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Abstract

This thesis aims to find high energy electrons in data from
the ATLAS Detector in CERN using machine learning mod-
els based on boosted decision trees. The main challenge in
data is labeling the data correctly. With labels made by a
model trained with isolation variables on simulated data from
W → eν , and predictions in W → eν data from ATLAS
by a model trained with particle identification variables, re-
sults showed good separation, but were ambiguous due to a
discrepancy in ATLAS Likelihood predictions and model pre-
dictions. Trying the same settings in Z → ee data from the
ATLAS detector, showed no discrepancy between ATLAS Like-
lihood and model predictions. Using particle identification
variables in label-making and isolation variables for training
with data from W → eν , showed good separation and no dis-
crepancy between model predictions and ATLAS Likelihood.
Linear decorrelation was tried but showed ambiguous results.
Evaluation of models using the Z-peaks showed, that models
trained on simulated data outperform models trained on data
from ATLAS detector, but all models improve over ATLAS
Likelihood Loose workingpoint.
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B A C K G R O U N D

This project looks at data from the ATLAS detector at the
Large Hadron Collider (LHC) in Cern. It’s objective is to test
the efficiency of the Machine Learning (ML) algorithm called
Boosted Decision Trees (BDT) compared to the efficiency of
the ATLAS Likelihood (LH) at electrons with energy higher
than 80 GeV.
Electrons play a central role in the ATLAS physics program.
Since there are no electrons inside protons, the emergence of
an electron with high transverse energy signifies that some-
thing interesting has happened, which involves new and
heavy particles (such as e.g. a Higgs particle) which plays
the main role in the ATLAS physics program. Furthermore, in
searches for new particles, high energy electrons are also very
important, for example in the Z′ → e+e− search [5].
Electrons produce a distinct signal in material, and the ATLAS
detector is in many respects designed to identify electrons.
And the higher the energy, the more distinct the signal be-
comes. [4]
However, producing an algorithm for selecting high energy
electrons with very high efficiency and hardly any background
turns out to be hard for several reasons:

• There are very few high energy electrons in the ATLAS
data. Above the Z → ee peak, the spectrum falls very
rapidly, and thus there is not much data to use for tun-
ing the simulation to match this data.

• Even with a source of high energy electrons in real data,
the challenge is, that the signal efficiencies and back-
ground rejections wanted are high, and this is hard to
“prove”, given already low statistics.

• At high energies, there are almost no electrons from the
Z-peak to measure performance on or to make labels
from.

5



1.1 the standard model and high energy electrons 6

This thesis use a mix of simulated data (MC) and data to gain
experience with algorithmic performance. It uses isolation
(ISO) as an orthogonal way of identifying electrons. The chal-
lenge lies in making the ML-models based on particle iden-
tifaction (PID) and ISO uncorrelated, and this has been at-
tempted. The (small) Z → ee peak has been used as a cross
check of performance.

The thesis is divided into two parts:

• A back ground chapter with theory

• Two results chapters with discussions of results for simu-
lated data and real collider data.

This thesis will mainly focus on the machine learning part.
It is unknown whether the successful machine learning ( ML)
models that we use in this group at the Niels Bohr Institute Note: With ” ML

models” or
sometimes just
model, it refers to a
ML algorithm
trained on a specific
set of variables

are succesful at higher energies than 80 GeV. The Machine
learning models from earlier work was not trained on specifi-
cally high energy electrons, but the models in this project will
only be trained on data with energy higher than 80 GeV.

1.1 the standard model and high energy electrons

The Standard Model (SM) is the current best picture, physi-
cists can give, of the fundamental rules of physics that govern
how matter behave. In the SM there are fundamental sub-
atomic particles that all other particles and thereby matter
consists of. They have been experimentally verified to a large
precision. [1]
Among the next frontiers of high energy physics is new the-
ories that are set to fix weaknesses of the SM. These theories
predict new particles like the heavy Z’ which decays to two
leptons. An overview of the different new search projects and
the particles they look for are shown in fig. 3. Many of them
include high energy electrons.
Electrons are very important in experimental high energy
physics because the are easy to detect. An overview of all the
important particles cross-sections that have been measured at
the LHC is shown in figure . Except for the proton-proton and
jets, all of the particles can convert or decay to electrons.
In many searches high energy electrons are important. And
this project seeks to find out how good the current best meth-
ods in machine learning are to find high energy electrons.
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Figure 1: Fundamental particles in the Standard Model

Figure 2: Overview of cross-section measurements. Except for the Jets and
proton-proton they all include possible decays to electrons
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Figure 3: Exotic searches that include the possibility of new particles.
Many of them include high energy electrons. The yellow bars show the
energy range in which the models are excluded at 95% confidence level.
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1.2 electrons and photons in the ATLAS physics pro-
gramme

One of the main goals of the LHC was to search for the Higgs
boson (from now on referred to as the Higgs). In 2012 the
Higgs was discovered [2][3] from the final states

• H→ZZ*→ 4l

• H→ γγ

• H→WW*→lνlν

Asterisk (*) means virtual particle and ν is a neutrino. The
neutrino is not possible to detect in the ATLAS detector, but
is assumed to be the missing transverse energy (Emiss

T ), which
is the energy in-balance that isn’t accounted for in the recon-
struction of events.
The mass of the Higgs was found to be approximately 125
GeV. Now that the Higgs has been discovered, the process of
making the measurement more accurate and searching for it
at higher energies is going on and is what this project seeks to
contribute to.

1.3 lhc and the atlas detector

Figure 4: The Large Hadron Collider [28]
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Physicists smash particles into each other to see what comes
out. The Large Hadron Collider (LHC) in Cern, Switzerland,
was built to do exactly this. The collider is a complex of wires
and magnets build to accelerate protons close to the speed of
light. To detect information 4 detectors has been set up. They
are named ATLAS, Alice, CMS and LHCb. This project is part
of the experiment that goes on in the ATLAS detector.

Figure 5: The ATLAS detector [28]

The ATLAS (A Toroidal LHC ApparatuS) detector is the largest
of the detectors in the LHC. It is nominally forward-backward
symmetric [9]. Inside collides bunches of up to 1011 protons
(p) 40 mio. times pr. second.
To describe the detector some coordinates are defined:

• The z direction is the beam direction and the xy plane is
transverse to the beam.

• x is vertical and y is horizontal.

• φ is the azimuthal angle and is measured around the
beam-axis (z).

• θ is the polar angle away from the beam-axis. The (pseudo)
rapidity (η) is defined as η = −ln tan(θ/2) [9] and is
used in-stead of θ. One of the advantages is that differ-
ences in rapidity is Lorentz invariant for boosted parti-
cles.
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• R is the radius with center at the beampipe

Figure 6:
Pseudo-
rapid-
ity

The four major parts of the ATLAS detector are the
Inner Detector (ID), the Calorimeter, the Muon Spec-
trometer and the Magnet System. [7] The section most
relevant to this thesis, is the Calorimeter, more specif-
ically the Electromagnetic Calorimeter (ECAL), and
this is where I will go into more depth than other
parts of the detector.

1.3.1 The Inner Detector

Figure 7: Overview of the Inner Detector [9]

The ID consists of 3 sub-detectors: The Pixel layers,
the Semiconductor Tracker (SCT) and the Transition
Radiation Tracker (TRT).
It provides pattern recognition and momentum measurements
for charged tracks for a given pT over a threshold of nomi-
nally 0.5 GeV. It also provides electron identification for par-
ticles with energy < 150 GeV and |η| < 2.0. It is contained
within an solenoid and a magnetic field of 2T.
The high resolution pattern recognition is at inner radii achieved
using discrete space points from silicon pixel layers and stereo
silicon microstrip layers in the SCT. At larger radii the TRT
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Detector Pixel SCT TRT
Total number of channels 80×106

6×106
0.35×106

Total area or vol 1.7m2
60m2

12m3

Resolution 14× 115µm2 17µm2 accuracy 0.17mm precision

Table 1: The values are for all modules of SCT, Pixel and TRT detectors in
the ATLAS detector. Source [8]

comprises of many layers of gaseous straw tubes. These tubes
make it possible to have continous tracking of particles to
enhance pattern recognition and improve the momentum reso-
lution for |η| < 2.0 and electron identification complementary
to the calorimeter over a wide range of energies. [9]
There are 4 pixel layers. The one closest to the beam-pipe is
called the Insertable B-Layer (IBL). It was inserted in 2013/14

to improve the robustness and performance of the tracking
system [13].

Figure 8: Drawing showing the path a 10 GeV particle traverses in the
barrel part of the ID[9]
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Figure 9: ATLAS calorimeters [9]

1.3.2 Calorimetry

Calorimeters are blocks of instrumented material. When par-
ticles enter, they are fully absorbed and their energy trans-
formed into a measurable quantity. The absorption results in
the particle turning into a shower of secondary particles with
progressively smaller energy. Sampling calorimeters consist of
alternating layers of an absorber, a dense material used to stop
the energy of the incident particle, and an active medium that
provides the detectable signal.
Calorimeters have the advantage compared to magnetic spec-
trometers that the relative energy resolution improves with
1/
√

E. It can also distinguish between different particles and
provide fast signals that are easy to process and interpret for
the trigger system. [12]

The Electromagnetic calorimeter
The ECAL consists of sampling calorimeters of lead and liquid
argon (LAr). It is divided into a barrel part (|η| < 1.475) end
two endcap components (1.375| < |η| < 3.2). The barrel part
of the ECAL is divided at z=0 into two separate calorimeters 4

mm apart.



1.3 lhc and the atlas detector 14

Figure 10: ECAL barrel module[9]

It leads to cracks when the lead and the LAr gap layers are
perpendicular to the particle direction. This is avoided with
accordion geometry of the absorber and the electrodes. See
figure 10 [11]. The electrodes that collect the signal from the
absorbers are placed as seen in Fig. 11. The ECAL is symmet-
ric in φ. A module and its cells in the ECAL looks like in Fig
10 and it has 3 layers and a presampler. The presampler is a
thin LAr layer with no absorbing material, whose purpose is
to measure the amount of energy that is lost in the material
before the calorimeter [23]. The first layer has a fine segmen-
tation in η, the second layer is where most of the energy is
deposited, and the third and last layer is to detect particles
that isn’t depleted in the ECAL but continues through it. The
granularity and the η coverage of the modules in the ECAL
can be seen in table 2. [9]
Each cell in the ECAL measure signal size and thus energy,
and through these the cluster can be defined and the energy
measured.
For electrons with energy higher than 10 MeV the main source
of energy loss is bremstrahlung. When electrons and photons
interact with material, they produce secondary particles which
are either photons or electron and positron pairs from pairpro-
duction. The new particles will again turn in to other particles
with the same process and create a shower of particles with
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progessively lower energy, until the energy reaches a thresh-
old. [12]
π0 particles are plentiful. They can decay to two photons and
leave a trace in the ECAL and be a source of background. This
is dealt with by noticing that π0 doesn’t leave a track and
combined with the detection of two photons in the first layer
of the ECAL, they can be identified as π0.

Figure 11: Electrode structure of the ATLAS electromagnetic calorimeter
[12]

The Hadronic calorimeters (HCAL)
The most abundant particle species created in a hadron col-
lision are pions. They will typically only deposit a fraction
of their energy in the ECAL. What is needed, is much more
material to stop the hadrons. This is some of the reasons for
having the HCAL.[24] The HCAL are the tile calorimeter (Tile-
Cal), the LAr hadronic endcap calorimeter (HEC) and the LAr
forward calorimeter (FCal).
The TileCal consists of scintillator tiles and the absorber medium
is steel. The light reemmited by the scintillating medium
is collected at the edge of each tile. The tilecal is placed di-
rectly outside the ECAL envelope. It’s barrel covers the re-
gion |η| < 1.0, and its two extended barrels covers the region
0.8 < |η| < 1.7. It is a sampling calorimeter with steel as its
absorber and scintilating tiles as the active material.
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Layer Granularity ∆η × ∆φ |η| coverage

ECAL Barrel:
Presampler 0.025× 0.1 |η| < 1.52
Layer 1 0.025/8× 0.1 |η| < 1.40

0.025× 0.025 1.40 < |η| < 1.475
Layer 2 0.025× 0.025 |η| < 1.40

0.075× 0.025 1.40 < |η| < 1.475
Layer 3 0.050× 0.025 |η| < 1.35

ECAL Endcap:
Presampler 0.025× 0.1 1.5 < |η| < 1.8
Layer 1 0.050× 0.1 1.375 < |η| < 1.425

0.025× 0.1 1.425 < |η| < 1.5
0.025/8× 0.1 1.5 < |η| < 1.8
0.025/6× 0.1 1.8 < |η| < 2.0
0.025/4× 0.1 2.0 < |η| < 2.4
0.025× 0.1 2.4 < |η| < 2.5
0.1× 0.1 2.5 < |η| < 3.2

Layer 2 0.050× 0.025 1.375 < |η| < 1.425
0.025× 0.025 1.425 < |η| < 2.5
0.1× 0.1 2.5 < |η| < 3.2

Layer 3 0.050× 0.025 1.5 < |η| < 2.5

Table 2: η coverage and granularity of the ECAL layers
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For electron particle identification purposes it can be useful
that there should be little to no energy in the HCAL to ex-
clude the possibility of the particle being an electron.

1.3.3 Other Systems

The following two systems are not so relevant for the work
done on this project, and is therefore only mentioned shortly
here.

The Muon System
A muon is the only charged particle that can penetrate all the
calorimeter material. It only leaves a minimum of ionizing sig-
nal, due to its lack of strong interactions and relatively large
mass.[24]
Muons leave a track in the ID and 1-3 GeV in the calorimeters
and are subsequently detected again in the muon system.
Detection of muons is based on magnetic deflection of tracks
in large superconducting air-core toroid magnets, instru-
mented with separate trigger and high-precision tracking
chambers. [9]

Figure 12: Overview of the Muon System in the ATLAS detector. Picture
source [9]
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The Magnet system
The magnet system is essential to measure momentum and
the tracks of particles. The main sections are the Central
Solenoid Magnet, the Barrel Toroid and End-cap Toroids. The
central solenoid encapsulates the ID and makes momentum
measurement possible for charged particles that aren’t muons.
[9] The toroids are used for for muon detection.

1.3.4 The trigger system

The trigger system has tree levels: Level-1 (L1), Level-2 (L2)
and the eventfilter. The eventfilter together with the L2 trigger
is called the High Level Trigger (HLT) and is software based.
L1 is based in custom made electronics and performs the first
selection based on information from the calorimeters and the
muon detectors and defines a region of interest (RoI) in η and
φ coordinates. The proton-proton interaction rate is about
1 GHz (Average 25 protons in bunch with a 40 MHz bunch-
collision rate) at the design luminosity of 1034cm−2s−1. After
L1 the rate is reduced to 75 kHz.
The L2 makes further selection of events based on mainly the
RoI from L1 and thereby reduces the rate of accepted events.
The eventfilter considers the full event and uses offline proce-
dures to make selections and reduces the event rate to 1000

Hz. [9]

1.4 electron reconstruction

Incoming particles usually deposit their energy in many calorime-
ter cells. Clustering algorithms are designed to group these
cells and to sum the total deposited energy within each cluster.
These energies are then calibrated to account for the energy
deposited outside the cluster and in dead material. The cali-
bration depends on the incoming particle type.
Two types of clustering algorithms are used in the ATLAS
detector:
A sliding window algorithm that sums up a cell in a fixed rect-
angular window. The position of the window is adjusted so
that its contained transverse energy (ET) is a local maximum.
The second is a topological cell clustering algorithm.
Three components are essential to reconstruct electrons in the
precision region |η| < 2.47:
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• Localized clusters of energy deposits in the ECAL

• Charged particle tracks in the ID

• close matching between the tracks and the clusters in
η × φ space.

Seed-cluster reconstruction
The η × φ space in the ECAL is divided into a grid of 200× 256
elements (called towers) of size ∆η × ∆φ = 0.025 × 0.025
corresponding to the granularity of the second layer of the
ECAL. The sliding-window algorithm with a window size of
3× 7 cells in layer 2 is then used on the tower grid to search for
seed-clusters. It seeds electron candidates if the summed ET is
higher than 2.5 GeV. [15]
The clustering algorithm follows cell signal-significance pat-
terns from electromagnetic and hadronic showers, and re-
moves cells that doesn’t have a significant amount of signal.
This reduces noise and results in a topological isolated cluster
of cells that have position and energy information [20].

Track reconstruction
Charged particle reconstruction in the Pixel and SCT is based
on hits in the ID tracking layers. From these hits clusters are
being build. These clusters are being used to make 3 dimen-
sional measurements referred to as spacepoints. In the Pixel
detector one cluster is enough to make a spacepoint, but in
the SCT clusters in both stereo views of a striplayer are re-
quired to make a spacepoint. Track seeds are formed from sets
of three spacepoints in the silicon detector layers.
Track recognition then continues in three steps: Pattern recog-
nition, algorithm for ambiguity resolution, and an TRT exten-
sion algorithm.
The pattern recognition uses the pion hypothesis for the model
of energy-loss of the particle with the detector material.Track
candidates with pT > 400MeV are fit using the Global χ2

trackfitter. If the fit fails, an electron hypothesis are used for a
fit. A subsequent fitting procedure, Gaussian Sum Filter (GSF),
is applied to clusters of raw measurements. [15]

Electron-candidate reconstruction
The final electron reconstruction procedure is the matching
of the GSF-track candidate to the candidate calorimeter seed
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cluster, and the determination of the final cluster size. Re-
quirements to trackmatching in φ is −0.10 < ∆φ < 0.05 or
−0.10 < ∆φres < 0.05, where ∆φ and ∆φres are calculated as
−q × (φcluster − φtrack), where q is the charge sign of the par-
ticle, and for ∆φres the momentum of the track is rescaled to
the energy of the cluster. If several tracks fulfill the criteria,
the track chosen is selected by an algorithm. A candidate then
with at least 4 hits in the silicon layers and no association with
a vertex from a photon conversion is considered an electron
candidate. [15]

Electron-isolation
At LHC experiments it is a challenge to differentiate between
signal processes such as production of electrons, muons and
photons from background processes like semileptonic de-
cays of heavy quarks, hadrons misidentified as leptons and
photons, and photons converting into electron-positron pairs.
The signal processes are characteristic by little activity in the
calorimeter and in the ID in an area of ∆η × ∆φ surrounding
the candidate object. Therefore variables are constructed to
quantify the amount of activity in vicinity of the candidate
referred to as isolation variables.

1.4.1 The Atlas Likelihood

ATLAS currently uses a likelihood (LH) based method to dis-
criminate between reconstructed electron candidates (signal)
and background (not signal). The likelihood method is based
on a range of variables from the detector, such as calorimeter
shower shapes, bremstrahlung effects, etc. An overview over
the variables are shown in table 5. The LH uses the signal and
background probability density functions (PDF) of the dis-
criminating variables to calculate the probability of whether a
particle is signal or background. The signal and background
probabilities are then combined into an discriminant dL:

dL =
LS

LS + LB
, LS(B)(~x) =

n

∏
i=1

Ps(b),i(xi)

where ~x is the vector of discriminating variable values and
Ps,i(xi) is the value of the signal probability density function
of the ith variable evaluated at xi.
Some variables are not based on PDF’s but are based on rect-
angular cuts. Those are included in table 5.



1.4 electron reconstruction 21

Since the particle shower shapes in the detector depends on
how much material the particle passes and how much energy
the particle have, the likelihood is binned in η and ET. The bin
values for ET are shown in table 3 and for η in table 4.
Three levels of operating points are provided for the ID like-
lihood algorithm. Loose, Medium and Tight. They express
different levels of background rejection and the level increase
from Loose to Medium to Tight. They are subsets of each
other, meaning all electrons selected by Tight are also selected
by Medium, and all electrons selected by Medium are also
selected by Loose.

LHValue variable
In the data from ATLAS there is also a variable called LH-
Value. It is a Likelihood calculation only based on the pdf’s in
the ATLAS likelihood variables in table 5, not using the cuts.

Bin edges in ET [GeV]
7 10 15 20 25 30 35 40 45 50 60 80 150

Table 3: Note that for the high ET optimisation of the Tight operat-
ing point, the higher bins have been modified to be 80-125-200 GeV.
Source: [16]

Bin edges in η

-2.47 -2.37 -2.01 -1.81 -1.52 -1.37 -1.15 -0.8 -0.6 -0.1 0 0.1 0.6 0.8 1.15 1.37 1.52 1.81 2.01 2.37 2.47

Table 4: Source: [16]
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Type Description Name Usage

Hadronic leak-
age

Ratio of ET in the first layer of the hadronic calorimeter to ET of the EM cluster Rhad1 (used over
the range |η| < 0.8 or |η| > 1.37)

Rhad1 LH

Ratio of ET in the hadronic calorimeter to ET of the EM cluster (used over the range 0.8 < |η| <
1.37)

Rhad LH

Back layer of
EM calorimeter

Ratio of the energy in the back layer to the total energy in the EM accordion calorimeter. This vari-
able is only used below 100 GeV because it is known to be inefficient at high energies.

f3 LH

Middle layer of
EM calorimeter

Lateral shower width,
√
(ΣEiη

2
i )/(ΣEi)− ((ΣEiηi)/(ΣEi))2 , where Ei is the energy and ηi is the

pseudorapidity of cell i and the sum is calculated within a window of 3 × 5 cells
wη2 LH

Ratio of the energy in 3× 3 cells over the energy in 3× 7 cells centered at the electron cluster posi-
tion

Rφ LH

Ratio of the energy in 3× 7 cells over the energy in 7× 7 cells centered at the electron cluster posi-
tion

Rη LH

Back layer of
EM calorimeter

Shower width,
√
(ΣEi(i− imax)2)/(ΣEi) , where i runs over all strips in a window of ∆η × ∆φ ≈

0.0625× 0.2 , corresponding typically to 20 strips in η, and imax is the index of the highest-energy
strip

wstot CUT

Ratio of the energy difference between the largest and second largest energy deposits in the cluster
over the sum of these energies

Eratio LH

Ratio of the energy in the strip layer to the total energy in the EM accordion calorimeter f1 LH

Track conditions Number of hits in the innermost pixel layer; discriminates against photon conversions ηBlayer CUT

Number of hits in the pixel detector ηpixel CUT

Number of total hits in the pixel and SCT detectors ηSi CUT

Transverse impact parameter with respect to the beam-line d0 LH

Significance of transverse impact parameter defined as the ratio of d0 and its uncertainty d0/σd0 LH

Momentum lost by the track between the perigee and the last measurement point divided by the
original momentum

∆p/p LH

TRT Likelihood probability based on transition radiation in the TRT eProbabilityHT LH

Track-cluster
matching

∆η between the cluster position in the strip layer and the extrapolated track ∆η1 LH

∆φ between the cluster position in the middle layer and the track extrapolated from the perigee ∆φ2 LH

Defined as ∆φ2, but the track momentum is rescaled to the cluster energy before extrapolating the
track from the perigee to the middle layer of the calorimeter

∆φres LH

Ratio of the cluster energy to the track momentum E/p CUT

Table 5: Variables used for the ATLAS likelihood. Source: [16]

1.5 machine learning

Machine learning ( ML) is a statistical optimization method
where the ’machine’ or the model for data manipulation seeks
to keep on updating itself and guess the right answer to a
question and ’learn’ from previous guesses and thereby be-
coming better and improve it-self. The question can be a bi-
nary yes or no question, is this an electron or not? It can also
be multi classification, is this an electron a muon or a photon?
Or it can be a value question, how much is the energy of this
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electron? The latter is called regression. In this project I will
only focus on binary classification.
Neural networks are a very hot subject due to their versatility,
flexibility and success with regards to images. But they are
slow to train and decision trees offer high performance, faster
training and have already proved to be efficient with ATLAS
data. Therefore decision trees are chosen for this project.

1.5.1 ML Datasets

The first thing you encounter in ML is the dataset and it con-
sists of different variables (features in ML lingo). The vari-
able values represent datapoints and can have a label for each
point. This is called supervised learning. Some ML models
can try to classify without labels, this is called unsupervised
learning and will not be used here.
Data is separated into training, validation and test data. This
is done to make the model more robust, so it doesn’t predict
on data that it already has used to learn from.
Validation data is used in the training process to evaluate
when training is satisfied. If the predictions on the validation
data doesn’t improve for a chosen number of rounds, training
is terminated and the model that has performed the best is
chosen. This is called early stopping. Test data represents new
unseen data and is used to evaluate the final model.

1.5.2 Decision trees

Figure 13: Example of decision tree. Source: [30]
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A decision tree looks graphically like figure 13. To explain
what is going on, some ML terminology is required. The ques-
tions (conditions) in bold in figure 13 are called nodes. After
each node the tree splits into branches. If the node doesn’t
split into new branches, the node is called a leaf.

1.5.3 Hyperparameters

How to build the tree is decided by its parameters. For a ML
algorithm they are called hyperparameters (HPs). Examples of
HPs are:

• Number of leaves: The max number of leaves in a tree.
This hyper parameter is important for avoiding overfit-
ting.

• Learning rate: This constant is multiplied the calculated
loss and thereby decides how big steps the algorith takes
to correct its errors. Low learning rate makes a slower
and more thorough ’learning’, but also makes the tree
prone to overfitting.

• Max depth: Determines the maximum depth of a tree.
Low values can lead to less overfitting.

• Feature fraction: Randomly select a subset of features on
each iteration (tree)

• Max bin: Max number of bins that feature values will be
bucketed in.

• Minimum of data in a leaf: Minimal number of data in
one leaf.

• Bagging fraction: Divide the data into subsets and build
a tree for each subset of data and use the average of all
predictions for each tree.

Boosting type can be gradient boosting or random forest [22].
In this project I worked with gradient boosting.
To find the optimal value for HPs usually a search is done
using an algorithm which trains on the different values.
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1.5.4 Gradient boosting

Boosting is a technique where an initial tree will be build to
predict a result. Then a prediction on a dataset will be done.
Each prediction of a datapoint will be given a weight. If the
prediction is correct the weight will be given a small or no
change to the weight, and a if the prediction is wrong the
change will be large. A new tree will be built based on the
new weights and different cuts will be made at each node.
The method used to update the weights is called Gradient De-
scent. It is based on the gradient of the error function. It takes
a step for every tree calculated and the hope is to find a min-
imum so the error in the multidimensional space is minimal.
[21] [22]

1.5.5 Loss function

An essential part of ML models is the loss function. It is used
to calculate the error or the loss. The guess that the ML model
produce for each datapoint is between 0 and 1. The loss func-
tion used in this project is called cross-entropy:

L = − 1
N

N

∑
i=1

(yi log(pi) + (1− yi) log(1− pi))

yi is the label, pi is the ML prediction and N is the number of
datapoints. It punishes wrong and rewards precise classifica-
tion.

Figure 14: Cross entropy of possible ML values to signal (y=1) and back-
ground (y=0)
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1.5.6 Predictions

At the end of the training, many decision trees will be built.
To evaluate the ML model a new data set will be used for
testing. Each point will be evaluated and be given a score
(referred to in this project as predictions) between 0 and 1. Typ-
ically and in this project the closer to 1, the higher the chance
of being signal.

1.5.7 Evaluation (ROC and AUC)

Evaluation of how good a ML model is can be found using
the AUC score. The evaluation consists of choosing a predic-
tion score threshold value (called cutting) and see how much
signal and background is above the threshold and below given
the labels of the predictions. True positives (TP) are then all
scores above the threshold correctly labeled as signal. False
positives (FP) are all scores above the threshold labeled as
background. True negatives (TN) are below and labeled as
background and false negatives (FN) are below and labeled as
signal. The true positive rate (TPR) also called signal efficiency
and the true negative rate (TNR) also called background effi-
ciency are calculated as follows

TPR =
TP

TP + FN
and TNR =

TN
TN + FP

The ROC (Receiver Operator Curve) is a 2 dimensinal plot of
TNR on the x-axis and TPR on the y-axis for many different
cuts in the 0 to 1 range of the predictions. Each cut is a differ-
ent point on the curve. A single value for the ability of the ML
model to separate signal and background is the AUC (Area
Under the Curve). This is the integrated area under the ROC
curve. The closer to 1 the better the separation between signal
and background.

1.5.8 LightGBM

LightGBM is the algorithm for the gradient boosted decision
trees that is used in this project. It differs from many other
algorithms by having leafwise growth in stead of level-wise
(see figure 15a and 15b)
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(a) (b)

Figure 15: LighGBM compared to other tree algorithms
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T R A I N I N G A N D R E S U LT S I N S I M U L AT E D
D ATA

2.1 introduction

In real data (RD) from collisions detected in the ATLAS de-
tector, there is no labels. This makes for a more challenging
case (see chap. 3). But in data generated by Monte Carlo-
simulation ( MC) ”life is easy”, meaning it is simulated data
and everything is known. All particles and where they have
decayed from are known with certainty. Therefore labels were
made with the demands that it had to be an electron and it
had originated from a W according to the ATLAS variables
particleType and particleOrigin [17].

2.2 selection of data

To test a ML algorithm you need data, and the more the better.
The W is the largest source of isolated electrons due to its
larger cross-section, σW ≈ 3σZ. Also the branching ratio of
W → eν is 10%, compared to Z → ee that only has a branching
ratio of 3%. The problem in earlier theses from this group,
that used Z → ee, was lack of data for electrons with high
energy. Therefore samples with W was attempted.

2.2.1 Train, validation and test sets

In ML it is important to keep the training data and the test-
ing data separate and the data was separated into 3 different
sets: training (80%), validation (10%) and testing (10%). The
validation-set is used during hyperparameter optimization
and training. During training ’early stopping’ is used to make
sure that the loss function keeps improving in both training
data and validation data. When the loss diverge, training is

28
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stopped. Then the trained model is applied to testdata for
evaluation.

2.3 mc data selection

The MC data is generated by ATLAS’s EGamma group and
further filtered to fit this project.

2.3.1 MC Signal

The Signal comes from EGAM5 files, which contain electrons
from W particles via the process W → eν (W to electron and
positron pair and a neutrino). The selections to Egam 5 files
are (Source [19]):

1. a trigger-based selection: OR of a long list of EGamma
triggers. Link to triggers are in the appendix

2. An offline-based selection:

• MET LocHadTopo > 25 GeV

• A central electron, tight or LLHtight, pT > 24.5GeV

• mT > 40 GeV

3. A mixed trigger (see appendix)+offline selection:

• one central electron with pT > 14.5 GeV

2.3.2 MC Background

Background comes from a JET-sample from EGAM7 deriva-
tions. EGAM7 file derivations are specifically to generate fake
electrons. They are described as [19]

• An event that passes at least one HLT e/gamma sup-
porting trigger (e.g. etcut or lhvloose trigger) and there
is at least one central reconstructed electron with pT >
4.5GeV

2.3.3 Energy distribution of data

The number of datapoints as a function of energy can be seen
in table 6
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GeV # Bkg # Sig
80<ET <100 3.661.171 41.284

100<ET <150 5.492.722 24.824

150<ET <200 2.229.102 4.564

200<ET 953.462 2.023

Total 12.336.457 72.695

Table 6: Signal and background in MC as a function of ET.

2.4 variables

2.5 iso vs pid

The reason for choosing isolation (ISO) and particle identifi-
cation (PID) variables is to make labels in RD. Training in RD
works if the labels for signal and background are unbiased.
Therefore two different sets of variables are used for label-
making and training. An ML-model trained on ISO in MC for
labels, and an ML-model on PID variables for training and
evaluation and vice versa.

2.5.1 Isolation

The isolation variables used to train the MC model are listed
in table 7, and their distributions are shown in figure 17, and
briefly described below.
The cone-variables are all based on the sum of energy in a
cone around the particle in the (η, φ) plane. Fx. cone20 repre-
sents a cone with radius ∆R =

√
∆η2 + ∆φ2 < 0.20.

When collissions take place, the protons within the two beams
in the ATLAS detector are grouped in bunches. An event is
the data resulting from a particular bunch-crossing.
Pile-up is defined as the average number of particle interac-
tions per bunch-crossing. This is represented by the variable
averageInteractionsPerCrossing, also abbrevated 〈µ〉.
A primary vertex comes from the collision of two protons.
In a typical collission event, several primary vertices are pro-
duced. The number of reconstructed vertices are represented
by the variable Nvtxreco.
et is ET of the reconstructed particle.
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ptcone20 Sum of ET or pt in a cone around the particle
ptcone30
ptcone40
etcone20
etcone30
etcone40
NvtxReco The number of reconstructed vertices
et ET in the ECAL

averageInteractionsPerCrossing
Average number of particle interactions per bunch-
crossing

Table 7: Description of Isolation variables

2.5.2 PID

The variable descriptions for PID are summarized in table 8.
The variable distributions are in figure 8
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Rhad LH. See table 5

Reta LH. See table 5

Rhad1 LH. See table 5

deltaEta1 LH. See table 5

Eratio LH. See table 5

Rphi LH. See table 5

weta2 LH. See table 5

dPOverP LH. See table 5

f 3 LH. See table 5

d0 LH. See table 5

f 1 LH. See table 5

NvtxReco Number of reconstructed vertices for the event
deltaPhiRescaled2 Difference in φ between track and cluster

TRTPID
Likelihood probability based on transition radiation in
the TRT

et The energy as reconstructed by the calorimeter
eta The pseudo rapidity of the particle
wtots1 Total width in em sampling 1 in 20 strips
numberO f SCTHits Number of hits in the SCT
numberO f InnermostPixelHits Number of hits in the inner most pixel layer
EptRatio ET/PT
numberO f PixelHits Number of hits in the pixel layers

nTracks
The number of tracks associated with the electron clus-
ter

E7x11Lr3
Energy deposited in 7× 11 cells centered around the
cluster in layer 3

core57cellsEnergyCorrection
An energy correction, calculated from the 5× 7 cells in
the calorimeter, centered around the cluster

Table 8: PID variables
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Figure 16: The distributions of the isolation variables

Figure 17
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Figure 18: The distributions of the PID variables, with weights from
reweighing. The rest of the 24 variables can be found in the Appendix
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2.6 reweighing

〈µ〉, ET and η are all important variables for electron identifi-
cation. But when training models on MC and then using them
to predict on data, some modifications are necessary. Reweigh-
ing background to have the same distributions in signal in
these three variables are done to mitigate the importance of
these variables in the decision making of the decision tree.

〈µ〉can randomly vary for different periods of time. This is not
optimal for ML algorithms to train on MC and predict on RD,
because the variable can have random changes which affects
the prediction.
ET is an important variable, but it is not good if the signal is
distributed so that some energy ranges are dominant com-
pared to others. The whole purpose of this thesis was from
the beginning to test the ML algorithms on different energy
ranges.
η is the angle along the beam. There are parts of the detector
where the signal is weak, due to fx. physical placements of
the elements in the detector. This can affect the signal/back-
ground distribution in the η variable. In MC, where the parti-
cle is known, this is not a problem, but it affects data.
Of the three variables ET is the most important. The others
are minor corrections. Reweighing is done using a python
package called GBReweighter (Gradient Boost Reweighter),
which uses a decision tree to calculate the weights. Plot of the
reweighing variables is shown in 19.
The optimal value of the hyperparameters for GBRewighter
are in table 9. These were optimal for both MC and RD.

Name Value Description
n estimators 300 Number of trees
learning rate 0.1 Learning rate
max depth 20 Maximal depth of trees
max leaf nodes 60 Max number of nodes that ends with a leaf
min samples leaf 100 Minimal number of events in the leaf.

Table 9: Hyper parameter values for GBRewighter
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Figure 19: Histograms of signal, background and weighted background of
〈µ〉, ET and η. The weight distribution is in the bottom right

2.7 training

Two models were trained: One model based on isolation vari-
ables MC(ISO)W and a second model trained on PID variables
MC(PID)W . The W in the subscript refers to it is trained on
data from W → eν .
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Tuned LGBM HPs

MC(ISO)W
learning rate: 0.10

num leaves : 5

MC(PID)W
learning rate: 0.05

num leaves: 9

Table 10: Overview of the different ML-models trained in MC and used on
RD. The column ”Tuned LGBM HPs” are the LightGBM hyper parameters
that wasn’t the default, but found through hyper parameter tuning.

2.7.1 Hyper parameter optimization

The gradient boosted decision trees (GBDT) in LightGBM
can take many parameters and the value of these can have
significant importance for the performance of a decision tree.
The list of parameters LightGBM use and the default values is
listed in the appendix in table 17. A grid search of parameters
can be slow. Therefore to find the optimal values a gaussian
process approach was used.
The models hyper parameters, that wasn’t set as default, can
be seen in table 10. Especially num leaves was important for
avoiding overfitting.

2.7.2 Predictions

The predictions for MC(ISO)W and MC(PID)W is in picture
20a and picture 20b. Predictions from LightGbM are between
0 and 1 but are transformed to logits through the formula:

logits = log
((

1
x

)
− 1
)

(1)

Advantages of logit transforming the scores are:

• More gaussian distributions, which makes correlation
more obvious in plots

• Avoids numerical problems close to 0 and 1

Looking at the predictions, the MC(PID)W model has more
round peaks. Both MC(PID)W and MC(ISO)W separate back-
ground from signal very well.
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(a) (b) 1b

2.8 roc curve

From the predictions a calculation of a ROC curve is done
in figure 21. It shows that MC(PID)W beats MC(ISO)W and
the LH-points by a significant margin. MC(ISO)W also beats
the Loose working point, but is still not as good as the other
LH-points and MC(PID)W , but with a low AUC it is still quite
good at separating signal and background.

2.8.1 Correlations

If MC(PID)W and MC(ISO)W-predictions are correlated in
MCbkg(ISO)W vs. MCbkg(PID)W and MCsig(ISO)W vs. MCbkg(PID)W
(bkg: background, sig: signal) they are not optimal to predict
labels with in RD. If labels aren’t independent to a large de-
gree with the training model, the features in new data will be
biased by the correlated sections.

There are several ways to measure correlations. Pearsons lin-
ear correlation coefficient is one way. Another is a relative new
method called distance correlation, which was introduced in
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Figure 21: ROC curve of ATLAS Likelihood value, pid (MC(PID)W), iso
(MC(ISO)W), and the Tight, Medium and Loose ATLAS likelihood points

2005 by Gábor J. Székely [18]. An advantage with distance
correlation compared to Pearson is, it can measure non-linear
correlations.
The signal and background correlation between MC(ISO)W
and MC(PID)W is shown in table 11.
The 2D histogram of the MC(PID)W- and MC(ISO)W predic-
tions are shown in figure 22. The plot shows good separa-
tion between signal and background for both MC(PID)W and

Background Signal
Pearson corr. koeff. 0.42 0.05

Distance corr. koeff. 0.46 0.15

Table 11: Correlation coefficients between predictions by MC(PID)W
and MC(ISO)W
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MC(ISO)W . With this good separation, decorrelation might
not be necessary.

Figure 22: 2d histogram of logit-transformed predictions from MC(PID)W
and MC(ISO)W
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R E A L D ATA

3.1 introduction

With ML-models trained in MC it is time to use them to make
labels in RD.
Two sets of RD was used: Data from W → eν and Z →
ee decay. For W-data, two ML-models where produced. One
trained on PID-variables and one based on ISO variables.
They are given the subscript W for W-data: RD(PID)W , RD(ISO)W .
For Z-data only PID was trained on (RD(PID)Z). Data selec-
tion in RD was meant to be based on data from W → eν decay
only, because it wasn’t possible to find other data. But late in
the process, RD from Z → ee was discovered. Because of time
constraints Z-data (Data from Z → ee decay) is only used
to train a model and compare it to models trained in W-data
(Data from W → eν decay) and evaluate based on Z-mass se-
lection. And because only W-data was available in MC, labels
were made with ML-models from W-data.

3.2 data selection

3.2.1 W data

Like in MC the data is preselected by the ATLAS EGamma
group and more specifically from Egam5 selections. The selec-
tions are therefore exactly the same as in section 2.3.1.

The total number of datapoints are 239.438. The distribution
of data in tranverse energy can be seen in table 12

41
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GeV # Bkg # Sig
80<ET <100 89.922 20.248

100<ET <150 76.315 13.352

150<ET <200 21.263 2.482

200<ET 14.911 945

Total 202.411 37.027

Table 12: Signal and background in W RD as a function of ET. Pre-
dictions by MC(PID)W

GeV # Bkg # Sig
80<ET <100 85.393 24.777

100<ET <150 73.341 16.326

150<ET <200 20.638 3.107

200<ET 14.526 1.330

Total 193.898 45.540

Table 13: Signal and background in W RD as a function of ET. Pre-
dictions by MC(ISO)W

3.2.2 Z data

The point of getting Z-data was to evaluate ML-models through
the Z-boson mass peak at 91 GeV.

The number of datapoints are: 2.511.148.

The data is from Egam1 selections. Electrons in Egam1 datasets
are chosen based on one of the following criteria:

• 2 electrons, one tight or LH tight,pT > 24.5 GeV, one
medium or LH medium, pT > 19.5 GeV

• medium or LH medium, pT > 19.5 GeV

• one medium or LH medium, pT > 24.5 GeV, one with
pT > 6.5 GeV

• one electron, medium or LH medium, pT > 24.5 GeV,
and one photon with ET > 14.5 GeV

and that the invariant mass of at least one pair must be greater
than 50 GeV. Like with other data only electrons with 80 GeV
are chosen. Further selections was done the same way as with
data from W → eν .
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3.3 making labels in rd

3.3.1 Problems with Tag-and-Probe for W data

Figure 23: Picture of an event with illustration of Tag and Probe. Here a
Tag is an electron candidate selected with high certainty. If there is another
candidate which is isolated it is called a Probe. If the Tag and Probe system
has an invariant mass close to the Z-mass, the probe is likely an electron.
For W → eν it was tried to have the tag as the Emiss

T and the probe as
the electron and then compare it to the transverse W-mass, but with not
accurate results. The advantage of Tag and Probe is that it is a relatively
unbiased method of selecting electron labels for machine learning.

Tag-and-Probe is a method to select electrons in RD from the
LHC. If two electron candidates in an event (collision) have
the combined energy of the Z-mass or W-mass it is likely an
electron for Z → ee or W → eν . For each event in the ATLAS
detector a search will be done for an electron candidate in that
event, which is called a Tag. If there is a Tag-electron, a search
for another electron with another set of requirements is done,
and if the search is successful that electron will be called a
Probe.
Tag-and-Probe has proved efficient in Z-data. It has not been
proven efficient with W → eν data, but was tried in this
project with W → eν .
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The method was to find an electron and positron in one event,
and require one of them to be a Tag. For another electron in
the event to be a Probe the total transverse energy of the Tag
and the Probe and the Emiss

T (missing transverse energy of an
event) had to be close to the transverse mass of the W.
Unfortunately the mass distribution did not show a satisfying
peak in the W mass, and therefore the Tag-and-Probe method
was abandoned. The reason for this could be low efficiency
of the Emiss

T trigger in ATLAS (see figure 24). The Emiss
T trigger

reaches an efficiency of 88% at 150 GeV and most data was
below 150 GeV. Another reason could be that the trigger is
executed by other events than Emiss

T .
Tag-and-Probe wasn’t used with Z-data, because for high en-
ergy electrons above 80 GeV from Z → ee are very scarce.

Figure 24: The ATLAS Emiss
T trigger efficiency as a function of energy.

3.4 initial labels in w - data

Because labels with Tag-and-Probe wasn’t possible, initial
labels in RD was made with predictions from ML-models
trained on MC. For training on PID variables, MC(ISO)W was
used to make labels and for training on ISO-variables in RD,
MC(PID)W was used to predict labels. This was done because
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is is important the training model has no or little preexisting
information about the data it is training on. Otherwise it will
learn less about the new data and become a weaker learner.
The initial predictions of MC(ISO)W on RD can be seen in
figure 25 and for MC(PID)W in figure 26.

Figure 25: Initial predictions in W RD by MC(ISO)W . The red line is the
initial guess, and separates predicted signal from predicted background.
Initially everything less than the lines x-position is assumed back-
ground and everything bigger is assumed signal.

Figure 26: Initial predictions in W RD by MC(PID)W . The red line is the
initial guess, and separates predicted signal from predicted background.

What is worth noting in figure 25 and 26 of MC(PID)W and
MC(ISO)W predictions on RD is that there are peaks at each
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side of the spectrum, which likely represents signal and back-
ground like in MC. The MC(ISO)W-predictions are more
’bumpy’, while the MC(PID)W-predictions are more smooth.
The cuts between signal and background include a lot of data
outside the peaks, when everything before the cut is signal
and after the cut is background. It was tried to make different
cuts like the ones seen in figure 31 and 32 before reweighing,
but did not result in much improvement.
In figure 27 a drawing of how the initial labels are made is
shown. The arrows represent ML-models trained on the vari-
ables they originate from. So a ML-model trained on ISO-
variables is used for making labels (Truth) for PID-variables in
RD, and vice versa.

Figure 27: The factory line of making labels in RD. In MC the labels
(Truth) is known, in RD the labels come from predictions by MC trained
ML models. The arrow represent ML models predicting truth labels.

3.5 initial labels in z - data

Labels and predictions in Z-data is made in a similar way. The
plots can be seen in the appendix.
Z-data had a lot more data points and a very high signal per-
centage.
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GeV # Bkg # Sig
80<ET <100 299.260 877.533

100<ET <150 305.866 628.356

150<ET <200 118.522 128.308

200<ET 103.807 49.496

Total 827.455 1.683.693

Table 14: Signal and background for Z RD as a function of ET. La-
bels are made from a separation value in logit transformed predic-
tions by MC(ISO)W model

3.6 rd variable distributions

The variable distributions for both Z- and W-data are in the
appendix .4.

3.7 reweighing in rd

Reweighing for RD for data with labels from MC(ISO)W is
shown in figure 28. For Z-data an error was made, that re-
sulted in Z not being reweighted in 〈µ〉. This was discovered
late. Because Z-results were good, it was tested whether it had
an impact on W-data if 〈µ〉 was not reweighted. This did not
yield any significant difference in AUC.
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Figure 28: W → eν .Plots of ET, η, 〈µ〉 and weights. The weights are
calculated to make background look like signal. Data is RD with labels
from MC(ISO)W
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Figure 29: W → eν . Plots of ET, η, 〈µ〉 and weights. The weights are
calculated to make background look like signal. Data is RD with labels
from MC(PID)W
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Figure 30: Z → ee .Plots of ET, η, 〈µ〉 and weights. The weights are
calculated to make background look like signal. Data is RD with labels
from MC(ISO)W
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3.8 decorrelation

Since MC(PID)W predictions (abbrevated pid in the following
equations) and MC(ISO)W ML-model predictions (abb. iso)
are correlated as seen in table 11, decorrelation will make the
labels better to train on. There is a mathematical framework
for decorrelating two variables linearly:

Defining

x =
pid
σpid

and y =
iso
σiso

Then

σ(x) = σ(y) = 1

and

cov(x, y) = corr(x, y)

Where cov is covariance, corr is pearson correlation (ρ) and σ

is the variance. This means the variable

y′ = y− corr(x, y) · x (2)

is linearly decorrelated from x.

Proof
The proof of this can be made by calculating the covariance or
correlation between y′ and x and see that it is zero:

cov(y′, x) = E[(x− µx)(y′ − µy′)]

where E[] means expectation value and µ is the mean. Insert-
ing y′ = y− ρx,y · x:

cov(y′, x) = E[(x− µx)(y− ρx,y · x− E[y− ρx,y · x])]

This expression can be grouped together as:

cov(y′, x) = cov(x, y)− ρx,y · (E[x2]−E[x]2) = cov(x, y)− ρx,y ·σ2
x

Since σx = 1 and cov(x, y) = ρx,y it is zero
.
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Final decorrelated variable
Inserting values for x and y into eq. 2 we get:

iso′bkg/sig =
isobkg/sig

σiso
− ρpid,iso ·

pidbkg/sig

σpid

which is decorrelated from x =
pidbkg/sig

σpid
and pidbkg/sig because

multiplying ρ(iso′bkg/sig,
pidbkg/sig

σpid
) with σpid is still zero. Multi-

plying one of the variables in ρ with a constant is the same as
multiplying ρ with a constant

k · ρ(a, b) = ρ(a, k · b)

and therefore we can get a pretty final expression which is
decorrelated from pid:

iso′bkg/sig = isobkg/sig −
σiso

σpid
· ρpid,iso · pidbkg/sig (3)

Here σpid and σiso should be for background or signal, but
writing σpid,bkg/sig was deemed to be too long.

Decorrelating in practice
In practice there can be a large discrepancy in correlation val-
ues in signal and correlation values in background. When
decorrelating signal and background individually, the linear
’movement’ in equation 3 can move the signal into the back-
ground or vice versa. Therefore a more wholesome approach
was done. Instead of decorrelating signal and background
separately. Signal and background was decorrelated together
with ρ and σ in equation 3 replaced by a sigmoid function of
the total MC(ISO)W score.

f (x, isotot) = xsig +
xbkg + xsig

1 + e(isotot+µ)/σ
(4)

In equation 4 µ and σ should be the average and standard de-
viation of the total iso-scores. But a lower pearson correlation
coefficient was found by making a gridsearch over the mu-σ
space. x can be σ and ρ in equation 3

3.9 cleaning data

The peaks at large prediction score values are assumed to
represent signal, and the peaks at low values are assumed
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to represent background. In data the separation is far from
as crystal clear as in MC. There are a lot ’dirty’ events in RD,
where maybe something happened in the detector that cor-
rupted the output. That means the data has to be cleaned.
This is done by removing the dirty data through cuts. The
cuts then determine signal and background.
You might argue that reweighing should be done after clean-
ing. It was tested and there was not a significant drop in AUC-
scores if cleaning was done after reweighing. It also was easier
and faster.

Figure 31: The logit transformed scores of predictions on RD from W →
eν . The predictions are made with MC(ISO)W
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Figure 32: The logit transformed scores of predictions on RD. The predic-
tions are made with MC(PID)W . After cleaning only the red (background)
and green (signal) colored section is trained on and the middle is removed.

3.10 roc curves in rd

Like in MC, two ML-models where trained: RD(PID)W and
RD(ISO)W . RD(PID)W is trained on labels by MC(ISO)W , and
RD(ISO)W is trained on labels by MC(PID)W .
For Z-data a model ( RD(PID)Z) was trained on data with
labels by MC(ISO)W

RD(PID)W
The ROC curve for a boosted decision tree trained on the set
of cleaned PID variables can be seen in figure 33. With a AUC
score of 0.9998 the MC(PID)W model is very good at separat-
ing signal from background. What is not so good is that the
ATLAS Likelihood points for the data are not so. The ATLAS
LH-points should lie above the ATLAS LH control variable

Tuned LGBM HPs

RD(ISO)W
learning rate: 0.100

num leaves : 25

RD(PID)W
learning rate: 0.002

num leaves: 2

RD(PID)Z
learning rate: 0.035

num leaves: 5

Table 15: Trained ML-models in RD.
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(blue curve), since the points are based on the same variables
but with additional variables added to the LH-points. I have
tried testing different model improvements, but not found an
explanation for this. When looking at the same plot in Z-data,
figure 35 (labels also made with MC(ISO)W and trained on
PID variables), there the LH-points behaves like they should,
which makes this look strange.
One possible explanation could be that the cuts in the ATLAS
LH points worsen the performance in W-data at high energies.
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Figure 33: RD W → eν. ROC curve of RD(PID)W model, ATLAS Like-
lihood variable and Tight, Medium and Loose ATLAS likelihood points.
Labels are made with MC(ISO)W-model

RD(ISO)W
The ROC curve can be seen in figure 34. Compare the LH-
points to figure 33 and here the they look more as one would
expect. This indicates that when making labels a ML-model
based on PID-variables in MC then it agrees with the LH-
points, which is based on a lot of the same variables.
The ATLAS ISO curve is from ptcone40/ET which is the cur-
rent method for separating electrons from background in the
ATLAS detector.

RD(PID)Z
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Figure 34: RD W → eν. ROC curve of RD(ISO)W , ATLAS Likelihood
variable and Tight, Medium and Loose ATLAS Likelihood points. Labels
are made with MC(PID)W-model

Data from Z → ee and labels made with an MC(ISO)W-model
(trained on W → eν ) is seen in figure 35. What we see is
RD(PID)Z outperforming the ATLAS LH variables. With an
AUC of 0.9991, RD(PID)Z does a well job of separating sig-
nal from background. The LH-points here does more as one
would have expected.
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Figure 35: RD Z → ee. ROC curve of RD(PID)Z model, ATLAS Like-
lihood variable and Tight, Medium and Loose ATLAS likelihood points.
Labels are made with MC(ISO)W-model

3.11 decorrelation results

Previous results (AUC and ROC-curves) were not decorre-
lated. Decorrelation have been successful before by Benjamin
Henckel on Z-data, where it was used to decorrelate labels
made with ML-models but also requiring electrons coming
from a Z-boson (Z-mass peak). No Z-mass peak or W-mass
peak was possible so labels were only made with MC trained
ML-models. In general decorrelation was not successful in
this project. It was probably due to the fact that pearson cor-
relation scores was high. The best result I got was with la-
bels made by a different MC-model, which will be called
MC(ISO)W75. The 75 comes from it was trained on 7.5 mio.
events. This did worse in not decorrelated data, maybe be-
cause of the high signal/background ratio.

3.11.1 Data from W → eν

Labels for data from W → eν were made with MC(ISO)W75
model and then decorrelated: The steps taken are:
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1. Train MC(ISO)W75 ML-models in MC (Done in the MC
chapter)

2. Make initial labels in RD using the MC(ISO)W75 predic-
tions choosing signal/background cut.

3. Use a MC(PID)W75 model to make predictions in same
data

4. Decorrelate initial predictions with the decorrelation
framework described in section 3.8.

5. Calculate weights

6. Clean data

7. Train an ML-model based on PID-variables

8. Evaluate using ROC curves, AUC, ATLAS LH-points.

The next couple of subsections will describe it in more detail.

Decorrelated predictions for W → eν

Separating signal and background at a logit score of 4.8 for
MC(ISO)W75 predictions gives a pearson correlation coeffcient
for signal of 0.18, and background of 0.82. But after decorre-
lation, the correlation is -0.003 for background and -0.007 for
signal with mu = 10 and σ = 2.5 in equation 4. But looking
at the distance correlation coefficients in table 11, they are not
completely decorrelated. According to distance correlation
background is still heavily correlated and signal to a lesser
degree.

Before decorrelation:
Background Signal

Pearson corr. koeff. 0.82 0.18

Distance corr. koeff. 0.80 0.18

After decorrelation:
Background Signal

Pearson corr. koeff. -0.003 -0.007

Distance corr. koeff. 0.48 0.18

Table 16: Correlation coefficients between predictions by MC(ISO)W
and MC(PID)W in RD

The decorrelated MC(ISO)W75-predictions in figure 36, show
that heavily correlated signal and background points have
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been moved by decorrelation. They should be compared to fig-
ure 41 (in the Appendix) of predictions before they are decor-
related to see what decorrelating does to the distributions.
They still have some of the same ”bumps” in the histogram,
but they have been smoothed out.

Figure 36: Histogram of decorrelated MC(ISO)W75 prediction scores after
logit transformation. The signal and background that is left after cleaning
of the data is marked with green for signal and red for background

2D Plots Of MC(PID)W75 And Decorrelated MC(ISO)W75 Predic-
tions
The 2D plot of the decorrelated MC(ISO)W75 and MC(PID)W75
(not decorrelated) predictions in figure 37 look very differ-
ent from the 2d plot of the MC(ISO)W and MC(PID)W before
MC(ISO)W75 is decorrelated. The change to the background
looks like it gets a strong linear correlation, even though
it should be linearly decorrelated. But it shows the weak-
nesses of the linear decorrelation method. RD has a lot of
dirty events. What could go wrong is that both models don’t
know how to deal with these dirty events and the predictions
becomes correlated. This leads to a high shift in many of the
data points and background and signal get mixed up.
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Figure 37: 2D histograms of MC(PID)W75 and MC(ISO)W75 predictions
on RD. To the left, MC(ISO)W75 has been decorrelated. To the right is
before decorrelation

AUC and ROC-curve
The AUC has dropped to 0.9987 compared to not decorrelated
AUC. It is expected that the AUC would drop since decorre-
lation takes away information. But the LH-points have a little
higher value than before. PID still beats the LH-points and the
LH-variable.

3.11.2 Decorrelation In Data From Z → ee

RD(PID)Z trained on decorrelated labels from MC(ISO)W75,
did not get a good AUC. Despite creating linearly uncorre-
lated MC(ISO)W75-model scores for labels, AUC fell to 0.98

and the Z-peak from this model was also low. I will therefore
not spend much time on this.
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Figure 38: ROC-curve from PID model trained on MC(ISO)W75 labels
linearly decorrelated from MC(PID)W75 predictions

3.12 evaluation with z-peaks

One of the advantages of using data from Z → ee is that you
can evaluate ML-models on how good they are to predict elec-
trons from the size of the peak around the Z-mass (91 GeV).
This is a great advantage because, requiring the combined
mass of two electrons to be in the vicinity of the mass of the
Z-boson is an unbiased way of making labels in RD. But with
high energy electrons above 80 GeV, there is very few that
combine to a total mass of the Z-boson. But there are a few,
and therefore this gives an extra way to evaluate the efficiency
of different models.
The function used to fit the peak was a straight line (to repre-
sent background) added a gaussian multiplied by the error-
function [27] to give it a bit of a tail:

l(a, b) = ax + b (5)
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where erfc is given by (1 - the errorfunction):

er f c(x) = 1− er f (x) (7)

er f (x) =
2√
π

∫ ∞

x
e−t2

dt (8)

The total fitting function is given by:

F(a, b, h, σ, τ, µ) = l(a, b) + f (h, σ, τ, µ) (9)

This function (9) gives a rough fit to the peak and results in
a rough estimate. Therefore results are only indicative and
not perfectly matching data. From figure 39 it shows that
the best model to predict from electrons Z → ee is surpris-
ingly MC(ISO)W . It is marginally better than RD(PID)Z. This
suggests that correlations aren’t that important at high en-
ergy. For clarity reasons other models where not included
in the plot, they were all between the ATLAS LH Loose and
RD(PID)Z fit.
It should be noted, that there is not a lot of data. The max
peak has only 175 electrons (out of about 1 mio. individual
events).
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Figure 39: Z-mass peak for different models. The fits are fitted to the
histogram bars. Here is the MC(ISO)W predictions, RD(PID)Z predic-
tions, ATLAS Loose likelihood, and histogram of all events. RD(PID)Z and
MC(ISO)W are very close to eachother. Loose histogram is also included to
represent the other histograms. To include them all would not yield clarity.
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3.13 discussion

Ways to improve the investigation into ML-models perfor-
mance in high energy could be to change the weights in ET.
The fact that the amount of electrons with high ET drops ex-
ponentially could be mitigated by giving higher weights to
electrons with higher energy. Another way that might be pos-
sible is to create data with GANS (Generative Adverserial
Neural Networks). For decorrelation could be used Neural
networks.

3.14 conclusion

It was hard to make clear conclusions because of the large
correlation between the ISO variable- and the PID variable
based ML models. AUC might be good for a model but the
LH-points were bad. The large correlation between points
made it impossible to get good AUC scores and Z-peaks for
ML-models trained on decorrelated labels. Linear decorrela-
tion works if the data is not too correlated (maybe for ρ less
than 0.40), but with a correlation at 0.60-0.80, decorrelation
removes too much information and background and signal
gets mixed into each other.

To make labels alone with a ML-model trained on MC seems
not optimal. It is seen in the Z-mass distribution, where a MC
trained ML-model performs the best in RD. It should be noted
though that the Z-mass distributions also are low on data, and
the differences between the ML-models are small. The need
for labels made from Z or W distributions is important. This
is one of the struggles of high energy data.
There is still improvements though compared to the ATLAS
LH.



A C R O N Y M S

ATLAS A Toroidal LHC ApparatuS. 3, 5, 9, 10, 11, 12, 15, 17,
18, 20, 21, 23, 28, 29, 30, 38, 41, 43, 44, 54, 55, 56, 58, 62,
64, 66, 67, 68, 71

BDT Boosted Decision Trees. 5

HP Hyper Parameters for Machine Learning algortihms. 24,
36

ISO Variables based on isolation in the ATLAS detector. 5, 30,
41, 44, 46, 64

LH Likelihood. 5, 20, 21, 31, 38, 42, 54, 55, 58, 60, 64

LHC Large Hadron Collider. 5, 6, 9, 10, 20, 43

MC Data based on simulation using the Monte Carlo method.
5, 28, 29, 30, 35, 41, 44, 46, 52, 54, 55, 57, 64, 67, 69, 77

ML Machine Learning. 3, 5, 6, 22, 23, 24, 25, 26, 28, 30, 35, 36,
41, 44, 46, 51, 54, 55, 57, 58, 61, 64, 66, 67, 69, 79

PID Variables based on particle identification in the ATLAS
detector. 5, 30, 31, 30, 36, 41, 44, 46, 54, 55, 58, 64, 66,
69, 77, 79

RD Real Data. Data collected from collisions in the ATLAS
detector at the LHC. 28, 30, 35, 36, 38, 41, 43, 44, 45, 46,
47, 52, 53, 58, 59, 61, 64, 67, 68

65



L I S T O F F I G U R E S

Figure 1 Fundamental particles in the Standard
Model 7

Figure 2 Overview of cross-section measurements.
Except for the Jets and proton-proton they
all include possible decays to electrons 7

Figure 3 Exotic searches that include the possibility
of new particles. Many of them include
high energy electrons. The yellow bars show
the energy range in which the models are
excluded at 95% confidence level. 8

Figure 4 The Large Hadron Collider [28] 9

Figure 5 The ATLAS detector [28] 10

Figure 6 Pseudorapidity 11

Figure 7 Overview of the Inner Detector [9] 11

Figure 8 Drawing showing the path a 10 GeV parti-
cle traverses in the barrel part of the ID[9] 12

Figure 9 ATLAS calorimeters [9] 13

Figure 10 ECAL barrel module[9] 14

Figure 11 Electrode structure of the ATLAS electro-
magnetic calorimeter [12] 15

Figure 12 Overview of the Muon System in the AT-
LAS detector. Picture source [9] 17

Figure 13 Example of decision tree. Source: [30] 23

Figure 14 Cross entropy of possible ML values to sig-
nal (y=1) and background (y=0) 25

Figure 15 LighGBM compared to other tree algo-
rithms 27

Figure 16 The distributions of the isolation variables 33

Figure 17 33

Figure 18 The distributions of the PID variables,
with weights from reweighing. The rest
of the 24 variables can be found in the Ap-
pendix 34

Figure 19 Histograms of signal, background and
weighted background of 〈µ〉, ET and η.
The weight distribution is in the bottom
right 36

66



LIST OF FIGURES 67

Figure 21 ROC curve of ATLAS Likelihood value, pid
(MC(PID)W), iso (MC(ISO)W), and the
Tight, Medium and Loose ATLAS likelihood
points 39

Figure 22 2d histogram of logit-transformed predic-
tions from MC(PID)W and MC(ISO)W 40

Figure 23 Picture of an event with illustration of Tag
and Probe. Here a Tag is an electron candi-
date selected with high certainty. If there
is another candidate which is isolated it is
called a Probe. If the Tag and Probe sys-
tem has an invariant mass close to the Z-
mass, the probe is likely an electron. For
W → eν it was tried to have the tag as the
Emiss

T and the probe as the electron and then
compare it to the transverse W-mass, but
with not accurate results. The advantage of
Tag and Probe is that it is a relatively unbi-
ased method of selecting electron labels for
machine learning. 43

Figure 24 The ATLAS Emiss
T trigger efficiency as a

function of energy. 44

Figure 25 Initial predictions in W RD by MC(ISO)W .
The red line is the initial guess, and sepa-
rates predicted signal from predicted back-
ground. Initially everything less than the
lines x-position is assumed background
and everything bigger is assumed sig-
nal. 45

Figure 26 Initial predictions in W RD by MC(PID)W .
The red line is the initial guess, and sepa-
rates predicted signal from predicted back-
ground. 45

Figure 27 The factory line of making labels in RD. In
MC the labels (Truth) is known, in RD the
labels come from predictions by MC trained
ML models. The arrow represent ML models
predicting truth labels. 46

Figure 28 W → eν .Plots of ET, η, 〈µ〉 and weights.
The weights are calculated to make back-
ground look like signal. Data is RD with
labels from MC(ISO)W 48



LIST OF FIGURES 68

Figure 29 W → eν . Plots of ET, η, 〈µ〉 and weights.
The weights are calculated to make back-
ground look like signal. Data is RD with
labels from MC(PID)W 49

Figure 30 Z → ee .Plots of ET, η, 〈µ〉 and weights.
The weights are calculated to make back-
ground look like signal. Data is RD with
labels from MC(ISO)W 50

Figure 31 The logit transformed scores of predictions
on RD from W → eν . The predictions are
made with MC(ISO)W 53

Figure 32 The logit transformed scores of predictions
on RD. The predictions are made with
MC(PID)W . After cleaning only the red
(background) and green (signal) colored
section is trained on and the middle is re-
moved. 54

Figure 33 RD W → eν. ROC curve of RD(PID)W
model, ATLAS Likelihood variable and
Tight, Medium and Loose ATLAS likelihood
points. Labels are made with MC(ISO)W-
model 55

Figure 34 RD W → eν. ROC curve of RD(ISO)W ,
ATLAS Likelihood variable and Tight, Medium
and Loose ATLAS Likelihood points. Labels
are made with MC(PID)W-model 56

Figure 35 RD Z → ee. ROC curve of RD(PID)Z
model, ATLAS Likelihood variable and
Tight, Medium and Loose ATLAS likelihood
points. Labels are made with MC(ISO)W-
model 57

Figure 36 Histogram of decorrelated MC(ISO)W75
prediction scores after logit transformation.
The signal and background that is left after
cleaning of the data is marked with green for
signal and red for background 59

Figure 37 2D histograms of MC(PID)W75 and MC(ISO)W75
predictions on RD. To the left, MC(ISO)W75
has been decorrelated. To the right is before
decorrelation 60

Figure 38 ROC-curve from PID model trained on
MC(ISO)W75 labels linearly decorrelated
from MC(PID)W75 predictions 61



LIST OF FIGURES 69

Figure 39 Z-mass peak for different models. The fits
are fitted to the histogram bars. Here is
the MC(ISO)W predictions, RD(PID)Z
predictions, ATLAS Loose likelihood, and
histogram of all events. RD(PID)Z and
MC(ISO)W are very close to eachother.
Loose histogram is also included to repre-
sent the other histograms. To include them
all would not yield clarity. 63

Figure 40 Predictions from MC(ISO)W model on data
from Z → ee . The red line represents the
initial guess of what separates signal from
background 76

Figure 41 Initial predictions by MC(ISO)W75 on W-
data from RD. Used for decorrelation 77

Figure 42 PID MC Variable distributions. The last 16

of the 25 variables in PID. The other 9

are in the MC chapter 78

Figure 43 Isolation variable distributions in W-data
with labels made by MC(PID)W . They are
used to train RD(ISO)W ML-models 80

Figure 44 9 PID variable distributions from W-data
with labels made by MC(ISO)W . They are
used to train RD(PID)W ML-models 81

Figure 45 16 PID variable distributions from W-data
with labels made by MC(ISO)W . They are
used to train RD(PID)W ML-models 82

Figure 46 9 variable distributions from PID in Z-data
with labels made by MC(ISO)W . They are
9 out of 25 variables that are used to
train RD(PID)Z ML-models 83

Figure 47 16 variable distributions from PID in Z-
data with labels made by MC(ISO)W 84



B I B L I O G R A P H Y

[1] B. R. Martin Nuclear and particle physics 2009 John Wiley
and Sons Ltd
ISBN 978-0-470-74275-4 11 Mar 2021

[2] Observation of a New Particle in the Search for the Stan-
dard Model Higgs Boson with the ATLAS Detector at the
LHC 31 AUG 2012 arXiv:1207.7214v2[hep-ex] 11 Mar 2021

[3] Observation of a new boson at a mass of 125 GeV
with the CMS experiment at the LHC 28 JAN 2013

arXiv:1207.7235v2 [hep-ex] 11 Mar 2021

[4] Electron reconstruction and identification in the ATLAS
experiment using the 2015 and 2016 LHC proton–proton
collision data at

√
s = 13 TeV

arXiv:1902.04655v2 [physics.ins-det]
9 Aug 2019

[5] Search for new high-mass phenomena in the dilepton final
state using 36 fb−1 of proton–proton collision data at

√
s =

13TeV with the ATLAS detector
arXiv:1707.02424v2 [hep-ex]
15 Nov 2017

[6] Advacam Wins Tendering of CERN LHCb VELO Upgrade.
http://advacam.com/1576.html. April 18, 2018

Accessed Sep 6, 2020

[7] Detector and Technology
https://atlas.cern/discover/detector. 2020

Accessed Sep 7, 2020

[8] The Inner Detector — Atlas website
https://atlas.cern/discover/detector/inner-detector. 2020

Accessed Dec 8, 2020

[9] The atlas experiment at the cern large hadron collider.
Journal of Instrumentation. 2008

The ATLAS Collaboration et al 2008 JINST 3 S08003

70



BIBLIOGRAPHY 71

[10] Production and integration of the ATLAS Insertable B-
Layer.
Journal of Instrumentation. 2018

B. Abbott et al 2018 JINST 13 T05008

[11] ACT Lectures on Detectors - Calorimeters (2/5)
https://indico.cern.ch/event/115059/. 2011

Philippe Bloch (CERN)

[12] Calorimetry for particle physics
REVIEWS OF MODERN PHYSICS, VOLUME 75. 2003

Christian W. Fabjan and Fabiola Gianotti (CERN)

[13] Atlas Cern news
https://atlas.cern/updates/atlas-news/new-sub-detector-

atlas/. 2014

[14] The Muon System
https://atlas.cern/discover/detector/muon-spectrometer.
2020

Accessed Oct 6, 2020

[15] Electron reconstruction
Eur. Phys. J. C 79:639

https://doi.org/10.1140/epjc/s10052-019-7140-6 . 2019

Accessed Oct 9, 2020

[16] Electron efficiency measurements with the ATLAS detec-
tor using the 2015 LHC proton-proton collision data
ATLAS -CONF-2016-024 June 2016

Accessed Oct 16, 2020

[17] Link to the ATLAS definitions of truthtype (Par-
ticle type) and origin of particle (Particle Origin)
https://gitlab.cern.ch/atlas/athena/blob/master/PhysicsAnalysis/MCTruthClassifier/MCTruthClassifier/MCTruthClassifierDefs.h

[18] Wikipedia Distance correlation
https://en.wikipedia.org/wiki/Distance correlation

[19] EGAM file derivation descriptions
https://twiki.cern.ch/twiki/bin/view/AtlasProtected/EGammaxAODDerivations

.

[20] Topological cell clustering in the ATLAS calorimeters and
its performance in LHC Run 1

ATLAS Collaboration



BIBLIOGRAPHY 72

Eur. Phys. J. C (2017) 77:490 DOI 10.1140/epjc/s10052-017-
5004-5

The European Physics Journal C. 2017

Accessed Dec 7, 2020

[21] Boosting Decision Trees
Drucker, Harris and Cortes, Corinna Advances in Neural

Information Processing Systems.
vol 8, p 479-485

1995

Accessed Dec 7, 2020

[22] The Elements of Statistical Learning, Data Mining, Infer-
ence, and Prediction
Trevor Hastie, Robert Tibshirani and Jerome Friedman-
Drucker

Second Edition

Springer Series in Statistics

Springer New York (April 2017).
ISBN: 9780387848570

Accessed Dec 7, 2020

[23] Particle identification with the ATLAS electromagnetic
calorimeter.

TRDs for the Third Millenium - 3rd Workshop on Ad-
vanced Transition Radiation

Detectors for Accelerators and Space Applications, Sep 2005,

Brindisi, Italy. pp.321-325, ff10.1016/j.nima.2006.02.151ff.

ffin2p3-00105510f.

[24] Particle detectors and accelerators, Lecture notes.
Peter Hansen
Second edition. University of Copenhagen, 2015

[25] Reference to wtots1 variable description
http://cds.cern.ch/record/1115352/files/ATL-SLIDE-2008-

072.pdf

[26] LightGBM Microsoft Corporation. Revision e5c3f7e7 2021

https://lightgbm.readthedocs.io/en/latest/

[27] Exponentially modified Gaussian distribution
https://en.wikipedia.org/wiki/Exponentially modified Gaussian distribution



BIBLIOGRAPHY 73

[28] Standard-Model fundamental particles pic
https://home.cern/science/physics/standard-model. 2020

Accessed Sep 8, 2020

[29] ATLAS detector picture
https://atlas.cern/discover/detector. 2020

Accessed Sep 10, 2020

[30] Decision Tree Picture
https://towardsdatascience.com/decision-trees-in-machine-

learning-641b9c4e8052 . 2017

Accessed Oct 20, 2020

[31] Measurement of the H→ WW* Branching Ratio at 1.4 TeV
using the semileptonic final state at CLIC
A. Winter, N. Watson University of Birmingham, United
Kingdom CLICdp-Note-2016-003. 2020

Accessed Dec 12, 2020



BIBLIOGRAPHY 74

Appendix



BIBLIOGRAPHY 75

Name: Value: Name:: Value:
boosting gbdt objective binary
metric none tree learner serial
device type cpu data
valid num iterations 100

learning rate 0.1 num leaves 31

num threads 15 max depth -1
min data in lea f 20 min sum hessian in lea f 0.001

bagging f raction 1 bagging f req 0

bagging seed 3 f eature f raction 1

f eature f raction seed 2 early stopping round 0

max delta step 0 lambda l1 0

lambda l2 0 min gain to split 0

drop rate 0.1 max drop 50

skip drop 0.5 xgboost dart mode 0

uni f orm drop 0 drop seed 4

top rate 0.2 other rate 0.1
min data per group 100 max cat threshold 32

cat l2 10 cat smooth 10

max cat to onehot 4 top k 20

monotone constraints f eature contri
f orcedsplits f ilename re f it decay rate 0.9
verbosity -1 max bin 375

min data in bin 3 bin construct sample cnt 200000

histogram pool size -1 data random seed 1

output model LightGBM model.txt snapshot f req -1
input model output result LightGBM predict result.txt
initscore f ilename valid data initscores
pre partition 0 enable bundle 1

max con f lict rate 0 is enable sparse 1

sparse threshold 0.8 use missing 1

zero as missing 0 two round 0

save binary 0 enable load f rom binary f ile1
header 0 label column
weight column group column
ignore column categorical f eature
predict raw score 0 predict lea f index 0

predict contrib 0 num iteration predict -1
pred early stop 0 pred early stop f req 10

pred early stop margin 10 convert model language
convert model gbdt prediction.cpp num class 1

is unbalance 0 scale pos weight 1

sigmoid 1 boost f rom average 1

reg sqrt 0 alpha 0.9
f air c 1 poisson max delta step 0.7
tweedie variance power 1.5 max position 20

label gain metric f req 1

is provide training metric 0 eval at
num machines 1 local listen port 12400

time out 120 machine list f ilename
machines gpu plat f orm id -1
gpu device id -1 gpu use dp 0

Table 17: Default lightGBM hyper parameter values for all models
used in this project

Egam5 trigger python script link
Link to trigger list.: https://svnweb.cern.ch/trac/atlasoff/browser/

PhysicsAnalysis/DerivationFramework/DerivationFrameworkEGamma/

trunk/share/EGAM5.py#L23

HLT e60 lhloose xe60noL1||HLT e120 lhloose||HLT j80 xe80||HLT xe70
(’xe’ means MET)

https://svnweb.cern.ch/trac/atlasoff/browser/PhysicsAnalysis/DerivationFramework/DerivationFrameworkEGamma/trunk/share/EGAM5.py#L23
https://svnweb.cern.ch/trac/atlasoff/browser/PhysicsAnalysis/DerivationFramework/DerivationFrameworkEGamma/trunk/share/EGAM5.py#L23
https://svnweb.cern.ch/trac/atlasoff/browser/PhysicsAnalysis/DerivationFramework/DerivationFrameworkEGamma/trunk/share/EGAM5.py#L23
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.1 z-data initial predictions

Figure 40: Predictions from MC(ISO)W model on data from Z → ee .
The red line represents the initial guess of what separates signal from back-
ground

.2 w-data mc(iso)w75 initial predictions
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Figure 41: Initial predictions by MC(ISO)W75 on W-data from RD. Used
for decorrelation

.3 variables distribution in mc pid
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Figure 42: PID MC Variable distributions. The last 16 of the 25 vari-
ables in PID. The other 9 are in the MC chapter
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.4 variables distributions in rd

.4.1 W-data

.4.2 Z-data
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Figure 43: Isolation variable distributions in W-data with labels made by
MC(PID)W . They are used to train RD(ISO)W ML-models
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Figure 44: 9 PID variable distributions from W-data with labels made by
MC(ISO)W . They are used to train RD(PID)W ML-models
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Figure 45: 16 PID variable distributions from W-data with labels made by
MC(ISO)W . They are used to train RD(PID)W ML-models
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Figure 46: 9 variable distributions from PID in Z-data with labels made
by MC(ISO)W . They are 9 out of 25 variables that are used to train
RD(PID)Z ML-models
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Figure 47: 16 variable distributions from PID in Z-data with labels made
by MC(ISO)W
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