In the present implemen-
tation, selection of which lipid is proposed flipped is chosen at random. The
standard “time” scale in Monte Carlo simulations is referred to as Monte
Carlo cycles, and is defined as one Monte Carlo step per site (lipid) in the
system.

When implementing the Monte Carlo simulation care has to be taken es-
pecially in the transition region in regard to equilibration of the simulation
and also with finite size effects due to the neighboring interactions of the
Doniach model (see appendix: Equilibration (E.2) and Finite Size Effects
(E.3) for details).

4.1.4 Simulation of the Doniach Model

The simulation efforts of the present thesis are all based on the Doniach
model and explored using the Monte Carlo method with the Glauber algo-
rithm. The model parameters used7 are the following [76]:

∆H 36400 J/mol

∆S 115.9 J/mol ·K
ωfg 1326.0 J/mol

Tm 314.05 K

All simulations have been carried out on a 100 by 100 hexagonal grid with
periodic boundaries. To ensure that the region of state space sampled is the
most likely, all simulations have equilibrated a minimum of 30 correlation
times before sampling, effectively meaning more than 6 · 104 Monte Carlo
cycles at the transition temperature.

In the simulations the system variables available are the system enthalpy
and the fluid fraction. The excess heat capacities can been calculated from
the simulated fluctuations of system enthalpy as described in Susceptibili-
ties (appendix A.1). The associated error of the estimated heat capacity is
estimated using the Jackknife Method (appendix E.4.2). The error of the
fluid fraction can be calculated by the standard deviation (see Eq. (E.8).
All simulations of the heat capacity have been performed using an Adoptive
Algorithm (appendix E.5). The applied adoptive algorithm ensures that
sampling is of only strictly statistically independent measuring points.

7The noted transition temperature may differ slightly from the standard Tm for DPPC
LUV in the literature. The difference is due to the precision of the chosen simulation
parameters and holds no physical significance.
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The excess heat capacity and the fluid fraction estimated from simulations
of the lipid (DPPC) melting transition using the Doniach model is shown in
Fig. (4.1).
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Figure 4.1: Left: Excess heat capacity found using Monte Carlo simulation of the
Doniach model. Right: Fraction of lipids in the fluid state found again by Monte
Carlo simulation of the Doniach model. Error bars have in both plots been omitted
for clarity. The presented curves are spline fits of the raw data, where the inverse
of the estimated errors have been used as weighting.

From the fluid fraction – area, density and background isothermal com-
pressibility can be calculated using respectively, the known area per lipid

(gel: 47.4 Å
2
, fluid: 62.9 Å

2
), the known specific area (gel: 1.90 · 106 cm2/g,

fluid: 2.52 · 106 cm2/g) and the known compressibility (gel: 1.0m/N , fluid:
6.9 m/N) [39]. The isothermal compressibility can be calculated from the
background compressibility, κAT (∞), and the transition associated compress-
ibility (Eq. (2.5). The isothermal compressibility and the lateral density is
shown in Fig. (4.2).

From Fig. (4.1) and Fig. (4.2) the lipid melting transition is not discon-
tinuous, classifying the transition as weak first order, as noted in Membrane
Phase Transition.
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Figure 4.2: Left: Isothermal compressibility calculated from the fluid fraction
and the excess heat capacity. Right: The lateral density calculated from the fluid
fraction. Error bars have in both plots been omitted for clarity.

4.2 Relaxation Simulations

The main goal of this project is to map how lateral sound of different frequen-
cies propagates through a lipid bilayer. For this, as discussed in Adiabatic
Pressure Perturbation (section 3.1), the relaxation function of the dynamic
heat capacity is needed. The goal of the relaxation simulations is to further
justify the functional form of the relaxation function of the enthalpy but also
to illustrate the response of the system to periodic pressure perturbations.

The relaxation function of a specific thermodynamical variable is a generic
property of the system and is therefore independent, in its form, of the na-
ture of the external parameters of the system, adiabatic or isothermal [89].
For conveniences the relaxation function will be studied in an isothermal
system, since isothermal models of the lipid membrane are readily available.
The example used here is the Doniach model.

Through the fluctuation-dissipation theorem8 the kinetics of a thermody-
namical system can be probed by two very different approaches [90]. One
being studying the fluctuations of a thermodynamical variable, the other
being perturbing the system and studying the relaxation behavior of the
system.

8The fluctuation-dissipation theorem states that the response of a system in equilibrium
to a small perturbation is the same as the system’s response to spontaneous fluctuations.
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4.2.1 Fluctuation Simulations

The relaxation behavior of the enthalpy is of central importance for the an-
alytical derivations. The goal of the fluctuation simulations is to verify the
simulation findings by Grabitz et al. [18]. This covers both the verification
of the single exponential relaxation behavior in the lipid melting transition
and verification of the proportionality relation between the relaxation time
and the heat capacity.

As ensured by the fluctuation-dissipation theorem, the time scale of the
fluctuation (noise) around the equilibrium of a system describes the relax-
ation dynamics. The characteristic timescale of the enthalpy noise can be
obtained using the autocorrelation function

G(t′) =

∫∞
0 (H(t)− 〈H〉) · (H(t+ t′)− 〈H〉)dt∫∞

0 (H(t)− 〈H〉)2dt
, (4.6)

where t′ is the time lag. The function is normalized such that the function
takes values between 1 at t′ = 0 and 0 when t′ approaches ∞.

Fluctuation Results

The presented data from the fluctuation simulations is the average of at
least 10 independent simulations, each sampled over a minimum of 105

Monte Carlo cycles where at each Monte Carlo cycle the system’s enthalpy
is printed. The autocorrelation function has been calculated using MATLABs
built-in autocorr function.

From Fig. (4.3) the single exponential relaxation behavior of the lipid (DPPC)
melting phase transition is verified. The distortion of the linear slope of the
right plots in Fig. (4.3) is due to the finale size of the sampled data sets,
and should be considered as statistical noise. The autocorrelation func-
tions of the enthalpy fluctuations have been fitted using MATLAB to single
exponentials (Eq. (3.12))9. The relaxation times found by the fluctuation
simulations have been plotted along with the simulated heat capacity in
Fig. (4.4). For this, the found relaxation times in the transition region are
well approximated as being proportional to the excess heat capacity.

From these results the single exponential relaxation behavior of the lipid
membrane in the transition region is confirmed. Further, the proportion-
ality relation between the excess heat capacity and the relaxation times
from [18] has been reproduced.

9All presented fits has R-squared values above 0.9
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Figure 4.3: The autocorrelation function of fluctuations of the system enthalpy.
Left: Shows the time scale of the fluctuations of system enthalpy. Right: Shows
that the relaxation behavior of the fluctuations of the system enthalpy is well ap-
proximated by a single exponential. The presented data is representative for both
below, in and above the transition temperature.
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Figure 4.4: The relaxation times in the lipid (DPPC) melting transition compared
to the functional form of the excess heat capacity. The solid line is the excess heat
capacity found by Monte Carlo simulation of the Doniach model. The presented
curve is a spline fit of the simulated data using the inverse of the estimated error
as weighting. The crosses are the relaxation times of the equilibrium fluctuation,
found by fitting the autocorrelation function with a single exponential.
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4.2.2 Perturbation Simulations

The experimental methods available for probing the dynamics of a system
through perturbations can be divided into transient and stationary pertur-
bation methods [17]. Transient perturbation methods include temperature
and pressure jump techniques as well as linear heating. The basic concept
of this group of techniques is to make a small fast perturbation, moving
the system out of equilibrium and probe the relaxation back to the new
equilibrium state of the system. Small perturbations means that the system
responds linearly to the perturbation. By fast perturbations is meant that
the perturbation has to happen on timescales much faster then the relax-
ation process under investigation, such that important relaxation kinetics do
not happen during the perturbation. The stationary perturbation method
was introduced by Eigen in 1954 [67] with which he revolutionized kinetic
probing techniques10. In stationary perturbation methods the system un-
der investigation is perturbed in a periodic manner by small perturbations.
The main advantage of these methods is that the requirement of the per-
turbations to be fast is circumvented and that averaging over time during
sampling is possible – resulting in good noise to signal ratios. The finite re-
laxation rates in a system will, much like in sound propagation (dispersion
and attenuation), result in a lag in the response of the system, taking the
form of phase shift, and a lowering of the response amplitude.

The assumption of linear response of the system in thermodynamical equi-
librium to small perturbations has been applied experimentally to the main
transition of membranes with great success [17,18]. There are formally two
requirements for applying perturbation methods to study the kinetics of a
phase transition [17]: The applied perturbation has to be of a variable that
can change the “extent” of the phase transition and that the extent of the
transition can be monitored through another variable. The requirement of
an observable variable is easily met in a model system since all variables
of the system are readily available. For the perturbation variable, the sim-
plicity of the Doniach model means that any variable11 that can change the
enthalpy associated state change, ∆H, can be used. It is well known that
the area of the lipids in the bilayer increases by about 25% from the gel to
the fluid phase. The lateral pressure, Π, can therefore be used to apply the
perturbation. The lateral pressure is related to the enthalpy by:

dH = TdS + V dP +AdΠ + . . . (4.7)

10This discovery lead to him receiving the 1967 Nobel prize in chemistry. See
www.nobleprize.org

11Choosing an intensive variable has the preferable advantage of being independent of
system size.
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From this, a perturbation of the lateral pressure will result in a change in
the enthalpy change associated to a flip of the lipid state.

∆H = ∆H0 + ∆A · δΠ, (4.8)

where ∆H0 is the known enthalpy change associated with the change of lipid
state, containing all the non-perturbed contributions. δΠ is the change in
lateral pressure from its physiological value. For the periodic perturbation
a simple sinus with an adjustable amplitude, aΠ, has been chosen to sim-
plify analyzing the response of the system (δΠ = aΠ sin(ωt)). The size and
the nature of the amplitude is not important for this thesis as long as the
assumption of linear response of the system holds. The final form of the
perturbed change in enthalpy is

∆H = ∆H0 + ∆A · aΠ sin(ωt), (4.9)

where ω is the angular frequency of the perturbation and t is time. The area

change between the two lipid states is ∆A = 15.5 Å
2

[39].

Eq. (4.9) can be inserted directly into the Doniach model providing a simple
perturbation extension of the model for probing the dynamics of the system.
Note, that by changing the lateral pressure, the enthalpy contributions from
all lipids in the fluid state change by:

∆Hfluid = ∆A · aΠ sin(ωt) (4.10)

For Monte Carlo simulations of non-equilibrium experiments the dynamics
of the model have to be chosen with care, since not only the end distribution
of states is important, but also the way in which it is achieved [86]. Due
to the equilibrium nature of the chosen simulation method (Monte Carlo)
the lateral pressure perturbation is applied over the full system, such that
there is no propagation dynamics needed. The only dynamics needed in
simulations of a pure lipid system are the dynamics of the change in states
of the lipids, since all lipids in the system are indistinguishable and move-
ment of individual lipids therefore can not be tracked. Using the present
implementation (simulation) as a near-equilibrium simulation is justified by
the previous success in mimicking the relaxation behavior of the equilibrium
fluctuations in the lipid melting transition [18].
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Perturbation Results

Here the simulation results of the perturbation simulations will presented
and discussed.

The implementation of the perturbation model extension of the Doniach
model is done using Eq. (4.9) as the change in enthalpy for a lipid state
change in Eq. (4.2) and keeping track of changes in enthalpy of lipids in the
fluid state in accordance with Eq. (4.10).

Equilibration is in the perturbation simulations done first without the per-
turbation extension, and then again with the perturbations extension. The
first equilibration is done to ensure that the region of state space explored
during the perturbation simulations is close to the equilibrium region.

The raw simulation output with the applied perturbation is shown in Fig. (4.5).
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Figure 4.5: Raw simulation system enthalpy output with the applied perturbation.
Top: The raw enthalpy signal at T = 314.15 K ≈ Tm. Bottom: The applied
enthalpy perturbation, originating from the applied lateral pressure perturbation
with ω = 1000 1/(MC cycles) and an amplitude of aΠ = 0.75 N/m.

As clearly illustrated by Fig. (4.5), the simulated system enthalpy follows
the applied perturbation with a phase shift. Along with that phase shift,
the response amplitude of the system to the perturbation is also frequency
and state dependent. In the phase transition the lipid membrane becomes
very soft causing the response of the system to become very strong. This is
modeled in the perturbation simulations by the free energy gain of flipping a
lipid state being small in the transition – making the perturbation dominant.
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For the purpose of exploring the relaxation behavior using periodic pertur-
bation, the amplitude of the applied perturbation has to be small, meaning
that the response of the system is a linear function of the perturbation.
In Fig. (4.6) the square of the response has been fitted to a second order
polynomial, verifying the linear response of amplitude in the explored range.
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Figure 4.6: Amplitude of the system response as a function of the applied pertur-
bation amplitude at T = 314.15 K ≈ Tm. The presented simulated responses have
been mirrored around zero perturbation.

Using that the model lipid membrane system responds in a linear fashion
to lateral pressure perturbations, Linear Response Theory (appendix D) can
be applied. From the chosen lateral pressure perturbation (Eq. (4.9)) the
enthalpy response of the modeled lipid membrane takes the form

H(t)− 〈H〉 = Im

(
aH exp (i(ωt− θ))

(1 + (ωτ)2)1/2

)
=
aH sin (ωt− θ)
(1 + (ωτ)2)1/2

(4.11)

where
tan(θ) = ωτ. (4.12)

In Eq. (4.11) and Eq. (4.12), θ is the phase shift between perturbation and
response, ω is the angular frequency of the applied perturbation, aH is the
amplitude of the perturbation and τ is the lipid membrane’s relaxation time.
All perturbation simulations have been carried out with a perturbation am-
plitude of aΠ = 0.75N/m, which according to Fig. (4.6) is well within the
linear regime.

By cross-correlating the applied perturbation with system enthalpy, using
MATLABs built-in xcorr function, and fitting this with sin (ωt+ θ′)12, the
simulated phase shift can be estimated, see Fig. (4.7).

12The cross-correlation between sin(ωt) and sin(ωt+ θ) has the form cos(ωt+ θ). When
fitting to sin(ω + θ′), there will be a discrepancy between the two phase shifts of θ =
θ′ − 2π + π/2, where the 2π depends on the fitting procedure.
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Figure 4.7: The phase shift between the applied lateral pressure perturbation and
the enthalpy response of the system. The crosses are the estimated phase shifts
at different frequency perturbations. The estimated phase shift has been fitted to
Eq. (4.12) indicated by the dotted line. From the fits the corresponding relaxation
times have been estimated: τ(312.15 K) = 8.7 ± 0.5 MC cycles, τ(314.15 K) =
24.2 ± 2.0 MC cycles and τ(314.15 K) = 188.5 ± 7.2 MC cycles. The presented
phase shifts are representative of the behavior in the full range of the transition.

The reader might notice that phase shifts are estimated down to ω =
1 1/(MC cycles), meaning that a full period of the perturbation is done
during one Monte Carlo cycle. These “too low” frequency perturbations are
achieved by not letting the simulation go through a full Monte Carlo cycle
before printing the system enthalpy. In the low frequency perturbation sim-
ulation the enthalpy is printed 100 times during a single Monte Carlo cycle.
This does not change the dynamics of the system, but going further down
in frequency can result in effects of the course grain nature of the Doniach
model to become apparent. The large noise on the low frequency phase lag
estimates is due to very low signal to noise ratio, which is indirectly illus-
trated in Fig. (4.8).

In Eq. (4.11) the fluctuations of the system enthalpy have not been con-
sidered – fluctuations that, in the transition region, is very high. It is not
possible directly from the enthalpy fluctuations to separate the perturba-
tion response from spontaneous fluctuations. It is therefore a much more
prudent approach to consider the average of the squared enthalpy fluctua-
tion. Recognizing the analogy to the excess heat capacity, the spontaneous
fluctuation component of the signal can easily be identified.〈

(H(t)− 〈H〉)2
〉

RT 2
=
a2
H/(2RT

2)

1 + (ωτ)2
+ ∆cP , (4.13)

where the first term is the response component and the second is the spon-
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taneous fluctuation component (the equilibrium excess heat capacity).

In actually sampling the average of the squared enthalpy fluctuation it is
important to make the averaging such that the periodic nature of the per-
turbation is accommodated. This has been done by sampling over one per-
turbation period and then average over the number of periods completed
during the simulation. The number of periods sampled over in the sim-
ulation is the numerical value of

〈
(H(t)− 〈H〉)2

〉
/RT 2 13, hereby taking

somewhat care of the diversity of the relaxation times in the transition. The
nature of sampling, however, makes direct estimate of the error impossible.
The noise of the presented data (see Fig. (4.8)) gives some measure of the
error though.
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Figure 4.8: The amplitude of the lipid membrane response to lateral pressure
perturbation of different frequencies. The crosses are the estimated amplitude
at different frequency perturbations. The estimated amplitude has been fitted to
Eq. (4.13), indicated by the dotted line. A: has been carried out at T = 312.15 K.
B: T = 313.15 K. C: T = 314.15 K ≈ Tm. The presented forms of the response
amplitude are representative of the behavior in the full range of the transition.

By fitting the simulated amplitude of the lipid membrane response to
Eq. (4.13), the relaxation time and the corresponding excess heat capacity
is estimated:

T τ ∆cP
312.15 K 12.6± 4.2 MC cycles 1272± 10 J/mol ·K
313.15 K 29.0± 4.4 MC cycles 3471± 40 J/mol ·K
314.15 K 190.6± 10.1 MC cycles 30120± 1040 J/mol ·K

These values agree with the relaxation time found from the phase shift (see

13If
〈
(H(t)− 〈H〉)2

〉
/RT 2 = 9 · 104 than the number for periods sampled over is 9 · 104
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Fig. (4.7)), as well as the ones found from the fluctuation simulations (see
Fig. (4.4)). Further, the estimated excess heat capacities agree well with
the values found from equilibrium simulations (see Fig. (4.1), left). These
agreements holds throughout the extent of the transition.

The perturbation extension of the Doniach model has been shown to esti-
mate both the relaxation time and the equilibrium excess capacity in agree-
ment with the values obtained from equilibrium simulations of the Doniach
model. This implies that the Doniach model can fairly easily be used as the
basis for dynamical near-equilibrium simulations, which could prove useful
as comparison to experiments probing dynamical properties of lipid mem-
branes.

The perturbation simulations serves, in this thesis, to further illustrate
the relaxation behavior of the lipid (DPPC) membrane in its melting tran-
sition. It also serves as an excellent illustration of how a system responds
to sinusoidal perturbations in the linear regime, which is the basic nature
of the response of the lipid membrane to sound. In this comparison it is,
however, important to remember that sound is adiabatic in nature, whereas
the perturbation simulations are of an isothermal system.
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4.3 Finite System Simulations

The goal of the simulation efforts in this section is to relate the dynamic
heat capacity to the adiabatic lateral compressibility. As proposed in Adi-
abatic Compressibility (section 3.2), the frequency dependence of the adi-
abatic compressibility is related to the frequency dependence of the lipid
membrane’s associated heat reservoir size. This concept has been used to
successfully predict the limiting cases of no associated reservoir and an in-
finite reservoir [3]. The goal of the following proposed model is to connect
these two limiting cases by exploring how a finite heat reservoir affects the
thermodynamical properties of a lipid membrane. By finite heat reservoir is
meant that the lipid membrane and its finite heat reservoir are adiabatically
isolated from the exterior.

4.3.1 Adiabatic Model Extension

In an adiabatically isolated system enthalpy is strictly conserved, and any
enthalpy supplied or absorbed by the lipid membrane in the process of lipid
state fluctuations, needs to come from the surrounding system. Conse-
quently, the thermodynamical system surrounding the lipid membrane will
be considered as a energy reservoir (or buffer). In the Doniach model the
membrane system is connected to an infinite water reservoir (Fig. (4.9), left),
in effect keeping the temperature constant. In an infinite system conserva-
tion of enthalpy can be disregarded, since the enthalpy associated with a
lipid state change is finite. This is, however, not the case for a finite sys-
tem (Fig. (4.9), right), where much care has to be made in conserving the
enthalpy.

Figure 4.9: Left: A visualization of the system considered in the Doniach model.
Right: The system considered in the present model extension. The double box
surrounding the system indicates adiabatic isolation.
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The thermodynamical system in consideration is: Two sub-ensembles,
in which the number of particles and pressure are constant. These together,
compose a unit ensemble that is isolated such that enthalpy (heat), number
of particles, pressure and temperature are constant. This is illustrated in
Fig. (4.10).

Figure 4.10: The thermodynamical system under consideration. The two sub-
ensembles are denoted as A and B, and the adiabatic isolation is depicted by the
double layered outer box.

Sub-ensemble A is the reservoir, which is comprised of the water sur-
rounding the lipid membrane and the lipid chains which are assumed to be
passive heat reservoirs of the lipids. The other sub-ensemble, B, is the lipid
membrane, or rather a model (Donaich model) of the lipid membrane (illus-
trated in Fig. (4.9), right). The sub-ensembles are connected such that they
can only exchange enthalpy between each other. The states that comprise
the surrounding ensemble’s state space are any superpositions of states of
the two sub-ensembles that respect the constant enthalpy, pressure, number
of particles and temperature of the total system. It is important to note
that it is not the total system that is of interest, it is the sub-ensemble of
the lipid membrane.

The probability of an internal enthalpy exchange between the sub-ensembles
is the probability of one providing and the other absorbing. Using this anal-
ogy, the probability of a lipid state change in a finite adiabatic isolated sys-
tem must be the probability of a lipid state change (flip) and the reservoir
buffering (buff). Using the product rule this can be written as following:

p(flip ∩ buff) = p(flip)p(buff|flip), (4.14)

where p(flip) is the probability of a given lipid state change and p(buff|flip) is
the probability of the reservoir being able to buffer that change. Note, that
in the case of an infinite reservoir p(buff|flip) will be 1, and p(flip ∩ buff) =
p(flip). In general, however, for a finite reservoir p(buff|flip) < 1, since the
enthalpy available in the reservoir is finite.

60



4.3. Finite System Simulations Chapter 4. Simulations

The probability of a lipid state change

The probability of a lipid state change, p(flip), is independent of the system
surrounding the membrane, and is known from the implementation of the
Doniach model. The acceptance ratio14 of a lipid state change is, using
Glauber algorithm, given by Eq. (4.5):

A(flip) =
K

K + 1
, (4.15)

where

K = exp

(
−∆G

RT

)
. (4.16)

The Gibbs free energy associated to a lipid state change, ∆G, is known from
the Doniach model, Eq. (4.2).

The probability of the reservoir buffering a lipid state change

The probability (or rate) by which the reservoir is able to accommodate a
specific need (absorb or supply) should be equal to the probability of the
reservoir having a fluctuation that can accommodate the enthalpy change
associated with a lipid state change. The probability of the reservoir hav-
ing a fluctuation that can accommodate a given lipid state change can be
calculated from the change in Gibbs free energy, ∆Gr, associated to such a
fluctuation.

∆Gr = ∆Hr − T∆Sr, (4.17)

where ∆Hr is the change in enthalpy the reservoir needs to buffer for a
proposed lipid state change15, ∆Sr is entropy change in the reservoir asso-
ciated with the buffering of the enthalpy and T is the temperature of the
total system.

The change in the reservoirs enthalpy from a given lipid state change is
known since all changes in the lipid membrane’s enthalpy have to be accom-
modated by the reservoir. The only unknown in Eq. (4.17) is the entropy
change of the reservoir associated with the buffering of the enthalpy.

The fluctuation of the reservoir that can accommodate a given lipid state
change can be of any thermodynamical variable, even the globally fixed,
since the fluctuations are only in the reservoir sub-ensemble (local). In the
following the reservoir temperature will be used as the fluctuating variable.
It is important to emphasize that the temperature fluctuations only serve

14Remembering the relation between the transition probability and the acceptance ratio,
Eq. (4.4).

15The enthalpy change associated with the change of a lipids state also encompass the
changes in neighbor interactions.
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as an enthalpy buffer for the lipid membrane. From the local fluctuations of
temperature, the change in the reservoirs entropy associated with the trans-
fer of enthalpy internally between the two sub-ensembles can be calculated
as follows: (

∂S

∂T

)
P

=
cP
T
⇒ (4.18)

∆S =

∫ T2

T1

cP
T
dT. (4.19)

In the temperature range of interest (Tm±5), the heat capacity of water can
be assumed constant. Assuming likewise that the heat capacity of the lipid
chains are constant16, the entropy change of the reservoir takes the form:

∆Sr = cP,r ln
T2

T1
, (4.20)

where T2 is the temperature of the reservoir needed to accommodate the
change, which is given by:

cp =

(
∂H

∂T

)
P

⇒ (4.21)

T2 =
∆Hr

cP,r
+ T1, (4.22)

and T1 is the present temperature of the reservoir. cP,r is the total heat
capacity of the reservoir, i.e. the heat capacity of both the lipid chains and
the water in the reservoir.

From Eq. (4.20), Eq. (4.17) can be written as,

∆Gr = ∆Hr − TcP,r ln
T2

T1
= ∆Hr − TcP,r ln

( ∆Hr
cP,r

+ T1

T1

)
, (4.23)

where T is the temperature of the total system, which is also the mean tem-
perature experienced by the reservoir.

From Eq. (4.23), the acceptance ratio of the reservoir being able to ac-
commodate a given state change is, using the Glauber algorithm, given by:

A(buff|flip) =
K ′

K ′ + 1
, (4.24)

where

K ′ = exp

(
−∆Gr
RT

)
. (4.25)

16The heat capacity of the lipid chains (DPPC) changes from 1600 J/mol · K for gel
state to 1650 J/mol ·K for the fluid state [91], but it will here be assumed constant.
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The probability of a lipid state change in a finite water reservoir

From Eq. (4.15) and Eq. (4.25) the probability of a lipid state change in a
finite adiabatic isolated system can be found in accordance with Eq. (4.14).
The corresponding acceptance ratio is given by

A(flip ∩ buff) = A(flip)A(buff|flip) (4.26)

=
K

K + 1

K ′

K ′ + 1
. (4.27)

If the simulation decides to allow a change of state, the enthalpy associated
with this change is absorbed or supplied by the reservoir. From this, T1 is
updated to the value of T2 and hereby strictly conserves enthalpy.

This model extension is an equilibrium model and must therefore uphold
detailed balance, this is shown in Detailed Balance (appendix E.1).

Model considerations

The motivation for making the model was to enable studying the lipid mem-
brane in a finite water reservoir, specifically the lipid melting transition. The
basic idea of the model is that the heat reservoir should accommodate any
lipid state changes, hereby conserving enthalpy (heat) in the system.

The size of the heat reservoir have not been specified in the above. In
the proposed model it is assumed that each lipid can interact with the full
reservoir, meaning that the reservoir is completely shared. By assigning a
finite reservoir per lipid, the size of the total reservoir will scale with the
number of lipids. The enthalpy in the system likewise scales with the number
of lipids. From this, the total heat reservoir experienced by the membrane is
finite relative to its own size. Meaning that the properties of the adiabatic
model extension are independent of the number of lipids in the system (see
Fig. (4.11))17.

For simplicity, each lipid has been assigned a number of water molecules,
specifically their heat capacity, along with the heat capacity of its lipid
chains. The detailed thermodynamical coupling between water and the lipid
membranes is not known and is still a topic of much investigation [34]. The
water associated to the lipid membrane is therefore assumed to have the
properties of water in bulk solution. The actual amount of water assigned
to each lipid is no physical importance, only the heat capacity of the reser-
voir is important and not its origin.

17Though numerically, the size of the total reservoir can lead to issues with precision in
simulations.
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Figure 4.11: The excess heat capacity of the lipid membrane in a finite system of
1000 water molecules per lipid estimated for different system sizes. The number of
lipids is the square of the system size.

The basic concept of the adiabatic model extension is that fluctuations in
the heat reservoir can accommodate the lipid state changes. The detailed
fluctuation of the heat reservoir is however not considered, only the prob-
ability of the reservoir having a fluctuation that can accommodate a given
lipid state change is considered. In this, it is assumed that fluctuations in
the heat reservoir are much faster than the characteristic rate of lipid state
changes. This assumption is justified by both water18 and rotation of lipid
chains [32] have characteristic timescales of the order ns, whereas the fastest
relaxation times of the lipid membrane, during the lipid melting transition,
are of the order of ms.

Note that the lipid membrane sub-ensemble experiences the temperature of
the total system, which is constant, and has constant pressure. From this,
the excess heat capacity of the lipid membrane can be calculated directly
from its enthalpy fluctuations (see appendix A.1 for details on calculation).

18For a discussion on water, its structure and characteristic timescales, see the homepage
of Martin Chaplin: www.lsbu.ac.uk/water/methods.html.
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4.3.2 Results

In this section the simulation results of the adiabatic model extension will
be presented, and the posed ansatz (Eq. (3.22)) is discussed in the light of
these results.

The heat reservoir assigned per lipid in the simulations, are the heat ca-
pacity of a number of water molecules and one lipid chain pair. The heat
capacities used is: cwaterp = 74.539 J/(K ·mol) (= 1 cal/(g ·K)) for water

in bulk solution and cchainp = 1600 J/(K ·mol) for the lipid chains (DPPC)
(gel state) [91]. The total heat capacity of the heat reservoir (per lipid) is
given by:

cP,r = cwaterp ·Nwater + cchainp , (4.28)

where Nwater is the number of water molecules assigned to each lipid.

The total heat reservoir is shared by all lipids in the lipid membrane, and
the minimum number of water molecules per lipid considered in any sim-
ulation is 100. Based on this, it is safe to assume in all simulations that
∆Hr/cP,r � T1. Using this Eq. (4.23) can be well approximated by

∆Gr ≈ ∆Hr

(
1− T

T1

)
(4.29)

This approximation is used in the simulations to avoid the computation time
cost associated with calculation of the logarithm in Eq. (4.23)19.

The adiabatic model extension have been implemented using the implemen-
tation scheme in Implementation of the Simulation (section 4.1.3), where the
acceptance ratio is given by Eq. (4.27). Note however that the acceptance
ratio, Eq. (4.27), has in the present implementation been multiplied20 by 2.
This is done to ensure that the characteristic time scale of the simulations
of the adiabatic model extension are similar to that of the simulations of the
Doniach model, such that the adoptive algorithm can be used.

All simulations have been conducted as presented in Simulation of the Do-
niach Model (section 4.1.4), with the exception that equilibration has been
done first without the model extension, followed by a separate equilibration
with the model extension.

19This approximation slightly obscure detailed balance but have been shown to only
have a minor effect on the simulation results (a shift in the transition temperature of
about 0.02 K).

20Multiplying the acceptance ratio by a constant can always be done without violating
detailed balance or ergodicity.

65



4.3. Finite System Simulations Chapter 4. Simulations

From the simulations the effect of having a finite heat reservoir is clear:
By lowering the available heat reservoir the phase transition associated phe-
nomenas are lowered, illustrated by a lowering of the heat capacity with
smaller reservoirs. This lowering is due to the hampering of large scale en-
thalpy fluctuations in the lipid membrane. The width of the phase transition
is unaltered, meaning a depression of the phase transition with smaller heat
reservoirs and not a out-smearing. This is illustrated in Fig. (4.12).
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Figure 4.12: Left: A contour map of the heat capacity of the lipid membrane,
where the coloring is done in accordance with the value of the heat capacity. Right:
Heat capacity profiles of the lipid membrane for different sizes of associated heat
reservoirs. The curves are obtained by spline fitting raw simulation data using the
inverse estimated error as weighting. Error bars have been omitted for clarity in
all plots but one. Due to the adoptive algorithm the error is the same relative to
the heat capacity for all simulations.

In Adiabatic Compressibility (section 3.2) it was posed as an ansatz that

the heat capacity, ceffectiveP , of the lipid membrane in a adiabatically isolated
heat reservoir has the form of Eq. (3.21):

ceffectiveP = cexP −
(cexP )2

csystemP

where
csystemP (ω) = cexP + cP,r.

In the present model the heat capacity of the total heat reservoir, cP,r, is an
input parameter and the excess heat capacity of the lipid melting transition
is known from Fig. (4.1). Using these, the effective heat capacity can be
directly calculated and be compared with the simulation results, hereby
testing the ansatz. For verification of the ansatz, the simulated estimates of
the excess heat capacity for finite heat reservoirs are plotted in Fig. (4.13)
along with the calculated effective heat capacity.
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Figure 4.13: Verification of the posed ansatz. full line: The effective heat capac-
ity calculated from Eq. (3.21) at different temperatures and for different reservoir
sizes. Crosses: The simulated estimate of the excess heat capacity of the lipid
membrane for finite heat reservoirs. These represent the general behavior over the
full transition range.

The estimated heat capacities have been spline fitted using the inverse
error as weighting. This procedure is conservative in estimating the top
point of the heat capacity when the peak becomes shapes. Taking this into
account, Fig. (4.13) shows almost perfect agreement between Eq. (3.21) and
the simulated estimate of the heat capacity, hereby verifying the validity of
the posed ansatz.

The ansatz made it possible to recognized the effective heat capacity of
the lipid membrane in a finite water reservoir as the dynamical heat capac-
ity. This link become apparent when comparing the lowering of the heat
capacity in Fig. (4.12) with the experimental results of Van Osdol et al. [70]
shown in Fig. (3.1).

That the lipid membrane can be considered as a pseudo 2-dimensional sys-
tem embedded in a 3-dimensional system has complicated the step of re-
lating the dynamic heat capacity to the adiabatic compressibility. By the
simulations of the proposed model, it is possible to probe how the proper-
ties of the lipid membrane, in the transition region, act when the extent
of the associated heat reservoir become finite. The model is based on sim-
ple assumptions regarding the nature on the internal transfer of heat and
should be applicable to not only the lipid membrane system, but to all lower
dimensional system submerge in higher dimensional system, where the in-
ternal transfer rates in the heat reservoir can be considered much faster than
the subsystem-subsystem transfer rates.
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Chapter 5

Discussion and Conclusion

In the general interest of understanding the dynamics of the lipid melting
transition, a wide array of experimental methods have been utilized over
the years, ranging from pressure jump experiment [18] to ultra-sonic ex-
periments [16, 58]. All attempts to describe sound propagation in the lipid
membrane have thus up until this thesis been aimed at probing the re-
laxation behavior in the ultra-sonic regime. With the introduction of the
Soliton model, which describes nerve signals as localized sound packets, un-
derstanding sound propagation at low frequencies become important for our
understanding of nerves signals.

The goal of this work has been to estimate the frequency dependence of
the lateral speed of sound in lipid membranes, using both analytically and
numerically tools. These efforts will here be discussed and conclusions will
been drawn from the findings. Last, perspectives and the general impact of
the present work will be considered.

5.1 Discussion

In this thesis an analytic expression for the speed of sound in the plane of
a lipid membrane during the lipid melting transition has been derived. In
order to reach this point there were two main challenges:

1. Estimating the response behavior of the lipid membrane to periodic
adiabatic perturbations.

2. Relate this response of the system to the speed of lateral sound –
through the adiabatic lateral compressibility.

The response of the lipid membrane to adiabatic periodic perturbations
is strongly related to the relaxation behavior of the system [54,57]. Following
the derivations of Van Osdol et al. [17] using thermodynamics and a linear
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response approximation1, it was possible to simplify the response of the
lipid membrane to a single response function utilizing a single exponential
relaxation function. The response function takes the form of a dynamic
heat capacity, which can be conceptually be understood as the effective heat
capacity of the lipid membrane subject to adiabatic periodic perturbations.

In these derivations the major assumption concerns the nature of the
relaxation function. Grabitz et al. [18] found that, in the lipid melting tran-
sition, the relaxation behavior of the lipid membrane, at low frequencies, is
well approximated by a single exponential. This means that the lipid melt-
ing transition is not critical, which is verified by the final extent of the excess
heat capacity. The single exponential relaxation behavior should, however,
only be considered as a low frequency approximation to the dynamics of the
lipid membrane in the lipid melting transition. In a number of ultra-sonic
experiments it has been shown that the single exponential relaxation behav-
ior is insufficient to describe the dynamics of the cooperative processes of
the lipid melting transition in the ultra-sonic regime [16,58].

As a conservative estimate, the single exponential relaxation behavior
and thereby the validity of the estimated speed of sound, is thus limited to
frequencies of the order of magnitude similar to the relaxation rate or lower.

The challenge of relating the periodic adiabatic perturbation response of
the lipid membrane to the speed of sound is geometric in nature. The lipid
membrane can be considered a pseudo 2-dimensional system embedded in
a 3-dimensional system (a heat reservoir). All existing theories in the lit-
erature regarding relating the dynamic heat capacity to the adiabatic com-
pressibility is based on the assumption that the medium of interest spans
the full thermodynamical system. Halstenberg et al. [69] proposed that the
frequency dependency of the adiabatic lateral compressibility in the lipid
melting transition, originates from the sizes of the membrane associated
heat reservoir and not from internal dynamics in the lipid membrane.

Motivated by this concept, a model was here proposed to probe the effects of
a finite heat reservoir (adiabatically isolated) on the lipid melting transition.
The idea of the model is, that any enthalpy changes in the lipid membrane
have be supported by the heat reservoir. As the size of the heat reservoir
becomes finite, the probability of the reservoir supporting a proposed change
is lowered, thus limiting the extent of the lipid melting transition. To the
present author’s knowledge this is the first model exploring how the lipid
melting transition is effected by a finite water reservoir. The simulation
results of the proposed model, showed that the frequency dependent part of
the adiabatic lateral compressibility can be interpreted as the effective heat

1The linear response approximation is with regard to the perturbation amplitude, where
the amplitude is assumed to be small.
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capacity of a lipid membrane in a finite adiabatically isolated heat reser-
voir. The frequency dependent part of the adiabatic lateral compressibility
is thus directly related to the dynamic heat capacity. The link between
the dynamic heat capacity and the adiabatic compressibility proposed here,
should be considered an extension of the concept of Halstenberg et al. [69],
but it is the first justification that the relation hold in general.

From the response function (the dynamic heat capacity) and the relation
between the dynamic heat capacity and the adiabatic compressibility, an
analytic expression for the speed of sound in the plane of a lipid membrane
was formulated. From values of the well known lipid membrane system,
vesicles of DPPC, the speed of sound was calculated and was found to be
in perfect agreement with existing estimates of the high and low frequency
limits [3]. Using the low frequency approximation used in the Soliton model
for the dispersion, the “dispersion constant” was found to be of the order
of 108 times larger (at transition temperature) than estimated by Heimburg
and Jackson [3] (h = 2 m4/s2), and strongly dependent on lateral density
during the lipid melting transition. Heimburg and Jackson estimated their
dispersion constant from the width of a nerve pulse, whereas the estimate
here is based on the properties of the highly cooperative pure lipid system of
DPPC. Realistic characteristic relaxation times for nerve membrane in the
transition can be assumed to be of the order of 102 to 103 times slower than
for pure lipid membranes of DPPC. Assuming this, the estimated dispersion
term will be of the order 102 m4/s2 to 104 m4/s2 at the transition tempera-
ture and 10−4 m4/s2 to 10−2 m4/s2 at the boarder of the transition. Taking
this into account along with the density dependency of the “dispersion con-
stant”, the estimated dispersion seem realistic in regard to the Soliton model.

An interesting new discovery regarding the estimated dispersion constant is
its dependency on the relaxation time. The analytic form of the dispersion
constant, is some function of the correlation length of the system (which is
direct related to the excess heat capacity) times the relaxation time squared.
The fact that the relaxation time enters squared, is from the perspective of
the origin of the dispersion rather intuitive. The mechanism that causes
dispersion in the lipid melting transition is the finite value of the relaxation
rate. The meaningful variable for dispersion is however not the relaxation
time, but rather ωτ , which is also consensus in the ultra-sonic field. It is
the finite value of ωτ that causes dispersion. Based on this argument, any
Taylor expansion of the phase velocity to any given order around ω = 0,
should give some prefactor and the relaxation time to that order. This pre-
diction fits nicely with the Taylor expansion of the BF-theory [65]. Posed
here as speculation, the dependency of the dispersion on the relaxation time
must be a general property of dispersion of this nature independent on the
specific system.
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5.2 Conclusion and Perspectives

It was the goal of this thesis to estimate the frequency dependence of the
speed of sound in the plane of lipid membranes, specifically understanding
dispersion in a model membrane of DPPC at low frequencies.

This work is the first in the literature aimed at exploring the frequency
dependence of the sound propagation in lipid membranes at low frequen-
cies. The main achievement of this thesis has been to formulate a analytic
expression for sound propagation in the lipid membrane based entirely on
thermodynamics, using the concept known from the theory of sound prop-
agation. In doing this a relation between the lipid membranes response to
sound propagation and the speed of sound was formulated and justified by
simulations, modeling how the lipid melting transition is affected by a finite
heat reservoir.

For vesicles of DPPC, the frequency dependence of the speed of sound (dis-
persion) was found, to be very strong and also that the dispersion is strongly
dependent on lateral density.

Perspectives

The major limitation of the present analytic expression for the speed of
sound is its limitations in frequency range. It could in the future be interest-
ing and useful to extend the applied dynamics to cover a broader frequency
range unifying the experimental results in the low frequency regime with
the results in the ultra-sonic regime. A possible approach to this, would be
the theory proposed by Bhattacharjee and Ferrel [65] (BF-theory), which
has be successfully applied to the lipid phase transition by Halstenberg et
al. [58] in the ultrasonic regime.

In the future, an exploration of the generality of the found relation between
the dynamic heat capacity and the adiabatic compressibility could extent
the present understanding of sound propagation in mediums not spanning
the full dimensions of a thermodynamical system.

For the application of the present framework on biological membranes, a
great experimental task still lies ahead in probing the general thermody-
namical and dynamic behavior of these complex structures.

In the future it will be interesting to explore the implication of the present
work on the Soliton model. In the present form, the Soliton model assumes
that dispersion is independent of density or lipid state and the functional
form of the dispersion term can be viewed as the lowest, non-trivial, order
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expansion of the speed of lateral sound. The work of this thesis has shown
that the dispersion “constant” is strongly dependent on density and has
made an number of prediction regarding the general nature of dispersion in
lipid membranes. In the future it will be interesting to see the dispersion
constant estimated here incorporated in the Soliton model, thus possibly
lead to a reformulation of the dispersion term. This work will thus enhance
the predictive power of the Soliton model, and have deep reaching conse-
quences for how the propagation of nerve signals is understood.
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[59] B. Brüning, E. Wald, W. Schrader, R. Behrends, and U. Kaatze, Soft
Matter 5, 3340 (2009).

[60] K. Kawasaki, Physical Review A 1, 1750 (1970).

[61] D. M. Kroll and J. M. Ruhland, Physical Review A 23, 371 (1981).

[62] J. K. Bhattacharjee and R. A. Ferrell, Physical Review A 24, 1643
(1981).

[63] R. A. Ferrell and J. K. Bhattacharjee, Physical Review A 31, 1788
(1985).

[64] H. Tanaka, Y. Wada, and H. Nakajima, Chemical Physics 68, 223
(1982).

[65] J. K. Bhattacharjee and R. A. Ferrell, Physical Review E 56, 5549
(1997).

[66] L. Onsager, Physical Review 38, 2265 (1931).

[67] M. Eigen, Discussions of the Faraday Society 17, 194 (1954).

[68] A. H. Wilson, Thermodynamics and Statistical Mechanics, chap. 3,
Cambridge University Press, , 1st ed., 1957.

[69] S. Halstenberg, T. Heimburg, T. Hianik, U. Kaatze, and R. Krivanek,
Biophysical journal 75, 264 (1998).

[70] W. W. Van Osdol, M. L. Johnson, Q. Ye, and R. L. Biltonen, Biophys-
ical journal 59, 775 (1991).

[71] M. Barmatz and I. Rudnick, Physical Review 170 (1968).

[72] A. B. Pippard, Philosophical Magazine 1, 473 (1956).

[73] M. J. Buckingham and W. M. Fairbank, Progress in Low Temperature
Physics (North-Holland Publishing Co., Amsterdam, 1961).

78



Bibliography Bibliography

[74] W. Schrader et al., The Journal of Physical Chemistry B 106, 6581
(2002).

[75] S. Mabrey, Proceedings of the National Academy of Sciences 73, 3862
(1976).

[76] V. P. Ivanova and T. Heimburg, Physical Review E 63, 1914 (2001).

[77] S. Doniach, The Journal of Chemical Physics 68, 4912 (1978).

[78] E. Ising, Zeitschrift für Physik A Hadrons and Nuclei 31, 253 (1925).

[79] D. A. Pink, T. J. Green, and D. Chapman, Biochemistry 19, 349
(1980).

[80] O. G. Mouritsen et al., The Journal of Chemical Physics 79, 2027
(1983).

[81] I. P. Sugar, R. L. Biltonen, and N. Mitchard, Methods in enzymology
240, 569 (1994).

[82] S. Mabrey and J. M. Sturtevant, Biophysics 486, 444 (1977).

[83] A. J. Wagner, S. Loew, and S. May, Biophysical journal 93, 4268
(2007).

[84] V. P. Ivanova, I. M. Makarov, T. E. Schäffer, and T. Heimburg, Bio-
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Appendix A

Thermodynamics

This appendix section contains derivations of thermodynamical relations
used in the course of the thesis.

A.1 Susceptibilities

At equilibrium the free variables of a system will fluctuate reversibly around
their equilibrium value. From these fluctuations the susceptibilities of the
system can be found, among these is the heat capacity. At constant pressure,
the heat capacity, cp, is defined as

cP =

(
dQ

dT

)
P

. (A.1)

Enthalpy is defined as H ≡ U + PV . The differential is then dH = dU +
PdV + V dP . By substituting in dU = dQ − PdV , dH will be reduced to
dH = dQ, at constant pressure. From this Eq. (A.1) takes the form

cP =

(
dH

dT

)
P

. (A.2)

1 Using the statistical mechanical approach to thermodynamics, the ther-
modynamics variables can be considered as average values.

〈H〉 =

∑
iHi · e−Hi/RT∑
i e
−Hi/RT

=

∑
iHi · e−Hi/RT

Z
, (A.3)

1Same procedure can be done for the entropy, since dQ = TdS, so cP = T
(
dS
dT

)
p
.
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A.1. Susceptibilities Appendix A. Thermodynamics

where R is the gas constant, T is the temperature and Z is the partition
sum. The sums are over all possible states of the system. Using Eq. (A.3),

cp =

(
d

dT

∑
iHi · e−Hi/RT

Z

)
p

=

∑
iH

2
i · e−Hi/RT

RT 2 · Z
− 1

RT 2

∑
iHi · e−Hi/RT

Z

∑
j Hj · e−Hj/RT

Z

=
〈H2〉 − 〈H〉2

RT 2
. (A.4)

A similar derivation can be carried out for the isothermal lateral compress-
ibility:

κAT = −
(

1

〈A〉
· d 〈A〉
dΠ

)
T

, 〈A〉 =

∑
iAi · e−Hi/RT∑
i e
−Hi/RT

= − 1

〈A〉

(
d

dΠ

∑
iAi · e−Hi/RT

Z

)
T

=

〈
A2
〉
− 〈A〉2

〈A〉RT
, (A.5)

where Π is the lateral pressure which is related to the enthalpy through
H = U + pV + ΠA.

Using the proportionality relation, ∆A = γA · ∆H (Eq. (2.4)), between
changes in area and changes in enthalpy, the excess isothermal lateral com-
pressibility can be found from the excess heat capacity:

∆κAT = − 1

〈A〉

(
d

dΠ

∑
i ∆Ai · e−Hi/RT

Z

)
T

=

∑
i(γA∆Hi)

2 · e−Hi/RT

〈A〉RT · Z
− 1

〈A〉RT

∑
i γA∆Hi · e−Hi/RT

Z

∑
j γA∆Hj · e−Hj/RT

Z

= γ2
A

〈
∆H2

〉
− 〈∆H〉2

〈A〉RT
=
γ2
AT

〈A〉
∆cP . (A.6)

This relation is “unique” to the lipid membrane, where the proportionality
relation holds. Note that similar relations can be made using the propor-
tionality relation between volume and enthalpy.

III



A.2. Relaxation Time Appendix A. Thermodynamics

A.2 Relaxation Time

The relaxation behavior is of central importance for the present thesis. The
following derivation is based on [18], and show that the single exponential
relaxation behavior can be justified theoretically.

The distribution of states can be calculated from the Gibbs free energy.
Assuming that the distribution of states are of Gaussian nature,

p(H − 〈H〉) =
exp (−G(H − 〈H〉)/RT )

Z
=

1

σ
√

2π
exp

(
−(H − 〈H〉)2

σ2

)
.

(A.7)
From this the Gibbs free energy can be written as,

G(H − 〈H〉) = −RT ln(p(H − 〈H〉)) + const. . (A.8)

The entropy can be written as a function of the Gibbs free energy and the
enthalpy:

S(H) =
−G(H) +H

T
⇒ (A.9)

S(H − 〈H〉) =
H − 〈H〉

T
− R(H − 〈H〉)2

2σ2
− const.

T
(A.10)

≈ R(H − 〈H〉)2

2σ2
, (A.11)

where the approximation holds for small σ, which is equivalent to stating
that the system is large. From this, the entropy takes the form of a harmonic
potential, continuing this analogy the thermodynamical force driving the
system back to equilibrium can be written as,

X(H − 〈H〉) =

(
∂2S(H − 〈H〉)
∂(H − 〈H〉)2

)
(0) · (H − 〈H〉) =

R(H − 〈H〉)
σ2

. (A.12)

The flux back to equilibrium is,

d(H − 〈H〉)
dt

= L ·X(H − 〈H〉) = −L · R(H − 〈H〉)
σ2

. (A.13)

Eq. (A.13) is the rate equation taking the change in enthalpy back to equi-
librium. Solving the rate equation the relaxation function of enthalpy can
be written as,

H − 〈H〉 = (H − 〈H〉)(0) exp

(
−R · L

σ2
t

)
(A.14)

≡ (H − 〈H〉)(0) exp

(
− t
τ

)
. (A.15)
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Remembering Eq. (A.4),

cP =
d 〈H〉
dT

= . . . =

〈
H2
〉
− 〈H〉2

RT 2
≡ σ2

RT 2
,

from this, the relaxation time can be written as,

τ =
T 2cp
L

. (A.16)

This a theoretical derivation of the proportionality relation between the
relaxation time and the heat capacity. The only assumption in this deriva-
tion is the Gaussian nature of the distribution function and that the mean
squared deviation of enthalpy is small.
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Appendix B

Equation of Sound

The equation of sound will here be derived on the basis of fluid dynamics.
The basic fluid dynamical equations needed for the present derivation are
described in Fluid Dynamics (see appendix B.1).

Sound is a small amplitude oscillatory motion in a compressible fluid. Since
the amplitude of the oscillations is small, only small perturbations will take
place

p = p0 + p′, ρ = ρ0 + ρ′. (B.1)

The flow (velocity), generated by the small perturbations of the system
will also be small. From this the equation of continuity Eq. (B.9) can be
approximated to first order,

∂ρ′

∂t
+ ρ0∇ · v = 0. (B.2)

Using that the velocity is small, Euler’s equation Eq. (B.13) can in a similar
manner be reduced to,

∂v

∂t
+

1

ρ
∇p = 0. (B.3)

This expression is valid when the velocity of the particles in the fluid gen-
erated by the sound perturbations are much smaller then the velocity of
sound, v � c.

Utilizing the fact that a sound wave in a ideal fluid is adiabatic, one can
relate the change in pressure p′ to the change in density ρ′ in the following
manner,

p′ =

(
∂p

∂ρ

)
S

ρ′. (B.4)

Inserting this into Eq. (B.2), one finds,

∂p′

∂t
+ ρ0

(
∂p

∂ρ

)
S

∇ · v = 0. (B.5)
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Eq. (B.3) and Eq. (B.5) are sufficient to completely describe a sound wave.
A more convenient and standard form is achieved by introducing a velocity
potential v ≡∇φ, using this Eq. (B.3) takes the form,

p′ = −ρ0
∂φ

∂t
. (B.6)

Since the perturbations are small we approximate po ≈ p and ρ0 ≈ ρ. Using
the definition of the velocity potential and Eq. (B.6), Eq. (B.5) can be
formulated as following,

∂2φ

∂t2
+ c2∇2φ = 0, (B.7)

where

c =

√
∂p

∂ρ
S

=
1
√
κSρ

, (B.8)

is the velocity of sound. κS is the adiabatic compressibility. This is the
general equation of sound or wave equation. This basic introduction to
sound is base on [92].

B.1 Fluid Dynamics

In this section the fundamental equations of fluid dynamics for ideal fluids
will be briefly described.

For any system where no chemical reaction or similar takes place, conserva-
tion of matter can be easily be converted into the equation of continuity,

∂ρ

∂t
+ ∇ · (ρv) = 0, (B.9)

where ρ is the density and v is the velocity of a given volume element. The
equation of continuity states that any change in density is equal to the den-
sity moving in or out of the volume element in question.

Fluid dynamics is the study of motion in fluids. To achieve a net motion
in any system a force have to be applied. Consider a volume element of a
fluid, the force acting on this element is given by

F =

∫
ρ
dv

dt
dV =

∮
p df =

∫
∇p dV. (B.10)

From this the following must hold,

ρ
dv

dt
= ∇p, (B.11)
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where p is the pressure exerted onto the element by its surrounding and the
integral is over the volume. The dv/dt denotes the change in velocity of a
given volume element. The change in velocity can be decomposed into

dv = dx
∂v

∂x
+ dy

∂v

∂y
+ dz

∂v

∂z
+ dt

∂v

∂t
= dt

∂v

∂t
+ (dr ·∇)v, (B.12)

where r is the position vector. Dividing through with dt, Eq. (B.12) can be
substituted into Eq. (B.11) giving Euler’s equation,

∂v

∂t
+ (v ·∇)v = −1

ρ
∇p. (B.13)

Euler’s equation is the equation of motion for an adiabatic ideal system. In
the presented derivations dissipation of any kind have not been taken into
account (ideal system). Further note that heat exchange between different
volume elements of the fluid is not considered, making the system adiabatic.

The last fundamental equation is fluid dynamics is the equation of entropy
conservation that states

∂(ρs)

∂t
+ ∇ · (ρsv) = 0, (B.14)

where s is the entropy of a given volume element. Similarly to the equation
of continuity, this equation states that a change in entropy is equal to the
entropy going in or out of the volume element [92].
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Appendix C

Derivations

This section will contain the essential derivations used in the thesis, which
have been omitted due to their length.

C.1 Latent Heat of Expansion

In the section on the Adiabatic Pressure Perturbations (section 3.1) the ther-
modynamical implications of an adiabatic low amplitude pressure perturba-
tion is considered. From a thermodynamical point of view these changes in
pressure and temperature couples to a change in the heat of the system,

dQ = cPdT − LPdP, (C.1)

where dQ is the change in the heat of the system, cp is the heat capacity
and Lp is the latent heat of expansion. The latent heat of expansion can be
written as [68]

LP =

(
dH

dP

)
T

− V. (C.2)

Using the fact that an infinitesimal change in enthalpy can be written as

dH = dU + PdV + V dP, (C.3)

Eq. (C.2) can be rewritten,

LP =

(
dU

dP

)
T

+ P

(
dV

dP

)
T

=

((
dU

dV

)
T

+ P

)(
dV

dP

)
T

. (C.4)

By rewriting the derivative of the energy,(
dU

dV

)
T

= T

(
dS

dV

)
T

− P (C.5)

= −T
(
d2F

dTdV

)
− P (C.6)

= T

(
dP

dT

)
V

− P, (C.7)
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where dF = −SdT − PdV and F is the Helmholtz free energy. From this
Eq. (C.4) takes the form:

LP = T

(
dP

dT

)
V

(
dV

dP

)
T

(C.8)

= T

(
dS

dV

)
T

(
dV

dP

)
T

(C.9)

= T

(
dS

dP

)
T

(C.10)

= T

(
d2G

dTdP

)
= −T

(
dV

dT

)
P

(C.11)

= −TV αP , (C.12)

where G is the Gibbs free energy and αP is the thermal expansion coefficient.

C.2 Real Part of the Phase Velocity

The lateral phase velocity is related to the adiabatic lateral compressibility
through Eq. (2.13),

cA =
1√
κASρ

A
.

Both the lateral phase velocity and the adiabatic lateral compressibility are
complex quantities,

Re(cA) + iIm(cA) =
1√

ρA (Re(κA) + iIm(κA))
. (C.13)

The goal of the thesis is to estimate the real part of the lateral phase velocity.
For this the real part of the complex lateral phase velocity has to be isolated.
This can be done as follows, from Eq. (C.13):

Re(cA)2 − Im(cA)2 + i2Re(cA)Im(cA) =
1

ρA
Re(κA)− iIm(κA)

Re(κA)2 + Im(κA)2
(C.14)

Recognizing the real and the complex parts respectively,

Re(cA)2 − Im(cA)2 =
1

ρA
Re(κA)

Re(κA)2 + Im(κA)2
, (C.15)

2Re(cA)Im(cA) = − 1

ρA
Im(κA)

Re(κA)2 + Im(κA)2
. (C.16)

From the last expression the imaginary part of the lateral phase velocity can
be isolated,

Im(cA) = − 1

ρA
1

2Re(cA)

Im(κA)

Re(κA)2 + Im(κA)2
, (C.17)
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which can be inserted into the square of the real part of the complex lateral
phase velocity:

Re(cA)2 = (ρA)−1

(
Re(κA) +

√
Re(κA)2 + 4Im(κA)2

2 (Re(κA)2 + Im(κA)2)

)
(C.18)

The imaginary part of the lateral phase velocity can be found in a similar
fashion by isolating the real part in Eq. (C.16).
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Appendix D

Linear Response Theory

The relaxation behavior of a system can be studied by exploring how a
system subject to perturbations relaxes back to a new equilibrium. This is
ensured by the fluctuation-dissipation theorem that states, that the response
of a system in equilibrium to a small perturbation is the same as the systems
response to spontaneous fluctuations [90]. If the perturbation is sufficiently
small it is often assumed that the rate equations that governs the relaxation
can be well approximated by a linear function of the perturbation, often
referred to as linear perturbation theory or linear response theory [67].

The basic linear rate equation is as follows:

d∆α(t)

dt
= −∆α(t)

τ
, ∆α(t) = α(t)− α0, (D.1)

where τ is the relaxation time, α is the variable under consideration and α0

is the variable value at equilibrium. The solution to Eq. (D.1) is

∆α(t) = ∆α(0) · exp

(
− t
τ

)
, (D.2)

where ∆α(0) is the initial extent of the applied perturbation. In Eq. (D.1)
it is assumed the system has been moved out of equilibrium to ∆α(0) in a
instantaneous jump. Assuming instead a periodic perturbation of the system
the linear rate equation has to be rewritten;

d∆α(t)

dt
= −∆α(t)−∆αp(t)

τ
, (D.3)

where ∆αp(t) is the periodic perturbation. The periodic perturbation of
interest, in this thesis, is of sinusoidal nature,

∆αp(t) = aα exp(iωt), (D.4)
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where ω is the angular frequency of the perturbation and aα is the amplitude
of the perturbation. Assuming the sinusoidal nature of the perturbation the
general solution to Eq. (D.3) is

∆α(t) =
aα exp (−t/τ)

τ

∫ t

−∞
exp (t′/τ + iωt′)dt′. (D.5)

Carrying out the integration,

∆α(t) =
∆αp(t)

1 + iωτ
=
aα exp (i(ωt− θ))

(1 + (ωτ)2)1/2
, (D.6)

where
tan(θ) = ωτ. (D.7)

This means that there will be a phase lag between the perturbation and the
response and a drastic lowering amplitude of the respond, when the system
is perturbed faster then it can respond.

Note that linear response theory is based on the assumption of a linear
response which has to be verified for a given application.
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Appendix E

Simulations

This appendix section contains the supplementary information regarding the
simulation effort of this thesis.

E.1 Detailed Balance of the Adiabatic Model

Detail Balance is defined as

pap(a→ b) = pbp(b→ a) (E.1)

where pa is the probability of being in the state a and p(a → b) is the
transition probability for going from a to b and visa versa. A more convenient
form of Eq. (E.1) is,

pa
pb

=
p(b→ a)

p(a→ b)
. (E.2)

The probability of being in a given state is given by the free energy of that
state

pa =
1

Z
exp

(
−Ga
RT

)
, (E.3)

where Z is the partition sum.

For the adiabatic model:

pa = pl,apr,a =
1

Z
exp

(
−Gl,a
RT

)
exp

(
−Gr,a
RT

)
(E.4)

and
pa
pb

= exp

(
−∆Gl
RT

)
exp

(
−∆Gr
RT

)
, (E.5)
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where ∆G = Gb −Ga, the subscript r refer to the heat reservoir and l refer
to the lipid membrane. From Eq. (4.27)

p(b→ a)

p(a→ b)
=

K
K+1

K′

K′+1

K−1

K−1+1
K′−1

K′−1+1

(E.6)

= KK ′ = exp

(
−∆Gl
RT

)
exp

(
−∆Gr
RT

)
, (E.7)

from the this the adiabatic model extension upholds detail balance.

E.2 Equilibration

The starting configuration of the system is, in simulations, either random
or an estimate of a likely configuration. Independent of this, the system can
not be considered to be in equilibrium from a start. By sampling before
equilibrium has been achieved, there is no guarantee that the simulation es-
timations will have any resemblance with the actual system that is modeled.
In general, the ergodic theorem and detailed balance only insures that equi-
librium can be reach but not when. The equilibration time (Monte Carlo
cycles) dependents very much on the specific rejection algorithm. The gen-
eral consensus for estimating when the system is equilibrated is to monitor
when the mean of a given observable variable becomes constant. This often
take place within a couple of correlation time scale (relaxation time) – illus-
trated in Fig. (E.1).

E
nt

ha
lp

y 
[a

.u
]

Monte Carlo cycles

Figure E.1: Raw simulation data of the system mean enthalpy for five different
temperatures, centered around T = 314.15 K.

It is clearly illustrated by Fig. (E.1) that the relaxation time in the sim-
ulations goes up quite drastically in the transition region, and extra care
has to be taken to ensure equilibration in this region.
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E.3 Finite Size Effects

The model system considered in the simulations of the present thesis, is one
of the mono-layers in a lipid bilayer, which is infinite in extent in the plane.
In a actual simulation the size of the simulated system is finite, which will
introduce boundaries. Periodic boundary conditions have been implemented
i all simulations to avoid boundary effects.

As mentioned in Membrane Phase Transition (section 2.1.3) the nature of
the lipid melting transition is highly cooperative, but still finite in coopera-
tivity. This means that the simulated system must be strictly bigger than
the largest cooperative units in the simulation. Using the coupling between
cooperative size and the heat capacity, the heat capacity can be used as
a straightforward measure of the cooperative unit size. From Fig. (E.2) a
system size above 64× 64 lipid is sufficient to avoid finite size effects.
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Figure E.2: Simulations of the excess heat capacity for systems of different sizes,
at T = 314.15 K. The number of lipids in the system is system size squared.

E.4 Calculation of Errors

As with experiments Monte Carlo simulations are subject to errors: statis-
tical errors and systematic errors.

Statistical errors arise from random fluctuations in the simulated system.
Systematic errors are errors introduced by the procedure used to conduct
the experiment or in the measuring method. In Monte Carlo simulations
the systematic errors are in the equilibration, and inhered in a given model.
The statistical nature of Monte Carlo simulations will inadvertently intro-
duce statistical errors, these will be the focus of error estimation.
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The simulations estimate of a mean value of a system variable is deter-
mined with an error. The standard measure of the error is the standard
deviation given by

σ =

√
1

nindependent − 1

∑
(Hi − 〈H〉)2 =

√
1

n− 1
(〈H2〉 − 〈H〉2) (E.8)

where n is the number of statistically independent measuring points. Here
the enthalpy is used as an example of a system variable.

The general consensus is that the maximum number of statistical indepen-
dent measuring points in a given simulation is,

nindependent =
tmax

2τMC
, (E.9)

where tmax is the length of the simulation or the total number of simulated
points after the system have equilibrated and τMC is the correlation time
of the simulation. Usually sampling is done at intervals shorter then the
correlation time, such that successive points are not uncorrelated. This can
however be accounted for by the follow variation of standard deviation,

σ =

√
1 + 2τMC/∆t

n− 1
(〈H2〉 − 〈H〉2) (E.10)

where ∆t is the “time” distance between two points in succession. For large
n Eq. (E.10) can be approximated to the following using that n = tmax/∆t,

σ =

√
2τMC/tmax(〈H2〉 − 〈H〉2). (E.11)

Note that Eq. (E.11) is independent of ∆t. which can be chosen freely and
only the correlation time is need to estimate the errors [86].

Estimating the susceptibility and it statistical error is somewhat more in-
volved. The susceptibility is the derivatives of system variables but can in
many systems be derived from the fluctuations of the system variables (see
appendix A.1). There exists a number of schemes which can be used to
estimate the error of the susceptibilities, two of these will be described in
the following: The Blocking method and the Jackknife method1.

E.4.1 The Blocking Method

The simples and most general method of error estimation is the Blocking
method. It is carried out by dividing the given data set up into block and

1The Jackknife method is related to the well known Bootstrap method [86] which will
not considered in this project due to complications in implementation.
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separately calculating the variable of interest (e.g. the heat capacity). The
associated error is then calculated using Eq. (E.8) where the values of in-
terest calculated from the different blocks are the measuring point. This
method have some limitations, the error estimation i very dependable on
the the number of blocks and the block size. Divide a given data set into a
large number of small blocks the method will estimate small errors since the
number of points is large but there might be a large error in the calculated
value of interest by having small blocks [86].

E.4.2 The Jackknife Method

The Jackknife method is carried out as follows: Consider a data set of n
strictly statistical independent data points, meaning as noted two or more
correlation times τMC between each point. From these data points the
variable of interest, c, is calculate, along with n additional estimates of the
variable, which are carried out by removing first: The first point in the set
and calculating the variable, c1, from the n− 1 points left, then the second
point is removed2 and the variable, c2, is calculated. This is continued
throughout the complete set of independent data points. The error is then
calculated from the n+ 1 estimated variable values:

σ =

√√√√ n∑
i=1

(ci − c)2. (E.12)

The Jackknife method gives good estimates of the error and will for an
infinite data set give the exact estimate. It is however quite inefficient com-
putational wise for large data sets and other methods should be considered
for very large data sets, such as the bootstrap method [86].

The Jackknife method will in this thesis be used to estimate the error of
the simulated excess heat capacity and due to the strict demand for statis-
tical independent data points, the error estimate of the system values (e.g.
fluid fraction) will be done by Eq. (E.8).

E.5 Adoptive Algorithm

As approaching the phase transition the characteristic timescale of the simu-
lation, as for the real system, is slowed down drastically. To insure sampling
is only of statistical independent data points, (Eq. (E.9)), and to optimize
simulation time an adaptive algorithm has be implemented in the simula-
tions.

2The first point is now part of the set, so the sampling is still do over n− 1 points.
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As see in Fig. (4.4), the heat capacity, cP , is strongly correlated with cor-
relation time, τMC . From this the heat capacity can be used to estimate
the correlation time. The simulations are mainly carried out as tempera-
ture sweeps, starting the simulation at a temperature below the transition
a working its way up through the transition. If the temperature steps, ∆T ,
are sufficiently small, the heat capacity from the temperature step before
can be used to estimate the correlation time for the present temperature.

τMC = max

(
1,

2 · cP
100

)
(E.13)

Note that the correlation time has to be an integer. Given how the heat
capacity spikes in the transition the temperature step size can be control by
the heat capacity simply by its magnitude.

∆T = min

(
1,

5
√
cP

)
(E.14)

The total number of Monte Carlo cycles, nsample, sampled over, given a
certain statistical precision, and the number of Monte Carlo cycles needed for
equilibration, nequilibration, can likewise be estimate from the heat capacity:

nsample = 14 · cP (E.15)

nequilibration = 3 · cP (E.16)

Remembering that both values need to be integer.

Starting the simulation temperature sweeps it is essential that the first heat
capacity is well estimated. Standard values used, for the starting tempera-
ture 312.15 K, are the following:

τMC 50

nsample 10000

nequilibration 1000
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