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Abstract

Nucleosome dynamics and a computational 3D polymer were coupled to
model heterochromatic establishment in a genetic region. It was investigated
whether qualitative features, such as bistability, hysteresis, and epigenetic mem-
ory and switching could be produced. Simulation results showed that all of
these features could be modelled, and a parameter regime could be found which
additionally yielded a monostable system following the introduction of an epige-
netically silent section in the genetic region, where heterochromatin nucleation,
spreading, and subsequent gene silencing were direct consequences.

In addition, the effects of implementing a pressure potential for the Brownian
dynamics used in the model were investigated. Differences in the number of
global nucleosome-nucleosome interactions, the duration of system switching
times, and the distributions of establishment times were used as evidence to
support the need for such a potential in this model. Additionally, qualitative and
quantitative comparisons with real data were also used as indicators. All results
were found to provide support for the argument that the pressure potential is
an essential component in the kind of model presented in this thesis.
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1 Introduction

Deoxyribonucleic acid, or DNA for short, is an essential part of life, in that
it constitutes “the primary unit of heredity in organisms of all types” [1]|. It has
been known to exist ever since it was discovered in 1869 as an important cellu-
lar component separate from proteins, by Swiss psychological chemist Friedrich
Miescher [2]. The knowledge of its chemical composition was enhanced over
the next many decades, until its spatial structure was finally discovered in the
middle of the 20th century. The paper describing the double-helix structure
of DNA was famously published in Nature in 1953 and nine years later, the
authors James Watson and Francis Crick, along with Maurice Wilkins (who
had contributed with X-ray diffraction patterns used by Watson and Crick),
were awarded the Nobel Prize in Physiology or Medicine “for their discoveries
concerning the molecular structure of nucleic acids and its significance for infor-
mation transfer in living material” [3]. Ever since then, the knowledge of DNA
has only been strengthened, and it now plays a big role in a wide variety of
fields, such as genetics, epidemiology, biotechnology, and archaeology.

Epigenetics constitutes another such field, the term of which has seen a
large increase in popularity in scientific literature after the year 2000, even to
the degree of being labelled as “fashionable” [4]. It is generally accepted as
“the study of changes in gene function that are mitotically and/or meiotically
heritable and that do not entail a change in DNA sequence” [5], and it bears a
close relation to gene expression by means of the dynamics of these very changes
or modifications. A prominent example is the inactivation of one of the two X-
chromosomes in female mammalian cells due in part to the presence of methyl
groups on the associated proteins of the DNA [6]. The modifications lead to
the creation and spreading of heterochromatin, or a compact form of DNA and
the associated proteins. This is an example of epigenetic switching, in that the
genetic region is “switched off” due to epigenetic modifications.

1.1 Objectives

In this thesis we study and model the dynamics of epigenetic switching within
a genetic region found in the fission yeast Schizosaccharomyces pombe. This is
an important model organism, partly because it is unicellular, which makes it
easy to study the genes of a large number of individuals. Furthermore, it is a
eukaryote, which makes it possible to relate findings for this organism to other
eukaryotic species, such as humans [7].

We here present a computational-physical 3D polymer model of DNA, cou-
pled with epigenetic state dynamics. The study has two main objectives:

1. To develop a computational-physical model of heterochromatin establish-
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ment on a DNA chain. The model should extend previous knowledge of
nucleosome dynamics in 0D to a 3D polymer, taking spatial interactions
into account, as well as the biological and physical surroundings of the
system in question. The model should be able to reproduce qualitative
features, such as bistability, hysteresis, epigenetic switching and epigenetic
memory.

2. To investigate the conditions under which a 3D model is capable of re-
producing real data. More concretely, the effects of adding a pressure
potential to the Brownian dynamics of the 3D polymer will be studied in
greater depth.

1.2 OQOutline

Following the introduction in chapter 1, an introduction to the relevant biolog-
ical topics will be provided in chapter 2. Here we will look at the connections
between chromatin structure and gene silencing, as well as diving deeper into
the mechanisms behind the dynamics of epigenetics.

In chapter 3, we study a 0D model for nucleosome dynamics, a model which
defines some powerful basic rules and assumptions, yielding interesting results
on epigenetic switches. We will aim to produce similar results in our 3D model,
using some of the rules and assumptions described in the simpler model.

Chapter 4 concerns the construction of the 3D model, built for the pur-
pose of this thesis. We will look at the theoretical foundations for the Brownian
dynamics and the nucleosome dynamics, as well as the motivations and assump-
tions made in order to achieve this. This will be followed by a brief discussion
about the differences between this model and other 3D polymer models from
the literature.

Then follows chapter 5, in which the results from simulations using the 3D
model will be presented. Among other things, we look at the resulting spatial
structures of the polymers, qualitative traits for epigenetic switches, such as
bistability and hysteresis, and the effect of introducing a pressure potential in the
implementation of Brownian dynamics. Discussions will follow the presentation
of the results.

In chapter 6, conclusions will be made on the findings, and finally, chapter
7 looks ahead at the possible near-future developments and uses for the model.

1.2.1 Source code

The implementation was written in the Python programming language, and the
source code can be found on GitHub in the following repository:

https://github.com/larserik-js/heterochromatin-establishment
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1.2.2 Note on figures

e Figure 2.1 was made using the BioRender platform: www.biorender.com.

e Figures 2.2-2.3 were taken from Molecular Biology of the Cell, 6th ed.
(2015) [8].

e All other figures were created using the MATPLOTLIB library in Python.



2 Background

2.1 DNA, genes, and chromosomes

DNA is found in all prokaryotic and eukaryotic cells, as well as in many viruses,
and is what codes genetic information for the transmission of inherited traits [9].
It is sectioned into genes, or segments of code in the form of different molecules or
bases, evenly distributed on double-stranded macromolecules, where each strand
forms the template for replication and transcription of mRNA corresponding
to the opposite strand. There are four different bases, namely adenine (A),
cytosine (C), guanine (G), and thymine (T). Each base forms a base pair (bp)
with exactly one of the other bases on the opposite strand through hydrogen
bonds; A pairs with T, and C pairs with G. All genes contain code on this
form, and the collection of genes constitutes “the information that specifies
all the RNA molecules and proteins that make up an organism — including
information about when, in what types of cells, and in what quantity each RNA
molecule and protein is to be made” [8].

The DNA is distributed on chromosomes. Chromosomes are big macro-
molecules, located in the cell nucleus, and consist of a very long section of DNA,
as well as different proteins which contribute to holding the structure together.
There is a huge variety between organisms in the number of genes, but also in
the number of chromosomes. Furthermore, some organisms, like humans, have
mostly diploid cells, i.e. cells that contain two pairs of each chromosome. Oth-
ers, like the fission yeast Schizosaccharomyces pombe, have haploid cells, or only
one pair of each chromosome. Humans are multicellular organisms that have 23
pairs of chromosomes, or 46 in total, in each cell, whereas S. pombe is a unicel-
lular organism, the genetic material of which is distributed on 3 chromosomes
only [10].

2.1.1 Chromatin

The material that makes up the chromosomes is called chromatin, and consists
of the DNA molecules, together with associated proteins, including histones,
which are packing proteins, and non-histone chromosomal proteins. In total,
the chromatin is roughly one-third DNA and two-thirds protein by mass [§].
The structure can generally be divided into two types: Heterochromatin, which
is a highly condensed form of chromatin, and euchromatin, which is less con-
densed. Heterochromatin is generally found in some specialized regions of the
chromosomes, but can also be found in areas that depend on the physiologi-
cal state of the cell [8]. This is intimately connected to the dynamics of gene
silencing, as we will see.

Control of gene expression is what makes cell differentiation possible. The
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Figure 2.1: The different levels of chromatin structure. The DNA winds
around individual nucleosomes, which condense to form heterochromatin. This
further folds into coils and loops, and eventually becomes a full chromosome at
the top level. (Created on the BioRender platform.)

transcription of genes can be switched on and off by so-called chromatin modi-
fiers, of which there exists a large variety. In general, these chromatin modifiers
alter the chromatin structure to control the availability of the DNA for transcrip-
tion - euchromatin is associated with genes that are available for transcription,
while heterochromatin is associated with genes that are resistant to transcrip-
tion, due to its highly condensed form. Indeed, genes are generally switched off
in the heterochromatic state [8]. This is a dynamic process: heterochromatin,
once initially formed through nucleation within a certain gene, can propagate
through the gene in a self-amplifying manner, where the same enzymes which
recognize certain modifications associated with heterochromatin also catalyze
the addition of the very same modifications in the surroundings. This is thus
the basis for a positive feedback mechanism, which will be described below.

Both euchromatin and heterochromatin can additionally be inherited through
cell generations. This means that the compact chromatin can survive through
processes such as DNA replication and cell division, both processes which cause
significant disruptions to the organization of the chromosomes. This is an ex-
ample of epigenetic memory, and will be elaborated upon in section 2.2.

2.1.2 DNA packing

The two types of chromatin, and thus chromosomes in general are essentially
DNA which have been packed together by proteins. It turns out that the DNA
has to fold and compact itself to a very high degree to be able to fit inside the
cell nucleus (see figure 2.1). For example, the complete human genome from
one single cell measures approximately 2 m (if hypothetically stretched out),
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Figure 2.2: Electron microscopy images of (A) the heterochromatic fiber, and
(B) euchromatin, achieved by experimentally unpacking heterochromatin. Note
the beads-on-a-string structure of nucleosomes. (From Molecular Biology of the
Cell, 6th ed. (2015), p. 188 [§]).

whereas the cell nucleus has a diameter of about 6 pum [8]. This packaging is
accomplished on several different structural levels, as well as by several different
mechanisms.

At the very lowest level the chromatin adapts a beads-on-a-string-structure,
which consists of protein-DNA complexes known as nucleosomes. Here, a section
of DNA (147 bp in humans) is wound around nucleosome core particles, which
are protein complexes that consist of four different pairs of two equal histones,
i.e. eight histones in total. Each histone in turn consists of one core complex
with an N-terminal amino acid tail [8].

Counting both the DNA which is wound around the nucleosome core particle,
as well as the linker DNA which runs between these particles, one nucleosome
in a human cell on average contains DNA the length of about 200 bp. The
nucleosome should thus be thought of as a basic building block for the lowest-
level organization and compaction of DNA. Considering the packing due to the
nucleosome core particles only, the DNA molecule is reduced to about one-third
of its length [8]. In the open beads-on-a-string configuration, this is what can be
recognized as euchromatin. However, the nucleosomes can condense even fur-
ther via nucleosome-nucleosome interactions, and these interactions constitute
an essential ingredient in the establishment and spreading of heterochromatin.
The fundamental mechanism behind this are biochemical modifications of the
nucleosomes, which is a central topic in the field of epigenetics. This will be
explored in the following.
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Figure 2.3: Nucleosome core particles, which consist of eight histones, each
of which has an amino acid tail. This also illustrates the interactions that lead
to the packing of the nucleosomes due to modifications on the tails. (From
Molecular Biology of the Cell, 6th ed. (2015), p. 193 [§]).

2.2 Epigenetics

Epigenetics is concerned with the changes and modifications that occur on the
DNA molecule itself (or on the associated proteins), but crucially does not
change the genetic code. These alterations generally comprise “histone variants,
posttranslational modifications of amino acids on the amino-terminal tail of
histones, and covalent modifications of DNA bases” [11].

Here we look at the covalent modifications of nucleosomes, as this is what
induces the interactions that ultimately lead to heterochromatin creation and
spreading. As mentioned, nucleosomes can pack together to form more con-
densed structures; it is believed that the nucleosomes form a semi-regular zigzag
pattern at this lowest level of organization [8], where nucleosomes located closely
together on the beads-on-a-string structure associate via interactions with bridg-
ing proteins. This makes out a 30 nm fiber, distinguishable from the open eu-
chromatic state [8] (see figure 2.2). One important protein is the HI linker
histone, which is not one of the histones that are part of the nucleosome core
particles, but rather binds directly to the DNA at the sites where the DNA
enters and exits the nucleosome core particle, and stabilizes the fiber by con-
trolling the angle between the DNA string on each side of the core particle
[12]. Important mechanisms include reversible processes where highly specific
enzymes add or remove chemical groups on specific amino acid locations on the
aforementioned histone tails, which can lead to bridging interactions between
the nucleosomes (see figure 2.3). As an example, acetylation of lysines on the
histone tails contributes to less condensed chromatin, partly because adding an
acetyl group to lysine removes its positive charge, which further reduces the
affinity of the tails for adjacent nucleosomes [8]. The modifications described
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in the following section are essential to the aforementioned positive feedback
mechanism and self-propagation of heterochromatin, because they can recruit
enzymes which are also capable of adding the same modification to other nu-
cleosomes in the environment, in addition to associating with bridging proteins
to bind nucleosomes together. This is the basic process of heterochromatin
formation and spreading.

2.2.1 Selected modification reactions

The number of epigenetic modifications, reactions, and corresponding enzymes
is vast, so for the purpose of this thesis we will look at some select few that
are particularly important. The organism of interest in this thesis is the model
organism S. pombe, as the physical model developed here is largely based on
results from studies involving this organism. The reactions in question concern
modifications that are involved in promoting heterochromatin, and those that
are involved with repressing it. Both of these reactions are reversible, so overall,
we can divide the modifications and their corresponding enzymes into four broad
groups:

e Methylation: This modification is carried out by histone methyltrans-
ferases (HMTs), and can be identified specifically as the trimethylation of
lysine at histone H3K9 (H3K9me3). It is believed that this process can
happen in two different places on each nucleosome, due to the fact that
the histones come in pairs, as mentioned. HMTs are capable of spreading
heterochromatin, as the proteins both recognize H3K9me3 and methylate
adjacent nucleosomes [13]. In S. pombe the specific enzyme is Clr4, and
the methylation of H3K9 additionally attracts the bridging protein Swi6
(an ortholog of HP1) [14].

e Demethylation: Demethylation is performed by histone demethylases
(HDMs). The modification has been attributed to so-called JmjC-domain-
containing proteins [15].

e Acetylation: The acetylation of specific lysines is carried out by histone
acetyl transferases (HATS). As mentioned, acetylation contributes to the
euchromatic state, as it removes the positive charge of the N-terminal
histone tail [8]. Furthermore, some HATs have been shown to bind to
acetylated histones, which is evidence for a self-propagating euchromatic
state [16].

e Deacetylation: The deacetylation of lysines is performed by histone
deacetylase complexes (HDACs). The absence of specific acetylated lysines
is associated with heterochromatin formation, and thus transcriptional si-
lencing. In S. pombe, the enzymes Clr3d and Clr6 are associated with
heterochromatin formation, in cooperation with HMTs [17].
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2.2.2 Heterochromatin nucleation

In this study, we are mainly concerned with a specific region of DNA, namely
the mating-type region of S. pombe. The density of nucleosomes in this organism
is on average 6.5 kb~! [18], or approximately 153.8 bp per nucleosome, and the
region within which heterochromatin can establish has the size of about 23 kb
[19][20], which yields approximately 150 nucleosomes in total. The nucleation
occurs at a ~ 4.3 kb region known as the cenH region, and heterochromatin
subsequently spreads from this element to the rest of the mating-type region
[21]. This gives a ratio of the length of the cenH region to the entire system
of 0.187. Furthermore, the nucleation is partly driven by RNA interference
(RNAI) [22], and occurs stochastically, as well as at a high rate [19]. Notably,
it has been found that strains that have been reduced to approximately half
the original size, as well as lacking the cenH region (AK mutants), display
bistable behavior (explained below), switching between a euchromatic and a
heterochromatic state approximately every 2000 cell generations on average
[23].

2.2.3 Epigenetic switching

Since the nucleation of cenH eventually leads to heterochromatin establishment
and subsequent silencing of the chromosomal region, and since this event is reg-
ulated in the cell, it is an example of an epigenetic switch. Two features are
associated with epigenetic switching: bistability and hysteresis [24]. A bistable
system is a system in which there are two different metastable system states,
each of which can exist over a considerable amount of time. It is worth noting
that even though a system can be bistable, this does not necessarily imply any-
thing about the ability of the system to switch between the states. In fact, even
a system that can stay in both its initial states infinitely long would still be a
bistable system by this definition. This is important for epigenetic inheritance
and memory; the system states should remain stable through disruptive pertur-
bations such as cell division. And when modelling a system with an epigenetic
switch, it is desirable to be fully able to control the system states.

Another implication of bistability is that once the system is in one of the
states, this state can be sustained by the system itself; switching to the other
state requires a change in one of the controlling parameters, e.g. the enzymatic
rates of the epigenetic modification reactions. This applies to both states, which
means that the transition points for the switches are not equal. This entails a
system memory, in that the state of the system depends on the history of the
system itself. This effect is referred to as hysteresis [8].

Bistability and hysteresis are important traits of epigenetic switches, both of
which we will try to produce using our model. We will now take the first steps
towards constructing our model, by looking at a physical model for nucleosome
dynamics.



3 The 0D model

As should be evident from chapter 2, is that biological systems are com-
plex. We have already seen that there exists a myriad of enzymatic processes
involving epigenetic modifications, and that there are modifications that lead
to actual physical interactions between the nucleosomes, which in turn leads to
the packing structures that constitute heterochromatin. Furthermore, we have
seen that these structures are dynamic, and that there is a complex interplay
between the individual nucleosome states, which determines the state of the
system overall.

It is desirable to build a physical model that can explain these effects. Such
a model could take into account a range of different important factors, such as:

e The number of different epigenetic states.
e The epigenetic state of an individual nucleosome at a given point in time.

e The ability for a specific epigenetic state to affect, and possibly change,
other specific epigenetic states.

e The physical behavior of a nucleosome while in a specific epigenetic state.

e The enzymatic rates for different modification reactions, and the effect
that these have on epigenetic state dynamics.

e Qualitative system traits, such as bistability and hysteresis.

These are just some of the system characteristics that could be interesting to
include in our model. Already at this point, however, we see that a significant
amount of simplification needs to be undertaken. For example, we know that
the number of epigenetic modifications possible is vast. For a sensible physical
model to work, we need to reduce the assumed number of modifications, and
thus the number of possible epigenetic states. In the following we will look at a
model which has used this assumption among others, and that has successfully
emulated a system of interacting nucleosomes for the fission yeast S. pombe.
The model was developed by I. B. Dodd et al. [25], and will constitute an
important foundation for the 3D model developed for the purpose of this thesis.
The model makes use of some important assumptions, and sets up some useful
rules for how the system develops. These assumptions and rules will be outlined
in the following.

10
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Figure 3.1: Top: Reaction scheme involving the three different states. The
four different enzymes that each catalyze one of the reactions are indicated.
Bottom: The system is bistable, with one overall silenced state, and one overall
active state. (Figure from Dodd et al. [25])
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3.1 Model assumptions and rules

3.1.1 Assumptions

e The model system is a set of a constant number of monomers. Each
monomer represents a nucleosome, and the system in total represents an
isolated section of the DNA polymer.

e The model does not include the concept of space, so the monomers have no
spatial position, nor a defined distance between them. This is of course a
simplification of reality, as we know that DNA polymers are 3D structures.
The motivation for this design is the fact that nucleosomes that are not
necessarily nearest neighbors on the chain also interact and affect each
other, and the 0D approach eliminates distance being a factor.

e Each monomer can be in one of three states: M, U, and A (for methy-
lated, unmodified, and active, respectively). The states each represent one
or more epigenetic modifications, the number of which in reality is much
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Figure 3.2: The number of nucleosomes in the M and A state for o = 0.59 in
a system of a total of 60 nucleosomes. Notice the bistability of the system.

larger than three. However, as we will see, only three different behav-
iors are required for the purpose of this model, so this is also a useful
simplification.

3.1.2 Rules

A stochastic simulation is now performed, and the system can develop according
to some simple rules:

e For each iteration step, one of two types of conversions is attempted: a
recruited or a noisy conversion.

e A nucleosome n; is chosen at random. Then, with probability «, a re-
cruited conversion is attempted. Else (with probability 1 — a) a noisy
conversion is attempted.

e In case of a recruited conversion, another nucleosome ns is also chosen at
random. If the state of no is M or A, the state of nucleosome n; is changed
one step towards the state of nucleosome ngy, according to figure 3.1 (top)
Thus, if the state of ny is U, and the state of ny is M, the state of n; is
changed from U to M. Biologically, this corresponds to the methylation of
the nucleosome 11 by the Clr4 enzyme bound to nucleosome ns (see section
2.2.1). Unmodified nucleosomes do not have the capability to change the
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states of other nucleosomes, which reflects the assumption that modifying
enzymes must first bind to an already modified nucleosome.

e If a noisy conversion is to be attempted, nucleosome n; is changed one
step in either direction with the probability 1/3.

Implementation and discussion of features

Implementing the model using a system size of 60 nucleosomes with a probability
parameter of o = 0.59 yields the result seen in figure 3.2. It can be observed that
both the overall M state and the A state are stable over longer periods of time.
The system state switches back and forth between having most nucleosomes in
the M state to having most nucleosomes in the A state, and when the switches
occur, they occur fast, and there is no third stable overall state (e.g. the U state
never dominates, and the system virtually never stays in a state where half the
monomers are in the M and the A state, respectively). This mimics the inherent
bistability of the system, and this very simple model is in other words able to
reproduce this important trait of epigenetic switching. The observed switches
reflect the behavior of the AK mutants, as discussed in section 2.2.2.

As the authors note, the key mechanism to model a bistable system is the
ability for the nucleosomes to “stimulate modification beyond their neighbor nu-
cleosomes, arguing against a simple continuous spreading of nucleosome modifi-
cation” [25]. The need for longer-range interactions is an important point, and
something that thus has to be included in the 3D model. In the 0D model, it
is the very absence of space that enables the monomers to recruit each other
over such long distances. With a 3D model, interacting nucleosomes have to be
spatially close, even though they are located far apart on the chain. This is one
of the challenges that lie ahead when we now start building the model for the
purpose of this thesis.



4 The 3D model

As we have seen, it is possible to reproduce some desirable qualitative at-
tributes of the biological system in question using a relatively simple physical
model. Notably, it is possible to achieve a bistable system, assuming that nucle-
osomes interact on a longer range than between nearest neighbors on the chain.
It is, however, also desirable to create models that take space into account.
After all, chromatin is a 3D structure, so a 3D model should be at least as
accurate as a model which does not use space - indeed, it is believed that there
exists a correlation between repressive epigenetic modifications and chromatin
compaction [8][26]. There are several possible advantages of doing this:

e Nucleosomes have different spatial distances between them, and this makes
it likely that the interactions that occur between them have a distance-
dependence which is non-linear. It is highly interesting to investigate this
effect, and this can be captured most accurately via a 3D model.

e Heterochromatin consists of nucleosomes which are bound together by
proteins. Since nucleosome states are highly dynamic, a DNA chain is
expected to be a highly complex structure, which may contain areas of
both heterochromatin and euchromatin. These structures contribute steric
effects to the system, which in turn leads to epigenetic repression due
to the correlation with chromatic compaction [24]. In addition, different
nucleosome states produce different physical interactions, e.g. the bridging
interactions that occur due to methylation (see section 2.2.1), and this
would also be desirable to model.

e A 3D model opens the possibility of including knowledge of the actual
three-dimensional structure of heterochromatin in its different levels of
organization. This would in other words add a biological dimension to the
model.

These are some of the motivational questions behind developing a 3D model.
Notably, the introduction of space requires, among other things, that the Brow-
nian dynamics of the DNA chain be taken into account. We are thus now ready
to develop our own 3D model, in which the rules and assumptions from the 0D
model will be combined with the Brownian dynamics of the DNA chain to create
a computational-physical polymer which can be used as a model for epigenetic
switching, as explained in section 2.2.

4.1 Brownian dynamics

The isolated section of the DNA chain is represented by a polymer consisting
of N monomers. In this model these monomers each represent one nucleosome

14
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(although the possibility for considering one monomer as a coarse-grained rep-
resentation of several nucleosomes can also be conceived, and this has indeed
been done in other models [24][26][27]). Each monomer can be in one of three
possible states at a given time, each of which represents an epigenetic state (see
section 2.2.1):

e S: This state represents the ‘silent’ nucleosome, or nucleosomes that have
been epigenetically modified via the methylation of H3K9, such that they
condense into a heterochromatic state. Here we will assume that S state
monomers are attractive to other S state monomers, and that they are ca-
pable of spreading their state to other monomers. Additionally, whenever
the cenH region is considered activated during simulations, all monomers
within this region will be set constantly to the S state.

e U: This state represents ‘unmodified’ nucleosomes, which corresponds to
no epigenetic modification. Unmodified nucleosomes are assumed not to
condense into heterochromatin, and are thus modelled as non-attractive,
sterically repulsive monomers.

e A: This state represents ‘active’, or euchromatic nucleosomes. These nu-
cleosomes are assumed to be epigenetically modified in such a way that
they attract the same enzymes that perform the modification, i.e. the
HATSs. For simplicity it will be assumed that the A state monomers repre-
sent acetylated nucleosomes, and that the HATs associate with this chem-
ical group and self-propagates in the same manner as the HMTs do with
regards to the nucleosomes modified by methyl-groups. Since acetylated
nucleosomes are associated with the euchromatic state [8], the A state
monomers will be modelled as non-attractive, but they will still be capa-
ble of spreading their state to other monomers.

The movement of the monomers is purely determined by the aggregate potential
U, which serves to introduce repulsion and attraction to the system. (These
will be described more fully in section 4.1.2.) All positions and distances are
measured in units of the preset distance between neighboring monomers, Io.
(The specifics on different parameters and their values will be laid out in section
5.1.1).

4.1.1 Diffusion

Chromosomes exist in the nucleoplasm of the cell nucleus. This is a viscous
liquid, which means that a drag force is induced on the moving macromolecules.
On the time scale of interest, the inertia-relaxation time of the moving polymer
can be neglected, i.e. the movement of the polymer can be assumed to be non-
inertial, which means that it can be described using Brownian dynamics. This
is achieved using the over-damped Langevin equation:

n%Xi(t) = -Vx,UX(t)) + Ri(t) (4.1)
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Here 7 is the viscosity, set to unity without loss of generality, X;(t) is the position
of monomer ¢ at time ¢, and Vx, U is the gradient of the aforementioned potential
with regards to the position of the i’th monomer. Notably, the potential depends
on the position of all monomers. Computationally, X(¢) is expressed as an
N x 3 matrix X(t), where N is the number of monomers, and where the i’th
row contains the position of the i’th monomer. Lastly, R;(¢) is the random
Gaussian noise on the ’th monomer, where every component R;; satisfies:

(Rij) =0, (4.2)

and

(Ri () Rju(t")) = 2D (t — )00k, (4.3)

where 6(t) is the Dirac delta function, and D is the diffusion constant. We set
D =1, and thus let this define our units.

The system can now evolve through numerical simulations, using the Euler-
Maruyama method (for the full derivation, see Appendix A):

Xi(t+ At) = X, (t) — Vx,U(X(8) At + AW, (t), (4.4)

where AW is Gaussian noise, of which the components dW;; satisfy:

(dW;;) =0, (4.5)

and:

(dW}) = 2At (4.6)

The most involved term in eq. 4.4 is the potential term, which will be explained
in the following.

4.1.2 Potentials

The aggregate potential is a sum of two terms: U = Uinteraction + Upressure-
Notably, the potential experienced by each monomer depends on all of the other
monomers and their states. As we have seen in eq. 4.4, it is necessary to
calculate the gradient of the potential function. In practice, this would take
infeasibly long: simulation time is O(N?), due to the need to calculate the
distances between all monomers at each time step. As it turns out, however, it
can be accomplished using differentiable programming (see section 4.1.4). First
we look at the calculation of the individual potential terms, and then we see
exactly how the potential gradient can be found.

Spring rigidity

As we have seen, chromatin at its lowest level of organization is a ‘beads-on-
a-string’ structure. The nucleosomes are connected to each other by the DNA
itself, and the position of each nucleosome relative to its nearest neighbors is
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Figure 4.1: Illustration of the incremental movement of a monomer. The
monomer always has a fixed distance, Iy, to both of its neighbors, and can only
rotate around an axis which goes between its neighboring monomers, as shown.

assumed to be fairly rigid. A standard way to model this would be via a har-
monic potential, using a proper spring constant to ensure a stiff spring. While
this seems fine in principle, it turned out to be a weakness for the simulations:
to obtain the necessary stiffness, the spring constant needed to be set to a rel-
atively high value, which in turn led to numerical blowups, and which further
required the finite iteration time step, At, to be set to a correspondingly low
value. This naturally slowed simulation time drastically, so a choice was made
not to implement a spring potential at all, but to emulate the beads-on-a-string
structure in a completely different way.

The distance between neighboring monomers was thus set to a fixed value,
lo, as mentioned. To maintain this distance at all times, the monomers (except
the monomers at the ends of the polymer) were restricted to rotate along a
circle, with a rotation axis going between the neighboring monomers (see figure
4.1). The monomers at the ends of the polymer could move freely, although still
with a fixed distance Iy to their one neighbor. The result was an infinitely rigid
spring, with the added benefit of numerically stable simulations.

Interaction potential

This potential arises due to the different physical interactions between the
monomers. Even though there is no defined monomer size in this model, it
was assumed that the monomers exhibit repulsive behavior when they get close
to each other. In addition, to represent the bridging of two methylated nu-
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Figure 4.2: A qualitative, one-dimensional representation of the interaction
potential in its different forms, shown for the interaction between two monomers.
The entire potential function, Uipteraction, 1S shown in black. Monomers which
both are in the S state experience this potential below the cutoff distance (shown
in red), while monomers in all other combinations of states experience the
repulsion-only potential (shown in blue).

cleosomes, monomers of state S were assumed to be mutually attractive when
within a certain distance of each other. This was achieved by constructing
the interaction potential function, Uipteraction Using two decaying exponential
functions,

fi=exp [_—ZT] (4.7
ro
and
f2 =exp [—ZZT] , (4.8)
70

where 7 is the distance between two monomers, 7y is the equilibrium dis-
tance between two monomers (which was preset as a model parameter), and

b = Re |:Lambert;v2(—2e*2)

global extremum for the potential function. In total, this gives us:

] is a constant which ensures that ry becomes the

Uintcraction = Cinteraction |: Z fl (’)”) + Z (fl (’)”) - f2 (T)):| (49)

ré¢Ags reAs
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Here, Ag is the set of all distances between pairs of S state monomers (excluding
pairs where the monomers are the same monomer). The constant Citeraction 1S
a model parameter which controls the size of the potential.

Subtracting the exponential functions yields a potential well (see figure 4.2),
while the function f; by itself is a purely exponentially decaying function, which
was used for repulsion. In addition, a cutoff distance was added; monomers
within the cutoff distance are affected by the potential, while monomers outside
of this distance are not. This was implemented to prevent physical interactions
of very long range; in reality these interactions are not physical forces, but
rather occur on short distances, as they are the result of enzymes mediating the
binding together of nucleosomes.

In summary, the monomers experience two different interaction potentials:

e S monomers interact with each other via a potential well with the equi-
librium distance ryg.

e All other combinations of monomers interact with each other repulsively
via a decaying exponential function.

As a particular feature in this model, a limit was introduced on how many S
state monomers could attract each other at a given time. Based on the assump-
tion that methylation can occur on two different locations for each nucleosome
(see section 2.2.1), each S state monomer was only allowed attract a maximum
of two other S state monomers at a given time. This had some significant im-
plications on the resulting 3D folding structure of the polymer (see section 5.2).
To achieve this, an algorithm was constructed, with the following requirements:

e A set of pairs of interacting S state monomers should be produced.
e No monomer should appear in more than two interaction pairs.

e The algorithm should minimize the total interaction distance for all S state
monomers.

The algorithm was defined as follows:

1. Define an initially empty set of pairs of interacting monomers.

2. List all distances between all monomers (excluding distances to self, i.e.
distance 0) from smallest to largest.

3. For each distance in the list, starting at the smallest distance, identify
the monomers between which the distance in question applies. If both
monomers are in state S, and if none of the monomers is already interacting
with two other monomers, add the monomer pair to the set of interacting
monomers.



CHAPTER 4. THE 3D MODEL 20

Given this algorithm, if there are Ng S-state monomers in the system at a given
time, the theoretical maximum number of possible S-S interactions at this time is
equal to Ng, while using our implementation, the number of distances to iterate
through to establish the interactions is equal to £ (N2 — N, where N is the total
number of monomers in the system. Since %(N 2 -~ N) >> Ng, several stopping
mechanisms were therefore added in the computational implementation of the
algorithm to ensure as early an exit as possible (see Appendix C for the full

implementation).

Pressure potential

The second contribution to the potential function is the pressure potential.
This is a generalized potential which was conjectured to be the result of many
different forces in the environment of the DNA chain. The DNA chain exists in
the cell nucleus, which is surrounded by the nuclear envelope. This exerts a force
inwards toward the center of the nucleus. The nucleoplasm is a viscous liquid, in
which a myriad of different structures are suspended, including the chromosomes
themselves. In addition to these viscous effects, steric effects on the DNA chain
are expected from the immediate neighborhood on the chain itself, i.e. from
other sections of the chromosome. All of these factors contribute to keeping the
polymer more or less centered in a restricted location in the nucleus.
The pressure potential function was thus constructed:

Uprcssurc - Cprcssurc Zsz - minitH2; (410)
K3
where cpressure 1S @ model parameter, controlling the size of the potential, and
mjy,;¢ is the center of mass of the polymer at the initialization of simulation.
This created an assumed fixed location of the polymer, around which it could
move.

It is worth noting that this potential term has significant effects on the root-
mean-square (RMS) value of the distances from the monomers to the center of
mass of the polymer, and that this in turn has profound effects on the ability of
the monomers to perform recruited conversions of states. This will be explained
in later sections.

4.1.3 Random noise

The last term of eq. 4.4 concerns the movement due to random noise. This noise
is assumed to arise from random collisions with other molecules in the nucleo-
plasm, and is the sum of many such collisions occurring within the simulation
time step At. The components of AW are assumed to be Gaussian variables
(see Appendix A), whose distributions are defined as follows:

—AW?2
iJ
] —

noise

1
AW,L i) = ex
M ]) dnc? . At P [

noise
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In other words, the distribution is a Gaussian with mean zero and standard
deviation cpeise vV 2At. The constant ¢, oise is a model parameter which controls
the amount of noise.

4.1.4 Computing the gradients

The potential function terms given by eq. 4.9 and 4.10 are non-linear, and as
mentioned, it was necessary to compute the gradient of this function for each
monomer. This would take infeasibly long in practice, but could be achieved
using automatic numerical differentiation via the torch.autograd functionality
from the PYTORCH library [28]. This tool is used heavily in machine learning,
as one of the essential steps in this type of machine learning is backpropaga-
tion, in which model parameters are optimized based on gradient descent on
loss functions, and this functionality is exploited using the potential functions.
Every mathematical operation on the relevant model parameters (the monomer
positions in our case) can thus be tracked, and using the functions involved in
the iteration process, the numerically computed gradients are found and stored,
after which they can easily be retrieved and used automatically for the purpose
of our 3D simulation.

4.2 Nucleosome dynamics

We now have a three-dimensional polymer which evolves in time and space. We
have seen how the potential experienced by each monomer depends on the state
of the monomer: S state monomers are mutually attractive (up to two other
monomers), while all other combinations of states yield repulsive monomers.
Furthermore, these monomer states represent nucleosome modifications, which
arise due to enzymatic reactions, as discussed in chapter 2. These states change
due to interactions between the nucleosomes, so to represent these dynamics, it
is thus now desirable to implement the 0D model discussed in chapter 3, with a
few changes and modifications for the 3D scenario. The details are laid out in
the following:

4.2.1 Implementation

The main difference between the implementation of nucleosome dynamics in the
0D model and in the 3D model is the way nucleosomes/monomers are chosen for
recruited conversions. In the 0D model, given that a nucleosome has been chosen
for recruitment, the probability of choosing any of the remaining nucleosomes
is constant. In the 3D model, there is a constant preset maximum spatial
distance that the monomers can be apart from each other for a recruitment to
occur. This leads to a distance-dependence to arise naturally for the polymer;
monomers closer to each other in the chain are expected to interact more often,
while monomers further away will have fewer interactions.
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For clarity, the algorithm for the nucleosome dynamics step will be fully
described below. These steps are performed for every time step in the Euler-
Maruyama iteration for the polymer dynamics.

Recruited conversion steps

1.
2.

7.

Choose a random monomer nj on which to attempt a recruited conversion.

If the monomer n; is part of the cenH region, go directly to the noisy
conversion steps.

Find the set of all other monomers within the recruitment distance 7 ecruit-
If this set is empty, go directly to the noisy conversion steps.

. Choose a random recruiting monomer ns from the set of monomers within

distance Trocruit-

If the states of the monomers n; and ns are equal, or if the state of the
recruiting monomer ng is U, go directly to the noisy conversion steps.

Perform the recruited conversion step according to the state of the recruit-
ing monomer ny:

(a) State S: With probability a; (which is a model parameter), change
the state of n; one step towards the state of ng, i.e. from A to U or
U to S.

(b) State A: With probability as (which is a model parameter), change
the state of ny one step towards the state of ns, i.e. from S to U or
U to A.

Go directly to the noisy conversion steps.

Noisy conversion steps

1.
2.

Choose a random monomer n3 on which to attempt a noisy conversion.

If the monomer ng is part of the cenH region, exit the noisy conversion
steps.

With probability 8 (which is a model parameter), perform the noisy con-
version step according to the state of monomer ng:

(a) State S: Change the state of ng to U.

(b) State A: Change the state of ng to U.

(c) State U: Randomly choose the state towards which a noisy conversion
should be attempted.

i. If the state S is chosen, with probability 7, change the state of
ns to S.
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ii. If the state A is chosen, with probability «s, change the state of
ns to A.

At this point it is worth noting an important thing: In contrast to the 0D
model by Dodd et al., there are two different conversion probabilities, one for
each direction. The reason for introducing an extra model parameter is that
the different physical and spatial interactions for monomers of different states
also create unequal opportunities for the monomers to recruit each other. As we
have seen, the monomers have to be within a certain distance to interact, and
since physical attraction (as occurs for S state monomers) force more monomers
of the same state to be closer together, more reactions and therefore a higher
reaction probability is expected. As we will see, setting a; = ap does not create
a symmetric behavior for the two competing states.

4.3 Comparison with existing models

Here we look at the most important differences between the model developed
here and models already developed in the literature. This model is largely
developed from scratch, and as such, there are many differences in e.g. the
physical parameters used, and in the implementation of the Brownian dynamics.
We therefore highlight the points that are considered to differ the most from
established ideas.

4.3.1 Potentials

As noted in section 4.1.2, we here introduced rotation as the only allowed move-
ment for monomers not located at the end of the polymer. This ensured a higher
numerical stability, in addition to enforcing an infinitely stiff spring. This is
markedly different from established 3D polymer models, where harmonic po-
tentials are typical [24][27][29).

Another common type of potential is the bending potential [24][26][29][30].
This potential is not directly implemented in this model; however, as the rotating-
monomer approach does restrict movement in some directions, it is expected
that this results in some stiffness, the degree to which remains unclear.

Lastly, the pressure potential, which ¢s implemented in this model has, to
our best knowledge, not been used in other models to this point in time. As we
will see, one of the main consequences of this potential is that monomers spend
more time in closer proximity to each other. This is achieved in other models
by other means, for example by letting a large number of monomers attract
one another - this can lead to what is referred to in some studies as "compact-
ordered states" [24][29][31][32]. This leads us to the next point, which concerns
the physical monomer-monomer interactions.
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4.3.2 Physcial interactions

In our model, we let U state monomers correspond to unmodified nucleosomes,
whereas A state monomers represent acetylated, euchromatic nucleosomes, and
S state monomers represent methylated, compacting nucleosomes. In other
words, there is only one type of monomer which can attract other monomers.
This differs from many estblished models, which usually implement attraction
for both types of modified or ‘marked’ monomers (see e.g. [24][27][29][31][32]). In
these models, one of the states usually corresponds to an ‘unmarked’ nucleosome,
which induces steric repulsion towards all other monomers, whereas both of
the other states induce attraction toward other monomers of the same state.
Depending on the recruitment rates for the different states, this usually leads
to different phases, where the polymer becomes ‘compact-ordered’ above some
transition point due to clustering of the different monomers types, and ‘swollen-
disordered’ below the transition point. As we will see in section 5.2, the resulting
3D structures from our model also vary in compactness, but only due to the
presence of the S state. We view the A state as antagonistic towards compaction,
and this is a significant difference between our model and the established ones.

Limit on interaction pairs

The upper limit on the number of interaction pairs one S state monomer can
make with other S state monomers is another feature which, to our best knowl-
edge, has not been seen in other models. The motivation behind limiting this
number to 2 is a biological one, as it is assumed that the number of nucleo-
somes that can bind together is limited by the number of possible methylation
locations on the histones (see section 2.2.1). This naturally has further impli-
cations on the emerging 3D structures, and it is a reminder that using physical
potential functions to represent interactions between proteins has some unreal-
istic consequences, as the binding interactions in question are actually driven
by enzymatic reactions, and not by force fields.

4.3.3 Local vs. global conversion rates

The last important difference between our model and some established models
lies in the modelling of the recruitment process between monomers, and the
dependence on spatial distances. In our model, only monomers within a preset
spatial distance can recruit each other, and there is no discrimination between
monomers closer or further away from each other on the polymer. We highlight
that the resulting difference in recruited conversion reactions emerge as a result
of spatial distance only, and that differences in distance on the polymer itself
is a consequence of this spatial distance, and thus a lower probability of inter-
actions between the monomers (see section 5.4.1). The selection of spatially
proximate monomers for these recruitment reactions is also seen in other mod-
els, e.g. [24][31]. However, some other studies discriminate between monomer
state conversion rates for nearest-neighbor reactions (sometimes referred to as
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local or cis reactions) and non-nearest neighbors reactions (global or trans reac-
tions) [26]. Studies by Obersriebnig et al. [19], as well as Nickels et al. [20] (the
latter of which will be studied in more detail in sections 5.4.2 and 5.4.3), both
highlight the need for local and global rates as distinctively different: one rate
applies only to nearest-neighbor recruitments and the other applies to all other
recruitments. It should be noted that no 3D substrate is implemented for the
nucleosomes in the models from these studies; rather, a 1D spatial distance de-
pendence is introduced for the global reaction rates. Furthermore, the authors
of both studies only allow global reactions for some of the reaction types, i.e.
Obsersriebnig et al. only allow global reactions for the A — U reaction. Again,
in our model, the only difference in behavior between reaction types is seen in
the reaction rates. As such, this is a reduction in the number of necessary model
parameters.

4.4 Final words on the model

We now have a working 3D model to represent both the Brownian dynamics
as well as the nucleosome dynamics of a DNA chain. In the next chapter, we
will see how this model was used for simulations to generate data and results
to meet our main objectives described in chapter 1.



5 Results and discussion

5.1 Model parameters

Before looking at the results from the simulations, it is prudent to keep in mind
the different model parameters. Some values were fixed for all simulations,
whereas others were varied to yield the different results seen in this chapter. The
fixed and the varied parameters can be found in tables 5.1 and 5.2 respectively,
and include names, descriptions, and values used for each parameter.

Generally, the values of these parameters were found after performing a large
number of simulations, and investigating qualitative and quantitative behavior
of the polymer. Here the values do not have units, but knowledge on the actual
scales involved makes it possible to assign correct units, since the relationship
between the parameters is established in the model. For example, the parameter
lg represents the distance between nucleosome core particles, the value of which
can possibly be experimentally determined. The time steps ¢ are unitless inte-
gers, which also could potentially be rescaled using knowledge of the time scales
involved. It is also crucial to note that the relation between the time scales of
the Brownian dynamics and the nucleosome dynamics is not established for this
model.

All in all, the parameter values arrived at here give us a model polymer
which has the desired behavior, and additionally allows us to perform parameter
optimization to a certain degree. All of this will be explored in the following.

5.1.1 On the specific parameters

Fixed parameters

e N: The system size is a compromise between modelling a realistic system
and being able to run a sufficient number of simulations. As we saw in
chapter 2, the mating-type region of S. pombe includes approximately 150
nucleosomes. The simulation time however becomes infeasibly long with
such a large system, so 40 monomers were found suitable for this purpose.

e [o: As noted above, this parameter can in principle be linked to the real
length between nucleosomes in the model system. Here it was set to unity
without loss of generality.

® Cpoise: Lhe value of the parameter was arrived at through inspection of the
results of various simulations, and was found to yield realistcally looking
dynamics.

e At: This value was sought maximized while maintaining realistic dynam-
ics. Notably, the Gaussian noise scales with the square root of this value.

26
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Parameter ‘ Value | Description

N 40 The number of monomers.

lo 1.0 The fixed distance between neighbor-
ing monomers.

Cnoise 0.5 The scaling parameter for the random
Gaussian noise for the Brownian dy-
namics.

At 0.02 The finite time step value.

interaction size 50 The scaling parameter for the inter-
action potential.

interaction potential cutoff | 1.0 -ly | The maximum distance for the inter-
action potential.

0 lo/2 The equilibrium distance for the in-
teraction potential.

Trecruit 4.0-r¢g | The distance within which two
monomers must be for a recruited
conversion to happen.

cenH initial index 16 The initial monomer index of the
cenH region (using one-based index-
ing).

oo 0.1 Proportionality constant for the reac-
tion probability of recruited conver-
sions from S — U and U — A.

B8 0.04as | Proportionality constant for noisy
conversion.

Table 5.1: The fixed model parameters used, along with their values and

descriptions.

interaction size: The value of the parameter was arrived at through in-
spection of the results of various simulations, and was found to yield real-
istically looking dynamics.

interaction potential cutoff: The choice to implement a potential cut-
off was based on the assumption that nucleosomes condense together by
binding to proteins, which constitutes a short-range interaction. The value
itself was conjectured using the same assumption, and set in relation to

lo.

ro: The motivation behind this parameter is based on the assumption that
nucleosomes pack together in a zigzag pattern to form a heterochromatic
fibre [8], and the actual value was thus set to best facilitate the emergence
of such a structure.

Trecruit: Lhe value of this parameter again uses the assumption that the
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Parameter Value Description

total time Any The number of time steps for a simulation.

This value is not restricted, and can be set
to anything depending on the purpose of the
simulation.

RMS [1.677, 4.130] | The interval of the allowed root-mean-square

(RMS) values of the distances from the
monomers to the center of mass of the initial
polymer configurations. This value directly de-
termines the value of the pressure potential;
see section 5.1.2.

initial state | {S, U, A} Refers to the initial state of all monomers ex-

cept those within the cenH region.

cenH size {6, 7, 8} The possible number of monomers in the cenH

region.

(0, 1.0] Proportionality constant for the reaction prob-
ability of recruited conversions from A — U,
and U — S.

Table 5.2: The model parameters that were varied for different simulations,
along with their values and descriptions.

states of nucleosomes change due to interactions with enzymes, which are
short-range interactions. Furthermore, there is an important tradeoff: the
higher the value, the more monomers will be candidates for a recruited
conversion, but the behavior arising from the different spatial distances
become less and less important. The actual value was conjectured to be
a factor 4 times bigger than the equilibrium distance rg.

cenH initial index: The value was set based on data from Nickels et al.
[20].

ag: The value was set as low as possible, but still such that results could
be achieved within reasonable simulation time. The actual relation to real
time is not established here.

(B: This parameter represents the rate of nucleosome state conversions that
arise due to the presence of histone-modifying enzymes in the nucleoplasm.
These reactions thus do not arise from recruitments by other nucleosomes.
The value was set based on the assumption that noisy conversions happen
much more rarely than recruited conversions, and was set several orders
of magnitude lower than the value of aq.
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Varied parameters

e total time: This value was varied based on the needs for the particular
simulation. Note that the time steps ¢ are without units, and thus simply
set to increasing integers. The value can be rescaled using knowledge on
real time scales.

e RMS: The parameter should be viewed as an indirect parameter; setting
the value directly determines the value of the pressure parameter cpressure
(see eq. 4.10) via a function constructed for the purpose. (This will be
explained in section 5.1.2). As such, the given RMS values used to produce
the results in this chapter should be considered approximate values for
the initial condition of the polymer. The parameter was used as input to
achieve a desired average RMS for the initial polymer configuration, and
the value was varied to demonstrate the effects of the pressure potential
on many of the results.

e initial state: This parameter was varied according to the purpose of the
simulation. For the simulations involving the cenH region, the initial state
for the whole system (except for the cenH monomers) was always set to
A to demonstrate the establishment of the S state.

o cenH size: The value was set to 8 for all simulations representing the
wild-type mating-type region of S. pombe, as this achieved the real ratio
of cenH size to system size. As mentioned in section 2.2.2, the nucleation
of the cenH region actually is a reversible reaction occurring at a high
rate, so for modelling purposes, it was assumed that this rate was sig-
nificantly higher than the rate of monomer conversions. As such, it was
decided to set cenH size independent of time, and thus implement it as
a fixed-length region throughout simulation. These monomers could thus
neither undergo recruited, nor noisy conversions. Crucially however, they
could participate in recruited conversions as the recruiting monomer. For
different simulations, the value was varied to demonstrate different mean
S state establishment times for different ratios of the aforementioned cenH
size to system size.

e «7: This value was only varied to demonstrate the hysteresis effect, and
during optimization (see section 5.4.3). For all other simulations, the value
was held fixed at a; = 0.07. This value was used, as it produced a regime
where both the overall S and A states were stable throughout simulation
time (see section 5.3.1), while at the same time producing a monostable
system for the S state when the cenH region was present (see section
5.3.3).



CHAPTER 5. RESULTS AND DISCUSSION 30

antO

T T T T T

0.0 0.2 0.4 0.6 0.8 1.0
Eshift le6

Figure 5.1: Auto-correlation of the distance vectors from each monomer to
the center of mass of the polymer, averaged over the number of monomers and
time. All monomers were initially in the A state, and were not allowed to change
during simulation to maintain the behavior of a free polymer. Parameters: total
time = 10°, RMS =~ 4.13.

5.1.2 Initial conditions

Quasi-random polymers

It was desirable to start each simulation with the polymer taking a quasi-random
initial position. By quasi-random, it is implied that the configuration of the
polymer in space should appear random, since by the nature of computational
simulation, the initial position will always be deterministic. In this case, all
simulations were additionally run using preset random seeds, such that exper-
imental results could be reproduced, hence the initial positions are not truly
random.

To arrive at a quasi-random initial position, the dynamics of a free poly-
mer (i.e. a polymer without pressure implemented) were investigated. In this
way it was possible to get an idea of the time scale of the Brownian dynamics.
The measure used for the movement of the polymer was the auto-correlation
of the distance vectors from the monomers to the center of mass of the poly-
mer, averaged over the number of monomers and time, which has the following
expression:

N
<% Zi:l di,t ) di>t+tshift>t
N
(7 Zimalldiel?)e

Pauto (tshift) = ) (51)
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Figure 5.2: The relationship between the pressure constant and the RMS of
the polymer.

where d;; is the distance vector from the 7’th monomer to the center of mass
at time t. The results for five different free polymers developing through 108
time steps can be seen in figure 5.1. Here the auto-correlation shows exponential
decay from the beginning of the simulation, as expected. Around approximately
3-10° time steps, the polymers start to exhibit widely different behavior, which
is expected to arise from two sources:

e Less statistics, which occurs due to the fact that the higher the value of
tsnift, the less data to average over.

e Configurations can be correlated over longer time intervals if the polymer
stays repeatedly in similar configurations for certain periods of time.

The mean correlation, however, does not deviate far from 0. Using these results,
it will be assumed that the configuration of most polymers are quasi-random
at least after t = 105. To generate initial configurations for the simulations,
100 polymers were thus allowed to move through a total of 10° time steps. The
positions were then used as a basis for generating initial polymer positions with
different RMS values.

Adding RMS for initial positions

Using these initial configurations of free polymers, different RMS values were
then input to get quasi-random polymers for each different value. After inputting
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these RMS values, the polymers were allowed to move for another 106 time steps.
The result was 100 different RMS values for which 100 different quasi-random
configurations could be initialized for simulation.

RMS and pressure

In eq. 4.10, the constant cpressure appears as a scaling constant for the pressure
potential. As we will see, the higher this constant is, the more compact the
polymer is, and the lower the RMS, whereas a low value yields a polymer with a
relatively high RMS. The relationship between cpressure and the RMS (resulting
from experimental data) can be seen in figure 5.2.

The experimental data was collected from the production of initial quasi-
random polymer positions, as explained above. A function was then constructed
from fitting to the data:

1
.o (7) = 186.8 - 1012 5.2
fiu(x) 1+exp(z —3885)) (52)

which essentially is a scaled power-law function with an exponential cutoff.
In this way, an analytical value for the constant cpressure could be retrieved by
inputting the desired RMS value. As noted in table 5.2, there is both a lower and
an upper bound for the possible RMS values. It is important to note that these
values are based on the output from the data; values outside of this interval are
possible in theory. For comparison, the theoretically possible interval of RMS

values, i.e. for a fully stretched polymer, would be [0, \/% Ziv(% — )2,
which gives an interval of [0, 11.54] for N = 40.

5.2 3D structure

In figures 5.3-5.4 some examples of different polymers can be seen for RMS = 2.0
and RMS = 4.0, respectively. The volume the different polymers take up due to
the difference in pressure potential is noticeable. The polymers are also visibly
more compacted in regions where the monomers are in the S state, as these
monomers are mutually attractive, whereas the sections of A state monomers
have a more open structure. In figure 5.4 (bottom), the structure emerging from
the limitation on two interactions per S state monomer becomes particularly
noticeable: the polymer has folded on a macroscopic level, and the monomers
are intertwined over long stretches of the chain. As such, this is not an example
of a zigzag pattern of close-neighbor interactions, as mentioned in section 2.2,
but it does illustrate the desired close affinity between the S state monomers.
It also appears that this polymer is locked in a configuration where S state
monomers far apart on the chain are interacting attractively. The result is
a higher-level packing, which indicates that the simple monomer interactions
could account for more macroscopic structures.
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Figure 5.3: Two examples of polymers after 5 - 10* time steps. Parameters:
RMS =~ 2.0, initial state = A, cenH size = 8, a; = 0.07.
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Figure 5.4: Two examples of polymers after 5 - 10* time steps. Parameters:
RMS =~ 4.0, initial state = A, cenH size = 8, a; = 0.07.
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Figure 5.5: The mean number of S state monomers at the end of 100 simula-
tions, each with a total time = 10°, and keeping as = 0.1 constant. Note the
different scales on the abscissae. Parameters: RMS = 2.0, cenH size = 0.

5.3 Epigenetic switching

5.3.1 Bistability and hysteresis

The 3D polymer developed here exhibits both bistable behavior, following the
definition in chapter 2, and hysteresis. As can be seen in figure 5.5, depending on
the overall initial state of the polymer, there are two different transition points
for when the polymer switches between the overall S and A states. Keeping
ag = 0.1 constant, we see that a switch from A to S for all monomers after
10° simulations requires a value of o roughly a factor 10 higher. Starting in
the overall S state, the polymer only switches to an overall A state for values
of a; about 100 times lower. Note also that the transition is more rapid for
the overall initial state S. This is expected to be a consequence of the different
physical interaction rules for the S state and the A state, and indicates that
the presence of physical interactions between the monomers increases a higher
overall stability for those monomers.

It is also worth noting that in the approximate range for a; of [0.03, 0.2],
both initial states are stable, and do not switch to the other state during simu-
lation time. A concrete example can be seen in figure 5.6, where the number of
monomers in each different state given two different initial conditions are shown
as a function of time, for a; = 0.07. Initializing the polymer with all monomers
in either the S state or the A state, the polymer never switches to the other state
during a simulation time of 10% time steps. The level of noise is low, and the two
states are never truly competing. The figure shows representative behavior for
the polymer in general - running many simulations with different preset seeds
yields the same results.
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Figure 5.6: The number of monomers in each state given two different initial
conditions. Both states are clearly stable over long periods of time. Parameters:
total time = 10%, RMS = 2.0, cenH size = 0, a; = 0.07.

The simulation time is fairly long, and a switch between polymer states is
not observed. It is important to remember that there is a finite probability that
such a switch can occur, but that the definition of bistability given in section
2.2.3 does take this into account. For an epigenetic switch, stability over very
long periods of time is crucial, but it is of course impossible to conclude anything
about the behavior over infinite time.

The system as seen here corresponds to the AK mutants, i.e. small strains
that lack the cenH region (see section 2.2.2), as no cenH region is present.
These mutants show bistable behavior, but additionally, switches between both
states are observed every ~ 2000 cell generations. Here these switches are not
observed during simulation time. This is an indication that the number of noisy
conversions were not sufficient to overcome the stability of the two states, and
thus that the proportionality constant for noisy conversions, 3, needs to be set
to a higher value to enable spontaneous switches between the states without a
cenH region implemented. On the other hand, achieving stability throughout
simulation time for both the overall S and A state was prioritized in this model,
as it is a prerequisite for a working epigenetic switch.

5.3.2 Epigenetic memory

Next, it was investigated whether the model could be used to represent epi-
genetic memory. This was done by introducing cell division events, which are
disruptive events to the system, at regular time intervals, and then testing the
stability of the two overall states. Two assumptions were made:

e In real cells, the spatial location of the DNA chain is altered as the chromo-
some undergoes compaction and subsequent division. This was simulated
as a re-initialization of the polymer position at the cell division event, i.e.
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Figure 5.7: Time-space plots of monomer states with regular cell-division
events, for polymers of initial state S (top) and initial state A (bottom). Both
polymers remain in their overall initial states. Parameters: total time = 2- 105,
RMS =~ 2.0, cenH size = 0, a3 = 0.07.

a random initial position was chosen (as described in section 5.1.2), at
which the polymer was placed.

o After DNA replication and the subsequent cell division, the epigenetic
modifications are distributed randomly on the two daughter chromosomes.
In this case, the polymer on average retains 50% of the original modifica-
tions. This was implemented by randomly changing the monomer states
(excluding the cenH monomers, following the assumption that cenH nu-
cleosomes immediately change back to the S state due to the activity of
RNAI) to the U state at the cell division event.

The results from simulations with cell division events can be seen in figure 5.7,
where a cell division was simulated every 5 - 10* time steps. The highly noisy
events clearly have little effect on the overall stability of either of the initial
states: after each event, the individual monomer states quickly change back to
the initial state. This mimics epigenetic memory, as it shows that the overall
state can be inherited by daughter chromosomes, and corroborates our claim of
the stability of both of the overall initial states.
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Figure 5.8: Time-space plots of the individual monomer states for three dif-
ferent simulations. The plots give a representative view of the time scale for
the epigenetic switching time, the mechanism for which can clearly be seen in
all three plots. Parameters: total time = 5-10%, RMS = 2.0, initial state — A,
cenH size = 8, a; = 0.07.

5.3.3 Activating the switch

Now we look at results from simulations where the cenH region was present.
The results can be seen in figure 5.8. Here, a number of different things can be
observed:

e In each case, a switch from the A state to the S state can clearly be seen.
The presence of the cenH region adds a bias to the system that is enough
both to induce the actual switch, and to make the system stay in the S
state.

e The switch occurs stochastically in time. This is illustrated by the three
different time-space plots in the figure.

e When the switch occurs, it occurs in a sudden burst. From the start of
each simulation, noise is observed as small local S-state patches before the
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Figure 5.9: Time-space plots of polymer showing heterochromatin estab-
lishment and state switching. Top: Polymer with pressure implemented
(RMS = 2.0). The switch occurs within a short time interval, and S-state
patches are observed. Bottom: Polymer without pressure implemented
(RMS ~ 4.13). The switch occurs more gradually, and there are almost no
S-state patches. Parameters: total time — 5 - 10%, initial state — A, cenH
size = 8, oy = 0.07.

whole system suddenly switches within a fairly short time interval.

e All of the observations made above are in line with the properties of a
biological epigenetic switch, as described in section 2.2.3.

Even though figure 5.8 only shows the behavior for a small time interval, it is
important to highlight that after the switch occurs, the polymer stays in an
overall S state for the entirety of simulation time. More concretely, with the
cenH region present, the polymer always switches from the A state to the S
state, but a switch back from the S state to the A state is never observed. This
exactly mimics the behavior of an epigenetic switch.

5.4 The effects of external pressure

In this section we will see the profound effects the pressure potential has on
the simulation results. We will see that the pressure potential is essential for
enabling sufficient long-range monomer interactions, and thus recruited conver-
sions. This in turn affects the globalness of the interaction activity, and the
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switching time for the polymer. We will look at three main topics:

1. First we will look at some general comparisons between results from sim-
ulations where pressure was implemented, and when it was not. Here we
will find support for the argument that pressure is an essential ingredient
in reproducing realistic results for the epigenetic switch.

2. Second, we will investigate the properties of the S state establishment time
of the polymer, and compare the results with a study by Nickels et al. [20].
Here we will find further support for the aforementioned argument.

3. Third, having shown that the establishment times from real experiments
can be reproduced using this 3D model, we will optimize the model with
regards to the recruitment probability constant parameter a;, using the
results from the study as a benchmark. This will further corroborate the
argument that the pressure potential is an essential component in the
model.

5.4.1 General results

A comparison of time-space plots of simulations with and without pressure ef-
fects implemented can be seen in figure 5.9. The time-space plots look markedly
different, and the first important observation is that the S-state establishment
happens over a significantly longer time interval for the polymer where pressure
is not implemented (bottom figure). Here, establishment starts more or less at
the start of the simulation, and is completed after around 30000 time steps.
The polymer where pressure effects are implemented (top figure) undergoes a
much more sudden switch; it remains more or less in the same state from the
start of the simulation until about 30 000 time steps, after which the switching
starts, and then finishes around 4000 time steps later. There is also visibly
more noise in this plot, and it appears that many more monomers undergo
state changes during the simulations, and that conversion interactions happen
between monomers far apart on the chain. For the polymer without pressure ef-
fects, there is very little noise, and the S state appears to spread mainly between
neighboring monomers. In other words, pressure seems to induce a higher num-
ber of state conversions, both occurring between non-neighboring monomers, and
in absolute terms. Figure 5.9 shows a qualitative comparison, but these effects
can also be quantified.

Global interactions, switching times, and S state patches

The number of successful recruited conversions from state U to A as a function
of the monomer index difference can be seen in figure 5.10. Here, a polymer
with no cenH was developing for 107 time steps, and in this case recruited
conversions occurred almost exclusively between these two states. This was
expected, as the polymer started in the overall A state, and with no cenH
present, the initial state is stable through simulation time (as we have seen in
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Figure 5.10: The number of successful recruited conversions from state U to
A as a function of the index difference of monomers for different RMS values.
Parameters: total time — 107, initial state = A, cenH size = 0, oy = 0.07.

figure 5.6). The total number of conversions is comparable for both RMS values,
but there is a significant difference: for RMS ~ 2.0, the number of successful
recruited conversions occurring between monomers further away from each other
than the next-nearest neighbor is almost a factor 3 higher than for RMS ~ 4.0
(57.6% vs. 21.9%). Furthermore, the number of conversions appears to decay
very slowly all the way up to the maximum distance of 39. For RMS =~ 4.0, the
values decay very fast, and very few if any recruited conversions happen across
a distance corresponding to half the chain length.

Furthermore, this figure illustrates a distance-dependence in the system, as
the number of successful conversions clearly decays as a function of the distance
between monomers on the chain. It is important to note that this behavior arises
naturally from the rules and parameters for this system; it does neither require
an assumed function for distance-dependence, nor different rate parameters for
interactions occurring locally and globally, as was described in section 4.3.3.

Finally, the ratio of the total number of successful recruited conversions to
the total number of time steps is ~ 3 -107%. This is an indication of the actual
rate of monomer state conversions occurring. The rates are expected to differ
for different initial polymer states, as S state monomers are attractive towards
other S state monomers, and since two S state monomers, once interacting
within the equilibrium distance rg, are expected to stay in that position for
extended periods of time, preventing further recruited conversions from taking
place.
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Figure 5.11: The mean switching time and number of S state patches at
the time where 50% of the monomers were in the S state, resulting from 100
simulations for each RMS value. Parameters: initial state = A, cenH size = 8,
a1 = 0.07.

Referring again to figure 5.9, we see that when the pressure potential is
implemented, there is significantly more noise in the form of isolated S state
areas, or patches. Since the number of random conversions should be the same
for both RMS values, these patches are certain to arise from longer-distance
recruited conversion interactions. This was quantified as the number of isolated,
contiguous S-state patches, (or regions), of any size in the polymer, at the time
where 50% of the polymer was in the S state. Furthermore, we see that the
switching time for a polymer under pressure potential is significantly shorter.
The switching was defined as the time interval between the time at which 50% of
the polymer was in the S state, and the time at which 90% of the polymer was in
the S state. In figure 5.11, these results can be seen for polymers with different
RMS values. The results were taken as an average over 100 simulations. The
number of S state patches is markedly higher for lower RMS values, averaging
more than 6 patches, whereas the number falls as the RMS grows; when the
RMS is above 3.0, the average number of patches falls to about 2. Taking into
account that any random state conversion to an S state could result in a patch
of size 1, which still was counted, the average value of about 2 patches indicates
that the S state spreads almost entirely between nearest neighbors. There is
very few, if any, recruited conversions that occur on longer distances. This
corroborates the results from figure 5.10.

The switching time clearly trends upwards for higher RMS values, and thus
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Figure 5.12: Heterochromatin establishment times in S. pombe mating-type
regions of different lengths. (From Establishment of heterochromatin in domain-
size-dependent bursts (2021), Nickels et al. [20].)

lower pressure. When a significant amount of pressure is implemented, the
switching time becomes fast, and mimics the behavior seen in figure 5.9 (top),
whereas with a higher RMS value, and thus lower pressure, the switching time
becomes much longer; the difference between the most extreme values are about
a factor 6. This in turn mimics what it seen in figure 5.9 (bottom). As dis-
cussed in section 2.2.2, during heterochromatin establishment, the overall state
switching of the DNA chain occurs stochastically and in a burst-like manner.
The results seen here thus constitute further evidence that pressure is needed
to induce this fast state-switching nature.

5.4.2 Investigating the S state establishment time

In the following, we investigate the establishment time of the S state, i.e. the
time it takes from the start of simulation until state switching has taken place
(defined here as the time at which 90% of the polymer was in the S state). This
was inspired by the study done by Nickels et al. [20], in which the main findings
for this purpose were:

e Heterochromatin establishment times follow an exponentially decaying prob-
ability distribution.

e The mean establishment time depends on system size, i.e. a bigger system
yields longer mean establishment times.
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The authors investigated heterochromatin establishment by creating strains of S.
pombe, with two fluorescent reporters embedded strategically within the mating-
type region: the yellow fluorescent protein (YFP) was placed in the cenH region,
while the mCherry (which is a red fluorescent protein) was placed at a “periph-
eral location”. In this way nucleation at the cenH region could be captured by
the absence of yellow light, while an absence of red light could be used as an
indicator that heterochromatin had spread through the whole region, based on
the peripheral location of the mCherry reporter. The authors highlight that
this reporter has no intermediate states between ‘ON’ and ‘OFF’; so that an
‘OFF’ state mCherry reporter could be counted as an ‘OFF’ state, or ‘silenced’
cell [20].

The authors also investigated the effect of system size on the heterochromatin
establishment time by creating strains with different lengths: 23 kb (wild-type),
27.5 kb, 29 kb, and 31 kb. Crucially, these strains were obtained by inserting
DNA-sections between the two fluorescent reporters, so that the system sizes
could be reflected in the difference in time between the silencing of the reporters.

The authors found that the silencing of the YFP happened “fast in all cases”,
due to its location within the nucleation region itself, but that the silencing times
of mCherry “was slower and differed greatly between strains”. In other words,
there was huge variation in time duration for heterochromatin establishment
within the strains. In figure 5.12, these results can be seen. The fraction of
cells expressing mCherry (‘ON’ cells) is plotted as a function of time. These
fractions are distributed by exponentially decaying functions. It follows that
the establishment times themselves are also exponentially distributed: given
an exponentially decaying, normalized, probability distribution p(t') = %et// T
where ¢’ is the time at which the polymer switches due to heterochromatin
establishment, the fraction fon of ‘ON’ cells is given as:

fON(t)_l—/O p(t)dt' = e /7 (5.3)

The other important finding is that the mean values of the distribution functions
depend on system size - the bigger the system, the higher the mean value of
heterochromatin establishment times.

The authors also created a physical model to reproduce the data, a model
which is markedly different from our model (see section 4.3). In the following,
the results obtained using our 3D model will be presented.

Implementation

It was desirable to reproduce the data by simulating different system sizes. Due
to computational constraints - simulation time becomes infeasibly long with
longer polymers - it was instead decided to vary the cenH size and keep the
system size constant to achieve the same ratio of cenH size to system size as in
the study by Nickels et al. It is also worth noticing that the system size used here
(40 monomers) is smaller than what would have been needed to represent a 23
kb DNA chain; in their model implementation, the authors used 153 monomers
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Strain size
(Nickels et al.)

No. of nucleosomes
(Nickels et al.)

Ratio of cenH size
to system size

cenH size in 3D model
(system size 40)

45

23 kb 153 0.20 8
27.5 kb 182 0.17 7
29 kb 191 0.16 7
31 kb 203 0.15 6

Table 5.3: Comparison of the models by Nickels et al. and the 3D model
presented in this study. A constant cenH size of 31 monomers was used by the
authors, and the fractions arise by varying the system size. The corresponding
cenH size in our 3D model can be seen in the rightmost column.

to represent the same chain, and a constant cenH size of 31 monomers while
varying the system size.

A summary of the different models and their parameters can be seen in table
5.3. As is shown here, as well as in tables 5.1 and 5.2, it was decided to use
the cenH values of 6, 7, and 8, while keeping the system size constant at 40
monomers. Simulations could now be run, and the S state establishment times
could be measured. FEstablishment time was defined as the time between the
start of the simulation until 90% of the polymer was in the S state. To estimate
the mean parameter 7, and thus define the distribution for each cenH size, the
data was then collected from 100 simulations each.

It is worth noting that the since the sampled values are assumed to be
distributed according to a decaying exponential function, which has a domain of
[0, 0], some values would inevitably never be sampled due to finite simulation
time. The data from such ‘shortened’ simulations would in turn be biased
towards lower values. To avoid running very long simulations, it was decided
to introduce a cutoff time t,,.x at some value of ¢ within which a high number
of samples was expected. Using the knowledge of the number of simulations
performed, the number of data points sampled, and the values of these data
points, an estimate of the real mean parameter could then be achieved using
mazimum likelihood estimation. The values generated from this estimator are
also biased, but since this bias becomes insignificant for high simulation numbers
(i.e. 100 simulations was sufficient), the raw estimates were used as is. The
details on the derivation and construction of the estimator can be found in
Appendix B.

Results and discussion

The results from these simulations can be seen in figure 5.13. Here, eq. 5.3
was used to arrive at the values seen in the main plot. We observe that the
smaller the cenH length, which corresponds to a larger system size in the study
by Nickels et al., the larger the mean S state establishment time for the given
system. This is exactly the same trend seen in the real data (see figure 5.12).
Furthermore, there are some clear differences in the behavior for different values
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Figure 5.13: Main: The estimated exponentially decaying fractions of ‘ON’
polymers with different cenH sizes, and for different RMS values, after a total
of 5000 simulations. The bigger the fraction of cenH to the total polymer
length, the lower the average switching time. Inset: Sampled establishment
times from 5000 simulations for RMS =~ 2.0. Parameters: total time = 102,
initial state = A, a; = 0.07.

of RMS. First, for RMS ~ 4.0, all mean establishment times are significantly
longer than for their corresponding cenH sizes with RMS ~ 2.0. Second, for
RMS = 2.0, the slopes are markedly different, whereas for RMS = 4.0, the slopes
are almost identical, and there is only a slight effect of different cenH sizes.
This may be attributed to what was remarked earlier, and what can be seen in
figure 5.9, namely that without a significant amount of pressure implemented,
the spreading of the S state on the polymer happens almost exclusively from
neighbor to neighbor, and with the same frequency. Thus the effect on the
establishment times should only be attributed to the mere fact that the cenH
sizes differ by one or two monomers. With pressure effects, and thus a smaller
RMS, there are more global interactions and recruitment conversions, and the
data indicates that this is a significant effect. This once again gives support to
the argument for implementing the pressure potential.
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In the inset plot of the same figure, the actual sampled establishment times
can also be seen. After an initial period of ~ 10000 time steps, a decay is ob-
served which appears to be exponential. Furthermore, we see that with a bigger
cenH region, the faster the decay. As a caveat, we note that the exponential
decay is only observed from ~ 10000 until the cutoff time. This most likely
stems from the fact that some time interval is required from the beginning of
the simulation until state switching can occur, as the monomers states require
finite time to spread. This could have implications on the assumed probabil-
ity distribution of the establishment times, which is something that should be
investigated in future work.

5.4.3 Optimizing the parameter o,

Lastly, it was attempted to optimize the probability constant a; to investigate
if the slopes in figure 5.13 could be tuned to match with those in figure 5.12.
It is worth repeating that in this study, there is no utilization of the real time
scales in play, whereas in the data with which the results from this model was
compared, the real time scales are known. The following should therefore be
viewed as an initial attempt of parameter optimization, and as evidence that
the S-state establishment times could be tuned in our model.

Because of the above, it was decided to optimize using the fractions of the
slopes of the data in figure 5.12. Polymers with a cenH size of 6 and 8 were cho-
sen, and using the same maximum likelihood estimation procedure as described
in Appendix B, the fractions of the (linear) slopes of the estimated distributions
of S state establishment times for these two systems were used as the value
to compare with the data. In the data seen in figure 5.12, the actual value of
the fraction of the slopes (representing the system sizes of 31 kb and 23 kb,
respectively) was:

fotopes = =p033 = 0.04891 (5.4)

Using this, the loss function could be constructed:

floss (al) - [fslopcs - frcs (al)]2; (55)

where fies(a1) is the estimated slopes from using the optimization procedure
with our model.

Some proposed values of oy were too low for any of the simulations to yield
a single establishment time (i.e. none of the polymers switched from the overall
initial A state to the S state). In this case, the constructed loss function was:

fIOSS(al) = ﬁ (5-6)

This function ensured high values for these low values of a1, while still yielding
values within the same order of magnitude as the loss function in eq. 5.5.
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Figure 5.14: The fit values of a; along with the corresponding minimum values
of the loss function, fi,s. These values are shown both for the actual RMS value
used, and for the RMS value or higher. Parameters: total time — 5 - 10%, initial
state = A.

Implementation

The optimizer algorithm used was the forest_minimize tree-based regressor
from the SCIKIT-OPTIMIZE Python library. The model minimizes a value by
evaluating the parameter that yielded the next lowest fit value up until the
current iteration. For each proposed value of aq, 100 evaluations were done for
each of the two values of cenH size, including 10 initial, random evaluations.
The search range for the value of o was set to [0.01,0.2], based on our knowledge
of the behavior of the polymer from earlier results. Finally, optimization was
done for the RMS values in the range of [2.0,4.1]. (For a visualization of the
procedure, see Appendix D).

Results and discussion

The results from the optimization can be seen in figure 5.14. We first note
that the values of a; resulting from the optimization all lie close to the value of
a1 =~ 0.06. This value is within the same regime as the value used for generating
most results in this thesis, namely oy = 0.07 (see figure 5.5). A slight possible
trend towards higher values can be observed with higher RMS values. As seen
in figure 5.13, the S state takes relatively long to spread at high RMS values,
so higher fit values for a; could be an indication that in this regime, a higher
probability of the S state spreading is preferred. On the other hand, it is too
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early to conclude that this could be the case, due to insufficient data, and
possibly noise from the simulations.

Generally, we observe the trend that the minimum values of the loss function
are stably low for RMS values of 2.0-2.5, all values lying around 0. For higher
values, the values begin to fluctuate, in addition to trending upwards. The
fluctuation could indicate that the optimization functions did not fully converge
during the simulations - running more simulations might have reduced this noise.
However, the upward trend tells us that there might be a lower limit as to how
much pressure has to be implemented for the model to be able to represent the
real data, as we saw in section 5.4.2, and more specifically in figure 5.13. Here, a
pressure corresponding to an initial RMS value of 2.5 seems to be necessary for
convergence to be achieved, and a lower loss value is never observed for higher
RMS values. This adds further support for the argument that pressure is a
necessary component in this 3D polymer model, and possibly that there exists
a definable limit as to how much of an effect is required.



6 Conclusion

In this study, it was investigated whether nucleosome dynamics from a 0D
model (see chapter 3) could be coupled with 3D polymer dynamics to yield a
model for heterochromatin establishment on a DNA chain (chapter 4). The
ability of the model to produce a system with one or more of the essential fea-
tures of an epigenetic switch was gauged (section 5.3). Furthermore, the effects
from adding a pressure potential to the Brownian dynamics were investigated
(section 5.4).

6.1 Epigenetic switching

The model was found to be suitable for modelling an epigenetic switch. Both
bistability and hysteresis were observed in simulations, with high stability and
system memory for both system states (section 5.3.1). Switches back and forth
between the system states were not observed, possibly due to low noise, but was
not considered crucial to the overall result, as ensuring state stability and system
memory was prioritized. Epigenetic memory was observed by introducing cell
division events (section 5.3.2). Finally heterochromatin establishment with sub-
sequent epigenetic switching were observed throughout. The switches occurred
stochastically, and within relatively short time intervals (section 5.3.3). Addi-
tionally, it was possible to model the nucleation at the cenH region, and to find
a parameter regime where this event biased the system towards a monostable S-
state system, representing heterochromatin establishment, and subsequent gene
silencing.

6.2 The effects of external pressure

Furthermore, it can be concluded that the introduction of a pressure potential
was crucial in the model presented in this study. This is based on evidence
from several of the simulations performed here. S-state spreading happened
only gradually, and mostly via nearest-neighbor interactions for low pressure
values, whereas stochastic, sudden switches were observed with significant pres-
sure (section 5.4.1). A clear difference in the number of ‘global’ interactions was
also observed, where the pressure appeared to ensure that monomers far apart
on the chain were able to interact with a much higher frequency. This find-
ing was supported by the differences in the number of isolated S-state patches,
where higher pressure values yielded more patches, and by differences in the
switching times, which were significantly shorter with higher pressure, in line
with real data (section 5.4.1). In the comparison with the study by Nickels et
al. [20], a qualitative match between the model data and the data from the
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study, i.e. exponentially decaying behavior for establishment times, along with
a connection between mean heterochromatin establishment times and system
size, could only be achieved when pressure was implemented (section 5.4.2).
Furthermore, the quantitative comparisons via parameter optimization yielded
the lowest errors for higher pressure values (section 5.4.3). All of these findings
support the argument for the use of a pressure potential in this model.



7 Outlook

There is a wealth of possibilities for further improvements and developments
of the model presented in this thesis. First it is prudent to look at what the
model was not able to accomplish. Looking at the three-dimensional structures
emerging from the simulations (figures 5.3 and 5.4), we see a plethora of mi-
crostructures for both RMS values, including loops and coils. However, a zigzag
pattern at the lowest level of organization was not observed (see section 2.2), so
this could be a starting point in working towards a model which is better able
to represent real three-dimensional heterochromatic structures. On the other
hand, the observed structures indicate that it is possible to produce 3D struc-
tures at higher levels of organization than the zigzag structure. This could also
be an interesting point of departure for further investigations.

Furthermore, the model was not able to mimic the behavior of AK mutants,
in that switches back and forth between system states were not observed (section
2.2.2). This points to a mismatch between recruited and noisy nucleosome
conversion rates, something which could easily be investigated, although there
obviously is a trade-off between inducing system state switches and maintaining
system state stability. In general, knowledge on the relationship between the
dynamic time scale and the time scale for nucleosome conversions should be
implemented to get realistic system dynamics.

Lastly, the incorporation of further biological features is another low-hanging
fruit, and some can be implemented relatively easily in our model. For exam-
ple, the implementation of inert borders in the genetic region to maintain hete-
rochromatic areas within the region could be an interesting next step in future
work.
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A Derivation of the expression for
the numerical Euler iteration of
the non-linear Langevin equation

In the following we will show the derivation [33] for eq. 4.1. Let X(t) be the

N x 3 monomer position matrix, where X;(¢) is the position of the i’th monomer
at time ¢. Then, by the over-damped Langevin equation:

d

DXi1) =~V U (X (1)) + Rald), (A1)
where U is the aggregate potential (which depends on the total position matrix),
and R;(t) is the random Gaussian noise on the #’th monomer at time ¢. This
equation can be integrated from ¢ to At as:

At g At At
/t ap X == | inj(t/)Udt’—l-/t Ryj(¢)dt, (A.2)

where X;; is a component of the position of the ¢’th monomer. The LHS can
be expanded as:

At
d

The first term on the RHS requires a bit more work. Expanding around At, we
get:

At
1d

VXij(t/)Udt/ = VXi], (t/)UAt + §EVX” (t/)UAt + ...

' (A.4)

1
~ VXi], (t/)UAt + B [VX”. (t/)U]/AXij (t)At

Now for the second term on the RHS of eq. A.2:

/At Ri;(t)dt' = AW;;(t) (A.5)

This is a stochastic integral, as R;; is random Guassian noise, with the following
properties: (R;;(t)) = 0, and (Rix(t)R;i(t')) = 25(t — t')0;;0x1, where 6(t) is
the Dirac delta function. By the central limit theorem [34], the sum S of n
independent variables becomes Gaussian as n — oo, as long as the mean p and
variance V' of the distribution(s) these variables are taken from is/are defined.

o4
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In addition, (S) = >, ux and V(S) = >, of. This means that AW;;(¢) is also
a Gaussian variable, and its properties can be derived from what we know about
Rij:

At
(AWy;(t)) = /t (R (t"))dt" =0, (A.6)

and:

At At
@AW = ([ Ryt / Riy(t")dt")
t
At At’

dt// dt/// t//)R'L] (t///)>

dt//

/A /A/
[of

dt///25 " ///)

= 2/ dt’ = 2At
t

Using these properties, we can construct the probability distribution for AW (¢):

P(AW;(t)) = (A.8)

1 [—Awfj]
ex
AT At Y,
Since AW;;(t)? is O(At), then O(AX;;(t)) = O(VAt). Now, putting everything
together, and neglecting all terms higher than O(At), eq. A.2 can be written
out as:
Xi(t+ At) = X;(t) — Vx, ) U(X(1)) At + AW,(1), (A.9)

which is the final result.



B Maximum likelihood estimation

k sampled values
N¢im — k non-sampled values

p(t)

Figure B.1: Sampling from an exponential distribution, using a simulation
time cutoff, t;,.x. The values in green are the actual sampled values, while the
red values are hypothetical values that are never sampled because of the cutoff
time.

In the following we will see how to obtain an estimate of the parameter 7
using simulations with a cutoff time. The decay times of a polymer is assumed
to be distributed according to an exponential distribution, which can be seen in
figure B.1. The distribution has the following expression:

p(t) = Le t/m (B.1)

p

where 7 is the characteristic decay time for a polymer with a given set of param-
eters. Simulations are stopped at the cutoff-time t,,,,, so only values below this
value can be sampled. Let the set of sampled values be given as {t;|1 < i < k},
and the total number of simulations as Ng,. In total, k values of ¢ will be at
or below tyax. Using mazimum likelihood estimation, the following expression
is obtained:
. Nsim
L(T) = H le=. e (B.2)

=1 k+

—

o6
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Expanding and setting the derivative of the natural logarithm of eq. B.2 to 0,
we get:

k o Nem
RIS IO
1 k+1
. (B.3)
H l Ngim —k)tmax
We then take the logarithm of the above:
k
InL(r) =Y (7 — L) — Peim—Hlmax (B.4)
Next, we set the derivative to 0:
9 k
S L(r) = Y (— 1+ fy) 4 Bemopllos — g, (B.5)
and solve for the estimate of 7:
7= — Dtmax (B.6)

This is the main result, which gives us an estimation for the parameter 7. The
second derivative can be used to find the error:

-1

—1 k
Var(7) = [; ——InL(r )] l Z Y — B 4 O Naim — k) g (B.7)

The estimator is biased for small values of Ngj,. This can be seen by calcu-
lating the average of the computed estimators:

Zt Neim (1) = Dtmax (B.8)

Here the first term is the expectation value of the values t; < t;,.x. This can be
found analytically by integrating the (normalized) probability distribution over
the interval [0, tmax]:

k tmax ¢ . ¢
1 _ max .\ _1¢ —t o max

The second term of eq. B.8 requires a bit more work. First, the expectation of

% needs to be found, using the distribution for k. For a given simulation, k is
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- Analytical estimate
2.25 A — = True value

2001 f=————m=====mwwwee—

1.75
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Nsim

Figure B.2: The average estimate for 7 becomes better with a higher number
of simulatons. This example is shown assuming a true value of 7 = 2.

the number of data points that fall below the cutoff, while the rest fall above.
k is thus binomially distributed, according to:

Pk) = (N;;m)pm _p)Namh (B.10)

—lmax

where the probability parameter p =1 —e 7 . Using this, we can compute
the expectation of %:
Nsim
() =D 1P(k)
k=1
Nai
s N o (B.11)
= %( . )pk(l —p) Nt
k=1
= Namp(1 = p)™*=7" - 3F5(1,1,1 — Nejm3 2,2; -25)

» 4 p—1
where 3F5 is the generalized hypergeometric function. Combining the results
from equations B.8-B.11, we get:

. 1 .
== [ﬁ = NZup(1 =)Mo=t 3 Fa(1,1,1 = Nom; 2,25 527) + 1] frna

(B.12)
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Figure B.3: Average values of estimates and errors based on 150 runs for each
value of Ngp,.
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This function can be seen in figure B.2, and shows that the average estimate of
7 becomes more and more accurate with a higher number of simulations. By
running some simulations, this could be tested empirically. For different values
of Ngm, the estimates of 7 and its error were generated, taking the averages
of 150 independent runs (see figure B.3). The estimates and errors were also
corrected using the following constructed function:

NT
= B.13
T N — 7 - exp[—tmax /7] ( )

As can be seen in the figure, however, the difference between the biased, raw
estimate and the values from the constructed function vanish for high simula-
tion numbers. Using a sufficient number of simulations, the bias can thus be
neglected.



C Implementation of the algorithm
for selecting interaction pairs for
the S state monomers

import numpy as np
from numba import njit

@njit
def get_two_interaction_mask(norms_all, state_two_interaction,
i_idx, j_idx, N_ALLOWED_INTERACTIONS=2):

# Total number of monomers
N = len(norms_all)

# Shows which monomers interact with which
two_interaction_mask = np.zeros(norms_all.shape, dtype=np.bool_)

# Sort distances

norms_all_flattened = norms_all.flatten()

# The indices that sort norms_all_flattened
sorted_indices = np.argsort(norms_all_flattened)
# The indices that sort norms_all

i_idx = i_idx.flatten() [sorted_indices]

j_idx = j_idx.flatten() [sorted_indices]

# Counts no. of interactions per monomer
n_interactions = np.zeros(N, dtype=np.uint8)
# For stopping criterion

has_counted = np.zeros(N, dtype=np.uint8)
total_2_interactions = 0

# Loop over combinations of indices
for k in range(len(i_idx)):

i = i_idx[k]

j = j_idx[k]

# Checks if both monomers are of the same
# (interacting) state
two_interaction = (state_two_interaction[i]
and state_two_interactionl[j])

# Only S states can interact
if not two_interaction:
continue

# If the monomers are the same

# or nearest neighbors
if i == j or i == j+1 or i == j-1:
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continue

# If there already exists an interaction

# between the two monomers

if two_interaction_mask[i,j] and two_interaction_mask([j,i]:
continue

# Two-interaction state monomers can only interact with
# max. 2 other monomers
if (n_interactions[i] >= N_ALLOWED_INTERACTIONS
or n_interactions[j] >= N_ALLOWED_INTERACTIONS):
continue

# Create interaction
two_interaction_mask[i, j] =1

two_interaction_mask[j, i] = 1
n_interactions[i] += 1
n_interactions[j] += 1
# For stopping criterion
if (not has_counted[i]
and n_interactions[i] == N_ALLOWED_INTERACTIONS):
total_2_interactions += 1
has_counted[i] = True
if (not has_counted[j]
and n_interactions[j] == N_ALLOWED_INTERACTIONS):
total_2_interactions += 1
has_counted[j] = True
if total_2_interactions >= N - 1:
break

return two_interaction_mask



D Optimization process visualiza-

tion
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Figure D.1: Examples of the fitting procedure from the optimization of the
parameter «1. The red dots represent the proposed values of a1, and the green
area with the dotted green line shows the fitting landscape, with loss values and
their uncertainty indicated.
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