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Abstract
Low energy oscillation analyses at the IceCube Neutrino Observatory contend
with a substantial atmospheric muon flux background as well as large system-
atics, including optical module efficiency and several ice properties. This work
proposes the first step into using the muon background to mitigate some of
the large systematics affecting neutrino oscillation analyses. By reconstructing
a large population of stopped muons in the DeepCore sub-array we propose
evaluating and contrasting different systematic configurations of the detector
itself. Muons represent a high quality test beam for the calibration of detec-
tor performance because the variety of possible measurements and the high
statistics permit detailed consistency checks.

We use novel machine learning methods, in particular graph neural net-
works (GNNs), in order to accurately and rapidly reconstruct stopped muon
candidate events using their collected Cherenkov light in both simulation and
experimental data. The remarkable speed of the GNN (> 10, 000 events s−1)
permits the reconstruction of millions of muon events on raw IceCube (L2)
data, with only a single filter applied, for the first time. This work consciously
prepares for the future application of GNNs to a larger sample of raw IceCube
events, with potential for widespread low-level reconstruction.

Finally, the accurate reconstruction of many real muon events allows for the
comparison of data to current IceCube simulation. Here we scrutinize muon
dominated data taken from a single day of detector livetime and compare to
low-energy muon simulation (MuonGun).
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1
Introduction Particle Physics

1.1 Motivation
Neutrinos are among the most elusive particles known to exist today, accord-
ingly, the main focus of this work will be muons.

The IceCube South Pole Neutrino Observatory is one part of the consid-
erable efforts here on Earth to isolate and analyse neutrinos originating from
astrophysical sources. The challenge of neutrino detection is also their promise,
since neutrinos interact so infrequently they offer us a unique opportunity to
observe those that have travelled directly from whichever particularly violent
astrophysical events produced them. The IceCube observatory was primarily
designed to observe astrophysical neutrinos in the Antarctic ice at the South
pole, however atmospheric neutrinos constitute an irreducible background
for astrophysical neutrino searches. It is fortunate, then, that atmospheric
neutrinos provide the main signal for particle physics studies using modern
neutrino telescopes. In particular, neutrino oscillation and mass hierarchy (the
two most prominent indications of physics beyond the standard model) can
both be probed with the same instruments that were originally designed for
multimessenger astronomy.

The goals of this project are two-fold, first, to use novel machine learning
techniques, specifically graphical neural networks to process and reconstruct
IceCube physics events from the raw detector response. Secondly, to compare
and contrast real experimentally collected data and current low energy simula-
tion using a sample of stopped muons that has previously been too expensive
to accurately reconstruct.

The natural place to start, and where this chapter continues is with an
introduction to the relevant particle physics concepts. The next chapter con-
cerns the IceCube Neutrino Observatory itself, which is immediately followed
by the tangentially related chapter on machine learning. Here we discuss Ice-
Cube data for machine learning and introduce the model used in this analysis.
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The penultimate chapter details the recovered results and their potential im-
plications. Finally, a summary is given before a concluding look to the future
and potential next steps.
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1.2 The Standard Model of Particle Physics
Widely considered the crowning achievement of particle physics in the 20th

century the Standard Model (SM) is in some ways the benchmark/measure
against which modern particle physics research must compare itself.

The now infamous infrastructure contains 17 particles, shown in Figure
1.1, that are divided into two separate groups - the fermions and the bosons.
The vector (or gauge) bosons describe three of the four known forces, electro-
magnetic interactions through the photon, weak interactions via the W ± and
Z bosons and the strong force by eight types of gluon.
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Figure 1.1: The common pictorial representation of the particle content of the
Standard Model adapted from [1] with fermion masses from [2].

1.2.1 The Vector/Gauge Bosons

The vector bosons arise from the insistence that the underlying interaction,
and thus Lagrangian, must be invariant under certain local transformations
often called gauge transformations. Heuristically this means that the elements
of the transformation group transform the states and operators of a theory, in
such a way that the Lagrangian does not change [3].

The consequences of this demand are profoundly important. The notion
of invariance under such a transformation implies that physical fields can be
transformed by arbitrary amounts at each space-time point, while the laws
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of physics remain the same. In addition, if a theory is invariant under some
transformation then one obtains a conservation law for some quantity from
Noether’s theorem [4].?

For each generator of a symmetry group transformation that permits La-
grangian invariance under such a transformation there is an associated gauge
boson that acts as the force mediator.

The Electromagnetic Force A local U(1) symmetry group has just
one generator which in turn gives rise to one field whose quantum is the photon,
γ. The U(1) gauge symmetry comes from the fact that one cannot measure
the absolute phase of the wavefunction of a particle. U(1) refers to the group
of rotations around a fixed axis, also called the circle group. Hence, invariance
under U(1) transformations is the same as insisting that the calculation of a
measurable quantity must not change when the phase is changed or rotated.
Conceptually, the other force mediators described in the SM are derived in
the same way, with slightly more complex symmetry group transformations.
The protocol is simply to enforce local gauge invariance, compensate for this
with gauge field with specific gauge transformation include this gauge field in
the Lagrangian introducing force carrier interactions. Later, in Section 1.6,
we will see the role the electromagnetic force plays in the indirect detection of
neutrinos.

The Weak Force Weak interactions may be described by the SU(2)
gauge group where there exist three generators. The three generators corre-
spond to the W +, W − and Z bosons. Since these bosons have a non-zero
mass, they may only act over very short ranges and are relatively short-lived.
For weak interactions the quantities weak isospin and weak hypercharge are
analogous to electric charge in electromagnetic interactions. Particles with
weak isospin (such as the left-handed chiral fermions) may interact through
the exchange of W ± while those with weak hypercharge (all fermions except
for right-chiral neutrinos) may interact through exchange of Z bosons.In such
interactions weak isospin or weak hypercharge is conserved.

Weak interactions mediated by W ± are unique in so far as they allow the
participants to change flavour but also that charge-parity symmetry is violated.
Charge-parity symmetry implies that the laws of physics in a system should
remain the same if a particle is replaced by its anti-particle (charge symmetry)
while the spatial coordinates are simultaneously reversed, or inverted through
the origin, (parity symmetry). The weak interaction is referred to as chiral
because there is a difference in the treatment of so-called left and right chiral
particle states in interactions with W ± and Z. The chirality of a particle is a
fundamental property of a particle, whereas helicity is defined as the projection
of the particle’s spin vector onto the vector of its momentum. For massless
particles the chirality and helicity are the same, but for particles whose mass
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is non-zero the helicity becomes frame-dependent and therefore may not be
the same as chirality. This has the effect of the W ± boson only coupling to
left-handed fermions and right-handed anti-fermions (only particles with non-
zero weak isospin). The Z boson, on the other hand, will couple to both kinds
of chiral fermions but with different strengths (due to their respective weak
isospin values). Weak interactions are particularly important in the operation
of IceCube as the W and Z bosons are the only bosons that can mediate
interactions between neutrinos and other fermions (the only method by which
the neutrinos can interact). Neutrino interactions will be revisited again in
Section 1.3.

The Strong Force The conspicuously named strong force is mediated by
8 massless bosons called gluons, g in Figure 1.1. These arise as the generators
of an SU(3) symmetry group and conserve a particle quantity called color
that is only carried by all of the quarks and the gluons themselves. For this
reason, the gluons may self-interact in theoretically proposed structures such
as glueballs. The strong force coupling constant is 137 times stronger than EM
and six orders of magnitude stronger than weak interactions at short ranges
(approximately the radius of a nucleon) [5]. On an even smaller scale, the
strong force binds quarks together to form so-called colorless combinations
called hadrons. The structure of the hadrons (of which the nucleons are a
subset) has a defining role in weak neutrino-nucleon interactions, in particular
the partonic distribution functions of the quarks and gluons within.

A quark-antiquark combination, called a meson, is overall color neutral as
the antiquark’s color charge must necessarily be the anti-color of the quark
itself. Mesons are an integral part of the chain of particle interactions in the
development of air showers, which will be discussed further in Section 1.5.

The strong force displays a unique property called confinement that pre-
vents free particles with non-zero color charge from existing. If a color-
neutral pair of quarks are separated from each other, they instantaneously
drag quark/antiquark (and hence color neutral) partners from the vacuum
thus forming two new quark antiquark pairs. As their separation increases
it becomes more energetically favourable for a new quark antiquark pair to
instantaneously appear than for the quarks to separate further.

1.2.2 The Scalar Boson

The last part of the SM to gain experimental verification was the only scalar
boson, the Higgs Boson, that has zero spin and is a quanta of the Higgs field.
The massive particles in the SM all acquire their masses through interactions
with the Higgs field (except for the neutrinos) where the strength of coupling
is proportional to the particle’s mass [6, 7].
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1.2.3 The Fermions

The second half of the SM pertains to a group of particles called the fermions,
a group which contains the constituents of matter in the universe. Each of
these particles has half integer spin and all obey the Pauli exclusion principle
[8], that two identical fermions may not occupy the same quantum state in
the same system simultaneously. The collection of several fermions may form
composite particles that themselves make up everyday matter. The fermions
are split into two categories, of which both contain three generations, shown
in the first three columns in Figure 1.1. The mass spectra of the fermions
is shown in Figure 1.3 and are grouped by their generation (or family in the
figure).

Those in the first category, quarks, make up the composite particles
called hadrons and, as previously stated, are the only massive particles with
color charge and thus the only fermionic participants in strong interactions.
There are 6 quarks in the SM that are arranged in three generational pairs.
Associated with each quark is a corresponding anti-quark with identical mass,
but reversed electric charge sign. The antiquarks are arranged in the same
generational pairs as the quarks themselves. In the first generation are the
"up" and "down" quarks, in the second the "charm" and "strange" quark and
in the third the "top" and "bottom" quarks. The up-type quarks (up, charm
and top) have a positive electric charge +2

3 and masses of 2.16 −0.26
+0.49 MeV,

1.27 ± 0.02 GeV and 172.76 ± 0.30 GeV respectively. The down-type quarks
(down, strange, bottom) have negative electric charge −1

3 and have masses of
4.67 −0.17

+0.48 MeV, 93 −5
+11 MeV and 4.18 −0.02

+0.03 GeV respectively [2].

As already stated the quarks are color-confined by gluons mediating the
strong force allowing hadrons and other composite particles to form. In addi-
tion to the strong force the quarks are also subject to the weak force and it is
this fundamental force that causes the decay of the more massive quarks. Since
W ± weak interactions allow fermions to change flavour, the quarks may change
type after participation though this is restrained in part by the CKM matrix
[9] that suppresses quark flavour transitions between the different generations.
A famous example of such a flavour changing W ± weak interaction is beta
decay, see Figure 1.2. In this process, a neutron composed of a udd quarks
decays into a charged W boson and a proton (uud quarks) before the W boson
subsequently decays to a pair of leptons. The properties of the emitted lepton
pair depend on the charge of the W mediator, W − leads to an e− electron and
νe anti-electron neutrino in so called β− decay. For W + decays the products
are e+ and νe called β+ decay.
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Figure 1.2: Feynman diagram of beta decay (β−) oriented with time running
vertically. Image taken from [10]

Figure 1.3: Schematic representation of the fermion mass spectra. The neu-
trino masses are shown as a range where the cyan lines refer to the normal
mass ordering (NMO) and the dashed red lines the inverted mass ordering
(IMO) cases.

The second category of fermions are the leptons, which include three types
(or flavours) of indivisible electron-like particles all with an electric charge of
−1 and three light neutral particles of corresponding flavours called neutrinos.
Like the quarks, the leptons are arranged in pairs of three generations where,
as before, the first generation consists of the lightest and most stable particles
and subsequent generations contain more massive and less stable particles.
The pairs of electronic, muonic and tauonic leptons consist of the electron
and electron neutrino, muon and muon neutrino and tau and tau neutrino
respectively. The charged leptons are represented in Figure 1.1 as e, µ and τ
and the neutrinos by νe, νµ and ντ .

The lightest and most notorious charged lepton, the electron, has a mass
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of 0.511±3.1×10−9 MeV and is the only stable charged lepton. The masses of
the muon and tau leptons are orders of magnitude larger than the electron at
specifically 105±2.4×10−6 MeV for the muon and 1777±0.12 MeV for the tau
[2], which can be seen in Figure 1.3. The muon or the tau may decay via the
charged W boson into a mixture of an electron and neutrinos that conserves
both charge and lepton number. Two representative Feynman diagrams are
shown in Figure 1.4.

µ−

νµ

νe

e−

W −

τ+

ντ

νe

e+

W +

Figure 1.4: Simple example decay modes for muon and anti-tau leptons. One
of the decay products must be the same flavour as the initial lepton, hence
a muon neutrino is always produced in a muon decay. In order to conserve
charge another of the products must have the same charge as the initial.

The mean lifetime of the muon is 2.2 × 10−6 s which is far longer than the
tau lepton which decays after just 2.9 × 10−13 s [2]. The muon decay in 1.4
is the dominant decay process and sometimes referred to as a Michel decay
µ−− → νµe−νe. The tau on the other hand has more potential decay modes
as the larger tau mass makes other modes accessible including a muon decay
mode τ− → ντ e−νe which ignoring the muon mass relative to the tau mass
will occur at the same rate as the electron decay mode. Additionally the tau,
being more massive than the π± (pion) mesons, may also decay to quarks as
τ− → ντ du.

In propagation, the large mass of the tau means that it does not emit
as much bremsstrahlung radiation as en electron and is therefore far more
penetrating than the electron. Bremsstrahlung is the name of electromagnetic
radiation produced when a charged particle is decelerated in the field of an-
other charged particle and ensures the conservation of energy. The emission
of bremsstrahlung radiation by charged leptons, particularly those at high
energies [11, 12], increases the speed at which they lose energy and prevent
further penetration of matter. Unfortunately, the fact that the tau is incredi-
bly short lived prevents it from travelling far before it decays so the reduction
in bremsstrahlung losses is insignificant. Tau penetration only becomes no-
ticeable at exceedingly high energies where time dilation extends its lifetime.
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Muons, on the other hand, exist in a prosperous middle ground between
the other charged leptons. The muons mass means that less bremsstrahlung
is emitted than electrons while its lifetime is longer than that of taus. As a
result, the muon is highly penetrating and can pass through matter for far
longer and with less significant deflection before decaying or interacting than
the other charged leptons. These circumstances will be very important later,
where we will discuss the propagation of muons further, see Section 1.5.1.

Finally, we turn to the neutral leptons, called neutrinos, that play a defin-
ing role in this work and the objectives of the IceCube detector. In fact, in
IceCube the charged leptons can be thought of as the visible remnants/signa-
tures of the ghostly neutrinos. In the SM, the three neutrinos are impossible
to detect directly, as they only interact via weak interactions, an example as
in Figure 1.4, and gravity that is not included in the SM.

Additionally, the meaning of the different neutrino flavours is simply de-
fined by the flavour of charged lepton that induces the interaction (or is the
interactions’ result). For example, νe is the neutrino state that is produced
along with an electron, as seen in 1.2. For interactions with the Z boson it
is inconsequential to assign a flavour to the neutrino involved as there is no
way to experimentally verify the flavour state without the neutrino interacting
again.

As previously established the neutrinos only directly detectable mechanism
of interaction is through the parity violating weak force, thus only left-handed
neutrino and right-handed anti-neutrino chiral states have been "observed".
In fact, the SM anticipates only the existence of left-handed neutrinos (and
right-handed anti-neutrinos) while predicting that all neutrinos are massless.
This puts the SM in tension with implications of experimental evidence that
neutrinos oscillate and therefore must have a non-zero mass. In the following
section we will investigate neutrino oscillation phenomena further, before going
into more detail on their weak interactions.

1.3 Neutrino Oscillations and Interactions
A property of neutrinos is that they appear to oscillate between their three
(known) flavours. This phenomena dictates that the probability a neutrino
is detected in one flavour state after having been emitted in another varies
with some periodic frequency. This oscillation probability depends on several
factors including the initial flavour state occupied, the distance of propagation
and its energy. The discovery of neutrino oscillations took place in a variety
of neutrino experiments with differing philosophies across the globe including,
among others [13], the atmospheric Super Kamiokande experiment [14], the
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solar SNO experiment [15] and the reactor experiment KamLAND [16]. The
discovery of neutrino oscillations was, at the time, very surprising since it
necessitated that neutrinos have a non-zero mass, something that the SM had
not accounted for [17].

We are unable to directly observe neutrinos and as such may only detect
the products of their weak interactions. Thus, it is by definition that we
define νl as the neutrino state produced alongside the (anti-)lepton l. Or
equivalently, that CC interactions with an incident νl will produce a (anti-
)lepton of flavour l. This is an important feature of the neutrinos, that the
state in which it interacts is distinct from the state in which it propagates.
The three flavour states (νe, νµ and ντ ) can be represented as a superposition
of three mass eigenstates (ν1,ν2 and ν3) and are related by the unitary lepton
mixing matrix, more widely called the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) [18] matrix: νe

νµ

ντ

 =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3


ν1

ν2
ν3

 (1.1)

Or equivalently, as coherent linear combinations of the mass eigenstates,

|να〉 =
∑

i

Uαi |νi〉 , (1.2)

where α = e, µ, τ and i = 1, 2, 3 are the flavour and mass eigenstates respec-
tively.

Intuitively, each element of the PMNS matrix gives the mixing of each
flavour state with each mass state. The fraction of the flavour state νµ present
in ν1 is defined by the matrix element |Uµ1|2. Clearly, if there were no mixing
of the flavour and mass eigenstates then the PMNS matrix would simply be
the identity matrix. The absolute difference between the two mass states ν1
and ν2 is very small as compared to the absolute difference between ν1 or
ν2 and ν3. As seen in Figure 1.3 the normal mass ordering places the mass
eigenstates in the following hierarchy: ν1, ν2 � ν3 while the inverted mass
ordering states ν1, ν2 � ν3.

We may rewrite the PMNS according to a parameterization that is common
in the literature [19, 20] in terms of three rotation angles θ12, θ23, θ13 and a
complex phase δ (assuming that neutrinos are not their own antiparticle, and
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hence Dirac fermions).

U =

1 0 0
0 c23 s23
0 s23 c23


 c13 0 s13e−iδ

0 1 0
s13e−iδ 0 c13


 c12 s12 0

−s12 c12 0
0 0 1



=

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13


(1.3)

Here sij and cij represent sin θij and cos θij respectively. The δ term in the
exponent allows neutrinos to violate CP symmetry, and although this has been
experimentally observed, δ = 0 is often taken as the global best. In addition
to the three mixing angles and complex phase the neutrino oscillations are
also sensitive to the two independent mass squared differences between the
mass eigenstates.

For clarity we will always denote the flavour states using Greek indices α
or β and the mass states with Latin indices i, j.

Since neutrinos are produced in weak interactions in a pure flavour state
we cannot know which of the mass eigenstates were involved in some inter-
action. Following [19], we can write the initial pure flavour state produced
in the interaction at time t = 0 as a coherent linear combination of the mass
eigenstates.

|ν(t = 0)〉 = |να〉 =
∑

i

U∗
αi |νi〉 (1.4)

Next, we can evolve the state in time allowing the neutrino to propagate.
Each mass eigenstate evolves with its own phase factor, as a plane wave. The
neutrino is no longer in a pure flavour eigenstate.

|ν(t)〉 =
∑

i

U∗
αie

−iEit |νi〉 =
∑

i

U∗
αie

−iEit
∑

β

Uβi |νβ〉 (1.5)

where after the second equality we have expanded the mass eigenstate as a
combination of the flavour states while utilising the unitarity of the PMNS
matrix. For neutrinos we may safely assume that their behaviour is relativistic
(i.e Ei � mi) and we may expand the energy using E ' p as,

Ei =
√

p2 + m2
i ' p + m2

i

2E
(1.6)

The transition amplitude of a flavour conversion |να〉 → |νβ〉 as a function of
t is obtained as follows,

Aνα→νβ
≡ Aαβ = 〈νβ|να(t)〉 =

∑
i

U∗
βiUαie

−iEit (1.7)

11



We can use the transition amplitude to obtain the probability of oscillation
which is to say the probability that a neutrino produced in flavour eigenstate
|να〉 is at some time/distance later detected in flavour eigenstate |νβ〉.

P (να → νβ) = A∗
αβAαβ = δαβ − 4

∑
i<j

Re[UαiU
∗
βiU

∗
αjUβj ] sin2

(∆m2
jiL

4E

)

+ 2
∑
i<j

Im[UαiU
∗
βiU

∗
αjUβj ] sin

(∆m2
jiL

2E

)
(1.8)

Here we have introduced a new shorthand, ∆m2
ji ≡ m2

j − m2
i which we call

the mass squared splittings. The quantity L ' ct is the distance travelled by
the neutrino in a time t in the relativistic limit. This distance is also often
referred to as the baseline, and is equal to the distance between the source and
point of detection of the neutrino. The arguments of sin and cos in the above
are often written as shorthand containing the mass splittings as,

∆ij =
∆m2

ijL

4E
(1.9)

Note that if ∆m2
ij = 0 then equation (1.8) trivially prevents any oscillation

from occurring. Neutrino oscillations are therefore only possible when the
masses of the different mass eigenstates are distinct (guaranteeing at least two
non-zero neutrino masses). Moreover, there is no sensitivity of the oscillation
probability to the absolute masses of the three mass states, rather the mass
squared splittings. For the three mass eigenstates only two of the mass squared
splittings are actually linearly independent as ∆m2

32 = ∆m2
31 − ∆m2

21. With
knowledge of just δm2

12 one cannot say if m3 is the largest or smallest of the
three mass eigenstates, hence the uncertainty in mass ordering in Figure 1.3.

Of key importance is the spectral dependence of P (να → νβ) ≡ Pαβ ∝ ∆ij .
This proportionality of oscillation probability to propagation distance and
energy allows appearance and disappearance studies to be performed at ex-
periments with various baselines.

The oscillation probability also clearly depends on the three mixing angles
defining the PMNS matrix θ12, θ23, θ13 and on the two linearly independent
mass squared splittings ∆m2

21 and ∆m2
31. Finally, the oscillation also depends

on the Dirac CP-violating phase δ.

In the derivation of the oscillation formula (1.8) there have been a number of
simplifying assumptions made, most prominently was the assumption that the
propagating mass eigenstates were described by plane waves with a well defined
momenta which were assumed to be equal for each of the mass eigenstates (i.e
negligible wavepacket separation of the mass states).
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To get the equivalent oscillation probability expression for anti-neutrino
flavour oscillation, all one must do is replace U with U∗ in equation (1.8),
changing the sign of the last term.

The current global fit from experimental results for the three-flavour os-
cillation parameter variables [21] with NMO mass squared splittings, are as
follows :

sin2 θ12 = 0.304 −0.012
+0.013 , sin2 θ23 = 0.570 −0.024

+0.018 , δCP = 195◦
−25
+51 ,

∆m2
21 = 7.42 −0.020

+0.21 10−5eV 2, ∆m2
31 = 2.514 −0.027

+0.028 10−3eV 2.

As a useful aid for visualisation purposes, the Figures 1.5 and 1.6 are
included showing the neutrino oscillation probability over a range of L/E
values using past oscillation parameters (and δ = 0).

Figure 1.5: Oscillation probability of the electron and muon neutrinos to
themselves (survival) or other charged leptons (disappearance). Probability
calculated using (2010) oscillation parameters. Figure taken from [22].

Figure 1.6: Oscillation probability of the tau neutrino to itself (survival) or
other charged leptons (disappearance). Probability calculated using (2010)
oscillation parameters. Figure taken from [22].
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We now turn our attention to the interactions of neutrinos in the SM, and
since gravity is currently not represented our exploration is limited to weak
neutrino interactions. As neutral particles that only interact via the weak
force we cannot directly observe neutrinos. The indirect signals of neutrino
interactions are often the charged products of such weak interactions that can
be more easily detected. Assuming the incident particle is a neutrino the two
Feynman diagrams in Figure 1.7 depict the two of the major interaction modes
available to neutrinos.

W−

lν

Z

νν

Figure 1.7: Two Feynman diagrams depicting the interaction vertex of neutri-
nos with the W − and Z bosons. Created using [23].

These two vertices govern almost all of the interactions relevant for this
work. In fact these vertices have already been seen in beta decay Feynman
diagrams as well as the muon and tau decays. Reference to charged current
(CC) interactions specifies that the gauge boson involved was W ±, conversely
neutral current (NC) refers to those interactions mediated by the Z boson. In
CC interactions the charged W boson is exchanged between a neutrino and its
target (e.g ice nucleons). The neutrino is then converted into the corresponding
flavour, charged lepton. The quark composition of the ice nucleon also changes,
as the flavour of the interacting quark is transformed from an up type to a
down type (or an up type from a down type).

NC interactions induce no flavour change, and can be thought of as a similar
process to a deflection or scattering of a charged particle via the exchange of
a photon.

We may further divide both CC and NC interactions into three different
processes based on the energies of the neutrinos involved. These processes are
summarised in Figure 1.8 below.

The first such process, elastic (or quasi-elastic) scattering is the dominant
component of the total cross section for energies below ∼ 1 GeV [24, 25] (see
Figure 1.9). At these energies neutrinos can be thought of as scattering off
the whole nucleon, as such not "seeing" any of the substructure of the nucleon.
The term quasi-elastic is used for CC elastic interactions since the neutrino
becomes a charged lepton and the target nucleon also changes composition
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(e.g from neutron to proton), whereas in NC interactions in this energy range
the type of participants in the interaction remain unchanged.

Resonant scattering of neutrinos from nucleons begins to overtake (quasi-
) elastic scattering as the dominant process in the cross section for energies
above 1 GeV [26]. This type of scattering transforms the nucleon into some
excited baryon state, (or resonance), such as one of the delta baryons. This
excited baryon state may then quickly decay into a combination of hadrons
and mesons, (typically pions).

The final process, and for this work the most important, is deep inelastic
scattering (DIS). At energies above ∼ 10 GeV DIS provides the overwhelming
contribution to the overall cross section. In events of this nature the target
nucleon breaks down entirely as a result of interaction with the neutrino. Here,
the neutrino interacts directly with the valence and sea quarks inside the
nucleon, that is to say that the exchanged W or Z boson probes the internal
structure of the nucleon. The final result is a hadronic shower of debris from
the target nucleon. As with resonance production and quasi-elastic scattering,
the difference between CC and NC interactions in DIS is the lepton or neutrino
final state.
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Figure 1.8: Where here ν and l represents both neutrinos and anti-neutrinos
and leptons and anti-leptons, of all three flavours and N is a nucleon. Taken
from [27]

1.4 Cosmic Rays
Cosmic rays suffer from a slightly misleading name, arising from the fact that
they were initially believed to be photons and by the time their composition
was verified [29], the name had stuck.

Early researchers found that the level of ionizing radiation grew with
increasing altitude; this disagreed with the accepted theories of the time, but
implied that the source was extraterrestrial in origin. Conspicuously, the
intensity of this radiation changes with latitude, indicating that at least part
of the signal had a non-negative electric charge and was affected by the Earth’s
own magnetic field.

We now know this extraplanetary radiation as cosmic rays which are com-
posed of high-energy, electrically charged particles. 90% of these "rays" are
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Figure 1.9: Inclusive cross sections for neutrino-nucleon (left) and anti-
neutrino-nucleon (right) plotted as a function of energy. Contributions to
total cross section from QE, resonant and DIS processes. Taken from [28]

.

composed of protons, 9% helium nuclei (α-particles) while the rest are made
up of heavier nuclei[30].

These abundant, highly relativistic particles can be accelerated over large
time scales to extremely high energies in energetic astrophysical processes such
as supernova explosions [31]. Ultra high energy cosmic rays contain the most
energetic particles observed in nature with energies in excess of 1020 eV. The
energy spectrum of cosmic rays is shown in Figure 1.10 and underscores the
vastly different scales of energies that contribute to the overall flux of cosmic
rays. The cosmic ray population of energetic nuclei falls steeply with a near
power law relation dN/dE ∝ E−γ .

The spectrum in Figure 1.10 steepens at around 1015 eV from E−2.7 to
∼ E−3, which is often referred to as the "knee" of the spectrum [32], where the
expected flux is around 1 particle per m2s. There is an additional softening of
the spectrum at an energy around 1017 eV, before a further downturn named
the second knee [33]. Around one to two orders of magnitude above the second
knee, a final feature of the spectrum was named the ankle, where the index
decreases back to approximately ∼ E−2.7 and the expected flux is 1 particle
per km2yr [34]. This "breaking" of the power law relation is theorised to be
due to discrete transitions from different sources of astrophysical acceleration
of cosmic rays.
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Figure 1.10: The all-particle spectrum of cosmic rays as a function of energy
per nucleus, where the differential energy spectrum is multiplied by E2.6 to
emphasize the spectral features. Taken from [35]

1.5 Air Showers
An air shower is initiated when a single cosmic ray with sufficient energy to
produce a cascade strikes molecules in the Earth’s atmosphere and the resulting
cascade is detectable at the ground. In general, showers have a hadronic core
which acts as a collimated source of sub-showers. The development often
occurs as a stochastic combination of three components: hadronic, muonic
and electromagnetic [36].

Extensive air shower development in the atmosphere depends on a num-
ber of parameters including the Earth’s magnetic field, seasonal temperature
profile variations, cosmic ray flux and the details of the various hadronic and
leptonic interactions that take place during propagation to the surface [37].
The modelling and simulation of both the cosmic ray flux and the interactions
in air shower development are active areas of research [38, 39, 40].

Once the charged contents of the cosmic rays reach the Earth’s atmosphere,
they interact with the concoction of nuclei in air molecules inelastically, pre-
cipitating the breakdown of those involved nuclei. It is typical that in cosmic
ray-atmosphere interactions many π-mesons, (and less abundantly K-mesons),
are produced. These mesons, due to their instability, decay into subsequent
mesons and/or combinations of leptons, the most common of which is the
muon (or for π+ the anti-muon).

The resulting neutrinos easily penetrate the entire diameter of Earth, as
well as those muons with sufficient energy. The dominant production process
is shown in Figure 1.11 and can be written via the leptonic or semi-leptonic
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Figure 1.11: Development of air shower and neutrino production after cosmic
ray primary incident on nucleons in the atmosphere. Taken from [17]

decays in the following decay chain:

p+ + N → π+ + π0 + X

π± → µ± + νµ(νµ)
µ± → e± + νe(νe) + νµ(νµ)
π0 → γγ

(1.10)

Here, N is the target nucleus in the upper atmosphere, and X is the hadronic
remnants of the initial interaction. Charged pion decays are overwhelmingly
muonic, and since cosmic rays consist of more protons than anti-protons there
is an excess of π+ over π− and hence µ+ over µ−. The neutral pion, and other
neutral mesonic, component consists of electrons, positrons and photons, but
the flux of electrons at the Earth’s surface is dominated by (tertiary) muon
decay.

Whilst neutral and charged pions are the most common products of cosmic
ray interactions with the atmosphere it is possible that other mesons are
produced, particularly for those with a more energetic cosmic primary. With
increased energy heavier K-mesons can contribute to the neutrino flux, and
at even higher energies charm (D) mesons may contribute to overall neutrino
flux via semi-leptonic decay (sometimes called the prompt flux - appendix?).

The ratio of electron and muon neutrinos produced depends on the specific
progenitor that interacted, but from equation (1.10) we note that the flavour
ratio is 1 : 2 : 0 (as νe : νµ : ντ ). It is important to note that this flavour
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ratio is energy dependent, as longer lived particles will interact at lower alti-
tudes (travel further towards Earth) rather than decaying, thus altering the
flavour ratio of resultant neutrinos. Additional contributions at high energies,
including those from the prompt flux, also allow for a small tau neutrino flux.

1.5.1 "Who Ordered That?"

Upon the surprise discovery of the muon Nobel laureate I.I Rabi is quoted
as having questioned "who ordered that?". In IceCube and other neutrino
observatories pursuing oscillation analyses the same question could be asked
more than 2000 times per second.

As seen in the previous section the incidence of cosmic rays on the at-
mosphere and subsequent development of extensive air showers provides the
sought after neutrino flux, but also a far larger and less desirable population
of muons. At almost every step of meson decay paths, atmospheric muons are
abundantly produced and given their relativistic speeds and relatively long
lifetimes these muons are still the most populous energetic product at the
Earth’s surface. With sufficient energy, these muons may penetrate several
kilometres underground.

Atmospheric muons hurtling towards Earth lose energy in a number of
ways, which we will discuss here. As muons are charged particles there must
be some energy lost via ionization of other charged particles the muon travels
past. The muon interacts with the electric fields present in the matter it
travels through and may excite/displace some of the bound electrons in the
atmosphere/underground. Muons may also lose energy via radiative processes
such as bremsstrahlung, e+e− production and other photonuclear interactions.
All of the methods of muon energy loss described here have both continuous
and stochastic components. Though once muons enter the ground the leading
energy loss processes are ionisation and pair production [41].

Total muon energy loss may be expressed in the following way [2], as a
function of the amount of matter traversed,

dEµ

dx
= −a − bEµ. (1.11)

Here a is the ionization loss and b = bbr +bpair +bph is the fractional energy loss
via radiation processes. The quantity ε ≡ a/b (≈ 500GeV for muons travelling
through rock) defines a critical energy below which continuous ionization loss
is more important than radiative losses.

The intensity of muons underground can be estimated from the muon
intensity in the atmosphere and their rate of energy loss. Integrating (1.11)
gives,

Eµ,0 = (Eµ + ε)ebX − ε (1.12)
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where Eµ,0 is the energy of a muon at the point of its production in the
atmosphere and Eµ is the average energy after propagation a distance X in
ice. In the depth regime where X � b−1 ≈ 2.5 km we can simplify (1.12) to,

Eµ,0 ≈ Eµ(X) + aX (1.13)

While in the opposite limit X � b−1 then the initial energy of the muon can
be written as,

Eµ,0 ≈ (ε + Eµ(X))ebX (1.14)

In general the muon spectrum at depth X is given by

dNµ(X)
dEµ

= dNµ

dEµ,0

dEµ,0
dEµ

= dNµ

dEµ,0
ebX (1.15)

Figure 1.12 plots the vertical muon intensity against the propagation distance,
depth, in rock, with water and ice inset. The flattening of the curve occurs
because of muons produced in CC νµ interactions in the matter. Muons lose
less energy in water and ice so the gradient of the slope is decreased relative
to rock. The penetration of muons deep underground will come up again later
as we discuss those muons that stop inside of IceCube.

Figure 1.12: Vertical muon intensity plotted against depth. Shaded horizontal
area represents neutrino induced muons.Taken from [2]
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1.6 Cherenkov Radiation
One aforementioned difficulty that IceCube is forced contend with is the in-
direct nature of their detection. The neutrinos are neutral, have extremely
low mass and often arrive surrounded by hadrons, muons and others in cosmic
rays, making them very difficult to isolate and observe.

As a result of their very small interaction cross section it is extremely
unlikely that a neutrino interacts with matter as it travels from its astrophysical
source and/or the upper atmosphere. The magnitude of neutrino cross sections
is one reason why the suppression of background sources of Cherenkov radiation
is so important.

As we have already seen (in Section 1.3), we are forced to look for the
charged secondaries or remnants that neutrino interactions produce. These
charged particles can be found by detecting the Cherenkov radiation they emit.

Cherenkov radiation is emitted as a particle with non-zero electric charge
passes through a dielectric at a speed greater than the phase velocity of light in
the medium. The Cherenkov radiation is not released by the charged particle
itself, rather it is a consequence of the medium being dielectric.

The electric field of the traversing charged particle polarises the medium
(displaces the electrons from the nucleons in the dielectric) and radiation is
emitted as the electrons return to their de-excited state.

If the charged particle was moving slower than the phase velocity of this
emitted radiation then it would destructively interfere with itself, see Figure
1.13. However, when the charged particle moves faster than light, in the
medium, the wavelets of the track constructively interfere causing the coherent
emission of photons [42]. These photons, named after Cherenkov who first
discovered them [43], disperse in the form of a cone with an opening angle
relative to the direction of the charged particles travel dependent on its velocity.
The Cherenkov angle θC depends on the refractive index of the medium,
nmedium, and the velocity of the particle, v.

cos(θC) = c

nmediumv
= 1

nmediumβ
(1.16)

where c is the speed of light in a vacuum.
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Figure 1.13: Demonstration of Cherenkov radiation emission by a charged
particle moving to the right in a dielectric medium caused by polarization and
later depolarization of the medium. Below is the electromagnetic wave in the
medium for a specific point in time. Left: Situation when v < c/nmedium and
the disturbance cancelling. Right: For v > c/nmedium constructive interference
of electromagnetic disturbance producing plane wave cone centred on track.
Figure taken from [44]
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2
The IceCube Neutrino Observatory

The IceCube Neutrino Observatory, henceforth referred to as IceCube, cur-
rently consists of three parts; the IceTop surface array, the IceCube main array
and the DeepCore subarray contained within. The design objective of IceCube
is to detect resultant Cherenkov radiation in the ice from neutrino interactions
that occur inside the fiducial volume of the detector. In principle, using the
detector’s response to the emitted Cherenkov radiation the identity and prop-
erties (such as direction, energy etc.) of the neutrino may be reconstructed.
This task will be the main focus of this work.

The design of IceCube mimics other contemporary neutrino detectors in
that the detection of neutrinos requires the careful observation of a large
population of target nucleons, however unlike many other detectors IceCube
uses a natural interaction substance (ice) that is also deep underground.

The predecessor of IceCube, AMANDA [45] provided evidence that optical
sensors frozen deep under the Antarctic ice could still detect the relevant
Cherenkov radiation while maintaining a low enough background rate so as to
be feasible. Aside from the substantially increased detector volume (IceCube
contains more than 7 times as many optical sensors as AMANDA) the physics
programme is also more broad; alongside its function as an ultra-high energy
neutrino telescope the IceCube detector (including IceTop and DeepCore)
also includes studies of neutrino oscillations, supernova detection, analysis of
cosmic rays and beyond standard model particle candidates among others.

IceCube as it functions today was completed 2011, where beforehand a
subset of the total strings could be referred to, for example, as IC78 for the
78 string configuration, that excludes the newest strings drilled for DeepCore.

2.1 The Digital Optical Module (DOM)
Cherenkov photons are detected in Icecube by the lifeblood of all neutrino
observatories: digital optical modules. Each of these modules accepts photons
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Figure 2.1: IceCube detector displayed in ice, with DeepCore highlighted in
blue/green and IceTop by blue spots at surface.

and outputs a variable electronic signal based on the amount of received light.
Each DOM in the IceCube main array contains a single downward-facing
photomultiplier tube (PMT). The DOM is enclosed in a spherical layer of
glass containing its own power supply and electronics responsible for digitizing
and sending its response to the laboratory at the surface. In this way, DOMs
may operate as a complete and autonomous data acquisition system.

Within a single DOM, data acquisition is initiated when the PMT signal
exceeds some pre-determined threshold. When this occurs the DOM records
the next 6.4µs and records the subsequent arrival of Cherenkov photons. This
trigger determines the information that constitutes a hit in any future event
pulsemap.

The PMT of a DOM in the IceCube main array is sensitive to photons with
wavelengths between 300nm and 650nm, which coincides with the expected
wavelength of Cherenkov radiation in ice. For DOMs in the IceCube main
array, as well as those in DeepCore, the choice to point each PMT downwards
(towards the centre of the Earth) was to reduce the likelihood of downward
travelling atmospheric muons triggering a large number of DOMs (a "look the
other way approach").

Additionally it should be mentioned that while the DOMs are incredibly
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reliable (as of 2016 98.4% of the more than 5000 deployed DOMs were fully
operational [46]) and have an estimated life time of ≈ 15 years [47] they are
also susceptible to noise of different forms including thermal noise, radioactive
decays in the glass casing [48].

Figure 2.2: A schematic cross-section of an IceCube DOM taken from [47].

2.2 Detector Geometry
Located at the south pole in Antarctica, IceCube is the largest neutrino
detector in the world. One cubic kilometer of Antarctic ice is the detector
medium that is instrumented by 5160 DOMs buried in the ice. The in-ice
DOMs are suspended on 86 strings in a quasi-hexagonal grid shown in Figure
2.3. The DOMs that make up the main array have an equal vertical spacing of
17m and are deployed between 1450 and 2450m below the surface. That the 60
DOMs per string are placed at this depth is in part with the aim of reducing
the number of background atmospheric muons that enter the detector, but also
that the clarity of ice at this depth allows (high energy) Cherenkov photons to
propagate for hundreds of metres. This allows a larger volume to be used for
detection and a larger number of ice nucleons to be monitored. The horizontal
distance between each of the strings is approximately 125m.

In IceCube’s initial full operation there were 80 functional strings, however
for the study of lower energy events a volume of ice would be required to
be observed more closely, with a greater density of DOMs to detect less
energetic/abundant Cherenkov radiation.

The DeepCore sub-array was optimised for the purpose of providing sensi-
tivity to these lower-energy neutrinos. This goal is achieved via a combination
of increased density of DOMs, higher efficiency PMTs and the use of the rest of
the main array as a filter against the abundant atmospheric muon background.
The configuration of DeepCore consists of eight new strings, six containing 60
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Figure 2.3: IceCube detector geometry from above and in-ice [49]. DeepCore
sub-array displayed in green.

high-efficiency DOMs broadly arranged in a hexagon, and two DeepCore Infill
strings containing a mix of high efficiency and regular DOMs.

As seen in Figure 2.3, between 2000m and 2100m there is an increase in
the dust concentration. This so-called "dust layer" is a relic of the last glacial
period 65, 000 years ago. The quality of the ice as a function of depth was
calculated using the IceCube main array DOMs taking local DOM to DOM
measurements of responses to LED flashers. Consequently, DOMs on the
DeepCore strings were placed above and below the dust layer to avoid the
more opaque ice with greater absorption and scattering properties.

The first six high-efficiency DeepCore strings deployed are much closer
together than the previous IceCube configurations, with an average horizon-
tal inter-spacing of 72m [49]. The vertical separation of DOMs on all eight
DeepCore strings is 10m above the dust layer and 7m below it. The 10 DOMs
above the dust layer are referred to as the veto cap; they add an additional
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densely instrumented volume that can be used to tag atmospheric muons or
other background events. For reference, low energy muons (Eµ ≈ 1 TeV) in
ice travel approximately 5m per GeV of energy. Additionally, situating the
majority of DeepCore DOMs at the centre of the main array allows the use of
the outer layers of DOMs as a veto against muon events [50]. The DeepCore
fiducial volume is made up of the 8 dedicated DeepCore strings as well as
the closest IceCube main array strings. Reference to DeepCore denotes this
collection of 15 strings.

The surface array IceTop (sometimes called the cosmic ray air shower array)
consists of 162 ice-filled tanks [46] immersed 25m below the surface. Pairs of
tanks 10m apart are stationed broadly above each of the strings, with the same
nominal horizontal separation of ∼ 125m. Inside the ice tanks are a total of
324 DOMs, two per tank. Tank separation aims to ensure that single-station
(two tank) hits are caused by air showers containing a muon capable of making
it the further distance to the main underground array, as these muons are the
main background source.

IceTop is sensitive to primary cosmic rays over the energy range PeV to
EeV [51], this partially covers the "knee" region of the cosmic ray spectrum
discussed in Section 1.4. For low energy neutrino analysis, IceTop’s main
utility is as a veto on downward going atmospheric background that triggers
IceTop DOMs en route to the in-ice detector.
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2.3 Event Recognition and Detector Output
The use of triggers in IceCube is necessitated by the vast amounts of data
otherwise generated. The lowest level trigger is that discussed in Section 2.1
whereby DOMs only begin recording waveform information after a certain
voltage threshold has been exceeded.

If a DOM registers a "hit", then the next hardware trigger concerns the
response of DOMs in the immediate neighbourhood of the initial hit. This
local coincidence criterion is passed if a neighbouring DOM’s PMT signal also
triggered within 1µs of the first DOM. These hits are then said to form a hard
local coincidence (HLC) pair. Those DOMs that fail the local coincidence
criteria will be saved and produce a less informative soft local coincidence
(SLC) [52]. The data acquisition system in IceCube searches for clusters of
HLC hits that are indicative of Cherenkov radiation emitted in a particle
interaction in the ice, as opposed to random, uncorrelated noise hits.

At this point, different analyses require different filters based on the par-
ticular physics goals. Determining which combinations of HLC pairs and SLC
DOMs to include varies between the different collaboration working groups.
The SMT8 (single multiplicity trigger) trigger requires at least 8 in-ice DOMs
to satisfy HLC within a total time window of 5µs [49] before saving the detec-
tor response as an event. Each event is then expanded on the initial detector
readout to include DOMs that registered a hit but may not have satisfied HLC.
The extended time window is 20µs centred on the initial trigger time. The
inclusion of concurrent SLC hits greatly improves our ability to reconstruct
low energy events where otherwise the detector response could be incredibly
sparse (low multiplicity).

For low energy analysis a different more specific filter is employed. Similarly
to the single multiplicity trigger described above, SMT3 requires just 3 DOMs
to pass local coincidence, but in a 2.5µs time period and all 3 DOMs must
be in the DeepCore fiducial volume. The veto algorithm takes advantage of
its position at the centre of the main array and the DeepCore veto cap above
the dust layer. HLC hits in the veto cap that hint at the downward travel of
an atmospheric muon. The veto algorithm estimates the "centre of gravity"
of an event (w.r.t the position and time) and this is used to calculate the
speed of a hypothetical particle inducing each of the HLC hits, if this speed is
approximately equal to the speed of light then the event is rejected and fails
the DeepCore filter [49].

The DeepCore filter is applied to all triggered events to select events that
have both the potential to have come from low energy neutrino interactions,
but also the potential to be reconstructed accurately.
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2.3.1 Event Selection - oscNext

Part of this work will look at the event selection process undertaken in the
neutrino oscillation analyses herein referred to as oscNext [53, 54]. The as
yet unpublished work aims to use all available livetime DeepCore data (2011-
2019 inclusive), to calculate the neutrino oscillation parameters based on the
relative appearance of the different neutrino flavours.

The primary objective of the oscNext event selection in DeepCore is to
return a neutrino dominated event sample by removing and rejecting copious
background from atmospheric muons and detector noise [55]. Since the rates
of muons and noise are so high, the initial filters are required to be quick to
remove those that are clearly background and reduce the subsequent number
of events to consider. As the number of events to consider decreases, more
accurate and computationally intensive methods of rejection may be used.

The focus for this project is placed on the first two steps in the filtration
process, where we have yet to discard the entire muon population, however all
7 levels of selection are described extensively in [56].

Level 2 The input to the event selection process is the output as discussed
in the previous section, i.e the common detector output supplied to
the entire collaboration (satisfying SMT3). With the additional, low
energy specific, constraint is the imposition of the DeepCore filter. Those
events that pass the DeepCore filter then have a pulse-cleaning algorithm
applied called SRT cleaning (see Section 2.3.3).

Level 3 The events that pass L2 are then processed by a number of simple,
physically motivated cuts based on the nature of the pulsemap (DOM
response). At this level many of the discrepancies between simulation
and data are removed (e.g muon bundles and coincident events). The
motivation of cuts at this level is speed, a low-hanging fruit approach to
remove the easiest-to-remove muons and noise. The tactic broadly used
for ridding muons from the sample is by looking for hits in the outer
veto areas in the detector, while noise is often found by looking at the
number or time separation of hits. The variables calculated are given in
Table 2.1 along with the chosen cut-offs.

The definitions of each of the L3 variables calculated are as follows:

1. Cleaned Number of DOMs: The number of hit DOMs in the event after
cleaning.

2. NoiseEngine: An algorithm designed to limit the number of noise events
that may satisfy the lower SMT3 threshold required in DeepCore [48].

3. MicroCount Hits: The number of hits inside the busiest 300ns time
window of an event.
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4. Fiducial Hits: Number of DOM hits in the fiducial volume after cleaning.

5. NAbove200 Hits: The number of DOMs hit with depth greater than
−200m.

6. Vertex Guess Z: The depth of the first DOM hit after cleaning.

7. Causal Veto Hits: The number of DOMs hit in the DeepCore filter.

8. Veto/fiducial hit ratio: The ratio of DOMs hit in the veto and fiducial
detector volumes after cleaning.

9. C2HR6: The fraction of DOMs hit within the first 600ns of the first
cleaned hit, excluding the first two.

10. RT Veto: The number of DOM hits found by the RTVeto algorithm,
where the condition changes depending on the number of DOMs hit in
fiducial volume [57].

11. Uncleaned Time Length: Duration of uncleaned event.

12. Cleaned Time Length: Duration of event after cleaning.

Variable Targets Cut Value
Cleaned Number of DOMs Noise ≥6

NoiseEngine Noise True
MicroCount Hits Noise >2

Fiducial Hits Noise >2
NAbove200 Hits Muons <10
Vertex Guess Z Muons <-120m

Causal Veto Hits Muons <7
Veto/fiducial hit ratio Hits Muons <1.5

C2HR6 Hits Muons >0.37
RT Veto Muons True

Uncleaned Time Length Coincident <13000ns
Cleaned Time Length Coincident <5000ns

Table 2.1: Table of variables calculated in the determination of L3 passing
events and the values of each of the cuts that defines their use in the oscNext
analysis.

Shown in Table 2.1 are the selection criteria for events to pass to L3 of
the event selection process. These cuts not only improve data-simulation
agreement but also greatly reduce the rates of background while maintaining
around 60% of the atmospheric neutrino signal events. The associated rates
before and after processing are given in Table 2.2.
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Event Type Rate L2+DC (mHz) Rate L3 (mHz) Eff.
νe CC 1.61 0.95 58%
νµ CC 6.16 3.77 61%
ντ CC 0.193 0.129 67%
ν NC 0.86 0.53 62%

µ 7273 505 6.9%
Noise 6621 36.6 0.6%

MC Total CC 13903 547 3.9%
Data (2014 pass2) 16168 582 3.6%

Table 2.2: Table containing rates of the different particle events in IceCube at
the first two levels of filtration. Neutrinos simulated with GENIE [58], muons
with MuonGun [59] and noise with vuvuzela [48].

2.3.2 Distinguishing Events in IceCube

Now we have determined the checks that must be passed to be declared an
event we will discuss the different types of events that can (and do) pass the
relevant filters.

The reconstruction of events in IceCube is paramount to interpreting the
detector output and distinguishing the different flavours of particle that were
involved. In IceCube where DOMs are relatively sparsely distributed we char-
acterise events into two different categories, based on the underlying physics
interaction that gives rise to the detector output (see also Figure 2.4):

• Cascade-like Events; Secondary particles decay quickly and/or emit a
large proportion of the total Cherenkov radiation in a localised area. The
main candidates are charged current interaction involving the electron
or tau neutrinos, and neutral current interactions of all flavours.

• Track-like Events; The long lifetime of the involved particles mean
that Cherenkov radiation is distributed more evenly over the path (or
track) that the travelling particle probes. The distance scales of such
tracks can, with energetic enough particles, be much longer than the total
detector itself. The main contributors to such events are atmospheric
muons (not shown in Figure 2.4) and charged current muon neutrino
interactions.

These events are defined by the topology of their energy deposition and
Cherenkov emission. The different leptons flavours leave different footprints in
the detector due to their differing properties. The tau lepton decays so quickly
that it cannot travel far before decaying via methods described in Section 1.2.3,
although in some (17%) cases the tau may decay into a muon that produces
a more track-like detector response. The electron, unlike the tau, does not
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Figure 2.4: Possible interaction signatures of neutrino interactions with ice
nucleons and the resultant particles. Dashed lines are neutrinos, orange lines
muons and red lines for hadrons. Figure taken from [60]

decay and hence could travel long distances in the ice if it did not deposit
its energy via Bremsstrahlung or ionization. Muons, both atmospheric and
neutrino induced, leave the longest, track-like footprints in the detector since
they have a longer lifespan than the tau and are heavy enough so that they
do not lose all of their energy via Bremsstrahlung or ionization.

In all cases in figure 2.4 there is a hadronic shower present after the deep
inelastic neutrino-nucleon scattering - these showers are the remains of the
nucleon. The detector response to these hadronic showers is indistinguishable
from the electromagnetic cascades due to the sparsity of IceCube DOMs. How-
ever, hadronic showers/cascades tend to be slightly smaller or more contained
than their electromagnetic counterparts as neutrinos produced may carry some
of the energy away, and the heavy rest mass of the hadrons themselves [61].
Additionally, the cascade-like events are more frequently entirely contained
inside the detector and hence energy reconstruction is easier since less energy
is silently carried out of the detector as in neutral current interactions.

By using the information output of the entire detector for each event we
may construct a pulsemap of DOMs hit in the event, the pulsemap is the
foundation stone of all reconstruction in IceCube. Examples are shown in
figure 2.5 of three different pulsemap topologies.

At low energies one devastatingly important category of events are the
noise events, where by noise we mean the spurious emission of pulses inside
individual DOMs or those pulses not pertaining to any external physical
Cherenkov emission. In these "events" no actual particle interactions involving
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Figure 2.5: Detector output from three (relatively high energy) events in
IceCube, hit DOMs represented by coloured spheres, where colour indicates
time of hit (red early, blue late) and size is proportional to the charge recorded.
The single cascade arises from a roughly spherically symmetric event with a
single point light source (CC νe or ντ interaction). Track-like event caused by
atmospheric µ or CC νµ, more evenly distributed in column-like volume.

muons or neutrinos occur, rather the detector noise alone satisfies the trigger
conditions.

Noise in IceCube has two main components [62], these are thermal and
non-thermal noise. Thermal noise comes from the spontaneous emission of
single electrons from the DOMs photocathode due to its thermal energy. This
emission is random, and uncorrelated between different PMTs as the number
of thermal noise electrons is drawn from a Poisson distribution. Non-thermal
noise arises from radioactive decays in the glass sphere around the DOM which
can release bursts of several photons. The time of such radioactive decays is
uniformly distributed in an event’s time window.

2.3.3 Seeded Radius Time (SRT) Cleaning

Given a pulsemap as defined above one may "clean" the hit DOMs in an attempt
to include only those that register hits with physics origins. In this way, it
is hoped that enough DOMs remain for accurate reconstruction of the event
while also removing those spurious noisy hits that decrease reconstruction
accuracy.

The SRT algorithm combines cleaning based on separations in space and
time of hit DOMs. The radius-time (RT) part of the test enforces that a hit is
only kept if there exists an accompanying hit within a designated radius and
also occurring within a set time of the first hit. The default settings for R and
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δt are 150m and 1000ns respectively. Figure ?? illustrates the SRT process
during one iteration.

For SRT cleaning not all hits are checked against the RT criteria - only
those that are designated as a "seed", namely the HLC hits. This process
happens iteratively over all HLC hits, and may add other SLC hits to the
pulsemap, which are then tested against other hits, until no more hits are
added. The philosophy of SRT cleaning is as such: begin with a subset of
DOMs you are certain contain physics information (the seeds) and only add
those that fulfill the requisite RT conditions.

Figure 2.6: An example pulsemap with SRT cleaning being applied. a) Search
for hits in RT-range of the initial HLC hits, the "seeds", and add those that
satisfy to the list of seeds to check for further RT satisfying hits. b) After
checking all new seeds iterate this process until no new hits are added to the
seeds. Reject all those that are not in the list of seeds. Figure taken from [52].

2.4 Low Energy Simulation in IceCube
This analysis relies on a comparison of experimental to simulated data, and
though never perfect, the statistical differences can give insight into assump-
tions and systematic errors afflicting simulation, or, more interestingly, unex-
plained behaviour of real data. For machine learning this problem is acute
as the reliance on labelled, and therefore simulated, data requires the data-
simulation discrepancies to be small. In this section we will briefly discuss the
simulation used in both training and inference of our model as the underpin-
ning physics and simulation pipeline goes far beyond the scope of this section.
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There are three types of simulation used in this work: MuonGun [63] for
atmospheric muons, GENIE [58] for neutrino events and vuvuzela [48] for pure
noise events. The process of simulating all three types of low energy events is
split broadly into three stages, which are as follows:

1. Primary particle generation and propagation through the ice. Daughter
particles after interactions are also propagated.

2. Photons are propagated in ice, i.e paths of photons are tracked (travel
and/or scattering).

3. Detector response - the output of the DOMs given the paths of the
simulated photons. This step allows for variation of detector properties
(e.g DOM efficiency) and response given the same input (photons).

2.4.1 MuonGun Simulation

At the energy spectrum we are interested in, the role muons play is of vital
importance to any analysis/reconstruction. There is an abundant appearance
of background muons, that must be simulated before it can best be mitigated.
The overall idea of MuonGun is to remove the computationally costly and less
controllable air shower simulations. Thus, MuonGun decouples the final state
muon from the complex air shower development and constructs a parameteri-
zation [64] of the overall muon flux based on the depth under the ice, zenith
direction, multiplicity and energy. This gives the user more control over the
properties (energy, direction) of the resulting muon event.

One can think of MuonGun targeting just those muons coming from cosmic
rays that are destined to interact in the detector’s fiducial volume. This focus
on detector-bound muons allows for the production of a high statistics sample
weighted according to different muon flux models with differing assumptions
about cosmic ray interactions in the atmosphere.

For low energy purposes muons are generated on a cylinder slightly larger
than the IceCube volume and fired towards the detector (see Figure 2.7).
Then, muons are chosen only if their energy and direction means that they will
intersect a target cylinder surrounding the DeepCore fiducial volume. Only
these muons will be simulated.

2.4.2 Genie Simulation

The neutrino interactions present in IceCube are produced via the GENIE
simulation chain. GENIE simulates both the kinematics of the neutrino-nuclei
interactions and also the subsequent decay processes that occur after the initial
collision. In this framework the possible neutrino interaction cross sections are
calculated for all flavours, in an approximate energy range from 1GeV to 1TeV.
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Figure 2.7: Generating cylinder in blue, IceCube in red, and DeepCore in green
[59]. Muons are generated on the generating cylinder but are only "thrown"
(simulated) if their trajectory intersects DeepCore.

This software is not specific to IceCube but is used widely in the experimental
neutrino physics domain. The neutrinos simulated by GENIE are produced
according to a power law energy spectrum, before they are made to interact
with a target nucleon or electron within a given volume with the same density
of targets as ice.

After calculating the cross-section for such an interaction (elastic, quasi-
elastic, resonance production or DIS), GENIE also allows the final state
hadrons to interact before leaving/exploding the nucleus. The results of the
neutrino-nucleon interaction are then propagated individually through the ice
whilst emitting Cherenkov radiation.

Note that the oscNext analysis that produced the GENIE simulation con-
tains, for all neutrinos, an effective detector livetime of 70 years.

2.4.3 Noise Simulation

Non-physics DOM hits can cause a significant number of erroneously recorded
hits or misfiring triggers, particularly before any cleaning or event selection
has taken place. In order to accurately reflect the reality of operating an
irreparable detector several kilometres underground we must simulate those
events which are the least desirable - noise.

Noise is simulated in IceCube using the Vuvuzela model [48, 46]. In this
regime both Poissonian and non-Poissonian contributions are combined to
achieve the best data simulation agreement. Where the Poissonian component
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thought to be the result of radioactive decays or from thermal noise. Thermal
noise contributes a rate of around 200Hz, whereas the radioactive decays
typically produce a rate of around 100Hz. The non-Poissonian contribution
adds an additional rate of 400Hz.

Noise simulation has a dual role in event generation. The first, is to include
in muon or neutrino events the sporadic instances of noise triggered DOMs
alongside the physics signal hits. The second function of noise simulation is to
produce pure noise events, those where there is enough coincident noise that
sufficient DeepCore triggers are passed and the entire pulsemap is saved.
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3
Machine Learning

Machine learning (ML) is a term that encompasses a broad range of algorithms
and modelling tools used in a plethora of different tasks related to the analysis
of data. ML can be thought of as the combination of three integral components,
data, a model and a loss function. The philosophy of ML may generally be
thought of as a combining these three parts in a computationally efficient way
while adhering to the scientific principle of "trial and error". ML has become
more prominent in the particle physics community in recent years as the field
has developed and new applications pursued.

In this section we will briefly recount the basics of ML and neural networks,
the key lessons and ideas that underpin intuition in the applications of ML.
We will then look at ML application to IceCube data before briefly looking at
graph theory and the model used throughout this work - DynEdge.

3.1 Machine Learning Prerequisites
Machine learning models are in general not task-specific, in that they aim
to improve the measurable performance (defined by a loss function) on any
given task that is defined by the truth labels of the training data. They are
hypothesis-agnostic in that if the pattern of the data truth changes so to will
the model. That said, there are several types of learning problem that are
best addressed using different approaches, including supervised, unsupervised
and reinforcement learning. This project exists entirely within a supervised
learning regime, which is the focus of this chapter.

It is also worthwhile to mention here that as ML draws from a wide range
of fields with different customs, the terminology is rife with synonyms and
overloaded definitions. For example, the input vector that is fed into a ML
model is often called a variety of names, including: input vector, instance,
sample, feature vector, covariates or attribute vector. Though in general the
input can be a more complex structured object such as an image, sentence
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or graph. The value a model tries to predict or reproduce is called both the
truth and label interchangeably while the prediction itself may also be called
the output, score or response variable.

Figure 3.1: Overview of ML cycle. Make predictions using hypothesis, compare
to observation, adapt/update hypothesis and repeat cycle taken from [65].

3.1.1 Supervised Learning

In supervised learning we are given a set of n samples of data, denoted Xi ∈ Rp

(with dimension p) with i = 1, ..., n, each with an associated "truth" label
yi ∈ Rd that we would like to know.

The objective of supervised of learning is to find a function (or model)
f that can take a new data sample Xj and after application of the function
f(Xj) can predict the label ỹj and that this prediction well approximates the
truth yj [66]. An equivalent perspective is that supervised ML searches for a
hypothesis that can best reproduce the true labels of an as yet unseen data,
called the test set.

In ML parlance, the set {Xi, yi}i=1,...n of data is called the training set,
where the function f "learns" which data correspond to which truth label.
The generation of predictions is frequently referred to as the forward pass
of training. The function that maps the input data to a predication, f , is
commonly expressed as a set of parameters called weights w ∈ Rk.

Training is completed by defining the loss function, L[f(Xi), yi], that takes
as argument, the model prediction for a particular sample and the corre-
sponding label. This loss function allows us to judge how well the model
currently explains the observations/data. The choice of loss function may vary
depending on the nature of the problem and the behaviour that should be
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penalised/prohibited. The loss is aggregated (the sum is often taken) over all
data samples in the training set and called the training loss.

It is this training loss that the training procedure aims to minimise in a
process known as back-propagation. During back-propagation the weights
w are updated in such a way that future predictions on the same samples
would yield predictions closer to the true label itself.

The process of weight-updating is via gradient descent w.r.t the weights, w.
Here the broad idea is to iteratively adjust the weights in the direction where
the derivative of the loss function is large and negative. In such a way that
local (and preferably global) minima of the loss landscape are found and the
agreement between model predictions and labels improves in the context of the
selected loss function. This places an important constraint on the loss function,
at least for gradient descent minimisation, that it must be differentiable. We
can update the weights in the "most improving" direction as,

wt+1 = wt − α
δL
δw

(3.1)

where the hyperparameter α is a constant termed the learning rate that
determines the size of the step taken when updating the weights i.e the extent
to which each update affects the overall magnitude of the weight.

When training the model, we do not have access to the test set (by con-
struction) however we can partition the training set into two parts, one for
training as defined above and one to act as a pseudo-test set called the val-
idation set that we can use to measure the predictive power of a model on
data it has not been trained on. This process of predicting, validating, loss
calculation and updating weights continues for a pre-set number of epochs
(or training cycles/iterations) or until some other user defined criteria is met.

This is, in essence, the strategy of ML, to cultivate a model f that gener-
alises to unseen data by minimising the loss function for the available training
data. And whilst the picture is, of course, more nuanced than the brief expla-
nation above, it does give an instructive overview of the operation.
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Separating the nature of a model’s goal of a model defines two categories
of supervised learning:

Classification When the truth labels take values in a discrete set. This can
also be assigning a class label to examples from the problem domain such
as in the classic example of classifying emails as "spam" or "not spam".

Regression Where the truth labels take values in a continuous range and
the goal is to also return a continuous prediction. Examples include
predicting the price of a house based on its area, number of bedrooms
etc.

3.1.2 Loss Functions

In supervised learning tasks the choice of loss function by definition determines
the quality of evaluation of a given hypothesis (set of weights). This is of
vital importance as particular loss functions may be susceptible to outliers or
unable to handle particular edge cases. Careful selection of a loss function can
transform an ML problem and vastly improve performance.

The choice is especially important as loss functions can (and often do)
have a very complex landscape with many local minima or saddle points where
optimisation via gradient descent can, quite literally, lead down the wrong
path. However, there are techniques designed to address this such as stochastic
gradient descent [67] that allows the loss function to exit potential local minima.
Manipulation of the learning rate may also mitigate the risk of local minima
convergence (see next section).

The choice of loss function is therefore a balancing act between computa-
tion, robustness and interpretability. We will now look at some of the loss
functions used in this project.

In binary classification tasks where ML models output a number between
0 and 1 that reflects the certainty with which some sample belongs in class 0
or 1. This prediction can in some sense be thought of as a probability of this
event lying in class 1.

The binary cross entropy loss is a loss function designed to compare
the dissimilarity of the truth labels, pi, and the predictions, qi, this is also
sometimes referred to as log-loss. This may be written as,

L = −
n∑

i=0
pi log qi = −y log(ŷ) − (1 − y) log(1 − ŷ) (3.2)

n is the number of classes, in this case 2, and the truth and predictions are
y and ŷ respectively. The second equality comes from the fact that this is a
binary classification task. As there are only two classes we can state, without
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Figure 3.2: BCE loss for the two different truth categories (preliminary)

loss of generality, that ŷ = qy=1 = 1 − qy=0. This step simply makes explicit
that the prediction, ŷ, can be interpreted as p(y = 1). From equation (3.2)
it is clear that there are two modes (sets of behaviour) of this loss function.
When the truth label is 0 the first term goes to zero, and conversely when the
truth is 1 the second term vanishes. This has the intended effect of punishing
those whose prediction is far from the truth. See Figure

For regression tasks the output of the model is not constrained, as is the
case in classification, and so loss functions must be able to handle the increased
domain/range of potential predictions. Among the most popular is the mean
square error (MSE) which is simply the sum of squared distances between
the truth and the predicted values.

MSE =
∑n

i=1(yi − ŷ2
i )2

n
(3.3)

MSE is a quadratic scoring method which means the loss is proportional to
the square of the error, and so outliers or particularly poor predictions will
more dramatically affect the overall loss during training.

Another common loss function that instead scales linearly with the error,
and is equal to MSE in its simplicity is the mean absolute error (MAE).
The MAE measures the average of the absolute distance between the truth
and predicted values.

MAE =
∑n

i=1 |yi − ŷi|
n

(3.4)

The MAE works well, but around the minima the gradient is steep, which
risks overshooting the optimal prediction during back propagation.

The combination of a linear and quadratic scoring method can be perceived
as a happy middle ground, thus the loss function selected in this work is log-
cosh loss. MSE is an improvement over MAE if our data contain large errors
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Figure 3.3: Common loss functions used for regression.

as MSE captures/responds to large discrepancies better. Unfortunately, the
drawback of this is that MSE is much more sensitive to errors than MAE. Log-
cosh is somewhat of a compromise as for small discrepancies/errors log-cosh
behaves as MSE and for larger errors and outliers behaves more similarly to
MAE.

L =
n∑
i

log
(

cosh(yi − ŷi)
)

=
n∑
i

log
(

e(yi−ŷi) + e−(yi−ŷi)

2

)
(3.5)

In this project a less commonly employed loss function is used for regression
of the specific labels, azimuth and zenith, that is called the von Mises-Fisher
(vMF) loss. This probabilistic loss function is an alternative to the more
frequently seen cosine similarity [68] however both can be said to belong to
the spherical family of loss functions and vMF is sometimes referred to as the
circular normal distribution.

The intended design of vMF was as a solution in natural language process-
ing, where words are encoded as vectors in some high dimensional embedding
space, to reduce computational cost and increase the vocabulary variety possi-
ble [69]. At its most basic level the idea of the vMF distribution is to return a
high probability when the vector in question lies close to the mean direction;
in a directional analogue to a Gaussian distribution. The probability density
function for an m-dimensional vector ~x, is given as,

p(~x; ~µ, κ) = Cm(κ)eκ~µ·~x = Cm(κ)eκ cos(∆φ) (3.6)

where ~µ is the mean direction vector (the truth) and both this and ~x are of
unit length, and ∆φ is the angle between the true and predicted direction. κ
is a positive scalar called the concentration parameter, the greater the value of
κ the higher the concentration of the distribution around the mean direction
~µ.
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Figure 3.4: vMF distribution in two dimensions with ~µ = 0 and varied κ.
Taken from [70]

One can interpret κ as playing the role of σ in a Gaussian pdf. The
normalisation term Cm is defined as the following:

Cm(κ) = κm/2−1

(2π)m/2Im/2−1(κ)
(3.7)

and In is the modified, order-n Bessel function of the first kind.

For our purposes the two dimensional vFM distribution is sufficient as it
describes the probability distribution on a S1 sphere, see Figure 3.4. We write,

p(~x; ~µ, κ) = eκ cos(∆φ)

2πI0(κ) (3.8)

To this end the negative log-likelihood of this two dimensional distribution
is simply,

NLLvMF(~x; ~µ, κ) = − ln(p(~x; ~µ, κ)) = −κ cos(∆φ) + ln(2πI0(κ)) (3.9)
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3.1.3 Hyperparameters

A key aspect of ML problems is model creation/development and while this is
often completed via user defined design choices there are some overarching and
impactful model parameters set before training begins called hyperparameters.
Hyperparameters are used to configure various aspects of the learning/training
process and can dramatically vary the resulting model performance. They are
also notoriously difficult to find, and are often found through intensive, iterative
processes (hyperparameter optimization). This is often impractical when the
number of hyperparameters is large or with increasing model complexity, and
significant research efforts have been focused on faster hyperparameter search
algorithms [71].

In this section we will describe some of the most common and important
hyperparameters for general models and their potential effectiveness on per-
formance. It is a key balancing act of ML to select an appropriate set of
hyperparameters and increase the model complexity to a level where training
loss decreases but model generalisation is maintained.

The first hyperparameter, that we have already seen, is learning rate. The
learning rate controls the magnitude with which the model weights are updated
after back-propagation. For gradient descent optimization the learning rate
defines the size of the steps taken, this is summarised in Figure 3.5, for a
simple loss function landscape, in just one dimension.

This figure is illustrative of a wider point about the learning rate, that
cannot be known in advance; if the learning rate is too small then the model
will have to go through many rounds of forward passes and back-propagation
updates to reach the minimum. On the other hand, if the learning rate is too
large then the adjustments made to the weights may be overall in the correct
direction, but far too large and over-shoot the desired minima. It is therefore
difficult with a large learning rate to discover the subtleties of complex loss
landscapes.

A descriptive metaphor for the learning rate could be that of a golf player
attempting to put a shot. Too large a learning rate leads to the golfer con-
tinually over hitting his shot and the ball running past the hole, whereas too
small leads to many tiny taps of the ball towards the pin.

An additional determinant of model performance is the number of times the
model sees the entirety of the training data. Depending on the batch size, this
is equal to the number of cycles through forward and backward propagation
and is also called the number of epochs. There is something of a balance when
training an ML model where one wants to capture all of the information in
the training data (avoid underfitting) whilst also not becoming too specialised
to the data seen in training (overfitting).
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Figure 3.5: Fictitious plot depicting the effects of different learning rates.
Lower learning rates will make linear improvements to loss whereas higher
learning rates may "bounce" around in search of a new minima without settling
in a minima. Taken from [72]

The aim is to learn just those features that are essential in the training
data while ignoring the quirks and noisy fluctuations of the specific data in
the training set, so that the model in question generalises to unseen data more
effectively. While complex models may achieve the best results on the training
set they may simply be erroneously recognising patterns that do not exist in
real data.

Varying the number of epochs that the model is trained over can mitigate
the risk of overfitting the training data however a more robust method exists
that aims to address this problem, early stopping. Early stopping allows
the model to monitor its own generalisation power by looking at the losses
generated on predictions of the validation set and reduce the risk of overfitting.
As shown in Figure 3.6 the loss for both validation and training sets decreases

Figure 3.6: General example of overfitting of training data, with associated
stagnation/increase in validation loss. Early stopping after arbitrary number
of epochs mitigate disparaging loss scores[?].
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in initial epochs, however after some number of cycles the validation loss ceases
to decrease in tandem with the training loss. Beyond this point the model is
overfitting to the training data and losing ability to generalise to the validation
set. Early stopping is a form of regularisation that terminates the training
process at the point where the validation loss starts to increase.

The aforementioned hyperparameter batch size defines the number of sam-
ples that are considered before the model weights are updated. This can
happen many times during an epoch, each single gradient update is referred
to as an iteration and when the batch size is equal to the size of the training
set then one iteration is one epoch.

A small batch size will introduce a high degree of variance into the weight
updates as a small amount of data dictates the back propagation modifications.
Characteristics of each batch of data may not be reflective of the whole training
set. Conversely, if the batch size becomes too large it may not fit in the memory
of the CPU or GPU used in training and may also lead to poor generalisation
(though in the general case this is still debated) [73, 74, 75, 76].

In ML it is difficult, if not impossible, to make sweeping general statements
about the effectiveness of different hyperparameters on model performance as
the behaviour for different datasets, model architectures and combinations of
other hyperparameters. Batch size is no different, and further depends on the
computational capacity available. Practitioners often opt for larger batch sizes
to take advantage of CPU/GPU speedup, but this may come at the expense of
the explorative properties of smaller batch methods that converge to different
minima with different generalisation properties [77].
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3.2 Neural Networks
Artificial neural networks (ANNs or just NNs) are a relatively old concept [78],
especially in the ML community where contemporary papers are frequently
rendered obsolete in a few years. While neural networks initially took inspira-
tion from biological brains, there are now a multitude of different types of NN
that vary considerably from the feed-forward NNs we will discuss now. This
section is intended to act as an introduction to the mechanics of NNs and to
provide context for future sections we will not discuss the rich field of exotic
architectures and diverse parameter spaces.

NNs are nonlinear models that extend and generalise existing supervised
learning methods such as linear/logistic regression[reference]. A standard NN
is made up of a varying number of building blocks called nodes, neurons or
sometimes units; each of these neurons take as input a vector, (x1, x2, ...xd)
of arbitrary dimension, d, and returns a scalar output. Figure 3.7 displays
the simplest NN, with just one neuron, that computes the weighted sum of
the inputs, z = ∑

j wjxj and then applies an activation function to return an
output σ(z).

Figure 3.7: Simple NN with a single neuron taking three inputs, applying
activation function to their weighted sum. Taken from the [MLBasicsBook]

Clearly, the weight, wi, associated with each of the inputs xi relays its
importance to the overall neuron output, and this holds for more complex
NN structures. Even the simple NN in Figure 3.7 defines a hypothesis space
containing all the maps from input to output obtained with different choices
for the weights and activation function. Note that this NN reduces to a linear
map if the activation function σ(z) = z.

More generally, NNs are made up of many neurons arranged in layers where,
crucially, the output of one layer is the weighted input to the next though in
principle the interconnections between neurons can be arbitrary. The first layer
that contains the data/features is called the input layer, subsequent layers are
called the hidden layers and the final layer the output layer, as shown in Figure
3.8.
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Figure 3.8: More complex NN structure containing just a single hidden layer
with weights labelled. This model defines the hypothesis space consisting of
all maps h(w)(x) that are obtained via all combinations of weights (w1, ..., w9).
Also taken from the [MLBasicsBook]

The weighted summation of inputs that happens within a neuron can
sometimes also contain a re-centering term, the bias, bi. Altering the above
operation to become z = ∑

j wjxj + bj . The choice of activation function will
impact, or even negate, a particular neuron’s contribution to the input of the
next layer. The activation functions also add non-linearity to the NN map
between input and output; without them the NN would simply be a linear
regression model, as the composition of two or more linear functions is itself
a linear function. The non-linear nature of the activation function allows the
NN to perform non-linear regression and classification of data that are not
linearly separable.

Six of the most common activation functions for neurons are shown below
in Figure 3.9

One problem NN contend with is the vanishing gradient problem whereby
gradient descent backpropagation methods update the weights in proportion to
the partial derivative of the loss function w.r.t that weight, and in some cases
the gradient will become vanishingly small preventing any significant update
to this weight [80]. In the extreme this can prevent the model from training -
an example is the use of tanh as an activation function. The derivative of tanh
is sech2 which is bounded from above and below in (0, 1], successive derivatives
in a chain rule multiplication decreases the magnitude of the total gradient
exponentially and the gradient "vanishes".

Conversely, activation functions can also be susceptible to the aptly named

50



Figure 3.9: Common activation functions used in NNs. The discontinuous
nature of the derivative of the perceptron (step) activation function means that
it may not be used if optimised via gradient descent. The derivatives of the five
other activation functions determine how they update during backpropagation.
Taken from [79]

exploding gradients problem. This, as the name suggests, occurs when large
partial derivatives of the loss function accumulate during backpropagation
and result in large updates to the network weights, and consequently model
instability. Practically such large gradients can produce overflow (NaN) errors
that prevent further training.

The number of layers in a NN is called the network’s depth, and if this is
larger than some small integer then the model is often referred to as a deep
neural network (DNN). The number of neurons in a layer is called the width.
Increasing the width of layers and depth in a NN increases its capacity which
means that the space of representable functions, the hypothesis space, grows.

Choosing the best NN for a given task is clearly non-trivial and requires
extensive trial and error, experimentation and a little intuition. There is no
recipe for the most performant architecture although it should be sufficiently
complex as to avoid underfitting [81]. Therefore NN solutions require bespoke,
task-specific considerations that best align with the training data at hand,
which we will see more of in the next section.
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3.3 IceCube Data As Input
The IceCube collaboration stores all data from physics runs and official simu-
lation in the collaboration specific .i3 file format.

These files contain a number of sequentially stored frames [82, 83] of which
the three most important types are: geometry (G) that contain information
about the detector geometry, data acquisition (DAQ or Q) frames that hold
waveforms recorded for a particular event time window, physics (P) frames
which contain all processing information such as reconstructions, pulsemaps
and event identification information. Each P frame represents one IceCube
event as defined by the collaboration wide filters.

The data pipeline used in this project relies heavily on the work of previous
masters students at NBI [84, 85] who created a method for extracting the
relevant information in i3 files and reformatting this as a SQLite database
[86].

Despite their ubiquity in the IceCube collaboration the i3 file format
is unsuitable for our machine learning purposes. Since the data is stored
sequentially one cannot load only the frames they are interested in, they must
load each of the frames in order before passing to the next. This makes their
use in creating training and validation data sets incredibly difficult as these
should be easily retrievable for every epoch in training.

The use of SQLite databases solves these issues and allows the user to
simply query any specific subset of events inside the database prior to running
training/inference. For each event in an i3 file there is a corresponding event

charge dom_time dom_x dom_y dom_z pmt_area rde width
0.675 8688.0 -256.14 -521.08 -406.07 0.044 1.00 8.0
1.275 9871.0 114.39 -461.99 107.19 0.044 1.00 8.0
1.425 12466.0 114.39 -461.99 107.19 0.044 1.00 1.0
0.775 9132.0 -334.80 -424.50 -486.61 0.044 1.00 8.0

...
...

...
...

...
...

...
...

Table 3.1: A tabular representation of the feature information for one event
in an i3 -converted SQLite database. The number of rows is variable between
events as it is the number of pulses in the extracted pulsemap.

in the SQLite database with three associated tables. The first table contains
the features extracted from the pulsemap. This contains the information
pertaining to the detector response and a typical example is shown in Table
3.1, dom x,y,z and time refer to the location and time of the pulsed DOM
(according to the IceCube conventional coordinate system), charge refers to
the charge that the DOM measured, pmt_area the surface area of the PMT,
rde refers to the relative DOM efficiency and width gives the width of the
pulse in nanoseconds. These features are produced for both simulation and
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real experimentally collected IceCube data and is precisely the input to future
ML models.

The data in Table 3.1 is the input to any ML model, and for MC simulation
we must have some target that our model aims to predict. These "truths" are
given on a per-event basis and a subset of these are listed below.
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• RunID; IceCube run identification number specific to i3 files

• SubRunID; IceCube sub-run identification number

• EventID; IceCube event identification number specific to i3 frames

• SubEventID; IceCube sub-event identification number

• event_no; Local unique event number serving as index

• pid; particle flavour (following [87])

• interaction_type; boson involved in neutrino interaction, CC or NC

• energy; energy of particle

• azimuth; azimuthal direction of travel of particle

• zenith; polar direction of travel of particle

• stopped_muon; boolean for muons that are contained in the detector
volume

• position_x; x-coordinate of interaction position for neutrinos, projected
stopping point for muons

• position_y; y-coordinate of interaction position for neutrinos, projected
stopping point for muons

• position_z; z-coordinate of interaction position for neutrinos, projected
stopping point for muons

• event_time; time of neutrino interaction

• DeepCore filter; boolean for events that pass DeepCore filter

• oscNext L3 pass; boolean for events that pass oscNext analysis level 3
filter
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3.3.1 Stopped Muons

One of the stated aims of this work is to identify and reconstruct a sample of
stopped muons. This begs the question: what does it mean to be stopped?
This section describes the criteria and calculation performed to determine if a
muon is stopped or not.

As described in Section 1.5.1 we know that muons lose energy radiatively
as they propagate in ice. A subset of all muon events in IceCube will lose
enough energy that they "stop" inside the instrumented volume of ice. The
track-like signature of these muons will be interrupted and cut short. The
stopped muon will then decay to a Michel electron and two neutrinos.

In this work a muon is defined stopped (and its stopped_muon boolean set
to 1) when it’s stopping point lies at least 150m inside the outer boundary of
IceCube and at least 150m away from the top and bottom layer of DOMs. The
stopping position itself is calculated for simulated muons by tracing the muons
track length (the propagation distance) along the direction vector defined by
the muon’s true azimuth and zenith from the point of generation (in this case
the MuonGun generation cylinder). This process is illustrated for for a small
number of muons in figure 3.11.

Figure 3.10: The start and finish positions of 10 sample MuonGun muons.
Strings colored blue, outer boundary in black. Muons must be at least 150m
inside the IceCube border and 150m above the lowest DOM and 150m below
the highest in order to be classified as stopped.

Several MuonGun generation artefacts can be observed in the above figures,
most clearly is the generation cylinder which presents itself as a circle in the
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Figure 3.11: The start and finish positions of a sample of MuonGun muons.
Strings colored blue, outer boundary in black. Muons must be at least 150m
inside the IceCube border and 150m above the lowest DOM and 150m below
the highest in order to be classified as stopped.

x − y plane and an apparent majority of muons produced at z = 800m in the
x − z plane. The insistence that muons intersect DeepCore before they are
simulated also skews our sample towards the central region of the detector.
Though the difference this makes in real data is mitigated by application of
the DeepCore filter.
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3.4 Graphs and Graph Neural Networks
This section concerns the physically motivated application of graph neural
networks (GNNs) to data output from IceCube. The motivation for this is
clear, models that can leverage and incorporate our inherent prior knowledge
about the structure of the graph data tend to generalise better [88], and graphs
are a natural choice for IceCube events where data can be sparse, irregular
and with a large number of dimensions. We begin with a short introduction
to graph theory before looking at how GNNs operate in general. As a field,
GNNs are very rapidly expanding and this section intends to introduce the
mechanics that will be relevant in later sections.

3.4.1 Graph Theory

As most introductions to graph theory start, a graph is a mathematical object
containing a set of entities (nodes) and the relations between them (edges).
This definition can be further specialised by enforcing that edges should have
an associated directionality. If edges have a defined direction/orientation they
are said to be directed, otherwise they are undirected.

There are several useful matrix representations for graphs, the most com-
mon is the adjacency matrix. For a simple graph G, with a set of nodes (or
vertices) V , and edges E, we may write G = (V, E). An edge e ∈ E has two
endpoint nodes e = u, v and we call u and v neighbours (or adjacent). We can
then write the adjacency matrix A ∈ Rn×n as,

Aij =
{

1 if {vi, vj} ∈ E and i 6= j

0 otherwise
(3.10)

An adjacency matrix will always be symmetric if the graph itself is undirected.
A simple example of directed and undirected graphs and their respective
adjacency matrices is shown in Figure 3.12. Unfortunately, the graphs in this
work will not be this simple.

The degree of a node is denoted by d(v) and is simply the number of edges
that it is connected to. In a directed graph this is the same as the sum of the
number of edges flowing into the node and the number of edges emanating
from itself. The degree matrix D ∈ Rn×n is a diagonal matrix of the following,

Dii = d(vi) (3.11)

Many graphs display large heterogeneity in the capacity and intensity
values of edges, where practically this means that not all edges in, directed or
undirected, graphs have the same importance. One can encode this information
into the graph structure by constructing a weighted graph where, associated
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Figure 3.12: The adjacency matrices for different directed and undirected graph
representations. Note that permutation of the nodes changes the adjacency
matrix, but not the graph representation itself. Figure from [89]

with each edge e between two nodes i and j, there is an associated weight
wij . A weighted adjacency matrix is simply defined in the same way as an
adjacency matrix where non-zero entries are simply the weight wij rather than
1.

Graphs are an obvious choice for complex systems where additional in-
formation is stored in its topology. Examples include information or social
networks and drug discovery.

The data collected in IceCube can be naturally expressed as graphs that
preserve the detector structure and physics information in a way previously
inaccessible to ML methods. Traditionally, ML paradigms coped with IceCube
data by preprocessing the output for an event into a simpler representation
such as a series of vectors. In doing so, these methods suffer from the loss of
potentially important information or any topological dependency.

Composing IceCube data as graphs, while convenient, requires forethought
about the connection of localised spatial data in a high-dimensional feature
space.

A toy example of one IceCube event displayed in a graph structure is
shown in Figure 3.13. Here we take the detector output data as described
in Section 3.3 and create a graph where only those DOMs that triggered are
considered nodes, with the edges left to be defined. The node features are
simply those defined in Table 3.1, where each node in the graph stores all 8
columns associated with the selected DOMs row. Using graph representations
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Figure 3.13: Triggered DOMs shown in color, red for early pulses, blue for
late centred around muon propagation in purple. Untriggered DOMs in white.
Edges are purely for illustration.

of IceCube events as inputs we may employ GNNs on event level graphs and
reconstruct the truth labels for the entire event.
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3.4.2 Message Passing Networks and Convolutional Layers

GNNs rely on an underlying message passing scheme that defines how
information is shared within the graph structure. If we let a graph G ≡ (V, E)
with nodes {v, w} ∈ V and edges evw ∈ E have a vector of node features
associated with every node xv. The forward pass then proceeds in two phases,
a message passing phase and a readout phase [88]. The message passing phase
is defined in terms of messenger functions Mt and node update functions Ut.
In the message passing phase the hidden states ht

v at each node are updated
based on messages mt+1

v which are produced for iteration t as,

mt+1
v =

∑
w∈N(v)

Mt(ht
v, ht

w) (3.12)

and the sum over w ∈ N(v) is over all neighbours of node v defined as those
with edges connecting the two. The nodes are then updated using this message
according to the function Ut,

ht+1
v = Ut(ht

v, mt+1
v ) (3.13)

The choice of messenger and update function is arbitrary, as long as they are
differentiable and contain learnable weight parameters.

There are a number of different message passing schemes but for this
work one particular family will be particularly important. This family, graph
convolution neural networks [88, 90], can be interpreted as specialised message
passing networks that utilise the graph Laplacian in the message passing phase.
These layers tend to have simpler message functions but are typically applied
on larger citation/knowledge networks that have clearly defined real valued
adjacency matrices. [91] proposes the following layer-wise propagation rule:

H l+1 = σ
(
D̃−1/2ÃD̃−1/2H lW l) (3.14)

where Ã = A + IN is the graph adjacency matrix with additional self loops.
D̃ii = ∑

j Ãij is the degree matrix of the graph with enforced self loops. Each
H l ∈ RN×D denotes the D dimensional node states (features?) for the N
nodes in the graph, W l ∈ RD×D is the learnable weight matrix. The function
σ(x) refers to a non-linear activation function, for example σ(x) = ReLU(x) =
max(0, x) that was introduced earlier.

Reverting to our original notation, for the following we will write M(v) as
the row in M indexed by v (which will always correspond to a particular node).
For brevity let L = D̃−1/2ÃD̃−1/2. A node state is then updated with

Ht+1
(v) = σ

(
L(v)H

lW l) = σ

( ∑
w

LvwH l
(w)W

l
)

(3.15)
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The v row of matrix H is equivalent to a column vector for node v we saw
earlier hv. Thus, equation (3.15) above is equivalent to the following.

ht+1
v = σ

(
(W l)T

∑
w

Lvwht
v

)
(3.16)

This allows us to write the message function while expanding L in more familiar
notation as,

Mt(ht
v, ht

w) = Lvwht
w = Ãvw

(deg(v)deg(w))1/2 ht
w (3.17)

And reflecting the form taken in equation (3.12) we write,

mt+1
v =

∑
w

Mt(ht
v, ht

w) =
∑
w

Ãvw

(deg(v)deg(w))1/2 ht
w (3.18)

Writing the message function in this way automatically determines the
update function by comparing equations (3.13) and (3.16) we retrieve,

Ut(ht
v, mt+1

v ) = σ((W t)T mt+1) (3.19)

By definition the matrix Lvw contains real, scalar values, so in particular for
convolutional layers the message passing function is analogous to taking a
weighted average of neighbouring nodes at each time step. Crucially, this
effect compounds for multiple successive convolutional layers.

As aforementioned, in this project, we are only interested in graph-level
classification and regression. Practically, this is achieved using a combination
of graph convolution layers, graph pooling/aggregation layers and/or readout
layers. This structural philosophy is also true for the model we use described
in Section 3.5. Graph convolutional layers task is to extract high-level node
representations of the input graph while pooling and aggregation layers coarsen
the graph and play the role of down-sampling [92]. A readout layer collapses
the node representations from each graph to a vector compatible with a multi-
layer perceptron or another NN.

The readout phase simply computes a feature vector for the whole graph
using some readout function R following,

ŷ = R({hT
v |v ∈ G}) (3.20)

The readout step returns a graph-level output from all updated nodes and
must be invariant under permutations of the node ordering. The nature of the
readout function depends on the objective and desired output after a chosen
number of rounds of message passing and updating phases.
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3.5 The DynEdge Model
The model used throughout this project was extensively developed and tuned
by a previous student, Rasmus Ørsøe, at NBI and can be found here [85].
The goal of this section is to explain the constituent parts of the model and
their function. The results discussed in future chapters were all produced after
training by the model architecture described in this section.

After having turned an IceCube pulsemap into a graph there is some
feature scaling performed in order to reduce the complexity of the GNN loss
landscape and allow the global minima to be found more easily. This is applied
separately on the different features (dom_x, dom_time, charge etc.) as their
scales vary by several orders of magnitude. Transforming the columns in this
way brings each of their ranges to approximately the same order of magnitude
and improves the stability of the model.

The model, named DynEdge, takes as input an event graph and passes
each through four custom convolutional blocks. In each of these blocks a
2-layer perceptron, with 2 ReLU activation functions, takes the feature matrix
as input and outputs an augmented "feature" matrix of different dimension.
For every node in the graph, the operator convolves the nodes features xj in
the local neighbourhood (all those connected to the node in question) and
updates the features as,

x̃j =
Nneighbours∑

i=1
MLP(xj , xj − xi) (3.21)

leaving the updated node features x̃j a function of the MLP, the original node
features xj and the pairwise difference between the node and all neighbour
nodes. One full convolutional operation on the graph is complete when all
nodes have been updated in this way. The output of the MLP need not be the
same shape as the input features, and in fact, having more features gives the
model more flexibility with which to update more learnable parameters.

Not only does the number (and therefore dimension) of "features" change
but also their values, which are now the result of the MLP function on all of
its neighbours and with the MLP weights and activation functions.

Before this new "feature" matrix is fed to the second convolutional block a
new k nearest neighbours (kNN) algorithm is run in order to connect nodes
in their new high-dimensional feature space to their new nearest neighbours.
The second and subsequent convolutional blocks repeat this procedure until
there are four additional graph representations of the initial event in total.

When all four convolutional blocks have been applied the feature matrices
from all five graph representations are concatenated and fed into a shallow NN.
After this stage an aggregation of the features occurs, along the dimension of
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Figure 3.14: The DynEdge architecture visualised diagrammatically. The con-
volutional layer EdgeConv [93] occurs four times between graph reconnection,
the EdgeConv operator is shown in the lower right.

the number of pulses (this step allows the theoretical size of the input graph to
vary) where the max, min, mean and sum of the concatenated feature matrices
is extracted.

The these pulse-wise aggregations are combined with global statistics of
the initial graph (such as the node homophily ratio and the total number of
pulses in the graph). This combination is then sent though a final NN which
behaves as the readout function for this model.
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4
Results

The aim of this work has been to use the new graphical ML approach to, for
the first time, identify and reconstruct a large sample of stopped muons in
both simulation and real experimentally recorded data. The real data used for
the duration of this work is the entirety of the data taken on the 23rd January
2019.

The goal of this effort is to determine if we can use the muons that stop
inside the detector as a standard candle - a well identified population with a
particular detector response - to compare real data to simulation. It is only
now possible to process the enormous atmospheric muon rate at low energies
with the reconstruction speed and accuracy of GNNs.

The classifiers used also investigate the difference in results between L2+DC
and L3 in the oscNext event selection chain as well as comparing classification
performance on cleaned and uncleaned pulsemaps to test if the SRT cleaning
algorithm aids or hinders our ability to reconstruct the muons.

After classification we engage in a full reconstruction of the classified
stopped muons. This allows us to place the real data and simulation in
juxtaposition and compare the two and scrutinize any differences.

The results presented throughout this chapter were all obtained using the
DynEdge model architecture described in the previous chapter. The training
sets used are described in more detail in the appendix. That said, it is
meaningful to have some insight into the 24 hours of real data extracted from
the IceCube servers at each stage of our classification process.

On 23rd January 2019 there were 1, 420, 709 L2 events that passed the
DeepCore filter, it is with these events that we begin our journey. After
application of our noise classifier we lose 576, 611 events as noise leaving us
with 844, 098 muon or neutrino events. The muon classifier removes just
65, 764 events leaving us with 778, 334 events DynEdge has classified as muons.
Finally, the stopped muon classifier picks out 157, 607 events as stopped. This
leaves us with an efficiency of slightly over 10%. These chosen events are the
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subject of the full reconstruction work in the upcoming subsections. Despite
starting with data from just 24 hours of detector livetime a stopped muon
sample this large has never been found before.
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4.1 Classification Of Level 2 Data

Noise-Particle Classifier

The first classification performed for this project is potentially the most impor-
tant - the noise classification; this could not have been completed without the
aid of current NBI master student Kaare Iversen. This classifier, trained on 5
million simulated events (2.5 million noise events, 2.5 muon/neutrino events),
attempts to separate pure noise from those particle-induced events by giving
each event a score (or probability estimate) with higher scores indicating the
model’s belief the event was caused by a particle.

The DynEdge model, configured with 8 k-nearest neighbour graph con-
structors, used the prepackaged PyTorch [94] binary cross entropy loss during
training.

Figure 4.1 shows the application of the model to L2+DC data, the initial
level of event selection considered in oscNext. In this figure we see that the
model is able to separate noise and physics events well (also see figure 4.2) and
that this is true for both simulation and real data, though real data contains
more events in the central bins where the model is less certain. Since the scale
is logarithmic the real data in the central bins is not an issue, almost all the
real data is in the outer bins. See Appendix for unscaled histograms for all
classifiers

Another way to measure the classification power of a model is to look
at the ROC curve, [95], which is a diagnostic aid plotting the proportion of
true positives against the proportion of false positives for all possible values
of the threshold parameter (noise cut). Figure 4.2 shows the ROC curve for
this classifier and also another model trained on cleaned events only. The
impressive performance of the model makes the resulting figure slightly hard
to read. The main takeaway is that a perfect classifier has a ROC curve that
extends maximally into the top left corner of the FPR against TPR plot or,
in other words, has an area under the curve of 1.

Pursuing our overall aim of finding a pure stopped muon sample we must
now choose to make a cut in the noise classification score, that best reduces
the amount of noise in our event sample while keeping the most "signal" events
(stopped muons). In many cases the choice of the cut value can have large
implications with a trade off between purity and efficiency. Fortunately, in
our case we have a little flexibility depending on the overall motivation of a
project. Figure 4.3 shows the fraction of events that remain for each particle
type for a given cut in the noise classifier.

At our chosen cut of 0.9 the fraction of noise remaining after application is
0.0014%. Throughout the rest of this work we will now only deal with events
that have a prob(particle) score of greater than 0.9.
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Figure 4.1: Stacked histogram of particle probabilities predicted by DynEdge
on both simulation and real data L2+DC. Rates calculated using oscNext flux
weights, and MC scaled to reflect rate of real data collected. This histogram
was produced using a model trained on a balanced set of 5 million events and
inferring on 48 million events using uncleaned (SplitInIcePulses) pulsemap.

Figure 4.2: ROC curve for two unbiased noise classifier both trained on 5
million L2+DC events using cleaned (SRTInIcePulses) and uncleaned (Spli-
tInIcePulses) pulsemaps respectively. ROC curve produced from the same data
in balanced validation set of 1.6 million events with corresponding cleaned/un-
cleaned pulsemaps. Dashed line is a random (coin flip) classifier.
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Figure 4.3: Noise cut performance on test sample of events (here events are
unweighted) split by pid for SplitInIcePulses trained noise classifier. Perfor-
mance is tracked by looking at the fraction of events that remain (w.r.t no
cut) and the selected 0.9 cut used in this work is displayed in grey.
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Muon-Neutrino Classifiers

The data passing the initial noise classifier is then processed by another clas-
sifier. This classifier has been trained to separate muons from neutrinos on 5
million events (evenly split between neutrinos and muons). For some analyses
the classifiers ability to provide a pure neutrino sample is the foremost desire
(see figure 4.4) but for our work we require the far more abundant muon events
- figure 4.5 - in any case the ability of the model to generalise and separate
muon and neutrino induced detector signatures is of paramount importance.

Figure 4.4: Stacked histogram of neutrino probability score predicted by
DynEdge on simulation and real data at L2+DC that passes noise cut. Rates
calculated using oscNext flux weights, and MC scaled to reflect the rate of
real data collected. Model trained on, uncleaned (SplitInIcePulses) balanced
5 million event sample, and inferred on 48 million test set.

The model still has enough power separation to separate the muon and
neutrino events. This is despite the fact that in both simulation and real
data there exists some noise leakage. The data-simulation agreement for
this classifier is worse than the previous noise classifier - the model predicts
more neutrinos than one would expect, but the most populous bins show
better agreement. As before, we use the ROC curve to evaluate the classifiers
performance for our simulated test set. This is shown in figure 4.6 and once
again we compare models trained on cleaned and uncleaned pulsemaps and
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draw the conclusion that the model trained on uncleaned events proves to have
a marginally larger area under the curve.

Figure 4.5: Stacked histogram of muon probability score predicted by DynEdge
on simulation and real data at L2+DC that passes noise cut. Rates calculated
using oscNext flux weights, and MC scaled to reflect the rate of real data
collected. Model trained on, uncleaned (SplitInIcePulses) balanced 5 million
event sample, and inferred on 48 million test set.

Once again, we are forced to make a cut based on the models muon score,
the effects of which are displayed in figure 4.7. Here, depending on which
particle population you are aiming for even a loose cut can provide a sample
dominated by either muons or neutrinos. In this case a cut of 0.9 is applied
to the prob(muon) score.
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Figure 4.6: ROC curve for two neutrino classifier models each trained on
5 million L2 + DC events using cleaned (SRTInIcePulses) and uncleaned
(SplitInIcePulses) pulsemaps. ROC curve produced from the same validation
set containing 1.6 million events.

Figure 4.7: Muon and neutrino classifier cut performance on test sample of
events (here events are unweighted) split by pid for SplitInIcePulses trained
noise classifier. Performance is tracked by looking at the fraction of events that
remain (w.r.t no cut) and the selected 0.9 cut used in this work is displayed
in grey on the left plot.
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Stopped-Through Classifier

The final classification undertaken is to determine if the muons left in our
sample are stopped or not. This final stopped muon classifier is also trained
on a training set of 5 million consisting solely of muons, and the results are
presented in figures similar to the previous two classifiers.

Figure 4.10 shows the false positive rate (FPR) and true positive rate
(TPR) of the classifier as a function of the true stopping position for L2+DC
simulation with a stopped muon cut of just 0.6. This visualises which regions
of the detector the model makes the least mistakes or is most accurate in its
predictions. Intuitively, FPR is simply the probability of a false alarm, the
probability that a through going muon was misclassified as stopped. TPR
states the fraction of actual positives that were identified and predicted cor-
rectly. The results as displayed in 4.10 are logical in that they suggest the
regions where FPR is greatest and TPR lowest are at the edges of the detector
along the boundary of what it means to truly be stopped.

Figure 4.8: Stacked histogram of stopped muon classification score predicted
by DynEdge on both simulation and real data. Rates calculated using oscNext
flux weights, and MC scaled to reflect the rate of real data collected. Model
trained on 5 million uncleaned (SplitInIcePulses) event pulsemaps and infer
on 48 million test set.

The final cut we make on our data sample will be on the stopped muon
score of this classifier. The effect of such a cut is shown in the final cut
performance figure 4.11. For this classifier we choose a cut of 0.99. The rates
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Figure 4.9: ROC curve for two stopped muon classifier models each trained on
5 million L2 + DC muon events using cleaned (SRTInIcePulses) and uncleaned
(SplitInIcePulses) pulsemaps. ROC curve produced from the same validation
set containing 1.6 million events.

Figure 4.10: FPR and TPR binned by the true stopping point. Any bins with
less than 50 events is masked. Since TPR requires a true positive case it only
has values inside the fiducial volume of the detector.

for all particle types can be found in table 4.1. After the muon classifier cut
the sample becomes overwhelmingly dominated by muons, though this is to be
expected since the muon rate pre-selection is so high. The final stopped muon
rate for L2 + DC simulation is 1.027 Hz, of which more than 99.5% are truly
stopped. These stopped muon candidates, herein referred to as the stopped
muon sample, will be the events chosen for further reconstruction and analysis
in Section 4.3.
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Figure 4.11: Stopped muon cut performance on test sample of events (here
events are unweighted) split by pid and stopped/through for a SplitInIcePulses
trained stopped muon classifier. Performance is tracked by looking at the
fraction of events that remain, relative to the amount before the cut but after
applying previous (noise, muon) cuts. The selected stopped muon cut 0.99
used in this work is displayed by the grey dashed line.

L2 + DC Noise Cut
(0.9)

Muon Cut
(0.9)

Stopped Cut
(0.99)

Efficiency
(%)

νe 1.78 mHz 1.69 mHz 0.00167 mHz 0.00126 mHz 0.07%
νµ 7.00 mHz 6.77 mHz 0.0721 mHz 0.0381 mHz 0.5%
ντ 0.286 mHz 0.274 mHz < 0.0002 mHz - < 0.05%
µ 4794 mHz 4779 mHz 4642 mHz 1027 mHz 21%

Noise 6621 mHz 8.28 mHz 0.0397 mHz 0.0341 mHz < 0.0005%
Total 11420 mHz 4796 mHz 4642 mHz 1027 mHz 8.99%
Data 16443 mHz 9770 mHz 9008 mHz 1824 mHz 11.1%

Table 4.1: Event rates at level 2, with DeepCore filter applied and the sub-
sequent rates as passed through the event selection chain. Rates calculated
using oscNext weighting. Efficiency is relative to initial L2 + DC rate.
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4.2 Classification Of Level 3 Data
Before continuing with the reconstruction of the L2+DC stopped muon sample
it may be instructive to look at the performance and output of the classifiers
using data that has passed the oscNext level 3 (L3) filter. There are several
reasons why it is worthwhile to do this, first and foremost it is known that the
data-simulation agreement at L3 is better than L2 and that the computational
cost of filtering is low. Since muons are so abundant, they still dominate even
at L3 allowing us to take advantage of natural muon abundance as at L2.

However, the drawback of this approach is the size of the real data sample
passing L3 available to the author. Given the rate of events passing the L3
filter we begin the event selection process with just 54, 170 events from the 24
hours.

For brevity, in this section, we will show a subset of the same figures as
shown in the previous Section 4.1 with discussion saved only for the notable
points of difference between the two procedures. The same trained models will
be used as before, though only classifying events that pass the L3 filter.

The initial noise classification on events passing the L3 filter is shown
in figure 4.12. The stochasticity of the real data predictions is most likely
due to the low number of events in the central, uncertain bins. Hence, small
fluctuations of events in each bin lead to what appears to be a large difference
between neighbouring bins. This problem is in part resolved by using coarser
bins (see Appendix), though for consistency here we keep the number of bins
to be 100.

The clear signal from the decision score histograms in 4.12,4.13,4.14 is that
the model maintains its ability to separate noise, neutrinos and muons. It is
also surprising that the data simulation agreement is comparable to that of
the L2+DC events however this may simply be due to the lack of a large real
data sample.

Differences between the two event selections are still present, however,
figures 4.1 and 4.12 show that for L2 data there is a more smeared population of
muon/neutrino events which is not present to the same extent in L3. Logically,
we know that this is the removal of a number of muon events from L2+DC to L3
which leaves the muons and noise that are more difficult to classify/differentiate
from particle events. The L3 filter removes the "easy" noise and muons and
therefore leaves us only with events that display more neutrino-like properties.

In figures 4.5 and 4.13 the main discrepancy is in the leftermost bin where
the model is most certain the event has been induced by a neutrino, and not
a muon. In L2+DC there is a large discrepancy where the model projects
that there are more than twice as many neutrino events in real data than in
simulation. L3 smooths this disagreement and the left bin contains just 1.2
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Figure 4.12: Stacked histogram of noise classification score predicted by
DynEdge on both simulation and real data at event selection level 3. Rates
calculated using oscNext flux weights, and MC scaled to reflect the rate of real
data collected.

times as many neutrino events in the L3 sample. This suggests that events
that do not pass the L3 filter are bamboozling the model and causing the
overestimate at L2+DC.

The stopped muon classifier is least affected by the change from L2+DC
to L3, except for the loss of an order of magnitude of the muons present.
The overall characteristics displayed in 4.8 and 4.14 are similar, and the main
differences are due to statistical fluctuations arising from the small number of
events and the choice of binning in the histogram.
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Figure 4.13: Stacked histogram of muon classification scores predicted by
DynEdge on both simulation and real data at event selection level 3 and after
a cut in noise prediction at 0.9. Rates calculated using oscNext flux weights,
and MC scaled to reflect the rate of real data collected.
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Figure 4.14: Stacked histogram of stopped muon classification scores predicted
by DynEdge on both simulation and real data at event selection level 3. After
a cut in noise prediction at 0.9 and muon prediction at 0.9. Rates calculated
using oscNext flux weights, and MC scaled to reflect the rate of real data
collected.
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4.3 Reconstructing Stopped Muon Sample
Following the application of the classifiers and their respective cuts and having
expressed the rates for the final sample in Table 4.1 we now proceed to the
reconstruction of the stopped muon sample at L2+DC. The simulated noise
events are nearly completely eliminated after the noise and muon cuts leaving
the sample overwhelmingly dominated by muons. This is equally true in real
data, where the immense majority of events are muons after removing noise,
even before the muon cut is applied. One advantage of the stopped muon
sample used for this analysis is the natural abundance of muon events at
IceCube.

The structure of this section is as follows; first we display the regression
results output from DynEdge trained models for energy, zenith, azimuth and
stopping position. Each regression variable will be presented with a figure
detailing the accuracy of DynEdge predictions on the simulated stopped muon
sample by looking at the prediction residuals. A second figure will show a
basic histogram of the results as well as a 2d histogram plotting the simulation
predictions against truth. Finally, we will compare the simulated histogram
to that predicted by the model for real data. See Appendix for histogram of
regression outputs with logarithmic scales and unweighted scatterplots.

Following the regression results we examine some of the key features of each
event. These do not require reconstruction as we can engineer the detector
output pulsemap to retrieve this information. Looking at these distributions
together with our reconstructed values provides us with another avenue through
which to compare real data and simulation.

4.3.1 Energy Regression Results

The distribution of energy predictions and truths for the simulated stopped
muon sample is shown in figure 4.15. We see good agreement in the densely
populated bins but also long tails in truth that are less well reconstructed.
In figure 4.16 we quantify the difference between true and predicted energy
by looking at the residuals, true − predicted, for events binned in their true
energy. We see clearly that the model predictions are best in the central bins
with the most events.

The discrepancy in the tails is partly explained by the generation of
MuonGun simulation. The minimum energy muon produced for our train-
ing set was 150 GeV, which means that our model has never seen events below
this energy. When we come to reconstruct the stopped muon sample, some
low energy neutrino or noise events may confound our model’s predictions.

Finally, when comparing to the real data stopped muon sample in 4.17 we
see excellent agreement. DynEdge predictions in simulation match those of
real data very closely.
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Figure 4.15: A) Histogram of DynEdge energy predictions and base truth for
the stopped muon sample. B) 2d histogram of true energy against DynEdge
predictions. A perfect classifier is represented with the dashed line.

Figure 4.16: A) Illustration of the calculation that produces residual plots in
this work. All events in each bin have their residual calculated, from this we
take the mean and the confidence interval (difference between the 84th and
16th percentile) for a presumed normal distribution and plot this for each bin
of events. Number of events in each is shown in brackets for context. B) The
average residual (truth-energy) for events in each true energy bin. Overlaid is
the event population binned in their true energy.
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Figure 4.17: Histogram of DynEdge energy predictions for stopped muon
sample in both simulation and real data. Simulation scaled to match rate of
real data. MC truth provided by IceCube simulation (MuonGun).
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4.3.2 Zenith Regression Results

The distribution of zenith predictions and truths for the stopped muon sample
is shown in Figure 4.18. As with energy we see good agreement in the densely
populated bins and the distribution produced has the right shape. This is also
true in Figure 4.19 where we see clearly the model predictions are worse in
the bins where there are few events in the stopped sample.

The zenith distribution in real data (4.20) follows very closely our model
predictions for the simulated sample.

Figure 4.18: A) Histogram of DynEdge zenith predictions and base truth for
the stopped muon sample. B) 2d histogram of true zenith against DynEdge
predictions. A perfect classifier is represented with the dashed line.

Figure 4.19: Average residual of zenith predictions for events binned based on
true energy. Overlaid is the event population in the same binning.
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Figure 4.20: Histogram of DynEdge zenith predictions for the stopped muon
sample in both simulation and real data. Simulation scaled to match real data
rate. Model trained on 5 million muon events (MuonGun).
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4.3.3 Azimuth Regression Results

The distribution of azimuth predictions and truths for the stopped muon
sample is shown in Figure 4.21. The 2d histogram shows excellent overall
agreement that follows the peaks and troughs of simulated data very well.
Unsurprisingly, as with both energy and zenith we see good agreement in the
densely populated bins and the distribution produced has the right shape.
This is also true in Figure 4.22 where we see clearly the model predictions are
worse in the bins where there are few events in the stopped sample.

The azimuth distribution in real data (4.23) also matches the simulated
distribution well, mirroring the various peak and trough characteristics between
0 and 2π.

Figure 4.21: A) Histogram of DynEdge azimuth predictions and base truth for
the stopped muon sample. B) 2d histogram of true azimuth against DynEdge
predictions. A perfect classifier is represented with the dashed line.
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Figure 4.22: Average residual of azimuth predictions for events binned based
on true energy. Overlaid is the event population in the same binning.

Figure 4.23: Histogram of DynEdge azimuth predictions for the stopped muon
sample in both simulation and real data. Simulation scaled to match real data
rate. Model trained on 5 million L2+DC muon events (MuonGun).
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4.3.4 Stopping Position Regression Results

For stopping position we display all three coordinates in Figure 4.24. The sim-
ulation residuals in all three coordinates are worst in the low energy bins where
events are unlike those the model has trained on. The real data simulation
also strongly agrees in the central bins. That said, all the real data predictions
seem to have leakage in long tails, none more so than the z position prediction
which sees a relatively large population of the sample have stopping points
less deep in the detector.

In Figure 4.25 we plot the real data predictions, simulation predictions and
simulation truths in 2d histograms binned in the x − y plane on the left and
the x − z plane on the right. This makes clear what the histograms allude to,
real data predictions span a greater variety of depths while exhibiting much
of the same behaviour in x − y, where predictions seems to be concentrated
more closely to the string locations than is the case in simulation truth.
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Figure 4.24: Average residual plots for the three coordinates of stopping
point x, y, z regression for events binned in true energy. Overlaid is the event
population of the same binning. In training the model did not see muons
below 150GeV.
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Figure 4.25: DynEdge predictions of stopping point x, y, z expressed in 2
dimensions for both real data and simulation, as well as simulation truth.
Events weighted using oscNext flux weights. IceCube strings and DOMs
overlaid in red.
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4.3.5 Feature Summaries

Another program of comparison between the simulated and real stopped muon
sample is through the characteristics and features of the event pulsemaps
themselves. Working with uncleaned pulsemaps we may ascertain summary
statistics from each of the events in the stopped muon sample including, the
number of pulses, number of DOMs triggered, number of unique strings with
triggered DOMs, the average number of pulses per DOM, maximum number of
pulses recorded on a single DOM, the duration of the event in seconds and the
location of the last DOM triggered. The distributions of these survey variables
are shown in figure 4.26 for both simulation and real data. Real data looks to
have much longer tails in n_pulses, maximum number of pulses on any DOM
and event duration. In general, however, there is good agreement between the
features of the two samples.

Many of these summary statistics are highly correlated with the event
truth variables we have reconstructed thus far. Clear cut examples of these
correlations are the numbers of pulses and DOMs in an event and their de-
pendence on the energy of the event; a representative pair plot displaying the
relationships between 3 of the feature summary columns and 5 predicted/true
variables.
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Figure 4.26: Histograms of event features: the number of pulses in the event,
the number of triggered DOMs, the number of unique strings triggered, the
maximum number of pulses on a DOM in the event, the average number of
pulses per DOM and the event duration.
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Figure 4.27: A pairplot showing a random 1% sample of the stopped muon
sample showing the pairwise 2d histograms of a number of reconstructed
variables and feature summaries. The order of the plot is true energy, energy
prediction, true zenith, zenith prediction, stopping depth position, number of
pulses, number of DOMs and event duration. Approximate KDEs overlaid
symmetric 2d histograms in lower triangular half.
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5
Conclusion and Outlook

It has been shown in this thesis that the new machine learning paradigm, in
particular the use of GNNs, not only works on processed, specially selected
IceCube neutrino events but also on low-level noisy data with high variability.
The methods presented in this work have potential not just as a tool for
fast, accurate regression and reconstruction but also as a tool to separate
and categorize the vast amount of background that is a principal challenge for
IceCube. This scrutiny cannot come at a better time, with a planned upgraded
detector bringing additional noise and complexity with the enhanced sensitivity.

We saw in the classification of L2+DC data that DynEdge still has the
capacity to divide noise from particle events, and muons from neutrinos. This
has the potential to bring about massive speed up for IceCube’s numerous
working groups, all of whom share access to the base L2 data. Furthermore,
the proficiency of DynEdge is not limited to noise classification, as displayed
in the partitioned muon and neutrino populations as well as the stopped muon
classifier.

The second aim of this work was to compare and contrast a population of
stopped muons in both simulation and real data. Not only was the model able
to discriminate the stopped muons well, but it was also able to reconstruct the
energy, zenith, azimuth and stopping position with impressive accuracy. The
opportunity that this work represents is that muons need not be background.
The speed with which we can not only process events but also reconstruct
variables of interest allows all manner of analyses to be performed that are
otherwise precluded on account of computational cost.

While the figures in Section 4.3 report good agreement between data and
simulation and favourable regression residuals there are certainly improvements
to be attained. The most glaring is the lack of low energy muon simulation.
The current MuonGun i3-files contain muons with a minimum generated energy
of 150 GeV. This leaves the model susceptible to real data events that have less
than this minimum, this is reflected in the residual error bars for the regression
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variables when binned in energy. This examination of real data predictions
convinces us that the GNN can and will work well when applied more widely.

Additional choices made by MuonGun during generation may limit the data
simulation agreement. One example is that there is a lack of coincident muon
events (muon bundles) in simulation since MuonGun simulates single muons
intersecting the DeepCore fiducial volume. Adding muons with multiplicity
greater than 1 may improve the applicability to real data. Another strategy for
improvement could be switching MuonGun simulation with the more complete
CORSIKA simulation.

Finally, looking forward there are several immediate tasks that one could
pursue chief among them being a repeat of the classification, regression per-
formed in this work but applied to the different systematic uncertainty simula-
tion sets. Using a large enough stopped muon sample to probe the systematic
uncertainty parameter space is a clear first step. Looking further forward one
could envisage predicting the systematic parameters for which stopped muons
match best in data and simulation rather than just determining which of the
existing systematic combinations are best.

The last and most ambitious assignment is the application of DynEdge
to all 11 years of fully-operational IceCube and DeepCore data. This way
one would have a sufficient number of neutrino events with which to do a
data simulation comparison or more pertinently perform a neutrino oscillation
analysis with more neutrino events collected and better reconstruction one
could compare the number (and energy and direction) of the neutrinos found
by DynEdge with the expected flux before fitting according to free parameters
that account for the oscillation and nuisance parameters

93



A
Appendix

Train and Test Sets

Training for all classifiers and regression models occurred over 5 million LE
simulated events. The relevant COBALT files are as follows:

• /data/ana/LE/oscNext/pass2/muongun/level3/130000

• /data/ana/LE/oscNext/pass2/genie/level3/1X000 for X = 2, 4, 6
for each neutrino flavour.

• /data/ana/LE/oscNext/pass2/noise/level3/888003

Moreover, the test set ∼ 48 million events are taken from the same source. The
real data from 23rd January 2019 was retrieved from three 8 hour sub-runs:

• oscNext_data_IC86.19_level3_v02.00_pass2_Run00133652

• oscNext_data_IC86.19_level3_v02.00_pass2_Run00133653

• oscNext_data_IC86.19_level3_v02.00_pass2_Run00133654

Supplementary Figures

94

/data/ana/LE/oscNext/pass2/muongun/level3/130000
/data/ana/LE/oscNext/pass2/genie/level3/1X000
/data/ana/LE/oscNext/pass2/noise/level3/888003
oscNext_data_IC86.19_level3_v02.00_pass2_Run00133652
oscNext_data_IC86.19_level3_v02.00_pass2_Run00133653
oscNext_data_IC86.19_level3_v02.00_pass2_Run00133654


Figure A.1: Stacked histogram of particle probabilities predicted by DynEdge
on both simulation and real data L2+DC. Rates calculated using oscNext flux
weights. This histogram was produced using a model trained on a balanced
set of 5 million events and inferring on 48 million events using uncleaned
(SplitInIcePulses) pulsemap.

Figure A.2: Stacked histogram of neutrino probability score predicted by
DynEdge on simulation and real data at L2+DC that passes noise cut. Rates
calculated using oscNext flux weights. Model trained on, uncleaned (SplitInI-
cePulses) balanced 5 million event sample, and inferred on 48 million test set.
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Figure A.3: Stacked histogram of stopped muon classification score predicted
by DynEdge on both simulation and real data. Rates calculated using oscNext
flux weights. Model trained on 5 million uncleaned (SplitInIcePulses) event
pulsemaps and infer on 48 million test set.

Figure A.4: Stacked histogram of noise classification score predicted by
DynEdge on both simulation and real data at event selection level 3. Rates
calculated using oscNext flux weights.
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Figure A.5: Stacked histogram of muon classification scores predicted by
DynEdge on both simulation and real data at event selection level 3 and after
a cut in noise prediction at 0.9. Rates calculated using oscNext flux weights.

Figure A.6: Stacked histogram of stopped muon classification scores predicted
by DynEdge on both simulation and real data at event selection level 3. After
a cut in noise prediction at 0.9 and muon prediction at 0.9. Rates calculated
using oscNext flux weights
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Figure A.7: Histogram of DynEdge energy predictions for stopped muon
sample in both simulation and real data on log scale. Simulation scaled to
match rate of real data. MC truth provided by IceCube simulation.

Figure A.8: Histogram of DynEdge zenith predictions for the stopped muon
sample in both simulation and real data on logarithmic scale. Simulation scaled
to match real data rate. Model trained on 5 million muon events (MuonGun).
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Figure A.9: Histogram of DynEdge azimuth predictions for the stopped muon
sample in both simulation and real data log scale. Simulation scaled to match
real data rate. Model trained on 5 million L2+DC muon events (MuonGun).

Figure A.10: Histogram of DynEdge position x predictions for the stopped
muon sample in both simulation and real data log scale. Simulation scaled to
match real data rate. Model trained on 5 million L2+DC muon events.
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Figure A.11: Histogram of DynEdge position y predictions for the stopped
muon sample in both simulation and real data log scale. Simulation scaled to
match real data rate. Model trained on 5 million L2+DC muon events.

Figure A.12: Histogram of DynEdge position z predictions for the stopped
muon sample in both simulation and real data log scale. Simulation scaled to
match real data rate. Model trained on 5 million L2+DC muon events.

100



Figure A.13: 2d histograms showing the observed number of pulses against
the energy prediction and truth.

Figure A.14: 2d histograms showing the observed number of unique DOMs
triggered in the event against the energy prediction and truth.

Figure A.15: 2d histograms showing the event duration triggered in the event
against the energy prediction and truth.
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