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Abstract
When doping graphene an unique window appears in the electron–hole excita-
tion spectrum. Including the Coulomb interaction through the Hubbard Hamil-
tonian results in bound state formation in graphene. The bound states we
analyze represent triplet excitations, i.e. magnons, with spin 1. When increas-
ing the strength of the Coulomb interaction, electron–hole pairs are dragged
down into the window. This is a property of the triplet excitations since the in-
teraction term is negative, indicating attraction, in that context. We analyzed
further the dispersion relation for U ' 11 eV and at last we investigated the
appearance of magnons in real space.

Résumé
Når man doper grafen opstår der et unikt vindue i elektron–hul eksitation spek-
tret. Inklusionen af Coulomb vekselvirkningen gennem Hubbard Hamiltonia-
nen resulterer i dannelsen af bundne tilstande i grafen. De bundne tilstande der
analyseres representerer triplet eksitationer, i.e. magnoner, med spin 1. Forøges
styrken af Coulomb vekselvirkningen, bliver elektron–hul parrerne trukket ned
i vinduet. Det er en egenskab af triplet eksistationerne eftersom vekselvirkn-
ings ledet er negativt, hvilket indikerer tiltrækning i denne kontekst. Yderligere
analyserede vi dispersion relationen for U ' 11 eV og til sidst undersøgte vi
hvordan magnoner opstår i det reele rum.
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Preface
A new era in condensed matter physics began when in 2004, Andre Geim and
Konstantin Novoselov, published a paper on electric field effect in atomically
thin carbon films [1]. Living in times where the silicon based technology is
approaching its limits and soon can not be engineered to faster, thinner and
lighter electronics, graphene is a possible solution. Despite enormous growth in
graphene research since its discovery, 8 years ago, there is still a lot to learn.
The properties of materials are largely dependent on how the electrons within
the material behave and interact. In the theory of interaction between electrons
in graphene a lot of bricks are still missing. In this thesis we take these interac-
tion into account and analyze their consequences in hope to fill into one of the
holes found in the theory of graphene.

I would like to thank my supervisor, Professor Per Hedegård, for teaching me
physics from his inspiring point of view. I would also like to thank my colleagues
from the office who have always been very helpful and entertaining. At last big
thanks to Nanna, Svanhvít and Örn, Elmar and Sigrún, Telma Lísa, Hugi, Sölvi
and Nökkvi for being very supportive all the time.
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Chapter 1

Introduction and motivation

In the first chapter we will define the problem we are going to attack in this
thesis and give an introduction to the fundamental properties of graphene. We
will also motivate the research by taking examples from other materials where
including the Coulomb interaction was a success.

1.1 The problem
We want to analyze the Coulomb interaction in graphene, the wonder material
first observed and isolated in 2004 which has the potential to effect our every-
day life drastically in the upcoming decades. The first thing one reads about
graphene is its conical dispersion relation and from there many of its amazing
properties are derived. All this happens in the absence of taking any interac-
tion between the electrons in the material into account. In organic molecules
containing carbon hexagons of same structure as those found in graphene the
Coulomb interaction are vital. The Hubbard model often used in condensed
matter physics reveals this antithesis. In molecules the Hubbard Hamiltonian,
Hhub = Hhop +Hint, is often approximated as

Hhub ∼ Hint,

whereas in graphene
Hhub ∼ Hhop.

This simply can not expose the complete story about graphene. We can con-
sider graphene as being a giant organic molecule and the fact that the strong
correlations present in molecules are not inherited at all in this extreme limit is
puzzling. We will in the upcoming chapters include the electron–electron inter-
action and see how that changes and affects the single particle picture described
by the hopping term in the Hubbard model. We will analyze two different situ-
ations where this process has lead us to discover new interesting physics in the
past. In both cases the inclusion of the Coulomb interaction has generated for-
mation of bound states. Bound states of nucleons, atoms, molecules and solids
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1. Introduction and motivation

allow the world and all life in it to be the way it is. These states are formed
when the interaction energy between two objects is less than the total energy of
each object separately. Bound states are consequently stable and have infinite
lifetime unless energy is spent. Finding these states in materials is of immense
importance and in our case including the Coulomb interaction of electrons in
graphene could help us identifying one of these.

1.2 Outline of thesis

For overview purposes we would like to outline what is about to happen in
the rest of the thesis. In this first and rather long chapter we will give an
introduction to graphene and define what it is and how it is formed. We will also
motivate our research both by analyzing how the Coulomb interaction affects the
simplest of all molecules, the H2 molecule and also see how including interaction
effects results in the formation of bound states in two specific situations. In
Chapter 2 we will go in details with the Hubbard model in graphene, derive its
famous dispersion relation and at last formulate the interaction term in k-space.
That turns out to be non-trivial due to graphene’s crystal structure. In Chapter
3 we will analyze what the interaction part of the Hamiltonian really stands for
and utilize in the subspace of interest. In Chapter 4 we solve the Schrödinger
equation for the given problem with numerical methods and in the last chapter
we will discuss the results by going back to real space.

1.3 The hydrogen molecule

In this section we would like to look at a simple example to show how the
Coulomb interaction are vital in the world of molecules. A molecule is defined
as a discrete neutral species resulting from covalent bond formation between
two or more atoms [2]. Now let’s look at how the chemical bond between to
hydrogen atoms is formed to make the H2 molecule. What is meant by the
term ”chemical bond” is that, by allowing the wave functions of the delocalized
electrons in play, to spread over two or more atoms the energy of the whole
system is decreased and a bound state is formed. In the case of two hydrogen
atoms each containing one proton and one electron the total energy of the system
is decreased by formation of molecular orbitals. These can either be spatially
symmetric (bonding) or antisymmetric (antibonding). InH2 the bonding orbital
is lower in energy which is due to the antibonding orbital has greater curvature
and therefore larger kinetic energy as can be seen in Fig. 1.1. The bonding
orbitals for the system we have in mind, the H2 molecule are

φb(r) =
1√
2

(φ1(r) + φ2(r)) , (1.1)

where φ1 and φ2 are the two s-orbitals of the hydrogen atoms. Each electron
carries a spin so therefore different configurations of the system are possible.
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1.3 The hydrogen molecule
4.2 Exchange interaction 77

Fig. 4.1 Molecular orbitals for a diatomic molecule. The bonding orbital, which corresponds to
the sum of the two atomic orbitals (symmetric under exchange, as far as the spatial part of the
wave function is concerned), is of lower energy than the antibonding orbital, which corresponds to
the difference of the two atomic orbitals (antisymmetric under exchange). This therefore favours
a singlet ground state in which two electrons fill the bonding state and the antibonding state is
empty. This diagram is appropriate for the hydrogen molecule H2 which has a lower energy than
that of two isolated H atoms (E0). Note that the diatomic form of helium, He2, does not form
because the four electrons from two He atoms would fill both the bonding and antibonding orbitals,
corresponding to no net energy saving in comparison with two isolated He atoms.

spacing. This means that the direct exchange interaction is unlikely to be very
effective in rare earths. Even in transition metals, such as Fe, Co and Ni, where
the 3d orbitals extend further from the nucleus, it is extremely difficult to
justify why direct exchange should lead to the observed magnetic properties.
These materials are metals which means that the role of the conduction
electrons should not be neglected, and a correct description needs to take
account of both the localized and band character of the electrons.

Thus in many magnetic materials it is necessary to consider some kind of
indirect exchange interaction.

4.2.3 Indirect exchange in ionic solids: superexchange

A number of ionic solids, including some oxides and fluorides, have magnetic
ground states. For example, MnO (see Fig. 4.2) and MnF2 are both antiferro-
magnets, though this observation appears at first sight rather surprising because
there is no direct overlap between the electrons on Mn2+ ions in each system.
The exchange interaction is normally very short-ranged so that the longer-
ranged interaction that is operating in this case must be in some sense 'super'.

The exchange mechanism which is operative here is in fact known as
superexchange. It can be defined as an indirect exchange interaction between
non-neighbouring magnetic ions which is mediated by a non-magnetic ion
which is placed in between the magnetic ions. It arises because there is a
kinetic energy advantage for antiferromagnetism, which can be understood
by reference to Fig. 4.3 which shows two transition metal ions separated by
an oxygen ion. For simplicity we will assume that the magnetic moment on
the transition metal ion is due to a single unpaired electron (more complicated
cases can be dealt with in analogous ways). Hence if this system were perfectly
ionic, each metal ion would have a single unpaired electron in a d orbital

Figure 1.1: On the figure we see the molecular orbitals for a diatomic molecule,
f.ex. H2. Their energy is also indicated to the left, showing that it costs more en-
ergy to construct an antibonding (antisymmetric) orbital than a bonding (symmetric)
orbital.[3]

The Slater determinant gives us the wave function of this many-body (two-
body) fermionic system that has to respect Pauli’s exclusion principle,

Φ(r1, r2) =
1√
2

∣∣∣∣
φb↑(r1) φb↑(r2)
φb↓(r1) φb↓(r2)

∣∣∣∣ . (1.2)

In second quantization language an electron in a bonding orbital with spin σ is
created by c†bσ = 1/

√
2(c†1σ + c†2σ). Eq. (1.2) therefore becomes

Φ =
1√
2

(
c†1↑c

†
2↓ − c

†
1↓c
†
2↑ + c†1↑c

†
1↓ + c†2↑c

†
2↓

)
|0〉, (1.3)

where each operator creates an electron in an s-orbital either at hydrogen atom
1 or 2 with spin either ↑ or ↓. What Eq. (1.3) implies is that there is 50% proba-
bility of finding the two electrons residing on the same atom which is unrealistic
since the repulsive Coulomb interaction between electron must prevent this to
happen. To make our model more realistic we apply the Hubbard Hamiltonian
which assumes well localized electrons that have the ability to tunnel from one
atom to another but have to pay a penalty of U if they find themselves on the
same atom (we will discuss the Hubbard Hamiltonian in more details in Section
2.1). There are six possible configurations having two electrons and two pro-
tons, namely the two electrons are both at the same atom and therefore have
to have opposite spin due to their fermionic properties, the two electrons are at
different atoms with opposite spin and at last the two electrons are at different
atoms with same spin. The basis therefore consists of these six two electron
states

B =
{
c†1↑c

†
1↓|0〉, c

†
2↑c
†
2↓|0〉, c

†
1↑c
†
2↓|0〉, c

†
2↑c
†
1↓|0〉, c

†
1↑c
†
2↑|0〉, c

†
1↓c
†
2↓|0〉

}
. (1.4)
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1. Introduction and motivation

The Hamiltonian in this basis takes the form

H =




U 0 −t −t 0 0
0 U −t −t 0 0
−t −t 0 0 0 0
−t −t 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




(1.5)

where we have defined the energy of the s-orbitals to be zero and t the hopping
energy from one atom to another −t = 〈φ1|H|φ2〉 = 〈φ2|H|φ1〉 which is nothing
but the energy overlap of the two electron wave functions. The Hamiltonian
in Eq. (1.5) can be made simpler by transforming to a new basis which are
eigenstates of the parity operator P and spin operator Sz. The new basis is
then

B′ =

{
1√
2

(c†1↑c
†
1↓ − c

†
2↓c
†
2↑)|0〉,

1√
2

(c†1↑c
†
1↓ + c†2↓c

†
2↑)|0〉,

1√
2

(c†1↑c
†
2↓ − c

†
1↓c
†
2↑)|0〉,

1√
2

(c†1↑c
†
2↓ + c†1↓c

†
2↑)|0〉,

c†1↑c
†
2↑|0〉, c

†
1↓c
†
2↓|0〉

}
. (1.6)

We are allowed to use these eigenstates instead since our Hamiltonian commutes
with both P and Sz i.e. [H, P ] = [H, Sz] = 0. In this new basis the Hamiltonian
becomes

H =




U 0 −2t 0 0 0
0 U 0 0 0 0
−2t 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



. (1.7)

We find the eigenvalues and eigenvectors of the Hamiltonian in Eq. (1.7) which
are

i) Ground state:
E0 = U −

√
U + 16t2, (1.8a)

|E0〉 =

(√
1 + δ

2
(c†1↑c

†
2↓ − c

†
1↓c
†
2↑)

)
+

√
1− δ
2

(c†1↑c
†
1↓ − c

†
2↓c
†
2↑)|0〉, (1.8b)

where δ =
U√

U2 + 16t2
.

ii) First excited states:
E1 = 0, (1.9a)
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1.4 Graphene

|E1〉 =





c†1↑c
†
2↑|0〉

1√
2

(c†1↑c
†
2↓ + c†1↓c

†
2↑)|0〉

c†1↓c
†
2↓|0〉

. (1.9b)

The first excited state turns out to be three-folded i.e. three states share
the same energy.

iii) Second excited state:
E2 = U, (1.10a)

|E2〉 =
1√
2

(c†1↑c
†
1↓ + c†2↓c

†
2↑)|0〉. (1.10b)

iv) Third excited state:
E3 = U +

√
U + 16t2, (1.11a)

|E3〉 =

(√
1− δ
2

(c†1↑c
†
2↓ − c

†
1↓c
†
2↑)

)
−
√

1 + δ

2
(c†1↑c

†
1↓− c

†
2↓c
†
2↑)|0〉, (1.11b)

where agin δ =
U√

U2 + 16t2
.

What we see from this is that the ground state Eq. (1.8) is a spin singlet whereas
the first excited state Eq. (1.9) is a spin triplet. In the case of strong Coulomb
interaction where U >> t the ground state energy is approximated by

E0 ≈ −
8t2

U
, (1.12)

with eigenstate

|E0〉 ≈
1√
2

(c†1↑c
†
2↓ − c

†
1↓c
†
2↑)|0〉. (1.13)

This result tells us that the electrons are well localized one on each atom and re-
covers the Heitler–London prediction that the total energy of the system is min-
imized by the generation of molecular orbitals of delocalized electron wave func-
tions. In the opposite limit U << t we recover what we got in Eq. (1.3) where
the electrons behave as they were independent which in the case of molecules
they certainly are not.[4]

Even though in this section we only described the most simplest molecule of
them all the result is unambiguous and holds also for larger molecules. The
interaction between electrons in molecules can not be neglected in the process
of describing the world correctly.

1.4 Graphene
In this section we describe the fundamental properties of graphene both in real
space and reciprocal space. We also touch briefly upon the history and future
of graphene and see how the discovery of this highly rated material was kind of
an serendipity.
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1. Introduction and motivation

1.4.1 Fundamental properties of graphene

Carbon is number six in the periodic table meaning it has six protons and six
electrons in its neutral form. Four of these six electrons are valence electrons i.e.
electrons that participate in making chemical bonds with other atoms as they are
weakly bound to the core compared to the 1s electrons. They fill the 2s orbital
and two of three 2p orbitals in the x and y directions. When carbon forms
a crystal one of the 2s electrons gains energy from the nearest neighbouring
nuclei and excites to the empty 2pz orbital all in all lowering the total energy of
crystal making it a stable material. Due to low energy difference between the
2s and 2px,y energy levels compared to the energy stored in the chemical bonds
the wave function of these electrons can mix internally making the carbon–
carbon bonding stronger. This process is called hybridization and the electron
configuration of both freestanding- and crystalized carbon are shown in Figs.
1.2(a) and (b).

(a) Electron configuration
of freestanding carbon.

(b) Electron configuration
of hybridized carbon.

(c) The electron or-
bitals of hybridized car-
bon.

Figure 1.2: In the figures we can see the electron configuration of both isolated
carbon, carbon present in a crystal forming graphene and the electronic orbitals in
graphene.[5]

Graphene is defined as a planar allotrope of carbon where all the carbon atoms
form in–planar bonds due to hybridization called sp2-bonds or σ-bonds illus-
trated in Fig. 1.2(c). They are the strongest type of covalent bonds and are
responsible for graphene’s great strength. The unpaired electron in the 2pz or-
bital perpendicular to the carbon plane makes a covalent bond called a π-bond
which is much weaker than the σ-bond. It can therefore be considered as delo-
calized and is responsible for the electronic properties of graphene.[6] [5]

Graphene is a single atomic layer of carbon atoms and can therefore be consid-
ered as effectively two-dimensional. No material can be made thinner. In Fig.
1.3 we can see the graphene plane along with other materials also only consisting
of carbon atoms. Graphene is the mother material of these three allotropes, the
zero-dimensional buckyball formed by wrapping of graphene, one-dimensional
carbon nanotube formed by folding graphene and three-dimensional graphite
formed by stacking graphene.[7]

Now we would like to describe the crystal structure of graphene and define both

6



1.4 Graphene

Figure 1.3: Graphene along with the other pure carbon materials that all can be
derived from the 2D plain by wrapping (0D buckyball), folding (1D carbon nanotube)
or stacking (3D graphite).[7]

its real and reciprocal lattice. A central concept in describing crystalline solids
is the Bravais lattice which is defined as an periodic array of discrete points
with an arrangement and orientation that looks exactly the same regardless
from which point is viewed. The points can represent single atoms, groups of
atoms, molecules or some other unit to be considered. In our case they represent
an unit, forming a hexagonal lattice, consisting of two carbon atoms called A
and B, see Fig. 1.4(a). The hexagonal lattice is though not one of the five
unique 2D Bravais lattices since it is not the same to view for example along the
x–axis from points A and B. It can though be mapped onto a Bravais lattice
by considering the basis which says how many atoms are linked to each Bravais
lattice point, consisting of two nonequivalent atoms, namely A and B. Any
Bravais lattice point can be captured by the position vector in real space

R = n1a1 + n2a2, (1.14)

where n1 and n2 are integers and a1 and a2 are primitive lattice vectors that
span the hexagonal lattice defined as

a1 =

(√
3a

2
,
a

2

)
, (1.15a)

a2 =

(√
3a

2
,−a

2

)
, (1.15b)

where a =
√

3ac−c and ac−c = 1.42Å is the nearest neighbour carbon–carbon
distance.

The smallest unit needed to fill space without overlapping itself or leaving gaps
in between, is called the primitive unit cell. The choice of a primitive unit cell is
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1. Introduction and motivation

not unique but it must only contain one lattice point which implies that the vol-
ume of a primitive unit cell is independent of the choice of cell. A consequence
of this is that given two different primitive unit cells for the same Bravais lattice
it must be possible to cut one into pieces and translate with appropriated lattice
vectors into the other and reassemble perfectly and vice versa. We choose for
graphene a primitive cell in real space an equilateral parallelogram spanned by
the vectors in Eq. (1.15). Another choice could had been the Wigner–Seitz
primitive cell which resembles the symmetry of the lattice and is therefore of
hexagonal shape. It is constructed by drawing lines from one Bravais lattice
point to all its nearest neighbors, cutting each line at half with a plane per-
pendicular to the line and taking the smallest polyhedron containing the point
connected by these planes. The Wigner–Seitz primitive cell we will refer to
again when considering the reciprocal lattice of graphene.

Each carbon atom at site A is connected to three nearest neighbors with the
aforementioned σ-bonds that all are of type B. Therefore one could say graphene’s
hexagonal lattice consists of two triangular sublattices consisting of A(red) and
B(blue) sites as can be seen in Fig. 1.4(a) along with its other fundamental
lattice properties mentioned above.

(a) Graphene in real space. The unit cell con-
sisting of two carbon atoms is spanned by the
to primitive lattice vectors. The two triangu-
lar sublattices can also be seen as red and blue
dots.

(b) Graphene in reciprocal space. The
first Brillouin zone is shaded and the
reciprocal unit cell is spanned by the
to primitive reciprocal lattice vectors.
Two nonequivalent Dirac points K
and K′ are shown.

Figure 1.4: Graphene in real and reciprocal space along with its fundamental lattice
properties.

Now we turn our attention to the reciprocal lattice which is defined in the
following way: Consider a Bravais lattice generated by the lattice vector R
and a plane wave eik·r having some periodicity not necessarily the same as the

8



1.4 Graphene

lattice. If for some wave vector K

eiK·(r+R) = eiK·r, (1.16)

⇒ eiK·R = 1 (1.17)

is true for any r and all R in the lattice then this set of wave vectors K yielding
the periodicity of the lattice is known as the reciprocal lattice. It is a little
cumbersome to derive the primitive reciprocal lattice vectors since the cross
product used in three-dimensions is not defined in two-dimensions but from a
geometrical point of view graphene is of course finite in height but it is negligible
compared to its length and width. Therefore we could say that there is a third
primitive lattice vector a3 in real space only having component along the z-axis
but vanishing in x and y. Then we also have to add a 0 to the z component of
a1 and a2. Now we are in stand to find the primitive reciprocal lattice vectors

b1 = 2π
a2 × a3

a1 · (a2 × a3)
=

(
2π√
3a
,

2π

a

)
, (1.18a)

b2 = 2π
a3 × a1

a1 · (a2 × a3)
=

(
2π√
3a
,−2π

a

)
. (1.18b)

The third primitive reciprocal lattice vector b3 we drop since graphene can be
described as effectively being two–dimensional. Now just as for real space in
Eq. (1.14) we have a reciprocal lattice vector

K = m1b1 +m2b2, (1.19)

where m1 and m2 are integers and translations of K will fill the reciprocal space
without overlapping itself or leaving gaps in between. It is obvious that Eq.
(1.17) is satisfied as K·R = 2π(m1n1+m2n2) since bi ·aj = 2πδij per definition.
In Fig. 1.4(b) the reciprocal lattice is illustrated along with a reciprocal unit cell
spanned by the vectors b1 and b2. To get more understanding on the reciprocal
lattice we would like to state some additional properties:

• The reciprocal lattice of a given Bravais lattice is always a Bravais lattice
itself though not necessary the same Bravais lattice as it was derived from.

• Taking the reciprocal of the reciprocal lattice results in the original Bravais
lattice.

• The real lattice is spanned by position vector R having units of length
where as the reciprocal lattice is spanned by reciprocal lattice K having
units of length−1.

• If A is the area of the primitive unit cell in real space then (2π)2/A is the
area of the reciprocal lattice primitive unit cell.

9



1. Introduction and motivation

• The real lattice can be viewed with a high–resolution electron microscope
and the reciprocal lattice can be visualized by the diffraction patterns of
X–rays.

The Wigner–Seitz primitive cell defined above of the reciprocal lattice is better
known as the first Brillouin zone and is very important when considering the
dynamics of the electrons in reciprocal space. In Section 2.2 we will find out
how two out of six corners of the first Brillouin zone are of high importance
when studying the dynamics of the electrons in graphene. [5][8]

1.4.2 History and future of graphene

After having gained knowledge about the fundamental properties of graphene in
subsection 1.4.1, we are in stand to understand the history of the development
and discovery of these monoatomic crystals which traces back to the early 19th
century.

In the 1840s a German scientist, Schafhaeutl, reported that he had inserted
small molecule species in between the carbon layers of graphite oxide (GO) and
resulting in different graphite intercalation compounds (GICs). The effect of
that process was to increase the interlayer spacing between individual carbon
layers resulting in electronic decoupling. After having done that, exfoliation
was possible with sulfuric and nitric acids. In 1859, the British chemist, Brodie,
modified what Schafhaeutl had done before aiming to be able to characterize the
molecular weight of graphite by use of strong acids and some oxidants. What
he produced was not only intercalation of graphite layers but also chemical ox-
idation of the surface of graphite, hence generating GO. It turns out that these
methods used to modify graphite and obtaining GICs where the forces between
graphite layers is reduced and spacing increased are still used today to gener-
ate reduced graphite and graphene oxides (r-GO). A long time passed without
any major discoveries in producing graphene but in 1962 almost a century af-
ter Brodie’s publications, Boehm et al., produced thin lamellar graphite from
GO that only contained small amounts of oxygen and hydrogen which they had
used in the preparation. By using transmission electron microscopy (TEM) they
were able to measure the thickness to be 4.6Å within considerable uncertain-
ties. Nevertheless Boehm concluded that their observation confirmed that the
thinnest graphite flakes able to produce were essentially single carbon layers [9].

The story to isolate individual graphite layers continues to be unsuccessful but
despite that each attempt was an important step towards the goal which in 2004
was reached by two Russian physicist, Andre Geim and Konstantin Novoselov.
The method of success came from a rather unexpected device, namely a scotch
tape, probably available in your nearest grocery store. What they did was to use
bulk graphite, which consists of large number of graphene layers held together
by Van der Waals forces, and then press the adhesive tape onto the graphite
crystal thereby removing few layers of graphene. The graphitic flakes now stuck
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foundations of graphene science, we first examine the history
of graphene and chemically modified graphenes (CMGs),
some of which predate IUPAC recognition (Figure 1).

2. History of Graphene

A discussion of the history of graphene would be
incomplete without a brief mention of graphite oxide (GO),
graphene oxide (i.e., exfoliated GO), and graphite intercala-
tion compounds (GICs), as currently graphene and a related
material called “reduced graphene oxide (r-GO)” (see below)
are frequently prepared by the manipulation of GO and
graphene oxide, which, remarkably, have been studied
extensively for more than 170 years.[36–40]

The earliest reports of GO and GICs can be traced back to
the 1840s, when the German scientist Schafhaeutl reported
the intercalation (that is, insertion of a small-molecule species,
such as an acid or alkali metal, in between the carbon
lamellae) and exfoliation of graphite with sulfuric and nitric
acids.[36–38] A wide range of intercalants and exfoliants have
been used since that time, including potassium (as well as
other alkali metals), fluoride salts of various types, transition
metals (iron, nickel, and many others),[41–44] and various
organic species.[45] The stacked structure of graphite is
retained in GICs, but the interlayer spacing is widened, often
by several angstroms or more, which results in electronic
decoupling of the individual layers. This electronic decoupling
leads, in some cases, to intriguing superconductivity effects:[46]

a harbinger of the extraordinary electronic properties later
demonstrated in freestanding graphene. In fact, the term
“graphene” grew out of the chemistry of GICs as the need for
language to describe the decoupled layers became appar-
ent.[31, 32] (To the best of our knowledge, the term graphene
was first coined by Boehm et al. in 1986.[32]) It was later
reasoned that if the interlayer spacing of GICs could be
extended throughout the entire structure, and the small-
molecule spacers removed, pristine graphene may be ob-
tained.[47]

In 1859, the British chemist Brodie used what may be
recognized as modifications of the methods described by

Schafhaeutl in an effort to characterize the molecular weight
of graphite by using strong acids (sulfuric and nitric), as well
as oxidants, such as KClO3.

[48,49] The use of these conditions

Figure 1. Timeline of selected events in the history of the preparation, isolation, and characterization of graphene.
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Figure 1.5: Timeline showing important events in the history of producing
graphene.[9]

to the adhesive tape were transferred to some substrate by pressing the tape
against its surface leaving extremely high-quality examples on top (see Fig.
1.6(a)). Now to identify monolayers of graphite in a pile of multilayer graphite
was not an easy task but it turned out that a substrate consisting of Si/SiO2

with 300 nm layer of SiO2 made the monolayer crystals in the pile visible as
can be seen in Fig. 1.6(b), instead of being transparent as they were on top
of some other substrate. Graphene research has exploded since its isolation in
2004 with number of publications exponentially increasing all the time since as
can be seen in Fig. 1.7. In 2010 Andre Geim and Konstantin Novoselov were
awarded the Nobel Prize in Physics for groundbreaking experiments regarding
the two–dimensional material graphene [12].
Regarding the future of graphene it would be nonsense to not say it was bright.
At the moment money are being pumped into the graphene research hoping to
revolutionize our society from different aspects in the future. Due to graphene’s
superior properties to other materials for example the mechanical stiffness,
strength and elasticity, electrical and thermal conductivity and many more it
has the potential to do so. The Graphene Flagship is an European project that
aims for planning and structuring the graphene research and making this rev-
olution real. One thing graphene research has also generated is the interest in
other 2D atomic crystals making up a whole new branch of science that only
deals with the one atomic thick version of bulk materials. [13]

1.5 Motivation for bound state research

In this section we would like take a close look on two specific examples which
demonstrate how the effect of electron–electron interaction has lead to new
fundamental understanding of properties of materials. In both cases bound
states are generated that were not present without the interaction effects.
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1. Introduction and motivation

(a) The scotch tape method used to exfoli-
ate graphite to produce individual layers of
graphene illustrated.

at that time I used to spend a few hours a day in the lab
preparing samples, doing measurements, and analyzing
results. It was only after 2006 that I turned into a paper-
writing machine combined with a data analyzer. I have always
loved the latter, but hated to write papers. Unfortunately, no
lab can survive without its Shakespeare.

Kostya and I decided to check out the electrical properties
of the graphite flakes found on the sellotape and, to this end,
he started transferring them onto glass slides, initially by using
just tweezers. A few days later, and keeping in mind the initial
motivation, I brought in oxidized Si wafers in order to use
them as substrates and detect the EFE. This delivered an
unexpected bonus. Placing thin graphite fragments onto those
wafers allowed us to observe interference colors that indi-
cated that some of the fragments were optically transparent.
Moreover, the colors provided us with a very intuitive way of
judging which flakes were thin (Figure 2c). We quickly found
that some of them were just a few nanometers thick. This was
our first real breakthrough.

Eureka Moment

In graphene literature, and especially in popular articles, a
strong emphasis is placed on the Scotch tape technique, and it
is hailed for allowing the isolation and identification of
ultrathin graphite films and graphene. For me, this was an
important development, but still not a Eureka moment. Our
goal always was to find some exciting physics rather than just
observing ultrathin films in a microscope.

Within a couple of days after Oleg prompted the use of
Scotch tape, Kostya was already using silver paint to make
electrical contacts to graphite platelets transferred from the
Scotch tape. To our surprise, they turned out to be highly
conductive and even the painted contacts exhibited a
reasonably low resistance. The electronic properties could
be studied, but we felt it was too early to put the ugly looking
devices (see Figure 2d) in a cryostat for proper measure-
ments. As a next step, we applied voltage, first, through the

glass slides and, a bit later, to the Si wafer, using it as a back
gate to check for the field effect. Figure 2 shows a photograph
of one of our first devices. The central part is a graphite crystal
that is approximately 20 nm thick, and its lateral size is
comparable to the diameter of a human hair. To transfer the
crystal by tweezers from the tape and then make four such
closely spaced contacts by using just a toothpick and silver
paint is the highest level of experimental skill. These days, not
many researchers have fingers green enough to make such
samples. I challenge readers to test their own skills against this
benchmark!

The very first hand-made device on glass exhibited a clear
EFE such that its resistance could be changed by several
percent. It may sound little and of marginal importance but,
aware of how hard it was previously to detect any EFE at all, I
was truly shocked. If those ugly devices made by hand from
relatively big and thick platelets already showed some field
effect, what could happen, I thought, if we were to use our
thinnest crystallites and apply the full arsenal of micro-
fabrication facilities? There was a click in my head that we
had stumbled onto something really exciting. This was my
Eureka moment.

What followed was no longer a random walk. From this
point, it was only logical to continue along the same path by
improving procedures for cleaving and finding thinner and
thinner crystals, and making better and better devices, which
we did. It was both painstaking and incredibly rapid, depend-
ing on one�s viewpoint. It took several months until we
learned how to identify monolayers by using optical and
atomic force microscopy. On the microfabrication side, we
started using electron-beam lithography to define proper Hall
bar devices and started making contacts by metal evaporation
rather than silver painting. The microfabrication develop-
ment was led by Dubonos, aided by his PhD student Anatoly
Firsov. Initially, they employed facilities in Chernogolovka
but, when our new postdoc Yuan Zhang got fully acquainted
with the recently installed lithography system at our Nano-
tech Centre, the process really speeded up.

The move from multilayers to monolayers and from hand-
made to lithography devices was conceptually simple, but
never straightforward. We took numerous detours and wasted
much effort on ideas that only led us into dead ends. An
example of grand plans that never worked out was the idea to
plasma-etch graphite mesas in the form of Hall bars which,
after cleavage, should provide readily shaped devices, or so I
thought. Later, we had to return to the unprocessed graphite.
The teething problems we experienced at that time can also
be illustrated by the fact that initially we believed that Si
wafers should have a very precise thickness of the oxide
(within several nm) to allow hunting for monolayers. These
days we can find graphene on practically any substrate.
Crystal sizes also went up from a few microns to nearly a
millimeter, just by tinkering with procedures and using
different sources of graphite.

The most essential part of our 2004 report[27] was the
electrical measurements, and this required a lot of work. For
several months, Kostya and Serge Morozov were measuring
full time, and I was around as well, discussing and analyzing
raw data, often as soon as they appeared on the screen. The

Figure 2. In hindsight, thin crystals of graphite are easy to obtain.
a) Remnants of HOPG left attached to Scotch tape. b) Some of the
crystals are optically transparent if viewed in an optical microscope or
just with a magnifying glass. c) If placed on an oxidized Si wafer,
transparent crystals give rise to various shades of blue. d) One of our
very first devices made by using “a shoestring and sealing wax”: in
this case, tweezers, a toothpick, and silver paint.
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(b) a) HOPG leftovers on scotch tape. b)
Graphene flakes. c) Graphene flakes on an
oxidized SI wafer. The blue color indicates
the most thinnest flakes. d) One of the
first devices used to do measurments on
graphene.

Figure 1.6: To the left we see an illustration of the amazingly simple scotch tape
method. To the right we see the figures of the procedure from generating graphene to
measuring its properties.[10][11]

affords an aryl radical and silver iodide; the radical recom-
bines with another aryl radical species to form covalent
linkages between various monomers. Such constructs, with
their large pores, the size of which could perhaps be
controlled, are predicted to exhibit remarkably selective
separation properties for gases or other small molecules.[122]

An alternate approach to “porous graphenes” may be found
in the synthesis of theoretically predicted graphyne, whose
sp2-hybridized carbon atoms are interspersed with regions of
linearly connected, sp-hybridized carbon atoms.[123–125]

Acetylenic coupling[126] or alkyne metathesis[127, 128] paired
with isomerization may be a feasible de novo synthesis of
pristine graphene (Scheme 2), although many other routes to

complex carbon networks have been proposed or demon-
strated experimentally over the years.[115, 129,130] Metal-medi-
ated aryl coupling reactions have been used similarly in the
preparation of graphene nanoribbons (semiconducting mate-
rials useful for their bandgap properties[131]) up to 12 nm in
length from PAH precursors.[132]

Throughout their development, the synthesis of the
aforementioned types of carbon networks has been guided
by a set of criteria outlined by Diederich and Rubin: “1) The
network structures should neither be highly strained nor
easily interconverted into graphite or diamond, 2) the new
compounds should have the potential to exhibit interesting
material properties such as electrical conductivity, and
3) promising synthetic routes should be available.”[115] A de
novo synthesis of graphene is likely to abide by these criteria
as well, and much potential remains in this vein.

5. Summary and Outlook

Although graphene has enjoyed widespread attention in
the last several years (see Figure 4), its roots go back decades
earlier to research beginning in the 1960s that demonstrated
that it was possible to chemically and/or thermally reduce

graphite oxide; these reactions probably involved intercala-
tion/exfoliation processes that date back to the 1840s. As
materials resulting from the reduction of graphene oxide were
found to retain a portion of their oxygen impurities, they have
more recently been termed “reduced graphene oxide”, rather
than pristine graphene. These efforts were followed shortly
thereafter by CVD methods, as well as sublimation/epitaxial
techniques, which demonstrated the ability to form pure,
heteroatom-free graphene monolayers. Most recently, it has
been demonstrated that it is possible to directly exfoliate
layers of graphite mechanically, and to promote the large-area
growth of monolayer graphene under non-UHV conditions.
All of these methods continue to be optimized, and graphene
or graphene-like materials are still formed by similar tech-
niques or variations thereof. Likewise, one can envision a
variety of more sophisticated routes to graphene. A bottom-
up, rational design of this carbon macromolecule will be of
considerable value, as will methods that enable precise
control of its structural, electronic, mechanical, and thermal
properties.

In light of the extraordinary range of carbon materials
that have been prepared over the years, and the similarly
expansive array of terms that have been used to describe
those materials, we believe it worthwhile to summarize the
terms that have been discussed herein, and either reiterate
accepted definitions (in quotations) or propose definitions
based on IUPAC terminology in its proper context as well as
common usage in the literature. Although the list given is not
comprehensive or authoritative, we hope that it will provide
guidelines and foster discussion within the community on how
best to use these terms:

Scheme 1. Formation of “porous graphene”. A) Hexafunctional poly-
phenylene core structure used as the monomer; B) structure of a
fraction of the polyphenylene superhoneycomb network (adapted from
reference [120]).

Scheme 2. A possible de novo synthetic route to graphene: acetylenic
coupling or alkyne metathesis, followed by isomerization, to give an
extensive aromatic network.

Figure 4. Number of reports containing the search term “graphene” by
year (determined by searching for “graphene” in the SciFinder Scholar
database).
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Figure 1.7: From the SciFinder Scholar database. The graph shows number of
reports by year containing the searching term "graphene".[9]

1.5.1 Plasmons in the electron gas

Considering non-interacting two-dimensional electron gas the polarization func-
tion

χ(rt, r′t′) = −iθ(t− t′) 〈[ρ(rt), ρ(r′t′)]〉 , (1.20)

which is a two–particle correlation function, where ρ(rt) is the charge operator,
can give us information about the dissipation due to an applied field in the
following way

Reσ(q, ω) = −ωe
2

q2
ImχR(q, ω). (1.21)
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Fourier transforming the polarization function we get to momentum space where
Eq. (1.20) takes the form

χR(q, t− t′) = −iθ(t− t′) 1

V 〈[ρ(q, t), ρ(−q, t′)]〉 . (1.22)

It depends only on q due to the translational invariance of the system and
we have written the superscript R for "Retarded" meaning that the function
depends on what happened earlier in time. Plugging in the appropriated form
of the charge operator where we have attached the trivial phase factor for time
evolution since we are dealing with free electrons

ρ(q, t) =
∑

kσ

c†kσck+qσei(ξk−ξk+q)t, (1.23)

into Eq. (1.22) we get within the free electron approximation

χR0 (q, t− t′) = −iθ(t− t′) 1

V
∑

kk′

∑

σσ′

[
c†kσck+qσ, c

†
k′σ′ck′−q′σ′

]

×ei(ξk−ξk+q)tei(ξk′−ξk′−q)t
′
. (1.24)

At last we would like to go to frequency space which is done by a Fourier
transformation, resulting in

χR(q, ω) =
1

V
∑

kσ

nF (ξk)− nF (ξk+q)

ξk − ξk+q + ω + iη
. (1.25)

The inclusion of an imaginary part of the frequency is a standard trick to make
the transform well-defined, in the end of the calculation we let η → 0+ without
any consequences. Now following the instructions from Eq. (1.21) we take the
imaginary part of Eq. (1.25)

− ImχR(q, ω) =
π

V
∑

kσ

[nF (ξk)− nF (ξk+q)] δ (ξk − ξk+q + ω) . (1.26)

What Eq. (1.26) describes is the ability for the electron gas to generate electron–
hole pairs due to absorption of the incoming energy. It is basically the density of
electron–hole pair excitations as the delta function only gives non-zero outcome
when ω = ξk+q − ξk where ξk is the energy of hole below the fermi surface
and ξk+q is the energy of an excited electron above the fermi surface (assuming
ω > 0). It follows then from Eq. (1.21) that the real part of the conductivity
decreases as the imaginary part of the polarization function Eq. (1.26) is posi-
tive. In Fig. 1.8 we see a schematic drawing of an electron–hole pair generation
and a plot of the imaginary part of the polarization function.

Now turning to the interacting case where we will see that this picture changes
dramatically and find out that generation of electron–hole pairs is not the only
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Figure 8.3: Absorption of a photon creates an electron-hole pair excitation in the free
electron gas. The possible range of q and ω is given by the dashed area in the right plot.
The strength of the interaction depends on the imaginary part of the polarization function,
see Eq. (8.82)

because 〈c†kck〉 = nF (ξk). In the frequency space, we find

χR
0 (q, ω) = −i

∫ ∞

t′
dt eiωt

1

V
∑

kσ

[
nF (ξk) − nF (ξk+q)

]
ei(ξk−ξk+q)(t−t′)e−η(t−t′),

=
1

V
∑

kσ

nF (ξk) − nF (ξk+q)

ξk − ξk+q + ω + iη
. (8.81)

This function is known as the Lindhard function, and later on, when discussing the
elementary excitations of the electron gas, we will study it in much more detail.

Within the non-interacting approximation and according to Eq. (8.74) we then have
that the dissipation of the electron gas is proportional to

− ImχR(q,ω) =
π

V
∑

kσ

[
nF (ξk) − nF (ξk+q)

]
δ(ξk − ξk+q + ω). (8.82)

We can now analyze for what q and ω excitations are possible, i.e. for which (q, ω)
Eq. (8.82) is non-zero. Let us take T = 0 where nF is either zero or one, which means
that nF (ξk) − nF (ξk+q) is only non-zero if (k > kF and |k + q| < kF ) or (k < kF and
|k + q| > kF ). The first case corresponds to ω < 0, while the latter corresponds to ω > 0.
However, because of the symmetry χR

0 (q, ω) = −χR
0 (−q,−ω), which is easily seen from

Eq. (8.81), we need only study one case, for example ω > 0. The delta function together
with the second condition thus imply

0 < ω = q2
1

2m
+ k · q 1

m
⇒
{
ωmax = 1

2mq
2 + vF q

ωmin = 1
2mq

2 − vF q , q > 2kF .
(8.83)

(a) An electron below
the Fermi surface absorbs
a photon and is excited
above, thereby generating an
electron–hole pair.
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Figure 8.3: Absorption of a photon creates an electron-hole pair excitation in the free
electron gas. The possible range of q and ω is given by the dashed area in the right plot.
The strength of the interaction depends on the imaginary part of the polarization function,
see Eq. (8.82)

because 〈c†kck〉 = nF (ξk). In the frequency space, we find

χR
0 (q, ω) = −i

∫ ∞

t′
dt eiωt

1

V
∑

kσ

[
nF (ξk) − nF (ξk+q)

]
ei(ξk−ξk+q)(t−t′)e−η(t−t′),

=
1

V
∑

kσ

nF (ξk) − nF (ξk+q)

ξk − ξk+q + ω + iη
. (8.81)

This function is known as the Lindhard function, and later on, when discussing the
elementary excitations of the electron gas, we will study it in much more detail.

Within the non-interacting approximation and according to Eq. (8.74) we then have
that the dissipation of the electron gas is proportional to

− ImχR(q,ω) =
π

V
∑

kσ

[
nF (ξk) − nF (ξk+q)

]
δ(ξk − ξk+q + ω). (8.82)

We can now analyze for what q and ω excitations are possible, i.e. for which (q, ω)
Eq. (8.82) is non-zero. Let us take T = 0 where nF is either zero or one, which means
that nF (ξk) − nF (ξk+q) is only non-zero if (k > kF and |k + q| < kF ) or (k < kF and
|k + q| > kF ). The first case corresponds to ω < 0, while the latter corresponds to ω > 0.
However, because of the symmetry χR

0 (q, ω) = −χR
0 (−q,−ω), which is easily seen from

Eq. (8.81), we need only study one case, for example ω > 0. The delta function together
with the second condition thus imply

0 < ω = q2
1

2m
+ k · q 1

m
⇒
{
ωmax = 1

2mq
2 + vF q

ωmin = 1
2mq

2 − vF q , q > 2kF .
(8.83)

(b) The continuum of electron–hole pairs within in
the striped area. Outside no excitations within the
non–interaction approximation are allowed.

Figure 1.8: Figures showing the physical origin of how the electron gas dissipates
energy when the electrons are considered without interaction.

possible source for dissipation of energy. Let’s consider the electron gas being
subjected to an external potential in the form of the perturbation

H′ =

∫
dr[−eρ(r)]φext(r, t), (1.27)

where ρ(r) now is the particle density. The external potential φext(q, ω) induces
charge density −eρind(q, ω) which through the Coulomb interaction,W (q), that
is present between the electrons corresponds to an induced potential,

φind(q, ω) =
1

e2
W (q)[−eρind(q, ω)]. (1.28)

Here all quantities have been Fourier transformed to (q, ω)-space which is al-
lowed due to the translational invariance of the system. Utilizing the Kubo
formula which relates the induced charge density with the external potential we
can write

φind(q, ω) = W (q)χR(q, ω)φext(q, ω), (1.29)

where χR(q, ω) is the Fourier transform of the retarded Kubo density–density
correlation function i.e. the same function as we saw in Eq. (1.22). Now we are
interested in the total potential which is the sum of the external and internal
potential but using Eq. (1.29) allows us to write the total potential entirely as
function of the external potential

φtot(q, ω) = φext(q, ω) + φind(q, ω) (1.30)

=
(
1 +W (q)χR(q, ω)

)
φext(q, ω). (1.31)
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This is an important result that can best be seen by drawing a parallel to the
classical fields E and D which are connected through the equation D = ε0εE
describing the electric field in a dielectric material. In Eq. (1.31) the total
potential corresponds to the electric field E and the external potential to the
displacement field D and therefore we have an expression for the dielectric
function ε(q, ω), written as

1

ε(q, ω)
= 1 +W (q)χR(q, ω). (1.32)

The only thing left is to calculate χR(q, ω) and then we know ε(q, ω). Without
derivation by going through the whole story of including many-body interaction
through the powerful Feynman diagram technique we state the random phase
approximation result for the dielectric function

εRPA(q, iqn) = 1−W (q)χ0(q, iqn), (1.33)

where χ0 is just the simple pair–bubble diagram and the retarded version of the
polarization function can be obtained by analytical continuation χR0 (q, ω) =
χ0(q, iqn → ω + iη). Now to study the frequency dependence of the dielec-
tric function in Eq. (1.33), we turn on an external potential with frequency
ω. Within the random phase approximation and additionally assuming high
frequencies, long wavelengths and low temperatures we are in stand to find an
analytical expression for Eq. (1.33), namely

εRPA(q, ω) = 1− ω2
p

ω

(
1 +

3

5

(qvF
ω

)2)
, (1.34)

where we have introduced ωp, the plasma frequency which is a characteristic
frequency for the system given as

ωp ≡
√
ne2

mε0
, (1.35)

where n is the electron density, e2 the electron charge, m the electron mass
and ε0 the electric permittivity constant in vacuum. By considering Eq. (1.31)
along with Eq. (1.32) as φext(q, ω) = ε(q, ω)φtot(q, ω) we see that ε(q, ω) = 0
actually allows the total potential to vary without any changes in the external
potential driving these variations. This corresponds to an oscillatory eigenmode
of the system which are called plasma oscillations and are collective charge–
charge oscillations. They can be quantized where the quanta are identified as
the quasiparticles called plasmons. Implying these conditions in Eq. (1.34) we
get

εRPA(q, ω) = 0, (1.36)

⇒ ω(q) ' ωp +
3

10

v2F
ωp
q2. (1.37)
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1. Introduction and motivation

The remarkable fact about these oscillations is that they are not damped be-
cause in the high frequency limit ImχR0 is automatically zero meaning that these
plasmons do not find them self in the continuum of electron–hole pairs like we
saw in Fig. 1.8. The dispersion relation for plasmons in Eq. (1.37) along with
electron–hole continuum can be seen in Fig. 1.9.
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Figure 13.2: A gray scale plot of Im χR
0 (q, ω ). The darker a shade the higher the value.

The variables are rescaled according to Eq. (13.26): x = q/2kF and x0 = ω/4εF. Note that

ImχR
0 (q, ω ) 6= 0 only in the gray scaled area, which is bounded by the constraint functions

given in Eq. (13.29). Also shown is the plasmon branch with its propagating and damped
parts. The parameters chosen for this branch are those of aluminum, εF = 11.7 eV and
ωp = 15.0 eV.

13.5.2 Landau damping

Finally, we discuss the damping of excitations, which is described by the imaginary part
Im χR

0 (q, ω ). The pure plasma oscillations discussed above are examples of undamped
or long-lived excitations. This can be elucidated by going to the retarded functions in
Eq. (13.67)

φRPA,R
tot (q, ω ) =

φext(q, ω )

1 − e2

ε0q
2 χ0(q, ω + iη)

. (13.78)

In the case of a vanishing imaginary part Im χ0 we find a pole on the real axis:

φRPA,R
tot (q, ω ) =

φext(q, ω )

1 − e2

ε0q
2 Re χR

0 (q, ω ) + iη
. (13.79)

If, however, ImχR
0 6= 0 we end up with a usual Lorentzian peak as a function of ω, signaling

a temporal decay of the total potential with a decay time proportional to Im χR
0 ,

φRPA,R
tot (q, ω ) =

φext(q, ω )

1 − e2

ε0q
2 Re χR

0 (q, ω ) + i e2

ε0q
2 Im χR

0 (q, ω )
. (13.80)

In Eq. (13.29) we have within RPA calculated the region the (q, ω )-plane of non-vanishing
Im χR

0 , and this region is shown in Fig. 13.2. The physical origin of the non-zero imag-
inary part is the ability for the electron gas to absorb incoming energy by generating

Figure 1.9: The electron–hole continuum giving rise to dissipation when considering
non–interacting electron gas along with the plasmon dispersion relation. For small
q-values the plasmons have infinite lifetime but acquire finite lifetime when the branch
hits the continuum.

To summarize: When considering the non–interacting electron gas the only form
of dissipation was the generation of electron–hole pairs. When turning on the
interaction we found out for small q-values some of the electron–hole pairs were
dragged out of the continuum making and therefore gained infinite lifetime.
This is what we call a bound state of electron-hole pairs which in this case are
also called plasmons. [14]

1.5.2 Stoner excitations

Another example that motivates the research of bound state formation in graphene
is the Stoner theory of ferromagnetism which is a mean-field theory for itinerant
ferromagnets. The Hamiltonian describing our system consisting of conduction
electrons in one band which is spin-split in the absence of a magnetic field is a
Hubbard Hamiltonian

H =
∑

kσ

εka
†
kσakσ +

1

2

U

N

∑

k1k2q

∑

σσ′

a†k1+qσa
†
k2−qσ′ak2σ′ak1σ. (1.38)

Having a ferromagnetic ground state we want to study the energies for the
elementary excitations appearing from that state. That we do by working on
the ground state |ψGS〉 with an operator that is a linear combination of operators
which transfers on electron from state |k ↑〉 to |k + q ↓〉 i.e.

σqk− = a†k+q↓ak↑, (1.39)
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1.5 Motivation for bound state research

thus generating a state

|ψq〉 =
∑

k

fkσqk−|ψGS〉. (1.40)

The − index on the σ-operator indicates we are reducing the total spin by 1
as we annihilate an electron with spin ↑ and create another with spin ↓ and fk
are coefficients specifying the linear combination. Eq. (1.40) must fulfill the
Schrödinger equation

H|ψq〉 = E|ψq〉, (1.41)

and we get

H
∑

k

fkσqk−|ψGS〉 = (EGS + ~ωq)
∑

k

fkσqk−|ψGS〉, (1.42)

where we have split the energy on the right hand side in Eq. (1.41) up in two
parts, namely the ground state energy EGS and the excitation energy measured
from the ground state ~ωq. To find the excitation energy we project onto
Eq. (1.42) with the the "bra", 〈ψGS |(σqk−)†, which enables us to obtain the
eigenvalue equation determining the excitation energy ~ωq

1 =
U

N

∑

k

nk↑(1− nk+q↓)

εk+q − εk + 2µBH + Ne

N Uζ − ~ωq

. (1.43)

The nominator contains number operators in k ↑ and k+q ↓ which are present
because on the way obtaining Eq. (1.43) we had to evaluate a commutator
between σqk− and HU where HU is the Coulomb interaction of Hubbard type
from Eq. (1.38). This commutator generated products of four second quanti-
zation operators that with the help of the random phase approximation were
truncated into the number operators in Eq. (1.43) and therefore an analytical
solution is possible. In the denominator of the same equation a term due an
external magnetic field 2µBH is added and the variable ζ is a number between
0 and 1 measuring how many of the total electrons Ne have spin ↑ so when
ζ = 0→ N↑ = 1/2Ne and ζ = 1→ N↑ = Ne. To determine the eigenvalues ~ωq

we set the denominator of Eq. (1.43) to zero under the conditions the nomi-
nator remains non-zero giving i.e. the state |k ↑〉 is occupied and |k − q ↓〉 is
unoccupied. The eigenvalue equation becomes

~ωq,k = εk+q − εk + 2µBH +
Ne
N
Uζ. (1.44)

These excitations are known as Stoner excitations which are nothing but electron–
hole excitations form a continuous band in (~ω, q)-space as can be seen in Fig.
1.10(b). For q = 0 the band starts out at ∆ defined as

∆ = 2µBH +
Ne
N
Uζ, (1.45)

which for the special case of no external magnetic field H = 0 equals the ex-
change splitting i.e. ∆(H = 0) = ∆ex = Ne/NUζ. On Fig. 1.10(a) we see the
the density of states and the two spin-split bands of ∆.
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1. Introduction and motivation

(a) The density of states and
the splitting of the two spin
bands in the Stoner theory.[3]

(b) The stoner excitations and the
dispersion relation for spin waves
which exists outside the continuum
and represents therefore long living
collective excitations.[15]

Figure 1.10: The density of states in the Stoner theory and the Stoner excitations
along with the spin wave dispersion relation.

What now becomes very interesting is the fact in the window below the Stoner
excitations the interaction drives some of the electron–hole pairs out of the con-
tinuum forming a mode of long living collective excitations called spin–wave
excitations. The energy dispersion for these excitations starts out at 2µBH for
q = 0 and is proportional to q2 for small q. At q = qmax the mode merges into
the continuum and does not represent long living excitation anymore.[15]

Again we have seen that the interaction between electrons is responsible in
formation of bound states in the material which in this case is a ferromagnet.
The long living excitations are spin waves and can be quantized and called
magnons. They are magnetic as the name suggests because they spin have 1.
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Chapter 2

The Hubbard model

In this chapter we will discuss the Hubbard model in general and then analyze
each term carefully in the case for graphene. We will obtain the dispersion
relation and derive its linear form but most importantly we will transform the
interaction to k-space and see how it appears there.

2.1 General remarks on the Hubbard model

In the early 1960’s John Hubbard et al. designed a model to understand the
behaviour of transition metal monoxides (FeO, NiO, CoO) which takes into
account the quantum mechanical motion of electrons in solids and the non-
trivial repulsive Coulomb interaction between electrons. The model captures the
low energy physics of the strongly interacting electrons in solids by successfully
eliminating the high energy degrees of freedom by the renormalization method.
Despite its simplicity it reveals the dynamics and behaviour of diverse complex
system ranging from metal–insulator transitions and antiferromagnetism to high
temperature superconductivity. The Hubbard model is written as

H = HTB +HU , (2.1)

so it only consists of two terms, the former is the tight-binding term or the
kinetic energy term describing the hopping of the electrons in the lattice whereas
the latter term describes the interaction between the electrons. Analyzing each
term separately is easy but combined is difficult since the terms do not commute.
The Hamiltonian also reveals the wave–particle duality of quantum mechanics
where the tight-binding term describes waves but the interaction term describes
particles. The sum therefore becomes a competition between the two effects
where the results depends on the system under consideration. [16][17]
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2. The Hubbard model

2.2 Tight-binding model of graphene

Having gone through the basic properties of graphene in Section 1.4.1 we know
that the electrons in the pz orbitals are loosely bound to the nuclei of each carbon
atom. They become delocalized and are responsible for the electronic properties
of graphene. We are though still in position to use the tight-binding approxima-
tion on the problem since the overlap between the pz orbitals on neighbouring
atoms is small enough to obtain an approximate analytical expression for the
band structure.

In the tight-binding method we construct a wave function that is a linear com-
bination of atomic orbitals of all the atoms in the lattice. The Hamiltonian for
a single electron in the potential of all the carbon atoms in graphene is given by

Hcrystal = Hkinetic + Vatoms, (2.2)

where the Hkinetic = p̂2/2me is the usual kinetic energy operator and Vatoms is
the potential from all the carbon atoms in the lattice. Due to the periodicity of
the lattice we expect the wave functions to fulfill Bloch’s theorem which states
that the eigenstate of a particle in a periodic potential may be written as the
product of a plane wave and a periodic function that has the same periodicity
as the lattice. They are

|ψk〉 =
1√
N

∑

i

eik·Ri |φ〉, (2.3)

where the sum is over all Ri which connects all the N unit cells. |ψk〉 is a
bra(c)ket notation for ψk(r) and the periodic function |φ〉 = φ(r −Ri) is a so
called Wannier function and does not have to be an exact atomic wave function
but in general is a sum over all appropriated exact atomic orbitals. Having
discussed the atomic orbitals of graphene before we recognize |φ〉 therefore as
the relevant pz orbital of the carbon atoms. It is clear that Eq. (2.3) satisfies
Bloch’s theorem which states that ψ(r+R) = eik·Rψ(r) for all R in the Bravais
lattice

ψk(r + R) =
1√
N

∑

i

eik·Riφ(r + R−Ri) (2.4)

= eik·R
1√
N

∑

i

eik·(Ri−R)φ(r− (Ri −R)) (2.5)

= eik·Rψk(r). (2.6)

In addition the Bloch functions must obey the periodic boundary conditions

ψk(r +Niai) = ψk(r), i = 1, 2, (2.7)

where ai are the primitive lattice vectors Eq. (1.15) and Ni ∼
√
N with N the
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2.2 Tight-binding model of graphene

total number of unit cells as before. Using Bloch’s theorem on Eq. (2.7) gives

ψk(r +Niai) = eiNik·aiψk(r), (2.8)

⇒ eiNik·ai = 1, (2.9)

which determines the allowed k values

kx =
2π

N1a1
px, px = 0, 1, · · · , N1 − 1, (2.10a)

ky =
2π

N2a2
py, py = 0, 1, · · · , N2 − 1. (2.10b)

In general the Bloch wave vector can be written as

k =
px
N1

b1 +
py
N2

b2, px = py = 0, 1, · · · , Nx − 1 = Ny − 1 (2.11)

from where we can conclude that the volume ∆k in k–space that each allowed
value of k occupies is the volume of the parallelepiped spanned by b1/N1, b2/N2

and b3/N3,

∆k =
b1

N1
·
(
b2

N2
× b3

N3

)
(2.12)

=
1

N
b1 · b2 × b3. (2.13)

Again we have used the trick to include the third dimension of graphene by
adding in real space an unit vector a3 in the z direction to be able to calculate
properties of the effectively two–dimensional plane. b1 · b2 × b3 is then the
volume of the reciprocal primitive cell with height corresponding to one layer of
carbon atoms so therefore N3=1 in Eq. (2.13). ∆k we therefore recognize as ef-
fectively the area of the parallelogram spanned by b1 and b2. Most importantly
Eq. (2.13) states that the number of allowed wave vectors in the first Brillouin
zone is equal to the number of unit cells in the crystal. Since any wave vector k
can be transferred into the first Brillouin zone by a reciprocal lattice vector all
unique values of k can be found there. The transfer of wave vectors is allowed
because some k′ outside the first Brillouin zone can be written as k′ = k + K
where k is inside the first Brillouin zone and K is a reciprocal lattice vector.
Therefore we have reduced the original problem of finding the energy dispersion
of an electron in a potential of N carbon atoms to a simpler one namely N in-
dependent problems for each allowed value of k within the first Brillouin zone.[8]

The wave functions that fulfill all the above-mentioned criteria are

|ψk〉 =
1√
N

∑

i

eik·Ri (uk|iA〉+ vk|iB〉) , (2.14)

where uk and vk are in general complex numbers depending on wave vector k.
|iA〉 and |iB〉 are pz atomic orbitals centered at atom A and B respectively in
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2. The Hubbard model

unit cell i.

We find the eigenvalues and eigenfunctions by solving the Schrödinger equa-
tion for the full Hamiltonian

HCrystal|ψk〉 = Ek|ψk〉. (2.15)

By projecting onto Eq. (2.15) with arbitrary states 〈jA| and 〈jB| denoting
atoms at sites A and B in unit cell j and write the results in matrix form we
get

(
HAA HAB
HBA HBB

)(
uk
vk

)
= Ek

(
SAA SAB
SBA SBB

)(
uk
vk

)
, (2.16)

where H are called the transfer integral matrix having units of energy and and
S the overlap integral matrix which is dimensionless. The matrix elements are
defined as

Hαβ =
1

N

∑

i

eik·Ri〈jα|H|iβ〉, (2.17)

Sαβ =
1

N

∑

i

eik·Ri〈jα|iβ〉. (2.18)

Now looking at each element in Eq. (2.16) we can infer that the diagonal ele-
ments of both the transfer integral matrix and the overlap matrix are equivalent
i.e. HAA = HBB and SAA = SBB , since the two carbon atoms in the unit cell
are identical. Additionally the off-diagonal elements correspond to physical ob-
servables and should therefore be the hermitian conjugate of each other within
each matrix i.e. HAB = H∗BA and SAB = S∗BA.

Now using a nearest neighbour approximation which states that the atomic
orbital of an electron in any unit cell only overlaps with the atomic orbital of
its nearest neighbors. In graphene (see Fig. 1.4(a)) each atom at site A has
three nearest neigbors all placed at site B in distinct unit cells so the diagonal
elements of the transfer integral matrix are just the energies of the pz orbitals
centered at each atom. Since we are working with the full crystal hamiltonian
this energy is not the exact energy as if the atom is isolated but close to. At
last since we are free to choose our own reference point of energy so we set
these elements to zero. Now winding the story back to the off-diagonal elements
of the transfer integral matrix what we get when using the nearest neighbour
approximation is

HAB =
1

N

∑

i

eik·Ri〈jA|H|iB〉 (2.19)

=
1

N

∑

i

(
1 + e−ik·a1 + e−ik·a2

)
(−t) (2.20)

= −tf(k). (2.21)
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2.2 Tight-binding model of graphene

Again because each atom at site A is connected to three atoms at site B and
vice versa we get three terms in Eq. (2.20), the first term is due the atom in
the same unit cells and the two latter terms are due to the atoms in the neigh-
bouring unit cells connected by lattice vectors a1 and a2. We also define the
hopping integral t ≡ −〈jA|H|iB〉 = −〈jB|H|iA〉 which is the energy required
to hop from one site to another neighbouring site and is assumed to be real.

There will be a similar off-diagonal element for the overlap integral matrix but
according to experiments it is approximately an order of magnitude lower than
t which is ∼ 2.8 eV so in this thesis we neglect these elements and consequently
the overlap integral matrix is just the 2× 2 identity matrix I2.

Now Eq. (2.16) can be written as

(
0 −tf(k)

−tf∗(k) 0

)(
uk
vk

)
= Ek

(
uk
vk

)
, (2.22)

where

f(k) = 1 + e−ik·a1 + e−ik·a2 . (2.23)

Finding the eigenvalues corresponds to solving the secular equation,
det (H− EI2) = 0, yielding two eigenenergies

Ek± = ±t|f(k)| (2.24)

= ±t

√√√√1 + 4 cos

(√
3akx
2

)
cos

(
aky
2

)
+ cos2

(
aky
2

)
, (2.25)

where the positive solution is referred to as the conduction band and the negative
solution as the valence band. Graphical illustrations of the Eq. (2.25) can both
be seen in Fig. 2.1 as contourplot and in Fig. 2.2 in 3D version.
The two eigenvalues have corresponding eigenvectors

(
uk
vk

)

±
=

1√
2

(
∓ f(k)
|f(k)|
1

)
(2.26)

=
1√
2

(
∓eiφk

1

)
, (2.27)

where φk = Arg(f(k)). (2.28)

For later usage we want to multiply the eigenvector referring to positive energy
by a complex number e−iφk of length |e−iφk |= 1. This operation should not affect
the physical results because according to the fundamental rules of quantum
mechanics a state is represented by a vector and another vector having same
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Figure 2.1: The dispersion relation as contourplot. The first Brillouin zone, a re-
ciprocal unit cell spanned by the reciprocal lattice vectors and the two nonequivalent
points K and K′ are superimposed.

direction represents the same state. We get
(
uk
vk

)

+

=
1√
2

(
−eiφk

1

)
→
(
uk
vk

)

+

=
1√
2

(
−eiφk

1

)
· e−iφk (2.29)

=
1√
2

(
−1

e−iφk

)
. (2.30)

In Fig. 2.2 the energy dispersion relation Eq. (2.25) is plotted in reciprocal
space and in Fig. 2.1 we have a contourplot of the same dispersion relation
where the first Brillouin zone is shown along with a parallelogram reciprocal
unit cell. What is to be noticed is that conduction band and valence band
touch at the six corners of the hexagonal Brillouin zone. These six points form
two sets of three equivalent points since one can get from one corner to another
within each set by a reciprocal lattice vector. We choose one point from each
set and denote them K and K ′ having coordinates

K =

(
2π√
3a
,

2π

3a

)
, (2.31a)

K′ =

(
2π√
3a
,−2π

3a

)
. (2.31b)

At these specific points the energy dispersion can be linearized which is what
can be seen in Fig. 2.2 and detailed calculations in Section 2.3.

The Fermi energy is defined as the energy of the electron sitting in the highest
occupied k-state when the solid is in its ground state at T = 0. Since electrons
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2.2 Tight-binding model of graphene

are fermions and obey Pauli’s exclusion principle, stating that no fermions can
share all the same quantum numbers, we populate k-space from the lowest possi-
ble state and upwards, just as filling a bucket with water. There are N k-states,
as many as unit cells in each band, that can accommodate 2N electrons taking
spin degeneracy into account. Having two atoms in each unit cell of graphene,
therefore results in a filled valence band and an empty conduction band. Due
to this, graphene is referred to as being a semimetal or zero–gap semiconduc-
tor with value of Fermi energy defined to be EF = 0. Now having solved the
eigenvalue problem for the two band tight-binding model and gotten the ap-
propriated form of the eigenvectors we can plug the eigenvector corresponding
to the negative eigenvalue from Eq. (2.27) and the eigenvector corresponding
to the positive eigenvalue from Eq. (2.30) into the original wave function Eq.
(2.14). Written in matrix form it yields

(
|ψk+〉
|ψk−〉

)
=

1√
N

∑

i

eik·Ri
1√
2

(
−1 e−iφk

eiφk 1

)(
|iA〉
|iB〉

)
(2.32)

=
1√
N

∑

i

eik·RiUk

(
|iA〉
|iB〉

)
, (2.33)

where Uk ≡
1√
2

(
−1 e−iφk

eiφk 1

)
. (2.34)

Adopting second quantization notation where a state vector is substituted by
a operator c† that can create a particle with certain quantum numbers when
working on a empty state. In that language we get

(
c†k+
c†k−

)
=

1√
N

∑

i

eik·RiUk

(
c†iA
c†iB

)
. (2.35)

The task is to diagonalize the tight-binding hamiltonian in k-space so therefore
we want to invert Eq. (2.39) i.e. find how creating a particle at site A/B
in unit cell i corresponds to a linear combination of creating a particle with
wave vector k having positive energy and creating a particle with wave vector
k having negative energy. What we do is multiplying by 1/

√
N,
∑

k e−ik·Rj and
Uk
−1 on both sides giving

1√
N

∑

k

e−ik·RjUk
−1

(
c†k+
c†k−

)
=

1

N

∑

i

∑

k

eik·(Ri−Rj )

(
c†iA
c†iB

)
. (2.36)

Now we use on the right-hand side a standard identity from Fourier analysis
which states that

∑

k

eik·(Ri−Rj) = Nδi,j , (2.37)

to obtain
(
c†iA
c†iB

)
=

1√
N

∑

k

e−ik·RiUk
−1

(
c†k+
c†k−

)
. (2.38)
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In addition we introduce two new indices, sublattice index α = A/B and band
index β = +/− thereby Eq. (2.38) can be written in a very compact form

c†iασ =
1√
N

∑

kβ

e−ik·RiU−1kαβc
†
kβσ, (2.39)

where the spin index σ = {↑, ↓} has also been implemented on the operators.
The number U−1kαβ is now an element of the matrix Uk

−1. For sake of clarity
let’s write out what is to be understood

Uk
−1 = Uk (2.40)

=
1√
2

(
UkA+ UkB+

UkA− UkB−

)
(2.41)

=
1√
2

(
−1 e−iφk

eiφk 1

)
, (2.42)

where the equal sign in Eq. (2.40) is due to that Uk is unitary. In this basis the
tight-binding hamiltonian is diagonal and can be written as

HTB =
∑

kβσ

εkβc
†
kβσckβσ (2.43)

where εkβ ≡ Ekβ are the energy dispersion relations given in Eq. (2.25).

2.3 Linearization of dispersion relation
A much simpler expression for the dispersion relation in Eq. (2.25) can be
obtained by expansion around the Fermi energy in k-space i.e. around K and
K′. We use the coordinates given in Eq. (2.31) but imply the notation K(K′) =(

2π√
3a
, s2π3a

)
where s = 1(−1) for the two nonequivalent corner points of the first

Brillouin zone shown in Fig. 2.1. What we do is to write k = K(K′)+δk where
δk = (δkx, δky). In the vicinity of K(K′) the energy dispersion relation can be
written as εk± = εδk± = ±|f(K(K′) + δk))| since εK(K′)± = 0. What we get is
the following

f(K(K′) + δk) = 1 + e−i(K(K′)+δk)·a1 + e−i(K(K′)+δk)·a2 (2.44)

' 1 +

(
−1

2
+ s i

√
3

2

)(
1− iδk · a1

)

+

(
−1

2
− s i

√
3

2

)(
1− iδk · a2

)
(2.45)

= i
1

2
δk · (a1 + a2) + s

√
3

2
δk · (a1 − a2) (2.46)

=

√
3

2
a(iδkx + sδky). (2.47)
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2.3 Linearization of dispersion relation

From Eq. (2.21) we know the expressions for the diagonal elements of the
Hamiltonian matrix and using Eq. (2.47) we can write the Hamiltonian within
the linear approximation as

H =

(
0 −t

√
3
2 a(iδkx + sδky)

−t
√
3
2 a(−iδkx + sδky) 0

)
. (2.48)

We are interested in the eigenenergies of this effective Hamiltonian which we
calculate as

εδk± = ±|HAB | (2.49)

= ±
(
−t
√

3a

2

)√
δk2x + δk2y (2.50)

= ±
(
−t
√

3a

2

)
|δk|. (2.51)

Having obtained an effective electron dispersion close to the Fermi energy we
can also calculate the velocity of the electrons in the valence- and conduction
bands within that approximation, given with the expression

v =
1

~
∂ε

∂(δk)
(2.52)

= −
√

3ta

2~
= vF , (2.53)

where the last equal sign is justified by assumption that we are close to the
Fermi energy. The remarkable fact about the expression in Eq. (2.53) is it’s a
constant, independent of wave vector δk, with value vF ' c/300. The final form
of the dispersion relation within linear approximation is thus

εδk± = ±~vF |δk| (2.54)
= ±~vF δk. (2.55)

The Hamiltonian in Eq. (2.48) is not an ordinary one but mimics a relativistic
Hamiltonian and therefore the electrons within the linear approximation are
better described with the Dirac equation rather than the usual Schrödinger
equation. The reason is the crystal structure of graphene which we discussed
in Section 1.4 where we found out that the hexagonal lattice consisted of two
sublattices A and B. The linear dispersion relation in Eq. (2.55) implies that
the electrons with wave vectors δk behave as if they were massless relativistic
particles moving with constant velocity vF . Due to this fact, these electrons are
referred as Dirac electrons and the points K and K′, where the conduction and
valence bands cross, as Dirac points.
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2. The Hubbard model

Figure 2.2: The dispersion relation and a zoom in to the linear part where the
electrons move with constant velocity vF .[18]

2.4 Hubbard interaction and triplet excitations

The latter term in the Hubbard Hamiltonian from Eq. (2.1) is the interaction
term

HU = U
∑

iα

niα↑niα↓. (2.56)

The sum is over all unit cells and both atoms within each unit cell. Physically
what the term stands for is, it counts if there are two electrons occupying the
same site with opposite spin. If that is the case, they get an energy penalty of U .
Increasing energy in quantum mechanics indicates repulsion so the interaction
term is a point like version of the classical Coulomb interaction between two
charges having the same sign. It is point like in the sense it first acts when
the two electrons occupy the same site. As we mentioned in the Introduction,
Section 1.1 the goal of this project was to analyze if the Coulomb interaction
generated formation of bound states in graphene. Triplet excitations from the
ground state are a candidate to form bound states and to analyze that we have
to construct these by rearranging the operators present in Eq. (2.56). Since
electrons are fermions, the creation and annihilation operators of course obey
the anti-commutation relations

{c†i , c†j} = 0, {ci, cj} = 0, {ci, c†j} = δi,j . (2.57)
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2.4 Hubbard interaction and triplet excitations

Writing out the number operators in Eq. (2.56) and using the anti-commutator
relations from Eq. (2.57) gives

HU = U
∑

iα

c†iα↑ciα↑c
†
iα↓ciα↓ (2.58)

= U
∑

iα

c†iα↑c
†
iα↓ciα↓ciα↑ (2.59)

= U
∑

iα

c†iα↑(1− ciα↓c
†
iα↓)ciα↑ (2.60)

= U
∑

iα

(
c†iα↑ciα↑ − c

†
iα↑ciα↓c

†
iα↓ciα↑

)
(2.61)

= UN↑ − U
∑

iα

c†iα↑ciα↓c
†
iα↓ciα↑. (2.62)

In the end we have an interaction operator consisting of two terms. First a con-
stant term which is just the strength of interaction times the total number of
electrons with spin up and then a negative term which contains a product of four
second quantization operators. The former term we can safely neglect in our
research because the correlation it describes will both be present in the excited
state we will analyze and the ground state. At last we are interested in energy
difference between those two states and therefore, in this context, it will vanish.
What the latter term in Eq. (2.62) physically describes is (reading from the
right) it annihilates an electron with spin up and then creates an electron with
spin down which is the same as filling one hole with spin up. Altogether these
two operators annihilate an electron–hole pair with total spin of 1. Continuing
reading through the term, the third operator annihilates an electron with spin
down, same as creating a hole with the opposite direction of spin en then at last
it creates an electron with spin up. Again looking at what the two operators do
combined, they create an electron–hole pair with total spin of 1. The reason for
the opposite spin direction of electron and holes is that holes are inadequacies
of electrons. For example when annihilating a spin up electron from the Fermi
Sea containing equal numbers of spin up and spin down electrons results in one
more spin down electrons than spin up electrons in total. This extra spin is
contributed to the hole which therefore has an opposite spin to its electron.

What is to be noticed is that the electron and the hole in the same pair both
are spin up, i.e. | ↑e↑h〉, making the excitation in total have spin 1 because
each participant has spin 1/2. The triplet excitation we therefore have gener-
ated has m = 1, which describes the projection of the angular momentum in
the z-direction. We could have rearranged the operators in the original Hamil-
tonian from Eq. (2.56) in a different way, generating 1√

2
(| ↑e↓h〉+ | ↓e↑h〉),

corresponding to m = 0 or | ↓e↓h〉, having m = −1. These three triplet states
all share the same energy in the absence of any external field so we can pick
one of them, for example them = 1 triplet to analyze more carefully in graphene.
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2. The Hubbard model

What is also interesting to note in Eq. (2.58) to Eq. (2.62), is having before a
repulsion due to an energy cost having to electrons occupying the same site we
now have an attraction since there is a negative sign in front of the U denoting
the strength of the Coulomb interaction. This can also be explained by another
argument, namely now we are looking at interaction between electrons and holes
where the electrons have negative charge but the holes have positive charge and
therefore they attract each other, resulting in decreasing the total energy.

To write the interaction term in k-space we insert Eq. (2.39) to Eq. (2.62),
allowing us to write

HU = −U
∑

iα

[
1√
N

∑

kβ1

e−ik·Ri Ukαβ1
c†kβ1↑

1√
N

∑

k′β2

eik
′·Ri (Uk′αβ2)

∗
ck′β2↓

1√
N

∑

p′β3

e−ip
′·Ri Up′αβ3

c†p′β3↓

1√
N

∑

pβ4

eip·Ri (Upαβ4
)
∗
cpβ4↑

]
. (2.63)

Where each Fourier transform is written with its own momentum and β index.
Grouping appropriated terms together and performing the sum over α results
in

HU = − U

N2

∑

i

∑

kk′

pp′

∑

β1β2
β3β4

ei(k
′−k+p−p′)·Ri

[
UkAβ1

(Uk′Aβ2
)
∗
Up′Aβ3

(UpAβ4
)
∗

+ UkBβ1
(Uk′Bβ2

)
∗
Up′Bβ3

(UpBβ4
)
∗

]

c†kβ1↑ck′β2↓c
†
p′β3↓cpβ4↑. (2.64)

The sum over unit cells i, can now be performed since it only appears in the
exponential function. It produces a momentum conservation constraint since∑
i eiq̂·Ri = Nδq̂,K where K is a reciprocal lattice vector and we have called

q̂ = k′ − k + p− p′. The δ-function therefore gives

k′ − k + p− p′ = K (2.65)

This constraint can be satisfied by changing from k′ and p′ to a new variable q
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2.4 Hubbard interaction and triplet excitations

defined as

q ≡ k− k′, (2.66)
⇒ p− p′ = q + K. (2.67)

Throughout this thesis we take K = 0, which is also a reciprocal lattice vector
corresponding to m1 = m2 = 0 from Eq. (1.19). This is the same as neglecting
Umklapp scattering which is a scattering process where the sum of the incoming
momenta lies outside the first Brillouin zone. Consequently the wave vectors
for k′ and p′ are written as

k′ = k− q, (2.68)
p′ = p− q. (2.69)

Inerting these two equations into Eq. (2.64) after having performed the sum
over i results in

HU = −U
N

∑

kpq

∑

β1β2
β3β4

[
UkAβ1

(Uk−qAβ2
)
∗
Up−qAβ3

(UpAβ4
)
∗

+ UkBβ1
(Uk−qBβ2

)
∗
Up−qBβ3

(UpBβ4
)
∗

]

× c†kβ1↑ck−qβ2↓c
†
p−qβ3↓cpβ4↑. (2.70)

This is how the interaction part of the Hamiltonian looks after having trans-
formed it from real space in Eq. (2.56) to k-space with help of Eq. (2.39). In
Fig. 2.3 there are schematic drawings of what the Hamiltonian in Eq. (2.70)
could render when an electron–hole pair is annihilated close to one Dirac point
and another is created. On the figure the dispersion relation is drawn according
to Eq. (2.55) even though later in this thesis we will use the whole dispersion
to calculate the dynamics of these electron–hole pairs. The filled circles denote
electrons, the open circles denote holes and the arrows drawn on top of them
indicate the spin direction. The chemical potential is µ and we should imagine
everything below it filled with electrons except the two open circles. At last the
arrows between the electrons and holes stands for annihilation (arrowtail) and
creation (arrowhead) of a particle.
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2. The Hubbard model

µ

E

k

(a) Electron–hole pair anni-
hilated and another created
both consisting of holes with
positive energy.

µ

E

k

(b) Electron–hole pair anni-
hilated and another created
where the holes have opposite
energy sign.

µ

E

k

(c) Electron–hole pair anni-
hilated and another created
where the holes have opposite
energy sign.

µ

E

k

(d) Electron–hole pair anni-
hilated and another created
both consisting of holes with
negative energy.

Figure 2.3: Schematic drawings of what the interacting Hamiltonian in Eq. (2.70)
could render. In all cases an electron–hole pair with spin 1 is annihilated and another
electron–hole pair with the same total spin is created. The processes are drawn within
the linear approximation of the dispersion relation so the crossing point between the
conduction and valence bands could either be K or K′.

In Fig. 2.4 we show two possible outcomes of the interacting Hamiltonian could
produce where one electron–hole pair is annihilated close to one Dirac point and
another created close to the other Dirac point.
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2.4 Hubbard interaction and triplet excitations

µ

K K ′

µ

Γ

E

k

E

k

(a) An electron–hole pair annihilated close to K and created close to K′.

µ

K K ′

µ

Γ

E

k

E

k

(b) An electron–hole pair annihilated close to K′ and created close to K.

Figure 2.4: More schematic drawings of what the interacting Hamiltonian in Eq.
(2.70) could render. In these two cases an electron–hole pair is annihilated close to
K(K′) point and created close to the K′(K). Both processes have the same properties
as the one in Fig. 2.3(a) where all participants have positive energy. This could of
course also be drawn for the other figures in Fig. 2.3.

Having the Hamiltonian written in k-space allows us to let it act on appropriated
states generating interesting results which is what we will take look at in the
upcoming chapter.
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Chapter 3

Triplet excitations in
graphene

As the title of this chapter states, we are going to investigate the properties of
triplet excitations in graphene. First we derive the spectrum of these excitations
and in the second section we show how our Hamiltonian works in the subspace
containing the triplet excitations.

3.1 Electron–hole excitation spectrum
Having seen in Eq. (2.70) of Section 2.4 that the interaction operator first
annihilates an electron–hole pair and then creates another, it would be interest-
ing to know the spectrum of these electron–hole excitations. We therefore want
to determine for which wave vectors q and energies ~ω they can be generated.
The tool needed to decide that is the density of states

ρ(q, ω) =
∑

k

δ (~ω − εk + εk−q) . (3.1)

To be able to get nice, analytical expression for the electron–hole excitation
spectrum we use the linear approximation for the electron dispersion from Eq.
(2.55). What Eq. (3.1) then describes is the density of these excitations in
k-space for a given wave vector q. The sum is over all wave vectors k within the
linear approximation and each time an electron–hole pair with energy εk−εk−q,
where the electron has energy εk and the hole has energy εk−q, equals ω i.e.
ω = εk − εk−q the δ-function gives a non-zero contribution to the density of
states.

In Section 2.2 we found out that pristine graphene has a filled valence band
and an empty conduction band and therefore Fermi energy, EF = 0. That
was due to the hexagonal lattice structure of graphene containing two carbon
atoms in each unit cell. What can be done with experimental techniques, that
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3. Triplet excitations in graphene

we won’t describe in this report, is to manipulate the Fermi energy by adding
or subtracting electrons and therefore tuning the Fermi energy away from zero.
This procedure is called doping, where the material can either be doped with
electrons and thereby increasing the Fermi energy or be doped by holes resulting
in the opposite change in Fermi energy. Let’s consider electron doped graphene
which implies that holes can be created both with negative and positive energy
i.e. both within the valence and conduction band. The electrons can of course
only be excited above the Fermi surface and therefore can only have positive
energy. First we look at electron–hole pairs where the hole has negative energy,
that kind of excitation is called an interband excitation due to the electron and
hole exists in different bands.

i) Interband excitations
In this case we have that εk > µ, where µ is the chemical potential de-
scribing the value of doping, and εk−q < 0. From the δ-function in Eq.
(3.1) we get

~ω = εk − εk−q. (3.2)

Inserting the linearized dispersion relation gives

ω = vF (|k|+|k− q|) (3.3)

= vF

(
k +

√
k2 + q2 − 2kq cos θ

)
. (3.4)

Collecting the terms on one side we end up with a quadratic equation in
ω

ω2 − 2vF kω − (vF q)
2 + 2v2F kq cos θ = 0, (3.5)

with solutions

ω = vF

(
k ±

√
k2 + q2 − 2kq cos θ

)
. (3.6)

Obviously ω takes a maximum value when the the positive solution is used
and cos θ = −1, giving

ω(k, cos θ = −1) ≡ ωmax = vF

(
k +

√
k2 + q2 + 2kq

)
(3.7)

= vF (k + |k + q|) (3.8)
= vF (2k + q). (3.9)

The minimum value of ω is gotten from the negative solution and when
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3.1 Electron–hole excitation spectrum

cos θ = 1, which results in

ω(k, cos θ = 1) ≡ ωmin = vF

(
k +

√
k2 + q2 − 2kq

)
(3.10)

= vF (k − |k − q|) (3.11)

=

{
vF (k − (k − q)), k > q

vF (k − (q − k)), k < q
(3.12)

=

{
vF q, k > q

vF (−q + 2k), k < q
. (3.13)

What defines the region in (q, ω)-space is the electron is constrained to

Interband excitations

1

2

q @kΜD

Ω
@v

F
k Μ

D

(a) Region of (q, ω)-space consist-
ing of interband excitations.

Intraband excitations

2

q @kΜD

Ω
@v

F
k Μ

D

(b) Region of (q, ω)-space consist-
ing of interwband excitations.

µ

E

kkµ kc

(c) Interband excitation.

µ

E

kkµ kc

(d) Intraband excitation.

Figure 3.1: Plots showing the excitations spectrum generated from two different
processes i.e. an electron–hole excitation consists of an electron with positive energy
and a hole with either negative (a),c)) or positive (b),d)) energy.

have magnitude of the wave vector k so kµ < k < kc where kµ is the mag-
nitude of wave vector corresponding the chemical potential and kc is the
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3. Triplet excitations in graphene

magnitude of the vector corresponding to some cut-off where linearization
of the dispersion relation is no longer valid. A plot of this region can be
seen in Fig. 3.1(a) and of this kind of excitation in Fig. 3.1(c).

ii) Intraband excitations
By redefining the wave vectors of the electron and the hole so k′ = k−q is
the wave vector of the hole implying that k = k′+q is the wave vector of
the electron we can do a similar calculation as in case i). The δ-function
gives

~ω = εk′+q − εk′ . (3.14)

Again inserting the linearized dispersion relation as in Eq. (3.15) we ob-
tain, now with a minus sign between the two terms,

ω = vF (|k′ + q|−|k′|) (3.15)

= vF

(√
k′2 + q2 − 2k′q cos θ − k′

)
. (3.16)

Collecting the terms on one side we end up with a quadratic equation in
ω

ω2 + 2vF k
′ω − (vF q)

2 − 2v2F k
′q cos θ = 0 (3.17)

with solutions

ω = vF

(
−k′ ±

√
k′2 + q2 + 2k′q cos θ

)
(3.18)

In this case ω takes a maximum value when the the positive solution is
used and cos θ = 1 giving

ω(k, cos θ = 1) ≡ ωmax = vF

(
−k +

√
k′2 + q2 + 2′kq

)
(3.19)

= vF (−k + |k + q|) (3.20)
= vF q. (3.21)

The minimum value of ω is gotten from the negative solution and when
cos θ = −1

ω(k, cos θ = −1) ≡ ωmin = vF

(
−k′ −

√
k′2 + q2 − 2k′q

)
(3.22)

= vF (−k′ − |k′ − q|) (3.23)

=

{
vF (−k′ − (k′ − q)), k′ > q

vF (−k′ − (q − k′)), k′ < q
(3.24)

=

{
vF (q − 2k′), k′ > q

−vF q, k′ < q
. (3.25)
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3.1 Electron–hole excitation spectrum

The region confined in (q, ω)-space due this kind of excitations is constrained
by the magnitude of the hole wave vectors which has to fulfill 0 < k′ < kµ. A
plot of this region can be seen in Fig. 3.1(b) and in Fig. 3.1(d) there is an
example of an intraband excitation. In the case of no doping it is interesting
to see how the excitation spectrum looks and also how it varies when doping
is increased from zero to some arbitrary value. That is what can be seen in
Fig. 3.2 where in the case of zero doping no window is present in the excitation
spectrum and it mimics the linearized dispersion relation. Increasing the doping
opens a window in the spectrum and in the case of high doping the excitation
spectrum resembles the one for two-dimensional electron gas. That is easy to
understand since for high energies the dispersion relation is quadratic which is
evident from Fig. 2.1, having contours that are circular inside the first Brillouin
Zone.

q @kΜD

Ω
@v

F
k Μ

D

(a) No doping and the
spectrum mimics the liner
dispersion relation.

1 2
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q @kΜD
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(b) Moderate value of dop-
ing and a window is opened
in the excitation spectrum.

2

q @kΜD

Ω
@v

F
k Μ

D

(c) High value of doping
and the spectrum looks
more like the one for
2DEG we saw in Fig.
(1.8(b)).

Figure 3.2: The figures show the electron–hole excitation spectrum for three different
values of doping µ.

The very important thing about the (q, ω) spectrum has to do with the lifetime
of the excitations, or the so called damping mechanism. It turns out that the
density of states Eq. (3.1) is proportional to the decay time of these excitations
i.e. ρ ∝ τ . That implies, when the density of states is zero, for example in the
window of doped graphene, the lifetime of the modes present there is infinite,
indicating a bound state solution in the material. Whereas the modes within
the allowed regions acquire finite lifetime and decay.

Having found the electron–hole excitation spectrum without interaction we are
in stand to see how this picture is modified by taking the interactions into
account.
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3. Triplet excitations in graphene

3.2 Subspace of triplet excitations
In this thesis we will consider a virtual graphene crystal containing 3200 protons
and 3200 electrons where each particle interacts with all the others, either by
repulsion or attraction, due do Coulomb’s law. The interaction strength depends
on the spatial coordinates of every particle at a given time and in a quantum
mechanical system described by a wave function we therefore have to solve the
Schrödinger equation in 3× 3200 dimensions to understand the behavior of the
electrons. That is very hard and in larger systems it becomes impossible. What
we can do is to recognize that the many-body system has a ground state along
with infinite series of excited states with increasing energy. Often we are only
interested in the lowest lying excited states close to the ground state because
at low temperatures these are most releavant. We would like to examine the
energies for triplet excitations from the ground state consisting of the filled
Fermi Sea, so we enhance the total electron spin by unity. We therefore look at
a subspace of the total many-body Hilbert space which consists only of these
excitations. The states living in that subspace can all be written as

|ψq〉 =
∑

k′ββ′

ak′ββ′c
†
k′β↑ck−qβ′↓|FS〉, (3.26)

which is the filled Fermi Sea with linear combination of triplet electron–hole
pairs. The coefficients akββ′ are in general complex numbers. In Section 3.1
we argumented for that an electron can only be excited above the chemical
potential which in electron doped graphene has positive energy so β, the energy
index of the electrons, must be + where as the energy index for the holes β′ can
either be + or −. We would like to solve the Schrödinger equation for a given
wave vector q

H|ψq〉 = Eq|ψq〉, (3.27)

where the full Hamiltonian is

H = HTB +HU (3.28)

=
∑

kβσ

εkβc
†
kβσckβσ −

U

N

∑

kp

∑

β2β3

[
UkA+ (Uk−qAβ2

)
∗
Up−qAβ3

(UpA+)
∗

+ UkB+ (Uk−qBβ2
)
∗
Up−qBβ3

(UpB+)
∗

]
c†k+↑ck−qβ2↓c

†
p−qβ3↓cp+↑. (3.29)

Now letting this Hamiltonian work on the state given in Eq. (3.26) results in

H|ψq〉 =
∑

kβ′

ak+β′ (E0 + εk − εk−q) c†k+↑ck−qβ′↓|FS〉

+
∑

kk′

∑

β2β′

ak′+β′U
k
k′(q)β2β′c

†
k+↑ck−qβ2↓|FS〉 (3.30)

= Eq

∑

k′β′

ak′+β′c
†
k′+↑ck′−qβ′↓|FS〉. (3.31)
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3.2 Subspace of triplet excitations

To explain how Eq. (3.30) came about we look carefully at each term. The
former one is what the diagonal tight-binding term generates, it gives the energy
of the filled Fermi Sea, E0, plus the energy of the electron minus the energy of
the hole i.e. the ground state energy plus the excitation energy. The latter term
is what the interaction term generates, for getting non-zero outcome p = k′

and β3 = β′ so what the interaction does, as described before, it annihilates an
electron pair with momentum k′ and generate another with momentum k. The
probability amplitude for that given process is Uk

k′(q)β2β′ , which stores all the
matrix elements involved

−U
N

[
UkA+ (Uk−qAβ2)

∗
Uk′−qAβ′ (Uk′A+)

∗ (3.32)

+ UkB+ (Uk−qBβ2
)
∗
Uk′−qBβ′ (Uk′B+)

∗
]
≡ Uk

k′(q)β2β′ (3.33)

Eq. (3.31) can be written in a matrix format, making the physics it describes
more visible



εk1
− εk1−q Uk1

k2
(q)β2β′ · · · Uk1

kN
(q)β2β′

Uk2

k1
(q)β2β′

. . .
...

...
. . .

UkN

k1
(q)β2β′ · · · εkN

− εkN−q







ak1

.

...

.
akN




= (Eq − E0)




ak1

.

...

.
akN



.

(3.34)

The Hamiltonian matrix which isN×N dimensional consists of the tight-binding
diagonal elements and the non-diagonal elements coming from the interaction
Hamiltonian. By solving Eq. (3.34) we can find the eigenvectors and the eigen-
values ~ωq = Eq − E0 which are the triplet excitations energies. In the next
chapter we will solve this problem with the help of numerical computation.
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Chapter 4

Numerical investigation

To solve the Hamiltonian for our system we use numerical methods described
in this chapter. We show how the Coulomb interaction generate formation of
bound states in graphene and analyze one of those for a given value of interaction
strength.

4.1 Change of units

Before diving into the numerical investigation on the triplet excitations in graphene,
we would like to explain and derive how the variables we will see on different
figures and plots in Section 4.2 were made dimensionless. That was done by
measuring all energies in t’s, the hopping energy of the Hubbard Hamiltonian
in Eq. (2.1), which is approximately −2.8 eV [18]. Dimensionless variables we
will denote with a tilde above the symbols. The Hubbard interaction parameter
U and the chemical potential µ in this language therefore become

Ũ =
U

|t| (4.1)

and µ̃ =
µ

|t| . (4.2)

We play the same game with the linear dispersion relation Eq. (2.55)

ε̃k± =
εk±
|t| = ±~vF |k|

|t| . (4.3)
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Multiplying with 1 = a/a and inserting the expression for the Fermi velocity Eq.
(2.53) we get

ε̃k± = ±~vFak
|t|a (4.4)

= ±
~
(
−
√
3ta
2~

)
ak

|t|a (4.5)

= ±
√

3

2
ak. (4.6)

where we have defined |k|≡ k. At last we insert for the lattice constant a =√
3ac−c to get

ε̃k± = ±3

2
ac−ck (4.7)

= ±ṽF k̃. (4.8)

Where we have defined two new dimensionless variables

ṽF ≡
3

2
, (4.9)

k̃ ≡ ac−ck. (4.10)

Another variable we will see a number of times in Section 4.2 is ω̃, a dimension-
less version of the excitation energy, defined as

ω̃ ≡ ~ω
|t| . (4.11)

Eq. (4.11) is justified by writing the energy εk± as εk± = ±~ω and divide by
|t|.

4.2 Numerical calculation
In Section 3.2 we derived a matrix equation determining the eigenenergies cor-
responding to triplet excitations from the ground state of graphene. That we
did by letting the Hamiltonian we had prepared in Chapter 2 work on an state
which is the filled Fermi Sea with linear combination of triplet electron–hole ex-
citations, Eq. (3.26). All in all ending up with Eq. (3.34) waiting to be solved.
To avoid any unnecessary uncertainties, we want solve this problem exact i.e
using the full dispersion relation from Eq. (2.25) rather than making approxi-
mations like using the linearized version of it. In reality the dispersion relation
for graphene is the one given in Eq. (2.25) so why not to use it if possible? The
dimension of the matrix equation to be solved is N ×N where N is the number
of allowed k-states from Eq. (2.13). Obviously this will be to much of a task to
do with hand power so we let the computers do the work through the program
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4.2 Numerical calculation

Mathematica. The code used can be seen in Appendix A.

We discretized the reciprocal unit cell, spanned by the two reciprocal lattice
vectors b1 and b2 seen in Fig. 2.1, in 1600 allowed k-states representing a
piece of graphene consisting of equal amount unit cells. In Fig. 4.1 we see the
discretization of the unit cell where the red dots representes allowed k-states
obtained with boundary conditions from Eq. (2.10). We saw in Section 1.4 that
each reciprocal unit cell contains the whole range of possible wave vectors so no
information should be lost with our choice.
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Figure 4.1: Reciprocal space and the discretized unit cell. The red dots represent
allowed k-states.

In Section 3.1 we found out when doping graphene with electrons a window in
the (q, ω)-spectrum appeared. A place where the triplet excitations will not be
damped. In our numerical calculations we therefore set µ̃ = 0.2 so this window
will be present. That corresponds to adding ' 213 electrons to the material
according to the formula

µ̃

∆Ẽc
2N =

0.2

3
2 · 1600 ' 213, (4.12)

where ∆Ẽ is the band width of the conduction band and N the number of
unit cells. This means then that ' 213 sites will be double occupied with two
electrons having opposite spin. Raising the chemical potential decreases the area
electrons in the electron–hole pairs can live on, since they have to be above the
Fermi Sea having wave vectors k > kµ. In Fig. 4.2 we see again the discretized
unit cell in reciprocal space but with µ̃ = 0.2 explaining the inadequacy of
allowed electron k-states around the Dirac points. The next important step
in the numerical calculation is to classify the two different excitation processes,
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4. Numerical investigation

interband and intraband excitations. As we saw in Eq. (3.26) a triplet excitation
is generated by annihilating an electron below the chemical potential with wave
vector k − q and create another one above the chemical potential with wave
vector k. In the program we therefore set the wave vector q to a given value and
for all the allowed k vectors we calculate k−q. If |k−q|< kµ, then we have an
intraband excitation whereas for all |k−q|> 0 we have an interband excitation,
since the valence band is just the mirror image of the conduction band. In Fig.
3.1(c) and Fig. 3.1(d) we showed illustrations of these processes. Obviously the
interband excitations will be much more frequent than the intraband excitations
since the energy range from 0 to µ̃ is much smaller than ∆Ẽv the band width
of the valence band.
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Figure 4.2: Reciprocal space and the discretized unit cell with nonzero chemical
potential. The red dots represent allowed k-states.

Now we let Mathematica work out all the 2.56 · 106 matrix elements of the
1600 × 1600 matrix in Eq. (3.34). At last we ask for the eigenvalues of this
matrix but before we show and discuss the outcomes of these evaluations we
would like to address the reason for the choice of µ̃ and N . These two numbers
have to be somehow linked since µ̃ determines the size of the window in the
(q̃, ω̃)-spectrum and N sets the concentration of allowed k-states. So in the case
of low N and low µ̃ the window becomes "invisible" and we won’t be able to
obtain any interesting physics inside it. Another extreme case would be to set
N to a very large number, approaching the continuous limit which would not
require large µ̃ since the k-states would be very dense, but then the size of the
matrix equation would explode and no computer would be able to solve that.
Thus it is a compromise between few factors, to do an calculation on an enough
large sample that captures the important physics and to stick within the range of
reasonably long computer times. We chose as said before N = 1600 and µ̃ = 0.2
which manages to fulfill the criteria mentioned above since a graphene flake
containing 3200 carbon atoms for sure should reminiscence a realistic graphene
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4.2 Numerical calculation

crystal and a project like this is finished within set time range.

For µ̃ = 0.2 the window is between q̃ = 0 and q̃ = µ̃/ṽF ' 0.13 so in the
search for excitations in the window we choose q̃’s within this interval. The
strength of the Coulomb interaction is controlled by the Hubbard U and is not
a well-defined parameter in graphene. In Fig. 4.3 we have plotted the eigen-
values of the matrix equation in Eq. (3.34) for eleven different values of Ũ =
{0.0, 1.0, 2.0, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4} and q̃ = {0.02, 0.04, 0.06, 0.08, 0.10},
these are showed with red disks. For comparison we have also plotted as blue
disks the eigenvalues for the noninteracting case which can be found on the
diagonal line in Eq. (3.34). For Ũ = 0 the red and the blue disks are of course
centered at the same point, obvious from Fig. 4.3(a). As the strength of the
interaction is increased the eigenvalues shift to lower energies. That is due to
the minus sign in the Hamiltonian Eq. (2.70), so it is a property of the triplet
excitations we are investigating. In Section 3.1 we derived electron–hole exci-
tation spectrum neglecting the interaction. These regions where the density of
states is nonzero is of course a theoretical considerations in limit of N → ∞,
where the k-states would be infinite dense as well. That is of course not the
case for the virtual graphene crystal we are investigating with N = 1600. So
what we get are discrete eigenvalues not filling the whole regions of interband
and intraband excitations. We can for example count the number of intraband
excitations for the q̃’s we have evaluated for, there are in total eight excitations,
one for q̃ = 0.04, two for q̃ = 0.06 and q̃ = 0.8 and three for q̃ = 0.10.

One excitation for each q̃ evaluated can be found exactly at the boundaries
between the window and the intraband, whereas for the interband excitations
there is a gap between the lowest lying eigenvalue for each q̃ and the theoretical
boundary between the window and the band. The reason for this is just that the
discretization in k-space for N = 1600 results in for a given q that εk−εk−q does
not give any values closer to the boundary. Increasing N would immediately
change this as mentioned before. We see in Figs. 4.3(a) - (c) where Ũ = 0, 1, 2
almost no difference in red and blue disks indicating that the kinetic term in the
Hamiltonian still dominates the dynamics and interaction between the electrons
does not have any impact. In Figs. 4.3(d) - (f) we begin to see effects due to
the interaction, where the lowest lying eigenvalues are becoming more and more
isolated from the continuum. One could say for this piece of graphene under
considerations, they were living in the window of the electron–hole excitation
spectrum but they are still within the theoretical continuum of damped electron-
hole pairs. In conjugated polymers wich are molecular systems of connected
p-orbitals where the electrons are considered delocalized just as we described
for graphene in Section 1.4.1, the Coulomb interaction is ∼ 10 eV or ∼ 3.6t [19]
and for graphene the strength is also believed to be in this range [20]. Figs.
4.3(g) - (i) are all approximately on this interval and there we see a rather clear
dispersion relation of long living triplet excitations. Of course the dispersion
relation is a continuous mode even though it is showed as discrete points on
the figures, letting the program solve for more closely spaced q̃-values would
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yield that. In Figs. 4.3(j) - (k) we are probably reaching an upper limit for
the interaction strength but as we can see the dispersion relation is well isolated
from the continuum. In Table 4.1 we have converted the values of the interaction
strength to electron volts by using |t|= 2.8 eV in Eq. (4.1).

Ũ 0 1 2 3 3.2 3.4 3.6 3.8 4.0 4.2 4.4
U [eV] 0 2.8 5.6 8.4 9.0 9.5 10.1 10.6 11.2 11.8 12.3

Table 4.1: Table showing the values of the Coulomb interaction strength according
to Eq. (4.1).
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Figure 4.3: Solutions to the matrix equation Eq. (3.34) for different values of Ũ ,
ranging from 0 to 4.4. The blue disks are eigenvalues of the noninteracting Hamiltonian
i.e. when Ũ = 0, whereas the red disks are eigenvalues of the full Hamiltonian.
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Now we have seen that long living triplet excitations do indeed exist in graphene,
which represents a bound state formation. The frequency of the modes ωq̃ de-
pends on Ũ but they can be quantized giving oscillatory quanta called magnons
with a characteristic frequency ωq̃. We would like to analyze those in more
details and for doing that we choose the dispersion relation for Ũ = 4.0. In Fig
4.4(a) we show again the whole excitation spectrum for the chosen value of the
interaction strength evaluated for five different directions of q̃ of same length in
the I quadrant of the coordinate system. On Fig. 4.4(b) we have zoomed into
the dispersion relation which looks like it is constant on Fig 4.4(a) but appears
to be slightly parabolic with negative curvature.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0.0

0.2

0.4

0.6

0.8

q
�

Ω�

(a) The whole excitation spectrum for
Ũ = 4.0 evaluated for five different di-
rections for q̃ of same length.
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(b) The dispersion relation for Ũ = 4.0 having
parabolic form. Note the range on the y-axis
is very small indicating a small curvature.

Figure 4.4: The excitation spectrum showing both eigenvalues for the noninteracting
Hamiltonian and the eigenvalues in the window for the interacting Hamiltonian. To
right we show the dispersion relation and a parabolic fit to it.

The fit to the dispersion relation is

ω̃q̃ = 0.26214− 0.00561577q̃ − 0.3061137q̃2, (4.13)

from where we can determine interesting properties of the excitations. First the
group velocity, given by the expression

ṽg =
dω̃

dq̃
(4.14)

= −0.00561577− 0.612273q̃. (4.15)

Multiplying with tac−c

~ , having units of velocity gives

vg = −3392 m/s− 369850 m/s q̃. (4.16)
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Now we can determine the minimum and maximum velocity of the magnons
since q̃min = 0 and q̃max ' 0.09 giving

vgmin = −3392 m/s, (4.17)
vgmax = −52706 m/s. (4.18)

The velocities are negative indicating the magnons are moving in the opposite
direction of q. The velocity of the magnons are all within ∼ 5% of the Fermi
velocity in graphene. We can also determine the effective mass with the following
expression

m̃∗ =

(
d2ω̃

dq̃2

)−1
(4.19)

= −1.63326. (4.20)

To convert this number to something we understand we multiply it with ~2

a2c−ct
,

having units of mass, and divide by the electron mass me which gives

m∗ = −5me. (4.21)

The magnons are heavy, confirmed by Eq. (4.21) but the fact they exists and
can be mobilized in spin transport experiments makes them very interesting. In
the next chapter we will see how the magnons appear in real space.
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Chapter 5

Magnons in real space

In this last chapter of research we analyze how the magnons appear in real space
and calculate their spatial probability distribution.

5.1 Transformation to real space

In Section 3.2 we narrowed our research for interesting excitations from the
ground state of graphene, to a subspace of the Hilbert space only consisting
of linear combination of triplet electron–hole pairs. The expression for these
excited states was given as

A†q|FS〉 =
∑

kββ′

akββ′c
†
kβ↑ck−qβ′↓|FS〉, (5.1)

where A†q is a triplet excitation operator with wave vector q. Now we know that
the coefficients akββ′ are elements of the eigenvectors of Hamiltonian matrix
from Eq. (3.34) where k is of course the wave vector, β the sign of the energy
of the electron and β′ the sign of the energy of the hole. What we have also
given arguments for is that β must be +, giving

A†q|FS〉 =
∑

kβ′

ak+β′c
†
k+↑ck−qβ′↓|FS〉 (5.2)

=
∑

k

ak++ c
†
k+↑ck−q+↓|FS〉+

∑

k

ak+− c
†
k+↑ck−q−↓|FS〉. (5.3)

In Eq. (5.3) we see the two type of excitations, intraband and interband. Since
we Fourier transformed the interaction term in the Hubbard Hamiltonian we
have been investigating its properties in reciprocal space. What we can do now
is to go back to real space i.e. Fourier transform back and examine how the
excitations we found in Section 4.2 appear there. The Fourier transform of the
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operators are

c†kβσ =
1√
N

∑

iα

eik·RiUkαβc
†
iασ, (5.4a)

ckβσ =
1√
N

∑

iα

e−ik·RiU∗kαβciασ, (5.4b)

gotten from Eq. (2.38). The matrix elements we write out explicitly as

Uk =

(
UkA+ UkB+

UkA− UkB−

)
=

1√
2

(
−1 e−iφk

eiφk 1

)
, (5.5a)

U∗k =

(
U∗kA+ U∗kB+

U∗kA− U∗kB−

)
=

1√
2

(
−1 eiφk

e−iφk 1

)
. (5.5b)

Now we have all ingredients to write Eq. (5.3) out in real space and what we
get is

A†q|FS〉 =
∑

k

ak++

(
1√
N

∑

i

eik·Ri
1√
2

(
−c†iA↑ + e−iφkc†iB↑

)

1√
N

∑

j

e−i(k−q)·Rj
1√
2

(
−c†jA↓ + eiφk−qc†jB↓

))
|FS〉

+
∑

k

ak+−

(
1√
N

∑

i

eik·Ri
1√
2

(
−c†iA↑ + e−iφkc†iB↑

)

1√
N

∑

j

e−i(k−q)·Rj
1√
2

(
e−iφk−qc†jA↓ + c†jB↓

))
|FS〉.

(5.6)

We can take the sums out of the parentheses and collect the exponential func-
tions to get

A†q|FS〉 =
1

2N

∑

k

∑

ij

ak++ ei(k·(Ri−Rj)+q·Rj)
(
−c†iA↑ + e−iφkc†iB↑

)

×
(
−c†jA↓ + eiφk−qc†jB↓

)
|FS〉

+
1

2N

∑

k

∑

ij

ak+− ei(k·(Ri−Rj)+q·Rj)
(
−c†iA↑ + e−iφkc†iB↑

)

×
(

e−iφk−qc†jA↓ + c†jB↓

)
|FS〉. (5.7)
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At last we expand the parentheses containing the operators

A†q|FS〉 =
1

2N

∑

k

∑

ij

ak++ ei(k·(Ri−Rj)+q·Rj)
(
c†iA↑cjA↓ − eiφk−qc†iA↑cjB↓

− e−iφk c†iB↑cjA↓ + ei(φk−q−φk) c†iB↑cjB↓

)
|FS〉

+
1

2N

∑

k

∑

ij

ak+− ei(k·(Ri−Rj)+q·Rj)
(
− e−iφk−qc†iA↑cjA↓ − c

†
iA↑cjB↓

− e−i(φk+φk+q) c†iB↑cjA↓ + e−iφk c†iB↑cjB↓

)
|FS〉.

(5.8)

The coefficients ak++ and ak+− are elements of the eigenvectors of Eq. (3.34),
when we insert the eigenvectors corresponding the eigenvalues in the window
we are calculating the properties of the magnons. What we can see from Eq.
(5.8) is that each magnon is a linear combination of four terms representing all
possible combinations of an electron in unit cell i and hole in unit cell j. They
are

i) Electron at site A and hole at site A.

ii) Electron at site A and hole at site B.

iii) Electron at site B and hole at site A.

iv) Electron at site B and hole at site B.

Eq. (5.8) is an general expression for a triplet excitation having wave vector q
in real space. In Fig. 4.4(a) we saw that for q̂ = 0 there is a solution in the
window of the electron–hole excitation spectrum so we would like to analyze
the real space spatial distribution of that magnon. Setting q = 0 in Eq. (5.8)
results in

A†0|FS〉 =
1

2N

∑

k

∑

i

ak+− eik·Ri

(
− e−iφk c†iA↑cjA↓ − c

†
iA↑cjB↓

− e−i2φk c†iB↑cjA↓ + e−iφk c†iB↑cjB↓

)
|FS〉, (5.9)

where we have defined Ri ≡ Ri −Rj , which corresponds to fix the hole in unit
cell j and then we can calculate the probability of finding the electron in unit
cell i, relative to the hole. This we are allowed to do because of the translational
invariance of the system. The probability only depends on the distance between
the electron and the hole, not their exact position. Note in Eq. (5.9) there is
only one term whereas there are two terms in Eq. (5.8), that is because for the
special case q = 0 there are no intraband excitations so the former term in Eq.
(5.3) is zero. Now we can calculate the spatial probability distribution of this
excitation and that we do by projecting onto Eq. (5.9) with the bra version of
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the kets we find on the right hand side. Fixing the hole at unit cell j = 1 and
calculating the probability amplitudes for finding the electron in unit cell i for
the cases i)− iv) from above is then

i) Probability amplitude for finding electron at site A and hole at site A:

〈FS|(c†iA↑c1A↓)†A
†
0|FS〉 = − 1

2N

∑

k

ak+− eik·Rie−iφk (5.10)

= − 1

2N
ak1+−eik1·Rie−iφk1 + · · ·+ (−)

1

2N
akN+−eikN ·Rie−iφkN .

(5.11)

ii) Probability amplitude for finding electron at site A and hole at site B:

〈FS|(c†iA↑c1B↓)†A
†
0|FS〉 = − 1

2N

∑

k

ak+− eik·Rie−i2φk (5.12)

= − 1

2N
ak1+−eik1·Rie−i2φk1 + · · ·+ (−)

1

2N
akN+−eikN ·Rie−i2φkN .

(5.13)

iii) Probability amplitude for finding electron at site B and hole at site A:

〈FS|(c†iB↑c1A↓)†A
†
0|FS〉 = − 1

2N

∑

k

ak+− eik·Ri (5.14)

= − 1

2N
ak1+−eik1·Ri + · · ·+ (−)

1

2N
akN+−eikN ·Ri . (5.15)

iv) Probability amplitude for finding electron at site B and hole at site B:

〈FS|(c†iB↑c1B↓)†A
†
0|FS〉 =

1

2N

∑

k

ak+− eik·Rie−iφk (5.16)

=
1

2N
ak1+−eik1·Rie−iφk1 + · · ·+ 1

2N
akN+−eikN ·Rie−iφkN .

(5.17)

The probability of finding these different configurations is then of course the
squared moduli of the appropriated probability amplitudes,
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P
(
Hole at site A in unit cell j and
electron at site A in unit cell i.

)
=

∣∣∣∣∣−
1

2N

∑

k

ak+− eik·Rie−iφk

∣∣∣∣∣

2

, (5.18)

P
(
Hole at site A in unit cell j and
electron at site B in unit cell i.

)
=

∣∣∣∣∣−
1

2N

∑

k

ak+− eik·Rie−i2φk

∣∣∣∣∣

2

, (5.19)

P
(
Hole at site B in unit cell j and
electron at site A in unit cell i.

)
=

∣∣∣∣∣−
1

2N

∑

k

ak+− eik·Ri

∣∣∣∣∣

2

, (5.20)

P
(
Hole at site B in unit cell j and
electron at site B in unit cell i.

)
=

∣∣∣∣∣
1

2N

∑

k

ak+− eik·Rie−iφk

∣∣∣∣∣

2

. (5.21)

In Figs. 5.1 and 5.2 we show the probability distributions for placing the hole
denoted with in unit cell j = 1 at site A and B repsectively, and finding the
electron somewhere in the lattice within 5 ac−c. Unit cell j = 1 is sketched on
the figures and the probability finding the electron at site A is denoted with
a blue disks and finding it at site B with a red disk. The area of the disks is
proportional to the probability.

Figure 5.1: The spatial probability distribution for placing the hole in unit cell j = 1
at site A and finding the electron somewhere in the lattice within 5 ac−c. The area of
the disks is proportional to the probability where blue disks are on sublattice A and
red disks are on sublattice B.

57



5. Magnons in real space

Figure 5.2: The spatial probability distribution for placing the hole in unit cell j = 1
at site B and finding the electron somewhere in the lattice within 5 ac−c. The area
of the disks is proportional to the probability. Blue disks are on sublattice A and red
disks are on sublattice B.

As we can see on the figures there is largest probability to find the electron on
the same site as the hole which corresponds to a spin-flip i.e. an electron with
spin down is annihilated and an electron with spin up is created on the same
site. Interestingly in second place it is most likely to find the electron on the
other sublattice which is at the hole’s nearest neighbors.

In Fig. 5.3 we show the probability of placing the hole at either sublattice A
or B and finding the electron at some nearest neighbour within 5ac−c where
"S" stands for "Same sublattice as hole" and "D" for "Different sublattice than
hole". For example, putting the hole at either site A or B then it is ∼ 25%
to find the electron at the same site respectively. This is the first spike in Fig.
5.3 having nearest neighbour number 0 since it was the probability of finding
the electron at the same site as the hole. The second spike, which shows the
probability of finding the electron at the hole’s nearest neighbour where the hole
is either at site A or B is ∼ 11%. This spike is denoted with D since in graphene
the nearest neighbour of each carbon atom in graphene is always a part of the
opposite sublattice.
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5.1 Transformation to real space
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Figure 5.3: The probability distribution for the triplet excitation with q = 0. "S"
stands for electron at the same sublattice as hole and "D" for electron at the different
sublattice as hole.

Obviously the probability distribution is decreasing as we move away from the
position of the hole which indicates a localized excitation in real space. In Fig.
5.4 we show more quantitative results of this behaviour where in (a) we show
the probability of finding the electron within given distance from the hole and
in (b) we have the virtual graphene crystal under considerations. The black
dots on Fig. 5.4(b) denote the unit cells, so there are 1600 of them and the
colored circles match the colored dots on Fig. 5.4(a), indicating the distance
from the hole. What we can read of these information is of course there is 100%
probability of finding the electron within 60ac−c from the hole i.e. the electron
is somewhere in the crystal. To find the electron within 30ac−c from the hole
is indicated with blue color and turns out to be ∼ 96% probability. Finding
the electron within 10ac−c is shown with green color and is ∼ 82% probability.
This strongly implies that the excitation is well localized within few interatomic
distances.
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(a) Probability as a function of distance
from the hole. For colored dots a circle is
drawn in same color in the figure beside.
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(b) The virtual graphene crystal with 1600
unit cells marked with black dots. The cir-
cles indicate determined distances from the
hole.

Figure 5.4: Figures showing how the probability of finding the electron decreases as
a function of distance from the hole.
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5. Magnons in real space

What we have considered until now is only the magnon having q = 0, but as we
can see on Fig. 4.4(b) they can exists all the up to q̃ ∼ 0.08 for Ũ = 4.0. In Eq.
(5.8) we have a general result for any triplet excitation and since we are only
interested in the bound states solutions i.e. the undamped magnons we assume
the coefficients ak+β′ are elements of the appropriated eigenvectors. Like we
did for the special case, q = 0, we can define Ri ≡ Ri −Rj which indicates we
fix the hole at position Rj and calculate the position of the electron relative to
the hole. Now what the exponent, q · Rj , in the exponential functions repre-
sents is that the center of mass, Rj , has momentum q. The whole excitation
will appear exactly the same except its center of mass will have momentum in
a certain direction. Drawing a parallel to a hydrogen atom flying across the
room, the electron will have the same spatial probability distribution around
the proton when in motion and when the atom is stationary.
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Chapter 6

Conclusion

To conclude the thesis we briefly state what we have accomplished. We started
out by asking questions about the effect of the Coulomb interaction between
electrons in graphene. Knowing how the interaction is essential in the world of
molecules, it is paradoxical describing a material which can be considered as a
giant molecule, by neglecting this interaction. We therefore wanted to include
the Coulomb interaction to our description of graphene through the Hubbard
Hamiltonian and examine the consequences.

The ground state of graphene consists of the filled Fermi Sea. Excitations from
that state can be in different forms. We analyzed specifically triplet excitations
from the ground state of doped graphene and found out that the Coulomb inter-
action drives some of the electron-hole pairs into the window of the electron-hole
excitation spectrum. For U ' 11 eV denoting the strength of the Coulomb inter-
action a well-defined mode of collective excitations, called magnons, appeared
in the window. For that interaction strength the magnons are heavy i.e. have
effective mass of m∗ = −5me, but their existence is unambiguous. To gain more
insight we Fourier transformed back to real space and analyzed the appearance
of magnons there by placing the hole at some arbitrary unit cell in the lattice
and calculating the probability of finding the electron. We found out the exci-
tations are well localized where there is largest probability of a spin-flip process
but secondly the electron is most likely to reside at the opposite sublattice to
the hole. From these results we concluded the magnons are to be found within
10 interatomic distances with 82% probability. The advantage of localization
is of great deal when it comes to engineer these excitations in spintronics devices.

But how to detect these magnetic excitations in graphene? At least two possible
experimental techniques are worth trying:

i) Magnons have been detected in spin transport experiments [21] where
spins are pumped from a ferromagnetic media to a nonmagnetic metal,
resulting in spin current. This could also be realized using graphene as
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6. Conclusion

a receiver, attached to the ferromagnetic material. On the other end the
magnons are then detected by using an inverse spin Hall effect detector.

ii) Magnons could be detected by inelastic neutron scattering. By definition
graphene is only one atomic thick and therefore it has the disadvantage
that neutrons have large probability of passing through the sample without
being affected. It is though realistic to use bulk graphite and decouple
the atomic layers, effectively resulting in a crystal containing many layers
of graphene. In that case the magnons could be detected indirectly by
calculating the energy change of the incoming and outgoing neutron beam.

Magnons can be used for information processing where spin angular momen-
tum is transferred macroscopic distances, this is a key element in spintronics.
In addition using the experimental setup described in i) the magnons can be
transferred via the graphene crystal between spintronic devices, into molecules
or into molecular electronic devices.

With these words we end this thesis. There is still a lot to learn about the
Coulomb interaction in graphene but we hope we have at least managed to
cover one of the holes found in the theory. Our research has shown that the
interaction between electrons in graphene is a source for a lot of interesting
physics. Those should not be neglected in the process of obtaining full under-
standing of graphene which then can be utilized due to its unique, superior
properties.
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A The Mathematica code
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acc = 1; H*carbon-carbon distance set to 1*L
R1 = 8acc, 0<; H*nearest neighbour vector to B in same unit cell*L

Θ =
2 Π

3
;

RotMat = K
Cos@ΘD -Sin@ΘD

Sin@ΘD Cos@ΘD
O;

R2 = RotMat.R1 H*nearest neighbour vector*L
R3 = RotMat.R2H*nearest neighbour vector*L
a1 = R1 - R3 H*real space lattice vector*L
a2 = R1 - R2H*real space lattice vector*L
A3 = 80, 0, 1<; H*3d real space lattice vector*L
A1 = Append@a1, 0D; H*3d real space lattice vector*L
A2 = Append@a2, 0D; H*3d real space lattice vector*L

B1 = 2 Π
A2�A3

HA2�A3L.A1
; H*3d recriprocal space lattice vector*L

B2 = 2 Π
A3�A1

HA3�A1L.A2
; H*3d recriprocal space lattice vector*L

B3 = 2 Π
A1�A2

HA1�A2L.A3
; H*3d recriprocal space lattice vector*L

b1 = Drop@B1, -1DH*reciprocal lattice vector*L
b2 = Drop@B2, -1DH*reciprocal lattice vector*L

K1 = :0,
4 Π

3 3

>H*Dirac point*L

K2 = :0, -
4 Π

3 3

>H*Dirac point*L

K = :
2 Π

3
,

2 Π

3 3

>H*Dirac point*L

mK = :-
2 Π

3
,

2 Π

3 3

>H*Dirac point*L

K' = :
2 Π

3
, -

2 Π

3 3

>H*Dirac point*L

mK' = :-
2 Π

3
, -

2 Π

3 3

>H*Dirac point*L

f@k_D := 1 + Exp@-ä k.a1D + Exp@-ä k.a2DH*fHkL*L
eps@k_D := Abs@f@kDDH*dispersion relation*L

Out[111]= :-

1

2
,

3

2
>

Out[112]= :-

1

2
, -

3

2
>

Out[113]= :
3

2
,

3

2
>

Out[114]= :
3

2
, -

3

2
>

Out[121]= :
2 Π

3
,

2 Π

3
>

Out[122]= :
2 Π

3
, -

2 Π

3
>
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Out[123]= :0,
4 Π

3 3
>

Out[124]= :0, -

4 Π

3 3
>

Out[125]= :
2 Π

3
,

2 Π

3 3
>

Out[127]= :
2 Π

3
, -

2 Π

3 3
>

Out[128]= :-

2 Π

3
, -

2 Π

3 3
>

kmu02 =
0.2

3

2

;H*kΜ*L

DOS02 = RegionPlotB:Ω >
3

2
q && Ω >

3

2
H-q + 2 kmu02L, Ω >

3

2
Hq - 2 kmu02L && Ω <

3

2
q>,

8q, 0, 1.0<, 8Ω, 0, 2.0<, PlotRange ® 880, 1.0<, 80, 2.0<<, Frame ® True,

FrameLabel -> 9TextAStyleA"q
�

", FontSize ® 15EE, TextAStyleA"Ω
�

", FontSize ® 15EE=,

FrameTicks ® 88Automatic, None<, 8Automatic, None<<, ImageSize ® 250F;

H*electron-hole excitation spectrum*L

U@k_D := z = f@kD; az = z � Abs@zD;
1

2

K
-1 Conjugate@azD

az 1
O H*U matrix*L

MakeBasis@q_, Μ_, n_, max_D := ModuleB

8bas<,
bas = 8<;

kTab = FlattenBTableBNBi
b1

n
+ j

b2

n
F, 8i, 0, n - 1<, 8j, 0, n - 1<F, 1F;

Map@
If@

max > eps@ðD > Μ && eps@ð - qD < Μ , AppendTo@bas, 8ð, 1<D
H*positive hole, having k values less than Μ*L

D
&, kTabD;

Map@
If@

max > eps@ðD > Μ && eps@ð - qD < max, AppendTo@bas, 8ð, 2<D
H*negative hole, eps@ð-qD < max -> the hole can have any k value. *L

D
&, kTabD;

bas

F

H*function to make the basis of k-

values according to interband and intraband excitations*L
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MakeHam@UU_, NN_, basis_, q_D := ModuleB8<,

Umats = Map@U@ð@@1DDD &, basisD;
H*List of matrices for all the different k values*L
Uqmats = Map@U@ð@@1DD - qD &, basisD;
Diag = Map@Heps@ð@@1DDD - If@ð@@2DD � 1, 1, -1D eps@ð@@1DD - qDL &, basisD;
H*List of diagonal elements Ε±Ε depending on if the hole is under or over.*L
nbas = Table@i, 8i, Length@basisD<D;
h0 = Outer@H0, nbas, nbasD;
hi = Outer@Hint, nbas, nbasD;

h0 -
UU

NN
hiF

H0@i_, j_D := If@i � j, Diag@@iDD, 0D
Hint@i_, j_D :=

Umats@@i, 1, 1DD Conjugate@ Uqmats@@i, 1, bassi@@i, 2DDDD D
Uqmats@@j, 1, bassi@@j, 2DDDD Conjugate@Umats@@j, 1, 1DDD +

Umats@@i, 2, 1DD Conjugate@Uqmats@@i, 2, bassi@@i, 2DDDDD
Uqmats@@j, 2, bassi@@j, 2DDDD Conjugate@Umats@@j, 2, 1DDD

H*The first term is the A sublattice and the second term is the B sublattice*L
H*Umats@@a,b,cDD,
a is number af matrix in list,
b is row in matrix, if 1 then A sub, if 2 then B sub,
c is element in row.*L
H*c is either 1 or 2, corresponding to positive or negative hole respecively.*L

H*the hamiltonian matrix generated*L
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