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Chapter 1

Motivation and Introduction

1.1 Motivation

In 1935, Einstein, Podolsky and Rosen (EPR) [1] wrote thdodal realism” is taken for
granted, then quantum theory is an incomplete descriptidheophysical world. Local
realism states; that if A and B are spacelike separatednmegtbhen what happens in A
cannot have a causal influence on what happens in B. Any samagp would agree in
this statement, so it seemed like a real problem to quantuainamécs.

The EPR argument saw renewed attention in 1964 when JohrnBatié down his
now famous inequalities [2, 3] that would make it possibl¢est if the world obeyed the
laws of quantum mechanics or if it really is “local realistiBell's inequality states that
there is an upper boundary for the correlations achievatvla hidden variable system.

The experiments that first tested Bell's inequality werealbyg A. Aspect et al. [4,
5, 6] in 1981. In the abstract it say®ur results, in excellent agreement with quantum
mechanical predictions, strongly violate the generaliBadl's inequalities, and rule out
the whole class of realistic local theoriesAspect thus proved that quantum mechanics
were right, and that the world truly is non-local.

Instead of seeing the non-local interaction as an possilgiensistency in quantum
mechanics, they were seen as a new quantum phenomenon withossibilities to be
explored. The concept of entanglement was born.

A new field emerged at the borderline between physics and atamgcience, referred
to as quantum information theory, it deals with a computeebdaon quantum mechanics
- a quantum computer.

Quantum information theory was founded with the realizatiibat information en-
coded in a quantum system could be manipulated in ways thaldwonake otherwise
intractable problems feasible to solve. The problem of figdhe factors in a product of

1



2 1. MOTIVATION AND INTRODUCTION

two large unknown primes is one such problem. The fact thatishdifficult is utilized
when banks, public authorities and you and | share secratniration over the internet.
So it drew much attention when P. Shor [7] showed that it wasipde to solve the prob-
lem of factorizing primes using a quantum computer in a nealsly time, as this blows
open a huge security hole.

The physical implementation of a large scale quantum coengsitvery difficult, due
to the harsh requirements to isolation of the quantum systéow noise level and effi-
cient and controlable interactions. It has been experiatlgnpossible to implement the
different parts separately, but the first quantum compuasnfet to be built.

In the quantum computer of the future, quantum informatieads to be moved from
one place to another. This can be done with a teleportatiotoqol, but we need a
reliable source of entanglement to implement this. Entohghotonic states provides an
easy and fast way of distributing entanglement within artstvben quantum computers.
It is crucial for the success of the quantum computatiores, the utilized entanglement
is good. Decoherence and noise inevitable destroys eetaegt so we need a way to
obtain better entanglement from partly broken entanglémehis is the problem that a
entanglement purification procedure aims to solve.

1.2 Introduction

In this thesis we will set out to construct an entanglemenifipation protocol for con-
tinuous variable photonic states. We will try to purify thentinuous variable entangled
states that were presented by Garcia-Patron et al. [8 Stage exhibit a high degree of
entanglement, making them and interesting alternativeibit gtates.

We will implement the purification by using beamsplittersldromodyne measure-
ments of the quadrature phases. We will do this trying to mittné behavior of a known
purification protocol for qubits, which were suggested byiBeh et al. [9].

We will use Wigner functions to describe the continuous alale photonic states.
Wigner functions are easy to manipulate when we implemess@khifters, beamsplitters
and homodyne detection. Even though the Wigner functiamsfoem in a simple way,
they tend to involve many terms and huge expressions. Weftirerneed to do the
calculations and simulations on a computer. The paramptaresfor the purified states
are huge, we will use the simulations to find the effect of wagyhe different parameters.
We will try to find an optimal set of parameters.

All the simulations in this thesis are done in Mathematibe, frograms used in this
process are presented in appendix D. Some of the plots peesienthis thesis are bor-
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rowed from other research works, when this is the case itnayas explicitly stated. The
majority of the plots in this thesis are produced using Mathtica and gnu-plot. Figures
are done using X-fig, and for typesetting of this the&lgX has been used.

Thesis outline
The thesis is divided into eight chapters with the followstgucture.

Chapter 1 - Motivation and Introduction This is the chapter that you are reading now.
It presents the motivation for doing this thesis and give @tsintroduction to the
field of quantum optics. An outline of the thesis is also given

Chapter 2 - Theoretical background Provides the reader with the necessary background
knowledge of quantum mechanics, Bell's inequality and ¢uaroptics.

Chapter 3 - Quantum information Introduces the field of quantum information, gives
examples of quantum computation and quantum simulatiofit®are introduced
along with the concepts of decoherence and purification. rAparison of qubits
and continuous variables is also included.

Chapter 4 - Wigner functions Wigner functions are introduced as the description we
will use for quantum light states. The Wigner function of auGsian state in pre-
sented along with some mathematical identities of Wignections that will prove
usefull.

Chapter 5 - Preparation of the state Presents a way of preparing a state that is capable
of breaking Bell's inequality in a loophole free manner. Tineperties of this state
are subjected to detailed calculations. We will denote tifke she two mode photon
subtracted (TMPS) state.

Chapter 6 - Purification procedure Explains that the state we found in chapter 5 is
analogous to a¢™) Bell state. We present a qubit purification method for the
|¢pT) state and develop a continuous variable version of thisghvihould purify
the TMPS state found in chapter 5.

Chapter 7 - The purified state Detailed calculations are done on the resulting state from
the purification method. We compare the results found inghépter to the results
found for the TMPS state.

Chapter 8 - Conclusion and Outlook Concludes on the results found throughout the
thesis and presents an outlook from this work.



1. MOTIVATION AND INTRODUCTION




Chapter 2

Theoretical background

The field of Quantum Optics (QO) provides a quantum mechhdiescription of light
and the interactions between light and matter. The field hadugced many great re-
sults and philosophical realizations, among these are tA8 BR and the LASER phe-
nomenons, Dobbler cooling, optical tweezers and Boset&imsondensates. Other re-
markable feats include quantum entanglement, quanturpaeégion and recently the
field has merged with theoretical computer science to predie field of Quantum In-
formation (QI).

The language of quantum optics is that of quantum mechaantkeveryone with a
desire to venture into this field should have a elementareratanding of the concepts
of quantum mechanics. The purpose of this chapter, is toiggabhe reader with the
theoretical background necessary to understand the fusntairconcepts of the tools we
will be using throughout this thesis.

The reader is assumed to have a basic understanding of quamdchanics and be
familiar with the bra-ket formulation. All of the claims dfis chapter can be found in the
literature, e.g. [10, 11, 12, 13, 14], presenting proofs twirefore not be the main focus
of this chapter although they are not everywhere omitted.

This chapter is not meant as a consistent derivation of wafwoperties of quantum
mechanical and quantum optical operators, but a guide ta edrecepts that are most
important to this thesis.
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2.1 Quantum mechanics

2.1.1 Notation

A word on notation is in order before we begin. Throughous thiesis we will not use
multiple integral signsf dz [ dy [dz or [ [ [ dxdydz but just the form[ dzdydz, and
the limits of integration are always fromoo . . . oo unless otherwise specified.

Quantum mechanical operators are provided with ahahd expectancy values and
averages of an operat@ris given by(O). The functionsj(z) andd;; denotes the Dirac
and Kronecker deltafunctions respectively.

2.1.2 Pure and mixed states

Suppose a given quantum state cannot be described usingle Siate vector, but rather
each statevector from a sgt)); } is known to occur with probability;, where) . p; = 1.
If this is the case and more than gnés different from zero, then the system is described
as a statistical mixture of states, and is called a mixeé stat

A pure state on the other hand is describable with a single gétor, that is, if there
exist aj such thap; = ¢;;. We will explore the properties of these states and seetthat i
is easy to get expectancies using the density operator tlsggotation.

2.1.3 Density operator

Normally we describe the states of a quantum mechanicarsyas vectors in a Hilbert
space:|¥) € H, observables are Hermitian operators on this space anddties volve
in time by unitary transformations. The state may equallyl e expressed by an oper-
ator, called the density operator, defined as:

p=|V)(Y (2.1)

All information of the system carried ij\W) is also carried by its density operator coun-
terpartp.

In a given basiqe; } for the Hamiltonian describing the system, we can use the ide
tity >, ei)(e;] = 1 to write

p=>_lei)eilple;) el (2.2)
1,5

We can interpret this as the density operator being repredday the density matrix with
elementse;|ple;). We shall not distinguish between the two representatiodsnall use
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both interchangeably.

If the system is in a mixed state, then the density operakerttze form
p=> pilthi) (il (2.3)

where the sum is over an ensemble, witldenoting the probability of the system being
in the i’th state. The action of an operatdron the density matrix is given hypA.

For a statg);) in an ensemble, the expectancy value of an oper@té given by
(0); = (1;|O|w;). For the statistical mixture this generalizes to

(O) = pilwi|Ola) (2.4)

The trace of an operat@? is defined as being the sum of the diagonal elements)|¢,,).
We see that

Te[p0] = D (WilpO| W) = Doy (Wil ¥5)(¥;101%;) = (O) (2.5)

7 2,]

Multimode states

When two baseg:;) and|b;) are involved we may write the state of the system as

0) = cijlai) @ [b;) (2.6)
i,
yielding
pan = [U)(U| = " ¢y lai)(ak| @ [b;) (bl (2.7)
i,5,k,l

the density operators of the subsystems can be found by mpkitial traces

Trplpas) =Y _(balplbn) = pa (2.8)
n
and in a similar way fopp = Tr 4[p]. These operators are called reduced density opera-
tors. These can be used to get predictions of the subsystdme same way ag can on
the entire system. Whenever a quantum system consist oipheybarts, then we might
find that these parts are correlated in a genuine nonclassar#or. It is this phenomenon
that is called entanglement.
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2.2 Entanglement

Entanglement is a physical phenomenon that enables us tmdwireg things such as
quantum cryptography, teleportation and demonstratioth@fnonlocality of quantum
mechanics, to name a few. The formal definition of entangténseas follows:

Let [ 45) denote the joint state of system A and B. Whenever this state
cannot be written as a product of states of the subsystems) # [14) ®
|¥gB), then the stat@) 4 5) is said that to be entangled or non-separable.

An unentangled state is called separable. A and B refer tsaparate system.

In the rest of this section will we only consider bipartitestgm entanglement - entan-
glement between two and systems. Entanglement betweenuamyen of participating
systems is possible but for the sake of keeping things sinaplé relevant to this thesis,
two participating systems will suffice.

Entanglement is a quantum correlation phenomenon, butibtistrictly correct to
say that subsystems A and B are uncorrelatdd ifz) is separable (unentangled); take
for example the separable spin state

[Wag) =1 Ta)| TB), (2.9)

here the spins surely are correlated, as they both pointerséime direction. But as
seen by the definition of entanglement this is not an entdrgjiete, the point being that
correlations and entanglement is not the same thing.

The correlations between A and B in an entangled state amegréthan what we
could get from a separable state. We will give an examplelmvp spin states below.
An important property of entanglement is that it cannot leated locally, while classical
correlations can. The only way to entangle system A and B let@ them interact with
one another.

Later in this thesis we will encounter states similar to thim<l/2 maximally entan-
gled states that we will introduce below, these will servamgxample of entanglement.
The states are defined in the a bipartite spin basis, the ftigipace of each system is
spanned by 1) and| |). The four maximally entangled states have the form:

_ ’ ll>AB,z + ‘ TT>AB,Z _ ‘ ll>AB,z - ’ TT>AB,Z

67) 7 [ 7
|7;Z)+> _ | lT>AB,z\‘/|'§| Tl>AB,z |¢_> _ | lT>AB,z\;§| Tl>AB,z (210)

!Locally meaning that Alice and Bob sits in each their roortkitey over a phone (or a similar communi-
cation device) agreeing on a way to prepare their part ofdim tate and manipulate their part accordingly.
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Thez index denotes that the spin is along thdirection. We will choose one of these
states, say,) ™), to serve as our example.

Suppose we want to make a projective measurement of systespifistate onto the
z basis. When we make such a measurement we collapse thecstiteer| |T)ap .
or | Tl)as,., each occurring with a probability @} The point being that there is a
correlation between the spin state of A and B, so if Alice wemmeasuré 1 4) then Bob
would measure | z) with a absolute certainty.

It seems like there is nothing un-classical about this kihdaorelation. One might
ask oneself how the above correlations are different frokingaa red ball and a blue
ball putting them in each their box, having a guy juggle wkik boxes and then finally
send them off to two observers Alice and Bob. Then Alice wailcely know that Bob
received a blue ball if she got a red, and so fourth. The arguree why this state
contains more than classical correlations is not simplegbas roughly as follows.

Alice and Bob would also find that their measurements wereetaied if they where
to measure about a different axis, even though a spin pgimithe positivez-direction
is a balanced superposition of spin up and down along a diffesrthogonal axis. The
spooky thing is that this remains true even though the twtesys are spatially separafed

Alice and Bob can measure their spin state on each of the #ixied€x,y,z). They do
not have to agree upon their choice of axis in advance. Wiarig at the correlations of
such measurement, one finds that the correlations exceedssatassically permissible.
Mathematically this is expressed by the Bell inequality ethis to be discussed later in
this thesis. This topic is much discussed through the yeafarhous physicists, but for
now it is just important to know that the correlations ardytmon-classical. For a great
presentation of the problem of non-locality and entangl@rsee [15, Bertimann’s socks
and the nature of reality].

2.2.1 Measure of entanglement

A bipartite systemi 4 5) is called separable or not entangle if it can be decompoded in
a direct product of pure states in the respective Hilbertapaln this case the reduced
density matrixo4 = | 4) (4| andpp = |¢p) (1| are pure states. We know that

Tr[p?] = 1 (2.11)

for a pure state, so this is a good and easy way to determingygtam is not entangled.
It is however more difficult to measure the level of entanglamin a system. In the

>The word “spooky" is due to Einstein, who did not like thestiars at a distance. [1]
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literature, there is no commonly agreed upon measure ohglet@ent.

This thesis takes off from a proposal for a loopholefree désfuantum non-locality
[8], in this article they wish to break Bell's inequalityg.; < 2. For the purpose of
comparing the results in this thesis to the aforementiomtcka, we will also use what
we call the Bell parametefz.;;, as our measure of entanglement.

This measure might not be optimal for measuring the effectunfpurification pro-
tocol, but it could reveal a true quantum purification featifive are able to take a state
with Bell parameter smaller than 2 to a state with Bell-patengreater than 2.

There are another way to measure the entanglement namelfothBleumann en-
tropy [16, 17], which is often used when determining entanggnt in a bipartite system.
Another measure that is very usefull when one tries to drisiate towards a maximally
entangled state, is to simple calculate the overlab betieseto states, this measure has
a maximum value of one. We choose howewer to use the abilliyeak Bell's inequality
as the measure of entanglement in this thesis.

2.3 Bell's inequality

Bell's inequality offers a way to test very fundamental digess in quantum mechanics.
It forces one to realize that quantum mechanics cannot sobalongside a concept of
locality. Bell's inequality offers these possibilities,tbdespite these very philosophical
concepts it can be explained in very general terms not iefgto quantum mechanics at
all.

We will look at the probability

P(A, Bla,b), (2.12)

defined as the probability of resulssand B given the setting. andb. We do not have to
think about quantum mechanics and measurements here.
We assumme that the results are dependant, so that we caotaie the probability
function
P(A, Bla,b) # Pi(Ala)Py(B|b) (2.13)

If we assume that an hidden variablés present so that the factorization is possible, then
we can write
P(A, Bla,b, \) = Pi(Ala, \)Py(Blb, \) (2.14)

Here we have introduced our assumption of a hidden variablde idea is that we imag-
ine that there exists an underlying theory, knowledge &f theory enables us to predict
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the outcome of measurements. We can obtain the originabpiity by integrating over
a probability distributionf ())

P(A, Bla,b) = /d)\f()\)P(A, Bla,b, \) (2.15)

The two equations presented above both carry the assuniptibauch a hidden variable
exist.

The purpose of Bell's theorem is to take this equation andtgdota form where it
can be tested directly. In order to do this we look at a simptagwhere the resultd
and B can only take the valueilsor —1. We introduce the parametéi(a, b) given by

E(a,b) = P(1,1]a,b) + P(~1,~1]a,b) — P(1,~1|a,b) — P(~1,1|a,b).  (2.16)

We reproduce the work of Clauser-Holt-Shimony-Horne (CHI$EH8] using equations
(2.15), (2.16) and some simple algebra and find that

Bla,b) = / dAF(N) A(a, N B(b, ) (2.17)
whereA(a, \) = Py(1]a, \)— Py (0a, \) andB(b, A) = Py(1]b, A)— P5(0[b, ). Remem-

bering that we are dealing with probabilittese see thattd(a, \)| < 1and|B(b,\)| < 1.
We see that we can get

B(a,b) + E(a,¥) < / INFON)A(a, N[B(b, V) + BH, ) (2.18)
Looking at the absolute value of this equation we can get
E(a,b) + E(a,t)| < /d/\f(A)|B(b, ) + BN
\B(d,b) — B(d, V)| < /d)\f()\)]B(b, N = B V). (2.19)

Since|B(b,\)| < 1we cangetB(b,\)+ BV, \)|+|B(b,\) — B(V,\)| < 2 using this
property and the fact thgtd\ f(\) = 1, we arrive at

|E(a,b) + E(a,b) + E(d,b) — E(d’,V)| <2 (2.20)

This particular form of Bell's inequality is due to Clauseétplt, Shimony and Horne
(CHSH) [18]. The inequality is expressed in a very generay,whis mathematical

3If P is a probability then we know that P is positive and notgee than one.
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identity and the involved probabilities could refere to mdhings other than quantum
mechanics.

Bell's inequality is true whenever a hidden variable is assd. Local realism is seen
to be in conflict with guantum mechanics, so Einstein arghatlthis must exist a hidden
variable that could explain this inconsistency. Bell'sqnality can put this to the test, it
is possible to perform a set of measurements and if we findsBeéquality broken for
these measurements then no hidden variable is present.

Classical
prediction What was

Silver atoms
actually observed ERaam

Furnace

Inhemogeneous
magnetic field

Figure 2.1: The Stern-Gerlach experiment consists of deflecting a bdagier atoms in a
inhomogeneous magnetic field. The result is surprising,resfinds that each silver atom been
deflected to a fixed angle either upwards or downwards, nat aveontinuum of angles. The
picture of an stern-gerlach experiment was found at wwipgikia.org

Bell's inequality enables us to test whether Einstein ibtrigy if quantum mechanics
is an non-(local realistic) theory.

Take for example an Stern-Gerlach experiment where the%snn’articles are de-
flected either up or down along a chosen axis, this corresptmthe requirement that A
and B inP(A, Bla,b) is assumed to only take two values, here denoted -1 and 1. The
conditioning ona andb is done by lettingz andb denote different axis to measure the
spin about.

When testing Bell's inequality on a Stern-Gerlach experitnee find that the Bell’s
inequality is broken. This forces us to discard the notioa bidden variable in the Stern-
Gerlach setup, and at a broader view, in quantum mechaniesargthus forced to take
back our notion of local-realism and accept that quantumhaugcs is a non-local theory.

Bell's inequality was firstly put to an experimental test by Aspect [4] and many
others since, all confirms that a quantum mechanical systenbieak Bell's inequality.
Everytime this feed is achieved we prove that our world is-lomal.
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2.4 Continuous variable photonic states

In this section we will give an introduction to continuousiaile photonic states. First
their connection to creation and annihilation operatosthen its description in quadra-
ture phases and lastly we will give a description of squestaies.

2.4.1 States of light

Maxwell's equations (2.21) which are rigorously explainedhe literature [19, 20] de-
scribs the behavior of the electromagnetic phenomena,dizey as a beautiful unifica-
tion of two fields that once were sought to have no common gtolaxwell laid the
foundation of modern field theory with these equations yigJca detailed account of
light as electromagnetic waves.

VxH:(S—D, VxE:—(S—E, V-B=0, V-D=0. (2.21)
ot ot

At this point in timé physics seemed triumphant with only "minor” worries abdnat t
nature of black-body radiation and of the photoelectrietff

The investigation of these effects led to the quantum reiasiu Planck had theorized
that thermal radiation of light only happened in distinct aliscrete quanta in order to
make the spectra fit observations. Einstein took the idegbduby ascribing the discrete
nature to light itself and not just the radiation processl ased it to explain the photo-
electric effect. Dirac addressed the issue of describiegytrantized light fields interac-
tion with a atom. He did this by associating to each mode ofitid field a harmonic
oscillator.

2.4.2 Photon creation and annihilation operators

The following derivations are completely analogous to teevations for a quantum me-
chanical harmonic oscillator. A QM-oscillator have a setepérgy levels and some op-
erators to go up and down the energy ladder. In the case obpicettates the levels are
represented by the state containing a given number of phofiime operators that go up
and down the energy ladder are photon creation and anighilaperators.

Let us introduce the creation and annihilation operatorsafsingle mode fielda!
anda respectively. Letn) be the energy eigenstate corresponding to the Hamiltonian
and energy given by,

Hiln) = hu(aa + 3)ln) = Euln). (2.22)

“In the start of the twentieth century.
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Where the operatosanda’ satisfy the following equation,
[a,a'] = 1. (2.23)

Using this we can calculate the energy of the new stéte), by applyinga' from the
left on (2.22), and using the commutation relation givervabo

N 1 N
a'H|n) = E,a'|n) = wa'(a'a + 5)ln) = (H - hw)at|n) (2.24)

Comparing the first and last of these equations §ié|n) = (E,+hv)al|n) in a similar
way we get the equatioHa|n) = (E, — hv)a|n). These equations prove thiaandaf,
respectively lower and raise the energy of the system. Tleeat@raa has a special
significance as its is called the number operator dendtatle effect of on a number
state is given byh|n) = n|n), the energy of these states are givenHy= hv(n + 1).
The effect of the creation and destruction operatorgn$ = ¢, |n — 1). Looking at the
expression

((nla")(aln)) = (nla'aln) =n

= (n—1lcicaln — 1) = |c,)? (2.25)
we easily get;, = \/n and the same calculation faf give us
an)y =vnn—1)  afln) = vVn+ 1n+1). (2.26)

This property is the reason for the names, annihilation aedtion operators. We can
now see that an arbitrary number state can be manufactureddogssive application of
the creation operata,

(af)"
Vn!
The number states form a complete basis and the states efediffnumbers are orthog-
onal. The shown properties of the number states make it a thatiis very easy to work
with when doing many sorts of calculations, it is however smeasy to do experiments
using number states.

0. (2.27)

n) =

From elementary quantum mechanics is it well known that tloairgd level of an
harmonic oscillator does not have zero energy. This alstyapphe description of light,
the vacuum statf)) is more than just zero photons.
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2.4.3 Coherent state of light

The number states as presented above have a uniform pharitian, that is, there are
no well defined phase for these states. Producing a numberfstea largen does not
result in a classical state of light. The number states fargel n does not have a well
defined phase, and this is incompatible with what we see gsidal light states.

The coherent states that we are about to introduce do hawe &lassical limit, this
makes them the states of choice when doing lab work and thablgast in the case of
this thesis.

The coherent states are given as the solution to the eigenpabblem

ala) = ala). (2.28)

The above equation (2.28) defines the "right” eigenstai¢svhere as the "left” eigen-
states are defined Qyt|a! = o*(a|. To find these states we utilize that the number states
form a complete set. We can expaiad on these

o) = Culn). (2.29)
n=0
Letting a act on this state yields
dlay =Y Cuvnln—1) =a ) _ Culn), (2.30)
n=1 n=0

comparing the coefficients o) in the last equation giveS,,/n = aC,,_1 which will

get us:

o a? o™

—Ch1 = ————=C)_2=... = —C(. 2.31
Normalizing|c)) we findCy = exp(—3|a?|) and thus the state defined by (2.28) can be
written as

C, =

— et S
@) = exp(—]a |)n§m| ) (2.32)

we see that for every € C there is a statén). In the literature [10, 11, 12] it can be
found that the set of all coherent states form an over-camplasis that is not orthogonal.

The displacement operatcfl?(a) has the property that it can be used to generate
coherent states from vacuui«)|0) = |«), it is defined as

~

D(a) = exp(ad’ — o*a). (2.33)
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We are in particular interested in determining the physiwaning ofv. First off we find
the expectation value of photon number operater a'a,

(aliila) = |of? (2.34)
and in a similar way we can fingh?) to be

(alp?|la) = (alaTaalala)
= (alafataa + ataa)

= lal* +al* = (n)? + (n) (2.35)

This distribution has\n = +/(7%) — (A)2 = /(n) which give a Poisson distribution
of the photon number. One can also find the distribution osphdor a coherent state
which for a largga| is given by a Gaussian distribution. Important propertiesoberent
states are that for large photon numbers they are well kemhlin phase. The coherent
state resembles a classical state in many ways all thoughliyiis a quantum state.

Most importantly is the fact that coherent states have allpgtoperties of light pro-
duced by a LASER and as such they are very important in doegryhas they describe
closely the photonic-states used in the laboratories.

2.4.4 Quadrature operators

Working with complicated light-states, such as cohereatest one needs a way to char-
acterize the properties of the state. The quadrature apaetresentation offers a way
of representing many different light states. They are aé®y ¢o0 measure experimentally
through the process of balanced homodyne measurement,Ilggwian introduction to
balanced homodyne detection in section 2.5,

The quadrature operators are an photonic analog to theuqunanbmentum and po-
sition operators for light states but they are scaled sottieggt are dimensionless [11].
They are given by

X = %(aua), p— %(eﬁ_a). (2.36)
They satisfy the commutation relation
X, P) = 5l +a), ' - a)) = 5([a,a') - [a".a)) = i (2.37)

SA quadrature operator for any andlecan be defined a& /2 (a exp[—i6] + a' exp[if]). X and P as
we use them are special cases giverdfer 0 andf = x /2.
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It is well known that we quantum mechanically cannot measatd position and mo-
mentum at the same time. It is nevertheless possible to mirgd®tonic-states in the
X, P-phasespace, resulting in an easy graphical represemtititifferent states.

A coherent staté«) minimizes the uncertainties on the quadrature operatatstan
can be shown that the uncertainties in the X and P quadradveesqual [10, 11, 12]. The
expectation values of the quadrature operators are easihdffrom their definition to be
(X) = Zla+a*) = VIRe|a] and(P) = Z5(a” —a) = V2Im[a].

A plot of a coherent state in th&, P-phasespace is simply a circle of fixed minimal
uncertainty radius, its center is situated at an phase #hgweay from theX-axis at a
distancel«| from the origo.

AP

\j

Figure 2.2: Representation of a coherent st&te where the circle depicts the uncertainties. The
uncertaincy, and with it the diameter in the plot, is indegent of«. For a large photon number
the relative uncertaincies become small.

We know that the uncertainties in the quadratures for a eshetate are minimal and
equal, but there exist a way to produce states where one teetaimty in one quadrature
is smaller than the minimal uncertainty, this process iledajuadrature squeezing.

2.4.5 Quadrature squeezing

If two hermitian operatorsi and B satisfy the commutation relatidal, B] = iC then we
know that according to Heisenberg’s uncertainty relatimngroduct of the uncertainties
fulfills AAAB > 1(C)| [14]. A state is squeezed if either

(AP < ZHC) o (ABY < (O (2.38)

is true. It is obvious from Heisenberg that we cannot havé bmqualities fulfilled, so
when one operators expectancy is lowered the others mugi.githe coherent states are
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minimum uncertainty states with the same uncertainty agdbheum, so when squeezing
one of the quadrature phases we obtain a sub-vacuum levelss im this quadrature.

We can define a squeezing operator

3(6) = el (€0 — &), (239)

which takest = sexp(if) as argument. Hereis the squeezing parameter ahdefines
the axis on which to apply the squeezing. Later in this thesswill encounter two
mode squeezed states where we will use a different parafoetitie squeezing namely
A = tanh(s), with A € [0, 1].

AX
AP %AP

Figure 2.3: Representation of a squeezed coherent sﬁ©|a> for two different squeezing

directions. Firstly the state is squeezed alongthaxis and secondly along tHe-axis. The area
of the ellipsis depicts the uncertainties.

In this thesis we will only usé@ = 0, the effect off is illustrated above in figure 2.3.
Later in this thesis we will apply phases to the squeezed statare examining, this is
found to be the same as squeezing along a different axis.

2.4.6 Multi mode representation

Until now, we have only dealt with single modes of light, thi#l not suffice for the scope

of this thesis. We will often times need many modes of lighdéscribe the entire system.
We index the different modes byand to each mode we have a set of annihilation and
creation operatorgy, and&L. The state space of the multi mode system is spanned by the
tensor product of number states; ),

1

N
P .



2.5. BALANCED HOMODYNE MEASUREMENT 19

where|vac) denotes the joint vacuum state of Allmodes. The operators from mokle
only acts on the state in mode giving a new commutation relation,

laj,af] = 0 (2.41)

The displacement operator for a multimode field is simply pheduct of single mode
operators, so

D(aa, 88)|04,05) = D(aa)D(85)|04,08) = |aa, A5) (2.42)

The squeezing operator for multimode fields is more comygitghan that, but we will
only need to use the operator for two modes. The two mode gingeeperator takes the
form,

Sik(€) = expl€a iy — Calal] (2.43)

where¢ = sexplif]. As one can see from the form of this operator the two modeesjue
ing operator creates and annihilates pairs of photons. Wrm)@jk(g) to the vacuum
state following [10], we get

\Sjk(§)> = sech(s) Z[— exp(i0) tanh(s)]"|n,n); k (2.44)
n=0
Assumingf = 0 this can be rewritten using the squeezing parameter usedifathis
thesis\ = tanh(s) to

191(€)) = V1 — A2 Z D"\ |n, n); k- (2.45)

We see that the resulting state is entangled, this is duectéatit that any measurement
of n; andny, on this state will be correlated.

2.5 Balanced homodyne measurement

The properties we will seek in the setup of this thesis canobed using a technique
called balanced homodyne measurement. Balanced homodsasunement can be used
to obtain the quadrature phases for the different modesghf.li Balanced homodyne
detection does this in the following way.

One mode contains the signal we wish to measure, this moda &asihilation op-
eratora. The mode in question is then mixed on a balanced beamspliitte a mode
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containing high intensity coherent state with annihilatﬁperatorf), see figure 2.4.

Figure 2.4: Graphical presentation of balanced homodyne detections#éethe two incoming
modes are mixed and the outgoing intensities are measufeg difference of the intensities are
proportional to the quadrature phase of the incoming mo@e tve want to measure,

The balanced beamsplitter gives the following relatiomieenn the operators of the
incoming and outgoing modes, [10, 11, 12]

(2.46)

It is easy to experimentally measure the intensity of thgy@ingy modes, this amounts
to measuring the expectancy value of the number operatdreimiodel. = (¢f¢) and
I; = (d'd), this is done by measuring the classical current the inepsdbduces. When
we subtract one intensity from the other we get the followéxgression, in terms of
modesi andb

I, — Iy = (¢te — did) = i(a'h — abl) (2.47)

The mode belonging tbis in a coherent state with >> 1, called| 5 exp[—iwt]), heres is
the complex number describing the coherent state and thanergal function gives the
time evolution. We can represefitby its length and phase = |3| exp[—iv)], yielding

I. — Iy = | B|(@ expliwt] exp[—if] + a' exp[—iwt] exp[if]) (2.48)

where we have sét= )+ . The trick to homodyne detection is to mix the mode of light
one want to measure, with a strong coherent field with the $eegaency. The effect of
this is a cancelling out of the frequencies of the mode oftlate want to measure. Thus
settinga = ag exp[—iwt] yields

I — I = V2|8|(X()) (2.49)
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with X (6) = 2 exp[_w\}gdg 2»li] "Settingg equal to) andr/2 leaves us with the quadra-
ture phases as we know theii,and P respectively.

The result is that we can measure any quadrature (we areofid®bse)) by mea-
suring the difference between two classical currents. riiése accurate to say that what
we measure is proportional two the quadratures, but aftalilaration procedure we will

be able to obtain the results equal to the actual quadratures

2.6 Gaussian states

The Gassian functioff(z) = aexp[—(z — b)?/c?] is the also referred to as the normal
distribution. The reason for this is that it describes tmeitlng distribution of many
naturally occurring phenomenons. We include this here umxghe distribution of the
values of the quadrature phases in a coherent state is givanGaussian distribution.
Gaussian distribution occurs both in vacuum, single modktao mode states. These
kind of states will be used to a large extent in this thesis.

2.7 Summary

In this chapter we have presented some of the basic fornstisat will be used through-
out this thesis, namely density operators, bipartite systdharmonic oscillator photon
states, continuous variable states and quadrature operato

We also introduced the important concept of entanglememigalvith Bell’s inequal-
ity which offers a test of quantum non-locality and whichlvgiérve as our measure of
entanglement in this thesis. Finally we presented a way tasme quadrature phase
operators through the process of balanced homodyne aetecti

For detailed knowledge of the concepts presented in thiptehawe will refer the
reader to the articles and books cited throughout the chapte
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Chapter 3

Quantum information

The main concern of this chapter is to introduce the field ainqum information: the
possibilities it offers and the problems it faces. We wiltdis on chosen results from the
field which will exemplify the possibilities that quantunfanmations, quantum simula-
tions and quantum computation presents.

We will also present a list of advantages and disadvantagesrtsider when com-
paring continuous variables to qubits. The list will focus their properties related to
guantum information, measurements and decoherence. Aaltyfiwe talk a bit on the
differences between error-correcting and purification.

3.1 Introduction to the quantum information

The starting point for a study of quantum information is thalization that information

is physical. This was realized in the 1980’s by Landauer aadnBtt, when trying to
reconcile Maxwell’s demaohwith the second law of thermodynamics. They found that
the demon must collect and store information about the imegmmolecules.

This process cannot go on forever. Given the finite memorp@fdemon, informa-
tion must eventually be erased, and at this point we finaliggobalance to the energy
equation.

If the demon were to be lazy and neglect the erasure, thenav®red to associate
some entropy to the recorded information. The lesson Ieathat there is a connec-
tion between the concept of information and physics; it ity oratural to consider how

Maxwell had envisioned a gas in a box, divided by partitiot itwo parts A and B. This partition
contains a shutter operated by a demon. The demon obsee/ewthcules in the box as they approach the
shutter, allowing the fast ones to go through from A to B amsvsbnes from B to A. Thus A cools and B is
heats up, with a negligible work done, violating the secavd f thermodynamics.

23
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quantum mechanics fits into this picture.

The key difference between quantum information and claksidormation is the
superposition principle. A classical bit, as we know theonfrthe binary numbers in
computers, is eithesn or off. We represent this by assigning to them the valuasdo,
respectively.

Classical bits are used to carry information, which can baimdated and read out
without disturbing them.

The quantum mechanical equivalent to a classical bit isq@ritum bit” or qubit for
short. A qubit is a state in a two-dimensional Hilbert spdes take the form given by
(3.1). Unlike a regular bit which can carry only the valuethei0 or 1, the qubit also
have the possibility to be in a superposition0and1.

1) = a|1) + b|0), la*> + 6> = 1, {a,b} € C. (3.1)

The qubit can thus be represented by a vector in a two-dimealsHilbert space, us-
ing the same basis vectd and|1) as in the classical case. We perform measurements
on the qubits by making a projection onto this basis. Thearote of the measurements
are probabilistic (and hence not deterministic as withsitad bits) - we will obtain|0)
with probability |a|> and|1) with probability |b]?.

Making measurements change the system in a probabilistioniasharp contrast to
the classical case, this may seem like an disadvantage tevetassical bit, but it allows
one to make calculations in a new, and often superior, way.

3.1.1 Quantum computation

Quantum computation is the field that deals with ways to ¢ateiproblems using qubits.
Large books [16] are written on the subject, and the restdtefien amazing. The power
of quantum computation can be seen in the procedure of Deatst Josza, the result of
which is presented below.

Imagine a functionf(x) which could return eithed or 1 depending on its argument
x = 0orz = 1. The job at hand is to figure out whethgfl) = f(0) or f(1) # f(0).
Classically this job needs two calculation§({) and f (1)), but when using qubits it can
be done in one, this amazing result is described originallipbutsch and Josza, and the
detailed calculations can be found in [16, 21, 22].

There are many more examples of qubit-algorithms that parfoalculation tasks
faster than regular algorithms, one that is often mentiasde ability to factor products
of large primes. This is particularly important due to thetfthat much cryptography
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today rely on the fact that factorization of the product obtlarge unknown primes will

take a time comparable to the age of the universe for a csgimputer. This quantum
computation protocol was due to Shor, who alongside Grosee Imade algorithms that
significantly speed up many computation processes [16].

3.1.2 Quantum simulation

Another problem that is of tremendous interest to physidsthe problem of simulating
guantum behavior. This idea was originally formed by RidhBeynman [23], in his
paper from 1982. When looking at qubits and the way they behaething has been
shown that cannot be done on a regular computer simulatiagtgom behavior, so why
not just do that?

The answer is that the amount of data contained in a qubé sténcredible large. A
state consisting olN-qubits can be expressed as a vector #H'adimensional space. A
general normalized vector can be expanded in the basis sgdiynall combinations of

|0) and|1) as,
2N 1

) = > aglz) (3.2)

=0
where x is the binary number made up from the combination mizand ones. So to
characterize an reasonable number of qubits, Bay= 100, one need!% ~ 1030
complex numbers,. No classical computer can handle this amount of data.

3.1.3 Physical qubit systems

We have found that a classical computer cannot simulate atgmasystem, due to the
huge amount of data involved. The not so surprising solusdo use physical quantum
system to simulate the quantum behavior in a controlled mano

There are many quantum systems that could fulfill the role qpfitait as described in
(3.1). Itis very natural to interpret (3.1) as the spin stafta object with spin%. Here
|0) = | |) and|1) = | T) could represent the spin along an particular ais,y, z}. In
this case the two complex numbersh from egn. (3.1) describe the orientation of the
spin in three dimensional space.

Another two-level system of importance is provided by a phptvhich can have two
independent polarizations. Either horizontally and weaity or clockwise and counter
clockwise.

The key difficulty in realizing such systems is that one neeasty strong coupling
between the different qubits without a strong coupling te #mvironment. A strong
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coupling to the environment would destroy the informatiamied by the qubits through
the process of decoherence.

3.2 Decoherence and purification

3.2.1 Decoherence

Take the example of a bipartite state, one part of the stadens off to Alice and the
other part is send to Bob. A strong correlation in the quanstete is needed in order to
make sure that Alice and Bob measure what they would expatt their entangled state.
When Alice measure on particle A she will know with a high pabliity what Bob will
measure on particle B.

This strong correlation is essential for quantum inforavatprocessing. When one
need to process the informations a strong interaction idetheout this implies a great
difficulty.

Isolation of systems that exhibit a strong interaction sgedbe done to near perfec-
tion, in order to prevent it from interacting with other tggthan what wanted. A perfect
isolation is obviously impossible, though highly desigldo it is important to figure out
and take into account, what this contact to the environmenb @ system.

In general, interaction between states generates entaegte When the states in
question are in contact with the environment, entanglensgmtoduced between the en-
vironment and the states. The result is that the state indenagion evolve away from
the ideal quantum mechanical superposition state. Thesstablve towards a statistical
mixture of states, due to the entanglement to the envirotinTére result of this process
is that we are losing the correlation we wished to utilize.

This process of decoherence is a major obstacle when traimgnguantum informa-
tion over longer distances, as this makes for a longer timeravthe states are in contact
with the environment.

We seek a way to regain the original entanglement throughcalled purification-
process. There are many ways to purify a qubit state, in a ¢hi@pter we will go into
one of these in some details, as this is this protocol we veamigtke a continuous version
of. For now we just need to know that such protocols exists.

3.2.2 Purification

There exists a range of different methods for obtaining te stéth a higher entanglement,
these fall in different categories: purification, distikan and error correcting methods.
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The names distillation and purification cover the same pimemmn.

Purification protocols work on a ensemble of identicallypgared states and offer a
method of error finding. When an error is detected then trextefl state is removed from
the ensemble.

Looking at a single state from the ensemble where an erron¢@sred, we find that
the result of the protocol is obviously not that of entangdetpurification/distillation, as
the state is discarded. But on average the surviving statelsendriven towards a purer
and more concentrated state. This thesis will propose aaddtn purifying continuous
variable states that already exhibits a high degree of glgarent.

It it important to think of the purification protocol as worlg on an ensemble of
states. We can think of the fidelity - which is the average ealfithe overlap between
the states in the ensemble and an optimal purified state - eeasurement of the effect
of the purification protocol.

3.2.3 Error correcting

The concept of error-correcting codes is somewhat more boabgpd. Peter Shor con-
structed the first such code, which used three copies of ttteaassical bit in the qubit,
[17].

a|l) 4+ b|0) — a|111) + b|000) (3.3)

By applying a range of operations to this state it is posgibkiminate the error from the

state without destroying it. This way of dealing with err@superior to the purification

protocols described above. The reason for the superiaritiyat it corrects error instead
of throwing away infected states, and thus works on all statel not just on average. It
is however also far more difficult to implement such a protoas there are many steps
involved.

3.3 Continuous variable quantum information

Recently, much attention has been devoted to the invesiigaf continuous variable
guantum systems used for quantum information processimg dDthe reasons for this
is that there exists a large toolbox for working with conting variable systems.

It is especially easy to work with Gaussian states of lighicwlincludes: single and
two mode squeezed coherent states. These states can belatadigasily by a group of
linear optical elements as well as through homodyne detecAn important point is that
the tools are easy to employ for both theorists and the exigatalists. Also, Gaussian
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states are very easy to characterize theoretically.

Amazing results have already been produced in the field dfraowus variable quan-
tum optics. Recently an experimental working setups periog continuous variable
teleportation have been demonstrated at the The Niels Balitute. This is just a single
result in a huge field of research, a field that have seen trdousrinterest in the last few
decades.

In this and the previous chapters, qubit states have beena$amiliarize the reader
with the concept of entanglement. This choice of using gulbiistead of continuous
variable states was solely due to the easily comprehendatj¢he phenomenons can be
presented using the qubit formalism.

This thesis deals with continuous variables, and not qtdies. The reason for using
continuous variables are manifold, we will list a number d¥antages below:

e Due to the weakly interacting nature of the photon, contirsugariable optical
systems are subjected to relative low decoherence ratesniparesion with for
example atomic or solid state systems. It should be merdidineugh that this
property is not unique to continuous variable photonicestatve could state the
same advantage for a qubit that is being represented by thezation modes of a
photon.

e Continuous variables can utilize the powerfull tools depeld over the last 4 decades
by experimental quantum optics: parametric downconversimonlinear crystals,
femtosecond laser pulses, controlled atom-photon irtieraor cavity QED tech-
niques. We will not present details on these techniquesisrttiesis, it will suffice
to know that highly developed tools for processing contirgigariable state exists.

e The most important reason for using continuous variablg kgstems, is that con-
tinuous variable quantum information protocols behaverdeinisticly. Their dis-
crete variable counterparts, qubits, are probabilistic.

This is an huge advantage over the qubits, as we do not haveetk evhether a
probabilistic protocol where successfully completed, juat employ the protocol
and read out the results.

The major drawback on the other hand are much due to the sapen®as the last and
most important advantage. When one encodes informatioraigubit represented by a
photon and sends it to a receiver. Then the receiver eitbeives the photon or not, and
can then use error correcting codes to read the messageodainal t
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When transmitting continuous variable states the stateslarays partly lost due to
decoherence and the receiver has to be more cautious inisposkether he should
believe in his measurements. This is the reason that a continvariable purification
protocol is of great importance, as such a protocol coulgestiis problem and thus
leave continuous variable photon states superior to gtdigs

3.4 Summary

A brief introduction to quantum information has been givertiuding the promises it
holds for quantum computing. A short presentation of theoemence problem along
with the solution that purification offers has also been @nésd.

We found that a purification protocol for continuous varesblvould be a remark-
able tool when doing quantum information experiments. Mistence of such a protocol
would make deterministic continuous variables reliableasiers of quantum informa-
tion.
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Chapter 4

Wigner Functions

The purpose of this chapter is to give an introduction to Wigiunctions. In building
and exploring the purification protocol that is the subjddhés thesis, Wigner functions
will be the tool of choice. Wigner functions are quasi-proltity distributions which
have a range of smart properties that we will take advantigdtoese properties will
be presented in this chapter along with the connection twéigner functions and the
concept of non-locality. Finally, the phase space reptatien of Wigner function for a
Guassian state are presented, as this is the form of the Wigmaion the calculations in
this thesis will use the most.

A classical probability distributionP(z1, ..., z,), gives the probability of a certain
outcome of the: variables. Classically you can talk about the probabilitgetting two
sixes in a game of dice. But in quantum mechanics things amglcated by the the
concept of non-commuting variables.

It is well known in quantum mechanics that it is impossiblenteasure both the
position operatorr and the momentum operatpr or any other set of non-commuting
operators, at the same time. Therefore we cannot speak gir¢iability of having a
particle at positionz with momentump, thus making the concept of a true probability
distribution impossible.

There are nonetheless, functions that bear some resemaliatassical probability
distributions. It is possible to extract averages and fibadensities for one variable,
from this group of functions. The Wigner function is draf these. It was introduced by
E.P. Wigner to study quantum corrections to classicalssiedil mechanics, but has since
found use many places - one of which is of particular intertnely in quantum optics.

The are many other distributions, see for example [10]
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4.1 The Wigner function

The Wigner function is defined for an arbitrary density opara as [24]

1 1 1 ,
= __ I N ipx/h
Wa.p) = 5= [ delg + 5zlpla — jo)e (4.1)
where|q + %x} are eigenkets of the position operator. If the state in jquress in a pure
state, e.gp = |¢)(¢|, then we find

1 1 1 4
Wia.p) =5 [ dowla— 5a) v(a+ zo)" 42)

where(q + 5[¢) = ¥(q+ 3).

The following calculation demonstrate how we can calcuaf@obability function
of a state, from the Wigner function. We demonstrate thifiendase of a pure state, the
generalization to a mixed state is straightforward [24]

— [drwra- 3o) vla+ 50) 6
= |9, (4.3)

wheregq is the position operator. In a similar way we can calculategitobability density
for the momentunp, but in order to do the integraf dg W (p,q) = |¢(p)|*> we need
to include the Fourier transform(p) of the position representation(q), see [24] for
details. It is also possible to find the expectancy value gberator by performing the
integral

() = Te[pA] = / dgdpA(p, )W (p. q) (4.4)

The lesson learned is that there exists an easy way to gdeusfdrmation from a
Wigner function.

4.2 Wigner function of a Gaussian states

The Wigner function of a Gaussian state in phase space tapegieular simple form.
We will calculate Wigner functions of Gaussian states atter lpoint in this thesis and
we will therefore use some time to present it now.

The Wigner function of a Gaussian state only depends on thieafid second mo-
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ments of the quadrature operators. The first moneyjtof r;, is defined as

(1) = (Blrel6) = / dpdq W (4, p) .5)

and the second moment is defined for every combination ofeoas

(ryre) = (Blryral) = / dpdaq vV (g, ) (4.6)

In the two equations above) was the wavefunction for the Gaussian state. The last two
equalities simply uses what we found in 4.4.

The Wigner function of a Gaussian state is completely spetiy the first and sec-
ond moments of the quadrature operatqrsvherer = (z1,p1,...,T,, p,)’. One can
replace the quadrature operators with numbers when evajuastate given by a Gaus-
sian density operator [25], this is a property that will prarery useful later.

In the book by J. Perina [26], detailed calculations are gl that leads to the
Wigner function of am-mode Gaussian state. The calculations are somewhat lahg an
complicated, and it would not serve a reasonable purposegept them here.

Instead of referring to the density matrix as given in (4wlg,here refer to the Wign-
erfunction defined on phase space. J. Perina [26] finds thatriemode Gaussian state
the Wigner function takes the form

1
m/dety

whered is the vector of first moments; = (r;), and is the covariance matrix, with
matrix elements given by

W(r) = exp[—(r — d)Ty ! (r — d)], 4.7)

Yij = (rirj + T’j?"l’> — QdZdJ (48)

4.2.1 Covariance matrices

For an-mode vacuum state the covariance matrix is giver,@s = I2,, Wherels, is
the identity matrix of rankRn. This can be seen by calculating all the different elements
of the matrix. The following calculations are done for theed; = 0, but it is easy to
include a nonzerd as well. The reason for choosing = 0, besides for simplicity, is
that the different quantum states of light that we will enttew in this thesis, all have the
this property.

When calculating the different elements in the covarianag&imfor vacuum, we need
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to look at the expectancy ofr; +r;r; in a vacuum state. In order to have a non-vanishing
matrixelement we need an equal number of creation and datidini operators in at least
one of the terms. When the quadrature operatorisanfd j belongs to different modes,
this can never be the case. For the quadrature operato@of; belonging to the same
mode, but representing and P respectively, we get

Yig = (Olrirj +757i]0)
1 i i 1
= (0]—=(a" +a)—=(a' —a) + —=(a" — a)—=(a' + a)|0
<|\/§( )\/5( ) \/5( )\/5( )10)
- <o|%(efr2 —ata+aal — a® +a? +afa — aal — a?)|o)
=0 (4.9)

In a similar way we can calculate the expectancyifer j and gety; ; = 1. The result of
all this is that the covariance matrix of a n-mode vacuunestggiven as

Yij = lon (4.10)

The covariance matrix for a two mode squeezed state dyita 0 can be calculated in a
similar way, and it is found to be given as, see [8]

cosh 2s 0 sinh 2s 0
0 cosh 2s 0 —sinh 2s
= 411
IS sinh 2s 0 cosh 2s 0 ( )
0 —sinh 2s 0 cosh 2s

wheres is the squeezing parameter as introduced in the chapteredihdioretical back-
ground.

4.3 Properties of Wigner functions

One very important property of Wigner functions is, thatthan take on negative values.
This is not consistent with the definition of a classical @bty distribution, thus one
use the expression: quasi-probability distribution fiorct

The negativity of a Wignerfunction is a necessary but nofigaht condition for
breaking Bell's inequality, the argument leading to thisfpund statement will be out-
lined below.
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The Wigner function of a Gaussian state is, as can be foumd the calculations
done above, itself Gaussian and does therefore not givdivegalues.

W (Gaussian) > 0 (4.12)

When the Wigner function of a state is always greater thamoakto zero then we may
interpret the distribution function as a classical probigbdistribution. When this is the
case then the Wigner function provides a fully working hidaariable theory, and we are
thus unable to break Bell's inequality. It is therefore resagy to have a Wigner function
that is not everywhere positive in order to break Bell's ingdy.

This thesis will propose a way to purify states to a level whirey break Bell's
inequality, but we start our procedure with states that Ar@a@ussian and thus positive.
All the normal unitary operations such as beamsplitterspnageshifters are all Gaussian
operators and leaves a Gaussian state Gaussian.

It has been proven many places that Gaussian entanglenséhatibn requires non-
Gaussian operations, [27, 28, 29]. These non-Gaussiaatapes could come in the form
of photon subtractions or homodyne measurements. As waeéllater in this thesis we
will use both photon subtraction and homodyne detectionrdieioto generate and purify
states capable of breaking Bell's inequality.

The fact that one needs a non-Gaussian state in order to Bedbk inequality is
referred to as the “no-go”-theorem, it is impossible for au§san state to break Bell's
inequality.

4.3.1 Trace and Wignerfunctions

The mathematical identity presented in this section witMarto be of great help through-
out this thesis. The Wigner function of an operafowhich not necessarily is the density
operator is defined as:

Wa(r) = (2m)~ " /dx (q — x/2|Alq + /2) explipz]. (4.13)

The above definition is for one mode but it is easy to genearatiznore.
We will show that the trace over N modes of the product of twerarsA and B
can be expressed as an integral over their Wigner functions

Tr[AB] = (2m) / N W (r)Wp(r) (4.14)

We will prove this for one modéN = 1). The general result follows in a similar, but
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more space consuming way. Writing the righthand side of buy@ equation we find,

27T/dT‘WA(T')WB(T‘) = (271)_1/dqdpdfd:c”(q—m//2|fl|q—|—m//2> explipz’]

x (g — 2" /2|Blq + 2" /2) explipa”].

Using the identity[ dp explipz] = 2wd(x) we can calculate

2w/erA(r)WB(r) = /dqdm'dw"(q—:E'/2|A|q+:n'/2>5(m'—1—33")
x(q — 2" /2|Blq + 2" /2)
— [ dad'tg—a'2lAlg + '/ g+ ' 21Blg - 2

Finally, making a change of variablg = ¢ — 2//2 andy” = ¢ + 2//2 we arrive at

%/mmwmm>:/wwwwwwww
- / dy'(y/|ABly') = Tx[AB].

where we have used the identifylz"|2") («”| = 1. This proves (4.14), for one mode.

This result is used in both cases where we do non-Gaussiaatimpss in this thesis.
Firstly when we do photon subtraction and secondly when veliton on a homodyne
detection, we will elaborate on this latter in the thesis.

4.4 Summary

The Wigner function has been introduced as a quasi-protyathistribution function, that
has a range of nice properties when calculation expectaoétraces. They will be used
throughout this thesis.

We also fund that there exists a “no-go” theorem for Gaussiates when it comes
to breaking Bell's inequality. It is however possible todkeBell's inequality if we apply
a proper non-Gaussian operator to the state in questiawihialso be used later on in
this thesis.



Chapter 5

Preparation of the system

This chapter will present a loophdléree setup for breaking Bell’s inequality, following
to a large extent the calculations done in [8] which was atstecat an earlier time by H.
Nha and H.J. Carmichael [30].

The setup presented by [8, 30] and in this chapter, for a lolephee test of Bell's
inequality, produces the quantum state that we will try tofplater. Knowledge of how
this state came to be is thus important for the complete stal@ling of the purification
protocol that will be presented in the next chapter. Here lledaal with the above men-
tioned state, and include a presentation of the nomenelatueoretical and experimental
concepts used throughout the remainder of this thesis.

In quantum information theory we deal with entanglemenivieen two distant points
in space: A and B. Historically two persons - Alice and Bob vénheen agreed upon as
the residents at these points in space, we will use (A, B) Ahdg, Bob) interchangeable.

5.0.1 Outline of the experiment

A source supplies two mode squeezed vacuum states, one medad towards Alice,
the other towards Bob. Each mode impinge on a unbalanceddpditter with high trans-
mittance, and the reflected part of the state is subjectegkmtn-detector. If the photo-
detector goes “click” then we have subtracted a photon frioeenmiode of light. When
both detectors goes click we use the state in our Bell dtatist

After the subtraction of photons we measure the outcomirgligiures using highly
efficient homodyne detectors. It is possible to use thesesumements to produce the

!In a dictionary the following is said, defining a loophela:means of escape or evasion; a means or op-
portunity of evading a rule, law, etc.: There are a numberaidholes in the tax laws whereby corporations
can save money.

37
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joint probability distributions, and from this the corretan coefficients that leads to the
violation of Bell's inequality.

5.1 Motivation

Einstein, Podolsky and Rosen (EPR) advocated in their daper1935 [1], that if local
realism is taken for granted, then quantum theory is an imdet® description of the
physical world. John Bell's inequalities made it possild@tit this question, the question
of qguantum mechanics versus locality, to an experimensal te

The urge to break Bell’s inequality experimentally haverbgeeat among physicist in
the last decades. One of the pioneers was A. Aspect [4] whard&gkperiment where he
measured on the correlations between the polarizationhotopic states in the abstract
he writesiThe results are in good agreement with quantum mechanicadliptions but
violate Bell's inequalities by 5 standard deviations.”

Many experiments have since been constructed that leadlagion of the aforemen-
tioned inequality. They have all of them, including the expent of A. Aspect, suffered
from loopholes, either locality loopholes or detector &fcy loopholes.

5.1.1 Locality and detector efficiency loopholes

A test of Bell inequality typically involves two distant s Alice and Bob, who simul-
taneously measure on their part of the shared quantum system

Both parties randomly choose between measuring one of tameptiesa; or as (b1
or by). To avoid the locality loophofethese events have to be spacelike separated so that
no signal can travel from one to the other. The speed of Iglié fastest a signal can
travel, so this suggests that optical systems are very wigldswhen one want to avoid
the locality loophole.

The detector efficiency loophole occurs when the detectipaeatus has an low effi-
ciency. A low detection efficiency makes it possible to exptae observed correlations
solely on the grounds of a low efficiency, and thus not due ¢ogiantum phenomenon
causing the correlations.

The experimental setup that will be presented in this clhapses continuous variable
light states and high efficiency homodyne detection, thasaitding the locality and the
detector efficiency loophole.

2The experimental data admit a local realistic descriptimminmunication between the parties is possi-
ble.
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5.1.2 Degaussification

In order to break the inequality we need to construct a nounsGan state that has a
Wigner function that is not positive definite. The reasontfas is given by the “no-go”
theorem for Gaussian states that we touched upon earlier.

We perform the de-gaussification step by subtracting a phiston each mode on a
two mode coherent squeezed vacuum state. The subtractiomésby reflecting a small
part of each mode onto a single photon detector. The phdasies do not have to have
a very high detection efficiency as they only serve to cooddlily prepare the state. We
only use the states where both detectors went “click”, inBelf inequality statistic, and
the setup is therefore not subject to the detector efficiéragyhole.

5.2 Conceptual model of the conditional prepared state

The conceptual scheme of the setup is depicted in figure 54oufce generates a two
mode squeezed vacuum sfaie the modes A and B. A squeezed vacuum state has the
expectancy value for both quadrature operators equal & aad a mean photon number
that grows with the amount of squeezing applied to the state.
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Figure 5.1: Conceptual scheme for the proposed setup. The source @stivo-mode squeezed
vacuum in modes A and B, photons are conditionally subtdsatéhe unbalanced beamsplitters
before the homodyne measurement is carried out. The figlneriswed from [31] and slightly
modified from the original version.

As explained in the motivation, the Gaussian state needs teebGaussified in order
to make it possible to break Bell's inequality, this is dormetle subtraction of a photon
at both beam splitteB.S4 and BSp. The way to insure that one and only one photon is
subtracted is to use beam splitters with very high tranamitt T. When this is the case,
only a tiny part of the light in mode A and B is reflected. Theaefied part impinge on a
single photon detector, such as an avalanche photodiode.

3This can be accomplished by means of non-degenerate paiameiplification in ax® nonlinear
medium or by generating two single-mode squeezed statesiaxrithem on a 50-50 beam-splitter. Details
on these can be found in [12, 11].
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A successful detection of photons at the photodetectotdsyeeclick. In practice the
avalanche photodiodes exhibit a single-photon sensitixit not a single photon resolu-
tion, that is, they can distinguish between the presencabsehce of photons but cannot
distinguish if there are one, two ore more. This is not a gwbéas the value of the trans-
mittance T is chosen to be so high that the most possible ésading to a click is that
of an single photon being reflected. The probability of twotpins entering the detector
is smaller by a factore 1 — T which tends to zero in the limif’ — 1.

Only the states where two clicks, one in each photodeteaterpbserved, are used
in the Bell statistics. This conditioning on a measuremera igreat advantage to us.
We choose only to use the states that were prepared sudbeasid as such we do not
have to care about the bad detection efficiency of the aviataphoto detectors. We are
however quite vulnerable to dark couht is therefore important to use a photo detector
that is not sensible to these.

5.2.1 Homodyne measurement

In order to examine the resulting state we will perform hogmmmeasurement of the
two modes that are transmitted through the unbalanced Ipditters The two modes are
sent to Alice and Bob together with a appropriate local tatoit. Alice and Bob then
randomly measur& 4 9, Xp,4,, With j, k € {1,2}. These quadratures are characterized
by the relative phases to the local oscillator givenfhy 62, ¢1 and ¢,. The rotated
quadratures have the following connection to the four catages in modes A and B that
satisfy[ X, Pn] = i0p.m:

XAﬂ = cos(0)X 4 + sin(0) Py and XB,¢ = cos(¢)Xp +sin(¢) Pz (5.1)

These phase displaced quadratures are measured usingdohl@mmodyne detec-
tion as explained in the background theory chapter. It isctireelations between these
measured quadrature that we will find are in violation with'Bénequality.

5.3 Realistic model

We will now start to model the setup. We will work in the phagace representation
and use Wigner functions. We will find that subtracting pinstérom the Gaussian two
mode squeezed vacuum, transforms the Gaussian Wignediuiricto a Wignerfunction

“When a avalanche photo detector click even though no phstpresent, it has produced a dark count.
Dark count are and their effect on avalanche photo-deteet@r described in [32].
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that is expressed as a sum of Gaussian functions. This enabte use all the powerfull
tools of quantum optics on the resulting state, even thohighis no more expressable as
a simple Gaussian state.

In the field of quantum optics, Gaussian states\Nofmodes of light are often en-
countered. These state are completely specified by thdiaficssecond moments of the
quadrature operators. The preceding were mentioned inéyeter on Wignerfunctions
and are thouroughly explained in [26]. We introduce a vectmtaining the quadrature
operators

R=(X1,P,.... Xy, Py)T. (5.2)

The differentR;’s satisfy[ X, Py] = i6, .
The Wigner function in phase space representation férmode Gaussian state take

the form, )

W(r) = ———exp[—(r—d)y '(r—d 5.3
() = g Pl = )y (= d) (5.3)
In this expressiond is the vector of first momentéR;,) and~ is the covariance ma-
trix. The vectorr = [X1, P, ..., Xy, Py]T contains the functional dependence on the

guadratures of the Wigner function.

The source in the suggested experiment produces two modezgglivacuum states,
these have all the first moments equal to zero, so the expnesan be simplified a bit.
We will need to use different covariance matrices: i) foruam with displacement vector
equal to zero, given by,,. = Ioy that is the2 N dimensional identity matrix. ii) For a
two mode squeezed (TMS) state again with zero displacergeet, by

cosh(2s) 0 sinh(2s) 0
0 cosh(2s) 0 — sinh(2s)
= 54
TEMS sinh(2s) 0 cosh(2s) 0 -4
0 — sinh(2s) 0 cosh(2s)

wheres is the squeezing parameter. We will use a different squggzamameten =
tanh s, the reasons for this are presented in the background tiohapter.

Optical operations that can be implemented with beam sgitphase shifters and
squeezers correspond to Gaussian operations. Their iampgntoperty is that they map
a Gaussian input state onto a Gaussian output state.

Mathematically we can express these kind of transformatiosing a mapping —
R’ = SR. Each of the operations thus have a matrix associated veth.ttror a covari-
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ance matrix the transformations have the following effect
vy — SyST (5.5)
This kind of passive operations will be used throughout theésis, in particular the fol-

lowing two.

e Mixing two modes of light on a beam splitter with intensitarismittancel” and
thus reflectance — 7'. For a two mode state, the transformation matrix’cake

the form:
VT 0 VI-T 0
0 VT 0 VI=T
Sps = (5.6)
—1-T 0 VT 0
0 —/1-T 0 VT
e A phase shift on a single mode has the following transforomatnatrix
cos(60 sin(6
sps(e) = | )0 (5.7)
—sin(0) cos(0)

5.3.1 Noise

Noisy channels are irreversible quantum operations thatatebe modeled by Gaussian
unitary transformations. Instead they can be modeled usamppreserving Gaussian
completely positive maps [8], here the covariance matargform as:

v — AyAT + G (5.8)

Of particular interest of this thesis is the propagatiomtgh a lossy channel with trans-
mittancer, which is characterized byt = /I andG = (1 —n)I.

The only place we will include noise in this thesis, is whenmwedel the behavior
of imperfect detectors. This is done by having the signalefréhrough a virtual lossy
channels, which is subsequently followed by a perfect detec

SFor a proper choice of phases applied, before impingement.
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5.4 Wigner function of a two photon subtracted state

Referring to figure 5.1 the two modes A and B are in a two modeezgd vacuum state
while the other two modes, C and D, are in a non-squeezed rastate. According to
(5.3), we find that the Wigner function for this state is givsn

1
Wi, - - —R~IRT 5.9
LABCD Aot exp| Yin ] (5.9)
with R = [X 4, P4, ..., Xp, Pp] and the covariance matrix,, is given by
Yin = VYTMS,AB © Yvac,CD (5.10)

where® denotes the direct sum of the matrices. The imperfect spilyi¢o detectors are
modeled usingpp, which will serve as a measure of the efficiency of the photedters.
In our setup the modes A and C (B and D) are mixed using an umtedabeam splitter
and passed through four virtual lossy channels before igipgnon the photo-detectors.
The covariance matrix transform as

%mt = Snsmleyznsgwuxsg + G (511)
where
Sy = nmeuplap ® /npplcp (5.12)
G = (1—=ngap)la® (1 —nrp)lco (5.13)
Smiz = Sps,ac D Sps,cp (5.14)

Smiz describes the mixing of the A and C (B and D) mode on the unbathieam
splittersBS 4 (BSg), respectively:y,,; is the covariance matrix of the system just before
we detect two clicks in the photo detectors. The Wigner fioancbecomes

1
Wou S — —RyZLRTY. 5.15
t,ABCD 7T4\/mexp[ Yout ] ( )

5.4.1 Two photon subtraction

The photo-detectors only measure if there are photons othet do not count photons.
The effect of such a detector can be modeled as the effectrofjection of the state onto
either vacuunil, = |0)(0| or on the rest of the Hilbert spaég = I —|0)(0|. Iy andIl;

referring to no click and click respectively. We wish to galot photons from the modes
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and are therefore interested in obtaining clicks in thealets, we will thus usél;. The
resulting density matrix for A,B takes the form

peaB = Trop|pout.apep(Tap @ 1 c @ 111 p)] (5.16)

the subscripton j.. 4 refers to conditionally prepared. The operator actingfQpn 4scp
leave modeA and B unchanged and subtracts one photon from madesd D. In the
chapter on Wignerfunctions we found that a trace of this focan be rewritten as an
integral over the Wignerfunctions of the operators. Ushig tve get that

Pe,AB = (27T)2/ dCdD Wour, 4D (Wi, oty cohat, p (F) (5.17)

HeredC = dXcdPc and likewise fordD. The functional argument is now partly a
number for modes C, D and partly operator in modes A,B

72:[XAapA7XB7PBaXC7PC7XD7PD]T- (518)

The Wigner function for the three operatdrsg ® I1; ¢ ® II; p is simply the prod-
uct of the three Wigner functions representing of each ofojperators. The individual
Wigner functions are calculated in appendix B, for singledesthey are found to be

1 T
Wi = —exp[~i"17]  and W= (5.19)

The product of the thréawigner functions is then found to be
Wi, peit, caf, »(F) = Wi(A)W(B)Wy (C)Wy (D)

(L L) (L) e
s s T T ™

_ 1 (1 _9e=CTIC _g,~DTID | 4e—cTIC—DT1D>

(2m)*
Where, for example;' refers to the vectdtX ¢, Pc|” and so forth. Finding the integrand
of equation (5.17) amounts to multiplying equations (520 (5.15).
We will now introduce some new notation that will be usefualttie following calcula-
tions. The coefficients in the sum in (5.20) will be denagewvith ¢; = 1, g2 = g3 = —2

andq, = 4. Setting%‘?}t = I" we can divide the symmetrid8 x 8]-matrix up in four

5The Wigner function fod 4 5 is simply the product of two single mode Wignerfunctionstfoe identity.
"This property is a result of the definition of the covariancatnin.
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matrices, each of dimension k 4]

r— [ Pap o ] (5.21)

ol Tep

The product of the two Wignerfunctions in equation (5.1#) naw be expressed as

4
1 T I'an g N
_— Sexp | —T T 5.22
24778\/det%m jZ::IqJ P [ [ O'T Fj,CD ] ] ( )
with theI'; cp given by
I'ep =Tcp I'oecp=Tep+1c®0p
I'scp=Tep+0c®Ip I'sep=Tep+Icp (5.23)

Comparing to the integral we are trying to solve, (5.17), we/ 13ee that we have a sum
of Gaussian forms, instead of just one. We know how to do ttegial for each of the
terms in the sum, the procedure is explained in appendix A.

Doing the integral we find that the density matrix for the twmfon subtracted state
has the form

1 4

. 4q;
Pc,AB = T4 —— T
¢ 4rdy/det Your JZ::I VdetT'; cp

exp[—#"(Cap — ol fpo” )7 (5.24)

wherei’ = [X 4, P4, X, Pg]T. In order of simplifying the expression a bit we introduce

-1 T
F$AB=:FAB-—UF$CDU .

5.4.2 Finding the Wigner function

The Wigner function for the photonsubtracted state is nosilyeéound. We apply the
definition of a Wigner function to the density operator fowambve in equation 5.24

/ " /
x
a0

2

- 1
Wean = = [ do'de”(Xa — =, Xp — =|pe.an|Xa +
(2n) 2 2 (5.25)

7

Xp + %> expli(Paz’ + Ppa”)]

When finding the Wigner function of a Gaussian density operas the one we found
in 5.24, we simple calculate it as if the operators whereassal This is a well known
property used throughout the literature, a proof of thislwafound in [25].
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This simplifies the evaluation of the integral 5.25 a great de

1 .
We A = @2 /dﬂ?ldﬂﬁ//Pc,AB5($l)5($//) expli(Paz’ + Ppx")] (5.26)

yielding WQAB = (27r)‘2pchB, wherep., 4p Now is to be understood as a function of
Xa,...,PB.

5.4.3 Normalization

Having subtracted photons from the two modes, we find thaethgting Wigner function
are now unnormalized. The tilde-symbel) on top ofVNVQAB refers to the fact that the
Wigner function here is still unnormalized. To do the norzetion we integrate the
Wigner function over the entire phase space, and demandhthatsult is 1. We will
introduce a constarf; that insures this.

We do the integralf dX 4dPadXpdPp W, ap using appendix A and find that we
can define A

Pg = detfyour] /) _ q;(det[T; ap] det[T; cp]) /2, (5.27)
j=1

which is the probability of a successful conditional pregi@n of the state. The resulting
normalized Wigner function is.

1 4

4j
7T2PG\/det Yout JZ:; v/det Fj,CD

We A = exp[—r’TFj,ABr’] (5.28)

From the normalized Wignerfunction of the two photon sutitrd state (shown above)
we can calculate all the information we need about the stais.this state that will be
shown to be cabable of breaking Bell’s inequality. We witlrsby finding the joint prob-
ability function. The Joint probability function asso@atprobabilities to the different
measuring outcomes of measurements{afand Xz and can be used to find the corre-
lation coefficient in Bell's inequality.

5.5 Joint probability distribution

In the section on Bell’'s inequality we found that for a giveqperiment there are prob-
abilities associated with different outcomes of measuregmeln order to test Bell's in-
equality we need to find these probabilities for two sets nfleanly imposed parameters,
our parameters are the phases.



5.5. JOINT PROBABILITY DISTRIBUTION a7

We do homodyne measurement of the quadratukesgnd X ) on both Alice’s and
Bobs part of the state. The measurements are performed tadfarardomly imposed set
of phasesq; » and¢1 2).

The effect of the phases is that we actually measure a setatedophases, which
relate in the following way to the original phases

XA,Gj = COS(Qj)XA—i-sin(Hj)PA (5.29)
Xpg, = cos(¢y)Xp + sin(¢r)Pp. (5.30)

The application of the phases are modelled by multiplyindpasp shift matrix on to the
vector containing the quadratures; s, = [Xa9,, Pag;s XB,6,, PB.¢s)" -

cosf; sinf; 0 0
Sonn = —sinf; cosb; 0 0 (5.31)
’ 0 0 coS @ Sin ¢y
0 0 —sin ¢ cos ¢

We saw in the chapter on Wigner functions that the probghilitfinding the system
in a state with quadrature componenis given by |y (q)|*> = [ dpW (p,q). The joint
probability function can be found in the same way - also ifmvgkhe phase shift we find

P(Xa0,,XBg,) = / APy, dPp.g, We,aB(Sh i) (5.32)

To do this integral we once again turn to appendix A. The tesfuhppendix A can
be directly applied if we rearrange the order of the quadegphhases. This is easily done
using a matrix, that we will calb},,,,, given by

XA,BJ- 1 0 0O XA79].
XB,¢y, _ 0 010 PAﬂj (5.33)
Py, 01 00 XB.4,
Pp g, 0 0 0 1 Pp 4,

The subscriphomrefers to homogeneous, in the sense that it is really the saatex,
the order of the rows are just switched.

Then we are ready to use appendix A on the matrix with phasg@$r@amogeneous
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reordering applied to it

4; G

(5.34)
cl' B

/ T T
I aB = ShomSsh,jkL'j,ABSsh jkShom =

we have split the matrix in submatrices all are of dimensi@ns 2], these will be used
momentarily. We find the joint probability function to be

4
1 qj

wPgv/det vour ]Z:; \/det I'jep det B;

P(Xa0;: XBo,) = exp[—y'T;y] (5.35)

where we have defined the vectpe= [X 4, Xp ,]” andl'; = 4; — C;B;'CT.
We can plot this for a given set of paramet&rs’, npp, npup, 0; and¢, as a func-
tion of X 45, andXp 4, , see figure 5.5.

Figure 5.2: Joint probability distribution for a state with = 0.6, n = 1, T' = 0.99 and for the
phased = 0, ¢ = w/4. Itis easy to see that Alice and Bob should expect strongheleted
measurements.

We can see from the joint probability distribution that thetpeaks are placed such
that it is very likely that Alice and Bob either measure bottadratures positive or both
quadratures negative. We see this behavior for three ofotlveskets of phase angles, for
the fourth the coorelations is opposite. Opposite mearimad,it is very likely that Alice
and Bob find opposite signs on their quadratures when théyperform measurements
on their part of the state.

The next step is to get a quantitive description of the cafti@h, and not just the
qualitative that the plot offers. As discussed earlier wedht measure the level of
entanglement between the states of Alice and Bob, we wilhigolty calculating the Bell
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coefficientSg.y;. In order to do this calculation for a continuous variablsteyn we need
to discretize the outcomes through the process of signifimnn

5.6 Sign-binning

In the the discrete case we can calculate the correlatioffi@enat £(6;, i) given by
doing a weighted sum of probabilities

E(9j7 (bk) = +P(17 1‘9% (bk) +P(_17 _1‘9% (bk) - P(L _1‘9% (bk) - P(_L 1’9]'7 (bk)
(5.36)

In the case of continuous variables the outcome of measmtsrfmm a continuum, we

therefore need another way of calculatifgd;, ¢;). If we associate a measurement of

X > 0with+1anda measurement &f < 0 with —1, then we can see that the following

equation must be the continuous variables counterpar36f 5.

E(0;, ¢r) = /dXA,QjdXB,qkaign(XAﬂjXB,(bk)P(XAﬂj7XB#Z?/C) (5.37)

Itis easy to see that the joint probability distributionysmnetricP(XAﬂj ) XB,%) =
P(=Xap,,—XBb,4,)- Earlier we made sure that the joint probability distribativas also
normalized [ dX 4,9,dX g4, P(Xa6,. XB,s,) = 1. These two realizations can be used
to simplify the integral a bit. Manipulating with the limitsf integration® and using the
two aforementioned properties we can restate the integral a

E(8;, ¢p) = 4 [/ / dXA,gjdXBmP(XAﬂj,XBv(z,k)] —1. (5.38)
0 0

This is an reasonably easy calculation. Each of the 4 matfi¢s, from the joint
probability distribution, can be split up using the followgi notation

r; = [ o ] . (5.39)

8Using a simplified notation we get where all the integratiareswith respect thA,gj dXB@k, andP
denotes the joint probability distribution, the integrahde evaluated as

I VA A B AR A B A L
L ) e [ ]
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It will be helpfull to introduce a new parameté¥; that consists of the integral

Gj = / / dyr dys exp[—ajy% — bjyg — 2¢jy1y2]- (5.40)
0 0

This integral can most easily be done by switching to polardimates. Starting with the
radial integral followed by the angle integral, we can findtth

1 s Ci
Gi=——— |- —arctan—2L— 5.41
72, /detT [2 w/detFj] (5.41)

Now it is straight forward to calculat&(6;, ¢,)

4
4 q;G;
E0;, ¢1) = J ) —1 5.42
( J Pr) mPgv/det vout = \/det I'; cp det B; ( )
and from this we can get the Bell parameter as follows
Speu = |E(01,¢1) + E(01, ¢2) + E(02, ¢1) — E(02, $2)] (5.43)

If Sgeyy > 2 then the correlations in the system are stronger than asgicid theory
would permit. We now have all the tools needed to calculaetbperties we seek in the
conditionally prepared state. The following section wikgent the results.

5.7 The conditionally prepared state

Just as in the article by R. Garcia-Patron, J. FiurasekNad. Cerf [8] we find that the
choice of angles that give the highest degree of correlagigiven byf, = 0, 6, = /2,
¢1 = —m/4 andgp, = 7/4, the results in this section are shown for these valuestlyFirs
we can plot a cross-section of the Wignerfunction, showirad tve have some part of it
that is negative. If the Wignerfunction were completely megative we could not have
had any violation of Bells inequality. We see that the negagirea is small so we should
not expect a high violation of Bells inequality for this gtat

To examine the parameterspace we let the squeezing paraknedey over a range
for three different values of T. T is the transmittance of Beamsplitter that subtracts
photons, we use the valuds= 0.9, T' = 0.95 andT = 0.99. We see that we have a
maximal violation for an optimal choice of given by, T ~ 0.57.

ForT = 0.99 we can getS.;; = 2.045. This is equivalent to a violation of Bell's
inequality of abou®.2%, which is definitely a strong enough violation that it corsihely
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Figure 5.3: On the left side there is a plot of the Wigner function for = P = 0, and
Xp = — X4, the transmittance i§ = 0.99 and\ = 0.6. We see that the negative area is small
so we do not expect a large violation of Bell's inequality. tBe right side there is the probability
for successful generation of the photon subtracted state s&¥ that the probability is strongly
dependenton T.
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Figure 5.4: Plot of the violation of Bell's inequality for different fi#frent levels of transmittance
and varying\. We find that the peaks are situated at approximaidly= 0.57. The violation of
Bell is in the percent range.
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can be proven that Bell is violated. In [8] they state thveth a repetition rate of 1 MHz
and P ~ 2.6x10~4, the number of data samples would be several hundreds pendec
so that the required statistics to see a violation in the patadange could be obtained in
a reasonable time (a few hours)”

It is clear from the graph that we get a better violation ofiBéhequality for higher
values of T. But if we plot the probability of a successful gaeation, denoteds, we
see that it scales witll’, see figure 5.3. There is a tradeoff between getting a high vi-
olation and getting a conditionally prepared state andetheia successful experiment.
In an experimental setup such a tradeoff should be carefolhsidered before making
measurements.

In figure 5.4 the Bell parameter is plotted for a set of highugalof the transmitivity,
of the beamsplitter that leads part of the beam onto a phdaaxe. If we choose a too
low value for T then it is impossible to break Bell's ineqtali The reason for this is,
the output from the beamsplitters gets contaminated wélvdtuum modes. We see that
depending on the amount of squeeziigthe Bell parameter peaks, this is also expected.
The mean photon number increases with the squeegziagd at large squeezing numbers
the projection ol — |0)(0| brings little change to the state.

5.7.1 Experimental imperfections

We will now look at the influence the different experimentabpierfections in the system,
have on the Bell parameter. We can plot the Bell parameterfasciion of the detec-
tionefficiency of the photo detectors>-p,. We plot for the optimal choice of squeezing,
T=0.99 and keeping the efficiency of the balanced homodytectiemzp = 1, see
figure 5.5.
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Figure 5.5: Plot of the dependency on of the efficiency of the photo-tieteend the balanced
homodyne detection respectively. Both plots are made feettiifferent values of transmittance,
T.
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We see that the dependence on the photo-detectors effiaereyy weak. This is a
good thing as the avalanche photo detectors there is aleattaday work at an efficiency
of about50%. We can conclude that using realistic photodetection efiicy values we
would still expect a violation of Bell's inequality of thers@ order as with perfect detec-
tors. This is not a big surprise, as the effect of the photealets only is to conditionally
generate the non-Gaussian state. The result of a low detftitiency would be a longer
time spend waiting in the laboratory, before the wanted remobconditionally prepared
states have been collected..

Doing the same plot for the balanced homodyne detectionezffig, with the same
choices of squeezing and T, we arrive at figure 5.5. The opsiaeezing parameter is
dependent on the efficieneysp, but this plot is done for a fixed value. It is therefore
possible to obtain better resfithan what is shown above, but it will lead to the same
conclusion

The dependency on the balanced homodyne detectors is muetcritwal than what
we found for the photodetectors. We see that we need to hag#ieiency in the order
of 90%, to have an violation of the Bell inequality. Efficienciesaifoutd0 — 95% have
already been achieved experimentally.

5.8 Summary

Following the work presented in [8, 30, 31], we found that &sapossible to construct a
state that breaks Bell's inequality in a loophole free sgttMe did this using beamsplit-
ters and photodetectors. The specificatiopsy p, npp and A, needed for a violation
of Bell's inequality, all are within reach of modern day expgents. In the article by
Garcia-Patron et al. [8] they found that it is possible toaemlation of Bell's inequality
in the percent range after an hour of observation.

The Bell violation is very weakly dependent on the photcedeon efficiency as this
only serve to prepare the state. But we need a high-efficibatanced homodyne detec-
tor gy p ~ 90 — 95%, in order to see Bell violation.

The probability for a successful two photon subtractioroisnfd to be very strongly
dependent on T, this is an important factor to consider ingegment.

The calculations that we have done in this chapter are tiypicthe remainder of
this thesis, using Wigner functions for Gaussian operaw@swere able to reduce all
the calculations to linear algebra. All the numerical workswdone using Mathematica,

®We have found that it is possible to compensate a bit for thgeifiections in the balanced homedyne
detection by increasing the amount of squeezing.
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see appendix D for a list of the Mathematica programs usedhdse programs it was
possible to search the parameter spaces for an optimalechbfhases.



Chapter 6

Purification procedure

In this chapter we will use the results of the previous chafmigoropose a purification
method for the resulting two mode photon subtracted staeewilV at this point start to
use the abbreviation TMPS (Two Mode Photon Subtracted)attiqular we will use the
properties of the JP (Joint Probability) distribution foefTMPS state to draw an analogy
to the|¢™)-Bell state in the qubit basis. The Bell states will be introeld as well.

Deutsch et Al. [9] have suggested a purification protocolBell states, which is
particularly easy to implement for theé) state. We will present details explaining how
this protocol works.

We will argue, that a continuous variable version of the gpbrification protocol by
Deutsch can be made, which should work for the TMPS statdnidgrchapter we will not
concern ourselves with detailed calculations, but ratbeu$ on what parts and concepts
that needs to be incorporated in order to model and congtrectuggested purification
protocol.

6.1 Interpretation of the JP distribution for the TMPS state

We are free to impose phases on the TMPS state, we saw in teysehapter that it is
possible to choose these angels such that JP distributterttia shapes as shown below
in figure 6.1. The plots are shown for the set of angles thatddde maximum violation
of Bell's inequality.

We are interested in choosing phases such that Alice and Bblawigh probability
would agree on the sign on their measured quadratures. §tmdéed possible as this is
the case for the first three plots. On the fourth of the plotiigiare 6.1, we have chosen
phases such that the Alice and Bob would find opposite quaratgn correlations.

55
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Figure 6.1: Plot of the four joint probability distributions for the chae of phases that led to a
maximum violation of Bell's inequality. The two axis a¥g and X g respectively. The four set

of phases aréd, ¢) = {(0, —7/4), (0,7/4), (n/2, —7/4), (7/2,7/4)}.

The TMPS state with phases such that Alice and Bob will agre¢he sign on a
measurement of quadratures could be represented as

) % 21X+ Xp) + |Xa - X5,)). 6.1)
Here we have adopted the nomenclature tat | ) denotes that Alice measure h&r
quadrature positive. The reason for thas due to the small part of the JP distribution
that exists in the two quadrants whe¥e and X ; have a different sign. We can see from
figure 6.1, that this part is small so we almost have an egsajit in 6.1.

The meaning of 6.1 inspire us to draw the analogy to one of thut dgell states,
namely|¢t) = 27%/2(|00)ap + |11)4p). Analogous to the TMPS state this state also
finds Alice and Bob agreeing on their measurements, eithér tme@asuring 1 or both
measuring O.

We would like to know if there were more features shared by ¢he Bell state and
the TMPS state. Hoping to find such features we could try tcesemt the qubit state™)
in the spin-1/2 basis with 1 and O representing up and dowhéretbasis respectively.
In this case we see that measuring fiequadrature in the two photon subtracted state
is analogous to measuring the z component of the spin ifjthgBellstate. If we were
to measure the th2-quadrature insteddwe would obtain the opposite correlation, that
is we getPy, = —Pg. This is completely analogous to making a measurement of the
y-component of the spin in the™)-qubit state. If we represefp™) in the y basis we
get| Tap,. + | l)aB. = |T)apy + 1 11)aBy

We see that there is a range of similarities between the Ba# | ") and the TMPS
state. We wish to utilize this when constructing the purifaa protocol, for the two
photon subtracted state.

The entire set of Bell states will be introduced below.
2We can apply a phase af/2 to both the A and B mode and obtain the JP distribution for PARB.
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Deutsch et al. [9] have proposed a purification method, thable to purify any Bell
state. The proposed protocol is the simplest for the afontioreed |¢T)-state, it uses
a few simple operations and will prove very effective. We éadipat knowledge of this
protocol can help us to construct a continuous variableogiyab purify the TMPS states.

6.2 Qubit purification protocol by Deutsch et al.

Alice and Bob have a supply of qubit-pairs. Each pair is pregpauch that the probability
of finding it in the maximally entangletl™) Bell state is large. The Bell states form a
convenient basis for the space of qubit-pairs, the comglettef Bell states consits of:

_[00)ap +[11)aB _[00)ap —[11)aB

67") 73 [97) NG
) = |01>AB\‘/|‘§|10>AB =) = |01>AB\;§|10>AB 6.2)

It is hard to produce a perfegp™)-state experimentally, added to this difficulty is
the presence of noise and the fact that qubit states canmurbexctly isolated from the
surroundings. The result is that entanglement is produetdden the states and the
environment. The sum of all these effects drives|the) state into a superposition of all
the Bell states (6.2). The idea behind the purification moitas to drive the state back
towards the pure state described by fihe) state.

In order to do this we need two qubit pairs. We send one quinit feach pair to Alice
and one from each pair to Bob.

The first step in the protocol is that Alice performs the umi@peration,

|er%WM—MM) mAa§;MW4mm 6.3)

on each of her qubits and Bob performs the inverse operatidrisoqubits.

L (1) +il0) ). (6.4)

L (10)z + 1)) D5 -

V2
If the qubits are spiré— particles and the qubit basis is that of the eigenstateseof-th
components of their spin, then these operations corresmoratations about the-axis
of 7 /2 and—m /2 respectively. This operation does the following to the fBefl states,

0)p —

67) — [67) 67) = ily™)
[%F) — [T) [$7) —ile™). (6.5)
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We find that|¢) and|¢™) are unchanged while the other two to are interchanged and a
phase is added.

The first part of the purification protocol is no more than ationh in phase space.
Which is equivalent to a change of phase on the qubits.

6.2.1 Controlled-NOT operation

The second part of the purification protocol, consists ofrarotled-NOT operation. This
is where the actual purification takes place, the contraN@T looks for deviations from
the |¢T)-state, and discards the states that differ from this.

The controlled-NOT (cNOT) does the following to a qubit pair

z) Jy) — lz) Jzoy)  (z,y) €{0,1}. (6.6)
N~ N~ N ——
control target control target

Alice and Bob perform two quantum controlled-NOT gate opiers, where the first
qubit is the control and the second is the target. The twarobgubits and the two target
qubits should pair for pair form the original qubit pairs sfrom the source.

After the cNOT, Alice and Bob both measure the target qubitdé computational
basis (for example: the-component of their targets spin). If Alice and Bob find ths t
targets coincide, then they keep the control pair and disttee target pair. If the targets
do not coincide, then both pairs are discarded.

The effect of this protocol to a set of qubit pairs can be erpld by calculating
the effect on thg¢™) state. Let/¢.) = [00)ap + |11)ap denote the control pair and
|¢¢) = |00) ap + |11) 45 denote the target pair, both pairs are prepared indgtié Bell
state. In this section we have omitted all the normalizingdies ofv/2, as these do not
influence the result. The joint state is formed as the prodiitite two states presented
above,

) = |c)|di) = 00)4]00)p +[01) 4|01) 5 +[10)4[10) 5 + [11)a[11)s (6.7)

both Alice and Bob now let the cNOT act on their qubit palir§, = cNOT4cNOTp|v),
the result of this is

[$) = [00).4100) 5 +101)4]01) 5 + [11) 4|11} p + [10) 4[10) 5, (6.8)

the state is thus left unchanged by the cNOTSs.
In this perfect case, we can see that if Alice and Bob both mredheir target qubits,
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then their results will always coincide. We find that the tsg state shared by Alice
and Bob after they have discarded the target pairs, indemtod whether Alice and Bob
both measure 0 or 1, will collapse to thg"). We have thus seen that both steps of the
protocol leaves théy™)-Bellstate “unharmed®, this is an essential feature asiththe
state we wish to preserve and thus purify.

The action of the controlled-NOT is effectively a method éoror finding. When we
have ensemble of states, then it is the the elimination oftiwes with an error occuring
that leads to the purification on average in the ensemble.

To see this effect we let the cNOTs act on a pair of qubit statesre a bit flip has
occurred just before the cNOTSs are appligd, — |1). If we let the bit flip occur in the
control qubit pait, . = [01) 45 + |10) 4 5, we see that we have the following joint state.

W) = e = 100)a|10) 5 + 01) a[11) p + [10) 4]00)  + |11) 4|01) (6.9)
Having the cNOTSs applied to this state, we obtain
|0) =100)4[11) p +[01) 4[10) 5 + [11) 4|00} 5 +[10) 4|01} (6.10)

we see now that if Alice and Bob each were to measure theiettapgbit they would

newer agree on the result and therefore discard the regwakintrol pair. When a bitflip

has occurred, Alice and Bob are able to see the error and eethe\error infected state,
exactly as wanted.

Instead of a large bit flip we could imagine a bit flip occurrimigh a small probability
proportional toe such that0) — |0) +¢[1) and|1) — |1) —¢€[0). In this case the resulting
state after the cNOTSs is in a superposition similaftp+ ¢|¥). In some fraction of the
outcomes, proportional tg we would have Alice and Bob getting different results in the
measurement of their target qubits, thus discarding thér@opairs. In the rest of the
outcomes they would keep the control pair which now wouldnbiié |4 )-state.

6.2.2 Quantitative results

To see the effect of the purification procedure, we concidezxample where each pair
initially is in a state given by the density matrix We express in the Bell basis
{loT),[¥7), 1), |¢7)} and denote by A, B, C, D} the diagonal elements in the basis.
Of particular interest is the elemenrt = (¢™|p|¢™) which is probability that the qubit
pair would pass a test for being in thg™) state. The aim of the purification protocol
is to drive this coefficient to 1 and thus forcing all otheraamglement out of the system.

30ne obtains the same results, as if the flip occurred in tigetaair.
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When the qubit pair is in the maximally entangled ) state, then it cannot be entangled
with anything else.

Looking at an hole ensemble of states we can calculate thageeliagonal elements
after the proceduré A, B,C, D}. These will, according to [9], have the following de-
pendency on the diagonalelements prior to the procedure,

- A2+ B? - 20D
Azi B:—
N N
. C?4+ D2 . 2AB
C—-2 "= D=2= 6.11

We have used tha¥ = (A+ B)?+ (C'+ D)? is the probability that Alice and Bob obtain
coinciding outcomes in their measurements on the target pai

The figure fig. 6.2 plot the effect of the purification procezlon average, as given in
6.11. Itis a plot of the the fidelity as a function of the numbgiterations and the initial
fidelity. The initial states were prepared with= C = D.

Figure 6.2: The plot shows the average fidelity of the qubit pairs as atfanof initial fidelity
and the number of iterations. The initial state is preparathvB=C=D. The figure is from the
paper by Deutsch et al. [9].

An important comment needs to be made on the matter of pramapfification. The
qubit pairs that Alice and Bob receives could have beenmstojean eavesdropper, who
we will refer to as evil Eve, she could have entangled thetguhith some qubits of her
own. Eve could measure on her own qubits and listen to AliceBab talk about their
results of the measurement of the targets in the cNOT. Evssisnaed evil, she will do
anything in her power to obtain whatever secret message Alicl Bob are exchanging.
Now that she has a set of qubits entangled with those sharddidsyand Bob she has
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the means to do this.

When driving the system towards a pure stdte— 1 one also destroys all other
entanglement that the environment or evil Eve has made Witsystem. This effect is
very useful in quantum cryptography were one try to find wayevbid Eve’s evil doings.

6.3 Continuous variable implementation

The unitary operation performed by Alice and Bob on theiritgubiven in equation 6.3
and 6.4 is analogous to making a shift of phases on the cantsvariables. This is an
easy task to implement in both laboratory and in theoretiedtulations, a wavepldte
and a matrix will suffice. A phase shift ¢fon, for example, thé-mode transforms the
creation and annihilation operator according'te= b exp|if] andb™ = bf exp[—if].

The part where Alice and Bob perform cNOT operations is mdffecdlt to imple-
ment. We seek to do it by a set 80/50 beamsplitters and by performing homodyne
measurements on two of the outgoing modes from the beatasglit

The primary reason for using balanced beamsplitters is ysipally mix the two
states, if the states are not in contact there is no way we @e rone of them more
entangled. Entanglement cannot be made locally.

We index the two incoming modes of the beamsplitteand b and the outgoing:
andd and let these denote the photoncreation operators for eade,nsee figure 6.3.
We know that a50/50-beamsplitter provides the relationship= 2-1/2(a + ib) and
d = 2712(b + ia) between the different creation operators.

We can use this beamsplitter relations in combination vtiéhdefinitions of the con-
tinuous variable quadratuck for the outgoing modes, to find that

¢ L <&T+a_iifr—z§> N <8T+8_iaT—a>
V2 V2 V2 V2 \ V2 V2 )
(6.12)
We wanted to obtain something comparable to the effect otM®T which adds the
two arguments directly. We can get this kind of behavior if agply a phase change
6 = —x/2 on the input mode, and a phase change of2 on the outgoing modd.
Then we find the following relation, relating the quadrasubefore both phase changes

4A waveplate also called a retarder, is an optical deviceahats the polarization state of a light wave
travelling through it. A wave plate works by shifting the gbeof the light wave between two perpendicular
polarization components.
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and beamsplitter to the quadratures after

X, = % (Xat %) X, = % (% - %) (6.13)
P % (Put B2) P = % (B 1) (6.14)

We see now that the action of this beamsplitter is in some gaydar to that of the
cNOT, as it forms the sum of the two incoming modes in one madktlae difference in
the other.

Xa
Pa

Figure 6.3: lllustration of the effect of the beamsplitter, with the Ipeo phase shifters introduced,
we found them to b¢g = —7/2 and¢p = 7/2.

6.3.1 Purification of the TMPS state

We will now examine what effect this could have on the TMP Sest&Ve will use two
copies of the TMPS state each of them is prepared in the state

) %<|XA,+XB,+> |Xa_Xp_)). (6.15)

We know that if Alice and Bob where to make measurements af thumdratures before
the purification procedure they would find

XAl = XBl and XAQ = XBQ, (616)

where 1 and 2 refers to TMPS state 1 and 2.
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Now Alice and Bob both measure the quadratures of the oujgmiades from the
beamsplitters where the difference between the initiaticatares have been formed. Al-
ice measures(4 = X 42 — X4; and Bob measure¥; = X2 — Xp1. Using 6.16 we
see that we must havw® 4 = Xp. Just as in the qubit version where we discarded the
target and kept the control when Alice and Bob agreed, weneilV discard the beam-
splitter modes where the difference is formed and keep tambplitter modes where the
sum is formed when Alice and Bob agree on their measurements.

If Alice and Bob where to do the same measurement when anisrimroduced to
one of the initial quadratures we get the following caldolat

{ XA1:X31+6} { XA:XAQ_XAI
N - — - -
X2 = Xpo Xp=Xpy— Xp1—¢

} = X4 = Xp+e. (6.17)

We see that Alice and Bob will not agree on their measuremehtn an error is
introduced to one of the quadratures. We can therefore isse#tthod to do error finding.
Discarding the states where an error has occurred will orageepurify the states in an
ensemble.

In a quantum mechanical setting, we model this by making gegtige measurement
of a pair of TMPS states onto the subspace wh€ke= X5 = Xj.

The resulting joint state formed by the two outgoing beaitteplmodes where no
measurement were done, is in an errorfree state and haveutie type of correlation

Xres1 = Xres2, @S there was in each of the incoming states.

6.4 Summary

In this chapter we have presented similarities between]T MBS state that we found in
the previous chapter, and the')-Bell state introduced in this chapter. The JP distri-
bution for the TMPS state were seen to exhibit a strong rekemoé to thel¢™) Bell
state.

We found that a measurement of the spin alongztheis in the spint/2 represen-
tation of the|¢™)-Bell showed the same correlations as measuringXhguadratures
in the TMPS state. We found similar correlations for a measient along the y-axis
and a measurement of tHe-quadratures. This enables us to interpret the TMPS state
approximately as a continuous variable versiomof).

We presented details on the purification protocol by Deugtchl. [9], which work
by using beamsplittes and cNOT measurements. This was ggeavide a method for
error finding.
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Finally we went through steps of making a continuous vaealgrsion of the above
mentioned purification protocol. The suggested model usambplitters and homodyne
measurements, and we have argued that these simple pshsséd provide a working
continuous variable purification protocol. It is importdatnotice that both the beam-
splitter and homodyne measurements are processes thatkhraagtered in the modern
quantum optics laboratory.

The following chapter will provide detailed calculationitloe effect of implementing
the purification protocol that we developed in this chapter.



Chapter 7

The purified state

This chapter will provide detailed calculations on the pcaition protocol described in
the previous chapter. We calculate the properties of a pdrifiate and use this to evaluate
the effect of implementing the protocol. These calculaiovill to a large extent be
carried out using the same kind of manipulations of Wignecfions as we have already
seen in chapter 5, where we that presented the TMPS state.

The calculation of the resulting state after the purifiaagaotocol will go through
three steps. These will be done in the Wigner function foisnal as this behaves nicely
under the transformations that we will use. The first stephin purification protocol
is a change of phase, this is followed by mixing the outputs>@f50-beamsplitters.
Thirdly, conditional homodyne measurement of one of thegoing quadratures from
each beamsplitter is performed.

In figure 7.1 a sketch demonstrating the basic features gbriygosed setup is pre-
sented. Homodyne detection is abbreviated H.D.

The the modes of the two TMPS states are dencte®, £ and F'. The old asso-
ciation of C' and D to the vacuum modes have been kept as to not impose unngcessar
confusion, the vacuum modes of the other TMPS state areel®#Gaand H. The nomen-
clature regarding the modes after phases and beamspéiteeegpplied are presented later
in the chapter.

The change of phase, denoted by the red circles on the sdheinating, is done
on each mode separately and no combtrstdte is thus needed yet. We will however
introduce the combined state at this point, as it will provertake later calculations
easier.

'Combined is referring to the product of the two TMPS stateslired in the protocol.

65
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Figure 7.1: This figure presents an schematic outline of the purificapimtedure. Two TMPS

states are mixed on balanced beamsplitters and two of thgpg modes are conditionally pre-
pared, the conditioning is due to the result of two homodyeteations. TMS refers to the two
mode squeezed state, the framed parts of the sketch cotitaif®PS state productions.

7.1 Wignerfunction of the combined state

The Wigner function of the combined state is simply the pobaid the Wigner functions
for two TMPS states. The smallin the subscript refers to conditionally prepared.

WeaBer = Weap X We EF (7.1)

We define the vectors;ap = [Xa, Pa, X, Pg|” andrgr = [Xg, Pg, Xr, Pr]”.
Assuming identical setups for the two TMPS states, we catevthie combined state
as

4;4k

4 4
We ABEF =
4P2 det Yout ;;\/det FjpD det Fk,GH (7.2)

x exp|—(rhpljapras + ryple prrer))

whereG and H refer to vacuum modes of one system asCdand D to the other, see
figure 7.1. The term$';, oz andI'; g are analogous td'; cp andI'; 4p which we
encountered when calculating the TMPS state. The combiaéel can be rewritten with
the introduction of theR = r4p ® rgr and the § x 8] matrix

T aB 0
Lix=| 7" : (7.3)
0 Tger
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This simplifies the expression to some degree.

459k

4 4
W,
¢,ABEF — 4P2 det Yout ; Z:l \/det I‘J cpdetTy ,GH

exp[—RIT;4R)] (7.4)

It is now an easy task to apply the change of phase, we haversegorevious chapter
that this operation is modelled simply by a matrix being iplitd onto thel’; ;. matrix.

T — STy ST (7.5)

Generally we know that a Wigner function of a state after edinoperatiort can easily
be calculated. For a linear transformati& = SR we find that the following relation
between the final and incoming Wigner functions is true

Wfinal = VVincoming(S_lR)- (76)

The proof of this is straightforward.

7.2 Change of phase and 50/50-beamsplitter

The combined phase change matrix is a direct sum of the plesege matrices over
each of the four modes (A,B,E,F), forming a matrix of dimensi g x §],

(7.7)

—sinfy cosfy —sinfr cosfp

Spa = [ cosfs sinfy ] . [ cosfr sinfp ] .
This is the first step in the purification protocol. We will waiith the multiplication on
the covariance matrix as given in 7.5, because more matnikisave to be applied and
we might as well wait and do them all at once.

The second step in the purification protocol consists of mgixif the incoming modes
on a set of balanced beamsplitters. In the previous chapdound that we could build
a beamsplitter that performed in a controlled way on thernmog quadratures. The
beamsplitter imposes a set of relationships between thdrgiuges of the incoming and

outgoing modes,

XA’: (XA—I—XE) pA/: (PA+PF) (78)

%\
%\

Xev = (XE — X4) Por = (PE — Py) (7.9)

%\
%\
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and in a similar way fo3’, D’, B and F. These kind of transformations are easy to ex-
press in matrix form, here we will denote the balanced beéittiisg matrix Spps. Using

the identity 7.6 we defind?’ = [XA/, XpryPar,Pgr, Xcor, Xpr, Per, PD/]T. The linear
transformation that takeR to R’ is partly due toSpps and partly to a homogeneous
matrix Sy..,,» that reorders the rows in the matrix in a way that will proveadageous,
R = Shom Seps R. Both Sgps and Sy, are easy to calculate from the above equa-
tions.

from 7.8 and the wanted form @t’, we will therefore not include the hug8 k 8]
matrices here.

Implementing the first and the second step of the purificgiimtocol plus a reorder-
ing of the rows, that we will use when we do homodyne detectamounts to doing
matrix multiplication. We need to do the following transfoation

I 1. = Shom' S5 SPHALj kS b ASEBSShom’ (7.10)
which we will use in

q;4k

4 4
W/ el l—
A'B'CD 7T4P2 det’yout ;z; \/detF] cpdetT'y GH

exp[—R/TF;»’kR/)]

(7.11)
The Wigner function presented above, now describes thé téte immediately before
the lightbeams impinge on the homodyne detectors. The Wiginetion is now depen-
dent on the quadratures in the four modgsB’, C’ andD’.

7.3 Homodyne measurements

The third step of the protocol is a set of homodyne measurenoéthe quadratures where
we condition on finding the same result, the measurementiomein modeg’ andD’.
We will denote the measurementgoal for the homodyne measnts X, and treat this
as an variable in our model. The conditioning is modelled lakimg a projection of the
Wigner function unto a state wittk = Xj).

From the background theory chapter we know how to calculsedensity operator
for the joint state after the homodyne projections. It cafdomd as a partial trace of the
product of the projection operator and the density opeffatahe entire joint state,

prup.ap = Trerp (| Xo,00)| Xo,0 ) (Xo,o [{Xo,cr |par,pr o0 ] - (7.12)
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The partial trace can be calculated using the identity 4olad in the chapter on Wigner
functions, we thus only need to perform the following cadtian.

(RYW, (R  (7.13)

Pal B c! D!

pup,ap = (2m)? /dXC’dPC’dXD’dPD’ W o
We use that?’ = [X 4, X, P4, Pg, Xc, Xp, Po, Pp]T, because the Wigner functions
are defined for modes C and D only. We know from [25] that thedcatare operators
can be replaced with numbers when calculating the Wigneatimm of a Gaussian density
operator.

This expression contains two Wigner functions. Both Wighurctions are defined
for the modes C and D but the expression should still be cersitlquantum operators
for the modes A and B. The Wigner function @' g/ ¢/ p’ takes the form of 7.11 and is

~

denotediV 4. pr(R’), the hat on R reminds us that it is not just a function.

The Wigner function of the projection operators is givenhesgroduct of the follow-
ing expression for modes’ and D/,

1 .
Wperj,C’ = E /de’l <XC/ — SL'//2|X070/><X07C/|XC/ -+ l’,/2> eXp[ZPC/l’,]
1
ey —— /d$l 5(XC/ - $//2 - XO C/)(S(XC/ + 1’//2 — XO C”) eXp[iPctlwl]
/2ﬂ_ b b

= \/% /dw’ 5(x/)(5(ch — X07C/) exp[z’Pcrx/]

N Xor — Xoor
_ Mo~ Xoc) (7.14)
v 2T
The calculation oprp,4/p is now reduced to doing the integral
ﬁHD,A’B’ = 27T/dXC/dPC/dXD/dPD/ 5(Xc/ —XQ)(S(XD/ —XO)WA/7B/7C/’D/(R/)
= 21 [ dP~dPp War 5 v 1 (R 7.15
7T/ crdPp War g orpr(R) X=X o (7.15)

The Wigner function of the state in modés$ and B’ after we have done the homodyne
projections can now be calculated as

~ 1 N
WHD,A’,B’ = YZIRY) /dl’,d$”<XA/ — SL'//2|<XB/ — $/,/2|PHD,A’B’
(2m) (7.16)

X ‘XB’ + x”/2>\XA/ + x//2> exp[i(PA/w' + PB/w”)]

Just as when we calculated the Wigner function for the TMBR& stan we now replace
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the quadrature operators with numbers. We can therefoaéifg, 4 g as a constant
which make the expression easy to evaluate. We find that

~ 1
Whap ap = or /dPC'dPD' War g oo (R') oy (7.17)
cr=Xpr=Xo

This integration is easily done using Appendix A. The pugo$§Sy..,/, was to rear-
range the quadratures in such a way that the the integrakate the form used in this
appendix.

Using Appendix A we have to divide tﬁE&k into submatrices in the following way:

AL [626] 7, [622] ] 7.18)

Ch[226] B [222]

! —
Jik

We define a new vectd®’, , = [Xa/, Xp/, Par, P, Xo, XO]T and a new set of matrices
Cupjx = Ajp — CJ’.’RB;.,‘,CICJ'.?,;, using the submatrices. Using all this, we finally find
that the Wigner function of the state after the homodynegatan have been made, is
given by

1 24: Z a;qx exp[—Ri pTyp kBl (7.19)

v HD A/ B’
) ) fz 4 l)2 d

The resulting Wigner function is unnormalized, which wedadicated by a- on top of
the W. Before we can start quantifying the correlations wedrte normalize the Wigner
function.

7.3.1 Normalization

We see that the Wigner function is a sum of 16 gaussian fumgtiand is given in the
equation above. The normalization is done by integratimgWhgner function 7.19 up
over the entire phase space, which is given by the mddesd B’,

/ dX 4dXpdPadPp Wyp ar pr. (7.20)

The result can thus be used to express the normalized Wignetidn as

4 4 /
eXp ]i' I R
ZZ qi9k HD' HD,jk HD] ( . )

Whup,a g =
j 1 k=1 \/detF]CDdetFkGHdetB
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To do the aforementioned integral we once more need to retindderms in the expo-
nential function by a matrix},,,,,» to form the new ordering given as

RYyp = [Xo, Xo, Xar, Xpr, Par, Ppr]". (7.22)

Splitting the matrice§”,, ik into a set of smaller matrices in the following way,

Al (222 C 224
ShomIIF/I{DJ,kS;I;Om// - {{DJ’k[ v ] HDJvk[ z ]

L j (7.23)
Chpjxld22] Byp ;[4z4]

enables us to find

!

Py = Z 24: q;qk eXp[_[XoaXO](A;{DJ,k — ChD7j,kB§é,j7kCgD,j7k)[XoaXO]T]
=1 k1 \/det Tjcpdet Ty g det B) det By

(7.24)
The normalized Wigner function can now be used to find the Sfilolition for measure-
ments of the quadratures in th® and B’ modes. The coefficienPy is related to the
probability of measuringX, in the C’ and D’ modes, and thus conditionally preparing
the state, we will take briefly on this probability later.

7.4 Calculation of the JP distribution

We follow much the same scheme as we did for the TMPS statayibuthe addition of
the conditional homodyne detection. The added conditibnatodyne detection causes
the matrices describing the system to have dimengiond] to be compared with4] x 4]
needed by the TMPS state. This complicate the expressioits a b

We perform the calculation

P(Xa0,,XB,g),) = / dPay,dPs.s, WD A,8(Sk jripRirD); (7.25)

whereA’ andB’” have now been substituted with simplyandB. The matricesS, ;. rp
are phase change matrices defined in the same manner asiphg@@1, with the addi-
tion of an identity matrix for theX, rows.

We useS;,. as given above to reorder the rows, and multiply with the plthsinge
matrix. We the divide the resulting matrices into a set of l@naatrices

A/I,{D,j,k [4x4] C}/{D,j,k [422]

i ; (7.26)
Crip k224 Bpp j[222]

/ T T
SShvjkaDShom"FHD,j,kShom” Ssh,jk,HD =
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We definer = [Xo, X0, X4, Xp]” along with

"_1 "
Lt gk = Afpjk = ChpjkBup jkCHD ik (7.27)
and we find the JP distribution to be

1

TPy 4
J

(7.28)

Pup ap=

4 24: 49 Pl T ]
—1k=1 \/ det I'j op det I'y g det BY | det B,

The joint probability function is now a function of 4, X and X,.
The dependency o causes the function to be asymmetric, which make the calcu-
lation of the correlation coefficients somewhat more coogpéd.

7.5 Correlation coefficients

When calculating the correlation coefficients of the TMP&estwe used that the JP dis-
tribution was symmetric and normalized, thus reducing tlmstegrals to 1. The JP dis-
tribution describing the purified is still normalized, bhetconditioning on a homodyne
detection has left the state asymmetric. We need to do thgrait

E0;, ¢1) = /dXA,ejdXB,¢k sign (Xa,0,XB.¢,) Pup,a,B(Xag;, XBg,) (7.29)

The problem is how to integrate the exponential funciiap|—r"T7;, . 7] with r =
[XO,XO,XA,XB]T. We do the first integral, the integral ov&ty ¢, analyticly and the
second numerically. Firstly, we rewrite the exponentialdiion to have the form

eXP[—TTP/f{D,j,kT] = eXp[alX%ﬁj +0‘2X%7¢k+

(7.30)
+a3Xag, XB g, +uXag, +asXp g, + gl
To find the differentv, we divideI'}; , ; , in four smaller matrices given by
Aal222] Ac[222
WDk = ﬁ[m] cl2z2] (7.31)
w An222]  Ap[222]

which again are divided as

T and  Ap— | o b (7.32)
C21 C22 b21 b22
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We know thatF}’{DJ,k is a symmetric matrix, sé;2 = bo;. With these definition the
a-coefficients are given as

a; = —bi, ay=—by, a3=—-2b12, o= —2(ci1+ c21)Xo,

" (7.33)
as = —2(c12 + c22)Xo, and  ag = —[Xo, Xo]A4[Xo, Xo]

The integrations from-oco . . . oo for each of the two quadratures in 7.29 are split up in
semi infinite intervals, which allows for an easy evaluatbthe sign function. Generally
we can rewrite an integral in the following Wayﬁfoo flx)dx = f0°° f(=z)dz, using
this property we will only have to calculate integrals of tioem f0°° f(£x)dz, when
evaluating 7.29.

Settingb = a3Xp 4, + a4 andc = oz2Xj23’¢k + a5 Xpg, + g, and use thaty; < 0
we find that

N b? b
= — e Erfc |— 7.34
3= P | Taay T B o=y | (189
WhereErfc[z] = 1 — Erf[z] is the complimentary errorfunction. The errorfunction is
defined adirf[z] = % g dt exp[—t?].

The integration oveX g in 7.34 is too complicated to be done analytically so we do
the integration numericaly Having done this, we form the correlation coefficient as the
sum over 4 integrals, one from each quadrant inXhey,, X ¢, coordinate system.

If we were to condition onX, = 0, then the above calculations would simplify a
great deal. We could then use the same algebraic step as dievhea we calculated the
correlation coefficients for the TMPS state, thus avoidingarical integrations.

[e.e]
/ dXa, exp[—rTF%DJ’kr]
0

7.6 Results

To calculate the Bell parameter we take must choose 2 setsgtdsafor calculation of
the 4 coorelation coefficients.

Spen = |E(01,01) + E(01, ¢2) + E(62,¢1) — E(2, ¢2)| (7.35)

Optimizing the angles trying to achieve the highest Belbpaeter, we find); = 7/2,

0y = 7, 1 = —m/4 andn /4. These values are almost the same values as for the TMPS
state. The JP distributions associated with each of the doarelation coefficients are
also, one for one almost identical to those we found for thé®B\4tate.

2These calculations are done using Mathematica.
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We see in figure 7.2 that the JP distribution, where the ctrogl coefficient is asso-
ciated with a minus in the Bell parameter, exhibit the opfgosbrrelation when compared
to the others. This is a feature shared with the TMPS state.

LY

-2 [ F [

Figure 7.2: Plot of the four probability distributions for the choice afigles that led to a max-
imum violation of Bell's inequality after the applicatiori the purification protocol. The two
axes areX 4 and X g respectively. The optimal phases applied to the four modeserfound
tobeby = —7/2,0p = 0,0 = —7/2 andfr = 0. The homodyne measurement phases are

(91 ¢) = {(W/2’ _7T/4)’ (7T/27 7T/4)7 (7‘—7 _7T/4)7 (7T= 7T/4)}'

The plots of the JP distribution shown in figure 7.2 are alvalméor Xy = 0. The
reason for this is thaky = 0 is the optimal choice, as we will show below.

7.6.1 Optimization of the homodyne projection

We have done many simulations varying all the different peairs and found that the
best results were achieved f&f = 0. The dependency oK is a seen to be similar to
a Gaussian bell with peak around 0. Below is a plot of this ddpacy, shown for the
purified state with the highest Bell parameter (foundXcet 0.508).

SBell

-6 -5 -4 -3 -2-1 0 1 2 3 4 5 6
X0

Figure 7.3: The dependency on X0 is plotted for the three different gaddid, it is clear that
the optimal choice is{y = 0.
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The reason that zero is the best choice for the homodynetemmalimeasurement, is
due to the properties of the states we mix on the 50/50-bdatesp/Ne mix two copies of
the same state that exhibit a high probability of having Einquadratures( 4 ,, = Xg .
But as the states are alike then we also with a high probalfifitt X 4, = X 42 and
XB,1 = Xp2. If an errore have been introduced, then we find the result of the outgoing
mode to beX 41 — X2 + € = ¢, s0 conditioning on this measurement equal to zero
forces us to disregard the states with an error present.

7.6.2 Dependency on squeezing

Below, see figure 7.4, we plot how the Bell-parameter dependte amount of squeez-
ing applied to the initial state. The figure features thrdfedint degrees of transmitivity
of the beamsplitters, that now are responsable for 4 phatbtractions, two for each
TMPS state. This is a plot similar to what we showed for the lvoton subtracted state.

NN

Spel1

97
96 f
.95 ¢

=

Figure 7.4: Plot of the dependency on the squeezirfgr three different levels of transmittance
on the photon subtracting beamsplitters, for the purifieatest We see violation of Bell in the
percent range and see the peaks shifted towards lower sggeezcompared to the TMPS state.

We can see that this plot have all the same features as thespornding plot for the
two photon subtracted state. The main difference betwesiwtb plots is that the peaks
of the later purified state are shifted towards a lower degfesgjueezing and peaks at a
slightly lower value.
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7.6.3 Comparing to the TMPS state

We want to see how the states after purification compare tetttes before the purifica-
tion. We plot this separatelyfor the three values df that we have used throughout this
project. The plot for T = 0.99 is shown in figure 7.5 below.

SBell

After
| Before -

0.3 0.4 0.5 0.6 0.7 0.8
A

Figure 7.5: Plot of the effect on the purification protocol. The resuliswn are for T = 0.99
and X(=0. We see that the protocol works for low values of squeezing

We can see from figure 7.5 that we will not be able to give a sinipés/no“-style
answer to the question: “does it work?”.

On one side we can argue that the purification protocol is sot@plete success, as it
fails to produce a higher violation of Bell's inequality thevhat we already had from the
TMPS state. But on the other side we see that for a large mtef\squeezing values, we
find that the Bell-parameter is being increased a signifiaamunt. We could argue that
the purification protocol does work, except for a state thalready too close to optimal.

We plot the result of the purification protocol for the intaref squeezing where we
find that the purification protocol works, see figure 7.6. Tésuits are most prominent
for a high value of T (T=0.99), this is the value used in thd plelow.

Especially it is worth noticing that fok € [0.418 : 0.456] we see that the purification
protocol takes a state frolig.; < 2 to Sgey > 2. This feature clearly proves that the
suggested purification protocol conceptionally works.

3The plot below is for T = 0.99, for the two other values of T wierdgo appendix C.
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Figure 7.6: Plot of the effect on the purification protocol. The results shown for T = 0.99
and X, = 0. The plot shows a slice of figure 7.5, focusing on an inter¥aboieezing where the
purification process take a state that before were unabledalpBell's inequality to a state that
is able to break Bell.

7.6.4 Perfect detectors

In the calculations on the purified state we have not incluthedeffect of imperfect
detectors, the reason for this is twofold.

Firstly. We saw from the TMPS state that the inclusion of infig& initial photode-
tectors had very little influence on the achievable Bell galuWe can experimentally
perform the homodyne detections with a efficiency so higat ¢hmodel of a imperfect
realistic measurementp ~ 0.95) is very close to a model where perfect homodyne
detection are used. The results obtained from realistiscegare thus close to what we
obtain using perfect detection.

Secondly. A study of these small effects would have beenideredd a subject of
greater importance, had the results of the suggested pidieen more favorable. The
aim of this thesis will be to find results for the optimal cleiof values, not how they
depend on imperfections.

For these reasons we will always use perfect detectors wieemedel their effects
on the purified state.

7.7 Repeating the protocol

The natural next steps is to do the hole thing again, this tisieg the purified states as
input instead of the TMPS states. This iterative proces$dogoi on forewer, but due to
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timeconstraints and lack of computational power we willotdlculate the result for one
more iteration.

The calculations are similar to what we have already dones mhin difference is
that all the expressions involved grow from involving 16nerto 162 = 256 terms.
We choose to condition oXy = 0 as this was found to be the optimal value. Using
this conditioning all the calculations are reduced to lindgebra and a few wellknown
analytical functions.

The purification protocol did not produce a overall highell Barameter when it was
applied the first time to the TMPS state. We do therefore npeeixto see an increase
applying it a second time. One could suspect though, that thél be a interval of the
squeezing parameter were the purification protocol takestaith a lower Bell value to
a state with a higher Bell value.

7.7.1 Outline of the calculations

We will have to go through all the same calculations as ajrgadsented in this chapter
in order to do a second iteration of the purification proceduwe will therefore only
present a outline of the calculations.

We first need to construct the joint state describing the eatifin of two copies of
the purified state. The Wigner function of the joint stHte,; is found to be

Waonda = Wrup ar g X Whp x1 v (7.36)

Each of the Wigner functions for the purified states congi$ta sum of 16 terms, the
combined Wigner functions therefore grows to contain 28®1$e Each term in the com-
bined Wigner function is manipulated in the same manner dsave done when we were
applying the protocol the first time.

Going through the somewhat sizable number of terms expgesise different prop-
erties of the state, we find that the Wigner function of the tintes purified state takes
the form.

4 4 4 4
Wgnd =N Z Z Z Z Cijkl exp[—rTFijm] (737)

with r = [X 4, Pa, X, Pg]’. The exact form ofV, Cijr andl';j5,; can be found going
through all the same steps as with the first iteration of tleéogol. The calculations will
not be presented here as we will not learn anything new framthwe will however
present the results.

For an optimal choice of angles the two time purified statethagollowing depen-
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dence on the squeezing for three different values of T. Weagae that the shape of
this plot is very similar two what we previously found for hahe TMPS and one time
purified state.
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Figure 7.7: This plot contains the results for the two time purified statghows the dependency
of the squeezing for an optimal choice of angles, plottedHme different values of T. Again we
see violation of Bell in the percent range and find that themat squeezing value is lower than
for both the one time purified state and the TMPS state.

We plot the Bell parameter as a function of squeezing for alfixa@ue of T for the
TMPS, the once purified and the time purified state, see fig@eoithe left. We see a
tendency towards finding the optimal result for a lower andgiosqueezing.

We enlarge a section of this plot, focussing on the range wéezjng where we can
see that the purification protocol works, see figure 7.8 toritjiiet. We see that for a
given amount of squeezing the purification protocol can thleeBell parameter from
approximately 1.98 over 2.015 to 2.03, exactly as wanted.

We can see from figure 7.8 that the value of the optimal squngezilowered after
each step of the purification protocol. We also see that we weong when we thought
that the peak of the two time purified state would be situatedket than the peak of
the one time purified state. As would be suspected from salkeilyg the result of one
purification procedure.

Due to time constraints it has not been possible to undedakavestigation of this
surprising feature in this thesis.
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Figure 7.8: Dependency of the squeezing for an optimal choice of anglesged for the initial
state, the state after one iteration and after two iterasioAll three plots for T = 0.99.. The plot
on the right shows a section where the protocol is seen to kepkarly effectfull. Itis surprising
to see that the two time purified state peaks higher than thifiguistate, it would be interesting
to see if this tendency would continue in a third iteration.

7.8 Probability of success

When we do conditional homodyne projection and subtraaiotihne photons, we asso-
ciated a probability of success to the processes. Succemsmgehat we accomplished
what we sat out to do, that is, finding, in the homodyne measurement and observing a
click in the avalanche photo-detector.

Let us first look at the photon subtraction. When we let thedmaitivity of the mirrors
that subtracting a photon go towards ofie-{> 1) we are less and less likely to observe a
click in the photodetectors. The normalizing numlser done in the calculations for the
TMPS state is the probability for seeing a click in both d&iez We saw in the chapter
on the TMPS state that the probability for a successfull geimn of a TMPS state is
smaller thanl /1000 in the case of T = 0.99, for a interesting value of squeezing.

The trouble with this is that when we use the purification gcot we need to mix
sets of these states. The probability of a simultaneousrgtoe of two TMPS states is
found as the square of the probability for one, which is detét;. The result is that the
corresponding probability of success drops to a point wheseclose to infeasible to do
the experiments.

If we had a way of saving the TMPS states, we could avoid theblpm. A quan-
tum memory for light could help fix this problem, we could sdke first conditionally
prepared state until we had another and then let them interac

We also associate a probability of success to the homodyjeqgtive measurement
on Xy = 0. We have allready calculated the normalization coefficésbciated with the
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homodyne projectio;;. The probability density of a successfull homodyne praogect

is related taPy through
Py

—_ 7.38
PZ det[vout] ( )

Psucces,HD X

This can be seen from the relationship between the unnaretbdind normalized Wigner
functions for the purified state. | have plottéd, ..., 7p as a function ofX, and seen
that we achieve the highest probability t8 = 0, the plot is not included shown in this
thesis.

We do not condition on a interval of quadrature phases. Eaigds the probability of
success equal to zero, as a projection to exakgy= 0 has an infinitesimal probability.
The dependence on conditioning on a small interval of quadsa should be calculated
before setting out to do an experimental test of the propesagp.

7.9 Method

In the Mathematica programs we calculate the Bell paranfetedifferent choices of
values of the phase space. The program can be configueredrgecleach parameter
a small amount for each calculation of the Bell parametere @dlculation of the Bell
parameter is placed within a set of FOR loops and we have toidsk very careful to
examine the entire phase space for optimal values of allahenpeters.

This method offers no garantie that what we have found isvagtibut we feel con-
fident that the values for the choice of phases are optimal #haigh the phase space is
huge. It is possible to vary 8 different phases plus the valu&.

7.10 Previous research in continuous variable purificatiorpro-
tocols

In this section we will give a outline the work closely relat® this thesis, that is being
done in other research groups around the world.

We have seen that there exists a interval of squeezing whengurification protocol
suggested in this thesis definitely works. Even though teelt® are not overwhelming
the protocol seem to have the desired effect. There are lthotlngr ways of preparing a
continuous variable state that is capable of breaking Bediguality.
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Sonja Daffer and Peter L. knight

Let us start by making a outline the results of found by Soraffdd and Peter L. Knight

[33]; they generate near optimal states for use in a homoBegligéest. Their protocol take

a pair of two-mode squeezed states and mix them pairwise nbaanced beamsplitter.
Two of the outgoing modes are subjected to a photo-detelsatrdifferentiate between
the absence and presence of photons only. This first stephas af the same features
as the preparation process presented earlier in this thegibere they firstly mix a pair

of two mode squeezed states and then subtract a photon.

The second step of their protocol, which they repeat threegj is to combine two
of the outgoing beams that have not had a photon subtraateoialanced beamsplitters
and then measure with a photo-detector on one of the outgnodgs. If no photon is
detected, then the state is kept to be used in the next deraditotal of three iterations
are performed.

Before making the final homodyne Bell measurement a photauligracted from
each mode. This is done in the same way as we have presenlied &aat is, by mix-
ing each mode with vacuum on an unbalanced beamsplitter etedtohg a click in the
photodetector.

Their results are impressive, they get very near to the @htBell parameter. They
achieveSg.; = 2.071 as compared to the highest possible vAlSg.; = 2.076, there
is a problem however. In the iterative procedure they havaliioned on seeing their
photodetector perform a “no-click”. Conditioning on notselving a click is not a good
property, especially if one were to try to realize an experital setup.

Garcia-Patron, R. et al.

One of the groups of authors that presented the TMPS stateasdaate for an exper-
imental realization of an loophole-free Bell inequalitgtt§8], also elaborated in a later
and more thourough paper [31] on different ways to achieviglzeh Bell violation.

They [31] consider different setups varying the incomirajest (single mode squeez-
ing in either the X or P direction), the use of balanced bedittesgs and the number and
placement of single photon subtractors. Their resultstaieérsy, they find find it impos-
sible to break Bell's inequality for an odd number of photobtsactions, this results is
not a general statement but they found it to be true for alcds®s they considered.

They further found that the scheme presented as the TMP& istaken to be the
produced from the best configuration where two photons haes Isubtracted, at least

“This is the highest violation of Bells inequality with a staif the form|y)) = 3~ Cy|n,n). Our
protocol implements a conditional homodyne detections teaving this photon number coupled regime.
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when it comes to breaking Bell's inequality. When they satttifour photons they find
that they are able to gain an slight increase in the Bell patambut at the cost of having
to do four photon subtractions, a process which is assakigith a very low probability
of success.

This is the same low probability of success associated vatiditional generation
that we are faced with in our protocol. A way to avoid the cob&lto introduction
a continuous variable quantum memory. Such a memory wasthgaxperimentally
realized by the group of E. Polzik [34].

Garcia-Patron et al. found that a one photon subtractiondyanoduce a state inca-
pable of breaking Bell. The process of subtracting one photm though still increase
the entanglement of the state. This was found both thealigtiand experimentally by
Ourjoumtsev et al. [35].

Others

There is a lot of activity in the field, very recently an expeental purification of coherent

states [36], using a argumentation not far from the one ptedenere, where successfully
presented. A purification protocol that is able to removesphaoise on a set of non-
classical states are presented and experimentally deratatsby A. Franzen et al. [37].

Our task in this thesis is somewhat more difficult, we try imoge Gaussian noise.

We have try to compare the ideas of this thesis to what othaplpereviously have
done. We have argued that this idea has advantages over $ahme mrevious work,
but we would like to point out that this is not the same as tmbiatter results. All the
purification protocols cited have found better results Wiaat we found here.

7.11 Summary

We have implemented a realistic model of the purificationcpdure suggested in the
previous chapter. The calculations are done using Matheanahd a largely just linear
algebra. We have used the Mathematica programs to seargihdlse space for optimal
values for the phases applyed to the modes, phases usedharttuelyne measurement
and what value to condition on, in the homodyne projection.

We found that the best results are found for conditioning easaringX, = 0 when
performing the homodyne projection, which we were also &blaake an argument for.

To perform the purification protocol two TMPS states are relethe probability of
generating such a set is very low. We could in principle aeghiehigher level of success
by using a quantum memory for light.
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We have seen that iterating our purification protocol onestimill produce the ex-
pected purification for low values of squeezing. Doing a edciberation repeats this
conclusion, with a slight increase in the peak Bell-paraméthe gain in Bell parameter
for each iteration of the purification protocol is howevet imopressive.

We outlined some of the other research being performedmittis field, in order to
compare the work presented in this thesis to the frontlisearch. We found that our
protocol in princible has some distinct advantages overesofithese. We condition on
a "click" in our photo-detector, instead of "no-click" asw®in [33]. We try to solve the
harder problem of removing Gaussian noise, instead of jussg noise [37]. But as both
these protocols are more successful it seems that the dramng things right is to not
be successful.

But there is hope, we use a procedure very similar to [36] whable to successfully
purify coherent states. So maybe the trouble is that we ttggulirify a state that was
already to pure.



Chapter 8

Conclusion and Outlook

In this chapter we summarize and conclude the results whagk been presented and
discussed in chapter 5, 6 and 7. We also outline future wakdbuld be done to further
investigate and improve upon the suggested purificatiotopob

8.1 Conclusion

We have presented the two mode photon subtracted (TMP8) atad seen that it is an
experimental feasible candidate for a loophole-free Bt {8, 30]. The TMPS state is
constructed by mixing a two mode squeezed vacuum state wittsqueezed vacuum on
two unbalanced beamsplitters and conditionally subtmgcsi photon from each mode,
see figure 5.1. It was found that with a realistic choice ohpaaters, Bell violations in
the percent range could be achieved in a matter of hoursdtfustively disproving local
realism.

We calculated the joint probability (JP) distribution foset of quadrature phase mea-
surements, for the TMPS statB{ X 4 ¢,, X ¢, ). We found that it was possible to choose
phasegd;, ¢) such that the JP distribution showed a high degree of ctioetain the
signs of the quadrature operators, see 5.5.

We found that when looking at the signs of the quadraturekardP distribution, the
TMPS state could too a good approximation be described atasita the maximally
entangled¢™) Bell state. The TMPS state thus has properties that makeoibd ghoice
for an entanglement distribution source, and thereforerésting to find a purification
protocol for.

A purification protocol forj¢™) Bell state exists [9]. It works in the following way:
Alice and Bob apply phases to their qubit pairs and then parftNOT measurements. If

85
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their measurements agree they know that no error has odamcethey keep the resulting
qubit pair.

We wanted to make a continuous variable counterpart to timiigation protocol
that should work on the TMPS states. The phase change is eaky, tbut we need
a continuous variable version of a cNOT measurement. We fiadusing a balanced
beamsplitter and performing homodyne measurement of thérgtures does exactly this.
We condition on measuring the same valig, in both homodyne measurements. We
have argued that these steps should lead to a purificatidre GiMPS states.

To calculate what the effect of the purification protocoluadiy is, we have written
multiple programs in Mathematica. Most of the calculatiaasm be done using only
linear algebra, but some numerical integration is also @manted. We have set up the
programs so that we are free to explore the entire phase apdoge find that the results
are best forXy equal to zero, see figure 7.3. The applyed phases are alsoizgdi

For the choiceX, = 0 the calculations simplifies further and we can do all calcula
tions using only linear algebra. This enables us to caleula effect of a repetition of
the protocol.

We find the result of the protocol summarized in figure 7.8. \&e that for a low
squeezing parametey,< [0.4, 0.5], the protocol works. The purified state shows a higher
Bell parameter then the initial TMPS state when comparimghie same amount of initial
squeezing\. We are even able to produce steps capable of breaking Beltisiality that
before purification where uncapable.

The highest achievable Bell parameter for the one time amdtitwe purified state
have not been found to be higher than what we got from the TM&8,sn the percent
range. We are not able to produce states that exhibit a gfranganglement than the
optimal initial state, but we are able to improve upon a rarfgaitial states with a lower
than optimal squeezing.

When we implement the purification we need two copies of thé®B\dtate. We have
calculated the initial probability of successful genematof one TMPS statePs, the
probability of preparing two such states are givePgs We are therefore left with a very
low successrate in preparing the states needed for thedatiofi protocol. The purifica-
tion protocol itself is not dependent on this, but rathertmngrobability of measuring the
same quadratur&, in mode.

In summary. We have constructed a continuous variable patiifin protocol using
ideas from D. Deutsch et al. [9] for the purpose of purifyinglHS states. We found
that the purification protocol works when it is applied to THIBtates with a lower than
optimal squeezing parameter. The gain in Bell parametes lsetseen in the light of
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the probabilities associated with the initial generatidbthe needed states. We have not
successfully produced a method to achieve a better loofresddaest of Bell's inequality
than suggested in [8, 30, 31], but the method has seen rddganacess in purifying
less than optimal TMPS states.

8.2 Outlook

Much can still be done to further explore the properties ef shiggested purification
protocol.

Firstly. It is desirable to investigate the effect of comatiing on a broad range of ho-
modyne measurement. It would be interesting to see how ttifigation would function
if Xonew € [Xo — €, Xo + €]. When we conditioned on a single value & then prob-
ability of a successful implementation of the purificationtpcol drops to 0. It would be
very interesting to know how this probability would behawe X ,,c., € [Xo—¢, Xo+¢€].

Secondly. When we did the second iteration of the purificafiootocol we found a
slight increase in the highest achievable Bell violatiom@®pared to what we found for
one iteration. It would be very interesting to see what happeafter one more iteration.
It would be a relatively simple task to repeat the protocad omore time, the biggest
trouble would be the time it will take to simulate the behawbthe three time purified
state, as this would involv562 terms.

Third and last. It would be interresting to further inveatigjthe possibilities of imple-
menting quantum memories to improve the successrate ofethergtion of initial states
for the purification protocol.

In summery. Much can still be done to investigate the progeif the purification
protocol. Itis in particular desirable to see the effect onditioning on a range of values
when doing the conditioning homodyne detection.
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Appendix A

Gaussian integral

In this appendix we will prove a theorem that is used many githeoughout this thesis.
It states that given a vecter= [Z,7]7 = [z1,...,%n,y1,...,ym]’ Of dimensiom + m
and a symmetric(jp + m) x (n + m)]-matrix of the form

M= Aln xn]  Cln x m)] ’ A1)
CTim xn] B[m x m]
then the following is true
RNy _ o T4 Al AT
/dy exp[—7 M7] = det(B] exp[—Z' (A—CB™C")z]. (A.2)
We want to calculate the following integral over gll coordinates.
/dgexp[—FTMf] (A.3)

wheredy = dy; - - - dy,,. First we do a substitution in the integration, introduciig=
[ui, ... um]T which is given as

t=g+B7'c’z and @ =y +z'cB7! (A.4)

where we see thatu, = dy; for k = 1...m. Rewriting the exponent in term of the
submatrices defined above, we see that

FEM7 = 2T Az + 7 ey + ¢f ¢tz + ' By. (A.5)
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We now get the idea to perform the calculation
@'Bi=z'cB7'CTz+ " Ccy+ ¢ T 7 + ¢ By, (A.6)

and we see that
7 M7 =’ Bi + 3 (A—- CB~'CT)& (A7)

So we can now write a simpler integral, usid@ = du; . . . du,
/ dif exp[—7 M7 = exp[—#L (A — CB~'CT) 7] / dit exp|—1i' Bil] (A.8)

As M where assumed symmetric we know that it is possible toenaaghift of basis to
put the exponent in diagonal form. We defithe- U« anddv = du, yielding

/ dii exp|—i! Bil] = / dv exp[—oT UBU 4. (A.9)

The different diagonal elements are labetgdand we can write
m
/ diexp[-oTUBU 4] = / diexp[— > exvi]. (A.10)
k=1
The integral is now easy to calculate,

/dﬁexp[— iekvz] = l (A.11)

e ---e
=1 1 m

Utilizing thate; - - - e, = det[UBU 1] = det[B], we finally arrive at the formulation
that we wanted

/ dij exp|—7L M7] = ﬁ[lﬂ exp[—#L (A — cB~1cT)a). (A.12)
We have only assumed that M was symmetric, this is a inhemaqepty in covariance
matrices.



Appendix B

Wigner functions for vacuum and
for the identity matrix

The calculation of the Wignerfunctions of vacudf (0| and for the identity matrix,
are done by straight forward implementation of the definitdd the Wignerfunction.

B.1 Wigner function for the identity matrix

Starting by doing the calculation for the identity matrix fosingle mode, we find that

1
Wi=g- / da' (X — ' 2|I|X + a'2) expliP2]. (B.1)
T

The position kets are orthogonal, so this reduce to perfugrthe integral

445 i/d/ac'é(ac') expliPz'] = ZL (B.2)

:271' T

This is the result for one vacuum mode. For two vacuum modes\tigner function is
simply (27)~2, and so fourth.

B.2 Wigner function for the vacuum operator

Again we start with the definition

Wiy = % /dx/<X —2//2]0)(0|X + 2'/2) exp[iPz'] (B.3)
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This is simply the Wigner function for the groundlevel of arnanic oscillator. We know
the representation of the ground level in a harmonic osailla the position basis. Given
in dimensionless coordinates this(ig0) = 7~/ exp[—1/2x2].

Using this we see that

1

Wil = 5- da'm =12 exp[—1/2[(X — ' /2)? + (X + 2'/2)?]] exp[i P2']
= %77_1/2 eXp[—Xz]/dx/exp[—1/4x/2]eXp[iP:E’]. (B.4)

Cauchy’s integral formula gives the identity
dtexp[—§t Jexp[ibt] = v2r exp[—ib l, (B.5)
this can be used here. After a change of variables /2¢t, we arrive at
1 2 2
Wigyo] = — exp[—(X" + P7)]. (B.6)
With a vectorr = [X, P]T we can see that this can be written as
1 T
W|0>(0| = ;exp[—r [7’] (B?)

The equation above is easy to implement in a matrix formalism



Appendix C

Plot of the effect of the purification
protocol

Below are shown plots of the effect of the purification praidor two additional values
of T. Its is clear that the effect of the purification is not asrpunced for lower values of
T than the results shown in the main part of the thesis, th&id = 0.99.
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Figure C.1: Plot of the effect on the purification protocol. The resutis\en are for T = 0.95
and X0=0.
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Figure C.2: Plot of the effect on the purification protocol. The resuliswn are for T = 0.90
and X0=0.



Appendix D

List of programs

In this appendix we list the Mathematica notebooks that we khiged in obtaining the nu-
merical and analytical results in this thesis. The total amh@f code is too considerable
to allow for a print out to be included.

The programs will be suplied if a request is madenads.lykke @gmail.cqrthey are
not yet commented thouroughly, but | will be happy to add@e®s questions regarding
their inner workings.

The following programs have been used in this thesis:

TwoModePhotonSubtractedState.nbCalculates all the properties of the TMPS state,
it is possible to vary all parameters and the results areejitotted or written to a
data file.

OneTimePurifiedStateXOeqaulto0.nb Calculates all the properties of the purified state.
This program only calculates the caseXaf = 0, but it is possible to vary all other
parameters in the purification procedure and for the two TigtRags that are used.
Results are either plotted or written to a data file.

OneTimePurifiedStateXOnot0.nb Calculates all the properties of the purified state. In
this program it is possible to vary all parameters in thefmation procedure and
for the two TMPS states that are used. The possibility of aésging X, slows
down the calculations significantly as numerical calcoladi occur. Results are
either plotted or written to a data file.

TwoTimePurifiedStateX0equalto0.nb Calculates all the properties of the two time pu-
rified state. This program only calculates the cas&gf= 0, but it is possible to
vary all other parameters in the purification procedure anthie four TMPS states
that are used. Results are either plotted or written to afdata
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PIotDATA.nb This function select data from a data file generated by onbéefibove
mentioned programs and either plot it or make a new file thiat ise used in gnu-
plot.
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