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ABSTRACT

Receptor models are applied to atmospheric measurements to discover hidden patterns of
variability and identifying relevant sources of pollutants. A source-apportionment investigation
was carried out on non-methane volatile organic compounds (NMVOCs), halogenated species
and non-CO2 greenhouse gases (GHGs) at Mt. Cimone in the period 2015-2018, using
positive matrix factorization (PMF). NMVOCs are important precursors of tropospheric
ozone formation and many halogens contribute to the stratospheric ozone depletion and the
greenhouse effect.

In particular, the impact of photochemistry on NMVOCs seasonal cycle is considered in this
thesis, and the added value of this work is the application and evaluation of the PMF tool by
coupling a lifetime correction method with the PMF model. The lifetime correction proved to
be a valid method to apply on data, in order to scale the reactive NMVOCs as a function of
their rate constant. Moreover, a consolidated framework of the data pretreatment and analysis
process was established, which is essential for performing a sound source apportionment study.

Eight factors were identified during Summer season and seven factors were identified during
Winter season. The eight factors characteristics are determined to be: (1) vehicle exhaust;
(2) gasoline evaporation; (3) Liquified petroleum gas; (4) solvent evaporation; (5) industrial
solvents; (6) chlorinated solvents; (7) octane gasoline; and (8) halogenated species and non-
CO2 GHGs. The last factor (8) is not related to emission sources, but is rather explaining
the variability of long-lived halogenated species and non-CO2 GHGs on a continental scale.

Explorative analysis using cluster analysis and principal component analysis (PCA) gave
a better understanding of species variability and correlation among them which was useful
for the validation and interpretation of PMF results. Results from PMF and cluster analysis
demonstrated similar classification of species. However, PCA was unsuccessful to explain
meaningful data variance and was sensitive towards "problematic species".

Overall, the PMF results indicate seven potential emission sources, although further analysis
and comparison of PMF results with sophisticated models are needed, in order to evaluate if
the obtained factors are robust.
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Part I

PROJECT DESCR IPT ION



1

INTRODUCTION

This introductory chapter first aim to describe climate change and introduce the reader to
the challenges of increasing anthropogenic emissions. It follows an introduction to the study
area and its local challenges in curbing anthropogenic emissions and how receptor models can
be used to apportion atmospheric species to individual sources. Ultimately a description of
the intent of this thesis and finally the structure of the thesis is described.

1.1 Climate change

The climate system is very sensitive to external forcing of greenhouse gases (GHGs) of either
natural or anthropogenic origin, pushing climate components out of equilibrium and inducing
global warming. The rapid increase of warming since 1970s is higher than any other period
over the past 800ka and cannot be explained solely by the natural variability (Milankovitch
cycles, solar luminosity, atmospheric composition among others) (Masson-Delmotte et al.,
2013). The accelerated warming is caused by the the anthropogenic buildup of GHGs such as
CO2 (417.07 ppm), CH4 (1873.7 ppb), and N2O (332.6 ppb)(Tans and Dlugokencky, 2020).

Humans have therefore become the new forcing agent on Earth since industrial revolution,
entering a new geological epoch called Anthropocene (Zalasiewicz* et al., 2010). Along with
the increase of human population, cities are becoming denser and the public services are also
increasing, leading to a major source of GHG emission and air pollution. As a result, the
atmospheric composition is changing significantly leading in response to climate change and
higher oxidation capacity.

Not long ago, the Paris Agreement initiated a global effort on climate mitigation and
adaption in order to keep the global average temperature lower than a 1.5°C temperature
increase since preindustrial level. However, the future projections show that in order to stay
under the 1.5 °C, a global negative (GHGs) emission pathway has to be achieved (Masson-
Delmotte et al., 2018). Hence, there is an urgent need to actively reduce GHG emissions
and air pollution nationally and establish mitigation strategies, possibly in connection with
air pollution policies. The longer we wait to mitigate, a more rapid decrease of emissions is
waiting for us and as time is running short, it implies even more negative emission technology
shall be implemented (Masson-Delmotte et al., 2018).

Existing literature, claims that 70 % of anthropogenic GHG emission is coming from urban
areas (Hopkins et al., 2016).

2
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1.2 Pro ject background

In Northern Italy, between Apennines in Emilia Romagna and the northern alps, it is located
the Po Basin, a highly populated and industrialized area. It is considered to be a ‘mega source‘
in Europe of anthropogenic emissions, facing the challenge of curbing emissions of GHGs
and atmospheric pollutants, such as nitrogen oxides (NOx) and volatile organic compounds
(VOCs). NOx and VOCs are responsible for the formation of tropospheric ozone, which
besides being harmful for human health and ecosystems, it is also a strong GHG (Seinfeld
and Pandis, 2016). VOCs emission sources are both natural and anthropogenic. Po Basin is
an important agricultural area and a source of natural biogenic VOCs (BVOCs). However, it
is also a highly anthropized area and the dominant non-methane VOCs (NMVOCs) sources
are fossil fuel burning, vehicle emissions and solvent use (Cristofanelli et al., 2017).

Another important environmental issue is related to halogens and their contribution to
stratospheric ozone depletion, meanwhile also being a powerful GHGs in the troposphere.
With the successful implementation of the UNEP Montreal Protocol (MP) on ozone depleting
substances, a significant reduction of some synthetic halogens is achieved. Although the
impacts on stratospheric ozone by some halogens are not regulated by the MP, such as
CH3Cl. Their global natural source is predominant and there is therefore no commitment
from Government to report their national inventories of anthropogenic sources (Cristofanelli
et al., 2020).

At the regional scale, significant uncertainties still remains for identifying anthropogenic
sources of NMVOCs and GHGs, where the effect of photochemical processes of NMVOCs
needs to be considered.

This study is in collaboration with the National Research Council of Italy, Institute of
Atmospheric Science and Climate (CNR-ISAC) and the University of Urbino, Department of
Pure and Applied Sciences (UniUrb, DiSPeA). They carry out continuous VOC and GHG
measurements at observatory "O. Vittori", situated at the Mt. Cimone (referred to as CMN),
overlooking the Po Basin.

To the attempt of shading light over the underlying chemistry and identify relevant sources
of NMVOCs and GHGs at CMN, modern multivariate statistical methods are applied on the
long-term/high-frequency time series of atmospheric species obtained from CMN.

Source apportionment of NMVOCs and GHGs is the practice of studying and deriving infor-
mation of the species to identify, quantify, and characterize their emission source contribution
to the ambient air (Belis et al., 2019). There are several approaches and models developed
within the discipline of source apportionment among which receptor models (RM) is a class
of multivariate statistical analysis. It uses ambient atmospheric concentration measured at a
certain site called receptor (CMN) to identify and apportion its sources without taking into
account atmospheric transport or dispersion characteristics (e.g meteorology and topography)
like in source models. Therefore the receptor model is a relative simple model, although it
requires expertise in species and source characteristics as well as a solid knowledge about the
applied model.
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The top-down approach is necessary for establishing rigorous regional air quality control
and lower the environmental risk of human exposure. There are certain species that are
particular important for source apportionment studies to prevent human health and climate
impacts, such as identifying ozone precursors (Belis et al., 2019). The fundamental principle
of receptor to source relationship, is that mass conservation can be assumed. The receptor
method is constructed from a mathematical framework based on the equation of continuity,
although different RMs include different approaches to solve this equation and quantify source
contribution.

Xij =
p

∑
k

gik fkj + eij (1)

The obtained model are estimates from equation (1) where Xij is the input data matrix
from measured concentrations at receptor site. Moreover, it is the sum of contributions from
different sources (Belis et al., 2019; Comero, Capitani, and Gawlik, 2009). From the variations
of concentration patterns in time and space, and with the the right number of factors k, the
model gives estimates of the underlying chemistry and sources (Hopke, 2000; Paatero, 1999).
Source weight gik is the sample contribution of source k and source profile fkj, represents a
phenomenon present in data, also called chemical profiles and is the fraction of species coming
from source k. The residuals eij is all that is not modelled (Olivieri et al., 2015).

Positive matrix factorization (PMF) is a robust RM used to solve g and f in equation
(1). Moreover, the method is extensively used and recognized by EU as one of the reference
techniques for source apportionment studies of atmospheric pollutants (Paatero, 1999; Paatero
and Tapper, 1994). Traditionally, PMF analysis is used to identify source contribution of
aerosols, including secondary aerosols that are not identified by source models (Contini et al.,
2016).

Applying PMF on NMVOCs is challenging because the atmospheric lifetime of NMVOCs
are generally much shorter than for aerosols and halogens (Sauvage et al., 2009; Yuan et al.,
2012). A recent study by He et al., 2019, takes into account the atmospheric lifetime of VOCs
prior to PMF, and shows a higher source contribution from the reactive species than without
lifetime correction. This is the first attempt to perform PMF on an extensive dataset at a
remote site in Italy, taking into account the diverse lifetime of the atmospheric species by
applying lifetime correction method.

A study carried out at CMN, characterizes anthropogenic sources of NMVOCs by applying
PCA and relates the obtained factors to different air mass ages based on the atmospheric
lifetime (Lo Vullo et al., 2016). When classifying NMVOCs source categories, it is of great
importance to also consider the photochemical processes. However, this work uses PCA as an
exploratory method only, to screen patterns co-variability before applying PMF. Therefore,
the aim is not to identify source contributions with PCA, but rather to obtain a preliminary
understanding of the data variability. According to Hopke, Jaffe, et al., 2020, PCA is
deprecated and should only be used as an exploratory tool.

The application of the receptor models are advanced and occasionally biased, with results
strongly depending on the initial set-up of the statistical model (i.e. choice of the species to
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be included in the analysis, choosing the number of emission factors, choice of the temporal
windows of time series, and choice of the diagnostic metrics). A standard framework is
established of data pre-processing, lifetime correction method and the initial-setup of the RM,
to be used at CMN for the operative source apportionment studies. Finally, the added value
of this thesis work is the application and evaluation of the PMF tool with particular emphasis
on NMVOCs lifetime correction.

1.3 Purpose of the study

The overall objective of this study is to perform source-apportionment investigation of
NMVOCs, halogenated species, and non-CO2 GHGs by applying PMF to the long-term/high-
frequency time series measured at the remote location CMN. For this purpose, it is followed
a multiple approach combining different techniques and performing a sensitivity study on
the initial conditions and set-up of the model used. This combined approach will allow an
evaluation of the results.

Specific efforts will be devoted to evaluate the effectiveness of applying the different
atmospheric lifetime of NMVOCs prior to the PMF analysis.

The outline of this research aims to address the following research question:

• What is the source characterization and contribution of NMVOCs, halogens and non-CO2

GHGs at CMN?

• How do the emissions from Po basin contribute to the NMVOCs observed at CMN site
and what is the effect of using a lifetime correction method prior to PMF?
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1.4 Thesis structure

The scope of the study is divided in six parts: (I) Project description, (II) data validation,
(III) preliminary analysis, (IV) PMF analysis, (V) discussion and conclusion, and finally
(VI) the appendices. The thesis structure follows an introduction to the topic, motivation
statement, and a theoretical background of NMVOCs, halogenated species and non-CO2

GHGs. It follows in part two, an introduction to measurement, data validation, and data
pretreatment. In part three, a lifetime correction method is applied on NMVOCs before
undergoing a preliminary analysis using cluster Analysis and PCA as the main analysis
methods. The methodology structure is illustrated in Figure 1. First step (1) is to apply
the lifetime correction method. Second step (2a) is to perform cluster analysis in synergy
with (2b) PCA, and (2c) a comparison analysis of the results. Third step (3) is to perform
PMF analysis and use (3a, 3b) preliminary analysis results to support the interpretation and
identification of PMF factors explained in part four. Lastly, the fifth part is a discussion of
the obtained results and interpretation followed by a conclusion and future work. The sixth
part is the appendices and includes the R script framework and figures from analysis.

Figure 1: Methodology structure.



2

THEORETICAL BACKGROUND

The present chapter aims to give the reader a general understanding of the concepts, main
species characteristics and sources. Moreover, an overview of the species will be useful in the
later chapters, when discussing the results and species source contribution.

2.1 Oxidation capacity of the atmosphere

The troposphere is a very reactive medium, extending 10-15 km in altitude and features a
high oxidative capacity to self-clean and prevent trace elements accumulation (Seinfeld and
Pandis, 2016). Even in the natural atmosphere where pollutants are depleted, the oxidation
processes continue to transform, from primary biogenic volatile organic compounds (BVOCs)
to secondary products. The atmospheric oxidation capacity mainly depends on four abundant
oxidizing species: Hydroxyl radical (OH), ozone (O3), hydrogen peroxide (H2O2), and nitrate
radical (NO3). Out of these, OH radical is the most important during daytime and NO3

during nighttime (Seinfeld and Pandis, 2016).
The hydroxyl radical (OH) is like a vacuum cleaner in the troposphere, able to clean and

reduce the concentration of toxic VOCs species in the atmosphere. Common VOCs from
vehicle emissions are benzene, toluene, ethylbenzene, and xylenes (BTEX) and are monitored
in most urban areas.

The global average concentration of OH is low in the troposphere, indicating that it is
being destroyed rapidly and has an average lifetime of < 1 second (Seinfeld and Pandis, 2016).
Despite the short lifetime, OH influence in the troposphere is enormous. Without OH radical,
the concentration of toxic species will increase to very unimaginable levels.

Just after sunrise, OH radical concentration starts to peak and will reach a maximum
at midday. OH is formed by photodissociation of O3 that occurs during daytime by the
absorption of photons in the troposphere. Photodissociation of O3 leads to one free oxygen and
its primary source is water vapour to form OH radical. OH formation therefore depends on
the amount of water vapour, and OH levels tend to decrease with altitude as the temperature
of air becomes colder and drier. Moreover, only a small part of the free oxygen is capable to
react with water and produce OH radical, while most is being reacted back to O3 (Seinfeld
and Pandis, 2016). This results in a stable concentration that limits OH concentration to
increase over a certain threshold. We can therefore rely on one measurement for the whole
European domain, where the OH concentration during summer is 1.32 · 106 molecules cm−3

(Meszaros, Haszpra, and Gelencser, 2004).

7
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The ongoing increase of air pollution and GHGs emission from human activities has led to
an increase in atmospheric oxidation capacity since preindustrial time (Monks, 2005). We can
therefore expect a more aggressive atmosphere in the near future causing more pollution. In
fact, Saiz-Lopez et al., 2017 observed an increased oxidation capacity in the urban city of
Madrid in Spain recently. The observation shows a NOx reduction while the major oxidation
species O3, OH, and NO3 have increased significantly and so have the overall oxidation
capacity in the urban atmosphere (Saiz-Lopez et al., 2017). An increase in O3 concentration
in the troposphere is not only very damaging for human health and vegetation, but it is also
a very strong greenhouse gas (GHG). In the lower troposphere, O3 is a secondary pollutant
which means it is not emitted directly from a source, but requires chemical precursor like
VOCs and NOx. Hence, VOCs influence the climate indirectly by increasing O3 levels through
a set of complex reaction mechanisms, which include NO2 photodissociation followed by
O3 formation (see section 2.2). There exists a nonlinear relationship between VOCs and
NOx, and ozone, meaning that at a given level of VOCs exists a NOx concentration, at
which maximum ozone is produced, as shown in Figure 2. The hyperbolic curve represents a
constant concentration of ozone, while the linear (red) curve indicate a linear increase of ozone
concentration (Monks, 2005). This makes it challenges to establishing effective air quality
control of the toxic pollutant ozone in an urban city (Monks, 2005). However, the favourable
mitigation strategy is to decrease both NOx and VOCs significantly by controlling, e.g., traffic
emissions. The ozone isopleth diagram also suggests that if we want to reduce high ozone
concentration in a high NOx polluted environment, it will be more efficient to reduce VOCs
concentration (VOCs sensitive region). Likewise, in a high VOCs environment, reducing NOx

will potentially reduce ozone concentration (NOx sensitive region) (Monks, 2005). NOx and
VOCs sensitive regions for mitigating ozone production are indicated with red circles in the
isopleth diagram in Figure 2.

Ultimately, the reactivity in the atmosphere is modified simultaneously with the changes
in the chemical composition of the atmosphere, and climate change is the response to the
composition change. Since the atmospheric reactivity has the potential to increase in the
future together with climate change, there is a need to better understand the atmospheric
chemistry and advise policy makers with the right mitigation strategies for the future. It
can be necessary to prevent erosion and degradation of materials, damage of agriculture and
health. As it may turn out to be expensive and interrupt the overall productive world, food
supply and the health care system just to mention a few.

2.2 Non-methane volatile organic compounds

Non methane volatile compounds (NMVOCs) is a group of compounds that are very reactive
(with OH) and volatile. Unlike methane, which has intrinsic chemical stability and stable
configuration that it barely reacts with the OH radical. This is reflected on methane relative
long lifetime of about a decade (9.6 years) until it eventually is oxidized by the OH radical.
Consequently, methane has a much higher mixing ratio in the atmosphere than NMVOCs
(Seinfeld and Pandis, 2016).
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Figure 2: Ozone isopleth diagram: The role of NOx and VOCs in ozone formation. The red circles
indicate VOCs sensitive regions (top) and NOx sensitive regions (bottom right corner) for
mitigating ozone production. Figure is modified from Monks, 2005.

NMVOCs oxidation of OH radical in the troposphere initiates a set of oxidation chain
reactions that are highly complex and Figure 3 illustrates the general VOC-OH reaction
mechanism. NMVOC reacts with OH radical and breaks down to a peroxyradical (RO2) to
form a water molecule. The abstraction of H atom leaves a radical with an unpaired electron
that will react instantly with the abundant oxygen molecules in the atmosphere, and continue
to react with oxygen until it reaches a lower molecule weight and produces hydroperoxyl
radical (HO2) that recycle the OH radical. Thus, in a highly anthropized area with high NOx

and VOCs concentration, ozone formation is accelerated.

2.2.1 Atmospheric lifetime

Each individual NMVOC vary a lot from each other by their properties, atmospheric lifetime,
and sources. The average life history of each NMVOC is also called the averaged lifetime. It
explains how far the compounds travel and stay in the atmosphere before being removed,
e.g., by the oxidation of OH radical. The 15 NMVOCs indicated in Table 1, have a short
atmospheric lifetime in the atmosphere compared with the lifetime of methane, ranging from
a few hours to a few days. Anthropogenic NMVOCs in general have a longer lifetime than
biogenic VOCs (BVOCs). In particular, benzene, ethyne, and propane are relatively long-lived
in the atmosphere lifetime (>7 days) compared to the other NMVOCs and can be transported
longer distances with aged air masses. While toluene, ethylbenzene, and xylenes (TEX) have
the shortest lifetime and are therefore indicating fresh air masses coming from nearby emission
source (Cristofanelli et al., 2017). The transportation scale of the NMVOCs depends on their
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Figure 3: The general reaction mechanism for NMVOCs oxidation of OH radical, modified from Jain
et al., 2017.

reactivity and the major atmospheric sink of NMVOCs, which is the reaction with the OH
radical.

From a chemical point of view, there is a big difference in NMVOCs lifetime between alkanes
and molecules with unsaturated bonds (pi clouds). The latter is more electrophyllic towards
OH radical and will easier detach electrons from the unsaturated bond (Seinfeld and Pandis,
2016). In general, the larger the molecule, the more reactive it will become as indicated
from the OH rate constants in Table 1 except for isomer compounds e.g. i-butane, i-pentane,
i-octane.

2.2.2 Anthropogenic emission sources

The largest sources of NMVOCs globally is biogenic emissions from terrestrial vegetation,
where trees are the major contributor to BVOC emissions (Kansal, 2009; Seinfeld and Pandis,
2016). Anthropogenic emissions of NMVOCs sources of biogenic origin include biomass burning
and biofuel combustion. Just from biomass burning, substantial amount of hydrocarbons is
released to the atmosphere. The main anthropogenic nonbiogenic NMVOCs emission sources
are listed in Table 1. Motor vehicles are the main contributor of transportation emissions
where alkanes and aromatic compounds are the most abundant species emitted. These
aromatic compounds are emitted by incomplete combustion or evaporative emission of fuel
such as liquified petroleum gas (LPG) or gasoline. These compounds are therefore prevalent
in the urban atmosphere. One important hydrocarbon is benzene, which is a prototype of all
aromatic substances and very stable compare to the other NMVOCs. It is highly carcinogenic
and has the potential to pose a serious health risk to the surrounded population. In particular,
in the Po Basin where the air masses are not so energetic and the mixing of pollutants is not
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Table 1: Reaction rate constant, lifetime and sources of 15 NMVOCs measured at CMN.

NMVOCs kOH
(10−12cm3molecules−1)

lifetime (days) Main emission sources

Alkanes
propane 1.09 11 LPG; gasoline evaporation
n-butane 2.36 4.9 LPG; gasoline evaporation
i-butane 2.12 5.5 LPG; gasoline evaporation
n-pentane 3.80 3.0 gasoline evaporation
i-pentane 3.6 3.2 gasoline evaporation
n-hexane 5.20 solvent; gasoline evaporation
n-heptane 6.76 gasoline evaporation
n-octane 8.11 gasoline evaporation
i-octane 3.34 gasoline evaporation
Alkynes
Ethyne 8.201 14 vehicle exhaust
Aromatic
benzene 1.22 9.5 vehicle exhaust
toluene 5.63 2.1 solvent-use, vehicle exhaust
ethylbenzene 7.0 1.7 solvent-use, vehicle exhaust
o-xylene 13.6 0.9 solvent-use, vehicle exhaust
(m, p)-xylene 19.02 0.6 solvent-use, vehicle exhaust

1From Atkinson et al., 2006.
2Calculated average of m-xylene and p-xylene rate constants, from Lo Vullo et al., 2015.
The OH rate constants are measured at 298K and from Atkinson and Arey, 2003, and

atmosphere lifetimes and emission sources are from Lo Vullo et al., 2016 and Cristofanelli
et al., 2017.

efficient, it has the potential to accumulate benzene concentration at ground level. Other
hydrocarbons are also emitted from evaporative sources such as gasoline fuel (Cristofanelli
et al., 2017).

2.3 Halogenated species

Chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons
(HFCs) are man-made synthetic compounds for cooling systems. Table 2 provides a list of the
more common halogens and their emission sources, which include refrigerants, airconditioner,
foam blowing agents, and repellent fluids (Cristofanelli et al., 2017). CFCs are all very
stable species in the troposphere and OH radical cannot break them down. As a result,
they do not have a tropospheric sink and will persist in the troposphere for a long time
(Table 2). For this reason, they can be transported efficiently with airmasses, reaching a
homogenous concentration until they eventually diffuse into the stratosphere, where high
ultraviolet radiation with a wavelength of 185-210nm (UV-C) photodissociate them and break
off the chlorine atom (Seinfeld and Pandis, 2016). Chlorine and bromine are highly reactive
in the stratosphere and are the main cause for destruction of stratospheric ozone (Braesicke



2.4 Emission sources of halogenated species and non-CO2 GHGs 12

et al., 2019). CFCs could be considered an indirect air pollutant, since ozone depletion causes
harmful radiation to reach humans which increases the risk of developing skin cancer.

2.3.1 Ozone depletion

Ozone depletion is a permanent decrease of the ozone layer (20-30km) in the stratosphere
at all latitudes (Seinfeld and Pandis, 2016). The simplest halogen cycle is presented below,
where CFC-11 is photodissociated with UV-C and releases a free chlorine atom that reacts
with ozone and the chlorine atom is recycled. The reaction mechanism happens faster than
ozone formation, which causes ozone to deplete in the stratosphere:

CFCl3 + hv→ CFCl2 + Cl (2)

Cl + O3 → ClO + O2 (3)

ClO + O→ Cl + O2 (4)

Montreal protocol banned CFCs in 1987 and it is not commercialized any more. It became
a huge scientific success in outphasing CFCs and restore the ozone layer. 20 years ago, ozone
concentration stopped to decrease in the ozone layer and this shows the responsiveness of
introducing CFCs into the atmosphere (Braesicke et al., 2019). However, this ban resulted
in the introduction of HCFCs and HFCs as replacement, that are minor ozone depleting
substances, but very strong GHGs. They absorb more infrared radiation than CO2, CH4, or
N2O, and thereby having a much higher global warming potential (GWP100) in a 100 years
period (IPCC et al., 2014). The GHGs effect depends on the interaction between the infrared
radiation and the species covalent bond vibration and GWP100 is a metric used to assess the
radiative forcing in a 100 years period relative to CO2 (IPCC et al., 2014).

2.4 Emission sources of halogenated species and non-CO2 GHGs

Major chlorinated solvents used in industries are chloroform (CHCl3), methyl chloroform
(CH3CCl3), Trichloroethylene (TCE), and perchloroethylene (PCE) also indicated in Table 2.

Some of the halogens are eventually broken down by the OH radical in the troposphere,
preventing some chlorine to reach the stratosphere. While halogens with a long lifetime are
diffused into the stratosphere, one of the important sources of chlorine to the stratosphere
is methylchloride (CH3Cl) (Seinfeld and Pandis, 2016). Its major emission sources are from
natural origin, such as ocean, biomass burning, tropical plants, and salt marshes. Although
the global budget of CH3Cl is not balanced and uncertainty still remains on the missing source
of anthropogenic emissions (Cristofanelli et al., 2020; Seinfeld and Pandis, 2016).

Carbonyl sulphide (COS, also written as OCS) does not belong to the family of halogens,
but is a sulfur compound. It is a GHG in the troposphere and a aerosol radiative forcer in the
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stratosphere. It has a long average lifetime of 7 years and can therefore reach the stratosphere
where it photodissociate and oxidizes into SO2 and converts into a sulfate aerosol (H2SO4)
(Seinfeld and Pandis, 2016). Its global natural source is mainly from wetland and ocean, while
anthropogenic emission sources originating from industry and biofuel (Cristofanelli et al.,
2017). Finally, sulfuryl fluoride (SO2F2) is both a sulfur and halogen -containing compound
and a strong GHG. The global emission source of SO2F2 is from fumigation and is used as
a replacement of Montreal Protocol out-phasing fumigant methylbromide (CH3Br) used in
agriculture (Mühle et al., 2009).
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Table 2: Lifetime and emission sources of 19 halogens and sulfur compounds measured at CMN.

Compounds Lifetime (years) Emission sources

CFCs
CFC-114 190 refrigerant; propellants in medical aerosol;
CFC-115 1020 refrigerant
HFCs
HFC-32 5.2 refrigerant
HFC-125 28.2 refrigerant
HFC-134a 13.4 refrigerant
HFC-152a 1.5 foam blowing
HFC-365mfc 8.6 foam blowing
HCFCs
HCFC-22 11.9 refrigerant; air conditioning; extruded

polystyrene foam application
HCFC-142b 17.2 blowing agent in extruded polystyrene board

stock;
Halogenated compounds
CH3Cl 1.5 tropical vegetation; biomass burning; oceans;

salt marshes; coal combustion; chemical feed-
stock; solvent release;

CH3Br 0.8 fumigant in agriculture
CH2Cl2 industrial solvent usage
CHCl3 0.4 industrial solvent usage
CCl4 26 solvent usage; raw material for chlorinated

chemical production; fire extinguisher
CH3CCl3 5 industrial solvent usage
TCE industrial solvent usage; aluminum

degreasing1
PCE industrial solvent usage; dry cleaning2; feed-

stock for HFCs manufacturing
Sulfur compounds
SO2F2 fumigant replacement of CH3Br3

COS wetlands and oceans; tracer of biomass; bio-
fuel; coal and aluminium production

1,2From Mohr, 2020.
3From Mühle et al., 2009.

Source information and lifetimes are from Cristofanelli et al., 2017; Cristofanelli et al., 2020;
IPCC et al., 2014; Seinfeld and Pandis, 2016.
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DATA VAL IDATION

This section shows the process done to have a complete dataset before applying any receptor
models. This means that a preliminary data analysis was carried out and undergo an extensive
data validation. Moreover, a complete framework of data pretreatment is established in the
Appendix A (Chapter 12), using the open source programming software R with multiple open
source packages. The framework enables anyone to repeat the analysis, thereby reducing any
potential mistakes. The analysis has been repeated several times following the scheme in the
framework.

In addition, the CMN data measurements brings about multiple challenges, e.g., extracting
valuable data and calculating associated instrumental uncertainties. Therefore, the retrieved
dataset is undergoing data cleaning, where missing values are replaced, and time series are
detrended before performing cluster analysis, PCA, and PMF.

3.1 Measurement site

The high-mountain observatory "O. Vittori" is situated at the peak of CMN (2165m a.s.l.),
a remote location in the Northern Apennines, overlooking the Po Basin like a lighthouse in
the Mediterranean troposphere (Cristofanelli et al., 2017). The atmospheric composition
observations performed at CMN can provide useful hints to investigate the background
conditions of the free troposphere as well as the impact of vertical transport of air-masses
from the continental planetary boundary layer (PBL). It is therefore a favourable site to study
the transport of anthropogenic pollution and climate altering species from the Po Basin and
other far emission sources (Lo Vullo et al., 2015). The free troposphere is just above the
urban PBL at about 2 km height and occasionally the PBL is observable at CMN, especially
during summer when PBL expands as the atmosphere warms up (Seinfeld and Pandis, 2016).

Figure 4, shows the geographical location of CMN and the Po Basin located between the
northern Alps and northern Appenines. The observatory at CMN provides continuous high
frequency measurements of ozone depleting substances and their substitutes (halogens), VOCs
and non-CO2 GHGs that are analyzed in this work.

Additionally, it is part of the worldwide meteorology organization/global atmosphere watch
(WMO/GAW) program and Advanced Global Atmospheric Gases Experiment (AGAGE). It
is considered to be one of the most important European climate stations (WMO, 2020).

16
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Figure 4: Geographical location of the Po Basin and observatory O. Vittori at CMN indicated with a
circle. The image is created with Google Earth Pro.

3.2 Sampling instrumentation and raw data processing

NMVOCs, halogens, and COS are all measured by a gas chromatography – mass spectrometry
(GC-MS) instrument (Agilent 6850-5975), where the MS detector runs a SIM mode (selective
ion mode) (Maione et al., 2013). The instrument is collecting continuous measurements every
two hours at CMN.

The retrieved data is from the years 2013-2018 and in the time zone UTC+1. Due to
technical malfunctions in the GC-MS instrument software, it fails to extract valuable data for
all variables during all six years, causing larger gaps of missing values for some species (e.g.
i-octane, toluene, and o-xylene contained missing values from 01/01/2013 until 17/07/2014).
Therefore, only measurement with associated measurement uncertainty from 01/01/2015
and forward is used in this analysis. This allows for 4 years of continuous high quality
measurements for all the considered species.

Before initiating data processing and cleaning, data of NMVOCs, halogens, and COS species
is divided into two datasets, XVOCs and XGHGs, as explained in Table 3. These datasets
(XVOCs and XGHGs,) will be pretreated separately.

Table 3: Data matrices and information

Data matrix Species Raw data dim Final data dim

XVOCs NMOVCs 18756 x 15 species 12679 x 15 species
XGHGs Halogens and COS 18756 obs. x 35 species 11672 obs x 19 species
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3.3 Assessing species

As illustrated in Figure 5 (a), some species hold a very large fraction of missing values such
as HFC-23 and CFC-112 and are removed accordingly. Furthermore, a few species also have
large gaps of continuous missing values and large data gaps cannot be handled using artificial
data and are therefore cut-off from the time series. For example, in Figure 5 (b), TCE have a
large gap that is related to the last period of year 2018 and the period is therefore deleted for
all species in XGHGs dataset. This will not affect the PMF results, as PMF analyzes regardless
of the time periods given in data.

(a)

(b)

Figure 5: Number of missing values from 2015-2018 of (a) all GHGs and (b) the occurrence of
consecutive missing values (NA-gap size) of TCE. The missing values are calculated after
removing rows that contain more than 75% missing values (more details on this in section
3.5).

In addition, species that are currently out-phasing as a result of the Montreal Protocol and
its amendments, such as first generation of CFCs, are not considered in this study as they are
no longer used or emitted, at least in the European domain. Although a persistent increase
of CFC-11 is observed globally and is associated with unreported emissions (Montzka et al.,
2018). Moreover, species with low emissions in the regional domain or high variability as a
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results of poor precision, are excluded from the analysis.
A consolidated list of halogens have been evaluated for this study based on the focus of this
thesis (Jgor Arduini and Michela Maione, personal communications). This include species
which emission source is already well represented by other species, species that are out-phasing
or species where no emission is expected. However, exclusion of species might cause loss
of relevant information as they can be varying with other species and help identifying the
specific source. Therefore, some species with identical sources are included, as it will benefit
the interpretation of the obtained factors from PMF model.
Some species that are strongly affected by natural sources such as COS, CH3Br, and CH3Cl,
remained in this analysis to emphasize species source contribution from specific natural sources
(i.e. oceanic emissions). The various reasons for excluding certain halogens from XGHGs is
given in Table 4. No NMVOCs species were deleted from the XVOCs.

Table 4: Halogens that were removed from dataset and their reasons.

Halogens and GHGs Reasons of exclusion

HCFC-141b poor precision
CFC-112 Montreal Protoca - no emission expected
CFC-11 Montreal Protocal - no emission expected
CFC-12 Montreal Protocal - no emission expected
HFC-143a (redundant) represented by HFC-125 and HFC-32
HFC-227 (redundant) represented by HFC-365
HFC-236fa (redundant) represented by HFC-365
HFC-245fa (redundant) represented by HFC-365
H-1211 no emissions expected
H-1301 no emissions expected
CH3I mainly biogenic -marine- origin
CH2Br2 mainly biogenic -marine- origin
CHBr3 mainly biogenic -marine- origin
PFC-218 Montreal Protocol - no emissions expected
PFC-318 Montreal Protocolt - no emissions expected

3.4 Time series plots

The diurnal time series plots of raw X data gives a ’zigzag’ pattern as seen in Figure 6 (a) and
(b) of ethylbenzene and (m,p)-xylene, respectively. The sampling time is not fixed over the
whole period, but is anyhow regularly acquired every two hours and both XVOCs and XGHGs

have the same timestamp. In order to merge and synchronize XVOCs and XGHGs datasets due
to the different data coverage for different hours, each data set is averaged on a 2-hour moving
interval, by applying at time average algorithm from openair package. The diurnal variability
of ethylbenzene and (m,p)-xylene after applying the time average algorithm is given in Figure
6 (c) and (d).
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(a) (b)

(c) (d)

Figure 6: Diurnal variability of ethylbenzene and (m,p)-xylene at CMN. Diurnal plots of (a) ethylben-
zene and (b) (m,p)-xylene are based on raw data, while (c) and (d) have applied a 2 hour
time average algorithm.
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Figure 7: Time series plots of ethylbenzene, (m,p)-xylene, toluene and benzene in red, with their
associated uncertainties indicated in grey. Time series are plotted based on raw data.
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Time series of NMVOCs species are plotted to explore their variability and evaluate
potential problematic peaks that might be challenging in the preliminary analysis. Time series
of ethylbenzene, (m,p)-xylenes, toluene, and benzene with their associated uncertainties are
illustrated in Figure 7. Winter season is more representative of the difference in emission source
(both spatial and temporal), due to having more conservative conditions during the transport
of air masses to receptor. While Summer season shows a reduced variability compared to
winter. This is consistent with the higher impact of OH removal on NMVOCs and thereby a
reduced variability related to different air/mass transport regimes. The comparison of both
seasons gives a greater level of understanding of the role OH radical has on the budget of
NMVOCs in the troposphere as demonstrated both in the time series plots and Table 5,6.

The more reactive NMVOCs species such as (m,p)-xylene does not have the same seasonal
variability as seen in benzene. This is because of the different OH reactivity, where (m,p)-xylene
OH rate constant is ≈ 15 times higher than that of benzene.

3.5 Missing data filling

Missing data values cannot be included in the PCA and PMF model and therefore the missing
values (NA’s) in XVOCs and XGHGs datasets must be evaluated. To begin with, every row
in the data matrix that holds more than 75 % missing values across species is removed.
Thereafter, XGHGs contain 5292 missing values and XVOCs contain 4532 missing values to be
replaced by estimated values. The process of filling in the missing values includes two steps
for both datasets. Firstly, the consecutive missing values that last less than 12 hours are filled
in by linear interpolation from "imputeTS" package in R. Secondly, for large missing gaps
that last longer than 12 hours, seasonality is also considered. The function "na.interp" from
the Forecast package in R, is used to fill in missing values by using Seasonal Decomposition
of Time Series by Loess (STL). The algorithm uses linear interpolation for time series that
do not have a significant seasonal trend (this is true for many halogens) and a periodic STL
decomposition for time series with strong seasonality. It is an easy way to cope with the data
filling in one single step although some higher frequency variability for the filled period will
be lost. An example of data filling is shown in Figure 8 of COS, indicated in red.

Some species have a huge gapsize with many missing values that cannot be replaced by
estimates based on STL. Therefore, as mentioned earlier, certain time periods with large gaps
of missing values are removed from all time series (e.g. for TCE).

3.6 Detrending time series

Long-term trends are removed from every time series in XVOCs and XGHGs in order to detect
patterns that are otherwise masked by the trends. A preliminary cluster and PCA analysis
was performed on data matrix X, showing that species grouped close together were mainly
related due to an increasing or decreasing trend. The results explained little data variance
and in particular halogens were dominated by their trends, as many of them are currently
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Figure 8: Data filling of COS, where red points indicated simulated values and black points refers to
the original data measurements.

out-phasing. Detrending all timeseries might therefore improve model results and explain
more data variance in PCA, as well as identifying real sources when applying PMF.

Timeseries = seasonal + trend + remainder (5)

STL function is a robust method that can be used to detrend the time series in data matrix
X, by decomposing each timeseries into seasonal, trend and remainder as demonstrated in
equation 5. In STL, trend is calculated based on the seasonality given and in this case weekly,
monthly, and yearly seasonality is calculated. The trend is illustrated in the second time series
in Figure 9 of CFC-115 and CH3Cl. When detrending the time series, the trend is subtracted
from the original time series. Interestingly enough, CFC-115 shows an increasing trend in
the period 2015-2018, even though it is expected to be out-phasing due to Montreal Protocol.
This is expected because CFC-115 has a very long lifetime and the effect of reduced emissions
takes time to be visible. Methylchloride (CH3Cl) on the other hand shows a decreasing trend
in the middle of the time series corresponding to approx. year 2017 and 2018. Furthermore,
CH3Cl have a similar seasonal variability like NMVOCs.

3.7 Input data file

The two datasets, XVOCs and XGHGs, are merged into one data matrix X used as an input
file for further analysis with cluster analysis, PCA, and PMF. A few datapoints are lost
when merging the two datasets (359 datapoints), due to the different time coverage. Summer
and Winter seasons are separated in two data matrices XSummer and XWinter. This will help
interpreting the results of cluster analysis, PCA, and PMF implicitly by taking into account
the role of OH radical and photochemistry in affecting NMVOCs variability.



3.7 Input data file 24

(a)

(b)

Figure 9: STL of (a) CFC-115 and and (b) CH3Cl. 1. original data, 2. trend, 3. weekly seasonality, 4.
monthly seasonality, 5. yearly seasonality, and 6. remainder.
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Figure 10: Time series of ethyne (red) and its associated uncertainty time series S (grey), where
missing values in the S are substituted with the geometric mean multiplied with 4.

3.8 Uncertainty data matrix

PMF requires both a data matrix (X) and associated uncertainty matrix (S) and in this work
analytical uncertainty (S) is used from every sample of the data matrix (X).

There is not a common recognized uncertainty methodology for estimating uncertainties
of halogens and GHGs, that on the contrary exist for NMVOCs. The analytical uncertainty
of NMVOCs are estimated from measurement repeatability and scale propagation error. In
general, the measurement total uncertainty for NMVOC is always larger than the uncertainty
estimated for halogens.

The uncertainty data matrix (S) in PMF is almost as important as the concentration matrix
(X) because the uncertainty values are the weight of the variables and therefore determine the
final result (Belis et al., 2014). Furthermore, PMF can be sensitive to the uncertainty matrix.

An important point to address, is related to how to estimate the missing values in the uncer-
tainty matrix (S). Where the missing values of data matrix (X) was filled using interpolation,
its associated uncertainty matrix (S) contain missing values as well. The estimated missing
values of matrix S has to be large in order to minimize the influence of the interpolated values
in data matrix X when applying the PMF model.

There are no guidelines on which method is most appropriate to use. Therefore, the
approach is to try different options and then demonstrate that the choice was meaningful or
not with the PMF results. In this thesis, a common approach introduced first by Polissar
et al., 1998 is used, where the missing values of uncertainty matrix (S) is substituted by its
geometric mean multiplied with 4 (Belis et al., 2014; Reff, Eberly, and Bhave, 2007). This is
illustrated in Figure 10.
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(a) (b)

(c)

Figure 11: S/N ratios for the whole dataset of NMVOCs species, where data contain no missing
values. (a): Ethyne, propane, i-butane, n-butane, and n-pentane; (b): n-pentane, n-hexane,
n-heptane, i-octane, and n-octane; (c): benzene, toluene, ethylbenzene, mp-xylene, and
o-xylene.

3.9 Signal to noise ratio

In order to evaluate the robustness of each species contribution to the PMF model output,
the relationship between the concentration (X) and uncertainty (S) has to be defined, known
as the signal to noise (S/N) ratio. S/N distribution are carefully investigated for all species.
In order to achieve better results, S/N should be larger than 2 (see section 10.2). Otherwise
variables are classified as weak or bad variables, and weights are introduced in the PMF model
to constrain the algorithm.

Results are plotted in Figure 11. Species with high variability, many outliers, and a low S/N
ratio are the following: n-hexane, n-heptane, i-octane, n-octane, (m,p)-xylene, and o-xylene.
Especially n-hexane, n-heptane, and (i,n)-octane are having long periods where uncertainties
are very large. Before applying PMF analysis, species are grouped as strong, weak or bad
variables depending on their S/N ratio and the final S/N ratio are summarized in Table 5
and Table 6 for Summer and Winter, respectively. In addition, the minimum, median and
maximum mixing ratios of all species are summarized in the same tables and these are the
data used for the PMF analysis. An additional correction for the lifetime has been tested
and applied on the datasets, based on the OH exposure method, as explained in the following
chapter.
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Table 5: Summer dataset statistics.

Species S/N Min (ppt) Median (ppt) Max (ppt)

SO2F2 7.6 1.91663 2.22547 59.88395
HFC-32 10 10.64663 14.98042 43.97495
HFC-125 10 17.71908 21.7168 67.05466
HFC-134a 10 83.89794 95.4909 155.22598
HFC-152a 10 7.67518 10.86015 27.50471
HFC-365mfc 4.3 0.81249 1.1801 5.69075
HCFC-22 10 231.32428 240.31063 265.66247
HCFC-142b 10 22.47877 23.85912 28.38858
CFC-114 10 15.86305 16.30386 16.95074
CFC-115 9.9 8.12144 8.42898 8.79124
CH3Cl 10 494.12828 565.62247 688.48333
CH3Br 10 6.44889 7.67966 11.83729
CH2Cl2 10 32.74607 58.3796 227.61684
CHCl3 10 5.83247 12.30982 25.14529
CCl4 10 76.07161 78.90963 85.767
CH3CCl3 9.9 3.07329 3.55165 17.42013
TCE 3 0.36236 0.78803 4.59543
PCE 10 2.88765 6.27629 51.27296
COS 10 419.33281 496.28785 554.07392
ethyne 9.3 42.45691 112.47768 315.90999
propane 5.2 50.81561 232.96507 975.81715
i-butane 9.2 12.42267 48.02323 212.00289
n-butane 9.5 21.19955 83.51012 415.10216
i-pentane 9 14.16457 54.5075 405.13027
n-pentane 5.8 8.7669 27.09622 205.53149
n-hexane 3.7 0.36433 5.74964 44.78401
n-heptane 3.4 0.92235 3.9567 31.47713
i-octane 2.1 0.3536 2.83187 15.32556
n-octane 3.3 0.67745 2.32275 11.25879
benzene 9.7 27.5553 55.59146 138.67187
toluene 9.8 11.21787 43.09407 538.90388
ethylbenzene 9.3 5.78819 13.86782 68.3724
mp-xylene 9.1 20.67209 49.52794 244.18716
o-xylene 9 5.48634 11.35577 44.60328



3.9 Signal to noise ratio 28

Table 6: Winter dataset statistics.

Species S/N Min (ppt) Median (ppt) Max (ppt)

SO2F2 7.2 1.8917 2.14638 2.61017
HFC-32 9.9 9.76125 13.04012 27.50988
HFC-125 10 17.50478 19.86663 35.04822
HFC-134a 10 81.72684 88.71379 122.83512
HFC-152a 10 7.27641 10.84001 37.34464
HFC-365mfc 3.8 0.77642 1.07159 3.7035
HCFC-22 10 230.29709 240.72917 283.23517
HCFC-142b 10 22.66013 23.50511 29.9665
CFC-114 10 16.01933 16.34838 16.68162
CFC-115 9.9 8.2214 8.43813 9.23165
CH3Cl 10 520.59746 578.42217 671.14399
CH3Br 9.8 6.67339 7.25854 7.91101
CH2Cl2 10 39.66116 63.92442 167.53329
CHCl3 10 8.68793 13.84087 21.75432
CCl4 10 77.11333 79.01024 81.91518
CH3CCl3 9.6 3.25113 3.50144 5.3753
TCE 4.2 0.29566 1.13611 9.29776
PCE 9.9 1.73887 5.83089 43.62095
COS 10 434.81013 501.09719 536.845
ethyne 9.2 60.75802 322.59623 1780.76073
propane 5.5 123.80042 755.87038 2235.27602
i-butane 9.2 14.29832 128.40679 484.14547
n-butane 9.5 32.7066 245.59569 719.52078
i-pentane 7.3 6.61945 81.07247 346.85999
n-pentane 4 3.60214 60.81414 320.90026
n-hexane 2.6 0.51286 15.28838 174.13807
n-heptane 2.5 0.21668 6.52221 58.6753
i-octane 1.2 0.22043 3.19582 21.37665
n-octane 2.7 0.20595 2.97547 19.04787
benzene 9.6 29.26983 120.48134 603.11542
toluene 8.5 1.26623 55.27111 957.41799
ethylbenzene 7.7 0.86924 13.77 56.71226
mp-xylene 7 3.10443 49.17857 202.5438
o-xylene 7.1 1.01401 11.621 91.53672
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L IFET IME CORRECTION METHOD

The aim of this chapter is to investigate the role of the diverse atmospheric lifetime of NMVOCs.
Each individual NMVOC have different lifetime, but they have generally a much shorter
lifetime than halogenated species. Specifically, when classifying NMVOCs source categories,
it is of great importance to also consider the photochemical processes occurring during the
transport to the receptor. The atmospheric concentration of NMVOCs strongly depends on
the tropospheric oxidation by OH radical and correspondingly, affect the presumable range of
transport from source to receptor according to their atmospheric lifetime.

With the aim of evaluating the impact of lifetime correction to the PCA and PMF results,
the age of air masses at measurement site can be estimated by calculating the OH exposure,
using atmospheric mixing ratios of NMVOCs (De Gouw et al., 2005).

The OH exposure equation (6) also called "photochemical age", was first introduced by
Roberts et al., 1985, using toluene/benzene ratio. Here, E/X ratio is used in this research
based on the criteria that they are both emitted from a common traffic source, are strongly
correlated and have different atmospheric lifetime (He et al., 2019). The lifetime of (m,p)-
xylene is considerably shorter than ethylbenzene (Table (1)), and can therefore demonstrate
the age of an air mass as X/E mixing ratio decreases significantly when moving away from the
emission source (Monod et al., 2001). The initial NMVOCs concentration is calculated using
equation (8), whereby the obtained concentration is corrected for the atmospheric lifetime of
the species.

• OH exposure:

[OH] · ∆t =
1

kE − kX
×
(

ln
[E]
[X]

∣∣∣∣source − ln
[E]
[X]

∣∣∣∣CMN

)
(6)

m
[E]
[X]

∣∣∣∣source =
[E]
[X]

∣∣∣∣CMN × exp ((kE − kX) · [OH] · ∆t) (7)

• Lifetime correction method:

[NMVOC]initial = [NMVOC]measured × exp(kNMVOC · [OH] · ∆t) (8)

Where [E]
[X] |source represents ethylbenzene/(m,p)-xylene source ratio measured at Po Basin

and [E]
[X] |CMN is the observations at CMN; ∆t indicate the age of the air mass and kE and kX are

the OH rate constants of ethylbenzene and (m,p)-xylene; [NMVOC]measured is the measured
concentration of NMVOC at CMN and kNMVOC is the corresponding OH rate constants.

30
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This method is based on the assumption that the transport of NMVOCs to CMN is mainly
coming from Po Basin domain without mixing with fresh emissions nearby receptor or very far
emission sources. However, the latter is valid only for the less reactive species (like benzene)
where the impact of OH chemistry is smaller.

Finally, a sensitivity study is performed of NMVOCs with and without lifetime correction
method obtained by the application of equation (8). The initial NMVOCs dataset is merged
together with the halogens and GHGs and used as an input data file for further analysis with
PCA and PMF.

4.1 Po Basin source ratio

The lifetime correction of NMVOCs involve two steps, first OH exposure is calculated from
equation (6) based on ethylbenzene/(m,p)-xylene (E/X) source ratio and secondly, the initial
value of NMVOC can be calculated by equation (8).

The E/X source ratio is needed as a reference ratio at the emission source at t = 0, which
is in this case the Po Basin. It is estimated from urban traffic environment in Po Basin at
dark hours from 18:00-06:00 (UTC + 1), to ensure a low degree of OH photochemistry. The
environmental and protection agency ARPAE-Emilia Romagna, provided BTEX emissions
collected from 9 ambient monitoring stations in Emilia Romagna (one ambient monitoring
station from each city), that are located in a traffic environment. ARPAE-Emila Romagna
only provide a NMVOC dataset spanning from date - date and a total of 1200 observations
and 45 variables from the period 1st October 2019 to 19th November 2019 is analyzed and
the locations and names of the ambient monitoring stations are given in Table 7. To minimise
the possible impact of OH radical near the emission source, only autumn data are considered.

Table 7: Ambient monitoring stations in Emilia Romagna.

Geographical locations Name of monitoring station

Piacenza (PC) Giordani-Farnese
Parma (PR) Montebello
Reggio Emilia (RE) Timavo
Modena (MO) Giardini
Bologna (BO) Porta San Felice
Ferrara (FE) Isonzo
Ravenna (RA) Zalamella
Forl̀ı (FO) Roma
Rimini (RN) Flaminia

Before deciding on using E/X ratio as a reference ratio for calculating OH exposure and
estimating the photochemical age, also benzene/toluene (B/T) ratio was calculated and
evaluated, as performed by Roberts et al., 1985. The calculated initial value from equation
(8) using B/T ratio gave very high values for the more reactive species, such as (m,p)-xylene
and o-xylene. For this reason, B/T ratio was not considered suitable to use in this context as
a reference ratio, because some species are more reactive than toluene. Besides the need to
include species with different atmospheric lifetimes, they also need to be correlated, assuming
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that they only come from the same traffic source (He et al., 2019). Pearson correlation is used
for comparative evaluation of correlation among species. The Pearson correlation between
benzene and toluene during summer is r = 0.50 at CMN. In comparison, ethylbenzene and
(m,p)-xylene correlation is r = 0.76 and significantly higher. From Figure 12, the diurnal
variability of ethylbenzene and (m,p)-xylene illustrates a strong correlation between the two
species in the PBL of Emilia-Romagna and is calculated to be r = 0.9926. Furthermore, two
significant traffic peaks are related to the daily behaviour pattern of car commuters going to
and from work during rush hour as well as to the PBL height evolution during the day.

(a) ethylbenzene (b) (m,p)-xylene

Figure 12: Averaged diurnal time series in Emilia Romagna in the period 01/10/19 - 19/11/19 (1200
observations), (a) for ethylbenzene and (b) for (m,p)-xylene.

Figure 13: Average E/X source ratio of 9 ambient monitoring stations located in Emilia Romagna
(the full names are available in Table 7).

Based on these evidences, E/X ratio is chosen as a reference source ratio that represents
the emissions in the Po Basin and provides an estimate of the age of NMVOCs emissions in
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the sampled air masses. However one ambient monitoring station located in Modena has a
much higher E/X ratio on average, attributable to a low (m,p)-xylene concentration compared
to the other stations as seen in Figure 13. The E/X ratio should be similar for all cities as
their sources are identical in an urban environment (Monod et al., 2001). Therefore, the
monitoring station in Modena is removed from this analysis and the averaged E/X source ratio
is calculated to be 0.28 (X/E = 3.76). A comparative study of X/E mixing ratio in urban
environment at several different locations and sources is conducted by Monod et al., 2001, and
indicate a mixing ratio ranging from 2.8 to 4.6. The obtained X/E source ratio from Po Basin
is 3.76, which is within this range. The X/E value obtained from the autumn ARPAE dataset
is particularly close to the measured X/E ratio from traffic tunnel and roadside studies carried
out at 10 different cities worldwide, where X/E ratio is 3.64 and 3.18, respectively (Monod
et al., 2001). A recent study calculates a E/X source ratio to be 0.62 in China, however that
study is conducted much closer to the source with an air mass age of only 3 hours (He et al.,
2019).
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(a) Piacenza (b) Parma

(c) Reggio Emilia (d) Bologna

(e) Ferrara (f) Ravenna

(g) Forl̀ı (h) Rimini

Figure 14: Time series of E/X source ratios from 8 ambient monitoring stations located in Emilia
Romagna, Po Basin. Red circles indicate samples, black line represents the mean.
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4.2 OH exposure

The average photochemical age of measured air masses at CMN is calculated according to
equations (9),(10),(11). The air mass age is estimated to be ≈ 12 hours during Summer
season, by using an OH concentration representing the whole European domain as described
in Chapter 2. This value is roughly consistent with the typical wind speed value (average
value: 6.4 m/s) observed at CMN during Summer season (Cristofanelli et al., 2017). At CMN,
12 hours roughly corresponds to an average catchment area of about 40.8 km equivalent radius
as defined by the modelling work carried out by Henne et al., 2010.

The OH rate constants kE and kX belong to ethylbenzene and (m,p)-xylene respectively,
and E

X |CMN is here calculated as the average mixing ratio during Summer at CMN.

(9)[OH]∆t =
1

(7.0 · 10−12 − 19.0 · 10−12)
× (ln (0.28)|source − ln (0.56)|CMN)

= 5.78 · 1010cm−3molecule s

∆t =
5.78 · {1010cm−3 molecules
1.32 · 106molecules cm−3

= 43787.9s (10)

∆thour =
43787.9s

60s min−1 · 60min h−1
= 12.2h (11)

When applying OH exposure to the observational dataset, the method is applied for every
single measurement as shown in Figure 15. It should be noted, that the calculated OH
exposure based on ethylbenzene/(m,p)-xylene source gives a few negative values. The fraction
of negative OH exposure events was calculated to be 3.8 % of total NMVOCs dataset (a total
of 481 negative events). According to equation (6), the negative events can be explained by
the fact that the true E/X emission ratio at receptor site (CMN) deviates from the E/X source
ratio estimated from the Po Basin. This can suggest that some NMVOCs events originating
from local sources, that specifically enhance only the (m,p)-xylene concentration. Negative
OH exposure values has also been evident in a study using similar approach, showing that
initial VOCs values are lower than the original ones, thus implying negative OH exposure for
some periods (Yuan et al., 2012).

To validate if the negative events should be excluded or not, a few methods and sensitivity
tests have been carried out. One method was to combine OH exposure data with model
calculations to find the best estimate e.g. by using a simple “smoother” which takes the
mean of a moving window every week. Another approach was to exclude all negative events
and ultimately every method contain a certain degree of arbitrary. In the end, only specific
coherent negative events that last less than 6 hours have been removed as it is not robust
to apply the same lifetime correction method for these periods. A lifetime of 6 hours and
below corresponds to air masses that are likely related to local sources and not from the Po
Basin. Moreover, four evident events with very high peaks related to particular behaviour of
atmospheric species have been excluded.
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Figure 15: Calculated OH exposure, for every NMVOCs sample where negative event that last > 6
hours are removed. The red line is a zero threshold, to denote negative samples.

4.3 Lifetime correction

The initial NMVOCs concentration are calculated by equation (8) and the effect of applying
atmospheric lifetime correction on data is plotted in Figure 16. The NMVOCs initial/NMVOCs
observed represents with and without lifetime correction and is calculated based on the average
concentration of NMVOC. The result shows, that the more reactive species concentrations
increases significantly after applying the OH exposure method. For example, (m,p)-xylene
increases 4 times in concentration. The high correction for reactive species, in particular
xylenes, is consistent with the relatively remoteness of CMN.

Finally, the next step involves cluster analysis using the calculated initial values for NMVOCs
together with halogenated species and non-CO2 GHGs, to explore correlation and groups
among the species.
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Figure 16: NMVOCs initial values with liftime correction method / NMVOCs observed values at
CMN.



5

METHODOLOGY

This chapter introduces the preliminary analysis methods, cluster analysis and principal
component analysis (PCA) with the aim to explore the correlation among the species and
classifying groups within the data. Cluster analysis and PCA have been performed for defining
a preliminary strategy for setting the PMF analysis. The chapter starts with an introduction
to cluster analysis methods and the calculation procedure for the analysis. Then follows an
introduction to PCA, explanation of the model equation, model constraints and finally the
standardization procedure for the input data.

Both cluster analysis and PCA are performed using R software (For further information,
see Chapter 12).

5.1 Hierarchical cluster analysis

Cluster analysis is used to find groups in data and classify similarities/dissimilarities of
variables (Kaufman and Rousseeuw, 2009). In this research, hierarchical cluster analysis is
performed based on the Pearson linear correlation distance, using "hclust" algorithm from
"stat" package in R software (more details can be found in Chapter 12).
Hierarchical clustering can be performed by different algorithms and distance metrics of
dissimilarity (e.g. Euclidean or correlation distance). Furthermore, there are two approaches
when constructing a hierarchical cluster: Agglomerative bottom-up approach and Divisive
top-down approach. The agglomerative bottom-up approach starts by clustering the species
when they are all apart and then grouping species pairwise step by step into clusters, until
only one species is left. The Divisive approach, groups species in the opposite direction by
starting with one big cluster and then separates them in two or more clusters.

As mentioned before, there are several techniques on how to group the species together using
agglomerative clustering and four the common methods are the following: Ward’s method,
Single linkage, Complete linkage, and Group average.

After using cluster analysis as an exploratory tool by testing different distance measures
and algorithm, the results gave different grouping of the species which is also one of the
most challenging part when deciding which method is more robust. We decided to use the
"complete linkage", method (also called "furthest neighbor") based on a series of preliminary
tests performed on the dataset. In the "complete linkage" method, the link between two
clusters contains all element pairs, and the distance between clusters equals the distance
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between those two elements (one in each cluster) that are farthest away from each other
(Vigni, Durante, and Cocchi, 2013).

The agglomerative hierarcical clustering is based on Pearson correlation as metric for
dissimilarity and is calculated by equation (12) to find a linear relationship between two
variables f and g:

r f ,g = ( f , g) =
∑n

i=1(xi f −m f )(xig −mg)√
∑n

i=1
(
xi f −m f

)2
√

∑n
i=1
(
xig −mg

)2
(12)

It explains the covariance between variable f and g in data measurements x and its associated
sample mean m, divided by its standard deviation σf and σg. Furthermore, if there is no
correlation between f and g r = 0 and perfect correlation when r = 1 (Kaufman and Rousseeuw,
2009).

Most clustering algorithm are designed for dissimilarities, and therefore the distance based
on Pearson correlation is calculated for dissimilarities before applying hierarchical clustering
algorithm (Kaufman and Rousseeuw, 2009). The correlation distance is given by:

dist =
1− r f ,g

2
(13)

The hierarchical agglomerative clustering results are graphical visualized in a dendrogram,
which represents different groups in data.

5.2 Principal component analysis

PCA is a widely used exploratory tool and based on the original data variance, PCA present
graphically sample similarities/dissimilarities and correlation between the measured species.
PCA is performed using "prcomp" from "stat" package and "factoextra" for data visualization,
using R software (further details in Appendix B, Chapter 12).
According to Hopke, Jaffe, et al., 2020, PCA should not be used as a source apportionment
method, even though it is classified as a receptor model. Firstly, it does not consider the
uncertainties of measurements and is based on a unweighted least square fit, unlike in PMF
where each individual data point is weighted. Secondly, the data input file are standardized
meaning that the original scale of variables and the absolute concentration is lost and cannot
apportion species to sources (Hopke, Jaffe, et al., 2020). Thus, PCA is not used to identify
source contribution of each principal components, but rater as a screening tool as already
emphasized in Chapter 1.

In this analysis PCA is carried out on the correlation matrix by an eigenvector analysis
(Seinfeld and Pandis, 2016). PCA decomposes the large dataset X into a few factors (p)
called principal components (PCs). The dataset undergo a linear transformation from multi
dimension to a projection on a hyperplane. This hyperplane is spanned by orthogonal
components (PCs).
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PCA is explained by equation 1 or from a matrix approach:

Xij = Tp ·VT
p + Eij (14)

Scores T are original samples in PC space explaining the similarity/dissimilarity between
each sample based on euclidean distance and represent the high and low intensity. Loadings
V, are original variables in PC space, explaining the correlation between each variable based
on the angle. Close angles between two variables means that they are closely correlated while
variables orthogonal to each other are not correlated. Same applies for variables that are close
to PC and can be interpreted as a dominant variable, contributing to highest variance to
the PC. The number of PCs is denoted as p and residuals matrix E, is the everything not
explained by the model(Vigni, Durante, and Cocchi, 2013).
The obtained PCs can be graphically represented as scores (T) and loadings (V), showing
scatter plots of samples and variables in PC space.

5.2.1 PCA onstraints

PCs are a linear combination of original variables which are explained by:

t1 = Xij · v1

t2 = Xij · v2
(15)

Where t1 and t2 are score vectors and v1 and v2 are the loading vectors in PC1 and PC2
respectively. X is the original data matrix (Vigni, Durante, and Cocchi, 2013).
The PCs are eigenvectors of the covariance matrix with their corresponding eigenvalues.
The covariance matrix (cov(X)) multiplied with a vector v1, rotates the vector towards the
direction of maximum variance, with the largest eigenvalue λ1, while vector v2 of cov(X) gives
the v2 with corresponding second largest eigenvalue λ2, this is valid for the increasing number
of PCs for a=1...j:

cov(X)va = λava (16)

In addition, the PCs have to be normalized and orthogonal to each other (uncorrelated):

v1 · v1 = 1
v1 · v2 = 0

(17)

In PCA, each PC needs to explain most of data variance which means that the first PC
(PC1) describes the maximum spread of the data points projected on PC1. The second
PC (PC2) is orthogonal to PC1 and describes the remaining variance (with second largest
variance) and this is true for the increasing number of PCs (Vigni, Durante, and Cocchi,
2013).
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5.2.2 Standardized data

The input data matrix is standardized which means that all variables have the same metric
and all the species are weighted equally. There is zero mean (columns are centered) and unit
standard deviation (columns are scaled) and PCA is therefore carried out on the correlation
matrix (Seinfeld and Pandis, 2016).
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CLUSTER ANALYS I S RESULTS

Cluster analysis (CA) is performed before PCA to understand species correlation and group
them accordingly. This chapter presents the hierarchical clustering results using "complete
linkage" agglomeration method and distance correlation.

The results are illustrated in a dendrogram and are grouped together according to species
correlation. Values grouped together close to 0 are similar and highly correlated. Furthermore,
the groups are classified according to species main emission source from Table 1 and Table 2.

First, cluster analysis is performed on raw dataset XVOCs and XGHGs. Thereafter, to assess
the impact of the NMVOCs lifetime correction to the cluster analysis results, clustering is
performed on the whole dataset X with NMVOCs lifetime correction.

When performing cluster analysis on raw data, the missing values have to be treated and
are removed casewise in the cluster algorithm. A dendrogram of NMVOCs is illustrated in
Figure 17 (a), while halogenated species and GHGs are illustrated 17 (b).

6.0.1 NMVOCs

Two main cluster are distinguished by their variability and lifetime: Species with relative long
lifetime (left) and species with relative short lifetime (right). The left cluster contain two
subgroups, where ethyne and benzene have the highest degree of similarities and are strongly
correlated and both emitted from vehicle exhaust. They are linked with a group containing
propane and (i,n)-butane emitted from activities related to liquified petroleum gases (LPG)
industry (distilling, storing, distributing, consumption etc.). Furthermore, the subgroup is
connected with the second subgroup containing (i,n)-pentane, n-hexane and i-heptane related
to gasoline evaporation.

The right cluster contain TEX (Toluene, Ethylbenzene and Xylenes) and (i,n)-octane and
could be classified as evaporative emission sources from multiple sources, mainly gasoline,
but also solvent industry and solvent use. Especially EX show high similarities suggesting a
common source (solvent use and vehicle exhaust).
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(a)

(b)

Figure 17: Dendrograms of (a) NMVOCs and (b) halogenated species and non-CO2 GHGs.
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6.0.2 Halogenated species and non-CO2 GHGs

The dendrogram of halogenated species and GHGs is indicating two clusters. The smaller
cluster (left) show high similarities of COS and CH3Cl variability and both compounds have
indeed emission strongly affected by natural sources compared to other halogenated species.
Furthermore, they are connected to a group containing CFC-114, CCl4, and CH3CCl3, which
sources represents industrial solvents and refrigerant. The same cluster is dissimilar to species
variability belonging to the other (right) cluster. Right cluster is divided in two smaller
subgroups, where HFC-134a, HFC-32, HFC-125 show a high degree of similarities and are all
refrigerants. Moreover, they are grouped with HCFC-22 (refrigerant), CFC-115 (refrigerant)
and SO2F2 (fumigant) and are connected with TCE and CHCl3 (industrial solvents). This
subgroup represents mainly refrigerants connected with a group of industrial solvents. While
the left subgroup, show highest similarities between HFC-152a (foam blowing agent) and
CH2Cl2 (industrial solvent). However they are connected with PCE (solvent), HFC-365mfc
(foam blowing agent), HCFC-142b (blowing agent), and CH3Br (fumigant). The splitting of
this subgroup in two branches well capture the two main different activities in which these
compounds are involved (commercialized and used): foam blowing industries and refrigeration
activities.

6.1 With lifetime correction

Cluster analysis is performed on dataset XSummer and XWinter with lifetime correction as shown
in Figure 18, merging NMVOCs and halogens together. It is evident in both dendrograms that
a few species, are dissimilar and distinguished from the rest. These compounds are CFC-115,
CFC-114, TCE, CCl4, CH3CCl3, SO2F2. Comparing Summer and Winter dendrograms,
HCFC-22 and HCFC-142b are also distinguished from the larger cluster during Winter are
related to extruded polystyrene foam application. Moreover, CH3Br is also a "outlier"
species grouped with CH3Cl and COS during Winter, and are all mainly from natural source
emissions. The same group is linked with a group containing SO2F2 and CFC-115 which
cluster is dissimilar to the all other species. Finally, the comparison of Summer and Winter
dendrogram show the same (8 to 10) "outlier" species separated and dissimilar to species
belonging to the larger cluster.

It is to a certain degree subjective when determining the number of clusters obtained, as
it depends on the cut-off height on the dendrogram. The following analysis is considering a
cut-off height at 0.3, where two main clusters are obtained in both dengrograms; grouping
halogenated species and GHGs (left) and NMVOCs (right).

6.1.1 Suummer (JJA)

In Summer, the halogenated species and GHGs (left) are divided in two subgroups, while
NMVOCs (right) are divided in several subgroups linked with CH3Br. Comparing the
dendrograms with and without lifetime correction (Figure 17), the NMVOCs groupings are
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(a)

(b)

Figure 18: Dendrogram of XSummer (a) and XWinter (b) with lifetime correction.

slightly different. The more reactive species EX and n-octane are now grouped together and
less reactive species (benzene, ethyne, propane, and (i,n)-butane) remain in the same cluster
probably tracing high/low spatial proximity of emission sources. Furthermore, toluene and
n-heptane is closely correlated and grouped together with i-octane with n-heptane, i-octane,
and toluene.

6.1.2 Winter (DJF)

During winter, NMVOCs cluster (right) is divided in two main subgroups, where TEX is
grouped with TCE and have a dissimilar variability than the rest of NMVOCs. In comparison
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with Figure 17 a) without lifetime correction, TEX are now grouped with TCE and are all
used as solvents in industry, therefore the group source category can be classified as industrial
solvent usage. The other subgroup show almost same cluster as illustrated in 17 a), but
with a higher similarity between n-pentane, n-heptane, and n-octane all related to gasoline
evaporation. NMVOCs cluster is linked with a single group consisting of HFC-152a and
CHCl3 and have different variability than NMVOCs cluster and dissimilar to halogenated
and GHG species belonging to the other cluster.

In the (left) cluster containing halogenated species and GHGs, i-octane is highly correlated
with the foam blowing agent HFC-365mfc. Moreover, HFC-134a, PCE, and CH2Cl2 are
correlated and mainly used as chlorinated solvents and feedstock for manufacturing refrigerants
(HFCs). A single group of refrigerants contain HFC-32 and HFC-125 and the cluster analysis
is keen to capture the variability of these two HFCs that are often used combined in mixtures
for the small to medium size domestic and industrial AC conditioners.
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PCA RESULTS

PCA is performed as a preliminary step prior to PMF analysis. The main objective, is to
identify the optimum number of principal components (PCs) that summarizes the data variance.
Thus the optimal solution is investigated using four analysis approaches. Furthermore, PCA
results are compared with the dendrograms obtained from cluster analysis to investigate if
the grouping of species are similar and to validate if the PCA method is robust.

7.1 Input data matrix

PCA is applied on both Summer and Winter data matrix, XSummer and XWinter. Moreover,
since the transport of air masses can be roughly distinguished in 1) thermal transport
(advection) from the Po valley (PBL) up to the mountain and 2) long range transport, we
decided to split the database in "daytime" and "nighttime", in order to exclude a bias induced
on the total variability due to the two different patterns. Daytime (10a.m. to 6p.m.) and
nighttime (12a.m. to 4a.m.) of each data matrix is also analyzed separately. Every dataset
is standardized otherwise most variance (PC1) is dominated by e.g. propane (with high
variability and high mixing ratios) and thereby failing to explain other species.

7.1.1 Determining the number of principal components

To determine the optimum number of PCs, eigenvalues and the cumulative variance explained
by the PCs are examined. Four approaches are used to evaluate the optimal number of PCs:

1. Using a cut of level = 90 % cumulative variance.

2. Only PC with eigenvalues larger than 1 are retained (λ > 1).

3. Each PC must explain at least 5% variance.

4. Evaluating scree plots by determining “elbow” points and evaluate loading plots.

The first three approaches are used to statistically evaluate the PCs, while the fourth is
following a more intuitive approach. The intuitive approach is to visualize graphically the
eigenvalues and variance as function of PCs, known as scree plot in PCA and is illustrated in
Figure 19 and 22. These are common strategies for interpreting PCA results (Vigni, Durante,
and Cocchi, 2013). The retained PCs should all explain real variation in data compared to
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PCs explaining only unsystematic variance. This means, that the retained PC should explain
a higher and larger proportion of variance than PC explaining mainly "noise". This is can be
detected as an "elbow" or inflection point on the scree plot, where the following PCs do not
show a large change in explained variance (Vigni, Durante, and Cocchi, 2013). Furthermore,
also loadings are evaluated to understand if collinear variables exists, explaining the same
variance in data.

The first statistical approach is to retain PCs explaining a total data variance between 70
% and 99 %. Therefore a cut-off level at 90 % is set to understand how many components
are needed in order to explain a large fraction of total data variance. Second approach is
to only retain PCs with eigenvalues (variance) greater than 1. According to the eigenvalue
criteria, only λ > 1 explain meaningful data variance (Vigni, Durante, and Cocchi, 2013).
The third approach ensures that the PCs do not explain unsystematic variance and include
only PCs explaining at least 5 % of data variance. Finally the results from following the three
statistical approaches are summarized in Table 8, for Summer and Winter season.

Table 8: Determining the number of PCs of Summer and Winter season

Data set λ > 1 5 % variance 90 % variance

Summer season (JJA) 7 PCs (74.8 %) 3 PCs (60.4 %) 15 PCs
Summer daytime 7 PCs (78.0 %) 4 PCs (66.9 %) 13 PCs
Summer nighttime 8 PCs (81.53 %) 4 PCs (67.51 %) 12 PCs
Winter season (DJF) 6 PCs (77.36 %) 3 PCs (66.03 %) 13 PCs
Winter daytime 6 PCs (75.35 %) 4 PCs (68.44 %) 14 PCs
Winter nighttime 7 PCs (78.27 %) 4 PCs (68.32 %) 13 PCs

7.2 Summer (JJA)

The explained variance is plotted as a function of PCs and illustrated in Figure 19 a), where
PC1 explain 47.1 % data variance. From Figure 19 b), the number of PCs are suggested to be
3, each of them explaining ≥ 5 % data variance and results in a cumulative variance of 60.4
%. Also, one "elbow" point is noted at PC3. Furthermore, eigenvalues are plotted against
the number of PCs in Figure 19 c), where two "elbow" points are noted at PC3 and PC6,
respectively. According to the eigenvalue criteria (λ > 1), 7 PCs are obtained explaining 74.8
% of total data variance, while 15 PCs accounts for 90 % of total data variance shown in
Figure 19 d).

To summarize, the 15 PCs explain individually too low variance and 3 PCs explain insufficient
amount of cumulative data variance. Therefore, 7 PCs are retained following the eigenvalue
criteria and explain an acceptable amount of data variance. Moreover, PCA is also performed
on daytime and nighttime dataset and the results are compared. Daytime and nighttime
results for λ > 1 (Table 8), suggest 7 and 8 PCs, explaining up to 81.53 % of total data
variance.

The variables contributing to the 7 PCs identified for the Summer season are explored and
4 PCs are depicted in Figure 20 and 21 (see Appendix B, Chapter 12 for the remaining PCs).
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(a) (b)

(c) (d)

Figure 19: Scree plots of Summer season. (a) Bar chart of explained variance as a function of PCs;
(b) graph with a threshold at 5 % variance; (c) eigenvalues as a function of factors with a
threshold a λ = 1 ; (d) cumulative variance with a cut-off level at 90 %.

Loadings illustrating PC1 vs. PC2, distinguishes NMVOCs from halogenated species in
positive and negative PC space. Moreover, the loading plots did not reveal any interesting
correlation among variables, but identified a few "problematic species" to be: SO2F2, CFC-115,
CFC-114, CH3Cl, CH3Br, CH3CCl3, CCl4, TCE, and COS. These species are dominating
most of remaining PCs, apart from PC1 and PC2. This means, that the variability related
to these species are providing little information to explain other species. Same species are
identified as "outliers" in the dendrograms obtained from cluster analysis (Chapter 6.1.2) and
are distinguished from the major clusters. A further analysis was carried out (not included in
this work), by removing all the "problematic species" from the input matrix to understand
how they are effecting the model output. They were introduced back in the model one by one,
in order to understand how they affect the explained model variance (PCs). When introducing
more than one "problematic species" back in the model such as CH3Cl and CH3Br, the
obtained PCs distinguished the "problematic species" from the main clusters of species as
demonstrated in cluster analysis. Hence, the "problematic species" needs special attention
and to achieve better PCA results, further analysis of potential outliers or events should be
examined or removing the species from the input matrix.
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(a)

(b)

(c)

Figure 20: PCA on Summer season. Loading plots of PC2 as a function of PC1 (a); PC4 as a function
of PC2 (b); Species contribution of PC1 (c). "Dim" (dimension) is the PC.
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(a)

(b)

(c)

Figure 21: Summer season results and species contribution to a) PC2; b) PC3; c) PC4. Red line
indicate the average contribution for all 34 variables.



7.3 Winter season (DJF) 52

7.3 Winter season (DJF)

(a) (b)

(c) (d)

Figure 22: Scree plots of Winter season. (a) Bar chart of explained variance as a function of PCs;
(b) graph with a threshold at 5 % variance; (c) eigenvalues as a function of factors with a
threshold a λ = 1 ; (d) cumulative variance with a cut-off level at 90 %.

PCA results performed on the winter dataset are illustrated on the scree plot Figure 22. In
general, higher variance is explained during Winter by fewer PCs compared to Summer season
and PC1 explain 52.8 % of data variance (Figure 22 a). Furthermore, two "elbow" points are
apparent at PC2 and PC4 in Figure 22 b) and c). Also, when moving from PC7 to PC8, a
discrete inflection point is observed. Only 3 PCs are retained explaining ≥ 5 % data variance
each, while λ > 1 suggests 6-7 PCs. A total data variance of 78.3 % is explained by 7 PCs
from nighttime data matrix (Table 8), while 13 PCs are necessary to explain 90 % of the total
data variance. According to the four approaches, 6-7 PCs seem to be explaining meaningful
data variance, although it can be argued that the choice of retained PCs is largely subjective.
Recalling the intention of using PCA prior to PMF was solely to explore if there are any
underlying phenomena presented in data that can be explained by an optimum number of
PCs. In this analysis, eigenvalues above 1 and scree plots turned out to be the most suitable
approaches for determining the appropriate number of PCs to retain.

Loadings of Winter season is given in Figure 23 and 24. PC1 vs. PC2 clearly distinguish
CH3Br, COS and CH3Cl from PC1, which explains variance of a large cluster of species and
can be related to natural (oceanic) emissions. This is also evident from the dendrogram of
Winter season in cluster analysis. Furthermore PC3(6.5 %) has largest contribution from
HFC-32 and HFC-125 that are given a high similarity and correlation in the dendrogram.
PC4(4.4 %) explains mainly SO2F2, CFC-115, and to a lesser extent also CCl4 and CH3Cl (see
Appendix B, Chapter 12 for the remaining PCs). To conclude, same "problematic species"
observed during Summer are also dominating the PCs during Winter. Results explain mainly
the variance of the "problematic species", except for PC1. This clearly points out that PCA
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Figure 23: PCA of Winter season. Loading plot of PC2 as a function of PC1, where "Dim" (dimension)
is the PCs.

is sensitive to the "problematic species" and is therefore not effective in attributing potential
emission sources of NMVOCs, halogenated species and non-CO2 GHGs.
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(a)

(b)

(c)

(d)

Figure 24: Winter season results and species contribution to a) PC1; b) PC2; c) PC3; d) PC4. Red
line indicate the average contribution for all 34 variables.



Part IV

PMF ANALYS I S



8

METHODOLOGY

Prior to the PMF analysis, validation of data and explorative analysis have been accomplished.
This include a realistic evaluation of both molar ratios and uncertainty dataset as well as an
explorative analysis of trends and seasonality, basic statistics, S/N ratios, cluster analysis,
and PCA.

Factor analysis is described by equation (1) or by the matrix algebra formula (Reff, Eberly,
and Bhave, 2007):

X = GF + E (18)

X is the NxM data matrix, where each row (N) contain one sample for each chemical species
and each column represent the time record of certain species (M). X is decomposed into two
smaller matrices, namely G and F. They have smaller dimensions and are explained by a few
factors P, that are linear combination of old variables. The aim is to reduce the data matrix
X into G and F without loosing too much information and where the number of factor (P)
solution is less than the number of species (P < M) and may be related to real sources or
phenomena present in data (Comero, Capitani, and Gawlik, 2009). It is therefore important
to carefully choose the optimum number of factors because the model solution will change
with respect to the factor number.

G is a NxP matrix explaining the source contribution of factor/source P, also called factor
Scores, and correspond to original samples from data matrix X. F is a PxM matrix and is the
factor profiles, also called factor Loadings, explaining the concentration/percentage of species
m contributing to factor/source P. Finally, E is the residuals and is the difference between
input data X and modeled data (X - GF).

8.1 Comparison of PMF and PCA models

Both PMF and PCA are multivariate statistical models originated from the same fundamental
equation of continuity and classified as receptor models (as stated in Chapter 1). Despite
these analogies, the models uses different algorithm to solve the equation of continuity. PMF
uses least square fit weighted with species associated uncertainties (S), while PCA uses no
weighted uncertainties matrix. PMF input files include both a concentration matrix (X) and
uncertainty matrix (S) that is based on analytical uncertainties, thereby applying a weight on
each data point.
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There are no applied orthogonal constraint in PMF, while PMF constraint is that all
elements of G and F are positive. The positive constraint ensures that the predicted source
contribution is always positive (positive emission from source) which is not always the case in
PCA and can result in negative apportionment. Another important difference is that PCA is
based on a correlation matrix (variables are usually standardized) and therefore the result
are in arbitrary units and not based on the absolute concentration. Source apportionment
with PMF is based on the absolute concentration and the obtained information explains the
influence of species concentration in the ambient air measured at the receptor site. Finally,
both models requires expert knowledge of the study area and chemical species in order to
interpret the output factors/principal components (Comero, Capitani, and Gawlik, 2009).

8.2 Signal-to-noise ratio

In receptor models, Signal-to-Noise ratio (S/N) is calculated to better understand the relation-
ship between the molar ratios (X) and associated uncertainties (S) and are plotted in Chapter
3.9. According to Table 9, the variables are classified into good, weak and bad variables. Bad
variables are excluded from the analysis, while weak variables are downweighted by 10 %
(Belis et al., 2014).

Table 9: S/N ratio

S/N > 2 Strong variable
0.2 < S/N < 2.0 Weak variable
S/N < 0.2 Bad variable
(Belis et al., 2014) 1

8.3 Q function

Q is the weighted least square function which PMF tries to minimize. The Q value is given in
equation (19):

Q =
N

∑
i=1

M

∑
j=1

(
eij

Sij

)2

(19)

Where Sij is the uncertainty matrix, and Eij is everything that was not modeled. Q is
therefore the sum of square scaled residuals. By assuming that the uncertainty matrix (S) is
correct, then Q should follow χ2 distribution. A good fit of the data will result in the correct
minimum value of Q. The minimum Q value is calculated from the PMF model itself either in
robust mode (without outliers) or true mode (with outliers) (Reff, Eberly, and Bhave, 2007).

For every PMF solution exist multiple Q values, which means that there can be different
relative minimum in a solution. The algorithm starts with a random starting point and should
converge to the absolute minimum. If the model does not converge, it means that there is a
local minimum and the model best solution has to be evaluated. Therefore the base model
needs to run with minimum 10 trials to make sure that the algorithm converges to the absolute
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minimum Q. The relationship of Q/Qexpected is considered when evaluating the number of
factors to retain and is plotted against the rank of factors. The theoretical Q value (Qexpected)
is given by the number of degrees of freedom in data and Q/Qexpected is approximately the
sum of square residuals divided the number of data points (Norris et al., 2014).

Qtheoretical ≈ (N ·M)− P · (N + M) (20)

If plotting too many factors Q/Qexpected function can have notable inflection point at a
given factor (Seinfeld and Pandis, 2016). Moreover, Q/Qexpected should be approximately 1
and if Q/Qexpected value exceeds »1 it could indicate an underestimation of the input data
uncertainties and PMF solution is therefore not optimal (Contini et al., 2016). However,
evaluating the optimum number of factor by this approach might be misleading and Q/Qexp

should be carefully examined, as Q value also relates to the uncertainties data matrix (S) and
tells if it is correctly estimated or not. Furthermore, changing the uncertainty also affects the
Q value and it is therefore not recommended to change uncertainties just to force Q to be
close to 1 (Belis et al., 2019).

8.4 Residuals

There are different ways to see whether there are problems with the uncertainty (S) matrix
based on the result obtained, and in particular based on the distribution of the residuals. In
general, the scaled residuals should be normally distributed between −3 to +3. A very large
distribution of scaled residuals may be due to an underestimation of uncertainties. Likewise, if
the distribution is too sharp or too narrow there are generally problems with the uncertainties
(Comero, Capitani, and Gawlik, 2009). Furthermore, there are also different ways to evaluate
the uncertainties besides the shape of the residual. To verify that variables are decomposed
effectively, the residuals is plotted as a function of the variable. The residuals should be
normally and randomly distributed around zero and abnormal spikes are related to outliers.
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PMF RESULTS AND DIAGNOST ICS

This research is the first attempt to perform EPA-PMF on NMVOCs, halogens and non-CO2

all together to a long-term high frequency data recorded at CMN.
The detrended dataset is divided into Summer and Winter seasons and run separately in

PMF. A 8 factor solution is identified for Summer season (JJA) and a 7 factor solution for
the Winter season (DJF).

At first, the best PMF solution is determined by examining different solutions composed
by 2 to 9 factor solutions without extra modeling uncertainties or rotations. Each model
was calculated based on 20 base runs, to make sure that the algorithm did not converge to
a local minimum, but rather an absolute minimum Q value. The results showed, that not
all base model runs converged to an absolute minimum. This was especially evident when
the number of factors exceeded 7 factors. When the model does not converged in all 20 base
runs, the solution needs to be evaluated. However, the issue was resolved when adding an
extra modeling uncertainty of 5 % to all variables and sample. As a result, all 20 base runs
converged.

There are no statistical tests in PMF that can determine the true factor solution. In this
work, the choice of factors is determined by:

1. Interpretation of PMF solutions with the help of expert knowledge to associate obtained
factors with related sources.

2. Plotting Q/Qexpected relationship to identify any noteable inflection points.

3. Comparing results with literature profiles.

4. Validating and comparing PMF solutions with PCA results and cluster analysis.

9.1 Relationship between Q/Qexpected

The Q/Qexpected relationship is plotted against the number of factors and is explored on
Summer and Winter PMF results. In Figure 25, a) shows no apparent inflection point, but
only a greater slope between 2 and 3 factors. While b), gives several "elbow" points where
the slope is greater moving from one factor to another at factor 3,4, and 7. In c), a small
inflection point is notable at factor 5 and 7, and moving from 7 to 9 factor the slope is not
changing significantly. In d), 3 elbow points are remarkable at factor 3, 5, and 7 respectively.
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(a) (b)

(c) (d)

Figure 25: Q/Qexpected as a function of factor ranking, where (a) and (c) is based on Qrobust mode
and (b) and (d) is based on Qtrue mode. Top row for Summer and bottom row for Winter
season.

9.2 Summer (JJA)

The factor solutions with either 7 factors or 8 factors are compared where the 8 factor solutions
explains some profiles that are also identified during the Winter season. Meanwhile, the 9
factors solution can be excluded by the reason that factor 9 explains mainly PCE and CH2Cl2,
which are the same species explained by factor 1. Factor 9 is therefore duplicating factor 1
and furthermore the base model runs did not converge to the minimum Q value in all 20 base
runs.

When comparing observed/predicted scatter plots from EPA-PMF, there are some species
that are not explained and fitted by the model in the 8 factor solution. 10 species have
poor model fit and a low correlation R2 < 0.6 as indicated in Table 10 and are listed here:
HFC-365mfc, CH3Br, CH3Cl, HCFC-22, HCFC-142b, CH3CCl3, CCl4, SO2F2, CFC-114, and
CFC-115. Furthermore, scaled residuals of three species are illustrated in Figure 26, and
show a normal distribution within the interval -3 and 3. Scaled residuals of SO2F2 (Figure
26b) shows a more narrow distribution than toluene (Figure 26c), which can indicate that the
uncertainties of SO2F2 is either underestimated or overestimated.

Q/Qexpected is plotted in Figure 27 and used to effectively evaluate residuals of the PMF
solution and understand which species are having high residuals (Q/Qexp>2) which is not well
explained in the model solution (Norris et al., 2014). As for instance, SO2F2 residual is 2.3 (>
2) and also scaled residuals gives a narrow distribution, which means that further evaluation
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in future analysis is needed. In addition, 3 high peaks in Q/Qexp sample contribution were
evaluated and removed. Finally, After thorough evaluation, both statistically and supported
by expert knowledge, 8 factors are retained where factor profiles and contribution are plotted
in Figure 28 to 35. To ease the reader it is decided to add a brief description of each figure
and its mean within the figure’s caption.

The factor profiles (also called source profiles) show a histogram indicating the concentration
(log scale) of the species (on the left y-axis) apportioned to the factor/source. Additionally
and more importantly, is the red squares explaining the percentage of species related to
the factor/source (on the right y-axis). Finally, the factor contribution (also called source
contribution) is illustrating a time series trend of factor/source. It is explaining the contribution
of each sample to the factor p and the factor contribution is normalized (Norris et al., 2014).

Table 10: PMF model input data and diagnostics of Summer (JJA).

Base model run with 8 factors

Model input data
Samples 3306
Species 34
Factors 8
Base run 20
N of weak species 0
N of outliers 3
Fpeak 0
Model diagnostics
N of species with R2 < 0.6 10
Extra modeling uncertainty 0 % and 5 %
Q robust 177079 (0 %), 36819.2 (5 %)
Q true 238559 (0 %), 39335.7 (5 %)
Qrob / Qexp 2.0685 (0 %), 0.43010 (5 %)
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(a) (b)

(c)

Figure 26: Scaled residuals of (a) all species, (b) SO2F2, and (c) toluene. Scaled residuals should be
normally distributed and within ±3σ.
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Figure 27: Q/Qexpected of (a) factor profile and (b) factor contribution for a 8 factor solution.
SO2F2 gives the highest residuals, where Q/Qexp is 2.3.

Factor 1: Industrial Solvents

Figure 28: 54.1 % of PCE variability is related to factor 1 and is the main species explaining
this factor, with a small attribution from HFC-32 (16.0 %), HFC-365mfc (13.8 %),
CH2Cl2 (11.3 %), and ethyne (14.9 %) to mention a few. A high peak and higher
annual variability is observed in factor contribution at the beginning of the time series.
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Factor 2: Liquified Petroleum Gas

Figure 29: Factor profile illustrates mainly (i,n)-butane variability (62.7 % and 60.1 %). In
addition, 41.1 % of propane variability is apportioned to factor this factor. In factor
contribution, A high peak is observed early in the time series.

Factor 3: Halogens and GHGs

Figure 30: Factor 3 represents the halogens and COS explaining ≈ 45% of their variability. COS
(48.3 %) and CH3Cl (44.3 %) explains largest variability in factor 3. Meanwhile,
CHCl3 (16.0 %), CH2Cl2 (24.0 %), and PCE (17.8 %) contribute less as they are also
apportioned to another factor. Factor contribution shows a very high variability.
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Factor 4: Solvent Evaporation

Figure 31: TCE and TEX are the main species contributing to factor 4. EX (57.8 %, 59.4 % ),
TCE (54.3 %), o-xylene (40.8 %), and toluene (21.3 %) are main species apportioned
to the factor. Sample contribution depicts a higher contribution in the early stage of
the time series.



9.2 Summer (JJA) 66

Factor 5: Octane Gasoline

Figure 32: In factor 5, the main variability attributed is from (n,i)-octane (8.9 %, 49.0 %), n-
heptane (38.2 %), toluene (38.0 %), i-pentane (27.6 %), CHCl3 (20.0 %), and EX
(27.4 %, 28.5 %). Factor contribution shows a high variability and a high peak event
that stand out.

Factor 6: Vehicle Exhaust

Figure 33: Ethyne (51.0 %) and benzene (39.9 %) attributes most to this factor Also, 30.9 % of
TCE variability is apportioned factor 6.



9.2 Summer (JJA) 67

Factor 7: Chlorinated Solvents

Figure 34: CH2Cl2 (39.0 %) and CHCl3 (36.8 %) contribute most to factor 7. A small contribution
of HFC-152a is also present. The factor contribution plot shows some seasonality.

Factor 8: Gasoline Evaporation

Figure 35: In factor 8, 76.2 % of hexane variability is apportioned to this factor, also n-pentane
(53.2 %), i-pentane (39.0 %) and n-heptane (24.4 %), just to mention a few of them,
are attributed to this factor. Highest variability in factor contribution is observed in
the beginning of the time series.
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Factor 9: PCE

Figure 36: Factor 9 is only included in the results to argument to argument why 8 factor solution
is better. PCE (40.8 %) and CH2Cl2 (33.1 %) are the main species contributing to
the factor.
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9.3 Winter (DJF)

For Winter season dataset, 7 factors model solution is obtained based on careful evaluation
and interpretation of each factor. Although, the added factor explains mainly one single
species (CH2Cl2) as depicted in Figure 43 it is retained in this analysis as it is also present
during Summer season (Figure 34). Likewise, the 8 factor solution is not retained in this
analysis as it mainly explains a relative small percentage of TCE and PCE species (Figure
46). Another argument to exclude 8 factor solution, is that TCE and PCE fingerprint is not
observed during Summer season.

The model diagnostics are summarized in Table 11, and 10 species are not effectively
modelled by PMF. This is evident when assessing the correlation of the observed/predicted
values and poorly correlated species (R2 < 0.6) are listed in the following order: COS, CH3Br,
CH3Cl, HCFC-22, CH3CCl3, HCFC-142b, SO2F2, CFC-115, CCl4, and CFC-114 (TCE
correlation R2 = 0.60). Furthermore, i-octane is set as a weak variable, for the reason that
S/N ratio of i-octane is 1.2, thereby less than 2 (Table 9). Also, one high peak observed in
Q/Qexp factor contributions (Figure ??), has been deleted (2/5/2018 15:00). From the three
scaled residuals plots (Figure 37) and Q/Qexp residuals (Figure 38), the overall residuals of
the model is acceptable. Scaled residuals of SO2F2 are very narrow and the correlation of
observed/predicted model values are small, like the Q/Qexp residuals. This could indicate
that the scaled residuals of SO2F2 are underestimated and needs special attention. Highest
Q/Qexp residuals is observed for TCE (<2), but scaled residuals gives a normal distribution
within ±3σ.

Table 11: Model input data and diagnostics of Winter season.

Base model run with 7 factors

Model input data
Samples 2856
Species 34
Factors 7
Base run 20
N of weak species 1
Q theoretical 76914
Fpeak 0
Model diagnostics
N of species with R2 < 0.6 10
Extra modeling uncertainty 0 % and 10 %
Qrobust 91900.3 (0 %), 16887.5 (5 %)
Qtrue 107078 (0 %), 17211.7 (5 %)
Qtrue / Qexp 1.19 (0 %), 0.22 (5 %)
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(a) (b)

(c)

Figure 37: Scaled residuals of (a) all species, (b) SO2F2, and (c) TCE. Scaled residuals should be
normally distributed and within ±3σ.

Figure 38: Q/Qexpected of (a) factor profile and (b) factor contribution for a 7 factor solution
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Factor 1: Gasoline Evaporation

Figure 39: 75.7% of hexane and 48.4 % of n-heptane variability is attributed to factor 1. Also,
(i,n)-pentane (35.2 % and 39.1 %), (i,n)-octane (26.4 % and 38.4 %), and toluene (32.5
%) variability is related to this factor. Furthermore, particularly high contribution is
observed in the beginning and end of the time series.

Factor profile 2: Industrial Solvents

Figure 40: The main species apportioned to factor 2 is PCE (52.8 %), toluene (37.0 %), and
i-octane (21.6 %). A smaller fraction of HFC-32 (11.5 %) and HFC-365mfc (13.3
%) variability is also attributed to this factor. Factor contribution shows a small
variability pattern with some seasonality.
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Factor 3: Vehicle Exhaust

Figure 41: ethyne (57.9 %) and benzene (51.6 %) are the main species apportioned to factor
3. While a smaller fraction of variability is from (i,n)- butane (23.1 % and 21.1 %),
propane (31.2 %), and EX (≈ 17.4 %) and related to the factor. In addition, factor
contribution shows certain events of higher source contribution, mainly from ethyne
and benzene.

Factor 4: Solvent Evaporation

Figure 42: EX is apportioned to factor 4 by ≈ 66.5 % and other species related to this factors
are (i,n)-octane (34.0 % and 58.6 %), TCE (35.0 %), n-heptane (32.7 %), and toluene
(25.8 %). Factor contribution shows a high variability.
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Factor 5: Chlorinated Solvents

Figure 43: Factor 5 is only explaining CH2Cl2 (30.2 %) and CHCl3 (9.46 %) and factor contribu-
tion shows a small variability.

Factor 6: Halogens and GHGs

Figure 44: Factor 6 is mainly explaining halogens and COS (55.3 %). Among the halogens, CH3Cl
(56.2 %), CH3Br (55.4 %), and SO2F2 (55.0 %) have the highest fraction of variability
apportioned to this factor. Factor contribution shows a very high variability.
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Factor 7: Liquified Petroleum Gas

Figure 45: Factor profile is mainly related to hydrocarbons. Propane (40 %), (i,n)-butane (34.8
% and 38.3 %), and (i,n)-pentane (24.8 % and 28.3 %) are apportioned to this factor.
Factor contribution shows a seasonal variability pattern.

Factor 8: TCE and PCE

Figure 46: This factor is not selected as a factor solution and is only explained by TCE (45.1
%) and a small contribution from PCE (15.2 %). Factor contribution shows small
variability only related to TCE.



9.4 Factor fingerprints 75

9.4 Factor fingerprints

All Factor profiles results are now gathered in one figure. Figure 47(a) for Summer season
with 8 factors and Figure 47(b) for Winter with 7 factors. It is plotted to better understand
the distribution of the factor profiles for each species (Norris et al., 2014).

(a)

(b)

Figure 47: Factor fingerprints are depicted in (a) for Summer (JJA) and (b) for Winter (DJF).
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DISCUSS ION

In general, during Summer the measured concentrations will be less influenced by aged air
masses and more affected by regional and Italian emissions. The age of sampled air masses
measured at CMN during summer is calculated to be on average ≈ 12 hours. On the contrary,
the lower OH concentration during Winter caused by a decrease in UV-light, results in a
longer lifetime of NMVOCs. For this same reason, in order to reduce the variability on the
whole dataset due to the changing lifetime (seasonal cycle), it is easier to interpret the PMF
results on Summer and Winter season, respectively.

Several challenges are met during the initial phase of this work that affect the PMF model
output and interpretation of the factors (i.e. missing values, uncertainties, seasonality, and
trends). Among others, one is related to having a multi year dataset. The expected outcome
can be a factor explaining mainly the multi-year trend of the observed species as well as the
seasonal variability of the sources. Species time series trends, underlying the whole time period
(2015-2018) considered, are removed to make sure that resulting factors will not be biased
by the trends themselves, as it had been found in the first attempt to perform explorative
analysis by PCA.

From PMF diagnostics, a total of ten "problematic species" are identified and for Summer
season they are: HFC-365mfc, CH3Br, CH3Cl, HCFC-22, HCFC-142b, CH3CCl3, CCl4,
SO2F2, CFC-114, and CFC-115. For Winter season: COS, CH3Br, CH3Cl, HCFC-22,
CH3CCl3, HCFC-142b, SO2F2, CFC-115, CCl4, and CFC-114. Same species are identified as
"problematic species" in cluster analysis and PCA. In PMF they are not effectively modelled,
which means that sources attributed to these species needs to be carefully interpreted.

To determine the appropriate number of factors, model statistics from PCA and PMF
was first thoroughly analyzed. The optimum number of principal components (PCs) during
Summer is 7 and 8 PCs, explaining up to 81.53 % of total variance. Whereas, 6 and 7 PCs
are retained for Winter season, explaining up to 78.27 % total data variance. Same number of
emission factors were identified in PMF analysis suggesting that although PCA is sensitive to
certain "problematic species", potential sample outliers, and long-term trends in data, it can
support PMF analysis in determining the optimum number of factors to retain.

10.1 Source apportionment

From the PMF results, 8 emission factors are identified in Summer season and 7 emission
factors are identified in Winter season. There is a large subjectivity in the interpretation of
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the emission factors and will require a deeper argumentation and comparison with source
models to be more sustainable. The following discussion is therefore a first attempt to classify
factors’ sources on CMN, mainly by comparing the obtained results with literature profiles
and cluster analysis.

10.1.1 Vehicle exhaust

"Vehicle exhaust" factor is both present during Summer and Winter as shown in Figure 33
and Figure 41, respectively. Ethyne and benzene are the main species apportioned to this
factor explaining ≈ 40− 58% of species variability. From cluster analysis (Chapter 6.1.2),
benzene and ethyne are highly correlated.

Summer factor of "vehicle exhaust", include more species variability especially from the
background species (halogens and COS) compared to Winter factor. Comparing factor
contribution, they have a slightly different seasonal variability.

Research shows, that propane, ethyne, and benzene are linked with fossil fuel consumption
(Lo Vullo et al., 2015). Moreover, Lo Vullo et al., 2016 perform PCA at CMN site, and
identifies ethyne and benzene main source to be vehicle exhaust. Another recent source
apportionment study using PMF is by Debevec et al., 2020. The receptor site in this study
is located at Corsica Island, near the western coast of Italy where a combustion factor is
identified explained mainly by ethyne and benzene. Finally, Debevec et al., 2020 classifies the
main annual source to be coming from residential heating, due to the low contribution from
toluene to factor.

To conclude, this factor is source categorized to be from vehicle exhaust, but could also
include other combustion sources such as residential heating. Furthermore, benzene and
ethyne have the longest lifetime of all NMVOCs, 9.5 to 14 days respectively (Table 1), which
are referred to as aged air masses (Lo Vullo et al., 2016). Other medium long-lived NMVOCs
species are propane, (i,n)-butanes, and (i,n)-pentanes (Table 1). Long-lived NMVOCs and
aged air masses are more related to long-range transport than from regional emissions (Lo
Vullo et al., 2015).

10.1.2 Halogens and non-CO2 GHGs

"Halogens and GHGs" factor is separating the halogens and COS from most NMVOCs by
their differences in variability. This factor is observed both during Summer and Winter as
illustrated Figure 30 and Figure 44, respectively. PCA also identifies this factor, which explain
most variance in the data. In addition, this factor was present in every PMF solution, when
running the explorative PMF analysis using 2 to 9 factor solutions.

This factor is not representing a particular source, but is interpreted as the result of the
variability on a continental scale. This is explained by the fact that halogens and COS have a
longer lifetime and can be transported over long scale distances. Nevertheless, it is interesting
to note that a not negligible fraction of the halogenated species variability is attributed to
factors "Solvent evaporation" (Section 9.3, Figure 42) and "LPG" (Section 9.3, Figure 45) in
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Winter, pointing towards a spatial co-emission with the typical NMVOCs related to these
factors.

Furthermore, it demonstrates the challenges associated with applying PMF on NMVOCs,
halogens, and COS all together and the impact of a multi year dataset which may only explain
seasonal variability.

10.1.3 Gasoline evaporation

"Gasoline evaporation" factor is both present during Summer (Figure 35) and Winter (Figure
39). The main species apportioned to this factor are n-hexane, n-heptane, (i,n)-pentane,
toluene, and (i,n)-octane. In general, a slightly higher source contribution is observed during
Summer season, confirming the fact that evaporative processes are more efficient with higher
ambient temperature.

Hexane is the main species attributed to this factor, contributing with ≈ 60 % of its
variability. According to Table 1, they are all evaporative sources of gasoline fuel. Debevec
et al., 2020 identifies an evaporative source factor which fingerprints are comparable to this
"gasoline evaporation" factor.

By comparing obtained factor with cluster analysis, it is evident that n-hexane, n-heptane,
(i,n)-pentane, and n-octane are correlated in Winter season. While during Summer, n-hexane
is correlated with (n,i)-pentane. To conclude, cluster analysis is consistent with obtained
factor fingerprints.

10.2 Liquified petroleum gas

"LPG" (liquefied petroleum gas) factor is mainly related to hydrocarbons and are both
present during Summer (29) and Winter (45). Propane and (i,n)-butane are the main species
apportioned to this factor, ≈ 60 % during Summer and ≈ 40 % during Winter. Also, a smaller
fraction of explained variability from (i,n)-pentane is especially present during summer (40.1
%). Overall, there is a higher species contribution to "LPG" source in Summer compared
to Winter. This factor is identified as "LPG" factor because butanes and propane are the
main constituents in LPG and these alkanes are all identified in LPG composition. In general,
propane is an important constituent in natural gas use (Debevec et al., 2020). Cluster analysis
show a high correlation of propane and (i,n)-butanes and the cluster is present in both seasons
which demonstrates the obtained fingerprints.

10.2.1 Solvent evaporation

"Solvent evaporation" factor is present in both seasons as represented in Figure 31 and Figure
42, respectively. TCE and TEX are the main species contributing to this factor. Ethylbenzene
and xylenes (EX) variability explained in this factor, is higher during Winter (≈ 65.5 %) than
during Summer season, whereby TCE is contributing more during Summer season (54.3 %).
Also, n-octane is apportioned to this factor with more variability explained during Winter
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(58.6 %). This is also evident in cluster analysis, where in Winter TCE and TEX are clustered
together and in Summer n-octane and EX are clustered together.

The time series contributions illustrates different trends during Summer and Winter, with a
higher variability observed during Winter. While for Summer season, a higher contribution is
observed in the early stage of the time series followed by an abrupt decrease. Since the times
series contributions show Winter and Summer separately, the abrupt changes in variability
are more related to the difference in annual variability than actual events.

TEX and n-octane have the shortest lifetime of all NMVOCs, due to a higher OH rate
constant (Table 1), and are therefore expected to be found closer to the emission source. This
factor can therefore be representing short-lived species. Furthermore, the main source of TEX
and TCE emissions is from solvent usage (Table 1), and this factor can therefore be indicating
the strength of "solvent use" sector (Lo Vullo et al., 2015).

10.2.2 Industrial solvents

PCE is the main species apportioned to "industrial solvents" factor ≈ 53 % and a slightly
greater amount of TCE variability is explained in Summer. Although the obtained fingerprints
for Summer and Winter are very similar as depicted in Figure 28 and (Figure 40).

PCE is mainly used in industry as a solvent (Table 2), and this is also the case for CH2Cl2,
toluene, and i-octane that are also apportioned to this factor, but in a smaller amount. During
Winter, toluene is explaining a higher variability (37.0 %) than in Summer. Furthermore, a
small variability explained by this factor is from two HFCs, namely HFC-32 and HFC-365mfc.
PCE is also used as a solvent for manufacturing refrigerants. Therefore, this factor could
potentially explain industrial solvent usage, although there is not enough information to
identify the HFCs.

From cluster analysis, the dendrogram of Winter season show that PCE, HFC-365mfc, and
HFC-32 belong to the same cluster family.

10.2.3 Chlorinated solvents

The main variability attributed to "chlorinated solvents" factor is from CH2Cl2 (≈ 30 to
40 %) and CHCl3. Higher percentage of species variability is explained in Summer (Figure
34), in particular CHCl3 explaining 36.8 % Summer and 9.46 % during Winter, compared to
Winter (Figure 43). They are both industrial solvents, also used to manufacture HFCs (Table
2) and the results indicate a higher solvent evaporation in Summer compare to Winter.

A small contribution from HFC-152a is observed in Summer and from the dendrogram of
Summer season, CH2Cl2 is clustered together with HFC-152a and correlated.

It can be argued that this factor is similar to the above "industrial solvent" factor. Therefore,
the factor is named "chlorinated solvents" to distinguish from the other identified solvent
factors.
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10.2.4 Octane gasoline

"Octane gasoline" factor is only obtained from PMF on Summer season (Figure 32) and the
time series contribution to this factor shows a very high variability.

I-octane (49.0 %) explains the main variability of this factor. Also, toluene, n-heptane,
i-pentane and EX are contributing to this factor. From cluster analysis of Summer season,
these species are all clustered together and especially i-octane, n-heptane and toluene are
highly correlated. These compounds source can be identified as gasoline surrogates and for
this reason the factor is named "octane gasoline" (Knop et al., 2014).
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CONCLUS ION

The main objectives of the study was to identify source contribution of NMVOCs, halogens
and non-CO2 GHGs at a remote mountain site using positive matrix factorization (PMF) as
a source apportionment method. One of the main topic discussed in this work was how to
consider the impact of hydroxyl (OH) radical on NMVOCs seasonal cycle from the emission
source to the receptor. However, how to integrate a NMVOCs lifetime correction method in a
source apportionment study using PMF, remains a gap in literature. Therefore, this work
contributes to the development of integrating a lifetime correction method with PMF, in order
to improve source apportionment of the most reactive NMVOCs measured at a remote site.

This source apportionment study consist of several phases. The initial phase included
validation of data, quality checks, basic statistics, and observations of time series plots. Along
the process, several caveats have been found, where decisions had to be taken and thoroughly
evaluated, to make sure not to affect the final model output. This implied removal or data
filling of missing values with best estimates also for associated data uncertainties, and removal
of long-term trends from time series to aid interpreting the final results.

As already stated, one of the crucial questions discussed in this work, is the effect of applying
a lifetime correction method on processed NMVOCs data. The average photochemical age
of air mass reaching CMN was estimated to be ≈ 12 hours during Summer. A comparison
analysis of NMVOCs with and without the lifetime correction method, revealed that reactive
NMVOCs mixing ratios increased significantly after applied lifetime correction method. This
implies, that a higher source contribution can be attributed to the reactive species. Moreover,
the lifetime correction method of NMVOCs was also evaluated in cluster analysis, which was
the second phase of the source apportionment study.

To discover correlation among species and groups within the data, hierarchical agglomerative
cluster analysis based on Pearson correlation was performed on Summer and Winter season.
The main differences observed by comparing dendrograms with and without lifetime correction,
was a rearrangement of the reactive NMVOCs species and groups, according to the different
seasons. With applied lifetime correction, the three most reactive species (EX and n-octane)
are clustered together during Summer and dissimilar to long-lived NMVOCs such as ethyne
and benzene.

Thereafter, an exploratory analysis was carried out using principal component analysis
(PCA) and a comparison with cluster analysis confirmed that PCA is data-sensitive towards
ten "problematic" species and failed to explain the variability of the other species. Same
species are determined as "outliers" in cluster analysis and not effectively modelled in PMF.
Nevertheless, the preliminary and exploratory evaluation helped in understanding species
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behaviour and correlations, which was essential when identifying the source factors obtained
by the PMF.

Final phase of the source apportionment study was the PMF analysis, that proved to be a
valuable multivariate analysis tool for source categorization of the 34 measured species. The
number of identified factors were 8 during Summer and 7 during Winter, all describing emission
sectors except for one factor. This factor represented halogenated species and non-CO2 GHGs
and was present in both seasons explaining their variability on a continental scale. The other
source factors are: (1) vehicle exhaust; (2) gasoline evaporation; (3) Liquified petroleum
gas; (4) solvent evaporation; (5) industrial solvents; (6) chlorinated solvents; and (7) octane
gasoline.

The obtained factors were critically selected, interpreted and in agreement with literature
profiles. Although, there is a degree of subjectivity involved when interpreting the results and
determining the number of emission factors to retain.

In general, source apportionment of atmospheric species using PMF, is an iterative process
that requires many runs of analysis to cope with possible interferences. This study was the
first attempt to use PMF on a long-term/high frequency dataset on the remote mountain site
CMN.

11.1 Future work

A future research perspective includes a PMF analysis on the whole detrended dataset and
also by analyzing NMVOCs and halogenated species separately and compare obtained factors.
In addition, identifying source apportionment in different time windows could benefit the
interpretation of emission sources e.g. by distinguishing daytime from nighttime of Summer
and Winter season, as well as analyzing individual years. Furthermore, to evaluate the lifetime
correction method effect on source apportionment, PMF should be analyzed with lifetime
correction and without (He et al., 2019). Ultimately, the PMF model uncertainty should
include all possible contributions from sampling, data pretreatment, and the PMF algorithm
should therefore be adapted in some way.

One prominent limitation of this work, is the fact that the study is conducted at one single
measurement site, thus the results will be limited to CMN only. Including several site studies
might benefit the interpretation of specific sources that influence CMN, meanwhile other
sources might influence different study sites. However, CMN is representing the Southern
European atmospheric region.

Reasonably, only one factor model is used for the analysis (the EPA-PMF model). Although
a comparison with other receptor models or source models should provide further hints about
the uncertainty of obtained results. Additionally, comparing results with more sophisticated
source models, involving back trajectories/air mass transport is needed in order to know more
about their source location and to better describe the variability on the concentrations for
the different classes of halogenated compounds that the PMF/PCA models are not able to
capture properly.
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Finally, when identifying obtained factors to specific sources, all knowledge considering
CMN site needs to be consider, including meteorology. Therefore, polar plots should also be
considered in this research.

In future, source apportionment of NMVOCs using PMF with a lifetime correction method
has the potential to aid policy makers to develop more effective pollution control concerning
anthropogenic NMVOCs.
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APPENDIX A

1
### GHGs data pretreatment ###

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# GHGs_raw data dimension 18756 x 36

6
#Dele t ing s p e c i e s not used in t h i s a n a l y s i s
l i b r a r y ( dplyr )
GHGs<- s e l e c t (GHGs_raw , - c (2 , 3 , 5 , 9 , 17 , 18 , 19 , 20 , 23 , 24 , 27 , 31 , 32 , 15 , 11 , 12) )
GHGs_s<- s e l e c t (GHGs_sraw , - c (2 , 3 , 5 , 9 , 17 , 18 , 19 , 20 , 23 , 24 , 27 , 31 , 32 , 15 , 11 , 12) )

11
# Set t i ng the time zone to be UTC +1
l i b r a r y ( l ub r i d a t e )
names (GHGs) [ 1 ] <- "date "
GHGs$date <- ymd_hms(GHGs$date , tz = "Etc/GMT-1 " )

16 GHGs_unc$date <- ymd_hms(GHGs_unc$date , tz = "Etc/GMT-1 " )

# Applying a time average func t i on
l i b r a r y ( opena i r )
GHGs<- timeAverage (GHGs, avg . time = "2␣hour" )

21 GHGs_unc<- timeAverage (GHGs_unc , avg . time = "2␣hour" )

l i b r a r y ( dplyr )
# Using only years 2015 to 2018
GHGs<- s l i c e (GHGs, 8761 :26291)

26 GHGs_unc<- s l i c e (GHGs_unc , 8761 :26291)

# Miss ing va lue s : conver t ing NaN to NA in a dataframe
i s . nan . data . frame <- func t i on (x )
do . c a l l ( cbind , l app ly (x , i s . nan ) )

31
GHGs[ i s . nan (GHGs) ] <- NA
GHGs_unc [ i s . nan (GHGs_unc ) ] <- NA

# a l l ze ro va lue s must be omitted or r ep laced by other va lue s
36 l i b r a r y ( dplyr )

sum( i s . na (GHGs) )
GHGs<- na_i f (GHGs, 0 )
sum( i s . na (GHGs) )# 33 zero va lue s a r ep laced by NA
sum( i s . na (GHGs_unc ) )

41 GHGs_unc<- na_i f (GHGs_unc , 0 )

86
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sum( i s . na (GHGs_unc ) )

#removing rows with more than 75% NA’ s
46 GHGs<- GHGs[ rowSums( i s . na (GHGs) ) / nco l (GHGs) <0.75 , ] #removing a l l NA’ s from

↪→ rows us ing a t r e sho l d o f 75%

# remove l a r g e TCE NA’ s gap from a l l s p e c i e s
GHGs<- s l i c e (GHGs, 1 :11672)

51 #d iu rna l t im e s e r i e s
l i b r a r y ( opena i r )
GHGs<-cutData (GHGs, type = "hour" )
GHGs<-cutData (GHGs, type = " season " )

56
ggp<- ggp lot ( data=GHGs, aes ( x = hour , y = CH3Cl , group=season , c o l o r= season ) )
ggp + g g t i t l e ( "Diurnal ␣ v a r i a b i l i t y ␣ 2015 -2018" )+ geom_l i n e ( s t a t="summary" , fun

↪→ . y="mean" ) + xlab ( "hour␣ (UTC+1)" ) + ylab ( "CH3Cl␣ ( ppt ) " )

#p lo t t ime s e r i e s and unce r ta in ty
61 l i b r a r y ( opena i r )

t imePlot (GHGs_a l l , po l l u t an t = c ( "COS" , "COS_s" ) , y . r e l a t i o n = " f r e e " , ylab =
↪→ " concent ra t i on ␣ ( ppt ) " , main = "Timeser i e s : ␣COS␣with␣ unce r ta in ty " )

#many t ime s e r i e s in one graph
l i b r a r y ( reshape2 )

66 df <- melt (GHGs_a l l [ , c ( " date " , "SO2F2" , "SO2F2_s" ) ] , id="date " )
ggp lot ( df ) + geom_l i n e ( aes ( x=date , y=value , c o l o r=va r i ab l e ) ) + labs ( t i t l e="

↪→ Timeser i e s : ␣SO2F2␣and␣ unce r ta in ty " )

#Clus t e r i ng
GHGs_cor<-cor (GHGs[ , 2 : 2 0 ] , method = "pearson " , use = " complete . obs" )

71 GHGs_d i s t <- as . d i s t ( (1 - GHGs_cor ) / 2)
p l o t ( h c l u s t (GHGs_di s t , method = "complete " ) , main = "" , xlab= "" ) #Clus t e r i ng

↪→ methods : Agglomerative , CorDistance , Complete l i nkage ")

#f i l t e r season
l i b r a r y ( dplyr )

76 GHGs_summer<- f i l t e r (GHGs, season == "summer␣ (JJA) " )
GHGs_winter<- f i l t e r (GHGs, season == "winter ␣ (DJF) " )

#NA’ s va lue s
l i b r a r y ( imputeTS )

81 ggp lot_na_gaps i z e (GHGs$TCE)
l i b r a r y ( naniar )
gg_miss_var (GHGs[ 2 : 2 1 ] )
gg_miss_var (GHGs[ 2 : 3 6 ] )

86 #l i n e a r i n t e r p o l a t i o n
GHGs_in t<- GHGs[ , 1 : 2 0 ]
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colnames (GHGs_in t ) <- c ( "date " , "SO2F2" , "HFC_32" , "HFC_125" , "HFC_134a" , "HFC_
↪→ 152a" , "HFC_365mfc" , "HCFC_22" , "HCFC_142b" , "CFC_114" , "CFC_115" , "
↪→ CH3Cl" , "CH3Br" , "CH2Cl2" , "CHCl3" , "CCl4" , "CH3CCl3" , "TCE" , "PCE" , "COS
↪→ " )

l i b r a r y ( "imputeTS" )
91 GHGs_in t $COS<- na_i n t e r p o l a t i o n (GHGs_in t $COS, opt ion = " l i n e a r " , maxgap = 6)

plotNA . gaps i z e (GHGs_in t $SO2F2)

#c r e a t i n g t ime s e r i e s us ing mstl f unc t i on
l i b r a r y ( " f o r e c a s t " )

96 GHGs_imp<-msts (GHGs_in t [ , 2 : 2 0 ] , s e a sona l . p e r i od s=c (12 *7* 4) ) # monthly
↪→ s e a s on a l i t y

#us ing na . i n t e rp a lgor i thm to i n t e r p o l a t e miss ing va lue s ( uses l i n e a r
↪→ i n t e r p o l a t i o n f o r non - s ea sona l s e r i e s and a p e r i o d i c STL- decompos it ion
↪→ with s ea sona l s e r i e s to r ep l a c e miss ing va lue s )

l i b r a r y ( " f o r e c a s t " )
COS<- na . i n t e rp (GHGs_imp [ , 1 9 ] , lambda = NULL, l i n e a r = ( f requency (GHGs_imp [ , 1 9 ] )

↪→ <= 1 | sum( ! i s . na (GHGs_imp [ , 1 9 ] ) ) <= 2 * frequency (GHGs_imp [ , 1 9 ] ) ) )
101

GHGs_sim<- data . frame (GHGs_in t $date , SO2F2)

#p l o t t i n g s imulated NA’ s vs observed va lue s f o r a quick view
p lo t . t s (GHGs_COS, ylab = expr e s s i on ( " concent ra t i on ␣ ( ppt ) " ) , cex . main = 0 .85 ,

↪→ type = ’ o ’ , cex = 0 . 3 , pch = 16 , main = "Replac ing ␣COS␣miss ing ␣ va lue s ␣
↪→ with␣ e s t imate s " , c o l = ’ red ’ )

106 po in t s (GHGs_imp [ , 1 7 ] , cex = 0 . 3 , pch = 16)
legend ( " top r i gh t " , l egend = ’ Imputed␣ va lue s ’ , l t y = 1 , c o l = ’ red ’ , cex = 0 . 5 )

#mSTL decompos it ion
l i b r a r y ( " f o r e c a s t " )

111 l i b r a r y ( ggp lot2 )

COS<- mstl (GHGs_imp [ , 2 0 ] , s . window = 7) # mSTL: mu l t ip l e s ea sona l
↪→ decomposit ion

autop lo t (COS) + g g t i t l e ( "COS" )

116
#p l o t t i n g s imulated NA’ s vs observed va lue s with ggp lot
COS_df<- data . frame (GHGs_in t $date , COS)
COS_df<- data . frame (COS_df , GHGs_imp [ , 1 9 ] )
names (COS_df ) [ 1 ] <- "date "

121 names (COS_df ) [ 2 ] <- "sim"
names (COS_df ) [ 3 ] <- "obs"

ggp lot (COS_df , aes ( x = date , y = sim ) )+
geom_point ( aes ( c o l o r = "sim" ) , s i z e = 0 . 5 )+

126 geom_point ( aes ( y = obs , c o l o r= "obs" ) , na . rm=TRUE, s i z e = 0 . 5 )+
labs ( co l ou r= NULL, x= "date " , y = " concent ra t i on ␣ ( ppt ) " , t i t l e = "Replac ing ␣

↪→ COS␣miss ing ␣ va lue s ␣with␣ e s t imate s " )+
theme ( p l o t . t i t l e = element_text ( h ju s t = 0 . 5 ) )+
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theme ( legend . p o s i t i o n = c (0 . 9 9 , 0 . 99 ) , l egend . j u s t i f i c a t i o n = c ( " r i g h t " , " top
↪→ " ) , l egend . box . j u s t = " r i gh t " , l egend . margin = margin (6 , 6 , 6 , 6) )+

s c a l e_co l o r_manual ( va lue s = c ( " black " , " red " ) )
131

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

## GHGs Unce r t a i n t i e s ##
sum( i s . na (GHGs_s ) )

136
# Geometric mean
l i b r a r y ( psych )

GHGs_unc_geom<- GHGs_unc
141 #Repeat f o r a l l GHGs s p e c i e s

GHGs_unc_geom$ ‘SO2F2-1 s ‘ [ i s . na (GHGs_unc_geom$ ‘SO2F2-1 s ‘ ) ] <- geometr ic .mean(
↪→ GHGs_unc$ ‘SO2F2-1 s ‘ , na . rm = TRUE)*4

sum( i s . na (GHGs_unc_geom) )
#p lo t t ime s e r i e s and unce r ta in ty

146 l i b r a r y ( opena i r )
t imePlot (GHG_s_a l l , po l l u t an t = c ( "COS_s" , "COS_g" ) , y . r e l a t i o n = " f r e e " , ylab

↪→ = " concent ra t i on ␣ ( ppt ) " , main = "Timeser i e s : ␣COS␣ unce r ta in ty " )

# S/N r a t i o
boxplot ( x=GHGs_s_rat i o ,

151 main="S/N␣ r a t i o " ,
xlab=" Spec i e s " ,
ylab="" ,
c o l="orange " ,
border="brown" )

156
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

# detrend t ime s e r i e s us ing STL - remove long - term trends

161
l i b r a r y ( f o r e c a s t )
l i b r a r y ( ggp lot2 )

#Using STL .
166

# t ime s e r i e s
GHGs_STL<-msts (GHGs_sim [ , 2 : 2 0 ] , s e a sona l . p e r i od s=c (12 * 7 ,12 *7* 4 , 12*7*4* 12) ) #

↪→ weekly , monthly and yea r l y s e a s on a l i t y

COS<- mstl (GHGs_STL [ , 1 9 ] , s . window = 7) # mSTL: mu l t ip l e s ea sona l
↪→ decomposit ion

171 autop lo t (COS) + g g t i t l e ( "COS␣STL" )+ theme ( p l o t . t i t l e = element_text ( h ju s t =
↪→ 0 . 5 ) )

COS_ts<- COS[ , 1 ] # Transform in to a time s e r i e s
p l o t (COS_ts )
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COS_trend<- COS[ , 2 ] # Transform in to a time s e r i e s
176 p l o t (COS_trend )

COS_detrend <- COS_ts - COS_trend
p lo t (COS_detrend )
ab l i n e (h=0)

181
COS_detrend<- COS_detrend + COS_trend [ 1 ] # detrended t s normal i sed f o r the

↪→ f i r s t data in time s e r i e s
p l o t (COS_detrend )
ab l i n e (h=0)

186 COS_detrend <- data . frame (COS_detrend )
GHGs_sim <- cbind (GHGs_sim , COS_detrend )

x<- COS_detrend [COS_detrend < 0 ]
p l o t (x , cex = 1)

191
t e s t <- GHGs_sim$COS - GHGs_sim$COS_detrend
p lo t ( t e s t )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
196

### NMVOCs data pretreatment ###

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

201 #Open VOCs exc e l / csv f i l e and s e t NA to be 999999.99

l i b r a r y ( opena i r )
l i b r a r y ( dplyr )

206 VOCs<- VOCs_raw
VOCs_unc <- VOCs_raw_unc
l i b r a r y ( l ub r i d a t e )
VOCs$date <- ymd_hms(VOCs$date , tz = "Etc/GMT-1 " )
VOCs_unc$date <- ymd_hms(VOCs_unc$date , tz = "Etc/GMT-1 " )

211
#ca l c u l a t i n g the time average be f o r e s l i c i n g the years and d e l e t i n g miss ing

↪→ values , makes us l o o s e l e s s datapo int s
VOCs<- timeAverage (VOCs, avg . time = "2␣hour" )
VOCs_unc<- timeAverage (VOCs_unc , avg . time = "2␣hour" )

216 #Only con s i d e r i ng year 2015 to 2018
VOCs<- s l i c e (VOCs, 8761 :26291)
VOCs_unc<- s l i c e (VOCs_unc , 8761 :26291)

# Miss ing va lue s : conver t ing NaN to NA in a dataframe
221 i s . nan . data . frame <- func t i on (x )

do . c a l l ( cbind , l app ly (x , i s . nan ) )

VOCs[ i s . nan (VOCs) ] <- NA
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VOCs_unc [ i s . nan (VOCs_unc ) ] <- NA
226

#removing a l l NA’ s from the rows us ing a t r e sho l d o f 75%

VOCs<- VOCs[ rowSums( i s . na (VOCs) ) / nco l (VOCs) <0.75 , ]
VOCs_unc<- VOCs_unc [ rowSums( i s . na (VOCs_unc ) ) / nco l (VOCs_unc ) <0.75 , ]

231
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#Plot t im e s e r i e s

#Diurnal t im e s e r i e s
236 l i b r a r y ( opena i r )

VOCs<-cutData (VOCs, type = "hour" )
VOCs<-cutData (VOCs, type = " season " )

#F i l t e r season
241 l i b r a r y ( dplyr )

VOCs_S<- f i l t e r (VOCs, season == "summer␣ (JJA) " )
VOCs_W<- f i l t e r (VOCs, season == "winter ␣ (DJF) " )

l i b r a r y ( ggp lot2 )
246 ggp<- ggp lot ( data=VOCs, aes ( x = hour , y = mp_xylene , group=season , c o l o r=

↪→ season ) )
ggp + g g t i t l e ( " (m, p) - xy lene " )+ geom_l i n e ( s t a t="summary" , fun . y="mean" ) + xlab

↪→ ( "hour␣ (UTC+1)" ) + ylab ( "Mixing␣ r a t i o ␣ ( ppt ) " ) +theme ( p l o t . t i t l e =
↪→ element_text ( h ju s t = 0 . 5 ) )

#p lo t t ime s e r i e s and unce r ta in ty
l i b r a r y ( opena i r )

251 t imePlot (VOCs_a l l , po l l u t an t = c ( " to luene " , " to luene_s " ) , y . r e l a t i o n = " f r e e " ,
↪→ ylab = "mixing␣ r a t i o ␣ ( ppt ) " , main = "" )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#Clus t e r i ng : H i e r a r c h i c a l agg lomerat ive c l u s t e r a n a l y s i s us ing pearson

↪→ c o r r e l a t i o n

256 VOCs_cor<-cor (VOCs [ , 2 : 1 6 ] , method = "pearson " , use = " complete . obs" )
VOCs_d i s t <- as . d i s t ( (1 - VOCs_cor ) / 2)
p l o t ( h c l u s t (VOCs_di s t , method = "complete " ) , main = "" , xlab= "" ) #Clus t e r i ng

↪→ methods : Agglomerative , CorDistance , Complete l i nkage "

261 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Imputing miss ing va lue s

#p l o t t i n g NA’ s va lue s
sum( i s . na (VOCs) ) # 4532 miss ing va lue s needs to be imputed

266 l i b r a r y ( "imputeTS" )
ggp lot_na_gaps i z e (VOCs$propane )
l i b r a r y ( naniar )
gg_miss_var (VOCs [ 2 : 1 6 ] )
l i b r a r y (VIM)
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271 matr ixp lot (VOCs [ 2 : 1 6 ] , sor tby = NULL)

#Linear i n t e r p o l a t i o n
VOCs_in t<- VOCs

276 l i b r a r y ( "imputeTS" )
#Repeat f o r every s p e c i e s
VOCs_in t $o_xylene<- na_i n t e r p o l a t i o n (VOCs_in t $o_xylene , opt ion = " l i n e a r " ,

↪→ maxgap = 6)
ggp lot_na_gaps i z e (VOCs$propane )

281
#c r e a t i n g t ime s e r i e s us ing mstl f unc t i on
l i b r a r y ( " f o r e c a s t " )
VOCs_imp<-msts (VOCs_in t [ , 2 : 1 6 ] , s e a sona l . p e r i od s=c (12 *7* 4) ) # monthly

↪→ s e a s on a l i t y

286 #us ing na . i n t e rp a lgor i thm to i n t e r p o l a t e miss ing va lue s ( uses l i n e a r
↪→ i n t e r p o l a t i o n f o r non - s ea sona l s e r i e s and a p e r i o d i c STL- decompos it ion
↪→ with s ea sona l s e r i e s to r ep l a c e miss ing va lue s )

#repeat f o r every s p e c i e s
VOCs_oxylene<- na . i n t e rp (VOCs_imp [ , 1 5 ] , lambda = NULL, l i n e a r = ( f requency (VOCs_

↪→ imp [ , 1 5 ] ) <= 1 | sum( ! i s . na (VOCs_imp [ , 1 5 ] ) ) <= 2 * frequency (VOCs_imp
↪→ [ , 1 5 ] ) ) )

VOCs_oxylene [VOCs_oxylene < 0 ]
VOCs_propane [VOCs_propane < 0 ] <- NA #propane have two negat ive va lue s

291 VOCs_imp$propane<- na_i n t e r p o l a t i o n (VOCs_imp$propane , opt ion = " l i n e a r " ,
↪→ maxgap = 6)

VOCs_oxylene <- data . frame (VOCs_oxylene )
VOCs_imp <- cbind (VOCs_imp , VOCs_oxylene )

296
colnames (VOCs_imp) <- c ( "date " , " ethyne" , "propane" , " i_butane" , "n_butane" , " i

↪→ _pentane" , "n_pentane" , "n_hexane" , "n_heptane" , " i_octane " , "n_octane " ,
↪→ "benzene" , " to luene " , " ethy lbenzene " , "mp_xylene " , "o_xylene " )

sum( i s . na (VOCs_imp [ , 2 : 1 6 ] ) )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
301 #p l o t t i n g s imulated NA’ s t ime s e r i e s vs . observed

#For a quick view
p lo t . t s (VOCs_propane , ylab = expr e s s i on ( "Mixing␣ r a t i o s ␣ ( ppt ) " ) , cex . main =

↪→ 0 . 85 , type = ’ o ’ , cex = 0 . 3 , pch = 16 , main = "Replac ing ␣ ethyne␣miss ing ␣
↪→ va lue s ␣with␣ e s t imate s " , c o l = ’ red ’ )

po in t s (VOCs_imp [ , 2 ] , cex = 0 . 3 , pch = 16)
306 legend ( " top r i gh t " , l egend = ’ Imputed␣ va lue s ’ , l t y = 1 , c o l = ’ red ’ , cex = 0 . 5 )

30 , 65 ,

#p l o t t i n g s imulated NA’ s vs observed va lue s with ggp lot
oxylene_df<- data . frame (VOCs_in t $date , VOCs_oxylene )

311 oxylene_df<- data . frame ( oxylene_df , VOCs_imp [ , 1 5 ] )
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names ( oxylene_df ) [ 1 ] <- "date "
names ( oxylene_df ) [ 2 ] <- "sim"
names ( oxylene_df ) [ 3 ] <- "obs"

316 ggp lot ( oxylene_df , aes ( x = date , y = sim ) )+
geom_point ( aes ( c o l o r = "sim" ) , s i z e = 0 . 5 )+
geom_point ( aes ( y = obs , c o l o r= "obs" ) , na . rm=TRUE, s i z e = 0 . 5 )+
labs ( co l ou r= NULL, x= "date " , y = " concent ra t i on ␣ ( ppt ) " , t i t l e = "Replac ing ␣

↪→ o - xy lene ␣miss ing ␣ va lue s ␣with␣ e s t imate s " )+
theme ( p l o t . t i t l e = element_text ( h ju s t = 0 . 5 ) )+

321 theme ( legend . p o s i t i o n = c (0 . 9 9 , 0 . 99 ) , l egend . j u s t i f i c a t i o n = c ( " r i g h t " , " top
↪→ " ) , l egend . box . j u s t = " r i gh t " , l egend . margin = margin (6 , 6 , 6 , 6) )+

s c a l e_co l o r_manual ( va lue s = c ( " black " , " red " ) )

#mSTL decompos it ion
326 l i b r a r y ( " f o r e c a s t " )

oxylene<- mstl (VOCs_imp [ , 1 5 ] , s . window = 7) # mSTL: mul t ip l e s ea sona l
↪→ decomposit ion

autop lo t ( oxylene ) + g g t i t l e ( "o - xy lene ␣STL" )+ theme ( p l o t . t i t l e = element_text (
↪→ h ju s t = 0 . 5 ) )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
331

#*** VOCs un c e r t a i n t i e s ***
# Geometric mean
l i b r a r y ( psych )
VOCs_unc_g<- VOCs_unc

336 #repeat f o r a l l s p e c i e s
VOCs_unc_g$ ethyne_s [ i s . na (VOCs_unc_g$ ethyne_s ) ] <- geometr ic .mean(VOCs_unc$

↪→ ethyne_s , na . rm = TRUE)*4

sum( i s . na (VOCs_unc_g ) )

341 #p lo t t ime s e r i e s and unce r ta in ty
l i b r a r y ( opena i r )

VOCs_a l l <- merge . data . frame (VOCs_imp , VOCs_unc_g , by = "date " )
t imePlot (VOCs_a l l , po l l u t an t = c ( " ethyne" , " ethyne_s " ) , y . r e l a t i o n = " f r e e " ,

↪→ ylab = "Mixing␣ r a t i o s ␣ ( ppt ) " , main = "" )
346

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Signal - to - no i s e r a t i o

# boxplot
351 VOCs_unc_r a t i o <- s e l e c t (VOCs_a l l , c ( 2 : 1 6 ) ) / s e l e c t (VOCs_a l l , c ( 1 7 : 3 1 ) )

qp lo t (PMF_a l l $ ethyne , PMF_a l l $ ethyne_unc , main = "SO2F2␣vs␣ unce r ta in ty ␣" , xlab
↪→ = " concent ra t i on " , ylab = " unce r ta in ty ␣ ( ppt ) " )

boxplot ( x=VOCs_unc_ra t i o ,
356 main=" D i f f e r e n t ␣ boxp lots ␣ f o r ␣ each␣month" ,
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xlab="Month␣Number" ,
ylab="Degree␣Fahrenheit " ,
c o l="orange " ,
border="brown" )

361
boxplot ( x=VOCs_SNratio [ 1 1 : 1 5 ] , xaxt = "n" , yaxt = "n" , c o l="orange " , border="

↪→ brown" , ylab=" concent ra t i on ␣ ( ppt ) " )
ax i s ( s i d e = 1 , l a b e l s = FALSE)
ax i s ( s i d e = 2 , l a s = 2 , mgp = c (3 , 0 . 75 , 0) )
t ex t ( x = 1 : l ength (VOCs_SNratio [ , 1 1 : 1 5 ] ) ,

366 l a b e l s = names (VOCs_SNratio [ , 1 1 : 1 5 ] ) ,
xpd = NA,
## Rotate the l a b e l s by 90 degree s .
s r t = 90 ,
cex = 1 . 2 ,

371 y = par ( " usr " ) [ 2 ] - 22) # try 10 , 60

p <- ggp lot (VOCs_unc_rat i o , aes ( x = "ethyne" , y = "ethyne" ) )
376 p + geom_boxplot ( o u t l i e r . c o l our = " red " , o u t l i e r . shape = 1)

geom_quan t i l e ( )

ggp lo t (VOCs_s_ra t i o , aes ( x = "ethyne" , y = va lues ) )+ geom_boxplot ( )

381 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# ca l c u l a t i n g OH exposure ( dtoh )

# OH rate cons tant s
kOH<- c ( 8 . 2 e -13 , 1 .09 e -12 , 2 .12 e -12 , 2 .36 e -12 , 3 . 6 e -12 , 3 . 8 e -12 , 5 . 2 e -12 , 6 .76

↪→ e -12 , 3 .34 e -12 , 8 .11 e -12 , 1 .22 e -12 , 5 .63 e -12 , 7 . 0 e -12 , 1 .90 e -11 , 1 .36 e
↪→ - 11 )

386 ethyne 8 .20 * 10^( -13)
propane 1 .09 * 10^( -12)
i_butane 2 .12 * 10^( -12)
n_butane 2 .36 * 10^( -12)
i_pentane 3 .6 * 10^( -12)

391 n_pentane 3 .80 * 10^( -12)
n_hexane 5 .20 * 10^( -12)
n_heptane 6 .76 * 10^( -12)
i_octane 3 .34 * 10^( -12)
n_octane 8 .11 * 10^( -12)

396 benzene 1 .22 * 10^( -12)
to luene 5 .63 * 10^( -12)
ethy lbenzene 7 .0 * 10^( -12)
mp_xylene 19 .0 * 10^( -12)
o_xylene 13 .6 * 10^( -12)

401

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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#OH exposure :BTEX data provided by ARPA in the per iod 1 Oct . 2019 - 19 Nov .
↪→ 2019 .

406 #Used f o r c a l c u l a t ed source r a t i o in OH exposure
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
X1<- s e l e c t (BTEX, c ( 1 , 1 1 : 2 8 ) ) #xy l en i and e t i l b en z en e
X1<- X1 [ 2 : 1 2 0 1 , 1 : 1 9 ] #X = (m, p) - xy lene + ethy lbenzene

411 l i b r a r y ( l ub r i d a t e )
names (X1) [ 1 ] <- "date "
X1$date <- ymd_hms(X1$date , tz = "Etc/GMT-1 " )
l i b r a r y ( opena i r )
X1<-cutData (X1 , type = "hour" ) # X = (m, p) - xy lene + ethy lbenzene

416
E1<- s e l e c t (X1 , c ( 1 , 1 1 : 2 0 ) )
colnames (E1)<- c ( "date " , "RN" , "MO" , "PC" , "FE" , "PR" , "BO" , "RE" , "RA" , "FO" ,

↪→ "hour" )
E1<- s e l e c t (E1 , - c (3 ) )
l i b r a r y ( opena i r )

421 E1<- cutData (E1 , type = " season " )
E2<-rowMeans (E1 [ , 2 : 9 ] , na . rm = TRUE)
Edf<- data . frame (E1$date , E2)
Edf<- data . frame (Edf , E1$hour )
Edf<- data . frame (Edf , E1$ season )

426
names ( Edf ) [ 1 ] <-"date "
names ( Edf ) [ 2 ] <-" ethy lbenzene "
names ( Edf ) [ 3 ] <-"hour"
names ( Edf ) [ 4 ] <-" season "

431
l i b r a r y ( ggp lot2 )
ggp<- ggp lot ( data= Edf , aes ( x = hour , y = ethylbenzene , group= season , c o l o r=

↪→ season ) )
ggp +g g t i t l e ( "Diurnal ␣ v a r i a b i l i t y ␣ o f ␣ ethy lbenzene ␣ ( source ) " )+ theme ( p l o t . t i t l e

↪→ = element_text ( h ju s t = 0 . 5 ) ) + geom_l i n e ( s t a t="summary" , fun . y="mean" )
↪→ + xlab ( "hour␣ (UTC+1)" ) + ylab ( "Average␣ concent ra t i on ␣ ( ppt ) " )

436 X1<- s e l e c t (X1 , c ( 1 : 1 0 , 2 0 ) )
colnames (X1)<- c ( "date " , "RN" , "MO" , "PC" , "FE" , "PR" , "BO" , "RE" , "RA" , "FO" ,

↪→ "hour" )
X1<- s e l e c t (X1 , - c (3 ) )
X1<- cutData (X1 , type = " season " )
X2<-rowMeans (X1 [ , 2 : 9 ] , na . rm = TRUE)

441 Xdf<- data . frame (X1$date , X2)
Xdf<- data . frame (Xdf , X1$hour )
Xdf<- data . frame (Xdf , X1$ season )

names (Xdf ) [ 1 ] <-"date "
446 names (Xdf ) [ 2 ] <-" xylene "

names (Xdf ) [ 3 ] <-"hour"
names (Xdf ) [ 4 ] <-" season "
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ggp<- ggp lot ( data= Edf , aes ( x = hour , y = ethylbenzene , group= season , c o l o r=
↪→ season ) )

451 ggp + geom_l i n e ( s t a t="summary" , fun . y="mean" ) + xlab ( "hour␣ (UTC+1)" ) + ylab ( "
↪→ Average␣ concent ra t i on ␣ ( ppt ) " ) + theme ( legend . p o s i t i o n = "none" )

ggp lot ( t e s t_data , aes ( date ) ) +

# Consider only n ight time 18 :00 -06 :00 UTC +1
456 X<- f i l t e r (X, hour== "00" | hour== "01" | hour== "02" | hour== "03" | hour== "04" |

↪→ hour== "05" | hour== "06" | hour=="18" | hour=="19" | hour == "20" | hour ==
↪→ "21" | hour== "22" | hour== "23" ) # X = (m, p) - xy lene

E<- s e l e c t (X, c ( 1 , 1 1 : 1 9 ) ) # ethy lbenzene
sum( i s . na (E) )
X<- s e l e c t (X, c ( 1 : 1 0 ) ) # (m, p) - xy lene
sum( i s . na (X) )

461
E_X<- E [ , 2 : 1 0 ] /X[ , 2 : 1 0 ]
sum( i s . na (E_X) )
E_X<- E [ , 2 : 9 ] /X[ , 2 : 9 ]
sum( i s . na (E_X) )

466
#E_X_mean = 0.2263 + (0 . 6381 ) + 0.3007 + 0.3075 + 0.2569 + 0.2659 + 0.2822 +

↪→ 0 .2868 + 0.2734 = 2.1997 /8 = 0.275
#X_E_mean = 4.451 + 3.433 + 3.322 + 3.942 + 3.815 + 3.611 + 3.735 + 3.768 =

↪→ 30 .077 /8 = 3.76
#E_mpxylene 0 .3620 + 0 .4803) + 0 .5028) + 0 .3947) + 0 .4238) + 0 .4604) + 0 .4475)

↪→ + 0.4760 /8 = 0.4434

471 E_X<- data . frame (E$date , E_X)
names (E_X) [ 1 ] <- "date "
colnames (E_X)<- c ( "date " , "RN" , "MO" , "PC" , "FE" , "PR" , "BO" , "RE" , "RA" , "FO"

↪→ )

l i b r a r y ( p l o t l y )
476 x <- l i s t (

t i t l e = "Monitoring ␣ s t a t i o n " )
y <- l i s t (

t i t l e = "Average␣E/X␣ r a t i o ␣" )
f i g <- p l o t_ly (E_Xdf , x=~x , y=~y , l i n e t yp e = I ( " s o l i d " ) ,

481 marker = l i s t ( c o l o r = "rgb (195 , ␣ 195 , ␣ 195) " ) )
f i g <- f i g %>% layout ( xax i s = x , yax i s = y)
f i g

l i b r a r y ( opena i r )
486 s c a t t e rP l o t (E_X, x = "date " , y = "RA" , smooth = TRUE, s t a t i s t i c = "mean" , ylab

↪→ = "E/X" , t i t e l = "FO" )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Calcu la t ing OH exposure o f VOCs

491 k_E<- 7e -12
k_X<- 1 .9 e -11
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dtoh<-(1 / (k_E - k_X) ) * ( l og ( 0 . 2 8 ) - l og (VOCs_sim$ ethy lbenzene /VOCs_sim$mp_
↪→ xylene ) )

dtoh_df<- data . frame (VOCs_sim$date , dtoh )
496

dtoh<-(1 / (k_E - k_X) ) * ( l og ( 0 . 2 8 ) - l og (VOCs_detr $ ethy lbenzene_detrend /VOCs
↪→ _detr $mpxylene_detrend ) )

dtoh_df<- data . frame (VOCs_detr $date , dtoh )

501 p l o t ( dtoh_df , type = "o" , cex = . 1 , main = "OH␣ exposure " , xlab = "date " , ylab
↪→ = "dtOH" )

ab l i n e (h=0, c o l = " red " )

#( negat ive OH exposure events )
neg_dtoh<- dtoh [ dtoh < 0 ]

506 p l o t ( neg_dtoh , type = "o" , cex = . 1 , main = "Negative ␣OH␣ exposure ␣ events " ,
↪→ ylab = "dtOH" ) #3600 va lue s are negat ive

#de l e t i n g events that l a s t more than 6 h
l i b r a r y ( dplyr )
names ( dtoh_df ) [ 1 ] <-"date "

511 dtoh_1<- dtoh_df %>%
mutate ( date_end = lead ( date , d e f au l t = l a s t ( date ) ) ) %>%
group_by ( group = data . t ab l e : : r l e i d ( dtoh < 0) ) %>%
f i l t e r ( i s . na ( dtoh ) | dtoh > 0 | d i f f t im e (max( date_end ) , min ( date ) , un i t s = "

↪→ hours " ) < 6) %>%
ungroup ( )

516 dtoh_1<- s e l e c t ( dtoh_1 , c (1 , 2 ) )

p l o t ( dtoh_1 , type = " l " , cex = . 2 , main = "OH␣ exposure ␣without ␣ negat ive ␣ events
↪→ ␣ that ␣ l a s t ␣>␣6h" , xlab = "date " , ylab = "dtOH" )

ab l i n e (h=0, c o l = " red " )

521 #removing o u t l i e r s
dtoh_2<- dtoh_1 [ - c (4795 , 4796 , 4797 , 7868) , ]
p l o t ( dtoh_2 , type = " l " , cex = . 2 , main = "OH␣ exposure ␣without ␣ negat ive ␣ events

↪→ ␣ that ␣ l a s t ␣>␣6h" , xlab = "date " , ylab = "dtOH" )
ab l i n e (h=0, c o l = " red " )

526 #( d e l e t i n g a l l negat ive events )
out<- which ( dtoh_oX$dtoh_oX<0)
dtoh_oX2<-dtoh_oX2 [ - c ( out ) , ]
p l o t ( dtoh_oX2 , type = " l " , cex = . 2 , main = "OH␣ exposure ␣without ␣ negat ive ␣

↪→ events " , xlab = "date " , ylab = "dtOH" )
ab l i n e (h=0, c o l = " red " )

531
dtoh<- dtoh_oX1 [ dtoh_oX1< 0 ]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Calcu la t ing VOCs i n i t i a l

536



appendix a 98

VOCs_0<- merge . data . frame (VOCs_sim , dtoh_2 , by = "date " )
kOH<- c ( 8 . 2 e -13 , 1 .09 e -12 , 2 .12 e -12 , 2 .36 e -12 , 3 . 6 e -12 , 3 . 8 e -12 , 5 . 2 e -12 , 6 .76

↪→ e -12 , 3 .34 e -12 , 8 .11 e -12 , 1 .22 e -12 , 5 .63 e -12 , 7 . 0 e -12 , 1 .90 e -11 , 1 .36 e
↪→ - 11 )

VOCs_i n i t i a l <- as . matrix (VOCs_0 [ , 2 : 1 6 ] ) *exp ( outer (VOCs_0$dtoh ,kOH, "*" ) )
VOCs_r a t i o <- VOCs_i n i t i a l /VOCs_0 [ , 2 : 1 6 ]

541 names (VOCs_r a t i o ) [ 1 3 ] <- "e_benzene"

VOCs_i n i t i a l <- data . frame (VOCs_0$date , VOCs_i n i t i a l )
names (VOCs_i n i t i a l ) [ 1 ] <- "date "

546 #p l o t t i n g a barp lo t o f the r a t i o

V1<- colnames (VOCs_r a t i o )
V2<- colMeans (VOCs_r a t i o )
r a t i o_box<- data . frame (V1 , V2)

551 barp lo t ( r a t i o_box [ [ 2 ] ] , main = "Rat ios ␣ o f ␣VOCs␣ i n i t i a l ␣/␣ observed " , c o l = "
↪→ gray60" , names . arg = r a t i o_box$V1 , l a s = 2 , ylim=c (0 , 5 ) )

ab l i n e (h=1, v = NULL, c o l = " black " , lwd=1, l t y = 2)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#Detrending t ime s e r i e s

556 l i b r a r y ( f o r e c a s t )
l i b r a r y ( ggp lot2 )

#Using STL .

561 # t ime s e r i e s
VOCs_STL<-msts (VOCs_i n i t i a l [ , 2 : 1 6 ] , s e a sona l . p e r i od s=c (12 * 7 ,12 *7* 4 , 12*7*4* 12)

↪→ ) # weekly , monthly and year l y s e a s on a l i t y

oxylene<- mstl (VOCs_STL [ , 1 5 ] , s . window = 7) # mSTL: mu l t ip l e s ea sona l
↪→ decomposit ion

autop lo t ( oxylene ) + g g t i t l e ( "o - xy lene ␣STL" )+ theme ( p l o t . t i t l e = element_text (
↪→ h ju s t = 0 . 5 ) )

566
oxylene_t s<- oxylene [ , 1 ] # Transform in to a time s e r i e s
p l o t ( oxylene_t s )
oxylene_trend<- oxylene [ , 2 ] # Transform in to a time s e r i e s
p l o t ( oxylene_trend )

571
oxylene_detrend <- oxylene_t s - oxylene_trend
p lo t ( oxylene_detrend )
ab l i n e (h=0)

576 oxylene_detrend<- oxylene_detrend + oxylene_trend [ 1 ] # detrended t s normal i sed
↪→ f o r the f i r s t data in time s e r i e s

p l o t ( oxylene_detrend )
ab l i n e (h=0)

oxylene_detrend <- data . frame ( oxylene_detrend )
581 VOCs_i n i t i a l <- cbind (VOCs_i n i t i a l , oxylene_detrend )



appendix a 99

t e s t <- VOCs_sim$o_xylene - VOCs_sim$ oxylene_detrend
p lo t ( t e s t )

586 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#Pr in c i pa l Component Ana lys i s

#PCA The s c r i p t below i s used in the ana l y s i s
l i b r a r y ( backports )

591 l i b r a r y ( dev too l s )
l i b r a r y ( ggp lot2 )
l i b r a r y ( dplyr )
l i b r a r y ( ggp lot2 )
l i b r a r y ( f a c t o ex t r a )

596
detr_S<- s e l e c t (PMFdetr_S , - c (2 , 10 , 11 ,13 , 17 ,18 ,19 ) )
p<- s e l e c t (PMFS_night , c ( 2 : 3 5 ) )

colnames (p) <- c ( "SO2F2" , "HFC_32" , "HFC_125" , "HFC_134a" , "HFC_152a" , "HFC_
↪→ 365mfc" , "HCFC_22" , "HCFC_142b" , "CFC_114" , "CFC_115" , "CH3Cl" , "CH3Br" ,
↪→ "CH2Cl2" , "CHCl3" , "CCl4" , "CH3CCl3" , "TCE" , "PCE" , "COS" , " ethyne" , "
↪→ propane" , " ibutane " , "nbutane" , " ipentane " , "npentane" , "nhexane" , "
↪→ nheptane" , " i o c tane " , " noctane " , "benzene" , " to luene " , " ethy lbenzene " , "
↪→ mp_xylene " , "o_xylene " )

601

r e s_p<-prcomp (p , c en te r = TRUE, s c a l e . = TRUE)
summary( r e s_p)

606 #Scree p l o t - var i ance exp la ined

l i b r a r y ( f a c t o ex t r a )
f v i z_s c r e e p l o t ( r e s_p , add labe l s = TRUE, ylim = c (0 , 75) , xlab = "PCs" )
get_e i g ( r e s_p)

611 x<-get_e i g ( r e s_p)
p l o t ( x$ e igenva lue , type = "o" , cex = . 5 , main = " Scree ␣ p l o t " , xlab = "PCs" ,

↪→ ylab = "Eigenvalue " )
ab l i n e (h=1, c o l = " red " )

p l o t ( x$ cumulat ive . var i ance . percent , type = "o" , cex = . 5 , main = " Scree ␣ p l o t " ,
↪→ xlab = "PCs" , ylab = "Cumulative␣Variance ␣(%)" )

616 ab l i n e (h=90, c o l = " red " )

p l o t ( x$ var iance . percent , type = "o" , cex = . 5 , main = " Scree ␣ p l o t " , xlab = "
↪→ PCs" , ylab = "Variance ␣(%)" )

ab l i n e (h=5, c o l = " red " )

621 # Loadings , Scores
l i b r a r y ( ggp lot2 )
l oad ing s<- r e s_p$ ro t a t i on
p r in t ( load ings , c u t o f f = 0 . 0 )
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626 s c o r e s <- r e s_p$x

#p lo t s c o r e s
qp lo t ( s c o r e s [ , 1 ] , s c o r e s [ , 2 ] , data = PMF_res , co l our = year , xlab = "PC1" ,

↪→ ylab = "PC2" , main = "PCA: ␣ Scores " )

631 #p lo t l oad ing s
l oad ing s<- as . data . frame ( l oad ing s )
rownames ( l oad ing s ) <- c ( "SO2F2" , "HFC_32" , "HFC_125" , "HFC_134a" , "HFC_152a" ,

↪→ "HFC_365mfc" , "HCFC_22" , "HCFC_142b" , "CFC_114" , "CFC_115" , "CH3Cl" , "
↪→ CH3Br" , "CH2Cl2" , "CHCl3" , "CCl4" , "CH3CCl3" , "TCE" , "PCE" , "COS" , "
↪→ ethyne" , "propane" , " ibutane " , "nbutane" , " ipentane " , "npentane" , "
↪→ nhexane" , "nheptane" , " i o c tane " , " noctane " , "benzene" , " to luene " , "
↪→ ethy lbenzene " , "mpxylene" , " oxylene " )

p l o t <- ggp lot ( load ings , aes (PC1, PC5) ) + geom_point ( c o l o r = " red " )
p l o t + geom_text_r ep e l ( l a b e l= rownames ( l oad ing s ) ) + labs ( t i t l e = "PCA: ␣

↪→ Loadings " )+
636 geom_v l i n e ( x i n t e r c ep t=c (0 ) , l i n e t yp e="dotted " )+

geom_h l i n e ( y i n t e r c ep t = c (0 ) , l i n e t yp e="dotted " )

f v i z_pca_var ( r e s_p , c o l . var = "black " , r e p e l = TRUE)
641

f v i z_pca_var ( r e s_p , c o l . var=" cont r i b " , axes = c (2 , 4 ) ,
g rad i en t . c o l s = c ( "#00AFBB" , "#E7B800" , "#FC4E07" ) ,
r e p e l = TRUE)

646 #load ing s c on t r i bu t i on s
f v i z_cont r ib ( r e s_p , cho i c e = "var " , axes = 1 , top = 34)

#b ip l o t
f v i z_pca_b ip l o t ( r e s_p , r ep e l = TRUE)

651
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#PMF data preparat i on

l i b r a r y ( opena i r )
656 l i b r a r y ( dplyr )

#summer
PMF_S<-cutData (PMF_detr , type = " season " )
PMF_S<- f i l t e r (PMF_S , season == "summer␣ (JJA) " )

661 #daytime and nightt ime
PMFS_h<-cutData (PMF_S , type = "hour" )
PMFS_day <- f i l t e r (PMFS_h , hour == c ( "10" , "11" , "12" , "13" , "14" , "15" , "16" , "17" , "

↪→ 18" ) )
PMFS_night <- f i l t e r (PMFS_h , hour== c ( "00" , "01" , "02" , "03" , "04" ) )

666 #winter
PMF_W<-cutData (PMF_detr , type = " season " )
PMF_W<- f i l t e r (PMF_W, season == "winter ␣ (DJF) " )
#
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PMFW_h<-cutData (PMF_W, type = "hour" )
671 PMFW_day <- f i l t e r (PMFW_h , hour == c ( "10" , "11" , "12" , "13" , "14" , "15" , "16" , "17" , "

↪→ 18" ) )
PMFW_night <- f i l t e r (PMFW_h , hour== c ( "00" , "01" , "02" , "03" , "04" ) )

# Plo t t i ng r e s i d u a l s
l i b r a r y ( ggp lot2 )

676 l i b r a r y ( p l o t l y )

p l o t_ly (X, x=~date , y=~to luene )

#Qtrue/Qexp
681 l i b r a r y ( p l o t l y )

f i g <- p l o t_ly (Q, x=~fa c t o r s , y=~Q, l i n e t yp e = I ( " s o l i d " ) )

x <- l i s t (
t i t l e = "Factors " )

686 y <- l i s t (
t i t l e = "Qrob/Qexp" )

f i g <- f i g %>% layout ( xax i s = x , yax i s = y)
f i g

Listing 12.1: caption



13

APPENDIX B

PCA

(a)

(b)

Figure 48: Loadings of Summer season: (a) PC1 vs. PC3 and (b) PC2 vs. PC4.

102
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PCA

(a)

(b)

(c)

Figure 49: Loadings of Summer season: (a) PC5, (b) PC6 and (c) PC7.
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PCA

(a)

(b)

Figure 50: Winter season: (a) PC1 vs. PC4 and (b) PC1 vs. PC5.
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PCA

(a)

(b)

(c)

Figure 51: Loadings of Winter season: (a) PC5, (b) PC6, and (c) PC7.
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PMF

(a)

(b)

Figure 52: Evaluating and removing outliers from PMF analysis: (a) Residuals of SO2F2 and three
peaks are removed; (b) time series HFC-32 during Winter with high Q/Qexp due to one
outlier (highlighted in black) and is removed prior to PMF analysis.
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