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Spin squeezing is a fundamental instrument for beating the standard quantum limit in mea-

surement precision [1–3]. Experimentally, it has already been achieved and tested, proving its

advantage with respect to classical systems [4–17]. From an elementary point of view, there are

two key features of these experiments: the creation and the detection of entanglement. For the

latter, the squeezing parameter [18] is the most used criterion: it consists of a simple inequality

that can be easily verified. It represents a powerful, sufficient criterion for proving the existence

of quantum correlation in an ensemble of atoms. Moreover, in terms of measurement, it involves

only the mean and variance of the collective spin operator in the z and x direction respectively.

However, in a typical experiment atoms are generally not equally illuminated by the probing

beam, and thus we can suppose they do not contribute equally to the measurement. It is thus

important to understand the effect of this on the squeezing parameter, to make the entangle-

ment measures suitable to realistic situations. In this thesis, we first point out the necessity

of the creation of a new entanglement criterion, showing the failure of the squeezing parameter

in experiments involving ensembles of particles. Later on, we introduce this new criterion and

generalize it for the detection of multi-partite entanglement. Finally, we apply the theory we

developed to analyse experimental data, establishing more than 2-particle entanglement in an

atomic ensemble.

The thesis is arranged as follows: in chapter 1 we will introduce some definitions and the nota-

tion we will use afterwards. In its last section 1.4 we are going to generalize the collective spin

operator ~J to a new observable ~S, that we believe resembles better the real-life case. Later on,

in chapter 2, we will prove that the spin squeezing inequality does not hold any more using ~S,

pointing out the necessity of the creation of a new entanglement criterion. This will be found in

chapter 3, and later on generalized in 4 for multi-partite entanglement. In chapter 5, using the

experimental results obtained by Appel et al. in the article “Mesoscopic atomic entanglement

for precision measurements beyond the standard quantum limit” [19], we will determine the

quantum correlation of a collection of & 105 particles. We will compare our criterion with the

old one, and give a stronger proof of spin squeezing for the considered experimental setup. In

chapter 6 we will list the main results and give the conclusions about this work.
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Chapter 1

Introduction

Ensemble of atoms with significant statistical behavior have already been successfully

trapped and probed in experiments [5, 19–21]. Quantum correlations in these samples

are of fundamental importance, as they open the doors of many interesting applications,

ranging from quantum memories [22–28] to gates for quantum computers [29–31]. A par-

ticular example is given by spin squeezed states with which, for instance, it is possible to

beat the standard quantum limit and achieve higher resolution in the experimental mea-

surements [4–17]. The spin squeezing inequality is a fundamental instrument that allows

us to determine if the state describing the system is squeezed, and therefore entangled.

The success of this criterion is found in its simplicity; only the mean and variance of

the collective spin operator along different axes need to be known. However, if these

observables are not accessible to us, we need to revise the spin squeezing inequality and

eventually propose a new criterion for entanglement detection.

In the next few chapters we will build a theoretical framework for defining a multi-

particle entanglement criteria. Our criteria will be based on an inequality which is

generic and can be applied for detection of any two, three and multi-partite entangle-

ment. To begin with, here we give some of the definitions that will be useful for the rest

of this thesis. In the conclusion of this chapter, we will introduce the new operator ~S,

that generalizes the collective spin ~J . According to qualitative observation, we will see

how this new operator is, indeed, appropriate to describe experimental measurements.

Furthermore, we will understand how the framework at our disposition - the squeezing

parameter ξ2, for instance - changes once we look at it using ~S instead of ~J .

1
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1.1 The beginning. Separable... or entangled?

Quantum systems are broadly divided into two categories, namely the separable states,

that satisfy the principle of local reality, and the correlated ones which have non-local

features. This behaviour of non-locality was quite disturbing to Einstein who described

it as a “spooky action at a distance”, which we now call entanglement - an intriguing

quantum phenomenon that was pointed out as a critic of quantum mechanics [32]. In

recent years, it has been a resource in many applications, from optics to quantum infor-

mation. With the advent of new experiments and technology it can now be utilized in

practical applications like quantum cryptography and precision measurements beyond

the standard quantum limit. Measurement of entanglement provides knowledge about

the fundamental nature of correlation between quantum systems. As such, even though

quite challenging, it has attracted immense attention [33]. In fact, several different mea-

sures had been introduced for problems or systems with small dimensions [34]. However,

finding a useful and justified measure of entanglement for a system of many particles

remains yet an open question. A possible solution is to use the squeezing parameter in

terms of an inequality, similar to Bell’s [35].

1.1.1 Two particles entanglement

Let us first consider the simplest possible case: two two-level atoms. The composite

system can then be described by the tensor product of the bases for each particle, and

therefore a generic wave vector describing the system will be

|ψ〉 = C↑↑|↑〉1 ⊗ |↑〉2 + C↑↓|↑〉1 ⊗ |↓〉2 + C↓↑|↓〉1 ⊗ |↑〉2 + C↓↓|↓〉1 ⊗ |↓〉2, (1.1)

where the appendices “1” and “2” refer to the first and second particle respectively. In

the future the tensor product |↑〉1⊗|↓〉2, for simplicity of notation, will be denoted with

|↑↓〉.
Now we are able to give the first definition of an entangled pure state (see [36]). The

adjective “pure” refers to the fact that we are considering vectors |ψ〉 inside the Hilbert

space of the whole system; the more general notion of “mixed” states will be given later,

using the concept of density matrix.

Definition 1. Let us suppose the composite system H = H1 ⊗ H2 is given. A pure

state |ψ〉 ∈ H is called product state or separable if we can find |φ1〉 ∈ H1 and |φ2〉 ∈ H2

such that

|ψ〉 = |φ1〉 ⊗ |φ2〉. (1.2)

Otherwise |ψ〉 is entangled.
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In many kind of situations a description of the system through its state vector is not

convenient, or even hard to access. if |ψi〉 are states referring to the whole system, each

one with a probability pi to happen, then we can express the general wave vector using

the density matrix ρ:

ρ =
∑
i

pi|ψi〉〈ψi|, (1.3)

where the pi, being probabilities, have to respect
∑
i
pi = 1 and pi > 0. A state written

in the form of eq.1.3 is called mixed. The density matrix is a well known instrument

in quantum mechanics, and therefore we will not focus our attention on its properties.

However we will use it extensively in the next chapters, mostly because of the following

definition of entanglement and separability for mixed states (always from [36]).

Definition 2. Let ρ be a density matrix for a two particles system. We say that ρ is a

• Product state if there exist states ρ1 and ρ2 for the first and second particle re-

spectively, such that

ρ = ρ1 ⊗ ρ2 (1.4)

• Separable state if there are probabilities pi and product states ρi1 ⊗ ρi2 such that

ρ =
∑
i

piρi1 ⊗ ρi2 (1.5)

• Entangled state otherwise.

As already pointed out in [36], this definition distinguish three possible cases. The less

interesting one is the product state, where the two particles are completely uncorrelated.

Classical correlations are given, whenever the state is not a product, but is separable.

Previously and later on in this work we will use the word “correlated” as a synonym of

“entangled”. What we are meaning here with the adjective “classical” is well explained

by the following example. Andrea and Samantha, working in Copenhagen and Calcutta

respectively, decide that, depending on the shared random number “i”, they will pre-

pare their two particles in the state ρi1 ⊗ ρi2 . If, later on, they forget i, then the system

would be described by the separable state ρ =
∑
i
piρi1 ⊗ ρi2 , that clearly is correlated,

but classically. The last and more interesting case, that requires interaction between

the two particles, is the entangled one. The correlation is here non-classical, and non

local operations are necessary to be performed on the whole system in order to achieve it.

In the following, we will extend the definitions 1 and 2 to N particles and many-particles

entanglement. Later on, we will briefly recall one of the work that brought entanglement

to be one of the most important and interesting topic in physics: we will introduce the
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definition of spin squeezing as in [18] and we will understand how to beat the standard

quantum limit. This will be our launch pad for introducing the main argument of this

work, that can be summarized saying that it is the generalization of the spin squeezing

inequality to a more generic and realistic situation. Here we used words and expressions

- standard quantum limit, spin squeezing inequality, many-particles entanglement - we

still do not know properly. These will be discovered soon; let us start with order, so

that everything will be clear shortly.

1.1.2 Many-particles entanglement

Always following the excellent work of [36], we will here give the definition of entangle-

ment for a general system made of N particles:

Definition 3. Let us suppose to have a system made of N particles, and described by

the state |ψ〉 and the density matrix ρ. We will call it:

• Pure, fully separable, if it can be written as the product state of every single particle

|ψ〉 =

N⊗
i=1

|φi〉 (1.6)

• Mixed, fully separable, if it is a convex combination of pure, fully separable states

ρ =
∑
l

plρl1 ⊗ ...⊗ ρlN . (1.7)

Here, the ρli , for i = 1, ..., N , are the density matrices of a single-particle state:

ρli = |φli〉〈φli |.

• Pure, k-particle entangled, with 1 < k < N , if it cannot be split better than the

product of k particles for the remaining ones collected in less-than-k state vectors.

For instance,

|ψ〉 = |φ1,...,k〉 ⊗ |φk+1〉 ⊗ |φk+2〉 ⊗ ...⊗ |φN 〉 (1.8)

is a pure, k-particle entangled state, if it is not possible to further reduce |φ1,...,k〉
to a product of states with less particles each

• Mixed, k-particle entangled, if it is a convex combination of pure, k-particle entan-

gled states. An example that will be useful later is the 2-particle entangled mixed

state made by an even number N of particles with the form

ρ =
∑
k

pkρk1,k2 ⊗ ...⊗ ρkN−1,kN . (1.9)
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Here, for each k, k1, ..., kN is a permutation of the numbers 1, ..., N and, for in-

stance, the density matrix ρk1,k2 describes the entangled couple made by particles

k1 and k2.

• Pure, N -particle entangled, if the vector describing the system cannot be factorized

in two states of any subsystems:

|ψ〉 = |φ1,...,N 〉 (1.10)

• Mixed, N -particle entangled, if it is a convex combination of Pure, N -particle

entangled states.

In order to be less heavy with the notation, in the following chapters we will only dis-

tinguish between (fully) separable and k-particle entangled state. We will not explicitly

say if the system is pure or mixed; this will be clear by the context.

Now that we have introduced the relevant kind of states, we can take a step further

and introduce one of the main topics in quantum metrology: the spin squeezing.

1.2 Squeezed atomic states

One of the most important works regarding squeezed atomic states is, without doubts,

the article of D.J.Wineland, J.J.Bollinger and W.M.Itano [18], the goal of which was

to achieve a high resolution in Ramsey method metrology. These authors introduced

first the so-called squeezing parameter ξ2 that, defined as the ratio between the statis-

tical uncertainty of entangled versus separable states, quantifies the sensitivity of the

experimental apparatus. In particular, they proved that, for some systems with ξ2 < 1,

a resolution higher than the one achieved with separable states could be obtained. In

literature, this result is known as “beating the standard quantum limit”.

The experimental setup consisted of N identical two-level atoms, whose proper fre-

quency ω0 was measured, through spectroscopy. All particles had a spin j = 1
2 , and

the distance separating them is supposed to be big enough to not have any atom-atom

interaction. The collective spin operator is defined ~J =
N∑
i=1

~ji. The method used for

measuring ω0 was the Ramsey one, consisting of a first π
2 pulse, a free evolution and

another π
2 pulse. For separable states, the best resolution |∆ω|CSS measuring ω0 is given

by:

|∆ω|CSS =
1

T (N)
1
2

, (1.11)
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where T is the time of the free evolution in the Ramsey sequence. The appendix “CSS”

refers to the coherent spin state |CSS〉, defined as

|CSS〉 =
N⊗
i=1

|↑〉i, (1.12)

and is the state in which the system should be prepared at the beginning of the experi-

ment.

After having proved that |∆ω|CSS is the best possible resolution achievable with sepa-

rable states, the authors in [18] introduced the squeezing parameter, that indicates the

level of improvement achieved using some other particular states instead of |CSS〉:

ξ2
R =

|∆ω|2

|∆ω|2CSS
= N

(∆Jx)2

〈Jz〉2
. (1.13)

We will use the appendix “R” for this particular definition of the squeezing parameter.

In our case, it is useful to give another completely equivalent form of the parameter ξ2
R,

ξ2
R =

〈Jz〉2CSS
(∆Jx)2

CSS

(∆Jx)2

〈Jz〉2
, (1.14)

where 〈Jz〉CSS and (∆Jx)2
CSS are the average spin and variance of the collective spin

operator ~J for the coherent spin state. They are clearly given by

〈Jz〉CSS = 〈CSS|Jz|CSS〉 =
N

2
(1.15a)

(∆Jx)2
CSS = 〈CSS|J2

x |CSS〉 − 〈CSS|Jx|CSS〉2 =
N

4
, (1.15b)

and the reason for which we rewrote ξ2
R as in eq.1.14, is that it gives a clear meaning of

the squeezing parameter, as ratio between the noises of the considered and the coherent

systems.

The conclusion the authors took in [18], is that the signal-to-noise ratio can be improved

over the case of initially uncorrelated atoms if the particles are prepared in some par-

ticular “squeezed states”. These are defined to be the states for which the squeezing

parameter is less than unit, and can reduce significantly - for instance - the time needed

for achieving a particular resolution on the proper frequency ω0.

In the next section we will introduce another fundamental article that definitively relates

the squeezing parameter with the concept of entanglement, and proceeds further iden-

tifying several criteria for discriminating the quality of the entanglement of the system.
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1.3 Entanglement and extreme spin squeezing

In the article “Entanglement and extreme spin squeezing” [37], Anders Sørensen and

Klaus Mølmer identify several curves - each one for a different value of J - that define a

limit for squeezed spin states described by the associated J . More in details, the Fig.1.1

present the minimum achievable variances (∆Jx)2

2(∆Jx)2CSS
with respect to the spin 〈Jz〉

〈Jz〉CSS ,

for different two-level systems made by N = 2J atoms.

Figure 1.1: Maximal squeezing for different values of J . From above, the curves
refer to J = 1

2 , 1,
3
2 , 2, 3, 4, 5 and 10. The dotted curve, characterized by J = 1

2 and
therefore referring to the separable case, is the quadratic function that can be found
by setting ξ2

R = 1 in eq.1.14. The dashed curve represents the position of a bifurcation
in the solution of half-integer spin. To its left the minimum is found by a variational
calculation (dash dotted curve for J = 3

2 ), to its right diagonalization of the operator
µJz + J2

x can be applied. For details, see [37], from which this figure has been taken

For drawing the figure, the facts 〈Jz〉CSS = J and (∆Jx)2
CSS = J

2 have been used.

All the curves are determined numerically. In particular, diagonalization of the operator

µJz + J2
x and variational calculations were used. Skipping some details, the different

methods are needed, because for odd values of J the average of Jx is not always null,

and the diagonalization cannot be used. Analytical equations for the curves related to

J = 1
2 and J = 1 are known. The first one is just a quadratic curve, as it is possible

to deduce from the definition 1.14 of the squeezing parameter, by setting ξ2
R = 1. This

constraint force us to always saturate the minimum for the separable case (i.e.: only one
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particle, no entanglement), and we get:

1 = ξ2
R =

〈Jz〉2CSS
(∆Jx)2

CSS

(∆Jx)2

〈Jz〉2
=⇒ (∆Jx)2

(∆Jx)2
CSS

=

(
〈Jz〉
〈Jz〉CSS

)2

. (1.16)

For J = 1 the analytical form of the relative curve in Fig.1.1 is determined in [37], and

is given by

(∆Jx)2

(∆Jx)2
CSS

= 1−

√
1−

(
〈Jz〉
〈Jz〉CSS

)2

. (1.17)

The important conclusion taken in [37] is that exactly the same limit can be taken for

systems made by M > N particles, of which only N can be entangled. Let us be more

clear about this statement. Suppose we have M > N two-level atoms, and that, for some

reason, we cannot find more than N of these particles entangled. Then, if we measure

the normalized variance (∆Jx)2

2(∆Jx)2CSS
and the normalized spin 〈Jz〉

〈Jz〉CSS , any experimental

point having these coordinates cannot lie below the curve of Fig.1.1 characterized by

J = N
2 . The reader should not be worried if what said here is not completely clear.

These “multipartite” or “multi-particle” entanglement criteria - which goal is clearly to

prove stronger and more advantageous entanglement - will be the main argument of this

work.

In the next and last section of this introduction we will say where the assertion stated

here may fail. Or, better, where it is not possible to use the criteria represented by the

curves of Fig.1.1. In fact, their derivation is sound. However, the problem is that - we

believe - in many experimental situations the environment is not the one to which these

criteria refer. A generalization is therefore needed, and such generalization will be done

in the following chapters 3 and 4.

1.4 The operator ~S and the generalization of the squeezing

parameter

Let us start this section by describing, very qualitatively, a standard experiment involv-

ing atoms shined by light. A more detailed discussion will be given later, in chapter 5;

for the moment we are interested in pointing out the possible problem of the squeezing

parameter as entanglement criteria.

In a standard quantum optic experiment, the measurements on the atoms, previously

cooled and loaded inside the probing chamber, is performed using a Gaussian laser beam.

This beam, because of the interaction with the particles, is shifted, and detecting this
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phase difference it is possible to determine the average values of important atomic ob-

servables - the collective spin components, for instance. Except a billion of other very

important details, this is the very essence of many experimental applications, from spec-

troscopy to metrology, and also in quantum computation. Let us now zoom inside the

probing box, and look at two particular particles inside it. The first one is at the exact

middle of the chamber, in the precise spot where the probe is focused; the other is flying

around, far away from the main axis of the laser beam. The interaction between the

(classical) light and the atoms is well described by the scalar product of the electrical

field ~E(~r) of the probe with the dipole moment ~d of the particles, being this latter one an

operator, the first a vector field. Now, remembering our two identical atoms, we need to

consider that the electric field to which they are subject is fairly different. In fact, away

from the main axis of the probe, the electric field decays, and therefore the atom-light

interaction of our second particle is (much) weaker than the first. Our hypothesis is very

simple: since any atom contributes differently to the phase shift of the probe, we could

have no access to the collective spin operator ~J =
N∑
i=1

~ji. It is more reliable to say that

what we are measuring is the “weighted” spin operator ~S, where

~S =
N∑
i=1

ηi~ji. (1.18)

Here and previously we used ~ji, for i = 1, ..., N , to indicate the spin of the i-th particle.

What are the coefficients {ηi}Ni=1 then? At first, let us make a naive comment. If all

of them are unitary, the operator ~S becomes the collective spin: ~S → ~J . Therefore, we

can always recover the results given by the previous interpretation - the one saying that

~J was the observed operator - by defining the weights {ηi}Ni=1 in a proper way. On the

other hand, if there are reasons for which ~S is truly the measured observable instead of

~J , we will point out some new characteristics of the system they were to us precluded

considering ~J only.

What are the coefficients {ηi}Ni=1? In general, they can be everything: varying in time,

in space, because of the atomic speed... The only condition we put so far is that they

have to be scalar. However, since we are not mathematicians (with all respect!), we need

to put our hands in the real, dirty world and give some interpretation to them. Let us

start recalling what is going on in our experiment:

• A Gaussian laser beam, the probe, enters the box loaded with atoms, shining them

• The probe, because of the interaction with the particles, subject a phase shift that

can be determined
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• As said above, such interaction is different from atom to atom, depending on “how”

they are shined

• From the phase shift - and here resides the difference from the old model - we are

not really measuring the collective spin operator, but ~S

We deduce that the {ηi}Ni=1 have something to do with “how” the atoms are shined by

the probe, that means which is its intensity in the position occupied by the particles.

This will be the interpretation we will use in the following; it is not necessarily the best

one or the most complete, but we believe it is reliable.

As a final comment, let us give the squeezing parameter in the case in which the measured

observable is ~S. We can substitute it to ~J in eq.1.14, and obtain:

ξ2
N =

〈Sz〉2CSS
(∆Sx)2

CSS

(∆Sx)2

〈Sz〉2
=

(
N∑
i=1

ηi

)2

N∑
i=1

η2
i

(∆Sx)2

〈Sz〉2
. (1.19)

We changed the appendix of ξ2 from “R” to “N”, in order to make clear to which

operator, ~J or ~S, we are referring. In eq.1.19 we substituted 〈Sz〉CSS and (∆Sx)2
CSS

with their values:

〈Sz〉CSS = 〈CSS|Sz|CSS〉 =
1

2

N∑
i=1

ηi (1.20a)

(∆Sx)2
CSS = 〈CSS|S2

x|CSS〉 − 〈CSS|Sx|CSS〉2 =
1

4

N∑
i=1

η2
i . (1.20b)

It is important to note that what we did in eq.1.19 is not formal. We just said: “Well,

given that in the experiment we measure ~S at the place of ~J , if we calculate from the

data the squeezing parameter, than we would obtain ξ2 as in eq.1.19, not 1.14”. The

point here is that, having modified ξ2, we lost its property as an entanglement detector.

The inequality stating that, for all separable states, ξ2
R ≥ 1, it is not valid any more

for ξ2
N . Or it is? Proving that ξ2

N , as in eq.1.19, is not a useful entanglement criterion

will be the main argument of the next Chapter 2. Different ways for determining if the

system is correlated or not will be discussed later.



Chapter 2

ξ2 as entanglement criterion

2.1 Counterexample

We have discussed how it is possible to use the parameter ξ2
R for detecting spin squeez-

ing (and thus entanglement), in the case where the measurement is performed by the

collective operator ~J =
N∑
i=1

~ji, and we pointed out the difficulty, in the experiment, to

have such operator. In fact, taking into account the laser dispersion, a more realistic

one is

~S =
N∑
i=1

ηi~ji, (2.1)

where the coefficient ηi are supposed to carry information about “how” the atoms are

hit by the detecting laser.

As we discussed previously in section 1.4, we can generalize the parameter ξ2 in the

following way:

ξ2
R = N

(∆Jx)2

〈Jz〉2
−→
~J→~S

ξ2
N =

(
N∑
i=1

ηi

)2

N∑
i=1

η2
i

(∆Sx)2

〈Sz〉2
(2.2)

Intuitively the substitution of ~J with ~S is clear. The reason for which we introduce the

two sums in place of N can be understood looking at eq.1.19. It is important to point

out that if one particle is not detected at all we have ηi → 0, and that if ηi = 1 for all

i = 1, ..., N (
N∑
i=1

ηi

)2

N∑
i=1

η2
i

→ N, (2.3)

11
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as we expected.

One of the most interesting purposes for which the squeezing parameter is utilized is

to detect entanglement. In fact, it is possible to prove that, whenever ξ2
R takes values

strictly smaller then one, the system over which is evaluated is entangled. A natural

question now arises: “Can we infer something similar about ξ2
N?”

In the following we are going to give a first elementary example for which this parameter

takes some value less than one for a separable states, and subsequently we will intro-

duce a slightly more complex model that will prove that ξ2 becomes almost useless if

evaluated with our new weighted spin operator ~S.

2.1.1 Four uncorrelated atoms

Here we are going to prove that ξ2
N < 1 for a separable state made of four particles.

Let us suppose we have a state |ψ〉 = |↑〉1|↑〉2|θ〉3|−θ〉4, where |ϑ〉 = e−i
ϑ
2
jy |↑〉. The

atomic indices will be omitted, where it will not be necessary. We want to determine

the possible values ξ2
N can take varying parameters θ ∈ [0, π] and ηi ∈ (0, 1]. It is clear

why ηi cannot be negative, while we decide to limit them to a range between zero and

the unity. This is because we are always able to rescale them by dividing both numerator

and denominator with the square of the biggest possible value of ηi.

For such a state we thus have:

• 〈Sx〉 = 〈ψ|Sx|ψ〉 = η3〈θ|jx3 |θ〉+ η4〈−θ|jx4 | − θ〉 = η3
2 sin θ − η4

2 sin θ

Now, for simplicity, let us suppose η3 = η4 = λ, that in practice means that the

third and the fourth atoms |θ〉3|−θ〉4 lies at the same distance with respect to the

main direction of the laser (see Fig.2.1). With this assumption we can conclude

that 〈Sx〉 = 0
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L

↑

Figure 2.1: Standard experimental setup; a laser shines particles in a box. In the
specific example, there are four atoms: two of them described by the state |↑〉, they can
be everywhere, and two by |±θ〉, they find themselves at the same distance from the

laser symmetry axis

• 〈Sz〉 = 〈ψ|Sz|ψ〉 = η1〈↑ |jz1 | ↑〉 + η2〈↑ |jz2 | ↑〉 + λ(〈θ|jz3 |θ〉 + 〈−θ|jz4 | − θ〉) =
η1
2 + η2

2 + λ cos θ

• 〈S2
x〉 = 1

4

(
η2

1 + η2
2 + 2λ2 cos2 θ

)
Let us briefly explain this result. We have that

S2
x =

(
4∑
i=1

ηijxi

)2

=
4∑
i=1

η2
i j

2
xi + 2

∑
i>j

ηiηjjxijxj (2.4)

Now, since calculation of 〈j2
xi〉 is straightforward, let us focus on the mixed terms

〈jxijxj 〉, for i 6= j. Obviously these terms are null when computed over at least one

of the first two particles | ↑〉1 and | ↑〉2, but we cannot take the same conclusion

for the remaining two particles. In fact for |θ〉3 and |θ〉4 we get:

〈jx3jx4〉 = 〈θ|jx3 |θ〉〈−θ|jx4 | − θ〉 = −1

4
sin2 θ (2.5)

At this point is straightforward to obtain the result for 〈S2
x〉 we reported before,

since λ2〈j2
x3 + j2

x4 + 2jx3jx4〉 = λ2
(

1
2 −

1
2 sin2 θ

)
= λ2

2 cos2 θ.
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We can now collect the results obtained so far:

〈Sz〉 =
η1

2
+
η2

2
+ λ cos θ (2.6a)

(∆Sx)2 = 〈S2
x〉 − 〈Sx〉2 =

1

4

(
η2

1 + η2
2 + 2λ2 cos2 θ

)
(2.6b)

so that we can conclude

ξ2
N =

(η1 + η2 + 2λ)2

η2
1 + η2

2 + 2λ2

(∆Sx)2

〈Sz〉2
=

(µ+ λ)2

µ2 + λ2

µ2 + λ2 cos2 θ

(µ+ λ cos θ)2
(2.7)

In the last equality we also supposed there exists a symmetry between the first couple

of particles |↑〉1|↑〉2, in such a way that η1 = η2 = µ. This will slightly simplify the next

calculations.

In the following we will just study the function ξ2
N (θ, µ, λ), and in particular find its

minima in our domain.

First notice that such a function is always positive, and is singular for µ + λ cos θ = 0,

where it goes to infinity. Thus the global minima must lie in between of zero and infinity.

Let us derive ξ2
N (θ, µ, λ) with respect to θ:

∂ξ2
N (θ, µ, λ)

∂θ
=

2λµ sin θ(µ− λ cos θ)

(µ+ λ cos θ)3
(2.8)

Now we want to study the sign of the derivative in the two following cases:

1. µ > λ:

Here the denominator is always positive and bigger than zero, as well as µ−λ cos θ.

Thus we have:
∂ξ2

N

∂θ
≥ 0⇔ sin θ ≥ 0 (2.9)

This means that for θ = 0 and θ = ±π we have stationary points, respectively a

local minimum and two local maxima (as it is easy to check).

For θ = 0 our squeezing parameter takes the value ξ2
N (θ = 0) = 1, not depending

on parameters µ and λ. Since on the boundary θ = ±π the function always takes

maximum values (always bigger than one), we can conclude that θ = 0 is a global

minimum.

So far, it seems that the constraints ξ2
N ≥ 1 for all separable states is still valid.

2. µ ≤ λ:

This case is slightly more complicated, but for sure more interesting. In fact,

studying the sign of the derivative
∂ξ2N
∂θ ≥ 0 it is possible to find three local minima:
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θ = 0 (2.10a)

θ = ± arccos
µ

λ
(2.10b)

The first one is the same as before, and we already know how our parameter ξ2
N

behaves in such point, while for the others we obtain:

ξ2
N (λ, µ, θ = ± arccos

µ

λ
) =

1

2

(µ+ λ)2

µ2 + λ2
(2.11)

We can now study ξ2
N (µ, λ) with respect to the two remaining parameters; it

suffices to note that, since

1

2

(µ+ λ)2

µ2 + λ2
≤ 1 ∀λ, µ ∈ (0, 1], (2.12)

we get that ξ2
N (µ, λ) < 1 for almost all choices of µ and λ.

More precisely, it is easy to see that ξ2
N (µ, λ) = 1 if and only if µ = λ, while

ξ2
N (µ, λ) → 1

2 for µ → 0 and λ � µ (or vice versa). It is important to note that

when both parameters λ and µ approach zero, ξ2
N (µ, λ) is still bounded from below

by 1
2 . In conclusion we can say that

1

2
< ξ2

N (θ = ± arccos
µ

λ
) ≤ 1, (2.13)

and thus, due to the periodicity of ξ2
N (µ, λ, θ) with respect to its last variable, we

can say that our squeezing parameter doesn’t have a global minimum, but it is

bounded from below by the constant function 1
2 .

In other words, the constraint ξ2
N ≥ 1 is not valid any more when we are dealing with

some measurements apparatus that does not affect all particles in the same way.

In subsection 2.1.2 we are going to find some straighter lower bound for our squeezing

parameter, using a more general model with many atoms respecting similar symmetries

as the ones we had here. We will see how this new lower bound depends on the number

of atoms, and thus we need to admit that experimentally evaluating ξ2
N can become a

hard task to accomplish, for example with atomic clock setups, for which we have to deal

with systems made of approximately 106 particles. Before that we will slightly generalize

our previous result to an intermediate level, in order to introduce the proceeding we will

use later.
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2.1.1.1 A more formal proof

Let us suppose we are dealing with four atoms described by |ψ〉 = |θ〉1|−θ〉2|φ〉3|−φ〉4,

disposed in such a symmetric way for which η1 = η2 = µ and η3 = η4 = λ. Here θ and

φ vary inside [0, π], while λ and µ in (0, 1].

If now we define the function h(x, y) as:

h(x, y) =
(x+ y)2

x2 + y2
(2.14)

with a very little effort we can show that our parameter ξ2
N takes the form

ξ2
N (µ, λ, θ, φ) =

h(µ, λ)

h(µ cos θ, λ cosφ)
(2.15)

In this way, noticing that h(x, y) is always positive, we can reduce the problem of mini-

mizing ξ2
N to find maxima and minima of the new function h(x, y). Of course we need to

be careful, cause numerator and denominator in ξ2
N are not independent, but correlated.

In fact we will show that the conditions for approaching the minimum in h(µ, λ) can be

obtained simultaneously with the ones for having maximum in h(µ cos θ, λ cosφ).

The upper bound of h(x, y) is obtainable easily using Jensen’s inequality, that in

its simplest form states that:

Lemma 1. Let us suppose that are given:

1. A real, convex function φ, with domain D inside the real line R

2. A discrete set of points {x1, ..., xN} inside D

3. Positive weights a1, ..., aN .

Then the inequality

φ


N∑
i=1

aixi

N∑
i=1

ai

 ≤
N∑
i=1

aiφ(xi)

N∑
i=1

ai

(2.16)

holds. Equality holds if and only if xi = xj for all possible i, j between 1 and N .

As a particular case, if the weights a1, ..., aN are all equal, then eq.2.16 becomes

φ

(
1

N

N∑
i=1

xi

)
≤ 1

N

N∑
i=1

φ(xi). (2.17)

The inequalities 2.16 and 2.17 are reversed if φ is concave.
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Using lemma 1 it is now simple to obtain an upper bound for h(x, y). In fact we have

that
h(x, y)

2
=

(x+y
2 )2

x2+y2

2

≤
( |x|+|y|2 )2

x2+y2

2

≤ 1, (2.18)

so that h(x, y) ≤ 2, i.e.: 2 is the upper bound for our function, and it is reached

for µ cos θ = λ cosφ. Notice that this condition is equivalent to equation 2.10b, with

cosφ = 1.

The lower bound of h(x, y) is actually straightforward to determine when both x

and y are positive (as in our case!). Suppose x ≥ y, so that:

h(x, y) =
(x+ y)2

x2 + y2
= 1 +

≥0︷︸︸︷
2xy

x2 + y2
≥ 1; (2.19)

it is clearly possible to approach the limit h(x, y) = 1 when y → 0 and x� y.

In conclusion, the requirements they have both to be verified for minimizing ξ2
N (µ, λ, θ, φ)

are exactly the ones we found previously and they obviously can be true at the same

time.

The sketch of this proof will be followed again in the next section, when we are dealing

with a potentially bigger number of particles.

2.1.2 Many uncorrelated atoms

Here we will try to generalize the previous section with an arbitrary number of atoms

N = 2N . The generalized wave function describing the system is defined to be:

|ψ〉 = |θ1〉1|−θ1〉2...|θN 〉N−1|−θN 〉N , (2.20)

with θi ∈ [0, π] for all i = 1, ...,N .

Moreover we will consider the same symmetry we used before, so that each couple

of atoms |θj〉2j−1|−θj〉2j will be described by the same weight η̃2j−1 = η̃2j = ηi, for

j = 1, ..., N and consequently i = 1, ...,N . Again, the range in which we will allow the

ηi to vary is (0, 1], for the same reason we mentioned in section 2.1.1.

The spin measurement operator is thus expressed by the following equation:

~S =

N∑
j=1

η̃j~ji =
N∑
i=1

ηi

(
~j2i−1 +~j2i

)
(2.21)
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For determining the squeezing parameter ξ2
N we have now to compute the various terms

in its definition:

• The average spin along z:

〈Sz〉 = 〈
N∑
i=1

ηi
(
jz2i−1 + jz2i

)
〉 =

N∑
i=1

ηi
(
〈jz2i−1〉+ 〈jz2i〉

)
=

=

N∑
i=1

ηi

(
cos θi

2
+

cos (−θi)
2

)
=

N∑
i=1

ηi cos θi

(2.22)

• The average spin along x:

〈Sx〉 = 〈
N∑
i=1

ηi
(
jx2i−1 + jx2i

)
〉 =

N∑
i=1

ηi
(
〈jx2i−1〉+ 〈jx2i〉

)
=

=

N∑
i=1

ηi

(
sin θi

2
+

sin (−θi)
2

)
= 0

(2.23)

• The average of the squared component of the spin along x:

〈S2
x〉 =

N∑
i=1

η2
i

2
cos2 θi (2.24)

This result, as before, is less obvious than the others. Let us derive it starting

from the definition of S2
x:

S2
x =

(
N∑
i=1

ηi
(
jx2i−1 + jx2i

)2)2

=

N∑
i=1

η2
i

(
jx2i−1 + jx2i

)2
+

+
∑
i 6=j

ηiηj
(
jx2i−1jx2j−1 + jx2i−1jx2j + jx2ijx2j−1 + jx2ijx2j

) (2.25)

Now consider the second term in the right hand side of eq. (2.25); Since 〈jx2k〉 =
sin(−θk)

2 = − sin(θk)
2 = −〈jx2k−1

〉, for i 6= j we get:

〈jx2i−1jx2j−1〉 = 〈jx2i−1〉〈jx2j−1〉 = −〈jx2i−1〉〈jx2j 〉 = −〈jx2i−1jx2j 〉 (2.26a)

〈jx2ijx2j−1〉 = 〈jx2i〉〈jx2j−1〉 = −〈jx2i〉〈jx2j 〉 = −〈jx2ijx2j 〉 (2.26b)

So that we can conclude that, when averaging, the four terms in the considered

sum are neglecting themselves in couples. In other words, 〈
∑
i 6=j

ηiηj
(
jx2i−1jx2j−1 +
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jx2i−1jx2j + jx2ijx2j−1 + jx2ijx2j
)
〉 = 0 and

〈S2
x〉 = 〈

N∑
i=1

η2
i

(
jx2i−1 + jx2i

)2〉 =

N∑
i=1

η2
i

(
〈j2
x2i−1
〉+ 〈j2

x2i〉+ 2〈jx2i−1jx2i〉
)

(2.27)

At this point it is straightforward to compute 〈S2
x〉; in fact:

〈S2
x〉 = 〈

N∑
i=1

η2
i

(
j2
x2i−1

+ j2
x2i + 2jx2i−1jx2i

)
〉 =

=
N∑
i=1

η2
i

(
〈j2
x2i−1
〉+ 〈j2

x2i〉+ 2〈jx2i−1jx2i〉
)

=

=

N∑
i=1

η2
i

(
1

4
+

1

4
+ 2〈jx2i−1〉〈jx2i〉

)
=

=

N∑
i=1

η2
i

(
1

2
− 2 sin2 θi

4

)
=

N∑
i=1

(
η2
i

2
cos2 θi

)
,

(2.28)

that exactly is the result reported before.

We can now collect what we got in order to proceed with determining ξ2
N :

〈Sz〉 =

N∑
i=1

ηi cos θi (2.29a)

(∆Sx)2 = 〈S2
x〉 − 〈Sx〉2 =

1

2

N∑
i=1

η2
i cos2 θi, (2.29b)

so that it is straightforward to get

ξ2
N (η1, ..., ηN ; θ1, ..., θN ) =

(
N∑
i=1

ηi

)2

N∑
i=1

η2
i

(∆Sx)2

〈Sz〉2
=

( N∑
i=1

ηi

)2

N∑
i=1

η2
i

N∑
i=1

η2
i cos2 θi( N∑

i=1
ηi cos θi

)2 (2.30)

From now on it is just a matter of generalizing what we did in section 2.1.1.1; in fact

extending the definition of h(x, y) to more variables,

h(~x) = h (x1, ..., xN ) =

( N∑
i=1

xi

)2

N∑
i=1

x2
i

, (2.31)
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it is obvious we can express ξ2
N in terms of h(~x) as:

ξ2
N

(
~η, ~θ
)

=
h (η1, ..., ηN )

h (η1 cos θ1, ..., ηN cos θN )
(2.32)

Here we used the notation ~x = (x1, ..., xN ) for one N -dimensional vector.

Now, following the same steps of before, we will search again a lower and an upper

bounds for the function h(~x), in order to get some constraints to apply to our squeezing

parameter ξ2
N and thus determine its minimum.

The upper bound of h(~x) is derived, without any conceptual difference from section

2.1.1.1, using Jensen’s inequality (lemma 1):

h(~x)

N
=

(
1
N

N∑
i=1

xi

)2

1
N

N∑
i=1

x2
i

≤

(
1
N

N∑
i=1
|xi|
)2

1
N

N∑
i=1

x2
i

≤ 1, (2.33)

In other words h(~x) ≤ N = N
2 , where N represents the number of the particles. More-

over we know, always from lemma 1, that the inequality is saturated if and only if

xi = xj for all i, j = 1, ...,N .

The lower bound of h(~x), in the special case in which x1 ≥ xi > 0 for all i = 2, ...,N ,

is again very simple to obtain. In fact

h(~x) =

( N∑
i=1

xi

)2

N∑
i=1

x2
i

=

N∑
i=1

x2
i + 2

∑
i>j

xixj

N∑
i=1

x2
i

= 1 + 2

∑
i>j

≥0︷︸︸︷
xixj

N∑
i=1

x2
i

≥ 1; (2.34)

in particular h(~x)→ 1 for x1 � xi and xi → 0 for all i = 2, ...,N .

Notice that in the critical case in which ‖~x‖ → 0, the corresponding limit for h(~x) is not

well defined (it depends on how ~x is approaching the null vector), but still it is bigger

than one.

At this point we have all the conditions they have to be satisfied for finding the minimum

of ξ2
N (~η, ~θ) = h (η1, ..., ηN )h−1 (η1 cos θ1, ..., ηN cos θN ):

ηi cos θi = ηj cos θj ∀ i, j = 1, ...,N (2.35a)

η1 � ηi ∀ i = 1, ...,N (2.35b)

ηi → 0 ∀ i = 2, ...,N (2.35c)
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Here eq.2.35a is referred to maximize h (η1 cos θ1, ..., ηN cos θN ), while equations 2.35b

and 2.35c to minimize h (η1, ..., ηN ). The values these functions assume with these

constraints are, putting α = ηi cos θi for all i = 1, ...,N :

h−1(α) =

N∑
i=1

α2

( N∑
i=1

α

)2 =
1

N
(2.36a)

h(~η) =

( N∑
i=1

ηi

)2

N∑
i=1

η2
i

' h(η1) = 1 (2.36b)

At this point it is just a matter of multiplying h−1(α) and h(η1) together in order to

obtain the lowest bound our squeezing parameter can approach:

ξ2
N (~η, ~θ) ≥ min{ξ2

N} ≡
h(η1)

h(α)
=

1

N
=

2

N
(2.37)

As anticipated, when we suppose the operator representing the measure is ~S, it is not

true any more that the squeezing parameter ξ2
N is bounded from below by one. We have

shown that there exists at least one example in which it can approach the value ξ2
N →

2
N ,

so that with a big number of atoms it is a hard task to determine if the system is really

entangled or not. We can now interpret the conditions 2.35a, 2.35b and 2.35c, in order

to understand what happens to the particles when the lowest bound is saturated. Such

limit is reached when our apparatus detects only the first couple of atoms |θ1〉1|−θ1〉2
in the particular state |→〉1|←〉2, all other particles being at the board of the detecting

laser beam (see the next Fig.2.2).
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Figure 2.2: Situation, described in the text, for which the minimum possible squeezing
parameter is reached. There are two particles, well shined by the laser, in the states

|→〉 and |←〉; all the others are barely hit by the beam

It is useless to explain how absurd this behaviour is in the reality; and the model

used for deriving this result is already very unlikely: the symmetries we supposed are

easily broken during the experiment, and the situation described in this section will

never be realized in the laboratory. However, supposing the bound ξ2
N ≥

1
N being true

for a generic separable state (otherwise it can only be lower!), we must admit that it

is impossible to speak about entanglement without measuring a lower value. Thus,

we would like to find some different kind of squeezing parameter, which bound does

not depend on the number of particles constituting the system, easy to measure and

practical experimentally. An attempt will be made in the next section.

2.2 The new parameter ξ2
U

We can try to think why the lower bound of ξ2
N moves from 1 to 2

N when using the new

collective spin operator ~S. As it has been possible to see during Section 2.1.2, this is

intuitively a consequence of the fact that we can loose the presence of all the atoms but

the first couple in the first product term of ξ2
N (see eq.2.36b):

h(~η) =

( N∑
i=1

ηi

)2

N∑
i=1

η2
i

→ h(η1) =
η2

1

η2
1

= 1, (2.38)
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while their presence is well kept in the second product term h(η1 cos θ1, ..., ηN cos θN ). In

fact, in the situation where |θ1〉1|−θ1〉2 = |→〉1|←〉2, we have that even if the coefficient

η1 of the first couple is much bigger than all the others (η1 � ηi for all i = 1, ...,N ), its

contribution can be the same to the ones of all other couples in both (∆Sx)2 and 〈Sz〉
(see eq: 2.36a):

h−1(η1 cos θ1, ..., ηN cos θN )→ h−1(α) =
1

N
(2.39)

Consequently, we would like to multiply our squeezing parameter ξ2
N to some coefficient

able to avoid this undesirable behaviour. A possibility could be to generalize ξ2
N in the

following way:

ξ2
U ≡ ξ2

N

〈S2
z 〉

〈Sz〉2
=

(
N∑
i=1

ηi

)2

N∑
i=1

η2
i

(∆Sx)2〈S2
z 〉

〈Sz〉4
, (2.40)

so that in the critical situation described above, the new factor goes to infinity, keeping

ξ2
U safely bigger than one (as it is easily deduced from section 2.1.2).

Let us think about to the multiplicative factor

〈S2
z 〉

〈Sz〉2
. (2.41)

In the following sections we will largely discuss if it solves the problem we pointed out

previously; now let us describe it more qualitatively:

• How it behaves in the pure, separable state minimizing

ξ2
R = N

∆J2
x

〈Jz〉2
= N

N∑
i=1

(∆jxi)
2

(
N∑
i=1
〈jzi〉

)2 , (2.42)

i.e.: our squeezing parameter with “classical” collective spin operator? Such state

clearly is

|CSS〉 = |↑〉1|↑〉2...|↑〉N−1|↑〉N ; (2.43)

in fact, for such wave vector,

(∆jxi)
2 =

1

4
(2.44a)

〈jzi〉 =
1

2
(2.44b)
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and ξ2
R reaches the lower bound

ξ2
R =

N

N
= 1. (2.45)

What about ξ2
N and ξ2

U? Supposing the symmetries used in section 2.1.2 valid, and

using the results obtained in the same section (in particular eq.2.29a and 2.29b),

we automatically obtain

(∆Sx)2 =
1

2

N∑
i=1

η2
i (2.46a)

〈Sz〉 =

N∑
i=1

ηi (2.46b)

and thus ξ2
N = 1.

For ξ2
U the only missing piece is 〈S2

z 〉, that is given by:

〈S2
z 〉 = 〈

(
N∑
i=1

η̃ijzi

)2

〉 = 4

 N∑
i=1

η2
i 〈j2

zi〉+ 2
∑
i>j

ηiηj〈jzijzj 〉

 =

( N∑
i=1

ηi

)2

(2.47)

Putting all these results together we finally get ξ2
U = 1; i.e.:

ξ2
R = ξ2

N = ξ2
U = 1 (2.48)

In particular the factor

〈S2
z 〉

〈Sz〉2
=

(∑N
i=1 ηi

)2

(∑N
i=1 ηi

)2 = 1, (2.49)

that means that this factor is not correcting the wave vector of eq. 2.43, namely

the one for which the old squeezing parameter is minimized.

• Which is the lower bound for 〈S
2
z 〉

〈Sz〉2 ? It is easy to prove that

〈S2
z 〉

〈Sz〉2
=
〈S2
z 〉 − 〈Sz〉2 + 〈Sz〉2

〈Sz〉2
= 1 +

≥0︷ ︸︸ ︷
(∆Sz)

2

〈Sz〉2
≥ 1 (2.50)

In particular, we already know a state for which this last inequality is saturated:

namely the one described by eq.2.43. Due to eq.2.50, we automatically get that

ξ2
U = ξ2

N

〈S2
z 〉

〈Sz〉2
≥ ξ2

N , (2.51)

that means that ξ2
U cannot take smaller values then ξ2

N .
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In the following section we will study ξ2
U , trying to obtain a useful inequality satisfied by

all separable states. First, we will get an expression for ξ2
U considering the same model

introduced above. Later, we will generalize this result for a generic separable state, and

in conclusion we will prove that under some constraints this parameter is allowed to be

smaller than unity.

2.2.1 ξ2
U in the many atoms model

In this section we will refer to the same situation described in 2.1.2. Thus we can use

the results we obtained there, that means equations 2.29a and 2.29b, and only derive a

comfortable expression for 〈S2
z 〉:

〈S2
z 〉 = 〈

(
N∑
i=1

η̃ijzi

)2

〉 =
N∑

i,j=1

η̃iη̃j〈jzijzj 〉 (2.52)

According to the indices we can distinguish the next three kind of terms in the sum:

1. If i = j they are:

{i = j} ⇒ η̃iη̃j〈jzijzj 〉 = η̃2
i 〈j2

zi〉 =
η̃2
i

4
(2.53)

2. If i = 2k − 1 and j = 2k with k = 1, ...,N = N
2 they are:

{i = 2k − 1, j = 2k} ⇒ η̃iη̃j〈jzijzj 〉 =

= η̃2k−1η̃2k〈jz2k−1
〉〈jz2k〉 =

= η2
k〈θk|Jz|θk〉〈−θk|Jz| − θk〉 =

=
η2
k cos2 θk

4

(2.54)

Here we remember that, due to the symmetry of the problem, we have done the

substitution η̃2k−1 = η̃2k = ηk.

3. In all other cases we have that the terms of the sum are given by:

{i 6= j} ⇒ η̃iη̃j〈jzijzj 〉 = η̃i〈jzi〉η̃j〈jzj 〉 =
η̃i cos θiη̃j cos θj

4
(2.55)

Where θl and η̃l refers respectfully to the particle and the coefficient associated to

the index l.

Now we are able to split the sum in the three corresponding parts. Helped by the

following table,
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Index
(i\j) 1 2 3 4 ... 2N -1 2N

1 11 12 13 14 ... 1(2N -1) 1(2N )
2 21 22 23 24 ... 2(2N -1) 2(2N )
3 31 32 33 34 ... 3(2N -1) 3(2N )
4 41 42 43 44 ... 4(2N -1) 4(2N )
... ... ... ... ... ... ... ...

2N -1 (2N -1)1 (2N -1)2 (2N -1)3 (2N -1)4 ... (2N -1)(2N -1) (2N -1)(2N )
2N (2N )1 (2N )2 (2N )3 (2N )4 ... (2N )(2N -1) (2N )(2N )

Table 2.1: The table represents all possible indices we have in the various sums. We
used different colours and boxes for making evident some contributions of interest, as

explained in the text below. Remember that 2N = N

we can recognize:

1. The diagonal terms (red in Table 2.1); i.e.: the terms for which i = j:

N∑
j=1

η̃2
j

4
=

N∑
i=1

η2
i

2
(2.56)

2. The “jumping” near-diagonal terms (blue in Table 2.1), so defined because

they are all the terms adjacent to the diagonal with i + j = 4k − 1 (with k =

1, ...,N ), thus leaving uncounted their “brothers” with i+ j = 4k + 1:

2
N∑
i=1

η2
i cos2 θi

4
=

1

2

N∑
i=1

η2
i cos2 θi (2.57)

The factor 2 comes from the fact that we are counting both the upper-diagonal

and the lower-diagonal contribution.

3. All other terms (the “boxes” in Table 2.1):

2
N−1∑
i=1

N∑
j=i+1

ηiηj cos θi cos θj (2.58)

The factor 2 derives, again, from the fact that we have upper- and lower-diagonal

indices, while i cannot be equal to N because for i = N the contributions are

already present in the previous eq.2.56 and 2.57. Moreover, the absence of the

factor 4 at the denominator of eq.2.55 is a consequence of the following reason:

removed (by the previous two points, eq.2.56 and eq.2.57) all the red and blue terms

pictured in Table 2.1, we can divide all the remaining indices in 4-dimensional sets

their elements are associated with equal contributions (the “boxes”). In fact,
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always due to the symmetry of the system, we have that

1

4
ηk cos θkηl cos θl =

1

4
η̃2k−1〈jz2k−1

〉η̃2l−1〈jz2l−1
〉 =

=
1

4
η̃2k−1〈jz2k−1

〉η̃2l〈jz2l〉 =

=
1

4
η̃2k〈jz2k〉η̃2l−1〈jz2l−1

〉 =

=
1

4
η̃2k〈jz2k〉η̃2l〈jz2l〉

(2.59)

with k, l = 1, ...,N .

So, for example, for k = 1 and l = 2 we obtain the four terms in the first box, they

contribute to 〈S2
z 〉 with

1

4
η̃1〈jz1〉η̃3〈jz3〉+

1

4
η̃1〈jz1〉η̃4〈jz4〉+

1

4
η̃2〈jz2〉η̃3〈jz3〉+

1

4
η̃2〈jz2〉η̃4〈jz4〉 =

= η1 cos θ1η2 cos θ2.

(2.60)

Thus we can group all this equal contributions in order to obtain the compact form

of eq.(2.58).

We can now collect all the previous results for finally write down 〈S2
z 〉:

〈S2
z 〉 =

1

2

N∑
i=1

η2
i +

1

2

N∑
i=1

η2
i cos2 θi + 2

N−1∑
i=1

N∑
j=i+1

ηiηj cos θi cos θj (2.61)

Now it is just a matter of rewrite it in a more convenient form. First, let us group the

sums in order to get:

〈S2
z 〉 =

1

2

N∑
i=1

η2
i

(
1 + cos2 θi

)
+ 2

N−1∑
i=1

N∑
j=i+1

ηiηj cos θi cos θj =

=
1

2

N∑
i=1

η2
i sin2 θi +

 N∑
i=1

η2
i cos2 θi + 2

N−1∑
i=1

N∑
j=i+1

ηiηj cos θi cos θj

 (2.62)

At this point it is easy to note that the term in parentheses in the last line of the previous

equation is actually

N∑
i=1

η2
i cos2 θi + 2

N−1∑
i=1

N∑
j=i+1

ηiηj cos θi cos θj =

( N∑
i=1

ηi cos θi

)2

, (2.63)

so that, in conclusion:

〈S2
z 〉 =

( N∑
i=1

ηi cos θi

)2

+
1

2

N∑
i=1

η2
i sin2 θi (2.64)
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We arrived to the point in which we possess all the elements for determining the partic-

ular form of ξ2
U in the considered model. We have that:

ξ2
U = ξ2

N

1 +
(∆Sz)

2

〈Sz〉2︸ ︷︷ ︸
=
〈S2z〉
〈Sz〉2

 = ξ2
N

1 +
1

2

N∑
i=1

η2
i sin2 θi( N∑

i=1
ηi cos θi

)2

 , (2.65)

or, in a more explicit form:

ξ2
U

(
~η; ~θ
)

=


( N∑
i=1

ηi

)2

N∑
i=1

η2
i

N∑
i=1

η2
i cos2 θi( N∑

i=1
ηi cos θi

)2


1 +

1

2

N∑
i=1

η2
i sin2 θi( N∑

i=1
ηi cos θi

)2

 , (2.66)

where, as before, ~x indicates the N -dimensional vector of real numbers.

In the following we will obtain a (very) similar result for a generic separable state,

and then we will prove that the new parameter can take, for some particular states,

values smaller than one.

2.2.2 Separable states

Suppose we have to deal with a generic separable state described by the density matrix

ρ =
∑
k

pkρk =
∑
k

pkρk1 ⊗ ...⊗ ρkN . (2.67)

Here ρki , for i = 1, ..., N refers to the i-th particle, while pk’s are positive real numbers

satisfying
∑

k pk = 1.

Now we need to follow the well known procedure: find, for this state, equations for

(∆Sx)2, 〈Sx〉, 〈Sz〉 and 〈S2
x〉 and use these results for writing down ξ2

U (ρ).

2.2.2.1 ξ2
U for separable states

The “ingredients” we need are the common ones:

• The variance of the collective spin measurement operator along the x direction

(∆Sx)2:
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(∆Sx)2 = Tr
(
ρS2

x

)
− Tr2 (ρSx) =

∑
k

pkTr
(
ρkS

2
x

)
−

[∑
k

pkTr (ρkSx)

]2
†
≥

†
≥
∑
k

pk

{
Tr
(
ρkS

2
x

)
− [Tr (ρkSx)]2

}
,

(2.68)

where for the inequality marked with † we used again lemma 1.

Let us introduce the new notation 〈A〉k ≡ Tr (ρkA), for a generic hermitian oper-

ator A; we can thus rewrite the last term in the curly parentheses as:

{
Tr
(
ρkS

2
x

)
− [Tr (ρkSx)]2

}
= 〈

(
N∑
i=1

ηijxi

)2

〉k − 〈
N∑
i=1

ηijxi〉2k
††
=

††
=

N∑
i=1

η2
i 〈j2

xi〉k +
∑
i 6=j

ηiηj〈jxi〉k〈jxj 〉k −

 N∑
i=1

η2
i 〈jxi〉2k +

∑
i 6=j

ηiηj〈jxi〉k〈jxj 〉k

 =

=
N∑
i=1

η2
i (∆jxi)

2
k

(2.69)

Here for equality †† we used the property 〈jxijxj 〉k = Tr(ρkjxi⊗ jxj ) = Tr(ρkjxi)×
Tr(ρkjxj ) = 〈jxi〉k〈jxj 〉k, whenever i 6= j. Moreover we defined (∆jxi)

2
k = 〈j2

xi〉k −
〈jxi〉2k.
We can now collect the two previous results in order to obtain

(∆Sx)2 ≥
∑
k

pk

N∑
i=1

η2
i (∆jxi)

2
k (2.70)

• The average value of the collective spin measurement operator 〈Sz〉:

〈Sz〉 = Tr

(∑
k

pkρkSz

)
=
∑
k

pkTr

(
ρk

N∑
i=1

ηijzi

)
=
∑
k

pk

N∑
i=1

ηi〈jzi〉k (2.71)
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• The average value 〈S2
z 〉:

〈S2
z 〉 = Tr

(∑
k

pkρkS
2
z

)
=
∑
k

pkTr

ρk N∑
i,j=1

ηiηjjzijzj

 =

=
∑
k

pk

N∑
i,j=1

ηiηj〈jzijzj 〉k
†
=
∑
k

pk

 N∑
i=1

η2
i (∆jzi)

2
k +

(
N∑
i=1

η2
i 〈jz〉k

)2
 ††≥

††
≥
∑
k

pk

N∑
i=1

η2
i (∆jzi)

2
k +

(∑
k

pk

N∑
i=1

η2
i 〈jz〉k

)2

,

(2.72)

where relation †† follows from Jensen’s inequality and equality † is a direct conse-

quence of

N∑
i,j=1

ηiηj〈jzijzj 〉k =

N∑
i=1

η2
i 〈j2

zi〉k −
N∑
i=1

η2
i 〈Jz〉2k +

N∑
i=1

η2
i 〈Jz〉2k +

∑
i 6=j

ηiηj

=〈jzi 〉k〈jzj 〉k︷ ︸︸ ︷
〈jzijzj 〉k =

=

N∑
i=1

η2
i (∆jzi)

2
k +

(
N∑
i=1

η2
i 〈Jz〉k

)2

(2.73)

We are finally able to write down ξ2
U ; or, better, a first lower bound for it (due to the

inequality in eq.2.70):

ξ2
U (ρ) ≥

≥

(
N∑
i=1

ηi

)2

N∑
i=1

η2
i

{∑
k

pk
N∑
i=1

η2
i (∆jxi)

2
k

}{(∑
k

pk
N∑
i=1

ηi〈jzi〉k
)2

+
∑
k

pk
N∑
i=1

η2
i (∆jzi)

2
k

}
(∑

k

pk
N∑
i=1

ηi〈jzi〉k
)4 =

=

(
N∑
i=1

ηi

)2

N∑
i=1

η2
i

{∑
k

pk
N∑
i=1

η2
i (∆jxi)

2
k

}
(∑

k

pk
N∑
i=1

ηi〈jzi〉k
)2

1 +

∑
k

pk
N∑
i=1

η2
i (∆jzi)

2
k(∑

k

pk
N∑
i=1

ηi〈jzi〉k
)2


(2.74)

Let us briefly look at some properties of the function in the right hand side of the previ-

ous equation. Obviously all the terms are positive, both at numerator and denominator,

so that we can deduce ξ2
U ≥ 0. Moreover, there is a family of points where the function

is not well defined, since the denominator takes null value. Clearly these points are

given by
∑
k

pk
N∑
i=1

ηi〈jxi〉k = 0, and the squeezing parameter is, for such values, going to

infinity. We can already say that 0 ≤ ξ2
U ≤ ∞.
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Now it is just a matter of proving that there exists some critical state for which our

new squeezing parameter approaches zero. This is the main goal of the next subsection,

where we first try to give some clue about the behaviour of ξ2
U , in order to find such

state, and later we will prove it can take values smaller than one.

2.2.2.2 Finding (some) critical states for which ξ2
U < 1

Here we will proceed gradually; at first we will prove that the state |ψ〉 = |↑〉⊗N is

a local minimum for which ξ2
U

(
|↑〉⊗N

)
= 1. This will be useful later, when we will

study the derivative of our squeezing parameter. In fact, we will try to identify different

stationary points, one of these being given by |↑〉⊗N . Some of the others will be used

for determining states for which ξ2
U (ρ)� 1.

• ξ2
U

(
|↑〉⊗N

)
= 1, and in this state the function takes a local minimum.

The equality has already proven in section 2.2, eq.2.48; we only need to show

it is a local minimum.

Let us suppose 〈jzi〉k = 1
2 − εi,k, where εi,k is a positive real number for all k

positive integers and i = 1, ..., N . Notice that we do not allow any of the εi,k to

be negative due to physical consideration. We thus have:

〈jzi〉k =
1

2
− εi,k (2.75a)

(∆jzi)
2
k = 〈j2

zi〉k − 〈jzi〉
2
k =

1

4
−
(

1

2
− εi,k

)2

= εi,k − ε2i,k ' εi,k (2.75b)

(∆jxi)
2
k = 〈j2

xi〉k − 〈jxi〉
2
k =

1

4
− 〈jxi〉2k

†
≥ 1

4
− εi,k + ε2i,k '

1

4
− εi,k (2.75c)

In the last of the three equations, the inequality marked with † is a consequence

of the quantum mechanical property

〈jxi〉2k + 〈jzi〉2k ≤
1

4
(2.76)

that automatically implies 〈jxi〉2k ≤
1
4 − 〈jzi〉

2
k = εi,k − ε2i,k.

At this point, putting equations 2.75a, 2.75b and 2.75c in eq.2.74 we can express
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ξ2
U as a function of εi,k and try to find a lower bound for it:

ξ2
U ({εi,k}) ≥

≥

(
N∑
i=1

ηi

)2

N∑
i=1

η2
i


∑
k

pk
N∑
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η2
i

(
1
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)
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k

pk
N∑
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ηi
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1
2 − εi,k

))2


1 +

∑
k

pk
N∑
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η2
i εi,k(∑

k

pk
N∑
i=1

ηi
(

1
2 − εi,k

))2

 '

'

(
N∑
i=1

ηi

)2

N∑
i=1

η2
i


N∑
i=1

η2
i(

N∑
i=1

ηi

)2


1 +

4
∑
k

pk
N∑
i=1

η2
i εi,k(

N∑
i=1

ηi

)2

 =

= 1 +

4
∑
k

pk
N∑
i=1

η2
i εi,k(

N∑
i=1

ηi

)2 ≥ 1

(2.77)

Notice that, even if we showed that |↑〉⊗N is a local minimum for ξ2
U (ρ), it is not,

in one “non-physical” situation, a stationary point! In fact, outside the domain

allowed by quantum mechanics and in a neighbourhood of |↑〉⊗N , ξ2
U (εi,k) as in

eq.2.77 can take values smaller than one. The difference from before is that here the

εi,k are allowed to take negative values, that means that particles can be described

by a non physical spin vector longer than one half: ‖〈~ji〉‖ > 1
2 for some i. For

example, take p1 = 1, ε1,1 < 0 and εi,k = 0 for all k bigger than 2 and i = 2, ..., N .

Then, supposing the equality in eq.2.76 (that means 〈Jy〉 = 0), we have that the

first inequality in eq.2.77 is saturated and thus:

ξ2
U (εi,k) = 1 +

4
∑
k

pk
N∑
i=1

η2
i εi,k(

N∑
i=1

ηi

)2 = 1−
4
∑
k

pk
N∑
i=1

η2
i |εi,k|(

N∑
i=1

ηi

)2 < 1 (2.78)

This behaviour of our squeezing parameter suggests us how to proceed for finding

the derivative of the new squeezing parameter. We want to express ξ2
U (ρ) in

function of only one (class of) variable, namely 〈jzi〉k. We have just seen that

when such variables are allowed to vary outside their domain imposed by quantum

mechanics, we loose stationary points; this advise us for next substitution:
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• Let us rewrite ξ2
U substituting 〈jzi〉k with 1

2 cos θi,k. From eq.2.74 we get:

ξ2
U (ρ)

†
≥

=

(
N∑
i=1

ηi

)2

N∑
i=1

η2
i

∑
k

pk
N∑
i=1

η2
i cos2 θi,k(∑

k

pk
N∑
i=1

ηi cos θi,k

)2

1 +

∑
k

pk
N∑
i=1

η2
i sin2 θi,k(∑

k

pk
N∑
i=1

ηi cos θi,k

)2

 ≡
≡ ξ̃2

U ({ηi} , {θi,k})

(2.79)

For obtaining this expression, in the inequality marked with †, we used eq.2.76,

that in this context gives:

(∆jxi)
2
k = 〈j2

xi〉k − 〈jxi〉
2
k =

1

4
− 〈jxi〉2k ≥ 〈jzi〉2k =

1

4
cos2 θi,k (2.80)

The intervals in which our variables are allowed to vary are clearly (0, 1] for the ηi

and [0, π] for the θi,k, for all k and i = 1, ..., N . The reason for which the domains

of the ηi have to be like these is the same as explained in section 2.1.1, while

for the θi,k, being connected with the spin of particles along the z direction, the

boundaries are deriving from quantum mechanics. Here we recall that the function

ξ̃2
U ({ηi} , {θi,k}) is positive and continuous almost everywhere, being singular in

all the points such that (
∑

k pk
∑

i ηi cos θi,k)
2 = 0. There it goes to infinity, so

that we already have 0 ≤ ξ̃2
U ({ηi} , {θi,k}) ≤ ∞.

Let us now compare the two equations 2.79 and 2.66. The first one is more general,

describing a generic separable state, and reduces to the second one in the specific

model considered in section 2.2.1. We can now proceed with taking the derivative

with respect to one of the {θi,k}, supposing the {ηi} to be fixed.

• First, let us restrict the domain of the θi,k to [0, π2 ], for all k, i = 1, ..., N . We

are allowed to do this, because whenever the variables 〈jzi〉k = 1
2 cos θi,k take

different signs, we necessarily get an increase of ξ̃2
U ({θi,k}). This is a straight-

forward conclusion we can take from eq. 2.74; the numerator is not affected by

these changes of signs, while the denominator necessarily decreases. Moreover,

since ξ̃2
U ({θi,k}) = ξ̃2

U ({−θi,k}), we can consider for the {θi,k} only the interval for

which cos θi,k ≥ 0, that exactly is the one we wrote before.
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• Now, let us suppose ηi fixed for all i = 1, ..., N and rewrite ξ̃2
U ({ηi} , {θi,k}) using

the following substitutions:

x ({θi,k}) ≡
∑
k

pk

N∑
i=1

η2
i cos2 θi,k > 0 (2.81a)

y ({θi,k}) ≡

(∑
k

pk

N∑
i=1

ηi cos θi,k

)2

> 0 (2.81b)

a ≡
N∑
i=1

η2
i > 0 (2.81c)

b ≡

(
N∑
i=1

ηi

)2

> 0 (2.81d)

where we decided to ignore the cases x = 0 and y = 0, since the squeezing pa-

rameter is singular in such point. All other terms are strictly positive due to their

definitions.

Equation 2.79 takes now the form:

ξ̃2
U (x, y) =

b

a
x

(
a− x+ y

y2

)
, (2.82)

where we have to remember that the dependence over the {θi,k} is kept inside

x ({θi,k}) and y ({θi,k}). What we can now easily do is to obtain the derivative of

the squeezing parameter with respect to θj,l:

∂ξ̃2
U ({θi,k})
∂θj,l

=
∂ξ̃2

U (x, y)

∂x

∂x ({θi,k})
∂θj,l

+
∂ξ̃2

U (x, y)

∂y

∂y ({θi,k})
∂θj,l

=

=
b

a


a− 2x+ y

y2

∂x

∂θj,l︸ ︷︷ ︸
A

+
x(2x− y − 2a)

y3

∂y

∂θj,l︸ ︷︷ ︸
B


(2.83)

Remember we are looking for the stationary points, that means all the {θi,k} for

which eq.2.83 is null. Now, since b
a is always strictly bigger than zero, this can

only be verified if A = B = 0 or A = −B for all θj,l. Let us check, case by case,

all the possibilities:

• Starting with the easiest one, A = B = 0, we get that the two conditions:

(a− 2x+ y)
∂x

∂θj,l
= 0 (2.84a)

(2x− y − 2a)
∂y

∂θj,l
= 0 (2.84b)
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have to be verified simultaneously for all θj,l. Here we used the facts that x and y

are bigger than zero.

Notice that both equations 2.84a and 2.84b, as products of two terms, can be

satisfied in two different ways. With an argument that will be given shortly, it is

possible to show that we can rewrite these conditions as:

∂x

∂θj,l
= −2plη

2
j cos θj,l sin θj,l = 0 (2.85a)

∂y

∂θj,l
= −2plηj sin θj,l

∑
k

pk

N∑
i=1

ηi cos θi,k︸ ︷︷ ︸
>0

= −2plηj
√
y sin θj,l = 0 (2.85b)

for all θj,l. It is now easy to conclude that, imposing A = B = 0, we necessarily

must have sin θj,l = 0 for all l, j = 1, ..., N . In other words, the only separable state

satisfying this is the pure state |↑〉⊗N . This is not a surprise, because we already

showed that such wave vector identifies a stationary point (and in particular a

local minimum) for our new squeezing parameter.

Consider now the two other conditions

(a− 2x+ y) = 0 (2.86a)

(2x− y − 2a) = 0, (2.86b)

taken from equations 2.84a and 2.84a. We will now prove that, whenever one of

them is verified, ξ̃2
U ({θi,k}) cannot take values less than one. Let us start by the

first one (eq. 2.86a); in this case we would obtain

ξ̃2
U (x, y) =

b

a

x2

(2x− a)2 =

(
N∑
i=1

ηi

)2

N∑
i=1

η2
i


∑
k

pk
N∑
i=1

η2
i cos2 θi,k

∑
k

pk
N∑
i=1

η2
i

(
cos2 θi,k − sin2 θi,k

)


2

(2.87)

Now we can notice that, since

0 ≤
∑
k

pk

(
N∑
i=1

ηi cos θi,k

)2

= y = 2x− a =
∑
k

pk

N∑
i=1

η2
i

(
cos2 θi,k − sin2 θi,k

)
,

(2.88)
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we necessarily have that 0 ≤
∑
k

pk
N∑
i=1

η2
i

(
cos2 θi,k − sin2 θi,k

)
≤
∑
k

pk
N∑
i=1

η2
i cos2 θi,k,

so that, in conclusion:

ξ̃2
U (x, y) =

(
N∑
i=1

ηi

)2

N∑
i=1

η2
i


∑
k

pk
N∑
i=1

η2
i cos2 θi,k

∑
k

pk
N∑
i=1

η2
i

(
cos2 θi,k − sin2 θi,k

)


2

≥

(
N∑
i=1

ηi

)2

N∑
i=1

η2
i

≥ 1

(2.89)

If we now look at eq.2.86b,we easily obtain that there exists no possible choice of

the angles {θi,k} for satisfying 2x − y − 2a = 0 (i.e.: 2(x − a) = y). In fact, this

equation can be read as

0 > −2
∑
k

pk

N∑
i=1

η2
i cos2 θi,k = 2(x− a) = y =

(∑
k

pk

N∑
i=1

ηi cos θi,k

)2

> 0,

(2.90)

that is clearly impossible.

• Let us now consider the hardest case, in which we have A + B = 0 in eq.2.83.

Writing explicitly derivatives ∂x
∂θj,l

and ∂y
∂θj,l

we can get that

∂ξ̃2
U

∂θj,l
= −

2plηj sin θj,l
y2

b

a

(
(a− 2x+ y) ηj cos θj,l +

x(2x− y − 2a)
√
y

)
= 0. (2.91)

Since we excluded the cases in which a − 2x + y = 0 and 2x − y − 2a = 0 (for

the reasons explained above), the only possible way for obtaining the equality is

to have satisfied one of the two conditions

sin θj,l = 0 (2.92a)

ηj cos θj,l =
x
√
y

2x− y − 2a

2x− y − a
(2.92b)

for all l, j = 1, ..., N .

Now, if eq.2.92a is always verified, we reduce to the case above. Thus, we can

restrict ourselves to study the other two cases allowed by previous equations. The

first one is given by eq.2.92b satisfied for all l, j = 1, ..., N ; while the second one

by eq.2.92a satisfied for some indices and eq.2.92b for all the others.

In particular, it is possible to prove that the previous one gives no solution, while

the last one can provide the global minimum of the function (depending on the

coefficients ~η). However, since such minimum is very hard to be found, we will

restrict ourselves to eq.2.92b only, in a way that will be clear in the following.

• Suppose that eq.2.92b is valid for all l, j = 1, ..., N . It is possible to see that,

as consequence, we need the condition ηj cos θj,l = λ (being 0 < λ ≤ 1 a real
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number) to be verified for all l, j = 1, ..., N . In fact eq.2.92b, once we substitute

the corresponding expressions for x ({θi,k}), y ({θi,k}), a and b, reads:

ηj cos θj,l =

∑
k

pk
N∑
i=1

η2
i cos2 θi,k

∑
k

pk
N∑
i=1

ηi cos θi,k

×

×


2
∑
k

pk
N∑
i=1

η2
i cos2 θi,k −

(∑
k

pk
N∑
i=1

ηi cos θi,k

)2

− 2
N∑
i=1

η2
i

2
∑
k

pk
N∑
i=1

η2
i cos2 θi,k −

(∑
k

pk
N∑
i=1

ηi cos θi,k

)2

−
N∑
i=1

η2
i


(2.93)

Now, since we get exactly the same equation for all l, j = 1, ..., N , we can conclude

that the only possible way for eq.2.93 to be verified is that ηj cos θj,l = λ, for some

real λ between zero and one, as said before.

However, this is not a stationary point; in fact, if we impose this constraint to

eq.2.93, we would get (Remember
∑

k pk = 1):

λ =
Nλ2

Nλ


2Nλ− (Nλ)2 − 2

N∑
i=1

η2
i

2Nλ− (Nλ)2 −
N∑
i=1

η2
i

 , (2.94)

that after simple algebraical passages becomes equivalent to the equation

N∑
i=1

η2
i = 0, (2.95)

that clearly is impossible, due to the restrictions we have over ~η. Notice we decided

to neglect the case λ = 0, since in such case the function ξ̃2
U (x, y) is not well defined

and approaches infinite.

• Therefore the only possibility for having some stationary point in which ξ̃2
U takes

values smaller than one is in the mixed situation in which both equations 2.92a and

2.92b are satisfied, one over some indices and the other over all others. However,

since this case is particularly hard to be treated, we will restrict ourself to the

previous one, where all contributes ηj cos θj,l are the same and given by λ. In fact,

even if this is not a stationary point, and thus a (global) minimum, we can prove

that for the appropriate choice of the coefficients ~η, it takes the new squeezing

parameter to values they are smaller than one.

For the sake of completeness, we add that a minimum can be found putting, for

example, η1 = 1, ηi = x for i = 2, ..., N , θ1,k = y for all k and θi,k = 0 for all k,

i = 2, ..., N . Here both x and y are allowed to vary between zero and one, but will
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turn out that the minimum is reached for a very small (but not null) value of x

and a y that approaches (but never equals) π
2 .

Before proceeding, let us summarize what we just obtained. At first, we get an ex-

pression for the new squeezing parameter ξ2
U (ρ) when we are dealing with separable

states described by a density matrix ρ. Subsequently, we were able to find a lower

bound for it that we called ξ̃2
U (ρ), and expressed this new function using the substitu-

tion 〈jzi〉k → 1
2 cos θi,k. This way, we restricted ourselves to remain in the boundaries

imposed by quantum mechanics, and at the same time we obtained a periodic function

ξ̃2
U ({θi,k}) in the variables {θi,k}. Due to its periodicity, positivity and continuity con-

siderations, we can deduce that the minimum of this function lies in one of its stationary

points. One of these is the state |↑〉⊗N , for which ξ̃2
U

(
|↑〉⊗N

)
= 1, while the others are

hard to find exactly. However we suspect that one is not the lower bound of ξ̃2
U ! This

will be shown in the following section, where we will prove, using our champion state

for which all ηi cos θi,k equals λ, that ξ̃2
U � 1 for a proper choice of ~η.

2.2.2.3 A formal proof that ξ2
U � 1

As said right before, let us consider the state characterized by

ηi cos θi,k = λ for all k, i = 1, ..., N, (2.96)

where 0 < λ ≤ 1. This state does not identify a minimum, but will approach to for an

intelligent choice of the coefficients {ηi}.
As a consequence of eq.2.96, we can rewrite ξ̃2

U ({θi,k} , {ηi}) as (see eq.2.79):

ξ̃2
U (~η, λ) =

(
N∑
i=1

ηi

)2

N∑
i=1

η2
i

1

N

1 +

N∑
i=1

η2
i

N2λ2
− 1

N

 (2.97)

Before determining explicitly the value of this function, we need to perform a little step

further. Namely, find λ for which ξ̃2
U takes the smallest possible value. This goal is

obviously reached with the biggest λ, that we supposed to be 1. But notice that λ is

not independent from the {ηi}; in fact it has to take some value that can be reached by

all the product terms ηi cos θi,k! Now, since the cosine is limited upward by unity, it is

easy to see that the actual boundary in which λ is allowed to vary is

(
0, min
i=1,...,N

{ηi}
]
.

Thus, supposing the minimum of the coefficients ηi is ηl ≡ min
i=1,...,N

{ηi}, we finally get
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that eq.2.97 becomes

ξ̃2
U (~η, λ) =

(
N∑
i=1

ηi

)2

N∑
i=1

η2
i

1

N

1 +

N∑
i=1

η2
i

N2η2
l

− 1

N

 (2.98)

In the following we will introduce a model, inspired by the experimental physics but

efficient and intelligent for what is our purpose as well, for the description of the ηi’s.

This way we can prove not only that ξ̃2
U can take values smaller than one, but also that

this happens in the ordinary laboratory life.

Suppose we have N atoms, each one associated with a coefficient ηi, in a two dimensional

box of width L. Now, in practice, the particles inside it are trapped with some appro-

priate (electrical) potential, but for simplicity we will assume that they are uniformly

distributed inside the box. Moreover we imagine the laser runs in the middle of the box,

hitting it in L
2 , as it is possible to see in the following picture:

L

Figure 2.3: Experimental setup made by a box of width L, hit by a Gaussian laser
in its middle. The particles’ distribution is uniform in the box; the quantity of interest

is the atomic distance from the symmetry axis of the beam

Since we are interested in how much such laser hits the particles, we want to know

at which distance from the axis of the beam the atoms lie. Of course, as follows from

our hypothesis, the probability distribution p̃(x) describing the position x of any atom
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with respect to such axis is constant, and in particular equals 1
L :

p̃(x) =

0 if |x| > L

1
L if |x| ≤ L

(2.99)

At this point we have to assign to these particles the coefficients ηi, that have to be

strictly bigger than zero and less or equal to one. We can try to describe the laser

intensity with a Gaussian function, peaked in the middle of the box and decreasing

towards it. According to this model, given an atom in x, its coefficient η would be

η(x) = e−
x2

α2 , (2.100)

where α is a positive real parameter describing the Gaussian. Which is the probability

distribution function p(η) for the coefficient η? As it is possible to see from the following

figure,

Figure 2.4: Gaussian function η(x) = e−
x2

α2 , for α = 0.4. Here we also supposed
L = 1, that changes the limits between x is allowed to vary (x ∈

[
−L2 ,

L
2

]
), but does

not affect the shape of the function η(x)

we have that η is included between η0 and η0 +dη whenever the atom finds itself between

x1 and x1 + dx1 or x2 and x2 + dx2. Here dx1 is positive and dx2 negative. In other

words:

p(η)dη = p̃(x1)dx1 − p̃(x2)dx2 = 2p̃(x1)dx1 =
2

L
dx1, (2.101)

where we used symmetry of both the Gaussian function and p̃(x) about the centre; we

arbitrarily decided to keep x1 instead of x2. Notice that, as it is clear from Fig.2.4,

dx1 = −dx2.
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It is important to point out that, due to the restrictions over x, η is allowed to vary in

the range
[
e−

1
4ν2 , 1

]
, being ν the positive parameter defined by ν = α

L .

Now we are capable to obtain the probability distribution function p(η); in fact, from

eq.2.101, we obtain that:

p(η) =
2

L

dx1

dη
= − 2

L

dx2

dη
. (2.102)

The inverse function that gives x depending on η is

x(η) =


√
−α2 log(η) = x2(η) if x is positive, e−

1
4ν2 ≤ η ≤ 1

−
√
−α2 log(η) = x1(η) if x is negative, e−

1
4ν2 ≤ η ≤ 1

(2.103)

We can now take the derivatives of x1 and x2 with respect to η and obtain

dx1

dη
=

α

2η
√
− log(η)

= −dx2

dη
, (2.104)

so that, in conclusion:

p(η) =


ν

η
√
− log(η)

if e−
1

4ν2 ≤ η ≤ 1

0 if η < e−
1

4ν2 or 1 < η.
(2.105)

We remember here that L represents the width of the box in which the particles lie, α is

the parameter describing the Gaussian function (and henceforth the laser), and ν = α
L .

We want to remark that p(η) is, indeed, a good definition for a probability distribution

function; we can easily check the normalization by

∞∫
−∞

p(η)dη =

1∫
e
− 1

4ν2

ν

η
√
− log(η)

dη = 1. (2.106)

At this point, since it will become useful later, let us derive the probability distribution

function p(η2) for η2. It is just a matter of following the same steps as before; the

only difference is that here the Gaussian function we used in eq.2.100 is elevated to the

square:

η2(x) =

(
e−

x2

α2

)2

= e−
2x2

α2 . (2.107)

This allows η2 to vary in the bigger interval
[
e−

1
2ν2 , 1

]
and thus takes us to

p(η2) =


ν

η2
√
−2 log(η2)

if e−
1

2ν2 ≤ η ≤ 1

0 if η < e−
1

2ν2 or 1 < η.
(2.108)
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Having the probability distribution functions for both η and η2 it is now easy to deter-

mine the expected values η̄ and η̄2:

η̄ =

∞∫
−∞

ηp(η)dη = ν

1∫
e
− 1

4ν2

dη√
− log η

=
√
πν erf

(
1

2ν

)
(2.109a)

η̄2 =

∞∫
−∞

η2p(η2)dη2 = ν

1∫
e
− 1

2ν2

dη2√
−2 log η2

=

√
π

2
ν erf

(
1√
2ν

)
, (2.109b)

where erf(x) is the error function

erf(x) =
2√
π

x∫
0

e−t
2
dt (2.110)

So we have now all the ingredients to test our new squeezing parameter and show how

it fails. This can be done directly by generating random coefficients {ηi} according to

eq.2.105, or more analytically using the central limit theorem:

Theorem 1. Let {X1, X2, ...} be a sequence of independent and identically distributed

random variables, and define the sample average

SN (Xi) =

N∑
i=1

Xi

N
. (2.111)

Moreover, suppose these random variables have expected value and variance respectively

given by E[Xi] = X̄i and V ar[Xi] = σ2. Then as N approaches infinity, the random

variables (SN (Xi)− µ) converge in distribution to the normal that has null average and

variance given by N · σ2.

In fact, looking at eq.2.98, we are now able to estimate all terms in the right hand side.

First, let us take ηl = e−
1

4ν2 , that is a good approximation for the lowest possible coeffi-

cient ηl = min
i=1,..,N

ηi. In particular, e−
1

4ν2 approaches ηl from below, that is an essential

characteristic for λ, as we have seen before (0 ≤ λ ≤ ηl).
Let us look more properly into the sums

∑N
i=1 ηi and

∑N
i=1 η

2
i . If we suppose all the

coefficients ηi to be independent one from the other, then we can consider them as inde-

pendent and identically distributed random variables. Then we are satisfying hypotheses
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of theorem 1 and can conclude that, as N approaches infinity,

SN (η)− η̄ =

N∑
i=1

ηi

N
− η̄ → 0 (2.112a)

SN (η2)− η̄2 =

N∑
i=1

η2
i

N
− η̄2 → 0 (2.112b)

In other words, slightly modifying these last two equations and supposing the equality

to zero:

N∑
i=1

ηi = Nη̄ (2.113a)

N∑
i=1

η2
i = Nη̄2 (2.113b)

We can now put these last results in equation 2.98, and obtain a function depending

only on the number of particles N and on the fraction ν = α
L :

ξ̃2
U (ν,N) =

(Nη̄)2

Nη̄2

1

N

{
1 +

Nη̄2

N2e−
1

2ν2

− 1

N

}
=

=

√
2πν erf2

(
1
2ν

)
erf
(

1√
2ν

)
1 +

√
πν erf

(
1√
2ν

)
√

2Ne−
1

2ν2

− 1

N


(2.114)

We can now plot this function, in order to see how it behaves:

10

×105

8

N

6

4

2

0.10.20.30.40.5

ν
0.60.70.80.91

0.85

0.8

0.75

0.7

0.6

0.65

0.55

0.95

0.9

1

ξ̃
2 U

ξ̃2U (ν,N)

Figure 2.5: Plot of the function ξ̃2
U (ν,N), obtained using eq.2.114

As it is possible to see, ξ̃2
U (ν,N) becomes smaller than one in almost all the chosen do-

main. In fact, except for very small values of ν, whenever N is big enough ξ̃2
U (ν,N) < 1
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always.

Let us look a little more in detail to the properties of ξ̃2
U (ν,N):

• In the limit ν → 0 we obviously have (from the definition of the error function)

that

erf

(
1

2ν

)
→ 1 (2.115a)

erf

(
1√
2ν

)
→ 1, (2.115b)

so that

ξ̃2
U (ν → 0, N) '

√
2πν

{
1 +

√
πνe

1
2ν2

√
2N

− 1

N

}
→∞ (2.116)

forN fixed. This is not really surprising, since we modified the squeezing parameter

ξ2 with the factor 〈S
2
z 〉

〈Sz〉2 for avoiding the bad behaviour of ξ2 whenever we had few

ηi much bigger than all the others (like here). What we did not expect, is that it

is still possible, for ξ2
U , to take values smaller than one, as showed by Fig.2.5.

• In the limit ν →∞ we can rewrite the error function erf(x) using its series expan-

sion:

erf(x) =
2√
π

∞∑
n=0

(−1)nx2n+1

n!(2n+ 1)
'
x→0

2√
π
x (2.117)

Putting eq.2.117 in eq.2.114 we can now obtain that

ξ̃2
U (ν →∞, N) ' 1− 1

N
+

1

N
= 1, (2.118)

in concordance with Fig.2.5. This tells us that, taking the coefficients {ηi} dis-

tributed according to p(η) and assuming ηi cos θi,k = λ for all k, i = 1, ..., N , it is

actually easy to obtain a value for ξ̃2
U that is smaller than one.

How much smaller? This is the next and final step we will do in this section, where

we will derive ξ̃2
U (ν,N) with respect to ν and N , in order to discover where is the

global minimum of the function.

Let us go back to eq.2.114. In order to discover its minimum, let us derive it, first with

respect to N and subsequently to ν.

∂ξ̃2
U (ν,N)

∂N
= − 1

N2


√

2πν erf2
(

1
2ν

)
erf
(

1√
2ν

)
︸ ︷︷ ︸

A

√πν erf
(

1√
2ν

)
√

2e−
1

2ν2

− 1


︸ ︷︷ ︸

B

 (2.119)
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Let us now point out that both terms A and B are bigger than zero, the first one as

a consequence of the positivity of the error function in the considered domain (ν ≥ 0),

while for the second it follows from a little more accurate analysis we don’t report here.

As a consequence of the positivity of A, B and N2 we can conclude that the derivative
∂ξ̃2U (ν,N)

∂N is negative everywhere, and thus that ξ̃2
U (ν,N) decreases whenever N increases.

Conversely, once we focus our attention on ν, we are able to find a stationary point that

is a minimum as well. This can be qualitatively deduced analysing the plot in Fig.2.5,

where is clear that, once we fixed N � 1, there exists a value of ν that minimizes the

function. Let us write the derivative with respect to ν:

∂ξ̃2
U (ν,N)

∂ν
=

e−
1

2ν2 erf
(

1
2ν

)
Nν erf2

(
1√
2ν

)×
×
{
− 2e−

1
4ν2 erf

(
1√
2ν

)[√
2(N − 1) + e

1
2ν2
√
πν erf

(
1√
2ν

)]
+ erf

(
1

2ν

)
×

×
[
2(N − 1) + e

1
2ν2 (N − 1)

√
2πν erf

(
1√
2ν

)
+ e

1
ν2 π(2ν2 − 1) erf2

(
1√
2ν

)]}
(2.120)

Whatever it means, we can ask a calculator to solve it numerically in a positive neigh-

bourhood of zero (where we think the minimum lies), and obtain the approximate value

νMin that minimizes the function ξ̃2
U (ν,N) whenever N is fixed. In the following Fig.2.6,

we plotted the function ξ̃2
U (ν = νMin, N), that represents the minimum value that our

squeezing parameter can reach in the used hypotheses and with N fixed.

N ×106

1 2 3 4 5 6 7 8 9 10

ξ̃
2 U

0.15

0.2

0.25

0.3

ξ̃2U (νMin,N)

Figure 2.6: Plot of the function ξ̃2
U (νMin, N)

We would like to make a last comment before passing to the next argument. More
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in detail, we want to show that ξ̃2
U (ν,N) → 0 asymptotically. Let us rewrite the func-

tion

ξ̃2
U (ν,N) =

√
2πν erf2

(
1
2ν

)
erf
(

1√
2ν

)
︸ ︷︷ ︸

C

1 +

√
πν erf

(
1√
2ν

)
√

2Ne−
1

2ν2

− 1

N

︸ ︷︷ ︸
D

, (2.121)

putting in evidence the two factors C and D. If we now study these two terms in some

limits of interest, we get that

D = 1 +

√
πν erf

(
1√
2ν

)
√

2Ne−
1

2ν2

− 1

N
→

N→∞
1, (2.122)

while for C we obtain

C =

√
2πν erf2

(
1
2ν

)
erf
(

1√
2ν

) '
ν→0

√
2πν → 0. (2.123)

The limit ν → 0 has been studied before, in eq.2.116, where we proved that ξ̃2
U (ν → 0, N)→

∞ for a fixed N . But if we look at eq.2.121 more carefully, we notice that letting ν → 0

and N � e
1

2ν2 , we restrict ourselves in the case in which eq.2.122 and 2.123 are both

satisfied, so that in conclusion

ξ̃2
U (ν,N) −→

ν→0

N�e
1

2ν2

0 (2.124)
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How we detect entanglement?

Let us briefly summarize what we obtained in chapter 2. We started with the commonly

used definition of the squeezing parameter ξ2
R, as introduced by Wineland et al. in [18]

and we showed that, generalizing the measurement operator to the “weighted” one ~S

(see eq.2.1), it is possible to obtain values for ξ2
N smaller than one for separable states.

In particular, we introduced a model for which ξ2
N →

2
N , pointing out the difficulty, dur-

ing the experiments, to find out if a particular state is entangled or not. Subsequently,

we tried to generalize the squeezing parameter, introducing the factor 〈S2
z 〉

〈Sz〉2 , that was

supposed to correct the bad behaviour and to recover the useful inequality ξ2
U ≥ 1 for

separable states. But, after having accurately studied ξ2
U , we proved that this parameter

can approach the null value under some (more strict) hypotheses as well. Therefore we

decide to take a step back and study the relations between 〈Sz〉 and (∆Sx)2, using a

slightly modified version of the Lagrange multiplier method, as done before by Anders

Sørensen in [37].

More in the details, at first we will use the model introduced in section 2.2.2.3, for ob-

taining a first plot of (∆Sx)2 with respect to 〈Sz〉. Later on, we will give the general

results derived supposing the coefficients {ηi} are following a generic probability distri-

bution. As final step, we will consider the cases in which the number of particles is not

fixed, but can vary during time, and the one where the coefficients {ηi} are allowed to

change during the experiment.

47
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3.1 A practical approach

3.1.1 The Lagrange multiplier method

The Lagrange multiplier method (in its easiest version) is usually used for determining

the minima of a function f(x) under some given boundary g(x) = 0. The procedure

consists of defining

Γ(x, µ) = f(x) + µg(x) (3.1)

and to impose the constraint
∂Γ(x, µ)

∂µ
= 0, (3.2)

that is equivalent to the boundary g(x) = 0. Finding the minima for Γ(x, µ) is now

equivalent to finding the ones for f(x) along g(x) = 0. The parameter µ is referred in

the literature as “Lagrange multiplier”.

As said above, we will use a slightly modified version; instead of f(x) and g(x) we will

use (∆Sx)2 and 〈Sz〉, so that

Γ = (∆Sx)2 − µ〈Sz〉, (3.3)

where we decided to change the arbitrary sign of µ for convenience.

Here the biggest difference from the ordinary method is that 〈Sz〉 is not considered a

boundary, and is allowed to take values different than zero. As consequence, we do not

impose the constraint ∂Γ
∂µ = 0 any more, but still we want to minimize Γ with respect to

(∆Sx)2 and 〈Sz〉. In fact, once we find the minimum possible value ΓMin of Γ, we have

that:

(∆Sx)2 = Γ + µ〈Sz〉 ≥ ΓMin + µ〈Sz〉, (3.4)

that identifies the lowest bound for (∆Sx)2 we were aiming for. Now, if both (∆Sx)2

and 〈Sz〉 are determined using a generic separable state, we must conclude that the

limit pointed out in eq.3.4 has to be the uncrossable lowest bound characterizing all

such states. But this is exactly what we want: a sufficient condition for discriminating if

the wave vector describing the system is entangled or not! In fact, whenever we obtain

experimental values of (∆Sx)2 and 〈Sz〉 that lie below the curve plotted using eq.3.4, we

can deduce immediately that the system is entangled.

In the following, we will give an example which is experimentally feasible, to explain the

procedure laid out in the above paragraph. Later we will deduce the general procedure

for getting the curve defining the lowest limit reachable by the considered state.
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3.1.2 A useful example

Let us consider the experimental situation we introduced in section 2.2.2.3, where we

derived a simple model describing the coefficients {ηi}. This has to be the starting

point for our analysis, since, as we have seen, both (∆Sx)2 and 〈Sz〉 are depending on

these coefficients, and any estimate of such quantities needs to have some clue about

the {ηi}. The main results we will use here are given by eq.2.105 and 2.108, together

with eq.2.109a and 2.109b; essentially the probability distributions p(η) and p(η2) with

associated averages. Moreover, let us recall that, for a generic separable state described

by a density matrix ρ as in eq.2.67, we have:

(∆Sx)2 =
1

4

∑
k

pk

N∑
i=1

η2
i cos2 θi,k (3.5a)

〈Sz〉 =
1

2

∑
k

pk

N∑
i=1

ηi cos θi,k, (3.5b)

as derived in equations 2.70 and 2.71. We performed the substitution 〈jzi〉k → 1
2 cos θi,k,

with the θi,k’s being inside the interval [0, π]. To be precise, eq.3.5a is not an equality,

but an inequality, being the term in the left hand side bigger or equal to the one in the

right. However, since we are interested in minimizing it, we will ignore this fact and

suppose the inequality is saturated. As we have seen before, this is equivalent to the

supposition 〈jyi〉k = 0 for all k, i = 1, ..., N .

For simplifying the following calculations, we will restrict the domain of the θi,k’s to

the interval
[
0, π2

]
. This does not affect the research of the minimum possible value of

(∆Sx)2 for a given 〈Sz〉, since allowing cos θi,k to change sign does not alter (∆Sx)2, but

only 〈Sz〉, that could reach smaller values. It follows that to the same variance would be

associated a smaller spin along z; consequently we can deduce that every lowest value

of (∆Sx)2 associated to some 〈Sz〉 is obtained with the cosines having the same sign.

For the above choice of domains for the θi,k’s, we can restrict the interval in which µ

is allowed to vary as well. A priori, since we do not have any hypothesis about this

variable, we have that µ ∈ (−∞,∞); but once we look at eq.3.3 we can guess that the

minimum of Γ is reached for positive µ. In fact, since 〈Sz〉 can only take positive values

(due to the restriction of the interval in which the θi,k’s are allowed to vary), a negative

µ can only increase the value of Γ.
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At this point, it is just a matter of following the Lagrange (modified) method, as ex-

plained before; so let us introduce the function to be minimized:

Γ({ηi} , {θi,k} , µ) = (∆Sx)2 − µ〈Sz〉 =
1

4

∑
k

pk

N∑
i=1

η2
i cos2 θi,k −

µ

2

∑
k

pk

N∑
i=1

ηi cos θi,k.

(3.6)

Let us, for instance, fix the {ηi} and µ. Thus we have that Γ ({θi,k}) is a continuous

and periodic function in all the variables {θi,k}, so that a minimum needs to lie in one

of its stationary points. Consequently, let us derive Γ with respect to a generic θj,l:

∂Γ({θi,k})
∂θj,l

=
plηj sin θj,l

2
(µ− ηj cos θj,l) (3.7)

As it is possible to see, there are two ways for having null derivative (remember that the

ηi’s vary in the interval
[
e−

1
4ν2 , 1

]
and µ in [0,∞]):

sin θj,l = 0 (3.8a)

ηj cos θj,l = µ, for
µ

ηj
≤ 1, i.e. µ ≤ ηj (3.8b)

For completeness, let us write down the second derivative of Γ with respect to θj,l:

∂2Γ({θi,k})
∂2θj,l

=
plηj

2
[µ (cos θj,l + sin θj,l)− ηj cos(2θj,l)] . (3.9)

We can now ask ourselves which one between conditions 3.8a and 3.8b (when allowed)

corresponds to a minimum. We have that:

• Whenever µ > ηj , eq.3.8b is never satisfied, so that the only possibility to have

the derivative ∂Γ
∂θj,l

equal to zero is to have sin θj,l = 0. This allows θj,l to be equal

to 0 or π; it is easy to check that the second derivative is positive only for the first

one (remember µ > ηj), so that we can conclude that this is the only minimum.

The smallest possible contribution of θj,l to Γ would be, in this case,

1

4
plη

2
j cos2 θj,l −

µ

2
plηj cos θj,l →

µ>ηj

1

4
plη

2
j −

µ

2
plηj (3.10)

• Suppose now µ ≤ ηj . Here both eq. 3.8a and 3.8b can be satisfied; we only need

to check which one represents the minimum. Looking at the second derivative

(eq.3.9), we get that it is positive for ηj cos θj,l = µ and negative for sin θj,k = 0.

Therefore we conclude that cos θj,l = µ
ηj

is, indeed, the minimum, and the smallest
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contribution is given by

1

4
plη

2
j cos2 θj,l −

µ

2
plηj cos θj,l →

µ≤ηj
−1

4
µ2 (3.11)

Depending on µ, we have now all the ingredients for determining the minimum possible

values of Γ. In fact, since we supposed the particles - and thus the coefficients ηi - to

be independent, what we derived before can be applied for all l, j = 1, ..., N , in order to

reach the global minimum ΓMin of Γ. Here we must divide the domain of µ in three parts:

the first one given by µ ≤ min
i=1,...,N

{ηi}, the second by min
i=1,...,N

{ηi} < µ ≤ max
i=1,...,N

{ηi}

and the third one by µ > max
i=1,...,N

{ηi}; so that

µ ≤ min {ηi} →ΓMin =
µ2N

4
− µµN

2
(3.12a)

min {ηi} < µ ≤ max {ηi} →ΓMin =
1

4

 ∑
µ2≤η2i

µ2 +
∑
µ2>η2i

η2
i

− µ

2

∑
µ≤ηi

µ+
∑
µ>ηi

ηi


(3.12b)

µ > max {ηi} →ΓMin =
1

4

N∑
i=1

η2
i −

µ

2

N∑
i=1

ηi (3.12c)

In eq.3.12b, the sums are to be taken over all the coefficients ηi that are bigger or smaller

than µ, as specified.

At this point it is straightforward to determine, case by case, the average spin 〈Sz〉 and

the variance (∆Sx)2. In fact, remembering that Γ = (∆Sx)2 − µ〈Sz〉 (or just imposing

the constraints 3.8a and 3.8b to eq. 3.5a and 3.5b), we are able to obtain:

Range µ ≤ min {ηi} min {ηi} < µ ≤ max {ηi} µ > max {ηi}

〈Sz〉 µN
2

1
2

( ∑
µ≤ηi

µ+
∑
µ>ηi

ηi

)
1
2

N∑
i=1

ηi

(∆Sx)2 µ2N
4

1
4

( ∑
µ2≤η2i

µ2 +
∑

µ2>η2i

η2
i

)
1
4

N∑
i=1

η2
i

Table 3.1: In this Table we collected the results for 〈Sz〉 and (∆Sx)
2

in the different
ranges in which µ is allowed to vary

Notice that, since all the quantities involved are not dependent on k any more, and that∑
k

pk = 1, we are allowed to neglect these summations.

The results reported in Table 3.1 is valid for every probability distributions p(η) and

p(η2) describing the coefficients involved! We next employ what we found in section

2.2.2.3, in order to be practically able to use what we just obtained here.
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In the following we will determine, term by term, all the quantities in Table 3.1:

• We already met
N∑
i=1

ηi and
N∑
i=1

η2
i in section 2.2.2.3. There we showed that, according

to the central limit theorem (theorem 1), we can write these sums as:

N∑
i=1

ηi = Nη̄ = N

∞∫
−∞

ηp(η)dη = N
√
πν erf

(
1

2ν

)
(3.13a)

N∑
i=1

η2
i = Nη̄2 = N

∞∫
−∞

η2p(η2)dη2 = N

√
π

2
ν erf

(
1√
2ν

)
(3.13b)

The remaining terms are harder to understand. For this reason, we will explain in details

where they are coming from and then we will derive an appropriate expression in terms

of the probability distributions we have at our disposal.

• Let us start with 1
2

( ∑
µ≤ηi

µ+
∑
µ>ηi

ηi

)
. First, recall that it represents 〈Sz〉 in the

considered range; in fact it is coming from 〈Sz〉 = 1
2

∑
k

pk
N∑
i=1

ηi cos θi,k. More pre-

cisely we found that, depending on the value of µ, the cosines have to take one of

the two different values allowed by eq. 3.8a or 3.8b. This was the only way for

letting Γ to reach its minimum ΓMin. Now, if µ ≤ min {ηi} or µ ≥ max {ηi}, only

one of these equations has to be verified (respectively the second and the first), so

that we do not have to split the sum in two and obtain the results reported in Ta-

ble 3.1. But in the particular considered case, where min {ηi} ≤ µ ≤ max {ηi}, we

necessarily have that some of the coefficients are bigger than µ and some smaller.

From this fact, we need to split the sum in two; respectively one part consist-

ing of all coefficients bigger than µ, for which ηi cos θi,k = µ; and the other of

all the ones smaller, for which cos θi,k = 1. In conclusion what we get is exactly

1
2

( ∑
µ≤ηi

µ+
∑
µ>ηi

ηi

)
; remember that we loose the dependence over k and thus can

neglect
∑
k

pk = 1. At this point, it is just a matter to estimate the two sums.

Let us start rewriting

∑
µ≤ηi

µ = µ
∑
µ≤ηi

1 = µN(µ ≤ ηi) = µNP (µ ≤ η), (3.14)

where N(µ ≤ ηi) is the number of coefficients ηi such that µ ≤ ηi, and P (µ ≤ η)

represents the probability of having µ smaller or equal to η (according to the prob-

ability distribution p(η)). Determining P (µ ≤ η) is quite easy; from probability
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theory we have

P (µ ≤ η) =

∞∫
µ

p(η)dη = ν

1∫
µ

dη

η
√
− log η

= 2ν
√
− logµ, (3.15)

so that, for the first sum:

∑
µ≤ηi

µ = 2Nνµ
√
− logµ. (3.16)

In a similar way we can obtain an expression for the second sum, for which we get:

∑
µ>ηi

ηi
†
= NP (µ > η)η̄(µ > η), (3.17)

where P (µ > η) is the probability of having µ bigger than η, and η̄(µ > η) is the

average value of η we obtain considering ptr(η), that is the probability distribution

p(η) truncated to the value of µ (see the following Fig.3.1).

η

0,1 0,2 η̄(µ > η) 0,4 η̄ 0,6 0,7 0,8 µ 1

p
(η
)

0

1

2

3

4

5
p(η)
p(η)

P (µ>η)

Figure 3.1: Plot of the functions p(η) and ptr(η) (p(η) truncated), with parameter
ν = 0.28. Notice that ptr(η) has been renormalized, as consequence of the restriction
of its domain. In the coordinate axis are marked the values of µ = 0.9, η̄ = 0.49 and

η̄(µ > η) = 0.32.

In eq.3.17, the equality marked with † is a consequence of the central limit theorem

(theorem 1). Here we have to be careful, since the hypotheses of such theorem are

not necessarily satisfied; it depends on µ. In fact, since we allow µ to vary, at some

point it will approach the minimum between the ηi’s, min {ηi}, where there could

be a very small number of particles described by coefficients ηi smaller than µ. In

this case we are not allowed to use theorem 1, that only works for a big statistical

sample. We will discuss about this problem later; for now we just neglect it and
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suppose theorem 1 valid everywhere.

Going to eq.3.17 back, since

P (µ > η) =

µ∫
−∞

p(η)dη = 1− P (µ ≤ η) = 1− 2ν
√
− logµ, (3.18)

the only remaining computation we have to perform is η̄(µ > η). As said above, it

represents the average of η obtained with the probability density function truncated

up to µ (see Fig.3.1). In other words, giving ptr(η) first:

ptr(η) =


p(η)

P (µ>η) if e−
1

4ν2 ≤ η ≤ µ

0 if η < e−
1

4ν2 or µ < η,
(3.19)

we get that η̄(µ > η) is given by

η̄(µ > η) =

∞∫
−∞

ηptr(η)dη =

µ∫
e
− 1

4ν2

ηp(η)dη

P (µ > η)
=

√
πν
[
erf
(

1
2ν

)
− erf

(√
− logµ

)]
P (µ > η)

.

(3.20)

In conclusion, we are finally able to write down the second sum

∑
µ>ηi

ηi = NP (µ > η)η̄(µ > η) =
√
πNν

[
erf

(
1

2ν

)
− erf

(√
− logµ

)]
, (3.21)

and consequently 〈Sz〉 for min {ηi} ≤ µ ≤ max {ηi}:

〈Sz〉 =
1

2

∑
k

pk

N∑
i=1

ηi cos θi,k =
1

2

∑
µ≤ηi

µ+
∑
µ>ηi

ηi

 =

=
Nν

2

{
2µ
√
− logµ+

√
π

[
erf

(
1

2ν

)
− erf

(√
− logµ

)]}
.

(3.22)

• The other term we need to analyse is 1
4

( ∑
µ2≤η2i

µ2 +
∑

µ2>η2i

η2
i

)
. The discussion

about it proceeds analogously to the previous one; in fact, except the fact that

it comes from (∆Sx)2 = 1
4

∑
k

pk
N∑
i=1

η2
i cos2 θi,k instead of 〈Sz〉, there are no big

differences from before. Therefore, let us just collect the results we would obtain

following the same procedure:

∑
µ2≤η2i

µ2 = µ2
∑
µ2≤η2i

= µ2N(µ2 ≤ η2) = Nµ2P (µ2 ≤ η2), (3.23)



Chapter 3. How we detect entanglement? 55

where we necessarily have that P (µ2 ≤ η2), i.e.: the probability to have µ2 smaller

than µ2, is given by

P (µ2 ≤ η2) =

1∫
µ2

p(η2)dη2 = P (µ ≤ η) = 2ν
√
− logµ. (3.24)

As consequence, we can write the first sum as:

∑
µ2≤η2i

µ2 = 2Nνµ2
√
− logµ, (3.25)

while for the second we have:

∑
µ2>η2i

η2
i = NP (µ2 > η2)η̄2(µ2 > η2). (3.26)

Here P (µ2 > η2) represents the probability to have µ2 bigger than η2, that can

be obtained by P (µ2 > η2) = 1− P (µ2 ≤ η2). Similarly as before, η̄2(µ2 > η2) is

the average value of η2 obtained considering ptr(η
2) (the probability distribution

p(η2) truncated to the value of µ2). This is given by:

ptr(η
2) =


p(η2)

P (µ2>η2)
if e−

1
2ν2 ≤ η2 ≤ µ2

0 if η2 < e−
1

2ν2 or µ2 < η2,
(3.27)

so that we finally have:

η̄2(µ2 > η2) =

∞∫
−∞

η2ptr(η
2)dη2 =

µ2∫
exp
(
− 1

2ν2

) η2p(η2)dη2

P (µ2 > η2)
=

=

√
π
2 ν
[
erf
(

1√
2ν

)
− erf

(√
−2 logµ

)]
P (µ2 > η2)

.

(3.28)

In conclusion, the second sum can be rewritten as

∑
µ2>η2i

η2
i = NP (µ2 > η2)η̄2(µ2 > η2) =

√
π

2
Nν

[
erf

(
1√
2ν

)
− erf

(√
−2 logµ

)]
,

(3.29)
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so that (∆Sx)2, for min {ηi} ≤ µ ≤ max {ηi} becomes

(∆Sx)2 =
1

4

∑
k

pk

N∑
i=1

η2
i cos2 θi,k =

1

4

 ∑
µ2≤η2i

µ2 +
∑
µ2>η2i

η2
i

 =

=
Nν

4

{
2µ2
√
− logµ+

√
π

2

[
erf

(
1√
2ν

)
− erf

(√
−2 logµ

)]}
.

(3.30)

As a last comment, we make clear that eq.3.26 is obtained using the central limit

theorem, and therefore present the same problem we pointed out for eq.3.17, when-

ever µ approaches the minimum possible value of the squared ηi’s.

At this point we are finally able to rewrite Table 3.1 for the particular model used for

the description of the coefficients {ηi}. Using equations 3.13a, 3.13b, 3.22 and 3.30 we

get

Range µ ≤ min {ηi} min {ηi} < µ ≤ max {ηi} µ > max {ηi}

〈Sz〉 µN
2

Nν
2 {2µ

√
− logµ+

+
√
π
[
erf
(

1
2ν

)
− erf

(√
− logµ

)]
}

N
√
πν

2 erf
(

1
2ν

)
(∆Sx)2 µ2N

4

Nν
4 {2µ

2
√
− logµ+

+
√

π
2

[
erf
(

1√
2ν

)
− erf

(√
−2 logµ

)]
}

N
√

π
2
ν

4 erf
(

1√
2ν

)
Table 3.2: Here we reported the same results as in Table 3.1, having imposed the

conditions deriving from the particular model for the {ηi} we are using.

For each value of µ between zero and one (whenever µ > 1, 〈Sz〉 and (∆Sx)2 are fixed),

we obtain correspondent 〈Sz〉 and (∆Sx)2. Therefore we are able to plot the second

one with respect to the first one, both renormalised. This is done by dividing them for

the biggest possible values they can assume, respectively (as it follows from eq.3.5a and

3.5b)

〈Sz〉CSS =
1

2

N∑
i=1

ηi =
N
√
πν

2
erf

(
1

2ν

)
(3.31a)

(∆Sx)2
CSS =

1

4

N∑
i=1

η2
i =

N
√

π
2 ν

4
erf

(
1√
2ν

)
. (3.31b)

We decided to use the appendix “CSS” because the maximal values refer to the coherent

spin state (see eq.1.12). The following Fig.3.2 represents the behaviour of (∆Sx)2

(∆Sx)2CSS
with

respect to 〈Sz〉
〈Sz〉CSS :
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Figure 3.2: (∆Sx)2

(∆Sx)2CSS
as function of 〈Sz〉

〈Sz〉CSS . For drawing this plot, we supposed

min {ηi} = e−
1

4ν2 and max {ηi} = 1, they are good approximations whenever the
number of particles N � 1 and ν � 1

N .

Before commenting this plot, let us explain why we were allowed to apply the central

limit theorem in the critical cases mentioned before. There are two of them, respectively

one for 〈Sz〉 and one for (∆Sx)2, both in the range min {ηi} < µ ≤ max {ηi} (see Table

3.1). Case by case we have:

• For 〈Sz〉 = 1
2

( ∑
µ≤ηi

µ+
∑
µ>ηi

ηi

)
, we have seen that (eq.3.16 and 3.21):


∑
µ≤ηi

µ = µNP (µ ≤ η) = 2Nνµ
√
− logµ∑

µ>ηi

ηi
Thm 1

= NP (µ > η)η̄(µ > η),
(3.32)

where the equality holds whenever hypotheses of theorem 1 hold. This means,

practically, whenever the sum
∑
µ>ηi

ηi runs over big numbers of particles. But,

as pointed out before, µ is allowed to vary from min {ηi} to max {ηi}, so that

the possibility to have particles described by coefficients ηi < µ is few, whenever

µ→ min {ηi}. But what happens when this is actually the case?

Suppose µ = e−
1

4ν2 + x, for a positive, small x. The upper sum in eq.3.32 can be

rewritten as:

∑
µ≤ηi

µ = 2Nνµ
√
− logµ →

µ'e−
1

4ν2 +x

N
[
e−

1
4ν2 + x

(
2ν2 + 1

)]
(3.33)
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The problem is that we cannot do the same for the lower sum; in fact the equation

characterizing it is not valid for µ→ min {ηi} any more! What we can do is to ob-

tain the biggest possible value it can reach, namely substituting all the coefficients

ηi involved with one (the maximum value allowed by their domain), i.e. switch

η̄(µ > η) with 1:

∑
µ>ηi

ηi ≤
∑
µ>ηi

1 = NP (µ > η) = N(1− 2ν
√
− logµ). (3.34)

Now, the right hand side of this equation can be evaluated for µ = e−
1

4ν2 + x.

Using Taylor expansion:

N(1− 2ν
√
− logµ) →

µ'e−
1

4ν2 +x

2e
1

4ν2Nν2x, (3.35)

so that, in conclusion

∑
µ>ηi

ηi ≤
∑
µ>ηi

1 →
µ'e−

1
4ν2 +x

2e
1

4ν2Nν2x. (3.36)

In particular, for x→ 0, we get
∑
µ≤ηi

µ →
µ'e−

1
4ν2 +x

N
[
e−

1
4ν2 + x

(
2ν2 + 1

)]
→
x'0

Ne−
1

4ν2

∑
µ>ηi

ηi ≤
∑
µ>ηi

1 →
µ'e−

1
4ν2 +x

2e
1

4ν2Nν2x →
x'0

0,
(3.37)

and therefore we can deduce that, at least for an appropriate choice of the param-

eters ν and N , ∑
µ>ηi

ηi �
∑
µ≤ηi

µ (3.38)

in the limit µ → e−
1

4ν2 . In other words, it does not matter if the central limit

theorem is not satisfied; when it happens, the contribution of the corresponding

sum is negligible with respect to the other, as shown in the following Fig.3.3.
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Figure 3.3: Values taken by the two sums
∑
µ≤ηi

µ and
∑
µ>ηi

ηi varying µ. As it is possible

to see, for µ → e−
1

4ν2 the first one is predominant, as explained in the text. Here
N = 105 and ν = 0.5. The ellipsis encloses the interval in which we suppose the central

limit theorem is not verified (see text below): µ ∈
[
0, e−[ 1

2ν (1− 1000
N )]

2]
=
[
0, e−( 99

100 )
2]

What does “appropriate choice of the parameter” actually mean? Of course, for

any pair (ν,N), at µ = e−
1

4ν2 we get that
∑
µ>ηi

ηi ≤
∑
µ>ηi

1 = 0, so that we always

obtain
∑
µ>ηi

ηi �
∑
µ≤ηi

µ. But we request that this constraint is valid in a neigh-

bourhood of µ = e−
1

4ν2 as well! Here, with the model in use for the description

of the coefficients, it is pretty well satisfied, at least for N and ν not very small.

However, it is for the experimentalist to decide if, for a given setup, the central

limit theorem can be applied in the whole domain of µ.

For example, let us consider that the hypotheses of the central limit theorem are

satisfied whenever N(µ > η) ≥ 103, and to discard all the experimental setups for

which

∑
µ>ηi

ηi∑
µ≤ηi

µ ≤ 103. Here N(µ > η) represents the expected number of particles

whose coefficients are smaller than µ: N(µ > η) = NP (µ > η). Now, the first

condition identify the “critical” interval for µ in which we have to check if the

second condition is verified. In fact, N(µ > η) ≥ 103 means that

103 ≤ N(µ > η) = NP (µ > η) = N
(

1− 2ν
√
−log(µ)

)
, (3.39)

is valid whenever

µ ≥ e−
[

1
2ν

(
1− 103

N

)]2
. (3.40)

In the Fig.3.3 this interval is pointed out by the violet ellipse; as it is possible to

see the second condition is well satisfied inside it.
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• These passage are to be repeated identically for (∆Sx)2 = 1
4

( ∑
µ2≤η2i

µ2 +
∑

µ2>η2i

η2
i

)
.

Here we have that (eq.3.25 and 3.29):
∑

µ2≤η2i

µ2 = µ2NP (µ2 ≤ η2) = 2Nνµ2
√
− logµ

∑
µ2>η2i

η2
i

Thm 1
= NP (µ2 > η2)η̄2(µ2 > η2),

(3.41)

so that, taking µ2 =
(
e−

1
4ν2 + x

)2
,



∑
µ2≤η2i

µ2 →
µ2'

(
e
− 1

4ν2 +x

)2
N
[
e−

1
2ν2 + xe−

1
4ν2
(
2ν2 + 1

)]
→
x'0

Ne−
1

2ν2

∑
µ2>η2i

η2
i ≤

∑
µ2>η2i

1 →
µ2'

(
e
− 1

4ν2 +x

)2
2e

1
4ν2Nν2x →

x'0
0.

(3.42)

For the last equation, as the central limit theorem is not applicable, we estimated

the upper limit substituting the coefficients η2
i of the involved particles with one,

i.e.: the biggest possible value they can assume.

The conclusions are the same as before: for µ2 = e−
1

2ν2 we have that

∑
µ2>η2i

η2
i �

∑
µ2≤η2i

µ2, (3.43)

but if we request this condition to be satisfied in a neighbourhood of such point, we

need first to choose such neighbourhood, and then, using the expansion in eq.3.42,

evaluate how the sums behave in such interval. Notice that, as the probability

distribution functions p(η) and p(η2) are similar, since the second describes the

squared variable of the first, it is usually not necessary to perform a double check.

Let us go back to Fig.3.2 and to Table 3.2, that has been used for the plot. As explained

before, this has been drawn deriving, for each µ in the interval [0, 1], both 〈Sz〉 and

(∆Sx)2. What we would like to have, however, is an equation of (∆Sx)2 expressed in

terms of 〈Sz〉. As it is possible to see from the Table 3.2, this is not easily obtainable,

at least for the range min {ηi} < µ ≤ max {ηi}. In fact, the presence of the variable µ

inside the error function makes it difficult to get the inverse function. Nevertheless, what

we can do without great effort is to obtain expressions in some limits of interest. Let us

suppose that min {ηi} = e−
1

4ν2 and that max {ηi} = 1. This is an excellent compromise

whenever the number of particles N is big enough. Then we have, for each one of the

three ranges in which µ can vary:
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• µ ≤ min {ηi}
Here (∆Sx)2 and 〈Sz〉 are given by (see Table 3.2)

〈Sz〉 =
µN

2
(3.44a)

(∆Sx)2 =
µ2N

4
, (3.44b)

so that it is actually very easy to obtain

(∆Sx)2 =
〈Sz〉2

N
for 0 ≤ 〈Sz〉 ≤

Ne−
1

4ν2

2
. (3.45)

It is interesting here to note that eq.3.45 is the result we would obtain, for the whole

domain µ ∈ [0, 1], if we had all the coefficients equal to one. This is equivalent to

ask, in our model, a very big ν. In this case, looking at eq.2.109a, we have:

η̄ →
ν→∞

1 (3.46a)

1 ≥ ηi ≥ e−
1

4ν2 →
ν→∞

1, (3.46b)

so that min {ηi} → 1 as well. In conclusion, eq.3.45 would be extended to the whole

domain, showing that in such limit our model recovers the lowest bound identified

by the squeezing parameter (see eq.1.16). This is a result that we actually needed

to achieve, since we are generalizing ξ2 to a more realistic situation.

• µ > max {ηi}
This case does not have any interest; in fact, (∆Sx)2 and 〈Sz〉 do not depend on

µ and are therefore constant. The challenging one is the following

• max {ηi} < µ ≤ max {ηi}
Let us first rewrite the quantities of interest. From Table 3.1:

〈Sz〉 =
Nν

2

{
2µ
√
− logµ+

√
π

[
erf

(
1

2ν

)
− erf

(√
− logµ

)]}
(3.47a)

(∆Sx)2 =
Nν

4

{
2µ2
√
− logµ+

√
π

2

[
erf

(
1√
2ν

)
− erf

(√
−2 logµ

)]}
. (3.47b)

As these two functions are invertible, it would be possible to express µ as a func-

tion of 〈Sz〉, and later substitute it in eq.3.47b to obtain the expression for the

curve in Fig.3.2. But this would involve a great effort for a small reward. In fact,

the equation we would obtain would be extremely complicated; at this point it is

easier to directly use the plot given before.

However, not all is lost! Indeed, in the limit µ→ 1 we are able to take Fourier ex-

pansions of both eq.3.47a and 3.47b, and obtain a linear approximation to (∆Sx)2,
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expressed in function of 〈Sz〉. Notice that for µ = 1 we have that both 〈Sz〉 and

(∆Sx)2 take their maxima.

Let us set µ = 1− x, being x a small, positive real number. Thus we have:

〈Sz〉 =

=
Nν

2

{
2(1− x)

√
− log(1− x) +

√
π

[
erf

(
1

2ν

)
− erf

(√
− log(1− x)

)]}
=

=
Nν

2

{√
π erf

(
1

2ν

)
− 4

3
x

3
2 − 1

5
x

5
2 −+o(x

7
2 )

}
=

=
Nν

2

{√
π erf

(
1

2ν

)
− 4

3
x

3
2

}
+ o(x

5
2 )

(3.48)

and

(∆Sx)2 =

=
Nν

4

{
2(1− x)2

√
− log(1− x) +

√
π

2

[
erf

(
1√
2ν

)
− erf

(√
−2 log(1− x)

)]}
=

=
Nν

4

{√
π

2
erf

(
1√
2ν

)
− 8

3
x

3
2 +

6

5
x

5
2 + o(x

7
2 )

}
=

=
Nν

4

{√
π

2
erf

(
1√
2ν

)
− 8

3
x

3
2

}
+ o(x

5
2 ).

(3.49)

The linear approximation is now obtainable neglecting all but the first expansion

terms of eq. 3.48 and 3.49,

〈Sz〉 '
Nν

2

{√
π erf

(
1

2ν

)
− 4

3
x

3
2

}
(3.50a)

(∆Sx)2 ' Nν

4

{√
π

2
erf

(
1√
2ν

)
− 8

3
x

3
2

}
, (3.50b)

so that
4

3
x

3
2 '
√
π erf

(
1

2ν

)
− 2〈Sz〉

Nν
(3.51)

and consequently

(∆Sx)2 ' 〈Sz〉+

√
π

2

Nν

4

{
erf

(
1√
2ν

)
− 2
√

2 erf

(
1

2ν

)}
. (3.52)

Let us make some comments about these last results.

First, this curve intersect the real one at the point x = 0, i.e.: µ = 1 and 〈Sz〉 = 〈Sz〉CSS .

Moreover, as a consequence of the fact that we cut the series expansions in eq.3.48

and 3.49 at the first term, we cannot require that (∆Sx)2, as expressed in eq.3.52,
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approximates well the real curve. In fact, it drift away very near to the tangent point

(see Fig.3.4 later). However, there are two reasons for which eq.3.52 is very useful:

1. In experiments, the average spin of the system 〈Sz〉 usually approaches the max-

imum allowed value 〈Sz〉CSS . We remember that, according to this model, it is

represented by eq.3.31a:

〈Sz〉CSS =
1

2

N∑
i=1

ηi =
N
√
πν

2
erf

(
1

2ν

)
. (3.53)

Therefore, the knowledge about how (∆Sx)2 behaves for 〈Sz〉 → 〈Sz〉CSS is gen-

erally sufficient.

2. The linear approximation lies below the real curve whenever 〈Sz〉 → 〈Sz〉CSS .

Let us denote the approximations to 〈Sz〉 and (∆Sx)2 as (see eq.3.50a and 3.50b):

〈Sz〉app(x) =
Nν

2

{√
π erf

(
1

2ν

)
− 4

3
x

3
2

}
(3.54a)

(∆Sx)2
app (x) =

Nν

4

{√
π

2
erf

(
1√
2ν

)
− 8

3
x

3
2

}
. (3.54b)

As we have seen, from these equation it is possible to obtain an expression of

(∆Sx)2
app depending on 〈Sz〉app:

(∆Sx)2
app (〈Sz〉app) = 〈Sz〉app +

√
π

2

Nν

4

{
erf

(
1√
2ν

)
− 2
√

2 erf

(
1

2ν

)}
; (3.55)

now we want to prove that this curve (∆Sx)2
app (〈Sz〉app) lies below the real one,

obtained using Table 3.2. From eq.3.48 and 3.49 we have that, for 〈Sz〉 → 〈Sz〉CSS :

〈Sz〉 =
Nν

2

{√
π erf

(
1

2ν

)
− 4

3
x

3
2 − 1

5
x

5
2 + o(x

7
2 )

}
≤

≤ Nν

2

{√
π erf

(
1

2ν

)
− 4

3
x

3
2

}
= 〈Sz〉app

(3.56)

and

(∆Sx)2 =
Nν

4

{√
π

2
erf

(
1√
2ν

)
− 8

3
x

3
2 +

6

5
x

5
2 + o(x

7
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}
≥

≥ Nν

4

{√
π

2
erf

(
1√
2ν

)
− 8

3
x

3
2

}
= (∆Sx)2

app

(3.57)
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At this point it is just a matter of simple algebra to obtain

(∆Sx)2

〈Sz〉
≥

(∆Sx)2
app

〈Sz〉app
. (3.58)

In words, this exactly means that for 〈Sz〉 → 〈Sz〉CSS , the linear approximation is

smaller than the real curve.

This fact is of particular interest, because whenever we prove that some experimen-

tal point
(
〈Sz〉exp, (∆Sx)2

exp

)
lies below (∆Sx)2

app (〈Sz〉app), we can automatically

deduce that the theoretical curve expressing the lowest possible value of (∆Sx)2

for the model in use passes over it. And, since we derived such curve for a generic

separable state, we can infer the system we are dealing with is entangled.

At this point we are able to plot (∆Sx)2 “numerically” with respect to 〈Sz〉 (see Fig.3.2),

to explicitly obtain an expression of the variance with respect to the average spin for

0 ≤ 〈Sz〉 ≤ Ne
− 1

4ν2

2 (eq.3.45) and to write down a linear approximation to (∆Sx)2 in the

point 〈Sz〉 = 〈Sz〉CSS (eq.3.55). In the following we will give a final comment regarding

this example. In particular, the goal is to see how much can (∆Sx)2 vary with respect

to 〈Sz〉, letting parameters N and ν changing. It is already clear from Table 3.2 that

N is just a scale factor, that vanishes once we renormalise: something we usually do to

have enough statistics. On the contrary, ν changes the curve of Fig.3.2, as it is possible

to see in the next Fig.3.4.

Figure 3.4: Renormalized curves (∆Sx)2

(∆Sx)2CSS
vs 〈Sz〉
〈Sz〉CSS for ν equal to 10 (blue), 0.45

(green) and 10−3 (red). In the plot are drawn the linear approximations as well, in the

range 〈Sz〉
〈Sz〉CSS ∈ [0.9, 1]
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First, let us remember that here we renormalized 〈Sz〉 and (∆Sx)2, i.e.: we plotted
(∆Sx)2

(∆Sx)2CSS
with respect to 〈Sz〉

〈Sz〉CSS . This means that the equation of the linear approxi-

mation becomes, from eq.3.55 and using eq.3.31a:

(∆Sx)2
app

(∆Sx)2
CSS

(
〈Sz〉app
〈Sz〉CSS

)
=
〈Sz〉CSS

(∆Sx)2
CSS

 〈Sz〉app〈Sz〉CSS
+

 erf
(

1√
2ν

)
2
√

2 erf
(

1
2ν

) − 1

 . (3.59)

Now, since the function
(∆Sx)2app
(∆Sx)2CSS

(
〈Sz〉app
〈Sz〉CSS

)
is always forced to pass through the point

(1, 1), what we can do is to study its slope m there. Using eq.3.31a and 3.31b we get

that

m(ν) =
〈Sz〉CSS

(∆Sx)2
CSS

=
2
√

2 erf
(

1
2ν

)
erf
(

1√
2ν

) , (3.60)

and with such expression we can draw the next plot, where we study how the slope m

changes varying the parameter ν.

ν
0 0.5 1 1.5 2 2.5 3 3.5 4

m

2
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2.7
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2.9

3

Slope m of the Linear Approximation

Figure 3.5: Slope of the linear approximation
(∆Sx)2app
(∆Sx)2CSS

(
〈Sz〉app
〈Sz〉CSS

)
varying ν

It seems that m(ν) is allowed to vary in the interval
[
2, 2
√

2
]
, and that it takes its

smallest value for ν →∞, while its biggest for ν = 0. In fact, from the definition of the

error function and its series expansion in eq.2.117, it follows that

m(ν = 0) =
2
√

2 erf (∞)

erf (∞)
= 2
√

2 (3.61a)

m(ν →∞) =
2
√

2 erf
(

1
2ν

)
erf
(

1√
2ν

) '
2
√

2
(

2√
π

1
2ν

)
(

2√
π

1√
2ν

) = 2, (3.61b)



Chapter 3. How we detect entanglement? 66

as wanted. We just need to check that m(ν) is monotonically decreasing; and this will

be done through the derivative:

∂m

∂ν
(ν) =

e−
1

2ν2

A︷ ︸︸ ︷[
4 erf

(
1

2ν

)
− 2
√

2e
1

4ν2 erf

(
1√
2ν

)]
√
πν2 erf2

(
1√
2ν

) . (3.62)

Since ν is only allowed to be positive, the denominator of the last equation has to be

bigger or equal than zero in all the domain of the function. Therefore, the sign of the

derivative is determined by the numerator, and in particular by the term marked with

A.

We would like to prove A ≤ 0 for every possible ν. Now, as it is difficult to work with

the error function, and since m(ν) appears to behave nicely (see fig.3.5), we will only

check the sign of the derivative (i.e.: factor A) for ν →∞ and ν → 0.

• For ν → ∞ we can use the series expansions of the exponential and of the error

function (eq.2.117):

A =

= 4 erf

(
1

2ν

)
− 2
√

2e
1

4ν2 erf

(
1√
2ν

)
−→
ν→∞

−→
ν→∞

4

(
2√
π

1

2ν

)
− 2
√

2

(
1 +

1

4ν2

)(
2√
π

1√
2ν

)
=

= − 1√
πν3
≤ 0;

(3.63)

so that we can conclude that m stretches to value 2 from above.

• For ν → 0 the error functions approaches to one, so that

A =

= 4 erf

(
1

2ν

)
− 2
√

2e
1

4ν2 erf

(
1√
2ν

)
−→
ν→0

−→
ν→0

4− 2
√

2e
1

4ν2 → −∞.

(3.64)

In conclusion, we can say that m(ν) is a decreasing function in the two considered limits,

and that it seems to take all values between 2
√

2 ≤ m < 2.

Before starting the theoretical approach (just a matter of repeat what we have done

here), let us summarize what we obtained. We supposed to have an experiment with

a fixed number of particles N , described by coefficients {ηi} following the probability
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distribution p(η). Given the system in a separable state, we determined which is the

minimum of the variance (∆Sx)2 for any possible value of the average spin 〈Sz〉. In our

particular case, we found some difficulties to obtain a function of (∆Sx)2 explicitly de-

pendent on 〈Sz〉, but we solved this problem in a linear approximation. Thus, whit a set

of experimental data, we have a powerful method to discern if the system is entangled

(squeezed) or not.

3.2 Theory

Here there are many levels of generality we can achieve. The easiest one is the one

we used in our previous example, where we have a fixed number of particles and the

coefficients {ηi} are not varying in time. But clearly these are not reasonable requests if

we are dealing with repeated runs of the same experimental setup, where particles are

“free” to move, not only within the box, but even in and outside it. In the next sections

we will give a formal procedure to follow, in order to obtain results similar to the one

showed in Table 3.2 for a generic probability distribution p(η) and for a varying number

of particles N .

3.2.1 Fixed N , fixed {ηi}

The first case we will study is the one in which we deal with an ideal experiment where

the number N and the probability distribution function p(η) describing the particles are

not varying in time. In other words, we will obtain the same results we gave in section

3.1.2, for generic p(η) and p(η2). We recall here that, even if we are calling p(η) and

p(η2) with the same letter “p”, they refer to two different functions; we use this notation

just for simplicity.

Therefore, let p(η) and p(η2) be our probability distribution functions. In the hypothesis

in which the particles are not interacting, i.e.: they are independent, the central limit

theorem allows us to take the conclusion

N∑
i=1

ηi
Thm 1

= Nη̄ =

∞∫
−∞

ηp(η)dη (3.65a)

N∑
i=1

η2
i
Thm 1

= Nη̄2 =

∞∫
−∞

η2p(η2)dη2. (3.65b)
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Moreover, let us remember that for a generic separable state we found that

(∆Sx)2 =
1

4

∑
k

pk

N∑
i=1

η2
i cos2 θi,k (3.66a)

〈Sz〉 =
1

2

∑
k

pk

N∑
i=1

ηi cos θi,k, (3.66b)

as derived in eq.2.70 and 2.71. Again, all the θi,k, in principle, are allowed to vary

between [0, π], but we restrict this domain to
[
0, π2

]
for the same reasons explained in

section 2.2.2.3. In fact, our goal is to determine the minimum value that the variance

(∆Sx)2 can assume given any value of the spin 〈Sz〉. This will be performed using the

(modified) Lagrange method; introducing (again, as in eq.3.6) the function

Γ({ηi} , {θi,k} , µ) = (∆Sx)2 − µ〈Sz〉 =
1

4

∑
k

pk

N∑
i=1

η2
i cos2 θi,k −

µ

2

∑
k

pk

N∑
i=1

ηi cos θi,k,

(3.67)

we want now to find its lowest value ΓMin({ηi} , µ), in order to achieve our goal. Being, by

definition, ΓMin({ηi} , µ) the minimum of Γ({ηi} , {θi,k} , µ) with respect to the variables

{θi,k}, we have that

(∆Sx)2 = Γ({ηi} , {θi,k} , µ) + µ〈Sz〉 ≥ ΓMin({ηi} , µ) + µ〈Sz〉. (3.68)

In other words, we are able to find a curve that saturate the inequality in eq.3.68:

(∆Sx)2 = ΓMin({ηi} , µ) + µ〈Sz〉. (3.69)

For the sake of clarity, let us explain that in the last equation 3.69 the only variable is

µ (the coefficients {ηi} are to be considered fixed), not only for Γ, but for (∆Sx)2 and

for 〈Sz〉 as well. In fact, once we impose the constraint that lead Γ to ΓMin, we loose

the dependence over the {θi,k} for all the terms.

Let us now explain how to find ΓMin({ηi} , µ). First, due to eq.3.66a and 3.66b, we can

deduce that ΓMin({ηi} , {θi,k} , µ) is periodic and continuous in the variables {θi,k}, so

that its minimum has to be located in one of the stationary point, found through the

derivative:
∂Γ({θi,k})
∂θj,l

=
plηj sin θj,l

2
(µ− ηj cos θj,l) . (3.70)
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Without repeating ourselves too much, let us say that the constraint
∂Γ({θi,k})

∂θj,l
= 0 leads

to the two conditions

sin θj,l = 0 (3.71a)

ηj cos θj,l = µ, for µ ≤ ηj , (3.71b)

where both of them are to be verified, depending on µ. Recall that we can consider µ to

be positive, since for negative values we necessarily have that Γ increases, as it is clear

from eq.3.67. More in particular, with the aid of the second derivative, in the previous

section we found that (equations 3.12a, 3.12b and 3.12c):

1. For µ ≤ min {ηi} the condition expressed by eq.3.71a is always verified, so that

ΓMin = −µ
2N

4
(3.72)

and

〈Sz〉 =
µN

2
(3.73a)

(∆Sx)2 =
µ2N

4
. (3.73b)

2. The case given by min {ηi} < µ ≤ min {ηi} is, again, the most complicated. In

fact, both constraints 3.71a and 3.71b are verified; the first one for all the particles

described by coefficients ηi bigger or equal than µ, the second strictly smaller. As

consequence we have that

ΓMin =
1

4

 ∑
µ2≤η2i

µ2 +
∑
µ2>η2i

η2
i

− µ

2

∑
µ≤ηi

µ+
∑
µ>ηi

ηi

 (3.74)

and

〈Sz〉 =
1

2

∑
µ≤ηi

µ+
∑
µ>ηi

ηi

 (3.75a)

(∆Sx)2 =
1

4

 ∑
µ2≤η2i

µ2 +
∑
µ2>η2i

η2
i

 ; (3.75b)

the significance of these terms has been explained before. In short, we had to split

the sums describing 〈Sz〉 and (∆Sx)2 in two, due to the fact that we have two

constraints.
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3. For µ > max {ηi} the condition expressed by eq.3.71b is always verified, so that

ΓMin =
1

4

N∑
i=1

η2
i −

µ

2

N∑
i=1

ηi (3.76)

and

〈Sz〉 =
1

2

N∑
i=1

ηi (3.77a)

(∆Sx)2 =
1

4

N∑
i=1

η2
i . (3.77b)

As it is possible to see, here µ is not present in the expressions for (∆Sx)2 and

〈Sz〉; in fact all the range in which both of them are allowed to vary is exhausted,

and now they remain constant to their maximum.

What we just obtained is exactly Table 3.1, that for completeness we copy here:

Range µ ≤ min {ηi} min {ηi} < µ ≤ max {ηi} µ > max {ηi}

〈Sz〉 µN
2

1
2

( ∑
µ≤ηi

µ+
∑
µ>ηi

ηi

)
1
2

N∑
i=1

ηi

(∆Sx)2 µ2N
4

1
4

( ∑
µ2≤η2i

µ2 +
∑

µ2>η2i

η2
i

)
1
4

N∑
i=1

η2
i

Table 3.3: In this Table we collected the results for 〈Sz〉 and (∆Sx)
2

in the different
ranges in which µ is allowed to vary

It is now of great interest, and actually our main goal, to derive expressions for the terms

in Table 3.3 using the probability distributions functions p(η) and p(η2). Therefore, let

us just create a second list in which, for each point of it, we derive such expressions both

for 〈Sz〉 and (∆Sx)2. We will try to be concise, since the proceeding will be no different

from the one already done in section 2.2.2.3 with the particular distributions we had

there.

1. µ ≤ min {ηi}

• For 〈Sz〉 we have that

〈Sz〉 =
µN

2
, (3.78)

• while for (∆Sx)2:

(∆Sx)2 =
µ2N

4
. (3.79)
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Here there is no need to plug in the additional informations given by the p(η) and

p(η2); the curve created by the couple
(
〈Sz〉, (∆Sx)2

)
represents an impassable

limit for all separable states. In other words, for all the probability distributions

describing our particles, we can identify a range, going from zero to some value

smaller than one, in which the curve described by eq.3.69 is following the same

equation

(∆Sx)2 =
〈Sz〉2

N
, (3.80)

obtainable from eq.3.78 and 3.79. For being more precise, since the interval in

which this holds is given by µ ∈ [0,min {ηi}], we have that the previous equation

is valid whenever

〈Sz〉 ∈
[
0,
N

2
min {ηi}

]
, (3.81)

as follows from eq.3.78.

2. min {ηi} < µ ≤ max {ηi}

• Here 〈Sz〉 is given by

〈Sz〉 =
1

2

∑
µ≤ηi

µ+
∑
µ>ηi

ηi

 , (3.82)

so that we have to plug in p(η). In fact, as already seen, the first of the two

sums can be seen as: ∑
µ≤ηi

µ = µ
∑
µ≤ηi

1, (3.83)

where
∑
µ≤ηi

1 represents the number of particles N(µ ≤ η) having coefficients

ηi ≥ µ. In other words:

∑
µ≤ηi

µ = µ
∑
µ≤ηi

1 = µN(µ ≤ η) = µNP (µ ≤ η), (3.84)

being P (µ ≤ η) the probability of having η ≥ µ:

P (µ ≤ η) =

∞∫
µ

p(η)dη. (3.85)

The second sum of eq.3.82 consists of all coefficients ηi’s they are strictly

smaller than µ. Therefore, in terms of p(η):

∑
µ>ηi

ηi
Thm 1

= N(µ > η)η̄(µ > η) = NP (µ > η)η̄(µ > η), (3.86)
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where N(µ > η) is the number of particles having ηi < µ, and as consequence

P (µ > η) is the probability of having η < µ. η̄(µ > η) represents the average

of η according to the truncated probability function ptr(η), obtained from

p(η) by:

ptr(η) =


p(η)

P (µ>η) if ηMin ≤ η ≤ µ

0 if η < ηMin or µ < η,
(3.87)

as we have seen in eq.3.19. ηMin is the smallest possible value that η can

take, according to p(η). In conclusion, we have that

η̄(µ > η) =

∞∫
−∞

ηptr(η)dη, (3.88)

so that ∑
µ>ηi

ηi = NP (µ > η)η̄(µ > η) = N

µ∫
ηMin

ηp(η)dη, (3.89)

and finally (eq.3.84 and 3.89)

〈Sz〉 =
1

2
[µNP (µ ≤ η) +NP (µ > η)η̄(µ > η)] =

=
1

2

µN ∞∫
µ

p(η)dη +N

µ∫
ηMin

ηp(η)dη

 .
(3.90)

We recall that, in general, the central limit theorem (theorem 1) is not always

satisfied when µ→ ηMin in eq.3.86. Usually this fact is not important, since

very likely in such limit

∑
µ2>η2i

η2
i �

∑
µ2≤η2i

µ2, (3.91)

as consequence of the facts P (µ > η) → 0 and P (µ ≤ η) → 1. But there is

the possibility that this does not hold for some exotic probability distribution

p(η), so that a control is always needed, or at least suggested.

• For (∆Sx)2 the discussion proceeds analogously:

(∆Sx)2 =
1

4

 ∑
µ2≤η2i

µ2 +
∑
µ2>η2i

η2
i

 , (3.92)

where the first of the two sums can be seen as:

∑
µ2≤η2i

µ2 = µ2
∑
µ2≤η2i

1 = µ2N(µ2 ≤ η2) = µ2NP (µ2 ≤ η2), (3.93)
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with N(µ2 ≤ η2) representing the number of particles described by coeffi-

cients bigger or equal than µ. Consequently, P (µ2 ≤ η2) is the probability of

obtaining η ≥ µ, that, according to the definitions of p(η) and p(η2), neces-

sarily is equal to P (µ ≤ η).

The second sum in eq.3.92 is given by

∑
µ2>η2i

η2
i
Thm 1

= N(µ2 > η2)η̄2(µ2 > η2) = NP (µ2 > η2)η̄2(µ2 > η2), (3.94)

where N(µ2 > η2) and P (µ2 > η2) are what everyone is expecting from them

and

η̄2(µ2 > η2) =

∞∫
−∞

η2ptr(η
2)dη2. (3.95)

In this case ptr(η
2) is defined as

ptr(η
2) =


p(η2)

P (µ2>η2)
if η2

Min ≤ η2 ≤ µ2

0 if η2 < η2
Min or µ2 < η2,

, (3.96)

so that, in conclusion:

(∆Sx)2 =
1

4

[
µ2NP (µ2 ≤ η2) +NP (µ2 > η2)η̄2(µ2 > η2)

]
=

=
1

4

µ2N

∞∫
µ2

p(η2)dη2 +N

µ∫
ηMin

η2p(η2)dη2

 .
(3.97)

Naturally, the same considerations about the central limit theorem, used for

eq.3.94, are to be taken, and the same precautions adopted.

3. µ > max {ηi}
This is probably the less interesting case, since for any value of µ satisfying this

constraint, 〈Sz〉 and (∆Sx)2 are constant. Both of them have spanned their own

range, namely [0, 〈Sz〉CSS ] and
[
0, (∆Sx)2

CSS

]
in the previous two points, so that

they reached their maximum and keep it fixed. Written in mathematical language

we have

〈Sz〉 = 〈Sz〉CSS =
1

2

N∑
i=1

ηi =
N

2
η̄ (3.98a)

(∆Sx)2 = (∆Sx)2
CSS =

1

4

N∑
i=1

η2
i =

N

4
η̄2, (3.98b)

where η̄ and η̄2 are given by eq.3.65a and 3.65b.
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At this point we probably are able to give the most interesting result of this section,

namely Table 3.3 with the boxes filled with the new results we just obtained:

Range µ ≤ min {ηi} min {ηi} < µ ≤ max {ηi} µ > max {ηi}
〈Sz〉 µN

2
1
2 [µNP (µ ≤ η) +NP (µ > η)η̄(µ > η)] N

2 η̄

(∆Sx)
2 µ2N

4
1
4

[
µ2NP (µ2 ≤ η2) +NP (µ2 > η2)η̄2(µ2 > η2)

]
N
4 η̄

2

Table 3.4: 〈Sz〉 and (∆Sx)
2

in the different ranges in which µ is allowed to vary, for
a generic probability distribution function p(η).

And now, just like in section 3.1.2, we are able to plot the curve such that for any value

of 〈Sz〉 associates the smallest possible (∆Sx)2, for a separable state. If we are lucky, we

are able to obtain this curve analytically; otherwise we can draw it numerically. This

depends on the probability distribution functions p(η) and p(η2), they can give rise to

very nasty functions inside Table 3.4.

3.2.2 Varying N , fixed {ηi}

What if we do not know exactly how many particles there are inside our experimental

setup? We will use a little trick: we imagine that the time needed for performing the

experiment is short enough for not letting any particle to come in or outside the box.

This way, the generalization becomes very easy: we just need to evaluate the number

of particles N̄ inside the box at the moment of the experiment, and later perform the

same analysis of before. In fact, once we fix the number of particles, it is just a matter

of following the same step as in previous section 3.2.1 replacing N with our estimator

N̄ . This way, Table 3.4 becomes:

Range µ ≤ min {ηi} min {ηi} < µ ≤ max {ηi} µ > max {ηi}
〈Sz〉 µN̄

2
1
2

[
µN̄P (µ ≤ η) + N̄P (µ > η)η̄(µ > η)

]
N̄
2 η̄

(∆Sx)
2 µ2N̄

4
1
4

[
µ2N̄P (µ2 ≤ η2) + N̄P (µ2 > η2)η̄2(µ2 > η2)

]
N̄
4 η̄

2

Table 3.5: Generalization of Table 3.4 for the case in which the number of particles
is not precisely known.

Let us now discuss two important point relevant to this section. The first one concerns

how to estimate N in order to get N̄ , while the second repeated measurements.

The natural way for obtaining N̄ is to suppose that there exists a probability distri-

bution function p(N) describing the number of particles. In the easiest case this dis-

tribution will be a Gaussian peaked on its average N̄ , but there could easily be some

complications. An example, given by the real life, is that the incoming laser has a small

probability to act up, so that it does not detect a percentage of the particles inside
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the box. This malfunction can be modelled by saying that we have less particle in the

setup. Now, if this percentage of “lost” particles is fixed, we can model this behaviour

by saying that the probability distribution function for N presents two peaks: one for

all the times in which the laser works properly, the other for the ones in which it does not.

Let us now speak about repeated measurements. It is very common, when people deal

with the experiments, that a result is obtained through the average of many runs. Now,

for any of these run, we must admit that we could not have the control of the number

of particles, we can just estimate it! In this case we can, again, rely on the central limit

theorem; in fact we are dealing here with repeated measurements of one system that,

run after run, presents the same statistical properties. Then, according to theorem 1,

the mean of these measurements converge to the normal distribution having the average

of any single run. As a consequence, Table 3.5 is still valid if we need to check the result

obtained with a big number of repeated measurements.

Moreover, if the function f
(
〈Sz〉
〈Sz〉CSS

)
, expressing the lowest bound for (∆Sx)2

(∆Sx)2CSS
, is con-

vex, then its average over repeated runs of the experiment can only take a bigger value

than the one we would obtain with a single run with the same normalized spin
(
〈Sz〉
〈Sz〉CSS

)
.

Here, supposing we have M trials, each of them denoted with letter “i”, we have used

the notation: (
〈Sz〉
〈Sz〉CSS

)
=

1

M

M∑
i=1

〈Sz〉i
〈Sz〉iCSS

. (3.99)

Notice that, as the number of particles varies, 〈Sz〉iCSS is not fixed run after run; for

this reason we appended to it the subscript “i”. The proof comes straightforward:(
(∆Sx)2

(∆Sx)2CSS

)
being the value that the normalized variance get by averaging the results

we obtained running the experiment many times,(
(∆Sx)2

(∆Sx)2
CSS

)
=

1

M

M∑
i=1

(∆Sx)2
i

(∆Sx)2
iCSS

≥ 1

M

M∑
i=1

f

(
〈Sz〉i
〈Sz〉iCSS

)
convexity
≥

convexity
≥ f

(
1

M

M∑
i=1

〈Sz〉i
〈Sz〉iCSS

)
= f

(
〈Sz〉
〈Sz〉CSS

)
.

(3.100)

This is always true; but let us think about the assumption we made in this last equation.

We defined (
(∆Sx)2

(∆Sx)2
CSS

)
=

1

M

M∑
i=1

(∆Sx)2
i

(∆Sx)2
iCSS

, (3.101)

that means that we need to know, for any experimental shot “i”, which is the maximum

value (∆Sx)2
iCSS

for the variance. This assumption clearly exceed our possibilities, since,

if the number of particles is oscillating, we can only guess what (∆Sx)2
iCSS

is, being it
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dependent over N . Therefore, a more general proof comes by defining(
(∆Sx)2

(∆Sx)2
CSS

)
=

(∆Sx)2

(∆Sx)2
CSS

(3.102a)

(
〈Sz〉
〈Sz〉CSS

)
=

〈Sz〉
〈Sz〉CSS

, (3.102b)

where:

〈Sz〉 = 〈Sz〉exp =
∞∑
N=0

pN 〈Sz〉exp (3.103a)

〈Sz〉CSS =
∞∑
N=0

pN 〈Sz(N)〉CSS =

∞∑
N=0

pN
N∑
i=1

ηi

2

†
=

∞∑
N=0

pNNη̄

2
(3.103b)

(∆Sx)2 = (∆Sx)2
exp =

∞∑
N=0

pN (∆Sx)2
exp (3.103c)

(∆Sx)2
CSS =

∞∑
N=0

pN (∆Sx)2
CSS (N) =

∞∑
N=0

pN
N∑
i=1

η2
i

4

†
=

∞∑
N=0

pNNη̄2

4
. (3.103d)

Here, appendix “exp” refers to the averages obtained experimentally (in M runs):

〈Sz〉exp =

M∑
i=1
〈Sz〉i

M
(3.104a)

(∆Sx)2
exp =

M∑
i=1

(∆Sx)2
i

M
, (3.104b)

while letter “N” to the number of particles. Therefore 〈Sz(N)〉CSS and (∆Sx)2
CSS (N)

are, respectively, the maxima spin average and variance, given a setup with N atoms

(as stated in eq.3.103b and 3.103d). pN represents the probability of having N particles;

these coefficients can be determined through the distribution function p(N) and clearly

we must have
∞∑
N=0

pN = 1. As a conclusive comment of the last set of equations 3.103a,

3.103b, 3.103c and 3.103d, let us say that the two equalities marked with †, where we

used the central limit theorem, are allowed only if the probability distribution functions

p(η) and p(η2) are not dependent over the number of particles N . In fact, if it is not the

case, we would not be able to plug in the averages η̄ and η̄2, being them varying with

N .
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At this point we have, following similar passages as in eq.3.100:

(
(∆Sx)2

(∆Sx)2
CSS

)
=

(∆Sx)2

(∆Sx)2
CSS

=

∞∑
N=0

pN (∆Sx)2
exp

∞∑
K=0

pK (∆Sx)2
CSS (K)

=

=

∞∑
N=0

pN (∆Sx)2
CSS (N)

(∆Sx)2exp
(∆Sx)2CSS(N)

∞∑
K=0

pK (∆Sx)2
CSS (K)

††
≥

††
≥

∞∑
N=0

pN (∆Sx)2
CSS (N)f

(
〈Sz〉exp

〈Sz(N)〉CSS

)
∞∑
K=0

pK (∆Sx)2
CSS (K)

convexity
≥

convexity
≥ f


∞∑
N=0

pN (∆Sx)2
CSS (N)

〈Sz〉exp
〈Sz(N)〉CSS

∞∑
K=0

pK (∆Sx)2
CSS (K)

 =

= f


∞∑
N=0

pNNη̄2 2〈Sz〉exp
Nη̄

∞∑
K=0

pKKη̄2

 =

= f

2
∞∑
N=0

pN 〈Sz〉exp
∞∑
K=0

pKKη̄

 = f


∞∑
N=0

pN 〈Sz〉exp
∞∑
K=0

pK〈Sz(K)〉CSS

 =

= f

(
〈Sz〉
〈Sz〉CSS

)
= f

(
〈Sz〉
〈Sz〉CSS

)
.

(3.105)

The relation marked with †† follows from eq.3.100, with (∆Sx)2
iCSS

= (∆Sx)2
CSS (N) for

all i = 1, ...,M .

We just found, again and with more general hypothesis, that
(

(∆Sx)2

(∆Sx)2CSS

)
≥ f

(
〈Sz〉
〈Sz〉CSS

)
.

Therefore, and this is a very important result, it is not possible to break down the the-

oretical curve f (derived thanks to Table 3.5) by averaging many times the outcomes of

an experimental setup, at least when the probability distribution functions for the coef-

ficients {ηi} are not dependent over the particles number N . In the case this condition

does not hold, it would be necessary to check if the same conclusion can be taken or not.

3.2.3 N not fixed and {ηi} varying in time

As a conclusion of this theoretical part, let us consider the case in which some of the

probability distributions we are dealing with here - namely p(η) and p(η2) - are allowed

to vary in time. This generalized model should be used whenever the experimental setup



Chapter 3. How we detect entanglement? 78

changes during the measurement, but still we suppose there are no fluctuations on the

number of particles during a single run.

Since now time is a variable, let us rewrite:

p(η)→ p(η, t) (3.106a)

p(η2)→ p(η2, t), (3.106b)

where for any value of t these functions represent probability distribution functions. The

means of all these variables at t is thus given by:

η̄(t) =

∞∫
−∞

ηp(η, t)dη (3.107a)

η̄2(t) =

∞∫
−∞

η2p(η2, t)dη2. (3.107b)

Now, since the time is not dependent on η and η2, if we want to determine the expected

value of any of these quantities in some time interval, the only thing we have to do is to

average, so that:

η̄T =

t2∫
t1

η̄(t)dt

t2 − t1
(3.108a)

η̄2
T =

t2∫
t1

η̄2(t)dt

t2 − t1
. (3.108b)

In these last equations, we used the appendix “T ” to refer to the averages in some time

interval T = t2 − t1. Now, supposing T represents the duration of the measurement,

what we should do is to generalize Table 3.3 first and Table 3.4 later for these time

dependent probability distributions.

The previous one does not present any difference, except the fact that now, instead of

N , we have the mean value N̄ , just like in the previous section 3.2.2. The real difference

can be found once we plug in the probability distribution functions, in order to obtain

the last Table. In fact, following the same steps as before (the only difference here is

that we need to integrate over time as well), we can get:
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Range µ ≤ min {ηi} min {ηi} < µ ≤ max {ηi} µ > max {ηi}
〈Sz〉 µN̄

2
1
2

[
µN̄PT (µ ≤ η) + N̄PT (µ > η)η̄T (µ > η)

]
N̄
2 η̄T

(∆Sx)
2 µ2N̄

4
1
4

[
µ2N̄PT (µ2 ≤ η2) + N̄PT (µ2 > η2)η̄2

T (µ2 > η2)
]

N̄
4 η̄

2
T

Table 3.6: Generalization of Table 3.4 for the case in which the number of particles
is not precisely known, and the probability distribution functions describing the coeffi-
cients are time dependent. T refers to the needed time for getting the measurement.

In this conclusive Table, as it is possible to guess, we used the appendix T to indicate

the time average of the correspondent quantities, just as in eq.3.108a and 3.108b.



Chapter 4

How “good” is the entanglement?

So far, we have introduced the new measurement operator ~S =
∑
ηi ~Ji, with which

we proved that the inequality ξ2 ≥ 1 is not valid any more. Subsequently, using a

more general argument, we derived the relation between (∆Sx)2 and 〈Sz〉 for a generic

separable state. This has been done for any probability distribution p(η) regarding the

coefficients {ηi} and under different hypotheses in section 3.2. Here we will try to give

an answer to the question: “What about entanglement?”

As we will see, it is extremely hard to get a similar result even for the simplest case of

two particle entanglement. In the following, we will study the two particles case and try

to generalize it step after step.

4.1 2-particle entanglement

Let us suppose we have only two particles, and that these can be entangled. Expecting,

as usual, to have a two level system, a basis would be given by

{|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉} , (4.1)

where the first arrow in every element refers to the first particle and the second to the

second. Therefore a generic state |ψ〉 describing the system would be:

|ψ〉 = C↑↑|↑↑〉+ C↓↑|↑↓〉+ C↑↓|↓↑〉+ C↓↓|↓↓〉, (4.2)

with normalization criterion given by |C↑↑|2 + |C↓↑|2 + |C↑↓|2 + |C↓↓|2 = 1. The four

coefficients marked with C are in general complex numbers.

What we should do now is to obtain some expressions for (∆Sx)2 and 〈Sz〉 regarding

the state described in eq.4.2. Once we have them, the proceeding is analogous to what

80
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we have done in section 3.1; we will use the modified Lagrange multiplier method in

order to obtain the curve minimizing (∆Sx)2 with respect to 〈Sz〉. At the end we will

compare this curve to the one obtained for the corresponding separable state. We have

that:

• Sz = η1jz1 + η2jz2 . Computing term by term we have that:

〈jz1〉 = 〈jz1 ⊗ I2〉 = 〈ψ|jz1 ⊗ I2|ψ〉 =

=
[
C∗↑↑〈↑↑|+ C∗↓↑〈↑↓|+ C∗↑↓〈↓↑|+ C∗↓↓〈↓↓|

]
× (jz1 ⊗ I2)×

× [C↑↑|↑↑〉+ C↓↑|↑↓〉+ C↑↓|↓↑〉+ C↓↓|↓↓〉]
†
=

†
=

1

2

(
|C↑↑|2 + |C↑↓|2 − |C↓↑|2 − |C↓↓|2

)
.

(4.3)

The equality marked with † is a consequence of the fact that

jz1 ⊗ I2 =

(
|↑〉1〈↑| − |↓〉1〈↓|

2

)
⊗ (|↑〉2〈↑|+ |↓〉2〈↓|) =

=
|↑↑〉〈↑↑|+ |↑↓〉〈↑↓| − |↓↑〉〈↓↑| − |↓↓〉〈↓↓|

2
,

(4.4)

where, for example, |↑〉1〈↑| refers to the projection operator acting only over the

first particle. Remembering the orthonormal property of the basis, it is now

straightforward to obtain how the last equality in eq.4.3 is obtained.

Following the same steps we can now determine

〈jz2〉 = 〈I1 ⊗ jz2〉 =
1

2

(
|C↑↑|2 − |C↑↓|2 + |C↓↑|2 − |C↓↓|2

)
, (4.5)

where the sign difference follows directly writing down

I1 ⊗ jz2 =
|↑↑〉〈↑↑| − |↑↓〉〈↑↓|+ |↓↑〉〈↓↑| − |↓↓〉〈↓↓|

2
. (4.6)

In conclusion, from eq.4.3 and 4.5, we have that

〈Sz〉 = 〈η1jz1 + η2jz2〉 = η1〈jz1〉+ η2〈jz2〉 =

=
η1

2

(
|C↑↑|2 + |C↑↓|2 − |C↓↑|2 − |C↓↓|2

)
+
η2

2

(
|C↑↑|2 − |C↑↓|2 + |C↓↑|2 − |C↓↓|2

)
.

(4.7)
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• Sx = η1jx1 + η2jx2 . Skipping some mathematical steps identical as before, we can

obtain that, in this case,

jx1 ⊗ I2 =

(
|↑〉1〈↓|+ |↓〉1〈↑|

2

)
⊗ (|↑〉2〈↑|+ |↓〉2〈↓|) =

=
|↑↑〉〈↓↑|+ |↑↓〉〈↓↓|+ |↓↑〉〈↑↑|+ |↓↓〉〈↑↓|

2
;

(4.8)

as consequence:

〈jx1〉 = 〈jx1 ⊗ I2〉 = 〈ψ|jx1 ⊗ I2|ψ〉 =

=
1

2

(
C∗↑↑C↓↑ + C∗↑↓C↓↓ + C∗↓↑C↑↑ + C∗↓↓C↑↓

)
=

=
1

2

[
C∗↑↑C↓↑ +

(
C∗↑↑C↓↑

)∗
+ C∗↑↓C↓↓ +

(
C∗↑↓C↓↓

)∗]
=

= <(C∗↑↑C↓↑) + <(C∗↑↓C↓↓) =

= [<(C↑↑)<(C↓↑) + =(C↑↑)=(C↓↑)] + [<(C↑↓)<(C↓↓) + =(C↑↓)=(C↓↓)] .

(4.9)

In the previous equation we used < and = for denoting, respectively, the real and

imaginary part of a complex number.

Similarly,

I1 ⊗ jx2 =
|↑↑〉〈↑↓|+ |↑↓〉〈↑↑|+ |↓↑〉〈↓↓|+ |↓↓〉〈↓↑|

2
(4.10)

and

〈jx2〉 = 〈I1 ⊗ jx2〉 = 〈ψ|I1 ⊗ jx2 |ψ〉 =

= <(C∗↑↑C↑↓) + <(C∗↓↑C↓↓) =

= [<(C↑↑)<(C↑↓) + =(C↑↑)=(C↑↓)] + [<(C↓↑)<(C↓↓) + =(C↓↑)=(C↓↓)] .

(4.11)

We are now able to collect the results shown in equations 4.9 and 4.11 in order to

write down 〈Sx〉:

〈Sx〉 = 〈η1jx1 + η2jx2〉 = η1〈jx1〉+ η2〈jx2〉 =

= η1

(
<(C∗↑↑C↓↑) + <(C∗↑↓C↓↓)

)
+ η2

(
<(C∗↑↑C↑↓) + <(C∗↓↑C↓↓)

)
.

(4.12)

• S2
x = (η1jx1 + η2jx2)2 = η2

1j
2
x1 +η2

2j
2
x2 +2η1η2jx1jx2 . Here we used the fact that the

commutator [jx1 , jx2 ] is null, so that jx1jx2 = jx2jx1 . As follows from the general

properties of Pauli matrices, we have that

j2
x1 = j2

x2 =
I
4
, (4.13)
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so that:

〈S2
x〉 = η2

1〈j2
x1〉+ η2

2〈j2
x2〉+ 2η1η2〈jx1jx2〉 =

η2
1 + η2

2

4
+ 2η1η2〈jx1jx2〉. (4.14)

Therefore, the only term we have to compute is 〈jx1jx2〉. Following a similar

procedure to the previous one, we can rewrite

jx1jx2 = jx1 ⊗ jx2 =

(
|↑〉1〈↓|+ |↓〉1〈↑|

2

)
⊗
(
|↑〉2〈↓|+ |↓〉2〈↑|

2

)
=

=
|↑↑〉〈↓↓|+ |↑↓〉〈↓↑|+ |↓↑〉〈↑↓|+ |↓↓〉〈↑↑|

4
,

(4.15)

so that, using the orthonormal property again:

〈jx1jx2〉 = 〈jx1 ⊗ jx2〉 = 〈ψ|jx1 ⊗ jx2 |ψ〉 =

=
1

4

(
C∗↑↑C↓↓ + C∗↑↓C↓↑ + C∗↓↑C↑↓ + C∗↓↓C↑↑

)
=

=
1

4

[
C∗↑↑C↓↓ +

(
C∗↑↑C↓↓

)∗
+ C∗↑↓C↓↑ +

(
C∗↑↓C↓↑

)∗]
=

=
1

2

[
<(C∗↑↑C↓↓) + <(C∗↑↓C↓↑)

]
=

=
1

2
{[<(C↑↑)<(C↓↓) + =(C↑↑)=(C↓↓)] + [<(C↑↓)<(C↓↑) + =(C↑↓)=(C↓↑)]} .

(4.16)

We are now finally able to write down 〈S2
x〉, the last ingredient we needed for the

Lagrange function Γ:

〈S2
x〉 = η2

1〈j2
x1〉+ η2

2〈j2
x2〉+ 2η1η2〈jx1jx2〉 =

=
η2

1 + η2
2

4
+ η1η2

[
<(C∗↑↑C↓↓) + <(C∗↑↓C↓↑)

]
.

(4.17)

Let us summarize what we just obtained. For 〈Sz〉 we have, as expressed in eq.4.7:

〈Sz〉 =
η1 + η2

2

(
|C↑↑|2 − |C↓↓|2

)
+
η1 − η2

2

(
|C↑↓|2 − |C↓↑|2

)
, (4.18)

while it follows from eq.4.12 and 4.17 that (∆Sx)2 becomes:

(∆Sx)2 = 〈S2
x〉 − 〈Sx〉2 =

=
η2

1 + η2
2

4
+ η1η2

[
<(C∗↑↑C↓↓) + <(C∗↑↓C↓↑)

]
−
{
η1

[
<(C∗↑↑C↓↑) + <(C∗↑↓C↓↓)

]
+ η2

[
<(C∗↑↑C↑↓) + <(C∗↓↑C↓↓)

]}2
.

(4.19)

It is now clear that, once we put these expressions in the Lagrange function Γ = (∆Sx)2−
µ〈Sz〉, its minimization becomes a hard task. Let us first take a simplified approach by



Chapter 4. How “good” is the entanglement? 84

considering all the coefficients {C↑↑, C↑↓, C↓↑, C↓↓} to be real numbers, and moreover two

of them to be null: C↑↓ = C↓↑ = 0. It follows that we can express the state vector |ψ〉 as

|ψ〉 = C↑↑|↑↑〉+ C↓↓|↓↓〉, (4.20)

with normalization condition C2
↑↑ + C2

↓↓ = 1. This reminds us the fundamental trigono-

metric relation, so that we choose to make the substitutions

C↑↑ = cosx (4.21a)

C↓↓ = sinx, (4.21b)

with x being a real number inside the interval [−π, π], in order to span all the possibilities

for the coefficients. The state describing the system (eq.4.20) becomes now

|ψ〉 = |↑↑〉 cosx+ |↓↓〉 sinx, (4.22)

that simplify the terms in the Lagrange Γ function a lot. In fact, collecting the main

results we have (eq.4.7 and 4.19):

〈Sz〉 =
η1 + η2

2

(
cos2 x− sin2 x

)
=
η1 + η2

2
cos(2x) (4.23a)

(∆Sx)2 =
η2

1 + η2
2

4
+ η1η2 cosx sinx =

η2
1 + η2

2

4
+
η1η2

2
sin(2x), (4.23b)

and consequently

Γ(x, µ) = (∆Sx)2 − µ〈Sz〉 =
η2

1 + η2
2

4
+
η1η2

2
sin(2x)− µη1 + η2

2
cos(2x). (4.24)

As a first comment, notice that this function is, due to the factor 2 inside the arguments

of sine and cosine, π-periodic. Therefore, without loss of generality, we can restrict the

interval in which x is allowed to vary to
[
−π

2 ,
π
2

]
. At this point we want to follow the

standard procedure; minimize Γ deriving in the x variable, and subsequently determine

how 〈Sz〉 and (∆Sx)2 vary with respect to µ. As before, the minimum has to be found

in a stationary point, being Γ periodic and continuous in x; µ can be any real numbers.

The derivative is given by

∂Γ

∂x
(x, µ) = η1η2 cos(2x) + µ (η1 + η2) sin(2x), (4.25)

so that the stationary points, identified by ∂Γ
∂x (x, µ) = 0, are:

x1,2 = arctan

(
η1η2

µ (η1 + η2)

)
− kπ

2
sgn(µ). (4.26)
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Here, due to the x’s domain, k can assume only the values 0 or 1; let us call x1 the point

identified by k = 0 and x2 the one by k = 1. k cannot take other values since, for any

possible µ, we have only two stationary points; if µ is negative, the argument of arctan

identifies a number between −π
2 and 0, so that we can find another solution adding π

2 .

Otherwise, having µ positive, we can obtain the second stationary point by subtracting
π
2 , as stated in eq.4.26. Necessarily, one of these represents a minimum and the other a

maximum; this is a consequence of the fact that we have a continuous periodic function

with only two stationary points.

Which of the two is the one minimizing Γ? Let us call this point xmin, that in the

practice will be determined checking which, between Γ(x1) and Γ(x2) takes the smallest

values. We can now collect what we obtained, that is: what we will need for drawing the

usual curve. As before, Γmin represents the function Γ once we plugged in the constraint

x = xmin:

Γmin(µ) =
η2

1 + η2
2

4
+
η1η2

2
sin(2xmin)− µη1 + η2

2
cos(2xmin) (4.27a)

〈Sz〉(µ) =
η1 + η2

2
cos(2xmin) (4.27b)

(∆Sx)2 (µ) =
η2

1 + η2
2

4
+
η1η2

2
sin(2xmin). (4.27c)

As a final comment, let us prove that the function Γmin(µ) is even. This will be done

analysing the two cases in which µ is, respectively, positive and negative.

• µ ≥ 0

Let us remember that, in this case,

x1 = arctan

(
η1η2

µ (η1 + η2)

)
∈
[
0,
π

2

]
(4.28a)

x2 = arctan

(
η1η2

µ (η1 + η2)

)
− π

2
∈
[
−π

2
, 0
)
, (4.28b)

and minimizing Γ means to find for which k the function

Γ(µ) =
η2

1 + η2
2

4
+
η1η2

2
sin

[
2 arctan

(
η1η2

µ (η1 + η2)

)
− kπ

]
+

− µη1 + η2

2
cos

[
2 arctan

(
η1η2

µ (η1 + η2)

)
− kπ

] (4.29)
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takes the smallest value. Now, since sin(a− π) = − sin a and cos(a− π) = − cos a,

we have thatk = 0 (i.e.: x1)

Γ =
η21+η22

4 + η1η2
2 sin

[
2 arctan

(
η1η2

µ(η1+η2)

)]
− µη1+η2

2 cos
[
2 arctan

(
η1η2

µ(η1+η2)

)]
(4.30)

andk = 1 (i.e.: x2)

Γ =
η21+η22

4 − η1η2
2 sin

[
2 arctan

(
η1η2

µ(η1+η2)

)]
+ µη1+η2

2 cos
[
2 arctan

(
η1η2

µ(η1+η2)

)]
.

(4.31)

• µ < 0

Here we have that

x1 = − arctan

(
η1η2

|µ| (η1 + η2)

)
∈
[
−π

2
, 0
)

(4.32a)

x2 = − arctan

(
η1η2

µ (η1 + η2)

)
+
π

2
∈
[
0,
π

2

]
, (4.32b)

and, as before, minimizing Γ means to find for which k the function

Γ(µ) =
η2

1 + η2
2

4
− η1η2

2
sin

[
2 arctan

(
η1η2

|µ| (η1 + η2)

)
− kπ

]
+

− µη1 + η2

2
cos

[
2 arctan

(
η1η2

|µ| (η1 + η2)

)
− kπ

] (4.33)

takes the smallest value. In the last equation we used the properties of the trigono-

metric functions. Therefore, differently as before, we have thatk = 0 (i.e.: x1)

Γ =
η21+η22

4 − η1η2
2 sin

[
2 arctan

(
η1η2

|µ|(η1+η2)

)]
+ µη1+η2

2 cos
[
2 arctan

(
η1η2

|µ|(η1+η2)

)]
(4.34)

andk = 1 (i.e.: x2)

Γ =
η21+η22

4 + η1η2
2 sin

[
2 arctan

(
η1η2

|µ|(η1+η2)

)]
− µη1+η2

2 cos
[
2 arctan

(
η1η2

|µ|(η1+η2)

)]
.

(4.35)

At this point we can look carefully to the four systems of two equations 4.30 and 4.31,

regarding the first case µ ≥ 0, and 4.34 and 4.35 for µ < 0. What we immediately notice

is that the Γ functions takes the same value for a pair of µ and k. In particular we have
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that(µ ≥ 0 ∧ k = 0) ∨ (µ < 0 ∧ k = 1)

Γ =
η21+η22

4 + η1η2
2 sin

[
2 arctan

(
η1η2

|µ|(η1+η2)

)]
− µη1+η2

2 cos
[
2 arctan

(
η1η2

|µ|(η1+η2)

)]
(4.36a)(µ ≥ 0 ∧ k = 1) ∨ (µ < 0 ∧ k = 0)

Γ =
η21+η22

4 − η1η2
2 sin

[
2 arctan

(
η1η2

|µ|(η1+η2)

)]
+ µη1+η2

2 cos
[
2 arctan

(
η1η2

|µ|(η1+η2)

)]
(4.36b)

The conclusion we can take is that, whatever the sign of µ is, the two stationary points x1

and x2 identify the same two values for Γ: the same maximum and the same minimum.

Consequently, changing the sign of µ does not change the value that Γmin is taking

when we impose the constraint x = xmin (at most, switches xmin from x1 to x2, or vice

versa). In other words, we can say that we are in presence of a symmetry. In fact, the

Γ function is even:

Γ(−µ) = Γ(µ), (4.37)

that is a fundamental requirement for our system since, once we take negative values

for 〈Sz〉, we want the curve that associates to this observable the minimum possible

(∆Sx)2 to be exactly the same as the one for positive 〈Sz〉. Therefore, we can restrict

the interval in which µ is allowed to vary to [0,∞], that corresponds to say that we are

dealing with positive 〈Sz〉.

We have now all the elements to plot the usual curve, that identifies the smallest value

of (∆Sx)2 for any possible 〈Sz〉. We will put, together with such function, the one asso-

ciated to the generic separable state of two particles. In this case, since we will decide

which values the coefficients η1 and η2 will take, we only need the results shown in Table

3.3. In other words, supposing η1 ≤ η2, we have:

Range µ ≤ η1 η1 < µ ≤ η2 µ > η2

〈Sz〉sep µ 1
2 (µ+ η1) η1+η2

2

(∆Sx)2
sep

µ2

2
1
4

(
µ2 + η2

2

) η21+η22
4

Table 4.1: 〈Sz〉 and (∆Sx)
2

in the different ranges in which µ is allowed to vary, for
a generic separable state made by two particles

As introduced in Table 4.1, we will use the suffixes “sep” and “ent” for referring ourselves

to the separable and the entangled cases respectively.

We can now give the following Figure 4.1, where we actually plotted the normalized
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variables (∆Sx)2

(∆Sx)2CSS
and 〈Sz〉

〈Sz〉CSS .
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Figure 4.1: (∆Sx)2

(∆Sx)2CSS
with respect to 〈Sz〉

〈Sz〉CSS ; the red curve refers to the separable

state and the blue to the entangled. In the upper plot we took η1 and η2 both equal to
one; In the lower one η1 = 0.4 and η2 = 1.

For 〈Sz〉CSS we considered (look at eq.4.23a)

〈Sz〉CSS =
η1 + η2

2
, (4.38)

while for (∆Sx)2
CSS we impose:

(∆Sx)2
CSS =

η2
1 + η2

2

4
. (4.39)

Notice that (∆Sx)2
ent can, in principle, take bigger values (as it follows from eq.4.23b);

however, due to the constraints we impose in the minimization procedure, (∆Sx)2
ent

never exceed (∆Sx)2
CSS as we defined it. Therefore our definition is, indeed, appropriate.

As it is possible to see from the Figure 4.1, there are big portions of the plots in which the

curve representing the entangled system lies below the other, so that there is the actual

possibility to identify entanglement using these functions. Notice that as much the coef-

ficients η1 and η2 differ, as much the entanglement becomes harder to detect. However,

as the two particles are correlated, we can think them to interact between themselves,

so that we can imagine them to be very near in the space and thus described by very

similar coefficients.
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4.1.1 The general case

So far we have seen that it is possible, having entanglement between two particles, to

obtain a variance that lies below the lowest limit allowed by separable states. This result

has been obtained analytically, simplifying the wave function describing the two parti-

cles’ state to |ψ〉 = C↑↑|↑↑〉+ C↓↓|↓↓〉. But what happens when we consider the general

case, with the wave function expressed by eq.4.2? For instance, we require that the

theoretical curve describing the lowest limit for the entangled case always lies below the

one for the separable. This is a straightforward consequence of the fact that the most

general two particles’ entangled state contains all the possible separable wave vectors

already into itself. Therefore, a plot like the second one in Fig.4.1 cannot be true any

more for the general case. So let us derive the usual curves in order to find out their

properties and to obtain a powerful instrument for the description of a system made of

N particles, which can be entangled in pairs of two (see the following section 4.1.2).

At first let us say that, after having trivially attempted to solve analytically the usual

Lagrange multiplier problem (with 〈Sz〉 and (∆Sx)2 given by eq.4.18 and 4.19), we en-

countered an insurmountable difficulty. The stationary points of the Γ function are here

identified by high rank polynomials, for which there does not exist a known solution.

Therefore the only possible approach results to be the numerical one. However, this

is not discouraging; in fact, even if for sake of completeness we would like to obtain

all results without approximations, the important curve is the one regarding separable

state, for which an analytical expression is known from previous section 3.2.

All the next results have been derived using the Lagrange method explained above.

At this point, let us present what we obtained. In the following Fig.4.2 we plotted

the minimum of
(

(∆Sx)2

(∆Sx)2CSS

)
for the state |ψ〉, with respect to the variables 〈Sz〉

〈Sz〉CSS
and

η1
η2

. Notice that, as all these quantities are normalized, once we fix the ratio η1
η2

, we do

not have dependence over the coefficients η1 and η2 any more.
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Figure 4.2: Normalized variance for two entangled particles for different values of η1
η2

and normalized spin

As it follows from this graph, there are two very important properties that need to be

mentioned:

•
(

(∆Sx)2

(∆Sx)2CSS

)
is a convex and increasing function with respect to its variable 〈Sz〉

〈Sz〉CSS
.

• Supposed η1 to be less or equal to η2,
(

(∆Sx)2

(∆Sx)2CSS

)
is decreasing with respect to

η1
η2 . This property, that does not appear clearly from Fig.4.2, can be deduced from

the following plot, where we draw three curves
(

(∆Sx)2

(∆Sx)2CSS

)
, for three meaningful

values of η1
η2

.
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Figure 4.3: Three plots of
(

(∆Sx)2

(∆Sx)2CSS

)
for η1

η2
being equal to 1 (blue), 0.5 (red) and

10−3 (yellow)
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As it is possible to see, the curve associated to the smallest η1
η2

is the one lying

above all the others. As this ratio increases,
(

(∆Sx)2

(∆Sx)2CSS

)
takes smaller and smaller

values, until it hits the curve described by η1
η2

= 1. In other words,
(

(∆Sx)2

(∆Sx)2CSS

)
is

decreasing with respect to η1
η2 , as announced.

So far we exhausted the case of two entangled particles. We considered the most general

wave vector (eq.4.2) and we obtained an absolute, not crossable limit for the normalized

variance for such state, given any possible pair of coefficients η1 and η2 (see Fig.4.2).

We mentioned two fundamental properties for such limit, they will be very useful in the

following. In fact, what we will do next, is to generalize the main result obtained in

section 3.1 for separable states, well summarized (in the example of section 3.1.2) by

Fig.3.4, to any state made by an even number N of particles they can be entangled in

pairs. In other words, given a probability distribution function p(η) for the coefficients

{ηi}, we will derive the minimum possible value of
(

(∆Sx)2

(∆Sx)2CSS

)
allowing to 2-particle

entanglement, consequently giving a sufficient criteria for saying if in our system three

(or more) particles are correlated.

Notice that, for the curve corresponding to η1 = η2, there already exists an analyti-

cal expression. In fact η1 = η2 is equivalent to say that we are using the collective spin

operator ~J instead of ~S. Anders S. Sørensen derived, in his paper [37], that the relation

the two entangled particles have to satisfy is:

(∆Jx)2

(∆Jx)2
CSS

≥ 1−

√
1−

(
〈Jz〉
〈Jz〉CSS

)2

≡ f
(

1,
〈Jz〉
〈Jz〉CSS

)
. (4.40)

The reason for which we introduced the notation f will be clear later, when we will use

such function. The first argument of f is the ratio η1
η2

, so that, for being precise, f(k, x)

is the function represented in Fig.4.2, that in the particular case k = 1 takes the specific

form of eq.4.40.

4.1.2 N particles with allowed entanglement in pairs

As said before, the goal of this section is to study the minima for the variance of a system

made by an even number of particles N , that can be entangled in pairs. This will be

done in three fundamental steps: at first, we will consider a specific case regarding 4

atoms; subsequently we will generalize it and in conclusion we will increase the number

of particles to an even N first, odd later.
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4.1.2.1 4 particles

The most generic density matrix describing a system formed by 4 particles that can be

entangled in pairs is given by

ρ = p1(ρ1,2 ⊗ ρ3,4) + p2(ρ1,3 ⊗ ρ2,4) + p3(ρ1,4 ⊗ ρ2,3), (4.41)

where p1, p2 and p3 are three positive real numbers such that p1 +p2 +p3 = 1 and ρi,j is

the most general density matrix of the two entangled particles i and j (i 6= j). In other

words, ρi,j is the projector operator obtained using the state of eq.4.2, referred to atoms

i-th and j-th.

At first, consider the simplified case in which p1 = 1, and henceforth p2 = p3 = 0.

We have that

ρ = ρ1,2 ⊗ ρ3,4, (4.42)

so that it results in a particularly easy problem to determine the usual, necessary quan-

tities 〈Sz〉 and (∆Sx)2. In fact:

• 〈Sz〉 = 〈Sz〉1,2 + 〈Sz〉3,4, where we defined 〈A〉i,j = Tr (Aρi,j), for i 6= j. The proof

of this equality proceeds straightforward, remembering that, whenever we have

two operators A and B acting respectively over the two subsystems indicated with

the same letters and described by ρ = ρA ⊗ ρB, we have that

〈A⊗B〉 = Tr [(A⊗B)ρ] = Tr (AρA ⊗BρB) = Tr (AρA) Tr (BρB) . (4.43)

In fact, since Sz = η1jz1 + η2jz2 + η3jz3 + η4jz4 and

〈jz1〉 = Tr (jz1ρ) = Tr [(jz1 ⊗ I2 ⊗ I3 ⊗ I4) (ρ1,2 ⊗ ρ3,4)] =

= Tr [(jz1 ⊗ I2) ρ1,2 (I3 ⊗ I4) ρ3,4]
eq.4.43

= Tr (jz1ρ1,2) · 1 = 〈jz1〉1,2,
(4.44)

we have that 〈jz1〉 = 〈jz1〉1,2, 〈jz2〉 = 〈jz2〉1,2, 〈jz3〉 = 〈jz3〉3,4 and 〈jz4〉 = 〈jz4〉3,4
and therefore

〈Sz〉 = η1〈jz1〉+ η2〈jz2〉+ η3〈jz3〉+ η4〈jz4〉 =

= 〈η1jz1 + η2jz2〉1,2 + 〈η3jz3 + η4jz4〉3,4 = 〈Sz〉1,2 + 〈Sz〉3,4,
(4.45)

as we wanted.

• With the same arguments that we used for deriving eq.4.45, we can obtain, for Sx,

that

〈Sx〉 = 〈Sx〉1,2 + 〈Sx〉3,4 (4.46)
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• As usual, slightly more complex calculations are needed for determining 〈S2
x〉. In

fact, here we have to deal with all crossed terms, obtained writing down explicitly

S2
x in all its components. Remembering that j2

xi = I
4 for any i-th particle, we have

that:

S2
x =

η2
1 + η2

2

4
+ 2η1η2jx1jx2 +

η2
3 + η2

4

4
+ 2η3η4jx3jx4+

+ 2η1η3jx1jx3 + 2η1η4jx1jx4 + 2η2η3jx2jx3 + 2η2η4jx2jx4 .

(4.47)

Now, using eq.4.43 and noticing that 〈jxijxj 〉 = 〈jxi〉〈jxj 〉, whenever particles i

and j are not entangled, we can conclude

〈S2
x〉 =

η2
1 + η2

2

4
+ 2η1η2〈jx1jx2〉1,2 +

η2
3 + η2

4

4
+ 2η3η4〈jx3jx4〉3,4+

+ 2η1η3〈jx1〉1,2〈jx3〉3,4 + 2η1η4〈jx1〉1,2〈jx4〉3,4+

+ 2η2η3〈jx2〉1,2〈jx3〉3,4 + 2η2η4〈jx2〉1,2〈jx4〉3,4 =

= 〈S2
x〉1,2 + 〈S2

x〉3,4 + (Crossed Terms).

(4.48)

Here, in “(Crossed Terms)” we collected all the contributions given by second and

third rows of eq.4.48.

Before writing down explicitly (∆Sx)2, let us determine 〈Sx〉2:

〈Sx〉2 = (〈Sx〉1,2 + 〈Sx〉3,4)2 = 〈Sx〉21,2 + 〈Sx〉23,4 + 2〈Sx〉1,2〈Sx〉3,4 =

= 〈Sx〉21,2 + 〈Sx〉23,4 + (Crossed Terms).
(4.49)

Notice that the crossed terms are the same as before. This can be seen from the fact

〈Sx〉1,2 = η1〈jx1〉1,2 +η2〈jx2〉1,2 and 〈Sx〉3,4 = η3〈jx3〉3,4 +η4〈jx4〉3,4. Then simple algebra

shows that they are actually equal, so that we can conclude (eq.4.48 and 4.49):

(∆Sx)2 = 〈S2
x〉 − 〈Sx〉2 = 〈S2

x〉1,2 + 〈S2
x〉3,4 − 〈Sx〉21,2 − 〈Sx〉23,4 = (∆Sx)2

1,2 + (∆Sx)2
3,4 .

(4.50)

In this last equation we introduced the notation (∆Sx)2
i,j = 〈S2

x〉i,j − 〈Sx〉2i,j , for i 6= j.

We can now collect the results we obtained:

〈Sz〉 = 〈Sz〉1,2 + 〈Sz〉3,4 (4.51a)

(∆Sx)2 = (∆Sx)2
1,2 + (∆Sx)2

3,4 , (4.51b)
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so that, once we plug in the normalization, we get:

〈Sz〉
〈Sz〉CSS

=
〈Sz〉1,2CSS
〈Sz〉CSS

〈Sz〉1,2
〈Sz〉1,2CSS

+
〈Sz〉3,4CSS
〈Sz〉CSS

〈Sz〉3,4
〈Sz〉3,4CSS

(4.52a)

(∆Sx)2

(∆Sx)2
CSS

=
(∆Sx)2

1,2CSS

(∆Sx)2
CSS

(∆Sx)2
1,2

(∆Sx)2
1,2CSS

+
(∆Sx)2

3,4CSS

(∆Sx)2
CSS

(∆Sx)2
3,4

(∆Sx)2
3,4CSS

, (4.52b)

where 〈Sz〉i,jCSS and (∆Sx)2
i,jCSS

represent the maximum value the average spin and the

variance can take, respectively, in the minimization procedure (as stated in eq.4.38 and

4.39 for i = 1 and j = 2). As usual, the appendices indicate the particles we are referring

to. Moreover, as it follows directly from eq.4.51a and 4.51b, 〈Sz〉CSS and (∆Sx)2
CSS are

given by the sums of the maximum values the average spin and variance can assume

over the two subsystems. Collecting all these results together, we have that:

〈Sz〉1,2CSS
eq.4.38

=
η1 + η2

2
(4.53a)

〈Sz〉3,4CSS
eq.4.38

=
η3 + η4

2
(4.53b)

〈Sz〉CSS = 〈Sz〉1,2CSS + 〈Sz〉3,4CSS =
η1 + η2 + η3 + η4

2
(4.53c)

(∆Sx)2
1,2CSS

eq.4.39
=

η2
1 + η2

2

4
(4.53d)

(∆Sx)2
3,4CSS

eq.4.39
=

η2
3 + η2

4

4
(4.53e)

(∆Sx)2
CSS = (∆Sx)2

1,2CSS
+ (∆Sx)2

3,4CSS
=
η2

1 + η2
2 + η2

3 + η2
4

4
. (4.53f)

Now, looking at the two equations 4.52a and 4.52b, we can get the minimum that
(∆Sx)2

(∆Sx)2CSS
can assume, for four particles and a density matrix as in eq.4.42. In fact, for

any couple of two entangled particles i, j,

(∆Sx)2
i,j

(∆Sx)2
i,jCSS

≥ f
(
ηi
ηj
,
〈Sz〉i,j
〈Sz〉i,jCSS

)
, (4.54)

where f (k, x) is the function obtained numerically in the section 4.1.1, and drawn in

Fig.4.2. In fact, (∆Sx)2
i,j and 〈Sz〉i,j refer to the average spin and variance calculated

through ρi,j , the density matrix given by the state (the appendices refer to the particle

we are considering)

|ψ〉 = C↑↑|↑i↑j〉+ C↓↑|↑i↓j〉+ C↑↓|↓i↑j〉+ C↓↓|↓i↓j〉, (4.55)

i.e.: the same state of eq.4.2. And therefore the same state for which we numerically

determined the minimum possible variance f
(
ηi
ηj
,
〈Sz〉i,j
〈Sz〉i,jCSS

)
(for simplicity let us assume

ηi ≤ ηj). As we stated above, this function is convex, increasing with respect to
〈Sz〉i,j
〈Sz〉i,jCSS
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and decreasing with respect to ηi
ηj

(here ηi
ηj

is allowed to vary in the interval (0, 1]). In

conclusion, we can rewrite eq.4.52b in the following way:

(∆Sx)2

(∆Sx)2
CSS

=
(∆Sx)2

1,2CSS

(∆Sx)2
CSS

(∆Sx)2
1,2

(∆Sx)2
1,2CSS

+
(∆Sx)2

3,4CSS

(∆Sx)2
CSS

(∆Sx)2
3,4

(∆Sx)2
3,4CSS

eq.4.54
≥

eq.4.54
≥

(∆Sx)2
1,2CSS

(∆Sx)2
CSS

f

(
η1

η2
,
〈Sz〉1,2
〈Sz〉1,2CSS

)
+

(∆Sx)2
3,4CSS

(∆Sx)2
CSS

f

(
η3

η4
,
〈Sz〉3,4
〈Sz〉3,4CSS

)
†
≥

†
≥

(∆Sx)2
1,2CSS

(∆Sx)2
CSS

f

(
1,
〈Sz〉1,2
〈Sz〉1,2CSS

)
+

(∆Sx)2
3,4CSS

(∆Sx)2
CSS

f

(
1,
〈Sz〉3,4
〈Sz〉3,4CSS

)
††
≥

††
≥ f

(
1,

(∆Sx)2
1,2CSS

(∆Sx)2
CSS

〈Sz〉1,2
〈Sz〉1,2CSS

+
(∆Sx)2

3,4CSS

(∆Sx)2
CSS

〈Sz〉3,4
〈Sz〉3,4CSS

)
,

(4.56)

where for the relations marked with † and †† we used the facts that f (k, x) is decreasing

with respect to k and convex with respect to x, respectively. Notice that, in order to

use the convexity property:

(∆Sx)2
1,2CSS

(∆Sx)2
CSS

+
(∆Sx)2

3,4CSS

(∆Sx)2
CSS

= 1, (4.57)

as it follows directly from the definitions in eq.4.53f.

Let us now look at eq.4.56, and let us try to understand what it means. For any value of

the normalized average spin of the whole system, 〈Sz〉
〈Sz〉CSS as in eq.4.52a, we can find the

minimum of the normalized variance (∆Sx)2

(∆Sx)2CSS
, determining the smallest value that the

last term in eq.4.56 can assume. In other words, if we denote with
(∆Sx)2Min

(∆Sx)2CSS

(
〈Sz〉
〈Sz〉CSS

)
the lowest value that the variance (∆Sx)2

(∆Sx)2CSS
can take for the given average spin 〈Sz〉

〈Sz〉CSS ,

and remembering that the function f (k, x) is increasing with respect to x, we can deduce

that

(∆Sx)2
Min

(∆Sx)2
CSS

(
〈Sz〉
〈Sz〉CSS

)
=

= f

(
1, min
〈Sz〉1,2+〈Sz〉3,4=〈Sz〉

{
(∆Sx)2

1,2CSS

(∆Sx)2
CSS

〈Sz〉1,2
〈Sz〉1,2CSS

+
(∆Sx)2

3,4CSS

(∆Sx)2
CSS

〈Sz〉3,4
〈Sz〉3,4CSS

})
.

(4.58)

What does min
〈Sz〉1,2+〈Sz〉3,4=〈Sz〉

{
(∆Sx)21,2CSS

(∆Sx)2CSS

〈Sz〉1,2
〈Sz〉1,2CSS

+
(∆Sx)23,4CSS

(∆Sx)2CSS

〈Sz〉3,4
〈Sz〉3,4CSS

}
exactly mean?

And why did we put it here? As stated above, we want to find the minimum of (∆Sx)2

(∆Sx)2CSS

for a given average spin 〈Sz〉
〈Sz〉CSS . Now, in general, there are many ways one can obtain

〈Sz〉 varying 〈Sz〉1,2 and 〈Sz〉3,4; which is the correct one, i.e.: the one that minimizes

eq.4.56? Here we remembered that f(k, x) is increasing in x, so that we have to find the
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couple of 〈Sz〉1,2 and 〈Sz〉3,4 that minimize, for the given 〈Sz〉, the second argument of

the function f(k, x). This is what we expressed in eq.4.58.

Before proceeding to the next passage, that will generalize what we just obtained by the

use of the density matrix in eq.4.41, let us just collect the most important results:

• For four particles described by the operator in eq.4.42 it is possible to find a lower

bound for the variance, that in general is smaller than the one obtainable using the

collective spin operator ~J = ~j1 + ~j2. We will come back later to this point, giving a

specific example. Intuitively it is a consequence of the fact that, in the absence of

the coefficients η1, η2, η3 and η4, the argument of the last term in eq.4.56 is fixed

to:

(∆Sx)2
1,2CSS

(∆Sx)2
CSS

〈Sz〉1,2
〈Sz〉1,2CSS

+
(∆Sx)2

3,4CSS

(∆Sx)2
CSS

〈Sz〉3,4
〈Sz〉3,4CSS

−→
~S→ ~J

−→
~S→ ~J

(∆Jx)2
1,2CSS

(∆Jx)2
CSS

〈Jz〉1,2
〈Jz〉1,2CSS

+
(∆Jx)2

3,4CSS

(∆Jx)2
CSS

〈Jz〉3,4
〈Jz〉3,4CSS

=

=
〈Jz〉1,2 + 〈Jz〉3,4
〈Jz〉CSS

=
〈Jz〉
〈Jz〉CSS

,

(4.59)

so that we do not have the possibility to move ourselves along the x axis of f(k, x).

The “CSS” quantities, referred to the collective spin operator ~J , are obtainable

from the more general ones with ~S by substituting all the coefficients {ηi} with 1.

• As it follows from eq. 4.56, for reaching the lowest possible value of the variance

we need to impose some constraints over the {ηi}. In particular, we need to have

that the entangled particles are described by the same coefficients. For example,

if η1 = η2 6= η3 = η4, we necessarily have that in the smallest limit the entangled

atoms are the couples (1, 2) and (3, 4). Otherwise it is impossible (except in the

limiting cases 〈Sz〉
〈Sz〉CSS = 0 or 〈Sz〉

〈Sz〉CSS = 1), to saturate the inequality of eq.4.56.

Let us now discuss the most general case for four particles, allowing the density matrix

describing the system to take the form of eq.4.41. Following the same steps as before,

we will first determine 〈Sz〉 and (∆Sx)2. These comes directly from eq.4.51a and 4.51b,

using the linearity property of the trace:

〈Sz〉 = p1 (〈Sz〉1,2 + 〈Sz〉3,4) + p2 (〈Sz〉1,3 + 〈Sz〉2,4) + p3 (〈Sz〉1,4 + 〈Sz〉2,3) (4.60a)

〈Sx〉 = p1 (〈Sx〉1,2 + 〈Sx〉3,4) + p2 (〈Sx〉1,3 + 〈Sx〉2,4) + p3 (〈Sx〉1,4 + 〈Sx〉2,3) . (4.60b)
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For obtaining (∆Sx)2, let us first write down 〈Sx〉2 in an intelligent way:

〈Sx〉2 = [p1 (〈Sx〉1,2 + 〈Sx〉3,4) + p2 (〈Sx〉1,3 + 〈Sx〉2,4) + p3 (〈Sx〉1,4 + 〈Sx〉2,3)]2
†
≤

†
≤ p1 (〈Sx〉1,2 + 〈Sx〉3,4)2 + p2 (〈Sx〉1,3 + 〈Sx〉2,4)2 + p3 (〈Sx〉1,4 + 〈Sx〉2,3)2 .

(4.61)

Here, the inequality marked with † is a direct consequence of the Jensen’s inequality

(see lemma 1). Notice that all the squared terms (〈Sx〉i,j + 〈Sx〉k,l)2, (i, j, k, l) being

permutations of the numbers (1, 2, 3, 4), give rise to crossed terms. These crossed terms,

as happened for equations 4.49, are the same we obtain writing down 〈S2
x〉 (due to the

linearity; see eq.4.48):

〈S2
x〉 = p1

(
〈S2
x〉1,2 + 〈S2

x〉3,4
)

+ p2

(
〈S2
x〉1,3 + 〈S2

x〉2,4
)

+

+ p3

(
〈S2
x〉1,4 + 〈S2

x〉2,3
)

+ (Crossed Terms).
(4.62)

Therefore we can deduce that the variance for the whole system satisfy the relation

(∆Sx)2 ≥ p1

[
(∆Sx)2

1,2 + (∆Sx)2
3,4

]
+

+ p2

[
(∆Sx)2

1,3 + (∆Sx)2
2,4

]
+ p3

[
(∆Sx)2

1,4 + (∆Sx)2
2,3

]
.

(4.63)

Now, looking at this last equation and remembering what we obtained previously in this

section, we can set the lowest bound:

(∆Sx)2 ≥ p1

[
(∆Sx)2

1,2 + (∆Sx)2
3,4

]
+ p2

[
(∆Sx)2

1,3 + (∆Sx)2
2,4

]
+

+ p3

[
(∆Sx)2

1,4 + (∆Sx)2
2,3

] ††
≥ (∆Sx)2

1,2 + (∆Sx)2
3,4

eq.4.58
≥

eq.4.58
≥ f

(
1, min
〈Sz〉1,2+〈Sz〉3,4=〈Sz〉

{
(∆Sx)2

1,2CSS

(∆Sx)2
CSS

〈Sz〉1,2
〈Sz〉1,2CSS

+
(∆Sx)2

3,4CSS

(∆Sx)2
CSS

〈Sz〉3,4
〈Sz〉3,4CSS

})
,

(4.64)

where the second inequality †† is a consequence of the second property stated above

(deduced from eq.4.56). We decided to pick η1 = η2 and η3 = η4, in order to satisfy the

constraint ηi
ηj

= 1 for the first and second couple of particles.

We finally concluded the most general case for four particles, with entanglement allowed

between couples of them. In the following section we will generalize this result to any

even number N of atom.
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4.1.2.2 N particles

The generalization of the main result obtained in section 4.1.2.1, namely eq.4.64, turns

out to be particularly easy. In fact, there is no substantial difference between four and

N particles: using linearity and Jensen inequality we can determine analogous results

for 〈Sz〉 and (∆Sx)2, and therefore the lowest values the variance can take for different

spins along the z axis. But let us proceed with order, starting by giving the density

matrix and proceeding to our common objective.

Being, as before, ρi,j (for i 6= j) the most general operator describing a couple of entan-

gled atoms, we have that the most general density matrix for the system is:

ρ =
∑
k

pkρk1,k2 ⊗ ...⊗ ρkN−1,kN . (4.65)

Here,
∑
k

pk = 1 and the appendices ki, i = 1, ..., N , refer to the not commutative

permutations of the indices, as we had in eq.4.41 for N = 4. However, since the limit

of the variance is reached when all the entangled atoms have the same coefficients, we

can set all the pk’s equal to zero except the first one and consider the following density

matrix

ρ = ρ1,2 ⊗ ρ3,4 ⊗ ...⊗ ρN−1,N . (4.66)

As said above, here we have η1 = η2, η3 = η4,..., ηN−1 = ηN .

At this point, using linearity, it is particularly easy to obtain the equivalent of eq.4.45

and 4.46:

〈Sz〉 = 〈Sz〉1,2 + ...+ 〈Sz〉N−1,N (4.67a)

〈Sx〉 = 〈Sx〉1,2 + ...+ 〈Sx〉N−1,N . (4.67b)

For S2
x, we can, again, divide it in two parts: the first one given by S2

x1,2+...+S2
xN−1,N

and

the second by the well known crossed terms, as in eq.4.48. Here S2
xi,j =

(
ηijxi + ηjjxj

)2
,

for all i 6= j. Therefore we have:

〈S2
x〉 = 〈S2

x〉1,2 + ...+ 〈S2
x〉N−1,N + (Crossed Terms). (4.68)

And, without surprise, these crossed terms are the same ones we would find computing

〈Sx〉2 = 〈Sx〉21,2 + ...+ 〈Sx〉2N−1,N + (Crossed Terms), (4.69)
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so that, in conclusion:

〈Sz〉 = 〈Sz〉1,2 + ...+ 〈Sz〉N−1,N (4.70a)

(∆Sx)2 = (∆Sx)2
1,2 + ...+ (∆Sx)2

N−1,N . (4.70b)

For what concerns the normalization (that we need for finding the minimum normalized

variance), knowing that (i 6= j)

〈Sz〉i,jCSS =
ηi + ηj

2

†
= ηi = ηj (4.71a)

(∆Sx)2
i,jCSS

=
η2
i + η2

j

4

†
=
η2
i

2
=
η2
j

2
, (4.71b)

the maxima values that 〈Sz〉 and (∆Sx)2 can assume are

〈Sz〉CSS = 〈Sz〉1,2CSS + ...+ 〈Sz〉N−1,NCSS
†
=

N
2∑

k=1

η2k (4.72a)

(∆Sx)2
CSS = (∆Sx)2

1,2CSS
+ ...+ (∆Sx)2

N−1,NCSS

†
=

N
2∑

k=1

η2
2k

2
. (4.72b)

In these last four equations, equalities marked with † represent a consequence of the fact

that, for the considered couples of entangled particles (i, j), the coefficients ηi and ηj

are equal.

At this point we have got everything we need for proceeding in the conclusive step:

obtain a result equivalent to eq.4.64 for an even number N of particles. We have, being

f the same function we have encountered in the previous section 4.1.2.1:

(∆Sx)2

(∆Sx)2
CSS

=
(∆Sx)2

1,2CSS

(∆Sx)2
CSS

(∆Sx)2
1,2

(∆Sx)2
1,2CSS

+ ...+
(∆Sx)2

N−1,NCSS

(∆Sx)2
CSS

(∆Sx)2
N−1,N

(∆Sx)2
N−1,NCSS

≥

≥
(∆Sx)2

1,2CSS

(∆Sx)2
CSS

f

(
η1

η2
,
〈Sz〉1,2
〈Sz〉1,2CSS

)
+ ...+

(∆Sx)2
N−1,NCSS

(∆Sx)2
CSS

f

(
ηN−1

ηN
,
〈Sz〉N−1,N

〈Sz〉N−1,NCSS

)
†
=

†
=

(∆Sx)2
1,2CSS

(∆Sx)2
CSS

f

(
1,
〈Sz〉1,2
〈Sz〉1,2CSS

)
+ ...+

(∆Sx)2
N−1,NCSS

(∆Sx)2
CSS

f

(
1,
〈Sz〉N−1,N

〈Sz〉N−1,NCSS

)
††
≥

††
≥ f

(
1,

(∆Sx)2
1,2CSS

(∆Sx)2
CSS

〈Sz〉1,2
〈Sz〉1,2CSS

+ ...+
(∆Sx)2

N−1,NCSS

(∆Sx)2
CSS

〈Sz〉N−1,N

〈Sz〉N−1,NCSS

)
=

= f

1,

N
2∑

k=1

η2k〈Sz〉2k−1,2k

N
2∑

k=1

η2
2k

 −→
Thm.1

f

1,
2

Nη̄2

N
2∑

k=1

η2k〈Sz〉2k−1,2k

 ,

(4.73)
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where equality marked with † is a consequence of the fact that, for all entangled couple

(i, j), ηi = ηj ; inequality †† follows from convexity of the f(k, x) function in its second

argument. The last passage, where we used the central limit theorem for plugging in

what we know about the coefficients {ηi}, needs N to be big.

As before, since f(k, x) is also increasing with respect to x (the average spin in our

case), we need to find the smallest possible value that the second argument of f can

take, given any total average spin 〈Sz〉. This can be done numerically, knowing the

probability distribution functions p(η) and p(η2). In fact, generating the N
2 coefficients

η2k according to their distribution, we can always find, for any 〈Sz〉,

min
〈Sz〉=〈Sz〉1,2+...+〈Sz〉N−1,N


N
2∑

k=1

η2k〈Sz〉2k−1,2k

 , (4.74)

and therefore obtain the theoretical minimum for the normalized variance:

(∆Sx)2
Min

(∆Sx)2
CSS

(
〈Sz〉
〈Sz〉CSS

)
= f

1,

2 min
〈Sz〉=〈Sz〉1,2+...+〈Sz〉N−1,N


N
2∑

k=1

η2k〈Sz〉2k−1,2k


Nη̄2

 .

(4.75)

This represents a statistical minimum, that is always possible to find knowing p(η) and

p(η2).

To give an idea, let us derive it for our previous model, introduced in section 2.2.2.3 and

analysed more in details later in section 3.1.2. There we supposed to have p(η) and p(η2)

given by eq.2.105 and 2.108, so that we can determine η̄2 (see eq.2.109b) and generate N
2

coefficients η2k according to p(η). In the following Figure 4.4 we plotted several curves,

of which the lowest one (plain red) exactly represents the obtained statistical minimum
(∆Sx)2Min

(∆Sx)2CSS
, in the considered model, with parameters ν equal to 0.3 and N = 103. For a

comparison, we also draw the curves representing the minima variances for:

• (blue dashed) a generic separable state, using, instead of ~S, the collective spin

operator ~J ;

• (blue plain) the same separable state, but considering ~S and probability distribu-

tion functions p(η) and p(η2) described by the parameters ν = 0.3 and N = 103;

• (red dashed) a generic state where we allow to 2-particles entanglement, using the

collective spin operator ~J .

The red and blue dashed curves, that are obtained, we remember, using ~J instead of ~S,

are derived by substituting all the coefficients {ηi} with one. Of course, these are the
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same theoretical curves derived by others (see, for example, Anders Sørensen’s article

[37]) and used as entanglement criteria.

Figure 4.4: Minima variances for separable (blue) and 2-particles entangled (red)
states. For each couple, the one lying above is obtained using the collective spin operator

~J ; the one below using ~S. Here and ν = 0.3

As it is possible to see from the Fig.4.4, the curves obtained through ~S lie below the

ones obtained through ~J .

For finally concluding about the entanglement of pairs, we will generalize what we found

here by considering odd numbers N of particles (see Section 4.1.2.3).

4.1.2.3 Generalization to odd numbers of particles

Let us go back to the system in which we allow two particle entanglement. As a con-

clusive comment we want to understand what happens when the number of considered

particles is odd. At first, let us collect the curves describing the minima normalized

variances for a single and two possibly entangled particles. This is done in the following

picture:
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Figure 4.5: Reported here we have the curves describing the minima normalized
variances for one single particle (blue) and an entangled couple (red). These functions
have been taken from the figures 4.6 and 4.2 respectively. More in particular, for the
entangled couple we picked up η1 = η2 that, as we have seen, identify the lowest curve

So far nothing new, these are curves we have already seen in the previous sections; the

point is that we will use them now for proving the intuitive fact that the contribution

of the not entangled particle in a state of N (odd) atoms cannot be smaller of the one

of an entangle couple. Notice that we are referring to the situation in which both the

variance and the average spin are normalized.

Let us start by giving the density matrix of our state. In general, since we are allowing

here for entanglement between two atoms, it is a vector product between not entangled

single particle density matrices ρi and entangled pairs ρi,j , i 6= j. However, since the

minimum contribution of a correlated pair is always smaller than the one of a single atom,

we will consider only states in which N − 1 particles are entangled in N−1
2 couples, and

the N -th atom is a free, lonely one. Written in a mathematical language:

ρ =
∑
k

pk

ρk1,k2 ⊗ ...⊗ ρkN−2,kN−1︸ ︷︷ ︸
pairs

⊗ ρkN︸︷︷︸
single

 =
∑
k

pkρk, (4.76)

where as usual the pk’s are positive numbers they sum up to one and {k1, ..., kN} repre-

sent permutations of the numbers 1, ..., N .

If a more rigorous proof of this fact is needed, we can start by considering the most

general density matrix we can have:

ρ =
∑
k

pkρk =
∑
k

pk (ρk1 ⊗ ρk2 ⊗ ...) , (4.77)
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where now every ρki can describe a single particle or an entangled couple. For instance,

let us say

ρk1 = ρ1 (4.78a)

ρk2 = ρ2 (4.78b)

ρk3 = ρ1,2, (4.78c)

where a single numerical index states that the density matrix refers to a single particle,

while a double one to an entangled couple. We agree that this operator ρ, as in eq.4.77,

includes in itself all possible states of our system, so it actually represents the most

complete one. Now, using linearity of the trace operator and Jensen inequality (lemma

1), we can write

〈Sz〉 =
∑
k

pk (〈Sz〉k1 + 〈Sz〉k2 + ...) (4.79a)

(∆Sx)2
lemma1
≥

∑
k

pk
[
(∆Sx)2

k1 + (∆Sx)2
k2 + ...

]
, (4.79b)

where we introduced the notations (∆Sx)2
ki

= 〈Sx2〉ki − 〈Sx〉2ki and 〈A〉ki = Tr (Aρki)

for any operator A acting on subsystem ρki . Equations 4.79a and 4.79b, besides the

mentioned properties, are consequence of the fact that all ρki ’s are independent. The

procedure for deriving these results does not include anything new compared to what

we have already seen, for instance, in eq.4.93a and eq.4.95.

At this point it is straightforward to understand why the lowest limit for the variance

of this system has to be reached for a density matrix of the form of eq.4.76. Let us

take the first three terms in the series described by eq.4.79a and 4.79b, namely the ones

determined by the matrices ρk1 , ρk2 and ρk3 . Moreover, suppose these three operators

are exactly the ones we introduced above, in equations 4.78a, 4.78b and 4.78c. These

refer to the first two particles, but while ρk1 and ρk2 are distinguishable and do not

account for entanglement, ρk3 does. Therefore ρk3 is more general than the first two,

including in itself the possibility of having two separable particles. The conclusion we

take is that the minimum that
(∆Sx)2k3

(∆Sx)2CSS1,2
can assume, is always smaller or equal than

the one of
(∆Sx)2k1

+(∆Sx)2k2
(∆Sx)2CSS1,2

. Therefore we can neglect the not necessary single-particles

density matrices in eq.4.77, and suppose our system to be the most entangled possible,

i.e.: to be composed by N−1
2 entangled couples and a single atom. In other words, we

obtain back the density matrix 4.76.

As usual, we are considering normalized quantities; here we used the same normalization

as before:

(∆Sx)CSS1,2 =
η2

1 + η2
2

4
, (4.80)
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that is the value that the variance take for the coherent spin state of the first two par-

ticles.

Let us go back to the main problem; from eq.4.76 it is easy to determine out from

this density matrix the usual quantities 〈Sz〉, 〈Sx〉 and 〈S2
x〉. The procedure is, in fact,

the same we followed in the equations 4.67a, 4.67b and 4.68 before and in 4.93a, 4.93b

and 4.93c later. We have that

〈Sz〉 =
∑
k

pk
(
〈Sz〉k1,k2 + ...+ 〈Sz〉kN−2,kN−1

+ 〈Sz〉kN
)

(4.81a)

〈Sx〉 =
∑
k

pk
(
〈Sx〉k1,k2 + ...+ 〈Sx〉kN−2,kN−1

+ 〈Sx〉kN
)

(4.81b)

〈S2
x〉 =

∑
k

pk
[
〈S2
x〉k1,k2 + ...+ 〈S2

x〉kN−2,kN−1
+ 〈S2

x〉kN + (C.T.)
]
, (4.81c)

where we used the notation

〈Sz,x〉ki,kj = Tr
[
ρk

(
ηkijz,xki + ηkjjz,xkj

)]
≡ Tr

(
ρki,kjSz,x

)
(4.82a)

〈S2
x〉ki,kj = Tr

[
ρk

(
ηkijxki + ηkjjxkj

)2
]
≡ Tr

(
ρki,kjS

2
x

)
(4.82b)

〈Sz,x〉kN = Tr
[
ρkηkN jxkN

]
≡ Tr (ρkNSz,x) (4.82c)

〈S2
x〉kN = Tr

[
ρkηkN j

2
xkN

]
≡ Tr

(
ρkNS

2
x

)
. (4.82d)

It is important to make clear that in “(C.T.)” (eq.4.81c), where we collected some of the

crossed terms derived from squaring the operator Sx, there are all the contributions of the

kind 〈ηkijxki 〉〈ηkjjxkj 〉. All of them refer to non entangled particles ki and kj , that is the

reason for which we are allowed to write them in this form instead of 〈ηkijxkiηkjjxkj 〉. The

crossed terms regarding the entangled pairs are already collected in eq.4.82b. Therefore,

once we subtract 〈Sx〉2 to 〈S2
x〉 in order to get (∆Sx)2, what we called “(C.T.)” sums

up to zero with its counterpart deriving from squaring 〈Sx〉. In conclusion:

(∆Sx)2 ≥
∑
k

pk

[
(∆Sx)2

k1,k2 + ...+ (∆Sx)2
kN−2,kN−1

+ (∆Sx)2
kN

]
, (4.83)

where the inequality follows from Jensen’s lemma 1 and

(∆Sx)2
ki,kj

= 〈S2
x〉ki,kj − 〈Sx〉

2
ki,kj

(4.84a)

(∆Sx)2
kN

= 〈S2
x〉kN − 〈Sx〉

2
kN
. (4.84b)

From now on, let us call f
(
〈Sz〉
〈Sz〉CSS

)
and g

(
〈Sz〉
〈Sz〉CSS

)
the functions representing, given

a value of the average spin, the minimum possible variance for one single particle and
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an entangled pair respectively, as stated in the legend of Fig.4.5. Therefore we have:

(∆Sx)2

(∆Sx)2
CSS

(
〈Sz〉
〈Sz〉CSS

)
≥
∑
k

pk

[
(∆Sx)2

CSSk1,k2

(∆Sx)2
CSS

(∆Sx)2
k1,k2

(∆Sx)2
CSSk1,k2

+ ...

...+
(∆Sx)2

CSSkN−2,kN−1

(∆Sx)2
CSS

(∆Sx)2
kN−2,kN−1

(∆Sx)2
CSSkN−2,kN−1

+
(∆Sx)2

CSSkN

(∆Sx)2
CSS

(∆Sx)2
kN

(∆Sx)2
CSSkN

]
†1
≥

†1
≥
∑
k

pk

[
(∆Sx)2

CSSk1,k2

(∆Sx)2
CSS

f

(
〈Sz〉k1,k2
〈Sz〉CSSk1,k2

)
+ ...

...+
(∆Sx)2

CSSkN−2,kN−1

(∆Sx)2
CSS

f

(
〈Sz〉kN−2,kN−1

〈Sz〉CSSkN−2,kN−1

)
+

(∆Sx)2
CSSkN

(∆Sx)2
CSS

g

(
〈Sz〉kN
〈Sz〉CSSkN

)]
†2
≥

†2
≥
∑
k

pk

[
(∆Sx)2

CSSk1,k2

(∆Sx)2
CSS

f

(
〈Sz〉k1,k2
〈Sz〉CSSk1,k2

)
+ ...

...+
(∆Sx)2

CSSkN−2,kN−1

(∆Sx)2
CSS

f

(
〈Sz〉kN−2,kN−1

〈Sz〉CSSkN−2,kN−1

)
+

(∆Sx)2
CSSkN

(∆Sx)2
CSS

f

(
〈Sz〉kN
〈Sz〉CSSkN

)]
†3
≥

†3
≥ f

(∑
k

pk

[
(∆Sx)2

CSSk1,k2

(∆Sx)2
CSS

〈Sz〉k1,k2
〈Sz〉CSSk1,k2

+ ...

...+
(∆Sx)2

CSSkN−2,kN−1

(∆Sx)2
CSS

〈Sz〉kN−2,kN−1

〈Sz〉CSSkN−2,kN−1

+
(∆Sx)2

CSSkN

(∆Sx)2
CSS

〈Sz〉kN
〈Sz〉CSSkN

])
†4
≥

†4
≥ f

(
min

〈Sz〉=
∑
k

pk(〈Sz〉k1,k2+...+〈Sz〉kN )

{∑
k

pk

[
(∆Sx)2

CSSk1,k2

(∆Sx)2
CSS

〈Sz〉k1,k2
〈Sz〉CSSk1,k2

+ ...

...+
(∆Sx)2

CSSkN−2,kN−1

(∆Sx)2
CSS

〈Sz〉kN−2,kN−1

〈Sz〉CSSkN−2,kN−1

+
(∆Sx)2

CSSkN

(∆Sx)2
CSS

〈Sz〉kN
〈Sz〉CSSkN

]})
,

(4.85)

where we defined, with a slightly different notation than before,

〈Sz〉CSSki,kj =
ηki + ηkj

2
(4.86a)

(∆Sx)2
CSSki,kj

=
η2
ki

+ η2
kj

4
(4.86b)

〈Sz〉CSSkN =
ηkN
2

(4.86c)

(∆Sx)2
CSSkN

=
η2
kN

4
. (4.86d)

Let us now explain all the inequalities marked with † in eq.4.85:

• In the relation †1 we just plugged in the minimizing functions f and g we derived

previously and recalled, with the figure 4.5, at the beginning of this section.

• †2 is a straightforward consequence of the fact that, for any allowed x ∈ [0, 1],

g(x) ≤ f(x). It is important to note here that with this approximation (substitute

g with f) we do not obtain an optimal lower limit; being precise we should keep

the function g through all the calculations! However, this way the algebra results
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to be much simpler; moreover in the limit N � 1, g’s contribution is negligible

with respect to the sum of f ’s ones.

• In †3 we simply used the convexity of the function f . Recalling the previous point,

here is where the algebra is much simplified by the substitution g → f . In fact,

the convexity argument needs that the coefficients sum up to one! This is always

the case for the pk, but we need the last term
(∆Sx)2CSSkN

(∆Sx)2CSS
in order to have

(∆Sx)2
CSSk1,k2

(∆Sx)2
CSS

+ ...+
(∆Sx)2

CSSkN−2,kN−1

(∆Sx)2
CSS

+
(∆Sx)2

CSSkN

(∆Sx)2
CSS

= 1. (4.87)

• In the last inequality †4 we used the property of monotonically increasing of the

function f , just as we did in previous sections, in equations 4.64 and 4.75.

As a final passage, in order to conclude the case regarding entanglement for two particles,

let us rewrite eq.4.85 plugging in the probability distribution function for the coefficients

p(η):

(∆Sx)2

(∆Sx)2
CSS

(
〈Sz〉
〈Sz〉CSS

)
≥

≥ f

 min
〈Sz〉=〈Sz〉1,2+...+〈Sz〉N−2,N−1+〈Sz〉N


2

N−1
2∑
i=1

η2i〈Sz〉2i−1,2i + ηN 〈Sz〉N

Nη̄2



 .

(4.88)

Here we need to give some explanations. First, we imposed the condition that the co-

efficients of all entangled couples are the same. As we have seen in section 4.1.2, this

is a condition that has to be verified in order to achieve the inferior limit. Second, we

neglected the sum over the pk, because its result is one, and in order to attain the mini-

mum of f ’s argument in eq.4.85, we can consider all the terms to be independent from k.

In the following, we will try to obtain a better criterion for 2-particle entanglement.

However, before doing it, we will take a little detour and get a new minimization curve

for (∆Sx)2 in the separable case. In fact, for obtaining eq.4.75, we used a different ap-

proach than the one we introduced in Section 3.1. Even if in both of them we used the

Lagrange method, in the second one we derived the result straight through it, while in

the first we obtained the lowest bound for the simplest situation (two entangled parti-

cles), and then we used it in the general one. There are no reason for which this method

should fail in the separable case, and therefore we will see what we can obtain.
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4.2 Detour: The separable case again

In order to check what we obtained in Section 3.1, we will here try to achieve a similar

result - a lowest bound for (∆Sx)2 for a separable state - with a different method. More

in particular, we will exploit the single particle normalized curve (Fig.4.6) for obtaining

the general one for N particles, using convexity as we did in eq.4.73.

Therefore, let us first derive the mentioned curve for one atom. Now, since it has

to be normalized, it is sufficient to note that

〈Sz〉
〈Sz〉CSS

=
〈ηJz〉
〈ηJz〉CSS

=
〈Jz〉
〈Jz〉CSS

(4.89a)

(∆Sx)2

(∆Sx)2
CSS

=
η2 (∆Jx)2

η2 (∆Jx)2
CSS

=
(∆Jx)2

(∆Jx)2
CSS

, (4.89b)

being η the coefficient describing the only atom we have. It is not surprising that, in

this case, there is no “η” dependence in (∆Sx)2

(∆Sx)2CSS
. In fact, through the normalization

we are reducing the degrees of freedom for the particles’ coefficients by one, and since

we only have one η, we end up with no dependence over it. This also is the reason for

which we had a single axis for η1
η2

in Fig.4.2, instead that two axes, one for η1 and the

other for η2.

As consequence of equations 4.89a and 4.89b, we automatically recover the “entangle-

ment criterion” reported in the literature (see, for example, the article [37])

(∆Jx)2

(∆Jx)2
CSS

≥
(
〈Jz〉
〈Jz〉CSS

)2

, (4.90)

that is the squeezing parameter

ξ2
R =

(∆Jx)2

〈Jz〉2
≥ 1. (4.91)

Of course, having here only one atom, we cannot speak about entanglement.

In the last equation 4.91 we used that, for one particle, the maximum values that the

variance and the average spin are allowed to assume are, respectively, 1
4 and 1

2 .

In conclusion, the curve minimizing the normalized variance of a single atom is a simple

quadratic function (see eq.4.90), drawn in the following figure
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Figure 4.6: Minimum normalized variance for a single particle. As reported in the
literature, the curve is simply a quadratic - see eq.4.90.

At this point, let us consider back the same separable density matrix as in eq.2.67:

ρ =
∑
k

pkρk =
∑
k

pkρk1 ⊗ ...⊗ ρkN . (4.92)

Then we have, without surprise, that 〈Sz〉, 〈Sx〉 and 〈S2
x〉 are given by:

〈Sz〉 = Tr (ρSz) =
∑
k

pk

N∑
i=1

ηiTr (ρkjzi) =
∑
k

pk

N∑
i=1

ηi〈jzi〉k =
∑
k

pk

N∑
i=1

〈Szi〉k

(4.93a)

〈Sx〉 = Tr (ρSx) =
∑
k

pk

N∑
i=1

ηi〈jxi〉k =
∑
k

pk

N∑
i=1

〈Sxi〉k (4.93b)

〈S2
x〉 = Tr

ρ


N∑
i=1

ηijxi︸ ︷︷ ︸
Sx


2 †=

∑
k

pk

N∑
i=1

η2
i 〈j2

xi〉k︸ ︷︷ ︸
1
4

+(C.T.) =
∑
k

pk

N∑
i=1

〈S2
xi〉k + (C.T.)

(4.93c)

Here we used the same notation we introduced before, 〈A〉k ≡ Tr (ρkA). In the equality

marked with †, we collected all the terms of the kind pk〈jxijxj 〉k, for all i 6= j, in the

so-called “Crossed Term” (C.T.).

As a last step before being able to write down (∆Sx)2, let us compute 〈Sx〉2. We have,
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with little algebra

〈Sx〉2 =

(∑
k

pk

N∑
i=1

ηi〈jxi〉k

)2
††
≤
∑
k

pk

(
N∑
i=1

ηi〈jxi〉k

)2

=
∑
k

pk〈Sxi〉2k + (C.T.),

(4.94)

Where inequality †† is a straightforward consequence of Jensen’s theorem we outlined

in lemma 1.

At this point, similarly as before in the previous section, once we subtract 〈Sx〉2 to 〈S2
x〉

in order to get (∆Sx)2, the crossed terms (C.T.) cancel themselves. This is, again, a

consequence of the fact that, in absence of entanglement, 〈jxijxj 〉k = 〈jxi〉〈jxj 〉k for all

i 6= j. Finally (from eq.4.93c and 4.94):

(∆Sx)2 = 〈S2
x〉 − 〈Sx〉2 ≥

∑
k

pk

N∑
i=1

[
〈S2
xi〉k − 〈Sxi〉

2
k

]
=
∑
k

pk

N∑
i=1

(∆Sxi)
2
k, (4.95)

where we defined (∆Sxi)
2
k ≡ 〈S2

xi〉k − 〈Sxi〉
2
k.

At this point we can determine, using the convexity of the quadratic function, a new

lowest bound for the normalized variance in the separable case. In fact, recalling that

the normalization is done by dividing for the maximum values reached by the coherent

spin state

〈Sz〉CSS =
1

2

N∑
i=1

ηi (4.96a)

(∆Sx)2
CSS =

1

4

N∑
i=1

η2
i , (4.96b)

we have that:

(∆Sx)2

(∆Sx)2
CSS

(
〈Sz〉
〈Sz〉CSS

)
≥
∑
k

pk

N∑
i=1

(∆Sxi)
2
k

(∆Sx)2
CSS

=

=
∑
k

pk

N∑
i=1

(∆Sxi)
2
kCSS

(∆Sx)2
CSS

(∆Sxi)
2
k

(∆Sxi)
2
kCSS

eq. 4.90
≥

eq. 4.90
≥

∑
k

pk

N∑
i=1

(∆Sxi)
2
kCSS

(∆Sx)2
CSS

(
〈Szi〉k
〈Szi〉kCSS

)2 lemma 1
≥

lemma 1
≥

(∑
k

pk

N∑
i=1

(∆Sxi)
2
kCSS

(∆Sx)2
CSS

〈Szi〉k
〈Szi〉kCSS

)2

.

(4.97)
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In the last equation we denoted with 〈Szi〉kCSS and (∆Sxi)
2
kCSS

the maxima values for

the average spin and variance that the i-th particle can obtain respectively; namely

〈Szi〉kCSS =
ηi
2

(4.98a)

(∆Sxi)
2
kCSS

=
η2
i

4
. (4.98b)

Moreover, for using Jensen’s inequality (lemma 1), we needed
∑
k

pk
N∑
i=1

(∆Sxi )
2
kCSS

(∆Sx)2CSS
= 1.

This is ensured from the facts
∑
k

pk = 1 and
N∑
i=1

(∆Sxi )
2
kCSS

(∆Sx)2CSS
= 1. Notice that there is no

explicit dependence over k in the terms (∆Sxi)
2
kCSS

.

Let us now look back at eq.4.97. Similarly to the previous section, where we derived an

analogous result for a system in which two particles’ entanglement is allowed (eq.4.75),

this equation express the minimum value that the normalized variance of the system can

achieve, once we fix the normalized average spin. However, one more step is needed! In

fact, given 〈Sz〉
〈Sz〉CSS , the argument of the last term in eq.4.75 is not uniquely determined.

Since 〈Sz〉 =
∑
k

pk
N∑
i=1
〈Szi〉k, there is, in general, quite a lot of freedom in the choices of

the 〈Szi〉k’s and the pk’s. Remember here that we are trying to figure out which is the

minimum value that the variance can assume; therefore, since the quadratic function is

monotonically increasing and, de facto, we can adjust its argument, we need to find the

lowest value it can assume:

min
〈Sz〉=

∑
k
pk〈Sz1 〉k+...+〈SzN 〉k

{∑
k

pk

N∑
i=1

(∆Sxi)
2
kCSS

(∆Sx)2
CSS

〈Szi〉k
〈Szi〉kCSS

}
. (4.99)

Substituting now what we wrote in equations 4.98a and 4.98b, we finally have that

(∆Sx)2

(∆Sx)2
CSS

(
〈Sz〉
〈Sz〉CSS

)
≥

 min
〈Sz〉=〈Sz1 〉+...+〈SzN 〉


2
N∑
i=1

ηi〈Szi〉

Nη̄2




2

, (4.100)

where we plugged in the average of the squared coefficients η̄2 (big N is required) and

neglected the sum over k. This can be done since, considering particles having equiv-

alent coefficients, there is a unique way for getting the minimum expressed in eq.4.99,

that does not depend over the coefficients pk that can be summed to one. Knowing the

probability distribution p(η) of the coefficients, it is possible to draw this function. For

example, generating N coefficients according to p(η), we can identify the argument of

the quadratic function and draw a plot. In the next figure we report it (blue curve),

considering the model introduced above in sections 2.2.2.3 and 3.1.2. For comparison,
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we decided to include the curve we derived with the Lagrange method (section 3.1.2,

red) and the one obtained considering the collective spin operator (black dashed) as well.

Figure 4.7: In this graph we report three curves, obtained with the parameter ν = 0.3
(for the red and blue ones). All of them represent the minimum possible normalized
variance; the black one is obtained using the collective spin operator, while the red and

blue with the more general ~S =
N∑
i=1

ηi~ji. The difference of the latter two is given by the

method used in their derivation: for the first one we used Lagrange, while the second
follows from eq.4.100

As it is possible to see, the curves obtained with the Lagrange method (red) and the

convexity of the single particle function (blue) are not the same. Should we take the

conclusion that - at least for one of them - we did something wrong? Fortunately not

(at least not so soon); in fact Jensen’s inequality is saturated to an equality only under

some particular conditions (for example the coefficients being all equal), so that this

method is not particularly efficient. On the other hand, every point along the red curve

corresponds to a specific, real state, so that we can deduce that the Lagrange method

give rise to a better constraint. Of course both the methods are valid, but not equivalent.

4.3 A better boundary for N particles entangled in pairs

Similarly to what happened in the separable case (see the conclusion of previous section

4.2), the curves obtained for N particles entangled in pairs (Fig.4.4) are not efficient. In

fact, unless all the coefficients {ηi} are the same, the convexity inequality used in their

derivation is never saturated along the whole curve, giving therefore a bad criterion.

The natural question arising in this context is therefore: “Can we obtain something
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better?” Take, for instance, the separable case. The big advantage we had there is that

we were able to minimize the Lagrange function Γ directly for the general case of N

atoms, without the need of going through evaluating the incriminated inequality. But

this is not true any more when we allow to have correlations between particles; in fact

now 〈jxijxj 〉 = 〈jxi〉〈jxj 〉, for all i 6= j is not true any more. From one side, this is the

reason for which the limit for entangled atoms is actually lower; but from the other side

it prevents us from obtaining the optimal criterion.

What we will do next is to use the information we obtained in section 4.1.1 - and more

in particular eq.4.40 - to obtain the optimal criterion, plugging the informations directly

in the Lagrange function Γ and therefore avoiding the deleterious convexity argument.

4.3.1 The “Optimal criterion”

As said above, the way for obtaining the optimal criterion passes through the Lagrange

multiplier method. The additional informations we will plug in are:

• For any entangled couple of particles (i, j), in order to achieve the minimum, the

coefficients have to be equal:

ηi = ηj . (4.101)

This is a straightforward consequence of the second property deduced from Fig.4.2.

• The most general density matrix describing the system is the one given in eq.4.65.

However, for our purpose it is easier to consider the one written in eq.4.66, that

we recall to be

ρ = ρ1,2 ⊗ ρ3,4 ⊗ ...⊗ ρN−1,N =

N
2⊗

k=1

ρ2k−1,2k. (4.102)

As discussed above (see section 4.1.2.2), these two are completely equivalent for our

purposes. Moreover, we have supposed N to be an even number. Generalization

to odd N can be done in the same fashion as we did in section 4.1.2.3.

At this point we are able to write down the average spin and variance for our system.

In the following we are referring to section 4.1.2.2. Skipping some algebra - that can

be found in the equations 4.70a and 4.70b - and using the same notation as before, we
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have:

〈Sz〉 = 〈Sz〉1,2 + ...+ 〈Sz〉N−1,N =

N
2∑

k=1

〈Sz〉2k−1,2k (4.103a)

(∆Sx)2 = (∆Sx)2
1,2 + ...+ (∆Sx)2

N−1,N =

N
2∑

k=1

(∆Sx)2
2k−1,2k . (4.103b)

We also remember that the values that we will use for the normalization are:

〈Sz〉CSS = 〈Sz〉1,2CSS + ...+ 〈Sz〉N−1,NCSS
†
=

N
2∑

k=1

η2k (4.104a)

(∆Sx)2
CSS = (∆Sx)2

1,2CSS
+ ...+ (∆Sx)2

N−1,NCSS

†
=

N
2∑

k=1

η2
2k

2
, (4.104b)

where we used in † that

〈Sz〉2k−1,2kCSS = ηk (4.105a)

(∆Sx)2
2k−1,2kCSS

=
η2
k

2
. (4.105b)

At this stage we finally have all the ingredients to write down our Lagrange function

Γ(µ, 〈Sz〉, (∆Sx)2):

Γ = (∆Sx)2 − µ〈Sz〉 =

N
2∑

k=1

{
(∆Sx)2

2k−1,2k − µ〈Sz〉2k−1,2k

}
. (4.106)

Now, with the intention of plugging in the information contained in eq.4.40, we rewrite

such relation as

(∆Sx)2
2k−1,2k

(∆Sx)2
2k−1,2kCSS

≥ 1−

√
1−

(
〈Sz〉2k−1,2k

〈Sz〉2k−1,2kCSS

)2

for k = 1, ...,
N

2
; (4.107)

this way we made clear that this inequality can be used for all entangled pairs we are

dealing with in the Lagrange function. Notice that we were able to substitute ~S by the

collective spin operator ~J for the two following reasons:

• The density matrix ρ =

N
2⊗

k=1

ρ2k−1,2k consists of the vector product of the indepen-

dent sub-matrices ρ2k−1,2k, k = 1, ..., N2
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• In the case in which the entangled pair (2k − 1, 2k) is described by the same

coefficient ηk, we get that

〈Sz〉2k−1,2k

〈Sz〉2k−1,2kCSS

=
〈Jz〉2k−1,2k

〈Jz〉2k−1,2kCSS

(4.108a)

(∆Sx)2
2k−1,2k

(∆Sx)2
2k−1,2kCSS

=
(∆Jx)2

2k−1,2k

(∆Jx)2
2k−1,2kCSS

(4.108b)

But let us come back to the main problem; it is useful now to slightly modify the form

of the Γ function. Starting from eq.4.106, it is easy to obtain:

Γ =

N
2∑

k=1

{
(∆Sx)2

2k−1,2k − µ〈Sz〉2k−1,2k

}
=

=

N
2∑

k=1

{
(∆Sx)2

2k−1,2kCSS

(∆Sx)2
2k−1,2k

(∆Sx)2
2k−1,2kCSS

− µ〈Sz〉2k−1,2kCSS

〈Sz〉2k−1,2k

〈Sz〉2k−1,2kCSS

}
=

=

N
2∑

k=1

{
η2
k

2

(∆Sx)2
2k−1,2k

(∆Sx)2
2k−1,2kCSS

− µηk
〈Sz〉2k−1,2k

〈Sz〉2k−1,2kCSS

}
.

(4.109)

It is therefore clear how we can use the inequality 4.107; in fact, plugging it in this

last equation, we are able to minimize the Γ function and make it dependent over the

variables µ and 〈Jz〉2k−1,2k only. Notice that, since we are trying to find a lower bound,

this minimization is not deleterious. We get:

Γ ≥

N
2∑

k=1

η2
k

2

1−

√
1−

(
〈Sz〉2k−1,2k

〈Sz〉2k−1,2kCSS

)2
− µηk 〈Sz〉2k−1,2k

〈Sz〉2k−1,2kCSS

 ≡
≡ Γ̃

(
µ,

{
〈Sz〉2k−1,2k

〈Sz〉2k−1,2kCSS

}) (4.110)

It is important to make clear that, as consequence of the fact that eq.4.107 is an in-

equality that can always be saturated, we are still in the optimality condition. In other

words, for all possible values
{
〈Sz〉2k−1,2k

〈Sz〉2k−1,2kCSS

}
and µ, Γ represents a physically real state.

We remember that, in general,
{
〈Sz〉2k−1,2k

〈Sz〉2k−1,2kCSS

}
and µ are allowed to vary inside the in-

tervals [−1, 1] and (−∞,∞) respectively. In the following we will reduce them through

symmetry considerations.

From now on, it is just a matter of following the same steps of section 3.2: find the

minimum possible value of the Γ function for any µ, and then determine the associated

normalized averaged spin 〈Sz〉
〈Sz〉CSS and variance (∆Sx)2

(∆Sx)2CSS
. This result will be achieved by
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studying the first and second derivatives of Γ̃
(
µ,
{
〈Sz〉2k−1,2k

〈Sz〉2k−1,2kCSS

})
. For clearness, let us

denote
〈Sz〉2k−1,2k

〈Sz〉2k−1,2kCSS
with xk. We have

∂Γ̃(µ, {xk})
∂xk

= ηk

ηk
2

xk√
1− x2

k

− µ

 , (4.111)

from which it is easy to find the only stationary point

xkmin =
2|µ| sgn(µ)√
η2
k + 4µ2

. (4.112)

Notice that the Γ function is symmetric with respect to the transformation(
µ,

{
〈Sz〉2k−1,2k

〈Sz〉2k−1,2kCSS

})
→
(
−µ,−

{
〈Sz〉2k−1,2k

〈Sz〉2k−1,2kCSS

})
, (4.113)

so that, without loss of generality, we can restrict the intervals in which xk and µ can

vary to [0, 1] and [0,∞) respectively. In addition to the same argument used in section

3.1.2, here we also imposed that all the
{
〈Sz〉2k−1,2k

〈Sz〉2k−1,2kCSS

}
have the same sign.

Is this point a minimum? The second derivative is always bigger than zero,

∂2Γ̃(µ, {xk})
∂x2

k

=
η2
k

2
(
1− x2

k

) 3
2

> 0 ∀ xk ∈ [0, 1], (4.114)

that ensures us the stationary point is a minimum.

At this point, since this is valid for any k = 1, ..., N2 , we can plug in this constraint in

the Γ function for obtaining its lowest possible value Γmin:

Γmin(µ) =

N
2∑

k=1

η2
k

2

[
1−

√
1− x2

kmin

]
− µ

N
2∑

k=1

ηkxkmin =

=

N
2∑

k=1

η2
k

2

1− ηk√
η2
k + 4µ2

− µ N
2∑

k=1

ηk
µ√

η2
k + 4µ2

.

(4.115)

Finally, using these results we can determine the minimum average spin 〈Sz〉 and variance

(∆Sx)2 for the system of N2 pairs of entangled particle. In fact, using the equation 4.103a

we have

〈Sz〉 =

N
2∑

k=1

〈Sz〉2k−1,2k =

N
2∑

k=1

ηkxkmin = 2µ

N
2∑

k=1

ηk√
η2
k + 4µ2

, (4.116)
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while from 4.103b and 4.107, supposing this latter inequality saturated, we get

(∆Sx)2 =

N
2∑

k=1

(∆Sx)2
2k−1,2k =

N
2∑

k=1

η2
k

2

(∆Sx)2
2k−1,2k

(∆Sx)2
2k−1,2kCSS

=

=

N
2∑

k=1

η2
k

2

[
1−

√
1− x2

kmin

]
=

N
2∑

k=1

η2
k

2

1− ηk√
η2
k + 4µ2

 .
(4.117)

Therefore, including the normalization, we achieve the important results:

〈Sz〉
〈Sz〉CSS

=

 N
2∑
j=1

ηj

−1 N
2∑

k=1

µ
2ηk√
η2
k + 4µ2

(4.118a)

(∆Sx)2

(∆Sx)2
CSS

=

 N
2∑
j=1

η2
j

−1 N
2∑

k=1

η2
k

1− ηk√
η2
k + 4µ2

 . (4.118b)

Why these two equations are so important? Because they allow to determine the now

optimal curve that identifies the minimum possible normalized variance (∆Sx)2

(∆Sx)2CSS
with

respect to the average spin 〈Sz〉
〈Sz〉CSS , when we allow to 2-particle entanglement.

Why is such curve optimal? Because, differently from before, here for any value of the

average spin and any set of coefficients {ηk}, the variance corresponds to a precise state

of the system.

How are we going to determine, in practice, this curve? There are two possible ways

we already used in the previous sections. The first and easiest one, is to generate the
N
2 coefficients {ηk} according to their probability distribution p(η) and use directly

equations 4.118a and 4.118b. The second, “analytic”, way is in general harder, because

it requires to determine non trivial probability distribution functions. In fact, besides

p(η) and p(η2), necessary for deriving η̄ and η̄2, we need to know p

(
η√

η2+4µ2

)
and

p

(
η3√
η2+4µ2

)
for the relative averages

(
η√

η2+4µ2

)
and

(
η3√
η2+4µ2

)
. However, once we

know them, we have:

〈Sz〉
〈Sz〉CSS

=
2µ

η̄

(
η√

η2 + 4µ2

)
(4.119a)

(∆Sx)2

(∆Sx)2
CSS

= 1− 1

η̄2

(
η3√

η2 + 4µ2

)
, (4.119b)

they unequivocally identify the curve of interest that describes the behaviour of the

system once the number of atoms N is big enough for having an appropriate statistic.



Chapter 4. How “good” is the entanglement? 117

The two couples of equations 4.118a, 4.118b and 4.119a, 4.119b represent everything

we can say about our system without knowing the coefficients {ηk} - i.e.: their proba-

bility distribution p(η). In the following we will use once again the simplified model of

sections 2.2.2.3 and 3.1.2, in order to confront this new curve with the one derived using

convexity.

4.3.2 A practical example

As said above, let us suppose to have the distribution p(η) of eq.2.105 describing our N
2

coefficients for N particles. There are now two ways of proceeding, as we discussed at

the end of the previous section. However, even for such simplified model the derivations

of p

(
η√

η2+4µ2

)
and p

(
η3√
η2+4µ2

)
are already not trivial. Henceforth we decide to sim-

ply generate the coefficients according to p(η) and to use the first mentioned method only.

In the first of the next two figures (4.8) it is possible to see the histogram with the

coefficients {ηk} we used for the derivation of the curves plotted in the second figure

(4.9). Along with the histogram we draw the theoretical distribution p(η), while in the

plot the three curves represent the minimum possible variance (∆Sx)2

(∆Sx)2CSS
with respect to

the average spin 〈Sz〉
〈Sz〉CSS . All refer to the situation of pairs of entangled particles; the

differences are:

• The black dashed curve is the theoretical one obtained first by Anders Sørensen in

[37], using the collective spin operator ~J instead of ~S (see eq.4.40)

• The blue curve is the one described by eq.4.75 and already plotted in Fig.4.4 (plain

red there). The convexity inequality has been used in its derivation

• Finally, the red curve represents the fresh, optimal criterion derived using equations

4.118a, 4.118b and the coefficients {ηk} collected in the histogram of the next

Fig.4.8.

The histogram with the coefficients is
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Figure 4.8: Histogram with the coefficients {ηk} generated according with the prob-
ability distribution p(η), as in eq.2.105, plotted in red and scaled for the considered

dataset. The total number of generated coefficients is N
2 = 104

while the plot with the three mentioned curves is:

Figure 4.9: The dashed black curve here is drawn using eq.4.40 directly. The blue line
represents the criterion derived using the convexity inequality, while the red one is the
optimal. For these latter two the coefficients {ηk} collected in the histogram 4.8 have

been used

As it is possible to see, the two curves representing the two-particle entanglement cri-

teria for operator ~S are significantly different. The one obtained using the convexity

argument lies far below the optimal one, thus confirming our prediction according to

which the new criterion is much better than the old one.



Chapter 4. How “good” is the entanglement? 119

4.4 k-particle entanglement

Let us briefly summarize what we have done so far in this chapter:

1. We started by taking two particles, described by any coefficients η1 and η2, and

numerically derived their minimum possible variance with respect to the average

spin and the fraction η1
η2

(see fig.4.2)

2. We deduced, from our numerical calculations, that the two-particle curve (∆Sx)2

(∆Sx)2CSS(
η1
η2
, 〈Sz〉
〈Sz〉CSS

)
satisfy two important properties: it is convex with respect to its

second argument, and reaches the minimum whenever η1 = η2. The latter one

allows us to use eq.4.40, the curve determined in [37], as reference curve; this will

be important in the following

3. At this point we took a collection of N particles, and we allowed them to be corre-

lated in pairs. Which is the criterion for having more than two-particle entangle-

ment? We derived a first one (eq.4.75), using the two previously cited properties

(convexity method)

4. We extended this result to an odd number of atoms

5. We took a small detour to the separable case again and, using the same convexity-

based procedure we described in the previous points, we derived a new entangle-

ment criterion (Fig.4.7). We concluded that this method is not efficient, since it

is based on an inequality that, in general, is not saturated for the majority of the

states

6. We designed a new procedure, that uses the Lagrange method for determining the

minimum variance directly for N particles entangled in pairs. This new method -

that we called “Optimal” - is based on the fact that for reaching the minimum,

the coefficients of the entangled pairs have to be equal. This way, we can plug in

eq.4.40 in the Lagrange function and minimize it

7. The conclusion we draw is that this Optimal method is significantly better than

the convexity-based one.

In the following, our goal is to generalize the Optimality method - that, ironically, will

not be optimal any more - to the case of k-particles entanglement.

At first, similarly to what we have done before (section 4.1.1), we will think at the case

of k atoms described by the most general state vector and any coefficients (η1, ..., ηk).
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The result we are aiming to, is to prove that the minimum possible variance is achieved

when all the {ηj}kj=1 are the same. In such case we are able to use, within the Lagrange

method, the well known results obtained with the collective spin operator (see [37]),

and obtain a natural generalization of the optimal method to k-particles entanglement.

However, we remember that this result was determined numerically before, minimizing

a function of seven complex variables and one real. In principle, the same procedure can

be repeated here, now with k2−1 complex variables (of the wave function) and k−1 real

(the coefficients); but we believe too much computational resources would be required,

already with reasonable small values for k. We tried to find an alternative way to reach

the desired conclusion, but it seems to be at least very challenging without directly

computing the function. Therefore, for now, we must limit ourselves to a reasonable

assumption

Conjecture 1. Let us suppose to have a k-tuple of particles, each one described by a

coefficient ηj allowed to vary in the range (0, 1], for all j = 1, ..., k. Then the minimum

normalized variance (∆Sx)2

(∆Sx)2CSS
, as a function of the normalized spin 〈Sz〉

〈Sz〉CSS is achieved

whenever all the {ηj}kj=1 are equal.

Using this conjecture we are able to take a step further in the Optimal procedure for

k-tuples of entangled particles. What we still need to know is the equivalent of the

relation 4.40 for k > 2. In fact, the analytical equation for the desired criterion is known

only for two atoms; all the others have been derived numerically (see [37]). What we

will do in the next section, is to find a lower bound for the normalized variance of the

collective spin operator (∆Jx)2

(∆Jx)2CSS
with respect to the average spin 〈Jz〉

〈Jz〉CSS . The reason

for which we are using ~J instead of ~S is that, whenever all the coefficients are the same,

they are completely equivalent. Moreover, for the collective spin operator we know the

commutation relations that are not valid for ~S any more.

4.4.1 Lower bound for the k-particle state

Let us suppose to have k particles, described by the same coefficients η1 = ... = ηk. For

this reason, up to a normalization constant, the collective spin operator ~J is completely

equivalent to ~S:

~S = η ~J. (4.120)

As consequence, we can work with ~J instead of ~S.

There are two main inequalities we will use for determining the lower bound of the

normalized variance (∆Jx)2

(∆Jx)2CSS
with respect to the average spin 〈Jz〉

〈Jz〉CSS :
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• The first one is the Heisenberg Uncertainty Relation. It states that, for any oper-

ators A and B acting on the system, the product of their variances is related with

their commutator according to

(∆A)2(∆B)2 ≥
∣∣∣∣〈[A,B]〉

2

∣∣∣∣2 , (4.121)

being [A,B] = AB − BA. In our case, with A = Jx and B = Jy, we have

[Jx, Jy] = iJz, and therefore we recover the well known

(∆Jx)2(∆Jy)
2 ≥ 〈Jz〉

2

4
(4.122)

• The second one is a consequence of the quantization of spin. In general, for a state

made by a collection of k particles of spin 1
2 , the inequality

〈J2
x〉+ 〈J2

y 〉+ 〈J2
z 〉 ≤

k

2

(
k

2
+ 1

)
(4.123)

holds. This is equivalent to say that the biggest eigenvalue of the operator ~J2 is

max
J
{J(J−1)}, J being what we called “spin of the system”, J = k

2 ,
k
2 −1, k2 −2, ...

down to 0 or 1
2 , depending if k is even or odd. Relation 4.123, together with the

fact 〈J2
z 〉 ≥ 〈Jz〉2 - consequence of the positivity of the variance - finally yields the

second main inequality

〈J2
x〉+ 〈J2

y 〉+ 〈Jz〉2 ≤
k

2

(
k

2
+ 1

)
(4.124)

Now we can use the latter eq.4.124 to minimize the product (∆Jx)2(∆Jy)
2

(∆Jx)2(∆Jy)
2 = (∆Jx)2(〈J2

y 〉 − 〈Jy〉2)
eq.4.124
≤

eq.4.124
≤ (∆Jx)2

(
k

2

(
k

2
+ 1

)
− 〈J2

x〉 − 〈Jy〉2 − 〈Jz〉2
)

=

= (∆Jx)2

[
k

2

(
k

2
+ 1

)
− 〈Jz〉2

]
+ (∆Jx)2

−〈J2
x〉+ 〈Jx〉2︸ ︷︷ ︸
−(∆Jx)2

−〈Jx〉2 − 〈Jy〉2︸ ︷︷ ︸
≤0

 ≤
≤ (∆Jx)2

[
k

2

(
k

2
+ 1

)
− 〈Jz〉2

]
−
[
(∆Jx)2

]2
,

(4.125)

that can be related directly to the average spin 〈Jz〉 using eq.4.122:

(∆Jx)2

[
k

2

(
k

2
+ 1

)
− 〈Jz〉2

]
−
[
(∆Jx)2

]2 ≥ 〈Jz〉2
4

. (4.126)
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At this point we can rewrite this last inequality as

[
(∆Jx)2

]2 − (∆Jx)2

[
k

2

(
k

2
+ 1

)
− 〈Jz〉2

]
+
〈Jz〉2

4
≤ 0, (4.127)

in which we recognize the equation of a parabola in the variable (∆Jx)2. Remembering

that we are dealing with a system of k particles - that means that

〈Jz〉 ∈
[
−k

2
,
k

2

]
(4.128a)

(∆Jx)2 ∈
[
−k

4
,
k

4

]
, (4.128b)

the only way inequality 4.127 can be satisfied is

(∆Jx)2 ≥ 1

2

k2
(
k

2
+ 1

)
− 〈Jz〉2 −

√[
k

2

(
k

2
+ 1

)
− 〈Jz〉2

]2

− 〈Jz〉2

 . (4.129)

Notice that we still need to normalize the variance (∆Jx)2 and the average spin 〈Jz〉, in

order to have a lower bound we can use for our operator ~S. Knowing that

〈Jz〉CSS =
k

2
(4.130a)

(∆Jx)2
CSS =

k

4
, (4.130b)

we can easily get:

(∆Jx)2

(∆Jx)2
CSS

≥ 1 +
k

2

[
1− 〈Jz〉2

〈Jz〉2CSS

]
−

√[
1 +

k

2

(
1− 〈Jz〉2
〈Jz〉2CSS

)]2

− 〈Jz〉2
〈Jz〉2CSS

. (4.131)

This is a very important relation for us; in fact, it will allow us to perform what we

called “Optimal method”, the procedure with which we can determine the lower bound

for the variance of N particles entangled in k-tuples. The details will be given later

in the following sections. At the moment, let us make clear that the criteria we would

obtain using this method are not really optimal. In fact, differently from inequality 4.40

- valid for k = 2 - that can always be saturated, eq.4.131 does not provide a strict lower

limit, meaning that it exceeds the real minimum. In order to better understand what

it means, in the next figure 4.10 we draw the real optimal limit, for k = 2, given by

eq.4.40 (red curve), and the lower bound determined through eq.4.131 (blue curve). For

the reason explained before, these do not coincide; the blue line lies below the red one.
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Figure 4.10: Two different lower bounds for the normalized variance (∆Jx)2

(∆Jx)2CSS
with

respect to 〈Jz〉
〈Jz〉CSS . In red, the optimal curve obtained through eq.4.40; in blue the one

derived with eq.4.131

In conclusion, let us point out the two positive aspects of the lower bound given by

inequality 4.131:

• First - and this is actually the most important one - it works for any number of

atoms k. This is a fundamental requirement, because we will need such relation

for determining the different k-particle entanglement criteria

• On the other side, even if it is not the optimal limit, it asymptotically reduces to

it in the limit of big and even k. This has been proven by Ander Sørensen in [37].

4.4.2 N particles with allowed entanglement in k-tuplets

So far, we have determined a lower bound for the variance of k particles. In the fol-

lowing, similarly to what we did in the previous section 4.3.1, we will use it for N

atoms, now possibly entangled in k-tuplets. We will call the criteria derived this way

“Optimal”, even if they do not really are. The reason for this ambiguity is that the

procedure we will follow here is the natural generalization of the optimal method used

before for k = 2. Moreover, as explained above, such generalization is not optimal only

because eq.4.131 does not represent a strict lower bound for the normalized variance

of k particle. If, in the future, such bound will be known, the real optimal criteria can

be easily determined, simply substituting it to the weaker bound represented by eq.4.131.

Let us start with order, by describing the system we are going to analyse. Remem-

ber that we want to minimize the normalized variance (∆Jx)2

(∆Jx)2CSS
with respect to the
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average spin 〈Jz〉2
〈Jz〉2CSS

. Keeping this in mind, the reasonable assumptions we are taking

are:

1. All atoms in any k-tuplet have the same coefficient η. This follows directly from

the conjecture 1, according to which the contribution of a k-tuplet is the lowest

when such condition is verified

2. The number N of particles is a very big multiple of k:

N = nk, with n ∈ N, n� 1 (4.132)

Let us comment this requirement. At first, we need n � 1 because we demand

to have enough statistics. All the k-tuplets will have one characteristic coefficient

ηj , with j = 1, ..., n, so that, at the end, we will have n different coefficients. In

order to have a non fluctuating lower bound, this number needs to be big, exactly

as N needed to be big in the separable case, and N
2 = n for k = 2 in the 2-particle

entanglement situation.

Why N = nk? Analogously to what we have done in section 4.1.2.3, the most

general density matrix describing the system is

ρ =
∑
l

plρl =
∑
l

pl (ρl1 ⊗ ρl2 ⊗ ...) , , (4.133)

where, here, each of the ρli describes a single particle or a number of atoms less

or equal to k. Now, it is clear that the smallest normalized variance is obtained

when all of the ρli refer to entangled k-tuplets. If N is not a multiple of k, we

end up with having some free or less entangled particles in our system. However,

generalizing what we said before, when N � k and N 6= nk, we can obtain a non

optimal lower bound by adding “virtual” particles up to N = nk. This bound will

asymptotically tend to the optimal when N
k →∞

3. Proceeding with the previous point 2, we can give the density matrix for our

system:

ρ =
∑
l

plρl =
∑
l

pl

n⊗
j=1

ρlj , (4.134)

where now all of the ρlj consist of k particles. Using linearity and lemma 1, we

can further simplify this operator, by saying that the minimum variance can only

be obtained without the “l” superposition. We finally end up with

ρ =

n⊗
j=1

ρj , (4.135)
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the natural generalization to k particles of equation 4.102.

Now that we have described our environment, we can proceed with determining the

quantities we will use in the Lagrange Γ function: (∆Sx)2

(∆Sx)2CSS
and 〈Sz〉

〈Sz〉CSS . Introducing

the notation we will use in this section,

〈A〉j ≡ Tr (Aρj) , (4.136)

where A is a generic operator acting on the system, we have:

〈Sz〉 =
n∑
j=1

ηj〈Jz〉j =
n∑
j=1

〈Sz〉j (4.137a)

(∆Sx)2 =

n∑
j=1

η2
j (∆Jx)2

j =

n∑
j=1

(∆Sx)2
j . (4.137b)

These last relations are obtained the same way we got equations 4.70a and 4.70b, we

also defined (∆Jx)2
j ≡ 〈J2

z 〉j − 〈Jz〉2j and (∆Sx)2
j ≡ 〈S2

z 〉j − 〈Sz〉2j . As last ingredient, we

need the normalization, both for the collective quantities (∆Sx)2 and 〈Sz〉, and for the

smaller terms (∆Sx)2
j and 〈Sz〉j , with j = 1, ..., n. For these latter ones, indicated with

(∆Sx)2
jCSS

and 〈Sz〉jCSS , we can use equations 4.130a and 4.130b, that, together with

4.120 yield:

〈Sz〉jCSS = k
ηj
2

(4.138a)

(∆Sx)2
jCSS

= k
η2
j

4
. (4.138b)

Using these it is now trivial to determine the normalization for the collective quantities

as well:

〈Sz〉CSS =
n∑
j=1

〈Sz〉jCSS =
n∑
j=1

k
ηj
2

(4.139a)

(∆Sx)2
jCSS

=
n∑
j=1

(∆Sx)2
jCSS

=
n∑
j=1

k
η2
j

4
, (4.139b)

the final step before proceeding with the actual minimization of the Lagrange Γ function

Γ((∆Sx)2, 〈Sz〉, µ) = (∆Sx)2−µ〈Sz〉. Collecting together the terms referring to the same

density matrix ρj , the Γ function takes the form:

Γ((∆Sx)2, 〈Sz〉, µ) =

n∑
j=1

[
(∆Sx)2

j − µ〈Sz〉j
]

=

=
n∑
j=1

[
(∆Sx)2

jCSS

(∆Sx)2
j

(∆Sx)2
jCSS

− µ〈Sz〉jCSS
〈Sz〉j
〈Sz〉jCSS

]
,

(4.140)
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where in the last passage we made explicit the dependence over the normalized quantities

of the k-tuples. From this equation and using the two relations 4.138a and 4.138b, we

can rewrite the Lagrange function as:

Γ({(∆Sx)2
j}, {〈Sz〉j}, µ) =

n∑
j=1

[
kη2

j

4

(∆Sx)2
j

(∆Sx)2
jCSS

− µkηj
2

〈Sz〉j
〈Sz〉jCSS

]
, (4.141)

that, plugging in the lower bound of eq.4.131, finally becomes

Γ

({
〈Sz〉j
〈Sz〉jCSS

}
, µ

)
=

=
n∑
j=1

{
kη2

j

4

[
1 +

k

2

(
1−

〈Sz〉2j
〈Sz〉2jCSS

)
−

√√√√[1 +
k

2

(
1−

〈Sz〉2j
〈Sz〉2jCSS

)]2

−
〈Sz〉2j
〈Sz〉2jCSS

]
+

− µkηj
2

〈Sz〉j
〈Sz〉jCSS

}
.

(4.142)

Notice that we supposed the inequality 4.131 to be saturated; a natural requirement since

we are interested in the minimum of the Γ function. Looking now more carefully to the

right hand side of eq.4.142, we notice that it is made of n independent contributions,

each of them can be minimized autonomously. In order to do that, we can compute

the first and second derivative with respect to
〈Sz〉j
〈Sz〉jCSS

. Before actually doing that,

let us briefly comment about the ranges in which the variables inside the Γ function

are allowed to vary. In principle, µ and every
〈Sz〉j
〈Sz〉jCSS

reside in the ranges (−∞,∞)

and [−1, 1] respectively. However, we can restrict these intervals to µ ∈ [0,∞) and
〈Sz〉j
〈Sz〉jCSS

∈ [0, 1], for all j = 1, ..., n, due to the following reasons:

• The Lagrange Γ function is symmetric with respect to the transformation(
µ,
〈Sz〉j
〈Sz〉jCSS

)
→
(
−µ,− 〈Sz〉j

〈Sz〉jCSS

)
(4.143)

• Looking at the definition of the Γ function, it is clear that the signs of the variables

µ and 〈Sz〉 have to be the same, in order to achieve the lowest possible result

• Similarly, the signs of all the 〈Sz〉j have to be the same as well, in order to maximize

|〈Sz〉| and therefore minimize Γ
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Let us now proceed with the determination of the derivatives. For not overcharging the

next formulae, let us denote
〈Sz〉j
〈Sz〉jCSS

with xj . We have:

∂Γ

∂xl
=
kη2

l

4
xl

 1 + k
[
1 + k

2

(
1− x2

l

)]√
(1− x2

l )
[(

1 + k
2

)2 − k2

4 x
2
l

] − k
− µηl2 (4.144)

and

∂2Γ

∂x2
l

=
kη2

l

4

−k +
1− k2x2

l + k
[
1 + k

2

(
1− x2

l

)]√
(1− x2

l )
[(

1 + k
2

)2 − k2

4 x
2
l

] +
x2
l

[
1 + k

2

(
1 + k

2

[
1− x2

l

])]2(
(1− x2

l )
[(

1 + k
2

)2 − k2

4 x
2
l

]) 3
2

 .

(4.145)

For the minima we have to identify the points xjmin , inside the range [0, 1], for which
∂Γ
∂xl

(xl = xlmin) = 0 and ∂2Γ
∂x2l

(xl = xlmin) > 0. However, equations 4.144 and 4.145 are

not analytically solvable. We need to find the minimum numerically, through the help

of a calculator. In general, it is not even assured that a suitable set {xjmin}nj=1 exists for

the whole µ and xj domains; or that this set is unique! For this purpose, we checked for

the whole ranges (0, 1], in which the ηj ’s are allowed to vary, and [0,∞), within which

resides µ. For the latter one and for big values of µ we just noticed that the term in the

squared brackets in the right hand side of eq.4.144 tends to infinity whenever xl → 1.

This way we can conclude that, asymptotically, xlmin −→µ→∞ 1. It never happened, during

the checking, to see an anomaly. We always found one and only one value xjmin , for

which the second derivative was always positive.

Having found the minimum for any j = 1, ..., n, we are now able to determine the

expressions for the normalized minimum variance (∆Sx)2

(∆Sx)2CSS
with respect to the average

spin 〈Sz〉
〈Sz〉CSS . Without having an analytical expression for the {xjmin}nj=1, we only need

to substitute them to
{
〈Sz〉j
〈Sz〉jCSS

}n
j=1

in the following equations for the normalized spin

and variance. Remember that we have to plug in the constraint given by the lower bound

of eq.4.131 in the latter one. Starting from equations 4.137a and 4.137b, we have:

〈Sz〉
〈Sz〉CSS

=
1

〈Sz〉CSS

n∑
j=1

〈Sz〉jCSS
〈Sz〉j
〈Sz〉jCSS

=

(
n∑
l=1

ηl

)−1 n∑
j=1

ηjxjmin (4.146)
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and

(∆Sx)2

(∆Sx)2
CSS

=
1

(∆Sx)2
CSS

n∑
j=1

(∆Sx)2
jCSS

(∆Sx)2
j

(∆Sx)2
jCSS

eq.4.131
=

1

(∆Sx)2
CSS

×

×
n∑
j=1

kη2
j

4

[
1 +

k

2

(
1−

〈Sz〉2j
〈Sz〉2jCSS

)
−

√√√√[1 +
k

2

(
1−

〈Sz〉2j
〈Sz〉2jCSS

)]2

−
〈Sz〉2j
〈Sz〉2jCSS

]
=

=

(
n∑
l=1

η2
l

)−1 n∑
j=1

η2
j

[
1 +

k

2

(
1− x2

jmin

)
−

√[
1 +

k

2

(
1− x2

jmin

)]2

− x2
jmin

]
.

(4.147)

This is the key equation representing the final goal of this thesis. It gives us, for any value

of µ and for any k ∈ N, the minimum normalized variance with respect to the average

spin. Differently from the case k = 2, where it was given an analytical expression for the

minimum xlmin (eq.4.112), here we are not able to express (∆Sx)2

(∆Sx)2CSS
and 〈Sz〉

〈Sz〉CSS with

respect to the probability distribution function p(η), as we did in the equations 4.119a

and 4.119b. Therefore, the only possible way to practically draw the desired curve for a

particular distribution p(η), is to use what in section 4.3.1 we called “simplified method”.

It consists of generating a statistically large number n of coefficients {ηj}, numerically

determine xjmin for each of these and then plot the function using equations 4.146 and

4.147. This is what we are going to do in the next section, where we will use again our

simplified model for determining the {ηj}.
Before we actually do it, however, let us comment more in details what these curves

represent. As said, these are entanglement criteria; but what does it exactly means that

we have k-particle entanglement? In general we think that our system is separable or

correlated, and hence we would naively think that there has to be only one curve that

determines if our atomic sample is entangled or not. And this is true; this curve does

exist, and is the one derived using Table 3.4 and represented (for various parameters,

with the simplified model of sections 2.2.2.3 and 3.1.2) in Fig3.4. The curves we will

obtain with equations 4.146 and 4.147 regard the quality of entanglement we have. In

fact, for every state described by an experimental point that lies below a curve with a

certain k, we are sure that there are at least k + 1 entangled particles. For this reason,

from now on, we will refer to these curves as “k-particle” entanglement criteria’.

4.4.3 Another practical example

With the procedure we explained in the previous section 4.4.2, we can plot the criteria

for having more than k-particle entanglement, for every natural number k. More in

particular, let us consider the same coefficients {ηi}ni=1 we collected in the histogram
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4.9, generated using the distribution p(η) of eq.2.105. With these, we are able to give

the following figure, where:

• The dashed curves are obtained through the collective spin operator ~J . Their

equations are given, for any value of k, by eq.4.131

• The plain curves represent the new criteria, derived using equations 4.146 and

4.147 for the same values of k of before

Figure 4.11: Various curves, referring to k = 1, 2, 5, 8, 20. The dashed ones are derived
through eq.4.131, the plain using 4.146 and 4.147

Let us give an interpretation to the previous plot. Each couple of curves plain+dashed

refers to a particular value of k. If we perform an experiment - in which the particles

are described by our particular distribution p(η) - these lines represent a powerful way

for determining the measure of entanglement we have. For instance, if our experimental

point hits the yellow region in the plane below the curve with k = 5, we can conclude

that there are at least 6 particles entangled in our sample. Notice that, if we had access

to normalized variance and average spin of the collective spin operator, we would only

need the dashed line. The plains were born after we realized that such requirement is

likely to be excessive, and we supposed to be able to measure the quantities relative

to ~S only. Notice that, even though (with this particular model) the dashed and plain

curves lie very near to each other, if we do not have access to (∆Jx)2

(∆Jx)2CSS
and 〈Jz〉

〈Jz〉CSS , we

can only use the plains as k-particles entanglement criteria.
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Experimental Application

5.1 The experiment

In this section we introduce the experiment we will analyse later. It is important

to underline that all this work, that we will take and use for proving experimen-

tal k-particle entanglement, has been done by J.Appel, P.J.Windpassinger, D.Oblak,

U.B.Hoff, N.Kjærgaard and E.S.Polzik. My particular contribution to the experiment

has to be considered null, and I am particularly grateful to all these authors for such

great opportunity: use their results for giving to this thesis a prestige that would not

have reached otherwise. Most of this section 5.1 is taken as presented in the article of

reference [19], including Figures and Legends. We will comment on the results obtained

by these author in the following section 5.2; our analysis and conclusions will be done

afterwards, in 5.3 and 5.4.

The goal of the experiment is to demonstrate squeezing - and therefore entanglement

- for & 105 cold Caesium atoms via a Quantum Non Demolition (QND) measurement

[38–49]. In particular, there are two key features they need to be performed:

• The Projection noise squeezing, by the mentioned QND measure

• The determination of the loss of atomic coherence |〈J〉|, a natural consequence of

the QND probing.

Together, these demonstrate the existence of multipartite quantum correlation in en-

semble.

130
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5.1.1 Experimental setup

Using a Magneto Optical Resonator (MOT), Cs atoms are cooled and loaded into a Far

Off Resonant Optical Dipole Trap (FORT) [50–52], aligned to overlap with the probe

arm of a Mach-Zender Interferometer (MZI; see [40, 53], Fig.5.1)

Figure 5.1: Experimental Setup. (A) An ensemble of ∼ 105 Cs atoms cooled to
≈ 50 µK are confined in one arm of a MZI by a trapping beam. The atoms are prepared
in a coherent superposition of the clock states |↑〉 and |↓〉 by applying a microwave (MW)
π
2 -pulse. Two linearly polarized probe beams P↑ and P↓ enter the interferometer via
separate ports of the input Beam Splitter (BS). An arrangement of polarizers (POL)
and polarizing Beam Splitters (PBS) and Half Wave Plates (λ2 ) is used to adjust the
powers and polarizations of the probe and reference beams. The combined Phase Shift
of the two probes is measured in a balanced homodyne configuration. (B) Simplified
level scheme of Cs showing the D2 line and the detunings of the clock state-sensitive

probes, P↑ and P↓. Figure and legend taken from [19]

Atoms are loaded into the FORT from a standard Magneto-Optical Trap (MOT) super-

imposed onto the FORT, which collects and cools atoms to ≈ 50 µK. After the FORT

is loaded, the MOT light is extinguished and a magnetic field B of ∼ 2 Gauss is applied,

defining a quantization axis orthogonal to the trapping beam. At this stage, the atoms

occupy the (F = 4) ground level, but are distributed amongst the magnetic sublevels.To

polarize the atoms in one of the clock states, a combination of π-polarized laser light
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resonant to the 6S 1
2
(F = 4)→ 6P 3

2
(F ′ = 4) and 6S 1

2
(F = 3)→ 6P 3

2
(F ′ = 4) transition

is applied, optically pumping the atoms towards the (F = 4,mF = 0) state with 80% ef-

ficiency. Purification of clock state atoms proceeds by transferring the (F = 4,mF = 0)

state atoms to the (F = 3,mF = 0) state using a resonant π-pulse on the clock transi-

tion and blowing away remaining atoms residing in the (F = 4) level. The coherent spin

state (CSS) preparation is completed by putting the ensemble in an equal superposition

of the clock states
NA⊗
i=1

(
|↑〉+|↓〉√

2

)
i

by applying a resonant π
2 microwave pulse at the clock

frequency. Next, successive QND measurements on the sample are performed, after

which all atoms are pumped into the (F = 4) level to determine the total atom number

NA. The sequence is repeated several thousands times for various NA. A schematic

representation of the experimental sequence is shown in Fig.5.2 (top).

Figure 5.2: Pulse sequence and noise data. (A) Atoms are prepared in state |↓〉 by
an optical pumping sequence and then rotated to the superposition state 1√

2
(|↑〉+ |↓〉)

by a microwave π
2 -pulse before the train of 10 probe pulses is applied. Combining the

results of several pulses, we can change the effective QND measurement strength. The
first effective probe pulse measurement result φ1 yields the statistics of the Jz for the
CSS. The second effective pulse measurement result φ2 verifies the squeezing, provided
it is sufficiently correlated with φ1. NA is measured at the end of each sequence. (B)
Correlations between the first and the second pulse measurements. (C) The projection
noise manifested in the random scattering of about 2000 measurements of φ1; and the
spin squeezed state (SSS) displayed as the reduced noise in φ2 when the QND result is

used as (φ2 − ζφ1). Figure and legend taken from [19]
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5.1.2 Measurement of the projection noise

The dispersive measurement of the clock state average spin 〈Jz〉 (see [46] and [39]) is

realized by detecting the state-dependent phase shift of the off-resonant probe laser

light, P↓ and P↑. P↓ is coupled to the state |↓〉 = 6S 1
2
(F = 3,mF = 0), while P↑ to

|↑〉 = 6S 1
2
(F = 4,mF = 0) (see Fig.5.1, bottom).

Denoting the photosignal as n, we define

φ =
∆n

n
=
δn

n
+ k↑N↑ + k↓N↓

†
=
δn

n
+ k∆N

††
=
δn

n
+ 2kJz. (5.1)

Here, we defined N↑ and N↓ to be, respectively, the number of particle in |↑〉 and |↓〉;
∆N ≡ N↑ −N↓ and δn = δn↑ + δn↓ is the total shot noise contribution. In the equality

marked with † we used k↑ = k↓ = k and †† is a trivial consequence of the fact

Jz =
∆N

2
. (5.2)

We can compute the variance var(φ) of φ as a function of the variance var(∆N) of ∆N :

var(φ) =
1

n
+ k2var(∆N). (5.3)

Now, for atoms in a coherent spin state, ve have var(∆N) = NA, so that eq.5.3 predicts a

linear increase of the projection noise with the number of atoms. This has been observed,

as it is possible to see from Fig.5.3, blue points.

5.1.3 Conditional noise reduction by QND measurement

The ability to measure the atomic spin projection with a sensitivity limited by the

shot noise of light allows to produce a conditionally spin squeezed atomic state. After

preparation of the Coherent spin state, n1 photons have been used to measure Jz and

obtain a measurement result φ1, which is randomly distributed around zero with a

variance 1
n1

+ k2NA (Fig.5.2 and eq.5.3). By using the information obtained in the first

measurement it is possible, to a certain degree, to predict the outcome φ2 of a successive

Jz measurement performed on the same ensemble of atoms. The best estimate for φ2 is

ζφ1, which results in a conditionally reduced variance

var(φ2 − ζφ1) =
1

n2
+

1

1 + κ2
k2NA, (5.4)

that displays a reduction of the projection noise by 1
1+κ2

(red diamonds in Fig.5.3). The

measurement strength κ2 = n1k
2NA describes the ratio of the atomic noise to the shot

noise of light, and ζ = cov(φ1,φ2)
var(φ1) = κ2

1+κ2
. A Quantum Non Demolition measurement
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with finite strength κ2 leads to finite correlation between the two measures, as shown in

Fig.5.2, bottom left.

Figure 5.3: Projection noise and spin squeezing. In blue, the variances of φ1 (points)
and φ2 (stars), referring to atoms in a CSS. The solid blue line is a quadratic fit, that
resembles eq.5.3; the black dashed line is the CSS projection noise and the black dash-
dotted one the equivalent CSS projection noise reduced by the loss of atomic coherence.
The red diamonds correspond to the conditionally reduced variance of φ2 − ζφ1, fitted
with the solid red line, that is the reduced noise of squeezed spin state. According to
the scaling behaviour, it is possible to classify different noise contributions. Classical
fluctuations are represented by the cyan (empty interferometer) and red (atom-light
interaction related) area. The blue area represents the optical shot noise (light blue)
and detector noise (dark blue). Finally, the green area is the projection noise. In
the Inset, metrologically relevant spin squeezing ξ as a function of the decoherence

parameter ε. Figure and legend taken from [19]

5.1.4 Decoherence

Spontaneous emission caused by the Quantum Non Demolition probes is a fundamen-

tal, irreversible decoherence mechanism which affects the squeezed spin state in two

ways. First, it changes the value of Jz by redistributing atomic population via inelastic

Raman scattering. This effect is practically absent because of the two colours QND

scheme used here. The second and main effect is due to the reduction of the coher-

ence between the clock levels. This results in a shortening of the mean collective spin

vector |〈J〉| → (1 − ε)|〈J〉|, and hence to the reduction in Ramsey fringe amplitude.

The degree of spin squeezing depends on the fraction ε of atoms which decohere as a

result of spontaneous photon scattering during dispersive QND probing. The Quantum
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Non Demolition measurement strength can be cast as κ2 ∝ dε, where d is the resonant

optical depth of the sample (see [54]). This highlights the trade-off between information

gained through strong coupling and coherence lost due to spontaneous emission. ε is

determined through the reduction in the Ramsey fringe amplitude in a separate echo

spectroscopy experiment (as in [53] and [40]). The reduction in echo fringe amplitude as

a result of the probe light thus provides an upper bound for the decoherence inflicted.

5.1.5 Squeezing and entanglement

The noise measurement data presented in Fig.5.3 correspond to ε = 20%, as measured

in Echo spectroscopy. According to the spin squeezing inequality, that states that for

any separable state

ξ2 ≡ NA
var(Jz)

|〈J〉|2
≥ 1, (5.5)

spin squeezing and entanglement can be claimed if ξ2 < 1. In this context, this means

that, for a given NA, the conditionally reduced variance of the verification measurement

(red diamonds in Fig.5.2) is less than the projection noise scaled down by the factor

(1− ε)2 (dash-dotted black line in the same graph). In the inset of Fig.5.2 the maximum

NA-bin of the data has been considered, and ξ is plotted versus ε. Maximum squeezing

ξ = −(3.4 ± 0.7) dB is observed with ε = 20%, corresponding to probing the atoms

with 1.3 · 107 photons. The squeezing reduces as ε increases further, confirming the

notion that though a stronger measurement enables more precise estimation of Jz, this

reduction in spin noise eventually ceases to be spectroscopically relevant as a result of

decoherence.

5.1.6 Conclusion of the experiment

A reduction of projection noise to −(5.3 ± 0.6) dB and metrologically relevant spin

squeezing and entanglement of −(3.4± 0.7) dB have been demonstrated. Furthermore,

it has been shown that there exists an optimal balance between decoherence and the

measurement strength for generation of spin squeezing. Notice that, since the measure-

ment precision improves with the number of atoms, it is important that entanglement

with over than 105 particles has been proven.

5.2 Comment to the experiment

Let us start by pointing out some minor facts, mostly due to the different notation and

reference frame taken into account by us and the authors of [19]:
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• For simplicity, in the experiment the variance is defined as var(∆N)
2 = var(Jz) =

(∆Jz)
2, while in the rest of this work we referred to the variance computed along

the x-axis, (∆Jx)2. This clearly does not represent a problem; the orientation of

the reference frame is arbitrary, as far as we remain consistent with the definition

of the related quantities - the squeezing parameter, for instance.

• Regarding the squeezing parameter ξ2, in section 5.1.5, eq.5.5, the direction for

the mean value of the total spin has not been defined. For us, in eq.1.14, it was

Jz. Here it cannot, since the variance is defined as (∆Jz)
2, so it has to be one of

the remaining, Jx or Jy. Notice that, because of symmetry, it does not make any

difference between these two.

Let us now go to the main argument: the entanglement inequality used in the experiment

[19], eq.5.5. Previously, in all chapters of this thesis until this last one, we tried to

convince the reader that the spin squeezing does not represent an adequate criterion in

many of the real life situation. This does not mean that it is false, but just that the

Observables it is made of - J2
z , Jz and Jx in this case - cannot precisely be determined

using the experimental setup considered here. The atoms, trapped in the FORT, are

distributed around in the chamber and shined by the probes P↓ and P↑ in different ways.

As consequence we are not, strictly speaking, measuring the components of the collective

spin operator ~J =
NA∑
i=1

~ji, but of our old friend ~S =
NA∑
i=1

ηi~ji. ~ji, as usual, represents the

spin of the single particle, for i = 1, ..., NA; the {ηi}NAi=1 are the coefficients to be assigned

to every atom, related with the intensity of the probes in the position it occupies.

In fact, the authors of experiment [19] calculate 〈Jz〉, using the relation

〈Jz〉 =
N↑ −N↓

2
=

1

2

2π∫
0

∞∫
0

dθrdrIP (r)πw2
[
nA↑(r, θ)− nA↓(r, θ)

]
, (5.6)

where w is a constant factor, IP (r) is the (equal) intensity of the probing beams at a

distance r of their main axis and nA↓ , nA↑ are the atomic densities of atoms in |↓〉 and

|↑〉 respectively. What eq.5.6 means, is that every atom contributes proportionally to

the intensity IP that it feels. In other words, what has been called here with 〈Jz〉, is

exactly 〈Sz〉, up to a negligible multiplicative constant that depends on the definition of

the {ηi}NAi=1.

Similarly, we believe that the variance var(φ), derived experimentally and used for the

plots of Fig.5.3, is not directly related with (∆Jz)
2 = var(∆N)

2 , but with (∆Sz)
2. The

argument is exactly the same: each particle contributes differently to the differential

phase shift φ - according to its distance to the probing beams - and therefore it is not ~J

to be measured, but ~S.
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We conclude that what is measured in the experiment are, indeed, (∆Sz)
2 and the

decoherence ε that refers to the shortening of the mean vector |〈S〉| → (1 − ε)|〈S〉|.
From the Inset of Fig.5.3, where is represented the squeezing parameter ξ2 with respect

to the decoherence ε, we can thus determine the experimental points
(
|〈S〉|, (∆Sz)2

)
,

where |〈S〉| is the mean spin, along y or x. In the next figure we represent such points.
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Figure 5.4: Experimental points relative to the normalized spin squeezed state (blue).
These data are derived directly from the Inset of Fig.5.3, using equations 5.7a and 5.7b

Being precise, the data plotted in the last Fig.5.4 are to be interpreted as normalized

with the coherent spin state:
(
|〈S〉|
|〈S〉|CSS ,

(∆Sz)2

(∆Sz)2CSS

)
. The relations we used for drawing

the data are (the squeezing parameter ξ2 is expressed in Decibel):

|〈S〉|
|〈S〉CSS |

= 1− ε (5.7a)

(∆Sz)
2

(∆Sz)2
CSS

=

(
|〈S〉|
|〈S〉CSS |

)2

· 10
ξ2

10 . (5.7b)

Here, for using a slightly more familiar notation, we introduced the appendix CSS that,

exactly as in the previous chapters, refer to the maximal value of the related observable

in the separable case. So, for instance, in eq.5.7a ε represents the shortening of the

spin vector from |〈S〉CSS | to |〈S〉|. Regarding eq.5.7b, we need to be more careful. In

fact, we are not dealing with the collective spin operator any more, but with ~S, and we

need to consider this in the definition of the squeezing parameter ξ2 by changing it. As
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discussed in section 1.4, ξ2 becomes, under these circumstances:

ξ2 = NA
(∆Jz)

2

|〈J〉|2
−→
~J→~S

(
Na∑
i=1

ηi

)2

Na∑
i=1

η2
i

(∆Sz)
2

|〈S〉|2
, (5.8)

where (
Na∑
i=1

ηi

)2

Na∑
i=1

η2
i

=
|〈S〉CSS |2

(∆Jz)2
CSS

. (5.9)

The reason for which we are allowed to freely take the experimental values of ξ2 re-

ported in Fig.5.3 and use them directly in the derivations of |〈S〉|
|〈S〉CSS | and (∆Sz)2

(∆Sz)2CSS
(as

we did in equations 5.7a and 5.7b), is the following. Because they are experimental, and

not theoretical, we believe they already refer to the generalized version of the squeez-

ing parameter, as expressed in the right hand side of eq.5.8. All the numbers we need

to plug in for ξ2 are, up to a multiplicative constant that disappears at the moment

of the renormalization, taken directly from the readouts of the detectors. NA itself is

not calculated theoretically, but included via the maximum value of |〈J〉|; the one cor-

responding to the coherent spin state, that naturally becomes |〈S〉| in our interpretation.

Here we explained why, we believe, it is necessary to use ~S instead than the collective

spin operator ~J . Consequently, the spin squeezing inequality, that states that ξ2 < 1 for

any entangled state, is not valid any more, as discussed previously in chapter 2. We need

to find a new criterion for determining if the System is correlated or not. But this is

what this whole work is about, and what we have done in chapters 3 and 4 theoretically!

Therefore, in the next section 5.3, we will use the concepts and analytics developed so

far for deriving this criterion, as well with the k-particle entanglement ones we are now

able to obtain.

From now on, in order to be in accordance with the notation used in the previous

chapters, we will change reference frame, so that the variance we will refer to is the one

along the x axis, and the main component of the spin the z one.

5.3 Our analysis

In the previous section 5.1 we described how the experiment is designed, and we ex-

plained why we need to use our new entanglement criteria for determining if the state of

the system is entangled. We now analytically evaluate the minimum normalized variance
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(∆Sx)2

(∆Sx)2CSS
with respect to the average spin 〈Sz〉

〈Sz〉CSS , for any k-particle entanglement we

desire. In other words, find the distribution function p(η).

We will start by determining ρ(r, z), associated with the probability of having a particle

at distances r and z, respectively from the main axis of the FORT as shown in Fig.5.5.

Afterwards, we will generate a statistical relevant number n of “virtual” particles and

get the set of coefficients {ηi}ni=1 by plugging them inside the equation η(r, z). η(r, z) is

the function that relates the value of η with the coordinates r and z of the atom.

Figure 5.5: Experimental scheme. In red we represented the beams building up the
FORT, in green the probe. As consequence of the cylindrical symmetry, we can use
only two variables for describing the atomic positions: the distance r from the shared

axis of the lasers and the depth z

Referring extensively to the work of Daniel Oblak [55], the potential affecting an atom

shined with a Gaussian beam is given by the relation

V (r, z) = V0
ω2
t

ω(z)2
e
− 2r2

ω(z)2 , (5.10)

where the appendix “t” refers to the trapping beam - the FORT; ωt = 50 µm is the

waist and ω(z) ≡ ωt
√

1 + z2

zr2t
the spot size. In addition, zrt = π

ω2
t
λt

defines the so-called
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Raleigh-range, a parameter depending on the proper trap’s wavelength λt = 1032 nm.

The potential minimum for a linearly polarised and Far Off Resonant Trapping (FORT)

beam is given by the equation [56]

V0 =
P

8π3cω2
t

(
γD1λ

3
D1

∆D1
+ 2

γD2λ
3
D2

∆D2

)
'
PγDλ

3
D

8π3cω2
t

(
1

∆D1
+

2

∆D2

)
. (5.11)

Here, we have introduced the following notation:

• P is the power of the laser, in our case P = 2.5 W

• γD1 is the decay rate of the 6P3/2 excited state of the Cs atoms in the trap. For

such element, we have γD1 = 4.6 MHz, as derived in [57]

• λD1 is the D1-line transition wavelength coupling the 6P3/2 state to the ground

level 6S1/2. According to [57], λD1 = 894 nm

• ∆D1 is the detuning of the trapping laser:

∆D1 = 2πc

(
1

λt
− 1

λD1

)
(5.12)

• These definitions are extended naturally to the D2-line. The practical values, taken

from [57] again, are: γD2 = 5.2 MHz and λD2 = 852 nm.

The approximation of eq.5.11 follows from

γD1λ
3
D1 ' γD2λ

3
D2, (5.13)

as it can be verified by plugging in the values given above.

Inserting the numbers in relation 5.11, it is possible to finally determine the potential

depth for the Gaussian
V0

kB
= 1.73 · 10−4 K, (5.14)

where kB is the Boltzmann constant in the appropriate units.

At this point we have a well defined expression for the potential V (r, z) to which our

Caesium atoms are subjected. From that, it is fairly simple to obtain the atomic den-

sity ρ(r, z) of the particles in the experiment. Using classical statistical mechanics, and

supposing the Hamiltonian to be H(p, r, z) = p2

2m + V (r, z), we have that

ρ(r, z) = re
V (r,z)
kbT = r exp

[
V0

kb

ω2
t

Tω(z)2
e
− 2r2

ω(z)2

]
. (5.15)
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Referring to the experiment [19], we know that the temperature T can be controlled

to be less than 100 µK during the whole duration of the data collection (50 µK at the

loading time of the FORT, see [19]). For this reason, we will consider (for the moment)

T = 100 µK; a higher temperature can only be deleterious for us - it pushes atoms away

from the probe - and this way we are sure not to neglect some important contribution

due to heating. We recall here that the factor r multiplying the exponential e
V (r,z)
kbT

in eq.5.15 needs to be there, because we are using Cylindrical coordinates instead of

Cartesian: (x, y, z) → (r cos θ, r sin θ, z). As immediate consequence, considering there

is no θ dependence:

ρ(r, z) = rρ(x, y, z). (5.16)

Two plots of the function ρ(r, z), in arbitrary units, are given in the following figure 5.6.
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Figure 5.6: Distribution ρ(r, z) of particles in our sample. In the left graph, we let
the variable z to vary inside the big interval [−2.5, 2.5] · 104 µm; in the right plot inside
the smaller [−5, 5] · 102 µm. The real volume occupied by the particles is one of the

problematic quantities we have to deal with

Here we want to point out one of the biggest problem we had with the evaluation

of the coefficients {ηi}ni=1. Which are the ranges [0, L] and
[
−W

2 ,
W
2

]
in which r and

z are allowed to vary, respectively? As it is possible to see from the previous figure

5.6, the atomic distribution ρ(r, z) considerably depends upon the parameters L and

W ! Regarding the distance r from the main axis of the trapping beam - neglecting

miss-alignment of the probe and the FORT - the answer is fair simple. The waist ωp of

the probe is given to be ωp = 27 µm, so that we can consider not detected any Caesium

atom “far away” from it. For us, “far away” means further than twice the waist ωp,

where the intensity of the detecting beam is reduced more than 99.97%.

But what about W? From the left graph of figure 5.6, we can see that the FORT is not
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affecting particles outside the central peak, i.e.: where ρ(r, z) resembles a uniform atomic

distribution. In particular, it is possible to estimate the critical point zc from which we

have an approximately linear behaviour of ρ(r, zc) ' r. In fact, a linear behaviour of the

atomic distribution in the cylindrical coordinates corresponds to a constant distribution

in the Cartesian ones (see eq.5.16). It is possible to see that the value zc = 2.5 · 104 µm

is appropriate for our request. This accounts to a total length of the box within which

the atoms are loaded of 5 cm, that could be reasonable, as well as not. In fact, we do not

have an exact idea about the dimensions of the chamber. Therefore, what we will do,

is to determine the {ηi}ni=1 and the k-particle criteria multiple times, each one with a

different value of the parameter W inside the range (0, 2zc]. This way, we will be able to

compare the obtained curves and determine the lowest for any k-particle entanglement

criterion. Notice that, our method being based on a probabilistic procedure, the curves

we obtain are necessarily affected by statistical fluctuations. We need to check that

such fluctuations are less than the desired precision we want to achieve, defined by the

experimental errors we have. We can reduce the theoretical fluctuations by increasing

the number n of generated coefficients {ηi}ni=1.

For completeness, before going on with practically determining the {ηi}ni=1’s, we want

to write down the function η(r, z) we will use to relate the atomic coordinates to the

value of the coefficient η:

η(r, z) =
ω2
p

ω(z)2
e
− 2r2

ω(z)2 . (5.17)

Looking at this last relation, ω(z) is, again, the spot size; but it does not have to be

confused with the one of the FORT (eq.5.10), derived with the parameters ωt and λt.

Here we have that

ω(z) = ωp

√
1 +

z2

zr2
p

, (5.18)

where zrp = π
ω2
p

λp
, ωp = 27 µm and λp = 852 nm are the spot size, the waist and the

wavelength of the probe, respectively. Due to the arbitrariness of the function η(r, z),

it is legitimate to ask if our definition 5.17 has some sense. We believe the answer to

this question is yes; in fact the coefficients {ηi}ni=1 have been introduced to distinguish

particles interacting with the probe in different ways. The interaction is, under very

general conditions, related with the intensity of this beam: IP (r, z). Therefore, up to a

multiplicative constant, we decided to define η(r, z) as

η(r, z) ∝ Ip(r, z). (5.19)

The multiplicative constant has been chosen in such a way that η(r, z) belongs to the

interval (0, 1].
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5.3.1 Generation of the coefficients {ηi}ni=1

As said above, in order to determine the curves defining the minimum normalized vari-

ance (∆Sx)2

(∆Sx)2CSS
with respect to the average spin 〈Sz〉

〈Sz〉CSS , we need to generate the coeffi-

cients {ηi}ni=1. This is not a trivial task, because the distribution ρ(r, z) changes signifi-

cantly, depending on the range
[
−W

2 ,
W
2

]
in which z is allowed to vary (see Fig.5.6). In

fact, for relatively small values of W , we can assume the atomic density to be indepen-

dent on z,

ρ(r, z) = r exp

[
V0

kb

ω2
t

Tω(z)2
e
− 2r2

ω(z)2

]
' r exp

[
V0

kb

1

T
e
− 2r2

ω2t

]
= ρ(r); (5.20)

while this approximation clearly does not hold for W approaching its limit zc. In the

situation described by eq.5.20, it results particularly easy to generate “virtual” particles

in accordance to ρ(r). Using the so-called Inverse Transform Sampling, we are in fact

able to obtain the following histogram 5.7:
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Figure 5.7: Histogram collecting the r coordinates of 5 · 105 virtual particles gener-
ated according to the approximate density function of eq.5.20. The two dashed lines
represent ρ(r) (in green), and the profile of the probe beam at z = 0 (in red), both

scaled

This figure has been obtained for n = 5·105, a number sufficiently large for our purposes.

The two dashed curves represent, respectively:

• (Green): The atomic density ρ(r), scaled in order to show the agreement with

the generated particle’s positions

• (Red): The profile η(r, z = 0) of the probe, obtained using eq.5.17
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The previous histogram 5.7 collects all the radial coordinates r of the virtual parti-

cles. The other one, z, can be generated according to a uniform distribution between[
−W

2 ,
W
2

]
, being careful to choose W in a range in which the approximation 5.20 is

valid. However, under some more strict conditions it is not necessary at all to give the

z coordinate. In fact, if we can approximate ρ(r, z) to ρ(r), it is also true we can find

another interval for W for which

η(r, z) =
ω2
p

ω(z)2
e
− 2r2

ω(z)2 ' e
− 2r2

ω2p = η(r) (5.21)

is valid. Now, because the waists and the characteristic wavelengths of the probe and

the FORT are very similar, it turns out that a good interval for which both approx-

imations 5.20 and 5.21 are valid is W ∈
[
0, 103

]
µm. The validity of this choice can

be understood qualitatively by looking to the next figure, in which we plot ρ(r, z) and

η(r, z) in such interval.
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Figure 5.8: Profiles of the atomic density ρ(r, z) (left) and the function η(r, z) (right)
for W = 103 µm. As it is possible to see, these plots are not varying significantly with
the variable z, thus confirming the validity of the approximations 5.20 and 5.21 in such

range

As it is possible to see, both functions are almost independent on z for W = 103µm.

At this point we have all we need for determining the values that the coefficients {ηi}ni=1

are taking whenever W ≤ 103 µm. These have been put in the following histograms:
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Figure 5.9: Histogram collecting the coefficients {ηi}ni=1, for n = 5 · 105 and in the
particular case in which W is small enough to use the approximations 5.20 and 5.21

It clearly shows that the majority of the {ηi}ni=1 is very small. This is, indeed, not sur-

prising: looking at Fig.5.7 it is clear that a preponderant portion of the particles ends

up to be where the probe is very weak. This is equivalent to say that all these atoms

will be described by very small coefficients.

We will conclude this section with generating the particles and the related coefficient in

the general case.

As we did above, the first thing to do is determine all the Cylindrical coordinates (r, z)

of the atoms. This will not be as trivial as before, because now these parameters are

correlated, as it is possible to see from the left plot of the density distribution ρ(r, z)

drawn in Fig.5.6. Using two times the technique of the Inverse Transform Sampling,

however, it is possible to obtain the following three dimensional histogram. The inset

we added at the bottom right is the theoretical distribution the atoms are supposed to

follow. The function we draw on top of the histogram represents the (scaled) profile of

the probing beam.
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Figure 5.10: Histogram collecting the coordinates r and z of n = 106 virtual particles.
Here W = 5 · 104µm, so that we needed to use the not approximate atomic density of
eq.5.15. In the main plot we draw the (scaled) function η(r, z); in the small box in
the bottom right it is possible to see the theoretical distribution ρ(r, z) in the interval

defined by W = 2.5 · 104 µm

As it is possible to see, the generated coordinates are following the theoretical curve

pretty well, at least for small values of the radius r. Since the method is not particularly

efficient, and we needed to take some compromises on the precision, for big values of r

the simulation is not behaving perfectly. However, looking at Fig.5.10, it becomes clear

that in such region the probe beam is also extremely weak (less than 1% of its maximum

intensity), and therefore we don’t believe it represents a problem.

Using the data collected in the last histogram 5.10, we are now able to determine the

coefficients {ηi}ni=1. With the help of eq.5.17, it is possible to generate and subsequently

collect them in the following:
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Figure 5.11: Histogram collecting the coefficients {ηi}ni=1, for n = 106 and W =
5 · 104µm. Given the coordinates collected in Fig.5.10, the etai’s have been derived

through eq.5.17

Comparing the two histograms 5.11 and 5.9 - that we recall are made by the coefficients

{ηi}ni=1 in the two limiting cases W . 103 µm and W = 5 · 105 µm - it becomes evident

that whenever W is small enough to use approximation 5.20, we get bigger values for

the ηi’s. This is not surprising at all; in fact, increasing z we reduce the intensity of the

probe beam, that translates in a reduction of the related coefficient.

In the following section we will use the two sets {ηi}ni=1 we got here, along with many

others obtained with different values of W inside [1, 50] · 103 µm, for determining the

k-particle entanglement criteria we want. We will show that the difference between those

is actually very big, resulting in a severe lowering of the criteria.

5.3.2 k-particle entanglement criteria - a first version

Let us summarize what we have done so far in this chapter, section 5.3.

1. At first, we wrote down the expression 5.10 for the potential V (r, z) created by the

FORT. Using this, we determined the atomic density ρ(r, z) (eq.5.15), with which

it is possible to generate the coordinates of the virtual particles in experiment [19]

2. Similarly, we got the equation 5.17, that gives the value of the coefficient η(r, z)

to be assigned to a particle at position (r, z)
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3. Subsequently, given the fundamental instruments described in the previous points

1 and 2, we focused our attention to experiment [19], and we tried to generate the

relative coefficients {ηi}ni=1.

4. We noticed that the profile of the atomic density ρ(r, z) is changing substantially

with our parameter W , that describes the length of the chamber in which the

particles are loaded (see Fig.5.5). Since we do not have a precise clue about it, we

decided to let W to vary inside the interval [0, 5] · 104 µm

5. We designed a simplified procedure for determining, once for all, the coefficients

{ηi}ni=1, whenever W ≤ 103 µm (see Fig.5.9)

6. And we concluded the section explaining the more complicated method with which

we can derive the same result, but for a generic value of W (see Fig.5.11 for the

particular case W = 5 · 104 µm)

At this point we are able to obtain, for all the values of the parameter W , the k-particle

entanglement criteria. This way, we can determine the importance of such parameter,

and subsequently find out the real lowest bounds of the variance (∆Sx)2

(∆Sx)2CSS
with respect

to the average spin 〈Sz〉
〈Sz〉CSS , for all possible k. In other words, we will draw, for many

different W , similar curves to the ones represented in Fig.4.11, and we will find out

which are the lowest ones. These will be taken as k-particle entanglement criteria.

But let us proceed with order, first by recalling how we derived:

• The k = 1 - i.e. the “real” - entanglement criterion. For this one we need to

look far back to section 3.2, and in particular to Table 3.3. There resides the key

to determine the most important curve, the one discriminating between a generic

separable state and an entangled one. In fact, we do not need anything more; once

the coefficients {ηi}ni=1 are known, we can directly plug them inside such Table

and get the criterion.

• For k = 2-entanglement we will use, of course, the real Optimal limit derived in

section 4.3.1, and more precisely by equations 4.118a and 4.118b.

• In conclusion, for a generic k > 2, we can consider what we have done in 4.4.2,

and in particular the result of equations 4.146 and 4.147.

In the following figure we plotted the curves, associated to k = 1 (blue), k = 2 (red) and

k = 3 (green), they represent the relative k-particle entanglement criteria for different

values of W . More precisely, the area painted with the same colour associated to the k’s
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is the region in which the curves are varying, depending on W . As said above, the three

lower coatings of such coloured regions will be taken as final k-particle entanglement

criteria for this experiment (at least for the moment). It is important to note that we

choose n ≥ 5 · 105 so that the fluctuations due to the intrinsic nature of the process can

be neglected.

Figure 5.12: k-particle entanglement criteria for k = 1 (blue), k = 2 (red) and k = 3
(green), obtained with different values of W . The dotted curves are obtained through
the collective spin operator, the dash-dotted in the hypothesis W ≤ 103 µm and the
plain supposing W = 5 · 105 µm. The coloured regions refer to the areas in which
the curves obtained using the operator ~S are allowed to vary. The lower coatings of
these regions, that will become the new criteria for the relative k, correspond to the

maximum possible value of W , W = 5 · 104 µm

Notice that all the lower coatings refer to the maximum possible value of W , W =

5 ·104 µm. This is something we were expecting, because it is very unlikely to get better

result by letting particles to move in bigger volumes, outside the probe. The real ques-

tion is: why we see such important worsening in the k-particle entanglement criteria?

This is a very legitimate question, to which, unfortunately, we do not have a rigorous

answer. However, we will give our guess, that we believe to be reliable. Let us recall

what we did in section 2.1; there we proved that the squeezing parameter ξ2 can take

values less than one under particular circumstances. More precisely, we developed a

model for which ξ2 → 2
N , and this limit was achieved when there were many particles

at the border of the probing beam and just two at the middle. As consequence, we took

the qualitative conclusion that the squeezing parameter was behaving as worse as more

particles were accumulating to the border, less to the centre. Regarding experiment

[19], when we deal with small values of W , the FORT and the probe can decay only

along the r direction (see Fig.5.8), being all the z’s very near to the shared focus of the

beams. Therefore the only way with which our criteria can get worse is to have a big
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number of particles described by a great radial coordinate r, i.e.: the region in which the

probe is weak. This is something that actually happens, as it is possible to understand

from Fig.5.7, and in fact we obtain the first lowering of the criteria derived through the

collective spin operator (the dash-dotted curves in Fig.5.12). However, when we start

to consider big values of W , we let particles to accumulate in the z-region where the

probing beam is mostly decayed and therefore very weak. This can be understood look-

ing at Fig.5.10, where it is clear that where the probe is strongly decaying, there is still

a substantial number of particles. This translates in a second lowering of the criteria,

that explains the big differences between the curves relative to small and big W , as well

as the difference between the dotted and the plain lines of Fig.5.12. This can be further

understood comparing the two histograms 5.9 and 5.11. It is clear that the second one,

referring to a W = 5 · 105 µm, collects much smaller coefficients {ηi}ni=1 than the first.

This is a clear consequence of the fact that we allow particles to accumulate far away

from the focus of the beam, and translates with the lowering of the criteria.

In other words, it is better to have particles at the centre of the probing beam, where

the coefficients {ηi}ni=1 are approaching unitary values and ~S tends to the collective spin

operator ~J . This is not a surprising statement, but we have shown here how dramatic

can be the reduction of the entanglement criteria if the atomic distribution is particu-

larly wide.

What we will do in the following is to introduce another mechanism that can further

deteriorate our k-entanglement criteria: the miss-alignment of the probe with respect to

the FORT. So far we supposed that both beams were sharing the same axis and focus.

Now, if for the latter one this hypothesis is very good, because the beams pass through

the same optics and share the path, for the previous one is not. In fact, the alignment

was checked by searching the maximum response peak of the detectors: a procedure

that works, but is not completely precise. What we will do in the following is to develop

a new model with which it is possible to check what happens when we allow for (small)

miss-alignments of the beams.

Notice that for similar reasons we can suppose that the beams are not tilted with respect

to each other.

5.3.3 k-particle entanglement criteria - final version

In figure 5.12 we have determined the k = 1, 2 and 3 entanglement criteria for experi-

ment [19]. There we did not account for a displacement between the main axes of the

probe and the FORT; in this section we will check what happens when such displace-

ment occurs. This will be done in two different steps; initially we will restrict ourselves
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to the case in which W takes only small values, and later we will generalize to the whole

domain of W . The reason for which we do not deal immediately with the general case, is

that it is computationally expensive to generate the coordinates of the virtual particles

whenever we cannot disregard z and consider it constant.

Let us first explain how we evaluate such displacement. Since it is relative to the two

beams, and we have a Cylindrical symmetry between the x and y coordinates, we can

include it in the equation for η(x, y, z):

η(x, y, z) =
ω2
p

ω(z)2
e
−2

(x−d)2+y2

ω(z)2 , (5.22)

where d represents the actual displacement, as it is possible to see in the following scheme

5.13.

Figure 5.13: Schematic draw representing the setup of experiment [19] setup. Differ-
ently from Fig.5.5, here we include the possible displacement d as well. Notice now that
we are not using the Cylindrical coordinates any more; because of symmetry breaking

we need to use Cartesian ones. y is left implicit

Notice that, once we fix the x axis to be the one along which we shift the beams,
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we loose the Cylindrical Symmetry that was so useful before. Therefore we cannot ex-

press trivially the atomic density ρ and the probe profile η as function of r any more.

We need to use Cartesian coordinates. Using the method we gave above, we can proceed

as follows.

First, let us suppose W ≤ 103 µm, so we are allowed to use approximation 5.20, and gen-

erate the remaining z coordinate according to a uniform distribution. More in details,

the relations we will use here for determining the coefficients {ηi}ni=1 are:

ρ(x, y, z) = exp

[
V0

kb

ω2
t

Tω(z)2
e
−2x

2+y2

ω(z)2

]
' exp

[
V0

kb

1

T
e
−2x

2+y2

ω2t

]
= ρ(x, y) (5.23a)

η(x, y, z) =
ω2
p

ω(z)2
e
−2

(x−d)2+y2

ω(z)2 , (5.23b)

they do not represent particular computational problems. So, for instance, the situation

we refer to a displacement of 60 µm is well described by the following histogram, where

we collected the (x, y) positions of the virtual particles and draw the (scaled) function

η(x, y, z = 0) that associates to such coordinates (plus the z one generated randomly)

the desired coefficients.

Figure 5.14: Histogram collecting the coordinates x and y of n = 5 · 105 virtual
particles. The (scaled) function η(x, y, z = 0) is also given. This figure refers to a

displacement d of 60 µm

Using this method we can finally determine the k-particle entanglement criteria for

different values of the displacement d - given the {ηi}ni=1 the procedure is exactly the

one we explained in section 5.3.2. In the following figure we collected several of this

curves; the dashed ones referring to k = 1, the separable case, and the plain to k = 2.
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We choose W to be at the edge of our restricted interval: W = 103 µm.

Figure 5.15: Several k = 1 and k = 2 entanglement criteria for different values of the
displacement d. We recall this plot refers to the case in which W = 103

As it is possible to understand from this last plot, it is not true that the k = 1 and

2 criteria becomes worse as we are moving the probe and the FORT apart. In fact, we

reach the minimum at about d = 40 µm, and later the curves stabilize to some bigger

limit. How can we interpret this result? Accordingly to what we said before in section

5.3.2, we believe that such behaviour can be explained with a gathering of particles in a

“sensible” region of the probe. When we start to shift the two beams, we start to reduce

the number of particles at the middle of the probe, and to accumulate them at its sides.

This results in a lowering of the k-criteria, as expressed in the Fig.5.15. However, when

d increases further, the big peak of particles ends up to be where it does not count any

more (the probe is too weak). The distribution of atoms that the probe actually “sees”

is constant, and therefore the criteria stabilize at a particular couple of curves, slightly

above the lowest ones. For supporting this hypothesis, we can draw the contour plot of

the probe η(x, y = 0, z) and the atomic density ρ(x, y = 0, z) for the two displacements

d = 40 µm and d = 80 µm. We chose to set y = 0 because our system is symmetric with

respect to the (x, z) plane, and it is not necessary to explicit such variable for having a

full understanding.
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Figure 5.16: Contour plot of the two atomic density ρ and the function η, both at
y = 0 because of the symmetry with respect to the (x, z) plane

As it is possible to see, for the case in which the beams are shifted of 40 µm, the virtual

atoms are mainly collected where the probe is at about the ten percent of its maxi-

mum intensity. In other words, the biggest part of the atoms are at the edge of the

detecting laser, and will be described by coefficients ηi approximatively equal to 0.1.

On the other hand, when we move d further to 80 µm, all these particles are too far

away from the probe for being detected. In this case η(x, y = 0, z), in the region of

the atomic peak, varies between 10−10 and 10−7, that means that the particles really

contributing to the k-criteria are the ones residing outside the FORT (i.e.: not trapped).

Now that we have understood how to treat the particular situation in which W ≤
103 µm, we can consider the general situation, where W can take values up to 5 ·105 µm.

Let us first give a brief summary of what we have seen:

1. In order to determine the k-particle entanglement criteria, we have to generate

virtual particles and the relative coefficients {ηi}ni=1

2. This is not trivial, since we have (at least) two degrees of freedom. If it is true

that the probe and the FORT are focused at the same z-coordinate, these two

degrees of freedom are the length of the loading chamber W and the displacement

d of the two beams

3. In previous section 5.3.2 we saw that the first one of these parameters - W - is,

indeed, important. When we consider big values for it, the criteria are getting

significantly worse
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4. What does “big values” for W mean? With qualitative arguments, we identified

the cause of the worsening of the criteria by a gathering of atoms in regions where

the probe is weak. W is “big” enough when particles are allowed to collect away

from the focus

5. This conclusion is true in general. Whenever we reduce the atoms at the centre of

the probe and accumulate at its border, the criteria are lowering

6. Therefore, if we fix W to be 103 µm, a similar argument holds for the displacement

d. When we increase it, we gather particles at the edge of the probe and get worse

criteria (see Fig.5.15). However, we need to be careful not to shift the beams too

much, otherwise the atoms trapped in the FORT would not be detected at all. We

identified the critical value of d to be around 40 µm

7. In the following, we need to check if, letting W to vary inside the interval [1, 50] ·
103 µm, the critical displacement remains to be d = 40 µm. This is the goal of the

remaining part of this section

Because of the computational complexity of generating coefficients according to ρ(x, y, z)

and η(x, y, z) for big W , we cannot check directly all values of d for determining the

lowest criteria. Therefore, we need to have a very good idea about where we need to

look at. For better understanding we draw the following picture, with the contour plots

of the atomic density and the function η, both at y = 0.
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Figure 5.17: Contour plot of the two atomic density ρ and the function η, both at
y = 0. We represent in the same graph the two different situations: displacement

respectively null (centre of the figure) and 50 µm (right side)

This graph is very similar to the one in Fig.5.16. In fact, we are letting only the
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variable z to be bigger. The displacement directly affects x, and therefore we believe

that, for the general case, the critical value of d has to be searched in a neighbourhood

of d = 40 µm. It could be not exactly 40 µm, because now we are moving along the x

direction the particles that were in the z-region where the probe is decaying. However,

because of similarities of the probe and FORT profiles, it is reliable to say that in the

general case we have to recover a very similar result for the critical displacement d we

found before in the particular case where W = 103 µm.

In fact, checking accurately in the range d ∈ [35, 45] µm, d = 20 and 60 µm, we can take

the conclusions:

• The lowest curves for the k-entanglement are to be searched for d between d ∈
[35, 45] µm. In both cases d = 20 and 60 µm, the criteria lie above; the first one

because we are too near to the focus of the probe, the second one because we are

too far. Exactly as we have seen previously

• For us it is not possible to tell exactly at which value of d inside [35, 45] µm resides

the minimum. The statistical fluctuations due to the random nature of the virtual

particle generation process are bigger than the distance between these criteria. If

a better resolution is needed, it would be necessary to generate more coefficients

{ηi}ni=1. However, in our case, we do not require such accuracy and limit ourselves

to consider one couple of these curves to be the final 1 and 2-particle entanglement

criteria. These curves can be found in the following graph 5.18
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Figure 5.18: Curves referring to the k = 1 (blue) and k = 2 (red) Particle entangle-

ment. The dotted ones refer to the collective spin operator ~J , the dashed ones were
derived before for W = 103 µm, and were the lowest represented in Fig.5.15 and the
plain are the most general ones. They were derived considering W = 5 · 104 µm and

the displacement d ' 40 µm
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Here we draw, respectively:

• Dotted curves: the k = 1 and 2-particle entanglement criteria obtained using the

collective spin operator

• The dashed curves are the previous lower bounds, determined before for null dis-

placement d = 0 µm. These have been represented above as the plain ones in

Fig.5.12

• Plain curves: the new general criteria determined for W = 5 · 104 µm

As we were expecting, we got a bound that is lower than before, as a consequence of the

fact that now we took into account the displacement d.

5.3.3.1 Summary and comments

We believe our lowest bound for the minimum variance (∆Sx)2

(∆Sx)2CSS
with respect to the

average spin 〈Sz〉
〈Sz〉CSS is reliable. However, in its derivation we supposed:

1. The probe and the FORT share the same z-coordinate of the focus, and are not

tilted with respect to each other

2. The critical displacements d for which we obtain the lowest possible criteria for

W ≤ 103 µm and W = 5 · 105 µm are very similar

3. The only, or at least main way for which the criteria are getting worse, is to have

atomic gatherings at the edge of the probe, and few particles at the middle

During our discussion in the previous section 5.3.3, we gave qualitative arguments in

favour of these hypotheses. Yet, in order to be really conclusive, we should determine

the k-particle criteria scanning simultaneously the parameters d and W in the relative

ranges. Moreover, we should introduce the angle θt, describing the tilting of the two

beams, and the focus shift df . What we understand from this, is that the experiment

itself has to be designed keeping in mind that all these parameters strongly influence

the k-particle entanglement criteria. For instance, it would be very appropriate to

load particles in a small box, such that W cannot be bigger than 103 µm. With this

shrewdness only, we would avoid the bad worsening of the criteria related with big values

of such parameter. Another improvement can be achieved by designing an atomic trap

that collects the atoms in a smaller volume, so that the probe mainly detects particles

near to its main axis. If these measures were achieved, we would obtain k-particle criteria
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much nearer to the ones derived using the collective spin operator. And “nearer” means

“easier to be verified”. The experiment we analysed was performed some years ago, and

the entanglement criteria used were the squeezing parameter ξ2
R and the curves obtained

by Anders Sørensen in [37], all of them relative to the collective spin operator ~J .

What we did here is to introduce some sort of procedure to evaluate the new k-particle

entanglement criteria for a generic experiment in which many atoms are trapped and

tested with some probe. During its derivation, we encountered some difficulties, hard to

deal with “a posteriori”, but potentially solvable with a better design of the experiment.

In short, we showed a somehow general way to determine the k-particle entanglement

criteria, and we suggested some tricks in order to make these criteria better, starting

from the apparatus design.

5.4 Conclusions

Given the k = 1 and 2-entanglement criteria shown in Fig.5.18, we can finally determine

if the atomic sample that has been tested and detected in experiment [19] was entangled

or not. And, in case, how much correlated the Particle were. In the next plot, along with

the lowest k = 1 and 2-bounds for the variance (∆Sx)2

(∆Sx)2CSS
with respect to the average

spin 〈Sz〉
〈Sz〉CSS (the plain curves in Fig.5.18), we draw the experimental points of Fig.5.4.

Figure 5.19: Experimental data obtained in the experiment, taken from [19]. The
dotted and the plain curves are the k = 1 and k = 2-entanglement criteria derived
using ~J and ~S respectively. More in detail, the plain ones represent the lowest possible

values, derived in section 5.3.3

We see that, if majority of the points lie below the dotted curves, few can be considered

not separable with our new criteria, and none with more than two particles entangled!
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The conclusion taken in the article - 3.4 dB of metrologically relevant squeezing - has to

be reviewed, once we look at the system with the new definition given by the operator

~S. In fact, the criteria we derived here are much more strict than the previous ones -

i.e.: the spin squeezing inequality and the lowest bounds derived in [37] - and experi-

mental points that are lying beneath the old ones, are above the new. For a couple of

atomic samples entanglement can be really proven (and still the points reside near the

curve), but no state beats the 2-particle entanglement limit. Notice that we took a big

number n of atoms, so that we are sure that the statistical fluctuations characterizing

our theoretical curves can be neglected.

We need to accept that everything we can say about this experiment is that there are

two samples that have at least one couple of correlated atom, but none with at least

an entangled triplet. We cannot prove, for the worst-possible scenario described by the

plain curves of Fig.5.19, high quality entanglement. This, despite that the procedure

used, in the reality, is likely correlating most of the particles in the system at the same

time.

In the next paragraphs we will try to understand why we got such horrible entanglement

criteria, and an improvement will be attempted. We desire to make clear that there are

two reasons for which we decided not to derive, from the beginning, the criteria we will

obtain (with new constraints over our parameters) and present afterwards in Fig.5.21.

The first one, is that we wanted to outline a somehow formal procedure that can be used

in a general case, for which a dramatic reduction of the lower bounds for the variance

is achieved. The second reason is more connected with the knowledge we have about

the experiment [19]. Since we are re-analysing data taken couple of years ago, when the

squeezing parameter was the inequality to be referred at, we do not have access to some

experimental values important for us, but not for the authors of [19] - the length W of

the chamber, for instance.

Previously we restricted T to 100 µK and W to its maximal value 5 · 104 µm, say-

ing that further away the atoms were not trapped any more and the probe intensity

was practically vanished. We have seen how, increasing W , all the entanglement criteria

were getting worse and worse, and therefore a reduction of it can only be positive for us.

In fact, what we will do now is to set it to W = 104 µm and T = 100 µK, in accordance

with the qualitative argument given by the following picture:
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Figure 5.20: Image of a loaded FORT taken with a CCD camera. The image width
and height correspond to 991 µm and 374 µm respectively. Picture taken from [55] for

an experimental setup similar to our

This image, taken not for the experiment [19], but from a very similar one, can give us

some clues about the atomic dispersion and the temperature in the loading chamber. In

fact we can deduce that:

• The particles are not really following a thermal distribution. This is because, when

loaded, they are not at the equilibrium, and the time scale for which the whole

experiment run is much smaller than the one needed to the atoms to reach it.

Nevertheless, at the thermal equilibrium the cloud is wider, that translates in a

lowering of the coefficients {ηi}ni=1 and a consequent worsening of the entanglement

criteria. For our purpose, we can keep consider ρ(x, y, z) as in eq.5.15, being it

“worse” than the real distribution, inaccessible to us

• Comparing experiment [19] and the one to which the figure 5.20 refers (see [55]),

we can therefore set the maximum value of W to 104 µm. However, we want to

make clear that this is more a (reasonable) guess, than a precise statement

• The temperature T itself, that can be estimated taking successive photos similar

to 5.20, can be set to be T = 50 µK (overestimation). In fact, studying the spread

of the cloud it is possible to have an idea about the average atomic speed, and

therefore the temperature. By comparison of the two experiment, we can deduce

T .

Now that we set new constraints over W and T , we will restrict the maximal displace-

ment d that we can have as well. In fact, the idea that d could take (almost) any

possible value is simply ridiculous. Our great experimental fellows are good at what

they’re doing, and therefore the FORT and the probe will be well aligned. How much?

Overestimating again possible deleterious effects, we will set the maximal value of the

displacement d as the beam’s relative shift for which 90% of the maximum possible sig-

nal is achieved. In other words, we will determine 〈Sz〉CSS(d) =
n∑
i=1

ηi(d) for different

values of d bigger or equal than zero. The one corresponding to d = 0 will clearly be
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the maximum, and later on we will find out which is the d for which we get a reduction

of the 10% in 〈Sz〉CSS(d = 0).

In conclusion, with the new constraints over W , T and d, we can give the next figure:

Figure 5.21: Top Left: Histogram with the generated r and z coordinates of n = 106

virtual particles. In the main plot, it is possible to see the scaled function η(r, d = 0, z)
as in eq.5.24; in the inset the theoretical distribution. Top Right: Histograms collect-
ing the coefficients {ηi}ni=1, obtained for the virtual particles of which we were speaking
above and displacement null (blue) and maximal (red). Bottom: Experimental data
and k = 1 and 2 entanglement criteria (blue and red respectively). The dotted curves

refer to the collective spin operator, the dashed ones to ~S, with null displacement and
the plain curves with the maximal d = 11 µm. These latter two lower bounds have

been derived with W = 104 µm and T = 50 µK

A little procedural detail: as it is possible to see, we used the atomic distribution func-

tion ρ in Cylindrical coordinates. However, we need x for determining the coefficient η

for each particle. In fact, looking at the expression for η(r, x, z), we have:

η(r, x, z) =
ω2
p

ω(z)2
e
−2
(
r2+d2−2xd

ω(z)2

)
. (5.24)

The coordinate x has been derived considering that the atoms are satisfying angular

symmetry; we randomly generated the angles θ for all the particles and obtained x

using

x = r cos θ. (5.25)

Consider now the Fig.5.21. First, let us briefly go through, one last time, the procedure

we used for the determination of the k = 1 and 2 entanglement criteria:

• The top left plot represents the histogram with the r and z coordinates of the

virtual particles. These only depend on the FORT, and resemble the theoretical

distribution of eq.5.15
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• From the data collected in the first histogram we obtained the second figure, at

the top right. The difference between the two set of coefficients {ηi}ni=1 is the

displacement d used in their derivation (eq.5.24). For the blue ones d = 0 µm,

while for the red we set the maximum allowed d, determined to be d = 11 µm

using the procedure described above. As expected, the shift of the FORT with

respect to the probe results in a lowering of the coefficients. However, because

of the new constraints, such lowering is not dramatic and corresponds to a small

degradation of the entanglement criteria

• Finally, at the bottom of Fig.5.21 we draw the k = 1 (blue) and 2 (red) parti-

cle entanglement criteria. In particular, the dotted curves are obtained with the

collective spin operator, while the dashed and plain ones with ~S. The difference

between these last two is the displacement d used in their derivation. The previous

refer to d = 0 µm, and therefore correspond to the blue set of coefficients {ηi}ni=1.

The latter curves refer to maximal displacement d = 11 µm and are derived using

the red set of coefficients.

Comparing the k = 1 and 2-particle entanglement criteria presented in the figures 5.19

and 5.21, the first thing that impress is that we “managed” to obtain much better lower

bounds, so that many experimental points they were not beating the entanglement limit

can now be considered correlated. In two cases we can also claim more than 2-particle

entanglement, being the corresponding data below the red, plain curve. But what does

exactly mean that we “managed to obtain better bounds”? The data are the same;

it is our theoretical procedure that is changed. These changes, as explained before,

cannot be fully justified. We needed to evaluate some parameters - the temperature

T , the length W and the displacement d - of which no precise knowledge was given.

Using the results of experiments similar to our and the physical intuition of the people

working on those experiment (authors of [19]) we set new constraints over these cited

variables and draw the better criteria of Fig.5.21. We have very good reasons to believe

we overestimated the possible deleterious effect, and therefore to have obtained good

criteria, but we cannot give really conclusive proves in favour of that.



Chapter 6

Conclusions

Here we will look at all the seeds we planted in the previous chapters, and harvest the

fruit in terms of conclusions. In order to do this, we will give the last one of the many

summaries that You, reader, probably have learned to hate with all of your heart:

• We proved, in section 2.1.2, that the squeezing parameter ξ2 does not represent a

valid entanglement criterion if we substitute the collective spin operator ~J with

~S. In fact (eq.2.37),

ξ2
N →

2

N
(6.1)

for the specific model introduced there

• Trivial generalizations of the squeezing parameter as ξ2
U (see eq.2.66) cannot be

used as useful entanglement criteria. In some extremely exotic circumstances, the

particles behave such that ξ2
U → 0, as we proved in equation 2.124. Of course this

is not something that happens in realistic systems; we need to find some way to

avoid these unwanted behaviours in the determination of our entanglement criteria

• Given the atomic distribution in the experimental setup, it is possible to determine,

for a separable state, the minimum value that the variance (∆Sx)2

(∆Sx)2CSS
can take with

respect to the average spin 〈Sz〉
〈Sz〉CSS . In order to this limit to be realistic, we request

to have a statistically relevant sample; in other words many atoms. This is the

reason for which our entanglement criteria are valid for big collections of particles

• So far we are able to plot a curve that can unequivocally discern between a sep-

arable and a correlated system. It is, in fact, a sufficient criterion: experimental

points located below such line need to be entangled. Moreover, if we recover the

163
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“classical” situation ~S → ~J , we clearly see that this criterion is completely equiv-

alent to the spin squeezing inequality. However, whenever ~S 6= ~J , these criteria

differ from one to the other (as it is clear from Fig.3.2)

• We took a step further; in Chapter 4 we considered entangled Systems, and showed

that it is possible to obtain different level of multipartite correlations. For us,

better quality means that there is, in the sample, at least some number of entangled

particles. So, for instance, we draw the 2-particle sufficient criterion, stating that

any System beating it contains at least 2 + 1 = 3 correlated particles (see Fig.4.9).

We managed to make it an optimal criterion, that essentially means that any point

of the curve characterizing it resembles a real, possible state for our system

• We derived, for any integer k > 2, the k-particles entanglement criteria. We called

these “optimal”, as we did for the specific case k = 2, but this definition has only

been used because we followed the same procedure. In fact, as explained in sections

4.4.1 and 4.4.2, these criteria exceed the real lowest bound, even if the difference

reduces asymptotically to zero for k →∞. In any case, we are now able to derive

a sufficient criterion for detecting k-particle entanglement in any situation

• Now that we can discern between all possible qualities of entanglement, we had

the great opportunity to analyse the data taken in the experiment [19]. Under

some realistic assumptions, we proved a novel multipartite entanglment criteria in

terms of the squeezing parameter. To the best of our knowledge, no such criteria

for detecting multipartite entanglement exist in the literature.

We conclude this work by recalling the conjecture 1 we gave. We used it in order to

derive all the k > 2-particle entanglement criteria; proving it will be one of the big goals

in the future.

We hope that what we have done here, will help others in the realization and the

improvement of some experimental setups, and that the operator ~S we introduced is,

indeed, of some interest.

Luca Dellantonio
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mi fa piacere ritrovare a Bolzano, non lo sostituirei con nessuno. Ogni skyppata col

Valenz mi riempie di gioia, la mia stima nei suoi confronti non è mai diminuita. Bravo
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