
Improving e & γ reconstruction at ATLAS
using a convolutional neural network

Energy Regression at ATLAS using Machine Learning

Master Thesis in Computational Physics

Written by Malte Algren
2020-2021

Supervised by
Troels C. Petersen

University of Copenhagen

Name of Institute: Faculty of Science

Name of Department: The Niels Bohr Institute

Author(s): Malte Algren

Email: malte__algren@hotmail.com

Title and subtitle: Improving e & γ reconstruction at ATLAS using a convolu-
tional neural network
- Energy Regression at ATLAS using Machine Learning

Supervisor(s): Troels C. Petersen

Handed in: 2020-2021

Defended: 2020-2021

Name

Signature

Date

Abstract

For the energy calibration of electrons and photons, the ATLAS ex-
periment employs a boosted decision trees (BDT) that utilizes scalar
variables extracted from the detector to calibrate the energy. How-
ever, the variables are a summary of the spatial and energy prop-
erties of the Inner Detector (ID) and the Electromagnetic Calorime-
ter (ECAL) and not all information from the ID and ECAL remains
within these variables, particularly the imagery of the ECAL. This
imagery lead to the development of a convolutional neural network
model called DeepCalo that was be able to take advantage of the ad-
ditional ECAL images. DeepCalo achieved a general performance im-
provement of 22.4− 25.9% (12.4− 18.3%) for electrons (photons) on
Monte Carlo simulated Data (MC). DeepCalo was also tested on mea-
sured data from the ATLAS experiment. Here, it archived a general
improvement of 9.4% (2.4%) for electrons (photons). The channels
tested were Z → ee (MC/data), H → γγ (MC) and Z → µµγ (MC/data).
Furthermore, DeepCalo achieved an improvement independent of de-
tector region and energy range, expect for high |η| photons, and it
attained robust performance at increasing pileup.
A method for unlocking the potential to train directly on data was
also developed, where training with a mixture of MC and data sam-
ples for Z → ee revealed a general improvement of 22.1− 25.3% for
electrons in MC, and an improvement of 18.3% for data.
The DeepCalo model was also able to predict the uncertainties on its
predictions and these could in turn be used for estimating the uncer-
tainties on invariant masses. This increase in reconstruction perfor-
mance would help in the discovery of proposed Higgs decays, where
low statistics pose a problem.

Acknowledgements

I would like to thank my main supervisor Troels C. Petersen. We
have now worked together for two years, and it has been a pleasure
working with him both academically and socially.
I would also like to thank Daniel Nielsen, Helle K. Leerberg and
Lukas Ehrke for helping me in the early stages of the project and
a special thanks to Frederik Faye, who started the development of
DeepCalo and was a big help when I started.
A big thanks to my office mates, Christian Michelsen, Sara D. Pinholt,
Aske Rosted, Mads J. Storr-Hansen and Rasmus F. Ørsøe for creating
a fun work atmosphere.
Lastly, I would like to thank Anna Xiao Tan for her comments on my
work and her support during this project.

© 2021 Malte Algren
MSc Thesis,
Niels Bohr Institute, University of Copenhagen

Thesis submitted October 1 st 2021, for the completion of the degree Master of Science (MSc) in Compu-
tational Physics. LaTeX template: A Tufte-Style Book tufte-latex.github.io/tufte-latex/.

First printing, October 2021

Introduction

The purpose of this thesis is to develop a Machine Learning algo-
rithm that improves the energy reconstruction of particles at the A
Toroidal LHC ApparatuS (ATLAS) experiment at the Large Hadron
Collider (LHC). The current reconstruction algorithm, Ecalib(BDT),
does not take the internal layout of the ATLAS detector into consid-
eration, whereas the algorithm developed in this thesis will. The de-
veloped algorithm is named DeepCalo and is a convolutional neural
network (CNN) usually applied in visual analysis of imagery. It will
predict the energies of electrons or photons with increased precision
compared to current methods. It is very beneficial for the ATLAS ex-
periment as a whole to improve the reconstruction of electrons and
photons, as new physics discoveries require high precision in the en-
ergy reconstruction.

The first chapter will give a brief introduction of the current theory
explaining the behavior of elementary particles, the Standard Model
(SM). Afterwards, a detailed description of The Large Hadron Col-
lider (LHC) and ATLAS experiment will be presented. Here, the
emphasis will be on the ATLAS experiment, as its layout has mo-
tivated the analysis and construction of DeepCalo. Lastly, we will
give a more elaborate motivation for the analysis than given above.
The second chapter will contain an introduction to Machine Learning
(ML) and explain the fundamentals of Network-based ML with a fo-
cus on convolutional neural networks. The third chapter will explore
the variables selected for DeepCalo and introduce the data pipeline
from xAOD or DxAOD to .tfrecord files. Chapter four will describe
the development of the DeepCalo architecture and the optimization
of it to find the most accurate model. Chapter five & six will evalu-
ate the performance of DeepCalo on electron (Z → ee) and photons
(H → γγ and Z → µµγ), respectively. Here, the performance for ET ,
|η| and 〈µ〉 will be evaluated. Performance of the DeepCalo on both
Monte Carlo simulated data (MC) and real world data from ATLAS
will be assessed. Note that real world data from ATLAS will be re-
ferred to simply as Data with a capitalized D throughout the thesis.
Chapter seven will be a discussion on the performance of DeepCalo. It
will contain a discussion of the metrics applied to Data and the short-
comings of DeepCalo, with suggestions on how performance may be
improved. Chapter eight is the final chapter. It contains the conclusion
of the thesis with a summary of the performance of the different
DeepCalo models.

Contents

Abstract i

Introduction v

1 Particle Physics 1

1.1 The Building Blocks of the Universe 1

1.2 The Large Hadron Collider (LHC) 3

1.3 Reconstruction 11

1.4 Motivation 13

2 Machine Learning 16

2.1 Supervised Machine Learning 16

2.2 Neural Networks 19

2.3 Convolutional neural networks 22

3 Pre-processing of data 29

3.1 xAOD to DxAOD 30

3.2 DxAOD to h5 31

3.3 Image format and data types 32

3.4 Pre-processing 39

3.5 Selecting candidates from Data 41

4 Model Architecture 42

4.1 High-performance Computing 42

4.2 Optimizing networks 46

4.3 Model components 50

4.4 Optimization 52

5 Electron Reconstruction 58

5.1 Analysis of DeepCaloZee,mc 58

5.2 Electron gun 61

5.3 Analysis of DeepCaloZee,data 63

5.4 Ensemble method 64

5.5 Additional properties from Neural Networks 67

5.6 Corrections and resolutions 68

6 Photon Reconstruction 73

6.1 Analysis of DeepCaloHyy,mc 73

6.2 Analysis of DeepCaloZµµγ,mc 76

7 Discussion 80

7.1 Metric performance 80

7.2 Loss function of DeepCaloσ 82

7.3 Reconstruction of Etruth in Data 83

7.4 Improving DeepCalo performance 84

7.5 Material budget 86

8 Conclusion 88

9 Appendix 91

9.1 Proof of concept 91

9.2 Eta-shift 93

9.3 Transformation of MC 95

9.4 Classifying the difference between MC and data 96

9.5 Analysis plots 96

9.6 Variables 108

9.7 Performance for the uncertainties 114

9.8 DeepCalo architecture 114

1 Particle Physics

This chapter will introduce the underlying fundamentals of particle
and detector physics. It will encompass only that which gives the
reader the necessary knowledge to understand the context of this
thesis and motivation for the analysis. For an in-depth introduction
into particle physics, please refer to [20] and [34].
The first part of this chapter, section 1.1, will elaborate on the Stan-
dard Model (SM) and the elementary particles within. Most of this
section is adapted from [20] and [34]. Next up is section 1.2 and 1.3,
which will lay the foundation for understanding the ATLAS Experi-
ment and how fundamental properties of particles are measured and
reconstructed. Lastly, section 1.4 will motivate the analysis and focus
of this thesis.

Figure 1.1: The figure shows inter-
actions between fermions-bosons
and bosons-bosons of the SM par-
ticles.

1.1 The Building Blocks of the Universe

The holy grail of particle physics is the theory of the SM. Developed
in the 1970s, the SM is currently the best description of the elemen-
tary forces governing our universe. The SM assumes 17 fundamental
particles divided into two main categories, namely fermions with
spin ±1/2 and bosons with spin 1∨ 0. An overview of the SM parti-
cles can be seen in figure 1.2.
The fermions consist of quarks, leptons, and their anti-particle coun-
terparts. A specific combination of quarks make up the hadrons1 1 There are two types of hadrons. The

mesons, which are composed of two
quarks (an quark and anti-quarks) and
the baryons composed of three quarks.
All hadrons have integer charge.

eg. the proton is composed of uud quarks. Quarks have an electri-
cal charge of q = −1/3 ∨ 2/3, whereas leptons have a −1 charge.
All fermions have to obey the Pauli exclusion principle2, yet protons

2 Two or more identical fermions are not
allowed to occupy the same quantum
state in a system.

consists of uud quarks. This is due to spin being able to have direc-
tion ± e.g. sususd =↑↓↑.
At last, the bosons are the force carriers that regulate the behavior of
the particles. The connection between the forces can be seen in figure
1.1. Bosons are divided into subgroups depending on how and on
what they exert their forces on. The subgroups are listed below.

• Strong force: Exerted by the massless gluons. It is the force bind-
ing quarks together in a nucleus. However, the internal connec-
tion and amount of gluon within hadrons are unknown, making
hadrons internal structure chaotic.

• Weak force: Exerted by the massive W± and Z bosons. The weak
force art on the fermions, and is able to convert them eg. convert

2 masters thesis

Figure 1.2: Overview of the Stan-
dard model from [36]. The charge,
color, mass and spin of the particles
can all be seen in the figure as well
as groups and subgroups.

a proton to a neutron, by exerting a electron and anti-neutrino to
keep the charge constant.

• Electromagnetic force: It is exerted by the massless photon (γ)
that interacts with all particles with an electric charge.

• Gravitation force: Gravitons have not been observed yet, but the
force should act on all particles with mass. As seen in figure 1.2,
gravitons are not described by the SM.

Lastly, the Higgs boson (H) does not exert a force but interacts with
particles of mass through a field called the Higgs field, see figure
1.1. The neutrinos3, the u,d-quarks, the electrons, the glouns and the3 However, neutrinos will oscillate be-

tween types. photons are stable particles while others will eventually decay to
stable particles. By isolating the byproduct of a decay, the parent
particle can be found, e.g. the Higgs can decay to two photons (H →
γγ), where the combined invariant mass of the photons will result in
the Higgs mass.

1.1.1 Properties of decay

Advances in particle physics have made new studies in the former
mentioned particles more difficult. Particle colliders and detectors
are increasing evermore in size to challenge the SM at higher ener-
gies. Due to the short lifetime of most SM particles, they cannot be
studied directly, but only by their byproduct. In the case of a two-
particle byproduct (eg. H → γγ), the invariant mass of the parent
particle4 is given by4 Parent particle is the particle that de-

cays into the byproduct.

M2 = 2pT1 pT2 (cosh(η1 − η2)− cos(φ1 − φ2)) , (1.1)

particle physics 3

with pT being the momentum of the byproduct (when E >> m and
the particles are massless, ET = pT holds), and both η and φ being
geometric properties, that will be expanded in section 1.2. Due to
Heisenberg’s uncertainty principle, the mass of particles can fluctu-
ate

∆E∆t ≥ h̄/2⇔ ∆m∆t ≥ h̄/2. (1.2)

This in turns, means that the shorter lifetime a particle has, the less
certain is its mass, which gives rise to a width in the invariant mass
of the particles. A Breit-Wigner distribution (BW) is used to describe
this distribution. The equation for BW can be seen in equation 1.3.

dN
dm

=
Ntot

π

Γ/2
Γ2/4 + (m−m0)

(1.3)

where ∆m ≈ Γ. For decays of unstable particles, there will often
be multiple decay channels. The ratio of decays in the ith channel is
called the branching ratio5, Bri and with a partial width of Γi = BriΓ. 5 The branching ratio is the fraction of

particles that has a specific decay chan-
nel.

In chapter 5 and 6, the BW convoluted with a Crystal Ball distribu-
tion (BW

⊗
CB) will be used to fit the resonance of the Z-boson in

both Monte Carlo simulated data and real data measured at ATLAS.
The resonance must follow a BW, but because the real world is noisy
and the detector has imperfections (see section 7.5 in the discussion),
the convolution with CB must describe these impurities. The effects
of the CB convolution can be seen in section 9.1.1 along with the
expression for CB.

1.2 The Large Hadron Collider (LHC)

The Standard Model has been a breakthrough in particles physics,
promising to unify properties of fundamental particles. Nevertheless,
it is still a theory that must be experimentally tested and challenged.
The theory contains parameters that need to be experimentally mea-
sured and, hence, countless experiments have been made to deter-
mine the parameters or to disprove the theory.
Parameters and postulations from the SM require testing at very high
energies. Consequently, the circular Large Hadron Collider (LHC) at
CERN was constructed. With its circumference6 of 27 km, it was able 6 Large particle accelerators are requied

to have a large circumference, other-
wise all the energy will be lost to
synchrotron radiation, when bending
charged particles. This is not a problem
in linear accelerators.

to observe the Higgs boson (edicted by SM) at 125 GeV [8] and [9]
in 2012. Although the Higgs was discovered in 2012, much of the
analyzes, at the LHC today, are focused on confirming the several
decay channels of the Higgs. However, due to the small branching
ratio of the channels, this is very difficult and require large amount
of statistics, which is dependent on the reconstruction capabilities of
the experiment.

The LHC consists of four main detector experiments: the CMS, AL-
ICE, LHCb, and ATLAS, where each detector has a different com-
position and is optimized for different physics research. This thesis
will focus on the ATLAS Experiment, and a brief introduction to the
experiment will follow in the section below. The LHC has had two

4 masters thesis

runs, Run 1 (2009-2013) and Run 2 (2015-2018). At the time of writing,
it is closed but will open for Run 3 in 2021. The years of shutdowns
are due to upgrades and maintenance of the collider and detectors.
Some of the important specifications of LHC and ATLAS are

• Center of mass energy (CoM) at
√

s = 14 TeV can be achieved in
proton-proton (pp) collisions.

• Bunch crossing are due every 25 ns with bunch sizes upwards of
1011 particles.

• A luminosity7 at 146.9fb−1.7 Luminosity is a measure of interac-
tions per bunch crossing. If the lumi-
nosity increases, the amount of particles
that collide do as well. Inverse femto-
barn ((10−15)−1) is a typical unit when
measuring the number of particle colli-
sion events.

Now, with further upgrades during the shutdown between Run 2

and 3, the LHC and ATLAS Experiment are getting ready for High-
Luminosity-LHC (HL-LHC)[25]. It seeks to increase the luminosity
at the LHC to 4000 fb−1, which would be devastating if the recon-
struction algorithms do not follow.

This thesis will focus on the proton-proton (pp) collision at ATLAS,
which is a very complicated phenomenon. Due to the proton struc-
ture (explained above), a pp collision resembles collisions between
two filled trash cans, as the internal structure is unknown, and a
spray of particles will fly out as they collide. Lucky, these particles
can be studied. With the high center-of-mass energy at the LHC, a
pp collision can create many interesting events for a physics analysis.
However, this high center-of-mass energy and increase in luminosity
comes with a caveat. A large number of particles will be created at
each crossing, and most of these are not of interest. These events will
contribute to the pileup8 〈µ〉, which can pollute interesting particle8 Pileup is noise (from other particles)

within the cluster of the particle. Quan-
tified as the average interactions per
crossing. With the increase in luminos-
ity, the pileup will increase as well.

phenomena. With a rise in luminosity, 〈µ〉 will increase and chal-
lenge existing analytic algorithms. In addition, protons rarely hard-
scatter9, giving rise to high transverse momentum (pT), but rather of-

9 Where the protons collide with each
other head on.

ten occur with an angle, producing events with high pseudorapidity
η, which can lead to slightly different behavior than hard-scattered
ones.

1.2.1 A Toroidal LHC ApparatuS

For further information about the ATLAS Experiment see [7] and
[13]. The ATLAS detector is the largest general-purpose detector at
LHC, able to analyze pp and heavy-ion collisions. It is built in cylin-
drical layers centered around the LHCs beam crossing. Before elab-
orating further on the setup of the ATLAS detector, a brief introduc-
tion in the underlying coordinate system and geometric will follow.
In Cartesian coordinates, the origin lies at the interaction point10 in10 The interaction point is at the beam

crossing, where the two particle beams
are crossed.

the center of the detector. The z-axis points along the beam axis
while the x-axis points into the center of the LHC and the y-axis
points orthogonal upwards towards the sky. Due to the circular sym-
metry, spherical coordinates are used instead: the azimuthal angle
φ = [0, 2π] in the xy-plane, and the polar angle θ = [0, π] for the zy-
plane, and rapidity11 for velocity. However, protons consist of sub-11 Rapidity given as ω = 1

2 ln
(

E+pz
E−pz

)
.

particle physics 5

structures12 with a non-uniform internal energy distribution, and be- 12 Namely, quarks and gluons.

cause of this, the collisions will often be boosted13. Therefore, pseu- 13 If one of the particle in the collision
has more energy than its counterpart,
the byproduct emitted will have the
same direction as the boosted particle.

dorapidity is used instead of rapidity to describe the particle position
in the zy-plane. Pseudorapidity is defines as η = − ln(tan(θ

2)). When
describing the position of particles, φ and η will be used. η and φ are
illustrated in figure 1.3.

(a) z-y plane of the ATLAS detector.

(b) x-y plane of the ATLAS detector.

Figure 1.3: The figure shows the ge-
ometry of the ATLAS detector. It
shows the range of η, φ and θ. The
cylinder (top figure) and circle (bot-
tom figure) indicate the ATLAS de-
tector. Figure from [40].

An overview of the ATLAS detector is illustrated in figure 1.4. It
consists of layers upon layers of advanced measuring equipment de-
signed to analyze the outcome of a collision. The ATLAS detector
is divided in 4 main sections. From the innermost section, closest to
the beam-pipe, the Inner Detector (ID) is located. On top of the ID
is the electromagnetic calorimeter (ECAL), followed by the hadron
calorimeter (HCAL). The last section is muon spectrometer (MS).
In the following section, an in-depth description of the detector will
be given. It will place emphasis on the ID and ECAL, since only
these sections are used in the analysis. Most of the detector layers
are separated into barrel and end-caps. The barrel is a cylinder en-
closing the beam pipe, and centered at the beam crossing. The end-
caps close the cylinder at each end, like a lid of a Pringles® can. The
electronics from each section of the barrel and end-caps has to be
powered, cooled, heated and send out data. This is carried out us-
ing service wiring routed in-between the barrel and end-caps. This
region is called the crack region and has lower resolution and in-
creased material budget compared to the rest of the detector. It will
challenge the reconstruction within this region. This will be touched
upon in the following sections.
The ATLAS detector can be viewed as a large camera with multiple
lenses taking images of the particle properties and behaviors. It is
these images that will be used in the analysis.

Figure 1.4: An overview of the AT-
LAS detector with labels on the
central detector parts. Many of
these parts will be elaborated on in
the following sections. The figure is
from [13].

6 masters thesis

1.2.2 The Inner Detector (ID)

The Inner Detector is the first lens, taking images of collision. The
IDs’ purpose is to reconstruct the tracks left by charged particles.
The ID has a radius of 1.15 meter and is located 5 centimeters from
the collision center. A fine detector granularity is required to measure
momentum and trajectory accurately. The ID measures tracks within
|η| < 2.5 and pT > 0.5 GeV. It is enclosed in a 2 Tesla magnetic field
created by a solenoid magnet located between the ID and ECAL.
It is able to bend track of charged particles, thus measuring their
momentum14. The ID is built so only a small fraction of the particle14 The trajectory radius of a charged

particle in a magnetic field is given by
r = pT

qB , where pT is the transverse mo-
mentum, q is the charge and B is the
size of the magnetic field.

energy is deposited in the ID, with most of the energy is saved for
the ECAL.
The ID is composed of three sub-detectors: the Pixel Detector, the
Semiconductor Tracker (SCT), and the Transition Radiation Tracker
(TRT). All sub-detectors are separated into barrel and end-caps, as
seen in figure 1.5.

Figure 1.5: Schematic overview of
the barrel layers within the ID be-
fore LS1. The figure is from [13].
The top figure shows the barrels
and end-caps of the ID with all its
layers and their |η| coverage. Below
that figure, a zoom-in of the pixel
detector and a table displaying the
radius and height of the layers can
be seen.

Pixel Detector

The innermost layer of the ID is the Pixel Detector. It is built of semi-
conductors designed to detect charged particles. Originally, the Pixel
Detector consisted of three layers in the barrel and end-caps, but dur-
ing Long Shutdown 1 (LS1 2013-2014), an additional layer, Insertable
B-Layer (IBL), was added, which was intended to better identify b/τ

quarks[35] (because of their long lifetime.). However, this is not of
interest for the analysis in this thesis. The three original layers can be
seen in figure 1.5. Due to its short distance to the interaction point,
the components of the Pixel Detector are required to meet strict spec-
ifications on radiation hardness and resolution.

The Pixel Detector consists of 1736 identical with a total of 92 million
pixels. Each pixel has a size of 50× 250µm2 for IBL and 50× 400µm2

for the rest and covers |η| < 2.5 The concept behind the pixel sensors

particle physics 7

is similar to the one of solar cells. Both use liberated electrons to cre-
ate a current. Semiconductors are useful as they have a small band
gap of 1.12 eV between the valence band and conduction band. Thus,
the price for liberating an electron is only 3.6 eV15. This is important, 15 For a noble gas the price is about 30

eV, and it is important to reduce the
amount of energy deposit in the ID [20].

as only a minimum amount of energy must be deposited in the ID.
Due to the voltage over the sensors, the liberated electrons will run as
current moving toward the read-out channel. The reconstruction will
back-track the current, and find the electron-hole pair to calculate the
path of the charged particle. This concept follows condensed matter
physics and is the approach utilized by all semiconductor-detectors
at ATLAS [20]. Due to the number of pixels, the Pixel detector can
track charged particles with very high precision, but due to its high
price and material budget, semiconductor modules are only used in
the Pixel detector and Semiconductor Tracker.

Semiconductor Tracker

The next section of the ID is The Semiconductor Tracker (SCT). The
SCT is also composed of semiconductors, a total 4088 modules, but
these are silicon micro strips with a larger footprint than the pixels
in the Pixel Detector. The barrel of the SCT has 4 layers while the
two end-caps have 9 layers. The strips of the barrel have a footprint
of 12cm× 285µm and are tilted 40 mrad relative to each other to im-
prove resolution. The barrel layers have a resolution of 17× 580µm2

in (R− φ)× z and the end-caps have a resolution of 10× 115µm2 in
(R− φ)× R. The SCT has coverage at |η| < 2.5 with the crack located
at |η| ≈ 1.3.

Transition Radiation Tracker

The last section of the ID is the Transition Radiation Tracker (TRT).
The TRT is a gaseous detector composed of roughly 300.000 straws
(in the barrel and end-caps). It measures the track trajectory in the
R − φ plane. The straws have a radius of 2mm, with a centered
golden-plated tungsten wire that measures 0.03 mm in diameter. In-
between the wire and the straw a mixture of XE/Ar/CO2/O2 gas
flows. A charged particle ionizes the gas and creates a current that is
measured by the read-out channel. The detector barrel consists of 73

straw layers with the crack at 0.8 < |η| < 1.0, whereas the end-caps
has full coverage at |η| < 2.

As mentioned before, semiconductors can be more beneficial than
gas, but whereas the Pixel detector and SCT estimate a district num-
ber of positions for the charged particles with very high precision, the
TRT must continuously track the them with less precision allowed.
The TRT is large compared to the Pixel Detector and SCT allowing
the radius of the track to be measured. The TRT is also able to do
PID (will be explained below) on electrons. They radiate transition
photons in KeV range that react XE gas, creating distinct signals in
the TRT.

8 masters thesis

1.2.3 Calorimeter physics

After passing the three sections of the ID, the particle will encounter
the calorimeters. They consist of two parts, the electromagnetic calorime-
ter (ECAL), and the hadronic calorimeters (HCAL)16. The calorime-16 An additional part is the forward

calorimeter (FCAL), which is covering
2.47 < |η| < 4.9. However this is be-
yond the scope of this thesis.

ters are significantly larger than the ID (see figure 1.4) but have the
same coverage in |η| < 2.5. In contrast to the ID, the focus of the
calorimeters is measuring the energy of any hadrons, electrons, and
photons entering the detector. They are constructed with as much
material as possible to increase the interaction rate of the particles.
Due to the hadrons sizes, they are difficult to stop compared to the
electrons and photons, hence two separate calorimeters are required,
one for measuring the energies of electrons and photons (the ECAL)
and one for energies of hadrons (the HCAL). The calorimeters are
composed of passive and active layers. An outgoing particle inter-
acts with the passive layers and creates a shower of particles, which
deposits its energy in the active layers, making it possible to measure
the energy of individual particles of the shower. In the analysis, only
measurements from the ID and ECAL will be used.

The Electromagnetic Calorimeter

Electrons and photons have unique properties compared to hadrons
and muons. An important feature of the electron is Bremsstrahlung.
When bent or decelerated, the electrons emit photons that convert
into electron-positron pairs (e+e−), leading to a domino effect creat-
ing electromagnetic showers [20]. The incoming electrons and pho-
tons with energy E0 cascade into more electrons, positrons, and pho-
tons, each containing only a fractions of E0. The energy of the shower
is collected by the ECAL cells and algorithms are used to reconstruct
the original energy, E0, of the electron or photon. The objective of
this thesis is to improve this reconstruction of E0.
The ECAL is constructed of two half barrels centered on the z-axis,
both covering 0 < |η| < 1.475, with the end-caps closing the cylinder
and covering at 1.375 < |η| < 3.2.
Both the barrel and end-caps consists of four layers. Three of the bar-
rel layers can seen in figure 1.6 and all four in figure 1.7. As seen in
figure 1.6, the internal layout of the layers is accordion-shaped, giv-
ing full coverage in the φ direction. The ECAL is a lead-liquid-argon
(Lead-LAr) detector, lead being the passive material and Argon being
the active one. A particle shower ionizes the liquid-argon, creating
more e+e− pairs. The e− travels to the copper electrodes submerged
in the liquid, creating yet another current. From this current it is pos-
sible to estimate the position and amount of energy deposited by the
shower particles.

Cells of the ECAL

As hinted in figure 1.6 and figure 1.7, the ECAL layers are composed
of cells with varying granularity. The complete set of (η, φ) resolu-

particle physics 9

Figure 1.6: From [13]. The figure
shows the accordion of the ECAL,
namely layers 1,2 and 3. Layer 0
(pre-sampler) is not displayed on
the figure and is before layer 1. The
illustrates the η × φ granularity of
cells within each layer as well as
the accordion shape of the ECAL.

tions in the layers can be seen in table 1.1. Each cell17 measures two 17 The cells of the ECAL will also be re-
ferred to as pixels, as they make up the
images used in the analysis.

properties: the energy deposited in the cell and the ATLAS time of
the measurement18.

18 Additional information, such as noise
and gain are also measured. However,
these will not be used in the analysis.

Figure 1.7: From [42]. The figure
shows the (η, φ) resolution of the
ECAL layers in the barrel.

However, with bunch crossing every 25 ns and read-out time being
finite, there might be small overlaps between the event energy in the
pixels. This is corrected for in figure 1.8, with the energy of a pulse
measured starting at tstart = 450 ns and ending at tend = 600 ns.
Afterwards, the additional energy from the next crossing is corrected
for by underestimating the energy after t = 600 ns. This behavior
should help correcting for pileup.

The Hadronic Calorimeter

The ECAL is not designed to stop all particles. Hadrons, such as
charged pions (π+/π−), are much more difficult to stop and only
deposit a small fraction of their energy in the ECAL. Other hadrons,
such as the neutron, with neural charge, will often not make any
interactions in the ID or ECAL. Therefore, the ECAL is encapsu-
lated by the Hadronic calorimeter (HCAL), which is designed to
measure hadrons. The HCAL is significantly deeper than the ECAL
and consists of three parts, the barrel, the extended barrel and an
end-caps on each end. Both the barrel and the extended barrel can
be seen in figure 1.4. The barrels are tile calorimeters using steel as
an absorber and a scintillator19 as its active material. When a hadron 19 A scintillator radiates light, when ex-

posed to a charge particle.passes through the HCAL, it interacts with the steel, leading to a
hadronic shower of charged hadrons. These charged hadrons causes
the scintillator to radiate light, from which the energy and position
of the hadrons can be determined.

10 masters thesis

Layer Granulartity in η × φ |η| coverage

ECAL barrel
Layer 0 0.025× 0.1 |η| ≤ 1.52

Layer 1

0.025/8× 0.1
0.025× 0.025

|η| ≤ 1.40
1.40 < |η| ≤ 1.475

Layer 2

0.025× 0.025
0.075× 0.025

|η| ≤ 1.40
1.40 < |η| ≤ 1.475

Layer 3 0.050× 0.025 |η| ≤ 1.35

ECAL end-caps
Layer 0 0.025× 0.1 1.5 < |η| ≤ 1.8

Layer 1

0.05× 0.1
0.025× 0.1
0.025/8× 0.1
0.025/6× 0.1
0.025/4× 0.1
0.25× 0.1

1.375|η| ≤ 1.425
1.425 < |η| ≤ 1.5
1.5 < |η| ≤ 1.8
1.8 < |η| ≤ 2.0
2.0 < |η| ≤ 2.4
2.4 < |η| ≤ 2.5

Layer 2

0.05× 0.025
0.025× 0.025

1.375|η| ≤ 1.425
1.425 < |η| ≤ 2.5

Layer 3 0.05× 0.025 1.5 < |η| ≤ 2.5

HCAL LAr end-caps
Layer 0,1,2,3 0.1× 0.1 1.5 < |η| ≤ 2.5

HCAL tile gap
Layer 1 0.1× 0.1 0.9 < |η| ≤ 1.0
Layer 2 0.1× 0.1 0.8 < |η| ≤ 0.9

Layer 3

0.1× 0.1
0.2× 0.1

1.0 < |η| ≤ 1.2
1.2 < |η| ≤ 1.6

HCAL tile barrel
Layer 1 0.1× 0.1 |η| < 1.0
Layer 2 0.1× 0.1 |η| < 0.9
Layer 3 0.2× 0.1 |η| < 0.7

HCAL tile extended barrel
Layer 1 0.1× 0.1 1.1 < |η| < 1.6
Layer 2 0.1× 0.1 1.0 < |η| < 1.5
Layer 3 0.2× 0.1 0.9 < |η| < 1.3

Table 1.1: Granularities of the lay-
ers within the central (|η| < 2.5)
calorimeters. It is important to note
the different granularities, as this
poses a central problem for the re-
gression algorithm used in chapter
5 and 6. However, it will be solved
in chapter 4.

particle physics 11

The barrel covers |η| < 1, where the extended barrel covers 0.8 <

|η| < 1.7. The end-caps are different, as they use copper as the pas-
sive material and LAr as active. The end-caps have four layers with
same resolution 0.1× 0.1 in ∆η× ∆φ for 1.5 < |η| < 2.5 and 0.2× 0.1
in ∆η × ∆φ for 2.5 < |η| < 3.2. The complete resolution of the layers
in ECAL and HCAL can be seen in table 1.1.

Time in physics pulse frame [ns]

1−

0

1

2

3

4

5

P
u
ls

e
 h

e
ig

h
t
p
e
r

e
n
e
rg

y
 d

e
p
o
s
it
 [
A

D
C

/G
e
V

]

ATLAS Preliminary pp Data August 2017

LAr Demonstrator

Front layer supercell

= 1.91φ= 0.46, η

= 0.990
pred

/AmeasA

= 0.1 ns
pred

-tmeast

0 200 400 600 800 1000 1200
Time in physics pulse frame [ns]

0.1−

0.05−

0

0.05

0.1

R
e
l.
 d

if
fe

re
n
c
e

Figure 1.8: Signal read-out of cells
[2]. The figure read-out behavior of
a cell and the additional correct be-
cause of the fast bunch crossings.

Muon System

The last line of defense for detecting particles from the collision, is
the muon chamber (MS). Only neutrinos and muons will reach the
MS20. Both particles are very difficult to detect because of their low

20 However, neutrinos cannot be mea-
sured in the MS.

interaction rate. The MS is similar to the TRT in the ID, using a hol-
low rod filled with gas and a centered rod with voltage. A muon
interacts with a gas, creating an electron that drifts to the centered
rod. The drift can then be measured and used to estimate the path
of the muon. The MS covers a region of |η| < 2.7. A toroid magnet
at 3.5 Tesla is used to bend the trajectories of muons in φ in order to
measure their momentum.

1.3 Reconstruction

After the collision data has been recorded, the real detective work be-
gins. The reconstruction of particle tracks, the identification of parti-
cles (PID), energy reconstruction (ER), and matching the ECAL clus-
ters to tracks have to be performed using reconstruction algorithms.
These algorithms will be explained below.

1.3.1 Track reconstruction

Only charged particles with pT > 0.5 and |η| < 2.5 are selected in the
reconstruction. The reconstruction of tracks is set in three stages. An
overview of the reconstruction will follow. For further information
see section 10.2.1 in [13].

1. The pre-processing stage, where the raw data of the collision from
the Pixel Detector and the SCT are converted into clusters. After-
wards the SCT clusters are transformed into space points.

2. The track finding stage, where track seeds are generated from
the three space-points of the Pixel Detector with the hits from
the first layer of the SCT. These seeds are extended out and used
to find track candidates throughout the SCT. The candidates are
then fitted and outlying clusters are removed. These fits are then
extended into the TRT to account for the curvature21 of the track. 21 Because the magnetic field will bend

the track of the charged particles.From this the pT can be measured. For high pT tracks the precision
of the pT is low, as the radius of the bend is very large and thus
difficult to measure. At last, the tracks are re-fitted using the whole
ID and compared to the silicon-only track candidates. Bad fits are
again labeled as outliers.

12 masters thesis

3. The last part of the reconstruction is to trace back the track to their
primary vertex close to the interaction point.

1.3.2 Identification of particles

The next important step is to identify the particle type and decay
channel. In MC, the TruthType, TruthOrigin and TruthPdgId are gen-
erated, so the decay and particle type are known. However, in Data,
this is not the case. To identify electrons in Data, ATLAS uses a like-
lihood algorithm to classify if its an electron or not. For photons, the
identification is a cut-based method, making rectangular cuts in pho-
tons variables.
ATLAS divides their identifications into three cuts, Tight, Medium
and Loose, with varying efficiencies. In this thesis, multiple criteria
are used for selecting the correct events in Data. These are explained
in chapter 3.

1.3.3 Cluster matching

We will only be focusing on cluster matching for ECAL. The clusters
of energy in the ECAL have to be linked to the particles from the col-
lision. Usually, particles deposit their energy in multiple cells. This
is a two step process [12]. First, the size of the cluster is determined.
Afterwards, a electron or photon is linked to the cluster.
To determine the number and size of the cluster, the algorithm starts
by seeding initial clusters containing high energy cells in the ECAL.
To become an electron cluster seed, it is required for the cluster to
have ET ≥ 1 GeV and to match at least four hits in the SCT. For
photon clusters the only requirement is ET ≥ 1.5 GeV. After selecting
the cluster seeds, the algorithm will find satellite clusters, which is
neighboring cells (within ∆η× ∆φ = 0.075× 0.125 of the barycentre)
where the energy is (some σ) above the noise level22 are attached to22 Additional requirements can be seen

in [12]. the seed, forming a SuperCluster. These satellites may be photons
that radiated of the original electron, and therefore must be a part
of the cluster. Afterwards, tracks from electrons and conversion ver-
tices from photons are matched with the SuperClusters. However,
this matching is not completely accurate and is vulnerable to mis-
matching. This will be explored in section 3.4.

1.3.4 Energy reconstruction

An important property of the reconstructed electrons and photons
is their initial energy, E0. It is not included in the track reconstruc-
tion described above. A good starting guess for E0 is the deposited
energy in the ECAL accordion, Eacc. However, as seen in figure 7.8,
this is not the full story. The showers might not be isolated or some
amount of energy might be deposited before the ECAL, so an energy
correction is needed. In the following section, the calibration used
by ATLAS, denoted Ecalib(BDT), will be explained23. Understanding23 For further information, see [11].

particle physics 13

Ecalib(BDT) is important, as it is the main competition to the DeepCalo
model.

Energy calibration at ATLAS

Energy calibration at ATLAS is separated into five selections meant
to correct for the various biases that might appear during reconstruc-
tion.

• First is estimating the energy, E0, of the particle. Here, a multi-
variate regression algorithm is used to approximate the energy
using shower properties and the sum of energies deposited in
the calorimeter. The multivariate regression algorithm used is a
Boosted Decision Tree (BDT) with variables seen in table 1.2. It is
trained on Monte Carlo (MC) simulated samples and is therefore
dependent on the accuracy of the simulation.

• An adjustment is modeled to the relative energy scales of the dif-
ferent ECAL layers based on muon and electron studies. To ex-
trapolate to the full energy range, an adjustment is applied as a
correction before estimating the energy of Data.

• Correcting for non-uniformities in ECAL that might affect Data.

• Adjusting the overall energy scale of Data using Z → ee decay. The
difference between MC and Data is also derived and corrected.
This should be universal for photons and electrons.

• Lastly, an independent comparison between MC and Data in J/ψ→
ee with low-energy electrons in focus. For photons, the Z boson
decay is used.

DeepCalo is only relevant to step 1 and is proposed as an alternative
to the BDT. All corrections mentioned above must to be revisited if
DeepCalo were to replace Ecalib(BDT).

1.4 Motivation

The following section will motivate the analysis of this thesis. Note
that the performance measurements used below will be explained
in chapter 3. For now, σCB is the width of CB and this should be
minimized.

Where to improve the reconstruction?

To reconstruct the invariant mass of the parent particle (see equation
1.1), the energies, ηs, and φs are needed from the byproduct of the
decay.

14 masters thesis

Type Name Description

Energy

E0 Energy deposited in the pre-sampler.

Eacc Energy deposited in the accordion E1 + E2 +

E3.

E1/E2 Ratio of energy between layer 1 and 2

Geometric

ηcluster η impact point in the calorimeter

φmod |φcluster − φcell |, where φcell is the centre of
the closest cell in layer 2 of the ECAL

ηmod |ηcluster − ηcell |, where ηcell is the centre of
the closest cell in layer 2 of the ECAL

φTG3 φ position in the scintillators in the tile gap.

Photon

rconv Estimated radius of the photon conversion
in the transverse plane

Rconv
E/p Eacc

T /pconv
T .

Fconv
pT

The amount of pconv
T carried by the largest pt

track.

Table 1.2: List of variables used in
the Ecalib(BDT) for energy recon-
struction. List is from [11].

Etruth (η, φ)truth σCB χ2

X X 0.06± 0.09 1.29

X 0.08± 0.09 1.27

X 2.15± 0.02 2.21

2.16± 0.02 2.22

Figure 1.9: MC sample for the de-
cay channel, Z → ee. σCB will be
explained in chapter 4, but for now
it is just a measure for how well
the invariant mass is reconstructed,
with σCB = 0 being best.

In table 1.9, the width, σCB, of the BW
⊗

CB on Z → ee in MC can
be seen. As seen from the table, the energy resolution is the most
important property to improve, compared to η and φ as σ ≈ 0 when
using only Etruth and σCB ≈ 2 when using only (η, φ)truth. This can
also be seen in equation 1.1. From the Higgs discovery in 2012 (figure
1.10), we see that the number of background photons is high and the
resonance peak is wide. Improving The PID to remove background
photons is not possible, so the only way to make the peak more dis-
tinct is to improve the energy reconstruction of the photons. This is
important in H → γγ, but also in other Higgs channels, which are
not as frequent, eg. H → Zγ[1]. The ATLAS and CMS detectors de-
signs were optimized with H → γγ in mind. At the moment CMS
has the most accurate energy reconstruction but is also the most ex-
pensive at a material price of 512 million euros[6], whereas material
price of ATLAS is 390 million euros[30]. DeepCalo might close the per-
formance gap between the two. DeepCalo will have its performance
measured in the control channels, but the true motivation for improv-
ing the ER is because of the motivation channels that will benefit from
a more accurate ER.

Figure 1.10: The figure shows the
discovery of the Higgs boson from
[9].

The channels can be seen in table 1.3. In figure 1.11, the energy
ranges of particles from the channels in table 1.3 can be seen. Over-
lapping energy ranges between the control channel and motivation
channel are very important, as the algorithms used to reconstruct the
particles do not generalize well outside of its energy range.

particle physics 15

Table 1.3: The table shows the con-
trol and motivation channels. Con-
trol channels are where we will
test improvement of the ER, and
the motivation channels are chan-
nels that would benefit from an im-
provement.

Motivation channels
H → H(→ γγ)H(→ bb) Benefit from γ improvement
H → γγ Benefit from γ improvement
H → Z(→ ee)γ Benefit from γ/e improvement
H → γ∗(→ ee)γ Benefit from γ/e improvement

Control channels
Z → ee Test e improvement
Z → µµγ Test γ improvement

Figure 1.11: Energy range by-
product of the decay of interest to
this thesis. The black dashed line is
the borderline between the motiva-
tion channels and the control chan-
nels. The box plots indicate energy
ranges, where we have available
Data or MC. See table 3.1 to find
the file containers used in this the-
sis.

0 50 100 150 200 250
GeV

eZee

EG

γZllγ

γHγγ

eHZγ

γHZγ

eHγ′γ

γHγ′γ

Ch
an

ne
ls

Channels
Z→ ee
Electron-Gun
Z→ μμγ
H→ γγ
H→Zγ

2 Machine Learning

This chapter will elaborate on the concept of Machine Learning (ML),
its applications and limitations. If more information is desired on this
subject, see [19] and [39]. As the previous chapter 1 laid the funda-
mental groundwork for the ATLAS experiment, the following chap-
ter will introduce the reader to the concept of ML and why it will
be advantageous compared to previously used methods. It will be
assumed that the reader has a basic knowledge of linear algebra.
There are many different branches of ML. The ML algorithms ap-
plied in this thesis will be supervised, meaning the algorithms will
be exposed to the data and the labels associated with the data, in con-
trast with unsupervised ML, where only the data is exposed but the
labels might be unknown or kept secret. In the following section 2.1,
the theoretical approach to ML will be explained. It will be followed
by a section introducing the ML algorithm called Neural Networks
(NN).
Note that throughout the thesis, the term optimization will be used
in relation to the performance of an architecture, and the term mini-
mize will refer to the minimizing the difference between the regres-
sion algorithm and the truth using a Loss functions (explained below).

2.1 Supervised Machine Learning

2.1.1 Terminology

Supervised ML is one of the most widespread machine learning tech-
niques.

Symbol Definition

X Feature space (D ≥ 1)

Y Label space (D ≥ 1)

X Single feature X ∈ X
Y Single label Y ∈ Y
S Sample space ((X, Y) ∈ (X ×Y))
H Hypothesis space (D ≥ 1)

l(Y′, Y) Loss function between predictions

p(X, Y) The joint probability distribution of S

Table 2.1: The table shows the sym-
bols and definitions of properties
in ML. D is the dimension.

The aim of supervised machine learning is to train1 an algorithm

1 The concept of training will be ex-
plained below.

to map X to Y . Y could be a cat or a dog, and X could be its height,
weight, and color. Then, an algorithm will be trained in distinguish-
ing between a cat and a dog by their height, weight, and color. The
complete sample space is denoted S = (X1, Y1), ..., (Xn, Yn), where
the S is assumed to be i.i.d2. When working in a complex S, multiple

2 Independent and identically dis-
tributed random variables, meaning
all pairs stem from the same joint
probability distribution p(X, Y).

mappings are possible, each one called a hypothesis, given by h, and
with H being the complete set of hypotheses. In ML, loss is a crucial
concept to understand. It is a measure of how well a selected hypoth-
esis maps h(X)→ Y and its purpose is to force the algorithm to find
the h(X) that maps most accurately to Y and minimizes the expected

machine learning 17

loss L(h). Loss is separated into two types, as seen in equation 2.1.

Expected loss: L(h) = E(l(h(X), Y))

Empirical loss: L̂(h, S) =
1
n

n

∑
i=1

l(h(Xi), Yi)
(2.1)

Where h(X) = Y′ is the predicted label space. The star of the show is
the expected loss L(h), which, as the name suggests, is the expected
error independent of S. However, the complete joint probability dis-
tribution p(X ,Y) is unknown, so computing the expected loss is not
possible. The solution is to draw i.i.d samples from S that approx-
imate p(X ,Y) and measure the empirical loss L̂(h, S) of a given h,
which can measure how well the algorithm reconstructs p(X ,Y).

2.1.2 Over- and under-fitting

Selecting the h ∈ H that minimizes the empirical loss in equation 2.1
(written as ĥ∗S = argminh L̂(h, S)), might not be the optimal model.
Rather, S is a finite sample of the joint probability distribution and
might contain impurities3 from measured data, resulting in ĥ∗S being 3 Impurities may be statistical fluctua-

tions or wrongly measured data.
tailored or over-fitted to S and E

[
L̂(ĥ∗S, S)

]
6= E

[
L(ĥ∗S)

]
. This can

partially be fixed by splitting S into Strain, Sval and Stest, where the
algorithm is trained on the Strain but the hypothesis chosen is the
one satisfying ĥ∗Strain

= argminh L̂(h, Sval). This makes ĥ∗Strain
less over-

fitted towards Strain, as the unseen sample Sval is used to select h.
This will in turn result in better generalization. Lastly, when an op-
timal ĥ∗Strain

is found, the empirical loss can be measured using Stest.
This might give the reader a good idea of why the terms Big Data
and Large-Scale data analysis are present when talking about ML, as a
large amount of data is needed to meaningfully construct p(X ,Y),
so L̂(h, S) ≈ L(h). This can also be seen in the generalization bound
found below (equation 2.3).

Figure 2.1: The figure shows the
different scenarios and shortfalls
that can appear when training a
machine learning model, and why
a validation sample is used to se-
lect the correct h. If training is
terminated in the under-fit region,
there is still generalization aspects
to be found, which can be seen
from the loss on both Strain and
Sval . In the over-fit region, the loss
from the Strain will decrease, how-
ever, the loss from the Sval will in-
crease as the model over-fits to sta-
tistical fluctuations in Strain. The
sweet spot is on the dotted line,
where both have their minimum.

When a hypothesis h is selected, L̂(h, Stest) can be measured, but
Stest will only approximate p(X ,Y), and a measure of the relation
between the empirical loss and the excepted loss is needed. This re-
lation is called the generalization bound G(h), given by

G(h) = L(h)− L̂(h, S), (2.2)

where G(h) must be minimized. As stated above, L̂(h, S) is tailored
using S, so L(h) 6= L̂(h, S) as L̂(h, S) is biased towards Stest. The
expected loss can be bounded using Hoeffding’s inequality, see [39].
Using Hoeffding’s inequality, a generalization bound of a finite num-
ber of hypotheses can be shown to be

L(h) ≤ L̂(h, S) +

√√√√ ln
(

M
δ

)
2n

, (2.3)

where M = |H| is the size of the hypothesis, n is the size of S and δ

is the confidence of the model. The objective is then to minimize the

18 masters thesis

inequality, so the expected loss is strictly bounded. In ML, intuitively,
the larger S, the more accurate the model. This can also be seen in
equation 2.3 where the bound on the expected loss falls by

√
1/n.

M is a complexity measurement of the model. With a highly com-
plex model, the right-hand side will increase, giving a looser bound
on the expected loss. Intuitively, a complex model might be tailored
completely to S, resulting in over-fitting h∗S to S. Over-fitting means
that the model does not generalize to i.i.d S but rather fits a subset
of S, making performance worse for unseen S. The model can also
under-fit if there is still generalization to be found within S. Both
phenomena can be seen in figure 2.1. The selected h should be at
ĥ∗Strain

= argminh L̂(h, Sval), which is the dotted line in figure 2.1.

2.1.3 Classification and Regression

The two main branches of supervised ML are classification and re-
gression. Classification is where h(X) → Y′ is a set of classes often
defined by a discrete set of values, eg. this could be a binary classi-
fication Y = {0, 1} between a cat or a dog. In regression h(X) → Y′

predicts a continuous spectrum of values4, eg. this could be predict-4 Classification algorithms can also pre-
dict a continuous spectrum of values
between 0 and 1, which should be seen
as probabilities of a given label. Prob-
abilities or uncertainties are more diffi-
cult to obtain for regression algorithms.
In chapter 4, we will propose a loss
function that will help us determine the
uncertainty in regression.

ing the weight of a cat or a dog.

To give an intuitive understanding of classification and regression,
we will continue with the cat and dog analogy. Regression could be
predicting the weight of animals based on its height, age and type
of animal (cat/dog). Here the number types of the feature space and
label space are X = R ×N × {0, 1} and Y = R, respectively. If
the algorithm were to do binary classification between two species
of animals (cat/dog) based on their weight, height and age, the fea-
ture space and label space will be X = R×R×N and Y = {0, 1},
respectively. The definition of number types are given in table 2.2.

Name Symbol Definition

Real numbers R All number.

Rational number Q Fractional.

Irrational number R-Q non-fractional.

Intergers Z ± integers.

Natural numbers N Positive integers.

Table 2.2: The table shows the main
types of number, except for com-
plex numbers C, as these are not
relevant in ML.

This thesis will mostly be focused on regression and its applica-
tions, but it will briefly look into classification as well.

2.1.4 Loss function

As of yet, the concept of learning has not been explained. It can
vary between ML algorithms, yet a common denominator is the loss
function. In section 2.1.2, the empirical and expected loss were intro-
duced. The empirical loss is the loss measured by the ML algorithm
and will simply be referred to as the loss unless stated otherwise.
The loss function is used to measure the mistakes of an algorithm
and can, in most cases, be viewed as the error of the predictions.
Two common loss functions in regression are the square loss,

L(Y′, Y) = (Y′ −Y)2, (Y′, Y) ∈ R, (2.4)

and the absolute loss,

L(Y′, Y) = |Y′ −Y|, (Y′, Y) ∈ R. (2.5)

machine learning 19

When a ML algorithm is learning, it measures the loss L(h(X), Y)
of its current state in training and changes its trainable parameters
accordingly to minimize the loss. The specific learning behavior of
the ML algorithm used in this thesis will be introduced in the fol-
lowing section. Note that learning can take many forms dependent
on the ML algorithms, but only learning for NN will be explained
in the thesis. There are many different loss functions, all with dif-
ferent properties and behaviors. Looking at the two examples above,
equation 2.4 weighs outliers heavier than equation5

2.5 because of 5 If Y′ −Y > 1.

its squared term. Thus, when summing the loss, the outliers will be
weighted significantly heavier because of the squared term. This also
means that the loss between two algorithms cannot be compared if
the loss functions are different. An additional discussion of the loss
functions and their behaviors can be seen in section 4.2.

2.2 Neural Networks

In the following section, an elaboration on the basics of Neural Net-
works will take place, as it is the algorithm used in the analysis. The
focus will be on a type of Feedforward6 Network called a convolu- 6 Feedforward in a network means the

information will only flows forward
through the network, resulting in the
output Y′. No information is looped
back into the network as is the case with
Recurrent Neural Networks.

tional neural network (CNN). A CNN is able to handle structured7

7 Structured in the sense that the dimen-
sions of the input must not be changed.

n-dimensional input space. Where the previous section was mostly
focused on the theoretical elements of ML, the following section will
introduce applied ML with a focus on networks8.

8 In general "networks" refer to the
many NN types, eg. recurrent neu-
ral networks (RNN), convolutional neu-
ral networks (CNN), graph neural net-
works (GNN) etc.

2.2.1 Deep Feedforward Networks

Neural Networks (NN) are inspired by neuroscience to behave simi-
larly to neurons in a brain. The ambition of a NN is to approximate
some function9 f ∗ by mapping X to some function f (X ; θ), where θ 9 This can be thought of as the hypoth-

esis h∗ from before.are the trainable parameters in the NN. To get an idea of the layout
of a NN, a sketch overview of a NN can be seen in figure 2.2 with
an input layer of 3 neurons, two hidden layers with 4 and 3 neurons,
respectively, and an output layer consisting of 1 neuron. It is within
these neurons the magic happens (it will be elaborated on in section
2.2.2).

I1

I2

I3

O1

Input
layer

Hidden
layer

Hidden
layer

Ouput
layer

Figure 2.2: A sketch of a Neural
Network. Each circle indicates a
neuron with the arrow being where
data is fed from.

Each layer in a NN can be viewed as its own function f (l). With
the use of the chain rule, the whole network can be seen as being
composited of the function from each layer,

f (X) =
(

f (L) ◦ f (L−1) ◦ ... ◦ f (2) ◦ f (1)
)
(X), (2.6)

where X is the input vector of the neurons, f (1) is the first hidden
layer and f (L) the output layer. This is the concept behind a NN.
The way the layers are dependent on each other will be explained in
further detail in section 2.2.3.

2.2.2 The Structure of Neurons

The neurons, within a NN, manipulates the input xi by linear trans-
formations. The parameters of the linear transformations are trained,

20 masters thesis

in collaboration with all neurons in the network, to map f (X ; θ) →
Y . Each layer contains ≥ 1 neurons, with each neuron having a vec-
tor of weight, W for each connection to the neuron, and it has a sin-
gle bias b unique for every neuron. The linear transformation within
neurons can be written as

g (∑n
i xiwi + bL)

w1

w2

wn

a

b

Figure 2.3: The sketch shows a
single neuron with n connections,
where a is the vector output and g
is a given activation function. For
easy readability, the linear transfor-
mation is set up as a sum. However,
using equation 2.7 will decrease
computation time and is used in
real-world algorithms.

z = W>x + b (2.7)

where W is the vector of the weights, x the input vector and b the
bias (b is extended to a vector with the same number for each entry).
This results in linear behavior for z. A sketch of a single neuron can
be seen in figure 2.3.

Activation function

Linear transformation of neurons is not the complete picture. In fig-
ure 2.3, a function, g, is wrapped around the linear transformation.
This is the activation function, which adds non-linearity to the net-
work by mapping the output of the linear transformation to an acti-
vation function, as seen in equation 2.8,

a = g(z), (2.8)

where a is the final output of the neuron. Some examples of activa-
tion functions can be seen in figure 2.4. The two most commonly used
activation functions are the ReLU, which is used within the network
and in the output layer for regression networks, and sigmoid, which
is used as an output function for classification networks. Expressions
for both can be seen in equation 2.9

Figure 2.4: Possible activation func-
tions. Figure from [22].

gReLu(x) = max(0, x), gSigmoid(x) =
ex

ex + 1
(2.9)

Choosing the right activation function is very important for the per-
formance of the network. Selecting the wrong one can result in a van-
ishing gradient when back-propagating (explained below), meaning
the network will not be learning anything from the data.

2.2.3 Learning properties

Back-propagation

As seen above, each neuron has a vector of W and b associated with
it. These are trainable parameters and change according to the loss
function (or cost, C#, for the algorithm). The amount of change to
each trainable parameter is calculated by the back-propagation algo-
rithm. In forward feeding neural networks, the inutX flows forward
in the network, producing an output Y′. Y′ is evaluated against Y
in the loss function. A back-propagation algorithm is a general algo-
rithm able to calculate the gradient of a function f , (∇x f (x, y)), and,
as shown in equation 2.6, NN is a collection of functions. After the
cost is measured, the information is sent back through the network,

machine learning 21

computing the gradient of the loss function, and an optimizer algo-
rithm is thereafter responsible for changing the trainable parame-
ters. To compute the gradient backwards through the network, back-
propagation takes advantage of the chain rule in calculus,

f (g(x))′ = f ′(g(x))g′(x) can be view as
∂ f
∂x

=
∂ f
∂g

∂g
∂x

. (2.10)

Back-propagation will give a measure of how to change the weights
and biases of the network to minimize the loss function. In figure
2.5, a sketch of the output layer can be seen. Here, the activation
output from the previous layer is combined with the weight and bias
of the output neuron (see equation 2.7). Afterwards, the output is
mapped to an activation function, resulting in a(L). Finally, the loss
is calculated by comparing a(L) and Y. Now, back-propagation must
calculate ∂C#/∂ω(L). This is computed using the chain rule,

z(L)

a(L−1) b(L)w(L)

a(L)

C#

Y

Figure 2.5: The sketch shows an ex-
ample of an output layer of a NN.
C# is the cost of the #th batch (# ∈
N).

∂C#

∂w(L)
=

∂C#

∂a(L)
∂a(L)

∂z(L)
∂z(L)

∂w(L)
(2.11)

If MSE is applied as cost, the back-propagation of the simple output
layer in figure 2.5 is

∂C#

∂a(L)
= 2(a(L) −Y),

∂a(L)

∂z(L)
= g′(z(L)) and

∂z(L)

∂w(L)
= a(L−1)

will result in
∂C#

∂w
= 2(a(L) −Y)g′(z(L))a(L−1).

(2.12)

For calculating the gradient of the bias parameter in the network,
∂z(L)

∂b(L) = 1 is used instead. Generalizing each layer of calculation to f L,
the back-propagation through the network can be defined as

∂C#

∂w(L)
=

∂C#

∂ f (L)
∂ f (L)

∂ f (L−1)
. . .

∂ f (1)

∂w(L)
. (2.13)

Batch averaging is used to compute the gradient over the entire batch
(batch will be explained below). The complete vector gradient of a
network is given by

∇C# =

∂C
∂w(1)

∂C
∂b(1)

...
∂C

∂w(L)
∂C

∂b(L)

. (2.14)

When ∇C# is found, the second stage of training a NN starts. Note
that the calculation example is for a single neuron at layer L(see fig-
ure 2.5). With multiple neurons an additional subscript is required
for the weights and biases (see [39]). Now, ∇C# is be applied in the
network to change the trainable parameters. For this, an optimizer
algorithm is used for applying ∇C. The commonly used optimizer is
the Stochastic gradient descent (SGD) [38], which is responsible for
splitting S into batches. The SGD can be seen in equation 2.15.

ω#+1 = ω# − λ∇C# (2.15)

22 masters thesis

Note that w 6= ω, with ω being the collections of W and b in the
network. λ =]0, ∞[is the learning rate10 and regulates how much10 It is a hyperparameter and has to be

tuned for the optimal convergence of
the network. While λ > 1 is possible,
it is never done in practice. Commonly,
λ << 1. Hyperparameter will be ex-
plained below.

ω is changed after each iteration, which translates to how much is
learned in each epoch. The optimizer used in this thesis is explained
in section 2.3.4.

This procedure is repeated a number of iterations, given by n. The
number of iterations that have passed the complete dataset into the
network is called an epoch. The training iterations of a network are
usually measured in epochs, eg. if the dataset has 10000 entries and
batch size 1000, one epoch will consist of 10 iterations of 1000 entries.

2.3 Convolutional neural networks

The actual network algorithm used in the thesis is a Convolutional
Neural Network. In recent years, there has been a steep increase in
the accuracy of image recognition algorithms and the common fac-
tor is the use of Convolutional Neural Networks (CNNs). The idea
behind CNNs has been around for more than 30 years [27], but due
to the Big Data aspect of ML, it was not widely used. Note that most
of the math in the following section is from [39], and, for a more in-
depth description of the fundamentals of ML, see [39].

At its core, CNNs are about mapping a weight matrix called a kernel
to the X . A kernel can be seen as an n×m neuron11. Using a regu-11 In practice, a square of size n × n is

usually chosen. lar image as X , the input is a H ×W × D tensor, where D gives the
number of channels in the image12 and H and W give the height and12 In standard images the channels are

red-green-blue (RGB), so D = 3. RGB
will give perception of most colors
when working in an 8 bits colorspace.

width of the image. The expression for 2D convolutions (conv2d) is
given as

Z(i, j) = (I ∗ K)(i, j) = ∑
m

∑
n

I(i−m, j− n)K(m, n) (2.16)

where (i, j) is the dimensional position on the image, I is the input
image, K is the kernel, and Z is the resulting feature map. Due to the
nature of convolutions, the kernel is flip diagonally, but equation 2.16

is commutative 13. Consequently, the kernel can be flipped relative13 This means S(i, j) = (I ∗ K)(i, j) =
(K ∗ I)(i, j) = S(j, i). to the input as (m, n) increases, making it more intuitive to multiply

the kernel with the image. Therefore, most ML software libraries
that implement CNNs actually do not implement convolutions, but
rather cross-correlations14, given by14 Including Tensorflow and Keras,

which is the software used in this the-
sis. Z(i, j) = (I ? K)(i, j) = ∑

m
∑
n

I(i + m, j + n)K(m, n), (2.17)

Compared to equation 2.16, the sign within I has changed, so, when
convoluting, the kernel will not be flipped. For simplicity reasons it
will still be referred to as convolutions.
This is of course easiest to understand visually. Figure 2.6 illustrates
conv2d on a 2D input using a 2 kernel15. The input is H ×W × D =15 Note that the kernel is not being

flipped during convolution, so it is ac-
tually implementing cross-correlation.

3× 4× 1 and the kernel size16 is 2× 2. The image is in gray-scale as

16
3d kernels are also possible, they will

do 3d convolution on tensors, however,
it was tested in [18] and did not yield
any additional performance. Thus, only
conv2d will be used in this thesis.

only a single channel depth is used. To draw parallels to NN, the

machine learning 23

individual kernel weights can be seen as the neurons in a hidden
layer of a NN. The kernel weights are trainable parameters and an
activation function is applied to the feature map Z (not shown in the
figure). Kernels are also typically smaller than the image, meaning
it is not fully connected. This increases statistical efficiency, because
each trainable parameter is applied to multiple pixels in the image,
but it also decreases memory usage as less parameters need to be
stored.

In figure 2.6, only a single kernel is used. However, larger CNN’s
use multiple kernels, and the collection of kernels make up a filter
(k× n×m, where k is the number of kernels).
Regarding the number of trainable parameter for a conv2d is given
((width of kernel · height of kernel · number of channels in previous
layer+1) · number of filters), the +1 is for the bias and could be
removed. As an example, a conv2d with a kernel size of (3, 3) and
32 filters on a (96, 96, 1) image will result in (3 · 3 · 1) + 1) · 32 = 320
trainable parameters.

Figure 2.6: Sketch of cross-
correlation (equation 2.17) between
a input image (3 × 4 × 1) and
a kernel (2 × 2). For simplicity
during the thesis, cross correlation
will be referred to as convolutions.
Figure from [19].

2.3.1 Padding- and pooling- layers

Figure 2.7: Zero padding has been
performed on a 3× 3 image. After-
wards, a 3× 3 kernel is used. This
results in an image that is 3 × 3,
meaning the dimensions of the im-
age is kept constant.

In figure 2.6, the input dimension changes from 3× 4→ 2× 3, mean-
ing a reduction in both H×W after one convolution. Usually, CNNs
tends to be deep, with multiple convolution layers, resulting in an
unintended reduction in dimension. However, zero padding can ac-
count for this. Zero padding can be applied to increase or preserve
the input dimension of a matrix by adding rows and/or columns
of zeros as pixel-values to the matrix. Zero padding is applied be-
fore the conv2d layer and is illustrated visually in figure 2.7, where
the dimensions of the matrix are kept constant. Sometimes down-

24 masters thesis

sampling is desired within a network and is usually reserved for
pooling layers. An example of max-pooling can be seen in figure 2.8.
Here, the pooling layer takes the maximum value of a pixel within
the four same-colored squares. The matrix is reduced from a 4× 4
to a 2× 2. The two most common pooling layers are max-pooling (ex-
plained above) and average-pooling, where the average pixel-values
are calculated within the pooling matrix. Pooling helps increase gen-
eralization as it introduces invariance to small translations of the in-
put, meaning if the input is shifted by a small amount, most of the
pooled outputs do not change. The computational cost through the
network will also be reduced due to down-sampling of the matrices.

Figure 2.8: 2 × 2 max-pooling ap-
plied on a 4 × 4 matrix, resulting
in a 2× 2 matrix. Figure from [50].

In addition to the pooling layers, there is a single GlobalPooling
layer after the last conv2d layer. This layer prepares the output of
the CNN to be the input of a NN that uses the features extrapolated
by the convolutions to estimate of Y, eg. whether the object in the
image is a cat or a dog. However, NNs can only utilize vector data,
so the tensor output of the CNN has to be re-scaled. By using a
GlobalPooling layer, the tensor can be re-scaled to a vector using either
a max- or average- pooling of the channels or flattening of the tensor.
Say the output of a CNN is 3× 3× 256. Applying max- or average-
pooling (3× 3) will tehn result in an output of 256, whereas applying
flattening will result in an output of 3 · 3 · 256 = 2304.

2.3.2 Feature-wise Linear Modulation

Convolutional neural networks can be very powerful for detecting
patterns in images. However, one area where an ordinary CNN ar-
chitecture lacks precision is adding context17 to an image. Inputs are17 Context meaning that the algorithm

is supposed to learn the importance of
the image channels and weight them
accordingly. These weights are depen-
dent on variables related to the image.

usually in the form of 2D or 3D matrices of pixel-values, but an im-
portant feature to an image might be a scalar variable in the form
of the place the image was taken or the date of the image, etc. This
could give better context to the image. In our case, in a detector en-
vironment, this might be 〈µ〉, the average number of interactions per
crossing, which might indicate the amount of pileup in an image.

This information is added to the channels of the CNN using a Feature-
wise Linear Modulation layer, also called FiLM. Proposed by [17], a
FiLM adds the ability to use scalar variables for adding context to
an image. The context is in the form of an affine transformation of
the channels after convolution. First, a FiLM generator (FiLM gen. is
essentially a NN) is used to modulate f and h

γi,c = fc(xi) and βi,c = hc(xi) (2.18)

where f = h since the same FiLM gen. is used. The output is γi,c and
βi,c for the ith input of the cth channel. The FiLM layer between the
conv2d and activation layers applies affine transformation that scales
and shifts the channels in the CNN, given by

FiLM(xi) = γi,czi,c + βi,c, (2.19)

machine learning 25

with zi,c being the output of the ith conv2d and the cth channel.
In figure2.9, the affine transformation of the channels can be seen.
The FiLM also has the ability to turn a channel completely off by
just setting the ith and cth γ and β values to zero. FiLM gen. is
integrated into the back-propagation, giving it the ability to learn
the affine transformation that best maps to the desired output. This
makes FiLM a powerful algorithm for adding context in images.

Figure 2.9: γi,c and βi,c are cre-
ated from FiLM gen, and then the
FiLM layer within the CNN applies
the transformations to the chan-
nels. Fi,c is the cth channel of ith
convolution. Figure from [17].

2.3.3 Regularization - The eternal fight for generalization

As mentioned above, in section 2.1.2, the eternal struggle is the gen-
eralize of ML algorithms to S, so the difference between empirical
and expected loss is minimized. Due to the size and customizabil-
ity of CNNs, they can be prone to over-fit. In this section, some key
components in forcing CNNs to generalize, avoid over-fitting, and
techniques to speed up the evaluation of a CNN will be introduced.

Dropout

Dropout layers are a technique to force neurons to generalize more
by turning off neurons in each epoch. When an epoch starts, Dropout
selects (given some probability density function a set of neurons.
These selected neurons are neutralized, meaning they are turned off
and not being used in the following epoch. Afterwards, a new ran-
dom set is neutralized and the previous are activated. This causes the
network to become more robust and the neurons to generalize, since
neurons that might recognize specific patterns could be neutralized
in the following epoch and now this pattern has to be modeled by the
existing neurons. Furthermore, it also helps to prevent the network
from over-fitting to S.

Early Stopping and ModelCheckpoint

Early stopping and ModelCheckpoint are a very simple and use-
ful tools against over-fitting and endless convergence time. Mod-
elCheckpoint ensures that when a minimum of a model, h∗, is found
(see figure 2.1), the parameters of the model is saved.
The Early Stopping tool compared the validation score of the cur-
rently each epoch to the previous validation scores. If the new score
is lower 18 than the previous, the ModelCheckpoint algorithm saves 18 Assuming minimization problem.

the parameter and training continues. However, if the new score is
higher than the previous, a counter starts. If the score has not de-
creased given n number of epochs19, the Early Stopping algorithm 19 This is chosen by the user.

will terminate the training and select the previous checkpoint. Stop-
ping the training after the validation score has stopped decreasing
will help speed up the algorithm as it does not train endlessly, eg. if
the minimum is found after 50 epochs, it should not continue until
1000 epochs.

26 masters thesis

Batch Normalization

Batch normalization [21] layers (BN) are a clever way to improve
the performance, speed, and stability of a NN by standardizing the
output of each neuron using

BN(xi) = γi ·
xi − µi

σi
+ βi, (2.20)

with xi being the output of the layer, µi and σi the mean and stan-
dard deviation of xi (non-trainable) over a mini-batch. The γi and
βi are trainable parameters of BN used to scale and shift the nor-
malized values. The reasoning behind BN can be found in back-
propagation (section 2.2.3) and activation functions (figure 2.4), as
the back-propagation uses the gradient of the activation function, a
very subtle gradient is preferred. Looking at figure 2.4, most of the
gradient within the activation functions are at x ≈ 0 and, due to the
use of gradients in the back-propagation, networks will prefer the
output of neurons to be normalized values close to x ≈ 0.

Hyperparameters

Hyperparameter are used to regulate the behavior of an ML algo-
rithm. They control the learning process of the algorithms. Contrary
to the trainable parameter of a network, the hyperparameters are
user-define and are typically constant throughout the training pro-
cess. For NN the important hyperparameter to consider is often num-
ber of hidden layer, number of neurons in each hidden layer, the acti-
vation function used in each layer, learning rate used in training, the
batch size or the loss function. When optimizing an architecture, op-
timizing the configuration of hyperparameter is often what is meant
as different configuration of hyperparameter will have a big influ-
ence of the performance of a network.

2.3.4 Optimizing learning rate

The learning rate λ =]0, ∞[(normally 0 < λ < 1) was quick ad-
dressed in section 2.2.3 and will be described in more detail below.
The learning rate is the hyperparameter responsible for regulating
the amount learned after each iteration, see equation 2.15. This will in
terms affect the convergence time and sensibility to small local min-
ima. Too low of a learning rate (λ ≈ 0) will lead to the model being
slow and highly sensitive to local minima and too large of a learning
rate (λ ≈ 1) might result in the model diverging from the global min-
ima and not be able to converge to a minimum. Both behaviors can
be seen in figure 2.10. Due to the importance of λ and the complexity
of the loss function space, multiple algorithms have been proposed
to tackle this problem. In general, there are two types, Optimizers and
Learning-Rate-Schedulers (LRS). An Optimizer affects how learning is
applied to the gradient descent. Rather than being applied linearly,
as in equation 2.15, an Optimizer transforms the gradient term. In

machine learning 27

Figure 2.10: θ is the parameters of
the network and J(θ) is the loss
function. While J(θ) is very simple,
an increase of the complexity of θ

will lead to an increase of the com-
plexity of J(θ) as well. Figure from
[23]

this thesis, Nadam [16] is used as the Optimizer. It incorporates mo-
mentum20. A LRS controls the size of λ. Usually, a range of λ is set, 20 Taking previous gradients into ac-

count.and the LRS then changes the λ after each iteration21, helping the
21 Usually from a high λ to a low λ.

algorithm convergence to a minimum.

Optimizers

Optimizers were shortly mentioned in section 2.2.3, where it was
shown how they are used in the learning process of a network. The
SGD was shown, which is a very simple optimizer, which only takes
the recent back-propagation into account. However, the previous gra-
dients from back-propagation might also be of importance to the
learning network. Hence, many optimizers also add momentum to
their loss function, given by

ω#+1 = ω# − λ∇C# −m#, m# = γ∇C#−1 (2.21)

where m# = γ∇C#−1 is the momentum, which is the fraction of the
past gradients. γ =]0, ∞[regulates the amount the previous gradient
is used, usually γ < 1. Momentum has many benefits. It reduces the
convergence time as well as the oscillation of the loss function.
There exists many kinds of optimizers specialized for different prob-
lems. An overview of the most commonly used can be seen in [38],
which also elaborates further on the inner workings of many opti-
mizers. The optimizer used in this thesis is Nadam, as it was found
to be the most accurate in [18].

NADAM

As it is the optimizer used, we will give a short introduction into
the fundamental mechanics of Nadam. Nadam is an acronym for
Nesterov-accelerated Adaptive Moment Estimation, which is a com-
bination of Adam and Nesterov accelerated gradients with a modi-
fied momentum term. Nadam is given by

ω#+1 = ω# −
λ√

v̂# + ε

(
β1m̂# +

(1− β1)∇C#

1− β#
1

)
, (2.22)

This optimizer can be a little confusing, as it is a combination of two
optimizers. However, it works as follows. The β ≈ 1 and ε = 10−8 are
estimated empirically [38]. Both v̂# and m̂# are dependent on the past
∇C# and (∇C#)

2, respectively. In essence, this optimizer is working
well with momentum, as m̂# is a exponentially decaying average of

28 masters thesis

previous gradients and v̂# is m̂2
. The NAG adds a persistence to

the momentum, so the optimizer slow down when the momentum
becomes too large, which can be a problem for Adam.

Learning Rate Schedulers

As mentioned above, a LRS affects the learning rate of a network
by changing the value of λ after each iteration (see equation 2.15),
which will affect the amount learned after each iteration. There are
many variation of LRS, and they do not all simply decrease λ for
convergence to a specific minimum in the loss space. The two LRS
we will be focusing on are Cyclical Learning Rates [41], where λ both
decreases and increases. The reasoning is to insure that the network
is not converging to a local minima, and can therefore "jump" out of
the minima due to the large λ. The two types of LRS can be seen in
figure 2.11.

Figure 2.11: Example of 1cycle
LRS and cyclical LRS. The cyclical
LRS has additional hyperparame-
ters that can change the behavior
of the learning rate eg. the upper
bound can exponentially decay as
a function of iterations.

(a) Cyclic learning rate (CLR) (b) 1Cycle Learning rate (oneCLR)

For CLR, an upper bound, lower bound and step size are defined.
The bounds control the range of the learning rate, where the step
size controls the number of iterations until the bounds. Additional
functions can be added to CLR, eg. making the upper bound expo-
nentially decay. oneCLR is similar to CLR, but instead of running
for multiple step_sizes, oneCLR only runs two step sizes from its
lower to upper bound and back again. It concludes by reducing its
lower bound with 1/10 for n number of iterations. The result is that
oneCLR converges quicker, after ≈ 50 epochs, where CLR might
need > 100 epochs. However, this also means that step_size is an
import hyperparameter for oneCLR as it is not meant to continue
after two steps.

Figure 2.12: Figure from [18].
The figure illustrates the number
of epochs needed for CLR and
oneCLR to convergence to the same
loss. It can be seen that oneCLR is
many epochs faster than CLR.

3 Pre-processing of data

Obtaining clean and readable data plays a crucial role in every Ma-
chine Learning pipeline. Due to the amount of data produced in a
particle collision, ATLAS has constructed their own file format called
.root, which has different levels dependent on the needs of the anal-
ysis. In this thesis, we will be working with xAOD and DxAOD,
which contain both raw and reconstructed particle properties from
multiple collisions. They require a pre-processing framework before
they can be processed by Python. In this chapter, we will go through
the different pre-processing stages to produce a sample optimized
for Tensorflow in Python.

To access the files used in this thesis, access to Rucio [10], a database
maintained by CERN, is required. The framework used to process
xAOD and DxAOD1 is built from the Athena framework[14] devel- 1 xAOD and DxAOD are file formats

downloaded from Rucio.oped by the CERN Collaboration. The specific framework used in

Decay channel Container Type Deviation

Z → ee

mc16_13TeV.361106.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Zee.deriv.

DxAOD_EGAM1.e3601_e5984_s3126_r10201_r10210_p4089 MC DxAOD

data16_13TeV.periodAllYear.physics_Main.PhysCont

.DxAOD_EGAM1.grp16_v01_p4088 Data DxAOD

Electron Gun
mc16_13TeV.423000.ParticleGun_single_electron_

egammaET.recon.AOD.e3566_s3113_r9364 MC xAOD

Z → µµγ

mc16_13TeV.301536.Sherpa_CT10_mumugammaPt10_35.deriv.

DxAOD_EGAM4.e3952_s3126_r10201_r10210_p3956 MC DxAOD

mc16_13TeV.301903.Sherpa_CT10_mumugammaPt70_140.deriv.

DxAOD_EGAM4.e3952_s3126_r10201_r10210_p3956 MC DxAOD

data16_13TeV.periodAllYear.physics_Main.PhysCont.

DAOD_EGAM4.grp16_v01_p3948 Data DxAOD

H → γγ

mc16_13TeV.346214.PowhegPy8EG_NNPDF30_AZNLOCTEQ6L1_

VBFH125_gamgam.merge.AOD.e6970_e5984_s3126_r10724_r10726 MC xAOD

mc16_13TeV.343981.PowhegPythia8EvtGen_NNLOPS_nnlo_30_

ggH125_gamgam.merge.AOD.e5607_e5984_s3126_r10724_r10726 MC xAOD

Table 3.1: The table lists the con-
tainers used in the analysis. De-
cay channel, name of the container,
type of data, and at which devi-
ation level the files are in can all
be seen in the table. Each con-
tainer consists of multiple xAOD or
DxAOD files.

this thesis was developed by Lukas Ehrke and Daniel Nielsen, with
additional adjustments made by us. The framework is called NTu-
pleProduction and can be found at [3]. All the data files used in this
thesis are available in xAOD or DxAOD format on Rucio, and the

30 masters thesis

files used can be seen in table 3.1.

3.1 xAOD to DxAOD

Many petabytes of data are recorded when running the ATLAS ex-
periment. However, depending on the physics analysis, only a frac-
tion of the data is of interest, so removing the unused events can
reduce the sample size tremendously. As seen in table 3.1, some
data files are in the xAOD format and have to be converged to the
DxAOD format. ATLAS has developed a framework called Deriva-
tionFramework (DF)[5] within Athena to perform conversions of xAOD
to DxAOD. We will be using it to create DxAOD from xAOD. DF has
four key operations

Name Selection

EGAM1 Z → ee, central eletrons.

EGAM2 J/ψ→ ee

EGAM3 Z → eee, Z → eeγ

EGAM4 Z → µµµ, Z → µµγ

EGAM5 W → eν

EGAM6
Z → ee, more loose

than EGAM1

EGAM7 Fake electron sample

EGAM8
Z → ee with least

one forward electron

EGAM9
γ trigger efficiency

measurements

HIGG1D1 H → γγ

HIGG1D2 H → Zγ

Table 3.2: The table shows a sum-
mary of [26] and [29]. Z → ee and
Z → µµγ are using EGAM1 and
EGAM4, respectively. For H → γγ,
EGAM4 is used, because HIGG1D1
and HIGG1D2 do not contain im-
ages.

• Skimming: Removing whole events

• Thinning: Removing whole objects from within an event but keep-
ing the rest of the event

• Slimming: Removing information from within objects but keeping
the rest of the object

• Augmentation: Adding data not found in the input data

By default, the physics analysis groups at ATLAS have their own
derivations, which is a combination of the four operations above.
Some derivations can be seen in table 3.2. The two derivations used in
this thesis are EGAM1 and EGAM4. Minor changes have been added
to the EGAM4 template to proper handle H → γγ. The pipeline of
xAOD to DxAOD can be seen in figure 3.1. Both xAOD and DxAOD
are in .root format. Z → ee and Z → µµγ are already in the DxAOD

Figure 3.1: The pipeline from
xAOD to DxAOD. Green symbol-
izes a collection of data files, red
are C++ files and blue is the folder
that combines the files. The striped
grid indicates that the algorithm is
a part of Athena [14].

xAOD xAOD_2_DxAOD DxAOD

DerivationFrameworkEGamma

Derivation Framework

format but H → γγ and the Electron-Gun (EG) are not. Thus, the
DF will be used to create H → γγ in EGAM4 and EG in EGAM1.
DxAOD for both H → γγ and H → Zγ can be found in Rucio,
but they are in the HIGG1D1 and HIGG1D2 deviations that do not
contain the necessary information for the analysis, namely the ECAL
image information is missing. The EGAM is therefore used instead2.2 HIGG1D1 or HIGG1D2 could be used

by removing slimming of the necessary
information for images.

pre-processing of data 31

3.2 DxAOD to h5

DxAOD is the most common starting format for physics analyses.
It has a predefined derivation, like EGAM1. However, the format
still needs further tinkering before it can be used by Python. Figure
3.2 illustrates the DxAOD pipeline from .root→.tfrecord. The fig-
ure displays the key points of the pipeline. The .tfrecord format is
used as it is optimized for High-performance-computing (HPC) with
fast transfer speed and low memory consumption. First, the DxAOD
files are selected from Rucio in .root.1 format by the user. The files
selected are then used as input in the NTupleProduction framework.
It extracts and constructs the necessary variables from the .root.1

and removes most of the branch structure of the file. It up-samples the
ECAL images data to the correct size, and applies thinning and slim-
ming to remove information not of interest to the analysis. This con-
verts the files into an Ntuples (.root) format. Next, root2hdf5 con-

DxAOD NTupleProduction

Athena framework

ElectronPhotonID

ImageCreation

ElectronPhotonID

IFFTruthClassifier

.root root2hdf5 root2hdf5

from_event2row

.h5 Val

Train

split into

Test

Val

DeepCaloPreprocess DeepCalo

Figure 3.2: The figure shows the
pipeline from DxAOD to .h5.
Green symbolizes data files, red are
C++ files, yellow are Python files,
blue are the folders that combines
the scripts. The striped grid indi-
cates that the algorithm is a part of
Athena [14].

structs Python-friendly files from .root files. The root2hdf5 frame-
work formats the .root file to .h5 of numpy arrays, but all rows are
still event-based (Event-based is where all particles from one event is
in the same row.). The framework also selects events that might be of
interest using pdgID and truthOrigin for MC and ATLAS Likelihood
Loose for Data.

Afterwards, from_event2row flattens the event-based samples into a
row-based sample, where each row represents a particle and its vari-
ables. The images are also reshaped from column vectors to matrices,
the barrel and end-cap images are added together and the tile gap

32 masters thesis

cells are summed into a scalar variable. The events are also separated
into train, test, and validation samples.

Finally, the DeepCaloPreprocess uses the .h5 files to construct .tfrecord
files. Here, the variables are normalized and an additional event
selection is used to cross check if the events are correctly selected.
When the .tfrecord files have be obtained, they are ready for DeepCalo.
For more information on .tfrecord, see section 4.1. The root2hdf5
and DeepCaloPreprocess frameworks have been developed in this
thesis.

3.3 Image format and data types

Above, we described the process of constructing the correct file for-
mat. Below, we will first describe the type of variables used in DeepCalo
and elaborate on the standardization of variables in DeepCaloPrepro-
cess from figure 3.2.
One of the great advantages of a NN is its flexibility towards in-
put types. While it is not limitless, it has strong applications when
it comes to image and scalar input (see section 2.2). This allows the
network to utilize the many collision properties measured in the de-
tector. The variables used by DeepCalo are the scalar properties of the
event, the track properties from tracks within ∆R < 0.4 of the event,
and the ECAL images from all four layers.

3.3.1 Scalar properties

Scalar properties selected for DeepCalo indicate the cell position and
energy size of the event in the detector. The scalar properties are
mostly information related to the ECAL and could add context to
the images. Table 3.3 gives a short description of each scalar and
figure 3.3 illustrates their distributions in both MC and Data. Some
properties can only be measured for charged particles, and thus these
are not present for photons. This is stated in table 3.3. Note that
pileup (〈µ〉) is not re-weighted because the re-weighting files could
not be found. Further, due to the large misalignment between MC
and Data, pileup will not be used in the final model, but will likely
be very important variables as an indicator of noise related to the
images. The scalar variables selected are the same as in [18], where
experiments using BDTs were trained on many scalar variables, and
by using SHAP [28] 16 scalar variables were selected.

3.3.2 Track properties

The track variables, which are sequence data and could help to in-
dicate the amount of pileup present in the images. pp collisions are
messy, and when a particle deposits energy in a region, it might not
be isolated from other particles. Often, multiple track particles close
to the target will deposit energy within the same region and increase
the amount of energy present in the images. Therefore, is it impor-

pre-processing of data 33

Type Name Description

Energy

Eacc Energy deposit in layer 1-3 of ECAL.

ηindex η cell index of cluster of layer 2.

f 0cluster Ratio of energy between layer 0 and Eacc in |η| <
1.8 (end of layer 0).

R12 Ratio of energy between layer 1 and 2 in the
ECAL.

ptrack
t pT estimated from tracking for the particle (only

e).

ETG3 Ratio between the energy in the crack scintillators
and Eacc within 1.4 < |η| < 1.6.

Etile−gap Sum of the energy deposited in the tile-gap.

Geometric

η Pseudorapidity of the particle.

∆φrescaled
2 Difference between φ, as extrapolated by track-

ing, use for ECAL momentum estimation and φ

of the ECAL cluster.

ηModCalo Relative η position w.r.t. the cell edge of layer 2 in
the ECAL*.

∆η2 Difference between η, as extrapolated by tracking,
use for ECAL momentum estimation and η of the
ECAL cluster (only e).

poscs2 Relative position of η within cell in layer 2 in
ECAL. 2(ηcluster − ηmaxEcell)/0.025 − 1, ηcluster is
η of the barycenter of the cluster and ηmaxEcell is
η of the most energetic cell of the cluster.

∆φTH3 Relative position in φ in a cell. mod(2π +

φ, π/32)− π/32.

Misc.

〈µ〉 Average proton-proton interaction per bunch
crossing.

ntracks # of tracks assigned (only e).

nvertexReco Number of reconstructed vertices.

Table 3.3: The table shows the
scalar variables that will be used in
DeepCalo. Some variables are only
measured for the electron. This is
indicated using "only e" in the ta-
ble. ∗ assumes a constant cell size
in η of 0.025.

34 masters thesis

tant for the network to know the properties of track particles present
in its region in order to correct for the pileup effect. The track proper-
ties are therefore added to the network. A description of the variables
can be seen in table 3.4 and, to understand the geometric behind the
variables, see figure 9.20. Only tracks within ∆R < 0.4 are selected.
The number of tracks will vary between events and are sorted by

IsoTP = ∑ pa
T · e

−b ∆R
σR , b = a = 1, (3.1)

where a and b indicate the importance of momentum or ∆R. If sort-
ing by distance to the target particle, ∆R must be more important
and therefore a < b and vice versa for momentum. The selection of
a constant number of tracks is explained in chapter 4.

Table 3.4: The table shows the
track variables used in DeepCalo.
The variables should help the net-
work understand how the pileup
contributes to the energy in the
ECAL images. Tracks are only left
by charged particles.

Type Name Description

Energy pt,track/qtrack Transverse momentum of track di-
vided by its charge q

Geometric

d0/σd0 d0 is the signed transverse distance
between the point of closest approach
and the z-axis where σd0 is its uncer-
tainty

∆R ∆R =
√
(φ0 − φ)2 + (η0 − η)2

vertextrack Reconstructed vertex of the track

z0 Longitudinal distance between the
point of closest approach and the z-
axis.

ηtrack Reconstructed |η| of tracks.

φtrack Reconstructed φ of tracks.

Misc.

npixel Number of hits in the pixel detector

nSCT Number of hits in the SCT

nTRT Number of hits in the TRT

pre-processing of data 35

0 100 200

10−4

10−3

10−2

p_eAccCluster

2 4 6

100

101

p_nTracks

10 20 30
10−4

10−3

10−2

10−1

100
NvtxReco

0 20 40 60 80 100

10−2

p_cellIndexCluster

−2 −1 0 1 2

2 × 10−1

3 × 10−1

4 × 10−1
p_eta

20 30 40 50 60 70
10−3

10−2

10−1

averageInteractionsPerCrossing

0.0 0.2 0.4 0.6 0.8 1.0

10−2

10−1

100

101

102 p_f0Cluster

−0.02 −0.01 0.00 0.01 0.02

100

101

102

p_deltaPhiRescaled2

0.0 0.2 0.4 0.6 0.8 1.0

100

2 × 100

3 × 100

4 × 100

6 × 100
p_poscs2

0.5 1.0 1.5
10−2

10−1

100

p_R12

0.000 0.005 0.010 0.015 0.020 0.025

3.4 × 101

3.6 × 101

3.8 × 101
4 × 101

4.2 × 101
4.4 × 101
4.6 × 101
4.8 × 101

p_etaModCalo

−0.04 −0.02 0.00 0.02 0.04

101

9 × 100

9.5 × 100

1.05 × 101

1.1 × 101

1.15 × 101
1.2 × 101

p_dPhiTH3

0 25 50 75 100 125

10−4

10−3

10−2

p_pt_track

−0.010−0.005 0.000 0.005 0.010

100

101

102

p_deltaEta2

0.0 0.2 0.4 0.6 0.8

10−2

10−1

100

101

102

p_fTG3

Figure 3.3: The figures show the
distributions of scalar variables in
MC and Data. The scalar distribu-
tions belong to the Z → ee channel.
The blue-colored histogram is MC
and the red one is Data.

36 masters thesis

Figure 3.4: The figures show the
distributions of track variables in
MC and Data. The track distribu-
tions belong to the Z → ee channel.
The blue-colored histogram is MC
and the red one is Data.

pre-processing of data 37

3.3.3 Images

9 1 1 1

1 1 1

1 1 1

Figure 3.5: Up-sampling works by
dividing the cell into small sub-
cells with the total sum and size of
the original cell. Here, the large cell
with energy 9 is scaled to 9 smaller
cells with size and energy 1/9 of
the large cell.

The information within the ECAL images is the basis for construct-
ing a CNN to reconstruct the energy of particles. We assume that the
raw ECAL cell contains more information than the scalar variables
used in Ecalib(BDT)as a CNN may be able to estimate attributes to
the energy better with the ECAL images.
From table 1.1 and figure 1.7, we see the cell size in (∆ηl × ∆φl)

between layers l ∈ [1, 2, 3, 4] in the ECAL will vary, resulting in a
varying resolution between the layers. This will pose a problem for a
CNN as the (∆η × ∆φ) dimensions have to be identical between lay-
ers, as seen in section 2. However, this can be solved by up-sampling
the images to an identical resolution.

Figure 3.6: The figures illustrates
the ECAL energy images in MC for
Z → ee after upsampling. The time
images from the same event can
be seen in figure 3.8. Note that the
color-map is in logimatic scale and
the unit is GeV. The previous reso-
lution of the layers are still notice-
able.

However, cells must be selected first. Cells are obtained by using
a fixed window centered at the barycentre of the event. The ATLAS
e/γ group recommends a window size of (η, φ) = (7× 11) with re-
spect to layer 2 (with cell size (∆η2 × ∆φ2) = 0.025× 0.025). This
should encapsulate most of the cluster without captioning to much
pileup. In figure 3.7, an example of the cell selection procedure can
be seen with the additional up-sampling.

The composition of window sizes with respect to layer 2 can be seen
in table 3.5, which also reveals the up-sampling of φ and η compared
to layer 2. The common resolution between the layers is chosen to be
∆η1 × ∆φ2 = 56× 11 as we see the highest resolution in φ in layer 2
and in layer 1 for η. Thus, no information will be removed from the
image. Cells may extend beyond the 7× 11 window, if they do the
additional cells beyond will be removed after up-sampling.

Each cell of layers i must be sampled to achieve the common res-
olution. The amount of scale is controlled by wi = ∆ηi/∆η1 and
hi = ∆φi/∆φ2. To conserve the pixel value of the cell, each resulting
cell receives a value of Ec/(wihi), where Ec is the energy of the undi-
vided cell. An example of the up-sampling can be seen in figure 3.5,
where we see a uniform up-sampling between η and φ that is not the
case for the ECAL images.

After a common resolution has been achieved, we are able to fill in
the pixel values. Up-sampling the images has the advantage of cen-
tering the barycentre more closely to the center of the image. The
result can be seen in figures 3.6 and 3.8 for energy and time, respec-
tively.

The up-sampling algorithm is a part of the NTupleProduction frame-
work (see figure 3.2), with up-sampling performed by the ImageCre-
ation script. This framework constructs an up-samled column vector,
as .root files are not able to store matrices. The root2hdf5 constructs
matrices from the column vectors. The ECAL images have a barrel,
an end-cap, and a crack region of the detector. To reduce the com-
plexity of handling the many image channels , the barrel and end-
cap images are added together while the crack region is summed to a
scalar variable called Etile−gap. The end result is images with dimen-

38 masters thesis

sions (56, 11, 4). It is not only energy that is measured from the cell;
additional properties like time, gain and noise are also a part of the
ECAL image. Gain is the re-scaling of the energy size of the ECAL

Presampler Layer 1 Layer 2 Layer 3

Height (φ) 11
4

11
4 11 11

Width (η) 7 56 7
7
2

∆η × ∆φ 0.025× 0.1 0.025
8 × 0.1 0.025× 0.025 0.05× 0.025

Table 3.5: Dimensions of the lay-
ers in ECAL with respect to layer 2.
This can be used to illustrate how
each ECAL layer images must be
up-sampled so they all have the
same dimension.

images, and will mostly contain [1, 2, 3] as values. Noise is the amount
of noise related to each cell in the ECAL. It measures the background
noise of the ECAL cells when no collision occurs. Both variables will
not be used in this thesis.
However, time will be used. time is the time registered when a cell is
activated, relative to the ATLAS clock. At time t = 0 the interaction
occurs and an imagined sphere propagates outwards from the inter-
action point at the speed of light. Everything within the sphere has
a negative time and everything outside has a positive time. Due to
slow read-out time compared to the fast bunch crossings, a buffer is
added to the cell time. The time between bunches is 25 ns, so cells ac-
tivated significantly far from t = 0 should be considered out-of-time
pileup and should not be processed as a part of the event. Making
a decisive cut for the out-of-time pileup can be difficult but may be
learned by DeepCalo.

Figure 3.7: Figure from [18]. The
figure illustrates the reason cells
are selected after re-sampled,
showing the results from cell
selection with and without up-
sampling. The red star indicates
the barycentre, where the particle
hit. We when wish to construct a
1 × 1 image indicated by the red
square. The left columns shows
the cells selected if the image was
not up-sampled. It can be seen that
the barycentre is not centered in
the image. In the right columns,
the image has been up-sampled
before selecting the cell of the
1× 1 image. It can be seen that the
barycentre is now more centered
than in the previous selection.

pre-processing of data 39

3.4 Pre-processing

The next vital step is pre-processing the data. "Garbage in, garbage
out" is a common phrase used to state that ML models trained on
flawed data will give flawed predictions. Many of these flaws can
be fixed during the pre-processing phase. In the sections above, we
have explored the data measured at ATLAS in its relatively raw state.
In the following, we will elaborate on the transformations used on
the samples to prepare them for the DeepCalo model. The re-sampled
of images is explained above and no further pre-processing will fol-
lowNote that some ECAL images might come in MeV and should be
scaled to GeV..

Figure 3.8: An example of absolute
time images from ECAL in MC for
Z → ee after the up-sampling. The
illustrated time images are from
the same event as figure 3.6. Note
that the color-map is in logimatic
scale and the unit is ns.

Standardizing variables

The standardizing of variables are performed by the DeepCaloPrepro-
cess. In chapter 2, we saw that neurons in the hidden layers perform
linear transformations on the input and map it to an activation func-
tion

h = g(WTx + b). (3.2)

This makes weights in the neurons scale-dependent. Recall back-
propagation (in equation 2.13 and 2.15), where gradients are depen-
dent on the trainable parameters. Thus, if the magnitudes of the in-
puts are not at the same scale, the neurons weigh inputs with high
variance heavier and these will thus update much faster than in-
puts with lower variance. Therefore, standardizing input variables
is important for the performance of the network. In addition to the
gradient, most activation functions (See figure 2.4) will only have
curvature3 close to the origin, so the network will learn most (for

3 Curvature is the gradient of the gradi-
ent and measures how much the gradi-
ent changes at a given point.

back-propagation) close to the origin.

There are many types of standardizing, all with different behaviors of
handling distributions. A discussion in standardization performance
for DeepCalo took place in [18], where the conclusion was to apply
a combination of the QuantileTransformer4 to handle heavy-tailed

4 The QuantileTransformer is mostly
used to handle outliers/long tails in a
distribution at the cost of changing the
linearity between distributions.

distributions and apply the RobustScaler for the rest. For a more de-
tailed description of these algorithms, see section 9.6.3.

Looking at figures 3.3 and 3.4, we see multiple heavy-tailed fea-
tures, which will be standardized using the QuantileTransformer.
The transformed distribution used in DeepCalo can be seen in fig-
ures 9.24 and 9.25. Additionally, in figures 9.22 and 9.23, only the
RobustScaler has been applied for standardization. Here, it is clear
that outliers and tails are still present.

Target energies

The particles deposit most of their energy in the ECAL. Consequently,
a good approximation for Etruth is Eacc. Thus, instead of having DeepCalo
predict Etruth with a large range, it predicts rtruth, as seen in equation

40 masters thesis

3.3.

rtruth =
Eacc

Etruth
. The transformation apply: Eacc · r̂ = ŷ, (3.3)

where r̂ is the output from DeepCalo and ŷ is the final prediction
used in L(y, ŷ). This transformation will result in a decrease in con-
vergence time and might also lead to a small accuracy improvement
due to an increase in numerical stability.

Mislabeled events in MC

Mislabeled events can confuse a CNN and might increase conver-
gence time and decrease performance, so they will be removed. From
inspecting the MC sample in table 3.1, we found two types of discrep-
ancies between Ecalib(BDT)and Etruth. The first type of discrepancy
is a mislabeling, where the particle pair both have the same Etruth.
These pairs are easy to remove, as we just need to check if the tag
and probe share Etruth and, if they do, the pair is removed.

Cuts (k) Event ratios after cut

0.6 0.61

0.4 0.58

0.2 0.54

0.1 0.48

Table 3.6: The table shows the dif-
ferent k cuts from figure 3.9 and
the ratio of events left. Selecting
k = 0.6, 60% of the sample remains.

The second one is slightly more complex. For some events in MC,
we see a large difference between Etruth and Ecalib(BDT)(or Eacc). Eacc

is assumed to be close to Etruth for all events. This is likely due to a
mismatch between the SuperCluster and track/vertex of the particle
(see section 1.3.3). However, it is difficult to determine if it is a poor
reconstruction from Ecalib(BDT)or a mismatch of the cluster. Never-
theless, equation 3.4 will be applied, where k is a hyperparameter
that can vary as it is unknown when the discrepancy starts. The mis-
labeled and selection of events at various k values are illustrated in
figure 3.9 with table 3.6 showing the ratio of events left after the cut.

Figure 3.9: Left figure shows the
distribution of Ecalib(BDT)/Etruth
with four different values of k ap-
plied to display the selection of
events. Events close to 1 indicate
Ecalib(BDT)≈ Etruth. The right fig-
ure illustrates the distribution of
Etruth. The distribution suggests
events are uniformly removed, ex-
cept for low Etruth values, which
means many mislabeled event have
a low Etruth. The table 3.6, we can
see the ratios of events left after
cutting.

keep_event :
∣∣∣∣1− Ecalib(BDT)

Etruth

∣∣∣∣ < k (3.4)

where k can be seen as a hyperparameter determining different lev-
els of strictness. Too strict of a k will result in DeepCalo not being
trained on events that the Ecalib(BDT)has found difficult to recon-
struct, which will result in a performance decrease for DeepCalo.

pre-processing of data 41

However, it will improve convergence time as mislabeled events are
removed. Looking at figure 3.9, k = 0.6 is selected. k = 0.6 will se-
lect all events within the peak centered at one, remove the peak at
≈ 0.1 and the long-tailed values > 1.6. This will select events within
0.4 < Ecalib(BDT)/Etruth < 1.6. In the analysis chapter, the use of k
will also help the Ecalib(BDT)in MC in comparison with the DeepCalo,
as some poorly reconstructed events will be removed.

3.5 Selecting candidates from Data

Selecting events from Data can be difficult. A clean sample is desired,
and when performance is measured using the BW

⊗
CB, the particles

must be associated with the correct decay channel. Data will also be
used in training, and here a clean sample is also obligatory because
Etruth in Data is constructed using the associated decay channel. The
selection in Data can be seen in table 3.7. These are the requirement
for the particles in Z → ee and Z → µµγ.

Z → µµγ Z → ee
µµ γ ee
> 9.5GeV > 9.5GeV > 9.5GeV
Loose Loose Loose
∑ Q = 0 • Nγ = 1 ∑ Q = 0
• Nµµ = 1 Tight • Nee = 1
Trig • Nγ = 1 Event dropped
• Nµµ = 1 Event dropped
mµµ < 82 GeV
mµµ > 20 GeV
• Nµµ = 1
Loose vs. Tight
• Nµµ = 1
Event dropped

Table 3.7: This table shows the se-
lection of events in Data for the dif-
ferent decay channels. • indicates
a check (or if statement), and if the
statement is satisfied, the remain-
ing particles are selected. However,
if not, additional cuts below are
needed. If the last • is not satisfied,
the event is dropped. The Z → µµγ

cuts are connected, as the channel
requires two muons and a single
photon.

4 Model Architecture

In the following chapter, we will introduce the concept of High-
Performance Computing (HPC) and the basics behind computers. We
will not elaborate on the fundamentals of computers, such as tran-
sistors and machine code, but limit the introduction to the interact
between components within a computer, and focus on optimizing
the run-time of ML models. As such, this chapter might serve as an
introduction for people venturing into Deep Learning. For further
reading on computing fundamentals, see [15] and [48]. Afterwards,
the performance measures and loss functions for MC and Data in re-
lation to DeepCalo will be introduced. Lastly, an in-depth description
of the DeepCalo architecture will be given, where the sub-modules
and optimization of DeepCalo will be presented. Much of this work
is done with [18] as its foundation.

4.1 High-performance Computing

With increasing complexity and data availability, the data size and
convergence time of models will skyrocket, making a tedious pro-
cess of training and optimizing the hyperparameters of the models.
However, with advanced algorithms and hardware, the issue can be
solved. In the following paragraphs, some modern techniques to op-
timize algorithms and hardware will be explored, focusing mostly
on the graphic processing unit (GPU) due to its parallel computing
capabilities.
For this thesis, only NVIDIA GPUs were available, so only NVIDIA
GPUs and their software will be discussed. Although for many years,
the majority of computational speed-ups have been through cram-
ming more transistors into the hardware following Moore’s law [31].
Nowadays, the focus has shifted to software optimization of the
hardware algorithms in the attempt to cut corners in the communica-
tion between different components. While speeding up an algorithm
has always been limited to hardware in some capacity, it is important
to have equilibrium between hardware so the computing devices are
constantly fully utilized. Otherwise, performance can be left on the
table. When a computing device is limited by another device in the
system, it is referred to as a bottleneck.

Hardware

The core computing components of a system are the CPUs and GPUs1.1 While most motherboard can have
multiple GPUs installed for a single
CPU, some enterprise grade mother-
board can have multiple CPUs installed
as well.

model architecture 43

While other components will affect the performance, none of them
are computing units.

The CPU is the brain of the operation as it communicates with all
the components connected to the motherboard. CPUs have a varying
number of cores and vary in frequency from ≈ 1.0-5.0 GHz2. The 2 Hz meaning operation per second.

CPUs also have a base clock and a boost
clock, being able to boost to a higher
clock before getting too hot.

CPU cores have a large amount of internal memory that is storing
information about the application at hand. The CPU used in this the-
sis is a Threadripper 3970x with 32 cores (64 threads) at 3.7GHz base
clock (w/ boost at 4.5 GHz).
CPUs process the advanced commands coming from the user and
can in short bursts run single applications very fast due to its high
operation frequency but lack performance in heavy parallel pro-
cesses. An important characteristic for the CPU is its memory man-
agement as most communication goes through the CPU3. It has an 3 New technologies bypass the CPU.

They will be explained below as they
will be a game-changer for the HPC.

advanced Memory Controller Chip (MCC) that is optimized for han-
dling the multiple levels of CPU memory . Embedded directly into
the CPU is its cache or SRAM (with 3 different types of memory
L1, L2, L3), which has a size of several MBs but is extremely fast
and insures that the CPU does not run out of applications to run
internally4. Bandwidth5 of cache can vary dependent on CPU, how- 4 The amount of cache will increase as

the number of cores increase, as the
embedded memory is required to an
increasing number of tasks for the in-
creasing number of cores.
5 Rate at which the CPU can read and
write data back and forth to compo-
nents.

ever, a common theoretical bandwidth of L3 cache is 175 GB/s. The
next level of memory is DRAM (dynamic random-access memory or
RAM), which is slower than the cache but has dynamic storage and
is module-based, such that additional memory can be installed into
the motherboard as long as the CPU supports it. RAM contains infor-
mation about the task at hand or previously run tasks. RAM speed
is measured in MHz and Latency. Without going into too much de-
tail about RAM specifications, MHz control how quickly data can be
read or written to the RAM and Latency is a measure for the delay
between request and execution of a command, and should be min-
imized. RAM at 3200 MHz has a transfer rate of 25.6 GB/s. This
will limit the complete bandwidth of the system, as RAM controls
the transfer rate to the CPU. If a CPU has four memory channels
the total bandwidth of the CPU is 4 · 25.6 GB/s = 102.4 GB/s of
bandwidth to other components in the system. CPU manufacturers
will usually indicate the number of memory channels to indicate the
bandwidth of a CPU, as this is very important if many components
have to be connected to the motherboard. This can also be seen as a
PCIe bandwidth. Examples will be given below.

Place Name Memory Size
Chip Core 0.256− 16 kB
Chip L1− L3 2− 256 MB
Mo Ram < 2 TB
Mo HDD (swap) Limit to Mo

Table 4.1: The table lists the place
and size of the different memory
options. Mo refers to the mother-
board.

The last memory level is the storage using the NVMe or SATA [48]
technologies, which can store large amounts of data in the petabyte
size. However, storage is very slow compared to other memory types
and is severely limited by the CPUs PCIe bandwidth and its own
read or write speed. Some of the fastest NVMe available a have
transfer speed of 2GB/s. However, the CPU has a bigger, clumsier
brother that is dependent on the CPU, namely the GPU. It runs
slower than the CPU, with frequencies between 1-2 GHz, has less
embedded memory and less advanced cores compared to those of
the CPU and has non-swappable RAM. Nonetheless, what it does

44 masters thesis

not have in speed and complexity, it makes up in raw horse-power.
NVIDIA GPUs have in the neighborhood of 2.000-10.000 CUDA cores
that are optimized for parallel computing6. Think of the CPU as be-6 GPU cores are not the same as CPU

cores, but when it comes to simple
linear algebra in ML, they behave the
same. GPUs also have Tensor Cores,
which are vectorized cores that able to
compute faster linearly with the draw-
back of reducing precision.

ing a speedboat that quickly can get from A to B but carrying only
a few, whereas the GPU is a cruise ship that is slow from A to B but
can carry thousands. The cruise ship, however, is dependent on the
speedboat to scout ahead. The GPU has its own RAM called VRAM
that is non-swappable. It is not directly connected to the storage or
RAM of the PC, so data has to flow between the CPU and GPU. The
GPU and CPU are connected using a PCIe port, which has a trans-
fer speed7 of 32 GiB/s one-way. A schematic of the GPUs cores and7 10003 bytes is 1 GB, whereas 10243

bytes is 1 GiB. memory size compared to the CPU can be seen in figure 4.1. Here,
it is visible that the CPU contains large amount of internal memory
compared to the GPU. Due this amount of internal memory, the CPU
is used for running applications, as it is able to cache much of the
information from programs so it can quickly accessed again, where
the GPU has considerably more, less advanced cores, designed for
parallel tasks.

One last important thing is regarding compatible hardware. With
the new and improved PCIe 4.0, transfer speeds have increased from
16GiB/s to 32GiB/s one-way for PCIe, meaning transfer speeds be-
tween storage8-CPU and CPU-GPU has double the bandwidth. How-8 Using PCIe 4.0.

ever, both CPU, GPU, motherboard and storage have to be compati-
ble with PCIe 4.0, otherwise the hardware will run at PCIe 3.0 speeds.

Figure 4.1: From [32]. The
schematic shows the memory
and core levels of the CPU and
GPU. The elements are color-coded
so the L1 cache, core and control
can also be seen on the GPU figure.
Storage could also be a part of
the figure, but it is linguistically
usually not referred to as memory.

Bottlenecks

If the speedboat is not fast enough, the cruise ship will have to wait.
This results in the GPU waiting for the CPU to load/transfer the
data, resulting in an idle GPU, and convergence time will increase.
A CPU has a maximum memory bandwidth, which is the maximum
amount of data a CPU can transfer. The CPU used in this thesis has
a maximum memory bandwidth of 95.37 GiB/s (or 102.4 GB/s) and
PCIe 4.0 can transfer 32 GiB/s one-way, meaning if two GPUs with
PCIe 4.0 are connected to the CPU9 and both could be fully utilized9 Which is the case.

model architecture 45

in both directions10, the CPU will not be able to transmit enough data 10 2 · 2 · 32 GiB/s = 128 GiB/s.

to the GPUs to be fully utilized, leading to a bottleneck. Additional
import of data from storage device also requires bandwidth, making
the system even more crowded.
To identify a bottleneck when training a ML algorithm, one would
need to run one model where the data is cached in RAM and one
without11. This will result in three scenarios. 11 To see utilization (see the amount of

watts drawn) of the GPU run watch -n

0,001 nvidia-smi.1. If the GPU utilization in both cases are close to 100%, there is no
bottleneck.

2. If the GPU utilization is high, when data is cached, but otherwise
not. The bottleneck between CPU/RAM and GPU.

3. If the GPU utilization is always low. The bottleneck between RAM
and GPU.

Solutions

Some possible solutions will be given below. In scenario 1, there is
no bottleneck in the system. If an increase is desired, it can be ob-
tained by investing in new hardware that will increase the computing
power of the system. In scenario 2, the bottleneck is likely an I/O12 12 Input/Output and refers to commu-

nication with external storage.or pipeline problem. Both problems can be solved by parallelizing
the data transfer and pipeline.
In scenario 3, the bandwidth between the GPU and CPU is filled13. 13 It is also possible to change the data

format of input data. This will be ex-
plained below.

Bandwidth cannot simply be increased14, so the only solution is to

14 Faster RAM could be bought to in-
crease bandwidth. However, it is lim-
ited to the memory bandwidth of the
CPU.

minimize the bandwidth of other components or the bandwidth of
the data. Decreasing bandwidth used by the input data will im-
prove convergence time in all three scenarios, and could be accom-
plished by reducing the precision from float64 to float3215, which 15 float64 has a memory size of 64 bits

with a total number of combinations at
264, whereas float32 uses 32 bits and
float16 uses 16 bits.

would take up less bandwidth and increase data flow. The data for-
mat could also be changed to binary, which could drastically reduce
loading time. The ML software Tensorflow has its own data format
for binary called TFRecords[45], which decreases loading times and
memory footprint. Depending on the file, changing the format to bi-
nary might also decrease the file size.

One solution also just comes down to system architecture. Due to
the swappable modular design of the X86 architecture16, most infor- 16 The most common CPU architecture.

mation has to flow through the CPU, and this highway through the
CPU can be crowded, forcing components to wait. However, newer
CPU architecture, such as ARM, where the GPU is embedded into
the CPU and where they share RAM, removes the overhead between
the CPU and GPU and speeds up the process17. 17 This is the CPU architecture of the

new Apple computer, it is called an M1
chip.

Software

Newer software also occasionally decreases computation time. Where
the solutions above reduce transfer time between the storage and
GPU, a software update could increase the computation speed of the

46 masters thesis

algorithm, optimizing the calculation within a compute unit. A use-
ful tool to classify bottlenecks in a pipeline is Tensorboard [44], which
is a software developed by TensorFlow that is able to benchmark ML
architectures and their pipelines to find possible improvements. Ten-
sorboard can also be used to display hyper-parameter optimization,
and this part of the software will be used in the optimization (see sec-
tion 4.4). Software is also being developed to increase computation
speed and minimize bandwidth usage by optimizing the computa-
tion in the cores and connection between components in the system.
Tensorflow, in collaboration with Nvidia and Google, have developed
XLA [46] 18 and Mixed precision [47] 19, which can greatly decrease18 It is an acronym for Accelerated Lin-

ear Algebra and pre-compiles the com-
putational code by fusing mathematical
expressions together.
19 Mixed precision algorithm will uti-
lize the Tensor Cores for increased
speed. However, Tensor Cores compute
with a lower precision (float16) com-
pared to cuda cores, but the algorithm
will switch between cuda and Tensor
Cores for the most optimal computa-
tion speed and model precision.

the computation time of models, but in the Mixed precision case, the
precision of the model will also decrease slightly. We will not go in-
depth with their inner workings as it is beyond the scope of this the-
sis. NVIDIA has also announced DirectStorage for computer games,
software to bypass the CPU and feed data directly into the GPU to
minimize latency and bandwidth problems. This could remove any
bandwidth in HPC and decrease computation time by removing the
CPU from the equation.

Lastly, one could prune the architecture of a NN after x-number of it-
erations, removing nodes with low weights. However, this will most
likely decrease the accuracy of the network depending on how rough
the pruning is.

4.2 Optimizing networks

Now that the fundamentals of HPC have be established, we will
pivot back to the reconstruction of particles and the DeepCalo archi-
tecture. The following section will introduce the loss function used
to train DeepCalo and the evaluation metrics used to compare the
performance between DeepCalo and Ecalib(BDT).

Loss in Monte Carlo

Choosing the correct loss function is a crucial step in ML as it gov-
erns the optimization and behavior of the algorithms. In this thesis,
the chosen loss function is the logarithm of the hyperbolic cosine
(logcosh) seen in equation 4.1 and figure 4.2.

L(y, ŷ) = log(cosh(y− ŷ)). (4.1)

logcosh combines two of the most popular loss functions, MAE and
MSE. The disadvantage of the MAE is its fork function gradient2020 Note that the calculations of the gra-

dient of the MAE and MSE are not com-
pletely accurate, as we disregard the
sum and 1/n. However, the behavior of
the gradient is the same, and that is the
focus.

MAE′(y, ŷ) =

1 if y 6= ŷ

0 if y = ŷ
.

This means that all predictions will receive the same gradient, ex-
cept for y = ŷ (very rare in regression), the network otherwise will

model architecture 47

not be rewarded for correctness of its predictions. MSE solves this by
squaring the error, so the gradient evolves like

MSE′(y, ŷ) = 2(y− ŷ).

For almost correct predictions, the gradient becomes very small, how-
ever, as the loss scales squarely, the outliers will receive a very high
gradient that will overshadow others.

Figure 4.2: The figure illustrates
the behavior of three possible loss
functions MAE, MSE and logcosh.
The x-axis gives the error between
ŷ and y.

logcosh solves these disadvantages by combining MAE and MSE. At
low differences, the distribution behaves like MSE. However, at larger
differences the logcosh behaves like MAE, see figure 4.2.

Data

Optimizing the network for Data is even more complicated due to
the missing truth label. However, a loss function and setup of the
network can be constructed, unlocking the ability to train on Data.
We have developed two methods for training on Data with a focus
on Z → ee21. This will be a brief in introduction into the methods, 21 It is also possible to work in the H →

γγ and Z → µµγ channels. However,
the Z → µµγ Data sample is not large
enough for convergence, and the H →
γγ Data does not contain the ECAL im-
age.

but a more thorough introduction will be given in chapter 5.

Regression to the mean

We create a loss function that calculates the invariant mass of the
electron-pair using the DeepCalo predictions. The invariant mass is
then compared with the Z-boson mass at 91.1876 GeV. The logcosh

is implemented to compare the predicted invariant mass to the de-
termined mass of the Z-boson (see equation 4.2).

L(ŷ) = log(cosh(91.192 − M̂2
ee)) (4.2)

Only events between 86GeV ≤ Mee ≤ 97GeV have been selected
using the Ecalib(BDT), so this loss function has a minor dependence
on the ATLAS reconstruction.

Constructing Etruth from EATLAS

The other method to train on Data is by constructing an approxima-
tion of Etruth from Ecalib(BDT) for Data called Elabel,data. Using equa-
tion 1.1, ET,1 is isolated and M is set to M = 91.19 GeV. Then, a single
electron in the electron pair is selected, and Ecalib(BDT) is inserted as
ET,2. The result is the ET,1 of the electron if the invariant mass of
the event was exactly 91.19 GeV. Recall that the invariant mass of
Z → ee is a BW distribution, so using MZ = 91.19 as a constant
mass is not correct and is an approximation. However, by selecting
events within 86GeV ≤ Mee ≤ 97GeV, we believe the approximation
is sufficient enough to use as Etruth in training. This method also has
a dependency on the ATLAS reconstruction.

4.2.1 Uncertainty on predictions

For more details on aleatoric and epistemic uncertainties in ML, we
highly recommend [24], which the following section is based on.

48 masters thesis

Uncertainties are an important part of every estimation. In ML, we
distinguish between two types of uncertainties, an aleatoric uncer-
tainty22 and epistemic uncertainty23. Epistemic uncertainties rise from22 Also known as statistical uncertainty,

which is the noise on the observed sam-
ple.
23 Also known as systematic uncer-
tainty, which captures the ignorance of
the model based on the observations
fed to the model. Epistemic uncertainty
can also be referred to as model uncer-
tainty.

the lack of knowledge in an experiment and are often not present in
large-scale data analysis due to the amount of data. Therefore, we
will focus on aleatoric uncertainties. A simple change in the architec-
ture gives DeepCalo the ability to predict the energy and its aleatoric
uncertainty using the negative log-likelihood as a loss function.

L(y, ŷ, σ) =
1
2

(
(y− ŷ)2

σ2 + log(σ2)

)
(4.3)

The loss function consists of two parts, a likelihood term relating the
predicted energy, truth energy, and σ together. The second is a reg-
ularization term on the uncertainty to guarantee that σ → ∞. How-
ever, a problem arises from equation 4.3, as the loss is undefined at
σ = 0 and DeepCalo uses ReLU= max(0, x) as its last activation func-
tion, making σ = 0 possible as an output. There are two solutions
to this problem. The first is selecting an activation function that is
> 0 everywhere. This could be Softplus/SmoothReLU = ln(1 + ex)

bound within]0, ∞[, however, it might cause numerical instabilities
due to underflow when using float32/64. The second solution is
rewriting equation 4.3 by defining σ2 = eσ′

L(y, ŷ, σ) =
1
2

(
(y− ŷ)2

eσ′
+ log(eσ′)

)
⇒ (y− ŷ)2

2eσ′
+

1
2

σ′. (4.4)

DeepCalo will then predict y and σ′, and if σ′ = 0, the loss will reduce
to MSE.

It should be noted that due to the transformation, the absolute size
of σ should not directly be related to the uncertainty of the energy
prediction, as it is possible to have24 σ′ = 0. It should be seen as a24 Due to the transformation of σ, we

have a minimum bound on σ =
√

eσ′ ,√
e0 = 1.

confidence indicator and is used as a measure of how confident the
network is in its prediction. However, due to its nature, we will refer
to it as a confidence or uncertainty.
Nonetheless, σ can be carried over to the invariant mass of the parent
particle, estimating a uncertainty on its invariant mass. The equation
to calculate the invariant mass of a two particle decay can be seen in
section 9.1.2. This uncertainty can in turn be used to remove poorly
reconstructed events.

4.2.2 Performance measure

The main purpose of this thesis is to outperform the Ecalib(BDT).
Therefore, it is necessary to construct metrics that fairly evaluate
DeepCalo against Ecalib(BDT). In the following section, we will fo-
cus on constructing the evaluation methods for MC and Data that
fairly measures the performance between Ecalib(BDT)and DeepCalo.

Metric Expression

MAE 1
n ∑n

i=0 |yi − ŷi |

MSE 1
n ∑n

i=0(yi − ŷi)
2

RMSE
√

1
n ∑n

i=0(yi − ŷi)2

Table 4.2: The table shows possible
performance metrics. MAE gives
equal weight to every prediction.
MSE will focus on outliers, which
will weigh heavily in the average.
RMSE also weights outliers heav-
ily, but attempts to make the error
more relatable similar to MAE by
applying the square root.

.

Monte Carlo

In MC, the evaluation between Ecalib(BDT)and DeepCalo is quite sim-
ple. As it is simulated data, the Etruth is known and can be evaluated

model architecture 49

directly against the predictions. This provides an opportunity to use
numerous supervised metrics to evaluate performance. Some exam-
ples can be seen in table 4.2. The metric used is this thesis takes
inspiration from [11], where the relative error (RE) is calculated25 25 In textbooks, the relative error is cal-

culated by measure−truth
truth = measure

truth − 1.
However, in this thesis, RE will be re-
ferring to equation 4.5, as the only dif-
ference to the textbook version is a shift.

RE =
Ecalib
Etruth

, (4.5)

where Ecalib can be either DeepCalo or Ecalib(BDT) predictions. Af-
terwards, the effect interquartile range (eIQR) is used to measure the
narrowness of the RE,

eIQR =
P75(RE)− P25

1.349
(RE), (4.6)

where P75 and P25 are the upper and lower quantiles. The 1.349 is a
normalization term, as 50% of the area under a Gaussian distribution
lies 1.349 from the mean. The RE will create a Gaussian distribution
centered at 1, where the aim is to reduce the width of the distribution,
which is measured by eIQR. Performance between models can then
be compared using equation 4.7.

Relative metric = 1− model metric
benchmark metric

(4.7)

This is the measure26 that will be used in chapter 5 and 6, as well as 26 This measure is actually not fair,
but rather biased towards the bench-
mark metric, eg. eIQRmodel = 1 and
eIQRbenchmark = 2. Using equation 4.7,
we see 1− 1/2 = 0.5 on an increase of
50%. However, if we change the fraction
2/1− 1 = 1, we see correctly improve-
ment of 100% increase in performance.
However, equation 4.7 was chosen as it
was used in [18], so performance can be
compared.

for finding the optimal architecture in section 4.4. For MC, eIQR will
be used as a metric, where the ratio between eIQRs (reIQR) will be

used to compare models reIQRn = 1− eIQRmodel
n

eIQRbenchmark
n

.

Data

Due to the missing Etruth for Data, the evaluation of model perfor-
mance is not as easily obtainable as for MC. However, due to the
assumption of particle resonance explained in chapter 1, we can esti-
mate the performance from the width of the invariant mass distribu-
tion by using a fit. The fit will have a small variation dependent on
the decay channel. These will be described below.

• Z → ee: The resonance distribution will be fitted using a Breit–Wigner
distribution convoluted with a Crystal Ball function (BW

⊗
CB),

where the parameters of the BW are set to µBW = 91.1876 GeV and
σBW = 2.4952 GeV (see [43]). The parameters of the CB are then
fitted. The measure of performance will be the additional width
from the CB (σCB). The CB should measure the error arising from
the energy reconstruction.

• Z → µµγ: For Z → µµγ it is almost the same as Z → ee. How-
ever, due to the number of background events, the fit function
required an additional term for the background distribution. The
background function used is a wide Gaussian that is fitted outside
the Z peak.

• H → γγ: We do not have H → γγ for Data. Thus, metrics for
evaluating Data are not needed. However, some fitting methods

50 masters thesis

have been tested on the invariant mass distribution of the Higgs
for MC. The one that achieved the best results was a double Gaus-
sian (Note that 125 GeV is the mass of the Higgs [43]).

G(fg, G) = (1− fg) · G(µ = 125, σ = 3) + fg · G(µ, σ) (4.8)

These fitting methods will be used as the benchmark for Data. As a
proof of concept, figure 9.1 illustrates the invariant mass distribution
of Z → ee using all the MC truth variables. The distribution has then
been fitted using a BW and a BW

⊗
CB. It can be seen that the BW

alone is not able to represent the distribution accurately, but when
the BW

⊗
CB fit is applied, the σCB u 0, as expected when the Etruth

is used.

4.3 Model components

This section contains a detailed description of the DeepCalo architec-
ture as well as the optimization applied to achieve the most accurate
model. A flowchart overview of DeepCalo and its sub-models can be

Figure 4.3: The figure illustrates the
DeepCalo architecture, where col-
ored boxes are modules and the
gray ones are input. The dashed
lines indicate the possible connec-
tions to the main network, namely
CNNnet and Top layers. The net-
work outputs Ŷ, but can also out-
put the uncertainty σŷ. Images are
also up-sampled in DeepCalo (by
Upscale) to save on file size of the
data and Merge is used to concate-
nate the Gate and ECAl images.

seen in figure 4.3. The figure must be read from top to bottom with
the arrows indicating data flow. At the top of the chart, the poten-
tial inputs are listed: Xtrack are the track variables (see table 3.4),
Xscalar are the scalar variables (see table 3.3), Ximg is the ECAL image
(see figure 3.5) and, lastly, the Xgate−img can be additional informa-
tion in image format, which could be time, gain or noise. The main
modules of the network are CNNnet and Top, which will be a part
of every iteration of the network. The network has three additional
sub-modules, namely the TrackNet, ScalarNet, and FiLM gen. The con-
nection of modules can be seen in figure 4.3, where the dash-dotted
lines are connections that can be deactivated. As a rule of thumb, the
architecture predicts the energy related to the input data.However,
we will show examples where the architecture predicts the uncer-
tainty associated with its energy prediction, as well as classifying
between MC and Data events.

model architecture 51

The gray Merge box in figure 4.3 will concatenate Ximg of size 56×
11× 4 with Xgate−img of size 56× 11× 4 · d, where N is the number
of gate variables, eq. time, gain and/or noise. This will result in an
image of size 56× 11× 4 + 4 · d. Afterwards, the images are upsam-
pled in the Upscale box to a squared resolution of 56× 55× 4 + 4 · d.
The colored sub-modules will be explained in detail in the following
sections.

Figure 4.4: The figure shows the in-
ternal layout of the CNNnet.

CNNnet

The central module of the architecture is the CNNnet. The general
setup is inspired by [18]. As input it takes images of size (H, W, D) =

(56, 11, D), where the depth, D, is dependent on the amount of fea-
tures27 added to the images. The images first encounters a conv2d

27 By features, we mean energy, time,
gain. Each feature has D = 4, one for
each layer in the ECAL.

used to deduct the relation between pixels in the images. The ar-
chitecture of the CNNnet can be seen in figure 4.4. The CNNnet is
designed in CNN Blocks ranging from i ∈ {1, ..., N} (i being the
Block number), where each Block contains a conv2d of 3× 3 or 5× 5,
a batch normalization (BN) layer, a FiLM layer, and an activation layer,
followed by nN×sub-blocks consisting of conv2d, BN and activation
layers. Located between each Block is a pooling layer set to 2, which
reduces the images in each pooling layer by (H/(2i), W/(2i)). Each
conv2d outputs 2i−1d0, where d0 is the depth of Ximg. After N Blocks,
the CNNnet final layer is a GlobalPooling or Flatting layer reducing
the output to a vector, ready for the Top module. The CNNnet ar-
chitecture was tested in [18], where numerous variations of many
architectures were tested on MC. This will not take place in this the-
sis due to the time constraints. However, optimization of the layers
within the Blocks will take place.

ScalarNet

ScalarNet is a simple neural network. It functions as an upscaler for
the scalar variables before they go into the FiLM or Top. It is similar
to a Dense Block, as shown in figure 4.7, and outputs the number of
variables equal to the number of neurons in the last layer.

13

10

Kernel
[1,13]:

Figure 4.5: The figure shows conv1d
performed on the sequence data
from the tracks. The kernel size and
number of filters can vary depend-
ing on preference. In the figure,
the number of track variables is 13,
however, in table 3.4 there are only
11. The number of tracks in the fig-
ure is 10, however, the number of
tracks selected in each event will be
determined in the TrackNet section.

TrackNet

Xtrack can be a strong indicator of the pileup present in the ECAL
images, as the track particles can deposit their energy within the
ECAL images of the particle in question. Therefore, it is important to
take this behavior into consideration. Figure 4.9 illustrates the num-
ber of tracks per event. The track variables can be seen in table 3.4.
Handling tracks can pose a challenge as a single event has multi-
ple tracks associated, with each track having 11 variables recorded
(called sequence data). A standard forward-feeding network is not
able to handle this format of data, but convolutional neural networks
and recurrent neural networks are. To be consistent throughout the
network, a 1D convolutional layer (conv1d) is selected to handle the

52 masters thesis

sequence data. The TrackNet architecture is illustrated in figure 4.6.
It consists of a single conv1d block with kernel size and # of filters as
hyper-parameters. Afterwards, a Flatting layer creates a vector as in-
put to n number of Dense Blocks. The output from TrackNet serves
as input to FiLM and/or Top modules.

Figure 4.6: The figure shows the in-
ternal layout of TrackNet.

FiLM

The feature-wise linear modulation (FiLM) [17] sub-module can be
seen in figure 4.7. It consists of n Dense Blocks, where the number of
neurons can vary. The output of the Dense Blocks are n feature-wise
affine transformations λ(xn) corresponding to the number of FiLM
layer in CNNnet (see figure 4.4). The expression for λ(xn) can be seen
in section 2.3.2. Intuitively, the FiLM gen. must be able to re-weight
channels it deems to be pileup (see figure 2.9) and provide a more
accurate prediction of Etruth by removing pileup contributions.

Figure 4.7: The figure shows the in-
ternal layout of the FiLM gen.. The
FiLM gen. outputs a vector λ with
scale and shift parameters for the
channels in the CNNnet.

The output is dependent on the Block number and kernel sizes of
the CNNnet. As previously mentioned in the description for CNNnet,
the ith Block outputs a new depth of 2i−1d0, and, since the FiLM
applies linear transforms on each feature map (channel) using γ and
β, it outputs

|λn| = 2 · d0

(
N

∑
i=1

2i−1

)
= 2 · d0

(
2N − 1

)
(4.9)

number of parameters, where λn is the vector used by the nth FiLM
layers in the CNNnet. It consists of parameters, namely γs and βs,
which are used for scaling and shifting the image channels. The 2 · d0

is the amount of γs and βs needed at each convolution to scale and
shift the channel, and ∑N

i=1 2i−1 is the evolution in the number of
channels after a convolution. The FiLM optimization took place in
[18], and will therefore not be touched on in this thesis.

Top

Figure 4.8: The figure illustrates the
architecture of the Top module. It is
a simple NN with a single or dou-
ble output.

The last sub-module is the Top, which is a part of the main DeepCalo
network. Here, the information from the previous modules is col-
lected and used as input for the Dense Top. The Top architecture can
be seen in figure 4.8. As TrackNet and FiLM, it consists of Dense
Blocks with the output Block consisting of a single dense layer with
either one or two neurons using either ReLU or SoftPlus as an activa-
tion function. With this final layer, the network can predict positive
real numbers R, and this could be the energy of a particle and its
uncertainty (for two output neurons). The output format will be ex-
plained in section 4.2.

4.4 Optimization

Due to the size of the network, each sub-module is optimized indi-
vidually by testing their performance in predicting Etruth for Z → ee

model architecture 53

MC events. Lastly, we will optimize the connections between the
modules. Possible connections can be seen in figure 4.3. Hparams
and Tensorboard will be used for the hyperparameter optimization
and displaying of model performance.

Figure 4.9: The blue histogram
shows the number of tracks in
100.000 Z → ee events. The green
line is the CDF of the histogram
and the black vertical line indi-
cates the number of tracks that are
selected for DeepCalo. ≈ 98% of
present tracks are selected.

TrackNet

TrackNet will be optimized alone. It will predict an energy by itself
and the best performing model will be connected to DeepCalo. The
amount of tracks will vary between events, but when using conv1d,
the size of inputs must be the same. In figure 4.9, the number of
tracks per event is shown (on Z → ee). It is similar to a Poisson dis-
tribution with λ ≈ 6. Selecting 15 tracks per event is approximately
≈ 98% of the tracks and should be a suitable number of tracks indi-
cating pileup. For events not containing 15 tracks, zero-padding was
applied. However, some events have more than 15 tracks, so the most
important tracks must be selected. Here, the tracks will be sorted by
equation 3.1 and the top 15 will be selected. Afterwards, the architec-

Figure 4.10: Tensorflows HParams
has been applied to find the most
optimal TrackNet. Each iteration
has been trained five times with
random initial weights. The lime
colored line shows the most op-
timal architecture. Tensorboard is
used to display the image. num_-
dense is the number and size of
the Dense block and follows 2i, eg.
[64, 16] means 3 hidden layers with
64, 32 and 16 neurons in each layer,
respectively. The number of filters
and kernel sizes are combined in
one hyper-parameter called
num_conv.

ture of TrackNet must be optimized. Conv1d, kernel size and number
of filters will be optimized. To reduce the number of permutations,
the kernel size and number of filters will be set to the same value
[1, ..., 5]. The number and size of the Dense Blocks can also be opti-
mized, and various sizes will be tested. A GridSearch28 will be ap- 28 GridSearch will test all possible per-

mutations of the network one by one to
find the most optimal one.

plied, using logcosh (see equation 4.1) to evaluate performance. The
performance of TrackNet can be seen in figure 4.10, where the lime
highlighted line is the best performing architecture.
After the optimization of TrackNet, we will test the influence of the
variables available to the TrackNet (see table 3.4). To measure the im-
portance, we will use Permutation Feature Importance29. The results are 29 At the beginning of each model, a

feature is randomly shuffled to break
down the relationship between the fea-
ture and target.

illustrated in figure 4.11. We see that each variable contributes pos-
itively to the performance of TrackNet as the performance decreases
if any variables are shuffled. We also see a large variance of η and θ,
which is likely due to η being a transformation of θ, so they contain
the same information and the model switches between using one or
the other.

54 masters thesis

Figure 4.11: Permutation Feature
Importance has been run five times
for each variable giving uncertain-
ties. If a feature is not contributing
to the performance of the network,
it should be negative.

CNNnet

Optimizing the CNNnet is challenging, as conv2d contains many hy-
perparameters. Selecting the most meaningful ones, the evaluation
time can be reduced, yet still take multiple weeks.

Hyperparameter Space
Number of block 3, 4, 5
Size of blocks 2, 4, 6
Pooling layer maxpool, avgpool
Global Pooling maxpool, avgpool, flatten

Table 4.3: The hyperparameters
chosen in the GridSearch of
CNNnet. The parameters in bold
are the parameters of the most
accurate model.

Using figure 4.4 as a starting point, the hyperparameters chosen
to optimize for can be seen in table 4.3, and the result from the Grid-
Search can be seen in figure 4.12 with the most accurate model col-
ored lime. The CNNnets output will serve as an input to the Top,
where the Top consists of 3 hidden layers with [512, 512, 1] neurons
in each layer.

Figure 4.12: Tensorflows HParams
have been applied to obtain the
most optimal CNNnet. All sam-
ples were loaded into memory to
minimize latency, however, due to
memory constraints, the complete
set of data was not used. The sam-
ple sizes were Strain = 2.000.000,
Sval = 750.000 and Stest = 500.000,
with early-stopping at 15 epochs.
Logcosh is the performance mea-
sure, and the lime-colored line
shows the best-performing one.

Each iteration in figure 4.12 was run 4 times to ensure some conver-
gence stability, which resulted in a running time of about five weeks
on a single NVIDIA RTX 3090. The lime-colored was the best per-
forming model and these parameters are then selected.

ScalarNet, FiLM gen. and Top

Due to time constraints, optimization of ScalarNet, FiLM gen. and Top
were not possible. However, all sub-modules were optimized in [18],
so the parameters found there will be used in this thesis.

4.4.1 Selecting sub-modules

We have two modules that can change position, namely ScalarNet and
TrackNet, and they can be connected to FiLM gen. and Top, resulting in
a total of 12 permutations30 with an additional for the basic network30 Mistakenly, there are actually 15 per-

mutations, but three were lost in transla-
tion.

(just CNNnet and Top). The optimal model will be selected using MC

model architecture 55

and Data evaluation explained in section 4.2.2, where the Data met-
ric will be weighted highest as its performance in Data, we wish
to improve31. Each permutation will be run twice to ensure similar 31 Only a small sample of Data has been

used to test the accuracy.convergence. The results can be seen in table 4.4. The row marked

reIQR75 reIQR95 σCB,mc σCB,data

Basic -0.121 -0.025 2.677 2.488

FiLM: scalar 0.229 0.257 1.871 2.108

FiLM: scalar - top: scalar 0.229 0.252 1.844 2.132

FiLM: scalar - top: scalar track 0.223 0.251 1.850 2.107

FiLM: scalar - top: track 0.226 0.264 1.794 1.969
FiLM: scalar track 0.228 0.265 1.810 2.119

FiLM: scalar track - top: scalar track 0.210 0.262 1.779 2.035

FiLM: track - top: scalar -0.042 -0.067 2.517 2.297

FiLM: track - top: track 0.140 0.149 2.057 2.204

top: scalar -0.154 -0.131 2.327 2.377

top: scalar track 0.213 0.233 1.924 2.158

top: track 0.136 0.164 2.051 2.172

Table 4.4: Performance of the
various sub-module combinations.
Each model has been trained twice
on MC Z → ee. Three permutations
are missing, and we unfortunately
did not have time to test them.

as bold is the best performing one, with ScalarNet in FiLM gen. and
TrackNet in the Top. Table 4.4 also provides us a small fraction of in-
sight into the BlackBox of DeepCalo by indicating the importance of
the variables and sub-modules of the network. First of, adding Scalar-
Net into the Top does not affect performance much, but it is certainly
very important in the FiLM gen.. This may be due to ScalarNet con-
taining spacial and general energy information of the cells, and this
will help the FiLM re-weight the channels. The TrackNet contains in-
formation about the possible noise in the image and could also work
well for the FiLM gen.. However, this is likely used as a re-weighting
parameter in the Top.

4.4.2 Learning Rate Scheduler

LRS

After the DeepCalo architecture has been selected, it is time to look at
the hyperparameters that are not a part of the architecture, namely
learning rate and batch size. Choosing the correct learning rate be-
comes less crucial when applying an LRS, however, the correct LRS,
as well as its behavior and range, still needs to be chosen. From fig-
ure 2.12 and [18], we see that oneCLR provides the desired speed-up
compared to the CLR with the same accuracy level. oneCLR has also
been used in the optimization of the network above due to the speed-
up, so we will continue to use oneCLR. Figure 4.13: Determining the

oneCLR learning rate range. The
DeepCalo model has been trained
for one epoch five times to measure
the mean and standard deviation
of the loss. The learning rate has
then been gradually changed dur-
ing the epoch to measure learning
rate at which the network learns
the most.

Next, it is important to choose the correct range for oneCLR. This
can be tested by varying the learning rate during training, see figure
4.13. The selection of λmax and λmin is in the regions where the learn-
ing flattens. In figure 4.13, the black dashed lines indicate the regions
of λmax and λmin resulting in λ = [0.0001, 0.04] for DeepCalo.

56 masters thesis

Batch-size

Due to the memory size of the NVIDIA RTX 3090 (24 GB), the batch-
size for the input data can be quite large, ranging from [512, 4096]
in input size32. In figure 4.13, the convergence of DeepCalo at differ-32 Batch-size could be lower, but this

would result in poor generalization. ent batch-sizes is shown. The batch-size desired is the one with the
steepest slope when changing the learning rate. It can be seen in fig-
ure 4.13 that the batch-size of 2048 has the steepest decline in the
loss, so it is chosen as the batch-size.

DeepCalo summary

A quick summary of the parameters found from the optimization
above and in [18] is given table 4.5. This architecture has a total
of 2.202.797 parameters33. Before hyper-parameter optimization, the33 The parameters consists of 2.194.851

trainable parameters and 7.946 non-
trainable.

DeepCalos total number of parameters was ≈ 3.600.000. The reduc-
tion in parameters is appreciated and attributes to a small speed-up
in training.

Table 4.5: The table shows a sum-
mary of the important parameters
selected for DeepCalo. Note that the
activation function used through-
out the network is Leaky ReLU, ex-
cept for the output layer that uses
ReLU.

Hyperparameter Parameter

TrackNet

Units (128, 64, 32,16)
Normalization Batch
Kernel size & filters 5

Connected to [Top]

ScalarNet

Units (256)
Normalization Batch
Connected to [FiLM]

FiLM gen.

Units (512, 1024)
Normalization Batch

CNNnet

Down-sampling MaxPool
Globalpooling MaxPool
Number of blocks 3

Depth of blocks 4

Top

Units (512, 512, 1)
Output activation ReLU

Analysis

The following two chapters will explore the performance of the DeepCalo
model discussed in chapter 4. DeepCalo will be trained and evaluated
on four separate channels. All channels have MC samples available,
but only Z → ee and Z → µµγ have samples of Data (see table 4.6).
To keep track of the different DeepCalo models, we will add a sub-
script to each model. The subscript will indicate the channel and
the type of data the model is trained on, eg. DeepCaloZee,mc is the
Z → ee model trained on MC samples.

Channel MC Data
Z → ee 1.000.000 450.000

Z → µµγ 350.000 400.000

H → γγ 310.000 No data available
Electron Gun 1.100.000 No data available

Table 4.6: The table displays the
channels that will be explored and
the number of events in the test
sample for both MC and Data.

In the evaluation of the models, multiple reconstruction properties
have to be investigated before a conclusion can be drawn. We will
have to investigate

• the general performance increase for both MC and Data,

• the uniform performance increase over the entire |η|, 〈µ〉 and ET

range.

All the DeepCalo models will be evaluated on these properties. Unless
stated otherwise, every model has been run four times to ensure
measure consistency and achieve an uncertainty on the performance.

5 Electron Reconstruction

In this chapter, we will explore the electron reconstruction perfor-
mance of DeepCalo in the Z → ee channel. The chapter will contain
five DeepCalo models. First a MC trained model called DeepCaloZee,mc,
where performance will be measured for both MC and Data. After-
wards, DeepCaloZee,data, a Data trained model, will be evaluated.
Next is the ensemble model DeepCaloZee,mc/data, where the two pre-
vious models have been combined. This model is trained on both MC
and Data. Afterwards, the DeepCaloEG model will be evaluated. EG
stands for Electron Gun and is an electron sample that has no decay
channel but a large ET range. The last section will be on the additional
properties of DeepCalo, where a DeepCaloσ model will be assessed, as
it is able to estimate uncertainties on its predictions, thus removing
poorly reconstructed events.

20 40 60 80 100
ET, truth [GeV]

20

40

60

80

100

E T
,p
re
d [

Ge
V]

ATLAS

20 40 60 80 100
ET, truth [GeV]

20

40

60

80

100

E T
,p
re
d [

Ge
V]

DeepCalo

100

101

102

103

104

Figure 5.1: Predictions are on MC.
The figure shows a correlation plot
between ET,truth and transverse
predictions from Ecalib(BDT)or
DeepCaloZee,mc. The black dashed
line is a linear line (f (x) = x). The
closer to the black line the better.
The color indicates the number
of events and the color-scale is
logarithmic. We see DeepCalo being
placed closer to the dashed line
than Ecalib(BDT).

5.1 Analysis of DeepCaloZee,mc

In the following section, the performance of the DeepCalo model
trained for Z → eeon MC, DeepCaloZee,mc, will be explored.

5.1.1 Monte Carlo

The DeepCaloZee,mc performance in MC can easily be evaluated, as
we are able to directly compare its predictions with the Etruth. The
evaluation methods for both MC and Data are explained in section
4.2.2. The MC samples will also be evaluated using the evaluation
method applied to Data so a direct comparison between MC and
Data performance is possible.

Energy evaluation

We compare DeepCaloZee,mc and Ecalib(BDT)to Etruth using the eIQR
and reIQR metrics described in section 4.2.2. The reIQR results and
their uncertainties can be seen in equation 5.1.

〈reIQRDeepCalo
75 〉 = 22.4± 0.7%

〈reIQRDeepCalo
95 〉 = 25.9± 0.9%

(5.1)

From equation 5.1, we see a performance gain of > 20% and consis-
tency in the convergence, as the uncertainties are low at ≈ 1%. An
example of the RE distribution of a DeepCaloZee,mc model and the

electron reconstruction 59

Ecalib(BDT)reconstruction can be seen in figure 5.3. The DeepCaloZee,mc

distribution in the figure is clearly more narrow than that of Ecalib(BDT),
indicating an improvement in reconstruction. To ensure unbiased

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
|η|

10−1

2 × 10−2

3 × 10−2

4 × 10−2

6 × 10−2

eI
QR

75

DeepCalo
ET: [20, 30], Number of events: 185691
ET: [30, 40], Number of events: 328676
ET: [40, 50], Number of events: 345991
ET: [50, 60], Number of events: 91009
ET: [60, 70], Number of events: 32823

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
|η|

ATLAS
ET: [20, 30], Number of events: 185691
ET: [30, 40], Number of events: 328676
ET: [40, 50], Number of events: 345991
ET: [50, 60], Number of events: 91009
ET: [60, 70], Number of events: 32823

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
|η|

−0.1

0.0

0.1

0.2

0.3

0.4

re
IQ
R 7

5

Figure 5.2: Predictions are on MC.
Top figures shows the eIQR75 of RE
as a function of |η| and E, with bin
size of 0.1 in |η| for Z → ee. They
share a y axis and the legend shows
the number of events in each ET
bin. Bottom figure show a compar-
ison between the two model using
reIQR75 for all the |η| and ET bins.

and pattern-free predictions, the correlation between Epred and Etruth

can be seen in figure 5 for both DeepCalo and Ecalib(BDT). This will be
referred to as a correlation plot. The correlation plot for the Ecalib(BDT)

prediction reveals no biases, as most events follow the black dashed
line. However, looking at the outliers, they have an upper and a
lower bound (cone-like shape) with a slight tendency towards un-
derestimating at low energies. This tendency, however, is diminished
at ET > 50 GeV. This cone-like shape will be discussed in chapter 7.
Looking at the correlation plot of DeepCaloZee,mc, we see a consid-
erable improvement in removing the underestimated outliers com-
pared with Ecalib(BDT). The overestimated outliers do not look quite
as dense as for Ecalib(BDT), however, it is difficult to determine from
the figure. In chapter 7, we will inspect the behavior of the outliers.
As mentioned in the introduction to this chapter, the aim is a uniform
performance increase independent of |η|, 〈µ〉 and ET . By separating
the events into their respective |η| vs ET and 〈µ〉 bins, we can evalu-
ate the performance of each bin.

0.96 0.98 1.00 1.02 1.04
Epred/Etruth

0

2000

4000

6000

8000

10000

12000

#

22.354% improvement in eIQR75
26.063% improvement in eIQR95

ATLAS eIQR75: 0.0348
DeepCalo eIQR75: 0.027

Figure 5.3: Predictions are on
MC. The figure shows the RE
between Etruth, Ecalib(BDT)and
DeepCaloZee,mc. The vertical
dashed lines are the IQR75 and
IQR25 of the distributions with the
reIQR75 and reIQR95 performance
in the legend text.

The |η| vs ET performance can be seen in figure 5.2 using the
eIQR75 measure and comparing the models using reIQR75. We see
consistent 10-30% performance improvements in the |η| vs ET bins.
For more detailed figures on the |η| vs ET performance, see section
9.5.4, where the number of events in each bins are also shown.
The 〈µ〉 performance on MC will follow shortly.

60 masters thesis

Mass evaluation

The > 20% performance increase seems promising for the the DeepCalo
Data performance. However, due to the discrepancies between MC
and Data, the performance in Data is expected to decrease. By using
the Data metric explained in section 4.2.2, we will be able to compare
the performance between DeepCaloZee,mc on MC and Data. An exam-
ple of the invariant mass fit to MC can be seen in figure 5.4 with the
result from the four models compared to Ecalib(BDT)in equation 5.2.
The expressions used to calculate the average and the uncertainties
can be seen in chapter 9.

〈1−
σ

DeepCalo
CB

σATLAS
CB

〉 = 1− 1.8310± 0.006
2.393± 0.01

= 23.5± 0.4% (5.2)

We see a 23.5± 0.4% improvement in the width of the BW
⊗

CBfit
over Ecalib(BDT), which translates to a more accurate energy recon-
struction.
To see direct comparisons between the invariant masses of DeepCaloZee,mc,
Ecalib(BDT)and Etruth, see figure 9.6, where the decrease in width is
more prominent.

(a) Energy reconstruction from Ecalib(BDT)

(b) Energy reconstruction from DeepCaloZee,mc

Figure 5.4: The figure shows the
BW

⊗
CB fit to the energy esti-

mations from DeepCaloZee,mc and
Ecalib(BDT)in MC. Only true elec-
trons have been used in the fit.
The best performing model has the
lowest σCB.

5.1.2 Data

As performance has been measured on MC, we will now evaluate it
in Data. The DeepCaloZee,mc model provides a significant improve-
ment over Ecalib(BDT) in energy reconstruction for MC. However,
as shown (See section 3.3) and discussed earlier, there are notable
discrepancies between MC and Data that will lead to a decrease in
DeepCalo performance. In Z → ee Data, the performance metric will
always be σCB of the BW

⊗
CB fit.

Mass evaluation

The BW
⊗

CB fit for one of the four models can be seen in figure 5.6,
where the selection criteria from table 3.7 have been applied. The
performance on Data of DeepCaloZee,mc compared to Ecalib(BDT)can
be seen in equation 5.3.

〈1−
σ

DeepCalo
CB

σATLAS
CB

〉 = 1− 2.058± 0.010
2.271± 0.019

= 9.4± 0.9%. (5.3)

While we see an improvement in the Data performance compared to
Ecalib(BDT), it is a significant decrease from the previous MC perfor-
mance. The |η| performance of the DeepCaloZee,mc model will follow
in section 5.6, where we compute the resolution of |η| in both MC
and Data.

Pileup performance for MC and Data

With the upcoming upgrades due at the LHC, an increase in lumi-
nosity and thereby pileup is expected. An analysis of the pileup

electron reconstruction 61

Figure 5.5: Top figure shows
the pileup (〈µ〉) performance
of DeepCaloZee,mc for both MC
(dashed line) and Data (solid line).
The pileup range between MC
and Data are not the same, so
both ranges have been divided
into five equally sized bins. The
performance measure is σCB from
the BW

⊗
CBfit. Bottom figure

shows the comparison between
DeepCalo and Ecalib(BDT) using
1 − σDeepCalo/σATLAS. The pileup
range for MC is [10, 80] and for
Data it is [15, 40].

1.8

2.0

2.2

2.4

2.6

σ C
B

Z→ ee
DeepCalo MC
ATLAS MC
DeepCalo data
ATLAS data

0%< ⟨μ⟩ ≤ 20% 20%< ⟨μ⟩ ≤ 40% 40%< ⟨μ⟩ ≤ 60% 60%< ⟨μ⟩ ≤ 80% 80%< ⟨μ⟩ ≤ 100%
0.0

0.1

0.2

1⟨
σ D

ee
pC

μl
o⟩σ

AT
LA
S

performance of DeepCalo is important, as pileup can challenge the
reconstruction. Therefore, it is important that DeepCalo achieves a
better energy reconstruction than Ecalib(BDT)at high pileup, as it is
the future of LHC. It should be noted that pileup for MC is not re-
weighted, as the files could not be found. Thus, the pileup range
between MC and Data are not comparable, as the pileup range dif-
fers between MC and Data. The pileup ranges can be seen in figure
3.3.

(a) Energy reconstruction from Ecalib(BDT)

(b) Energy reconstruction from
DeepCaloZee,mc

Figure 5.6: The figure show the
BW

⊗
CB fit to the energy esti-

mations from DeepCaloZee,mc and
Ecalib(BDT)on Data. The criteria
from table 3.7 have been used to se-
lect events in Data.

The pileup performance for both MC and Data can be seen in
figure 5.5 with the 1− σDeepCalo

σATLAS
at the bottom. The figure shows that

Ecalib(BDT)and DeepCaloZee,mc both suffer from increasing pileup in
MC, but from the bottom plot we see that Ecalib(BDT) suffers more
from pileup than DeepCalo as the reIQR increases. For Data, we see
the same behavior, with the DeepCalo performance remaining fairly
constant, while the performance of Ecalib(BDT) decreases with in-
creasing pileup. Looking at the 1− σDeepCalo

σATLAS
ratios, DeepCalo achieves

an improvement of 20% and ≈ 9% on MC and Data, respectively,
when compared to Ecalib(BDT) at low pileup. With increasing pileup,
the ratio increases to ≈ 28% and ≈ 12% for MC and Data, respec-
tively, which looks promising for when LHC undergoes upgrades.

5.2 Electron gun

From the analysis above, we saw improvements both in MC and
Data throughout pileup over the entire |η| range and energies within
ET ≈ [10, 70].

However, electrons from Z → ee only have a limited energy range,
and performance needs to be tested at higher energies. This is essen-
tial, as it might be required for the discovery of new physics at higher
energies. The EG MC samples will be used for testing this1, as they 1 The EG samples contain roughly

7.500.000 events with 0.6, 0.15, 0.25 ra-
tios for train, test and validation sam-
ples, respectively.

have electrons at very high energies (see figure 9.11). In addition,
the EG evaulation will also examine the bias of theDeepCalo towards

62 masters thesis

decay channels, as the algorithm might be biased for a specific in-
variant mass. The DeepCaloEG has only been run twice. An example
of the RE distribution of one of the DeepCaloEG models can be seen
in figure 5.2 and the general performance can be seen in equation
5.4.

0.96 0.98 1.00 1.02 1.04
Epred/Etruth

0

5000

10000

15000

20000

25000

#

6.734% improvement in eIQR75
13.691% improvement in eIQR95

ATLAS eIQR75: 0.016
DeepCalo eIQR75: 0.0149

Figure 5.7: Predictions are on MC.
The histogram shows the RE of
DeepCaloEG and Ecalib(BDT) with
the eIQR improvement to DeepCalo
in the legend. The vertical dashed
line are the IQR75 and IQR25 of
both distributions.

〈reIQRDeepCalo
75 〉 = 6.811± 0.077%

〈reIQRDeepCalo
95 〉 = 13.81± 0.12%

(5.4)

We see a 6.811± 0.077% and 13.81± 0.12% improvement in eIQR75

and eIQR95, respectively. This is a decrease compared with the previ-
ous improvement of > 20%. This is likely due to the decrease in the
concentration of events, as the energies span ET = [5-> 1000 GeV,
with roughly 4.5 millions events for training. In figure 5.8, the η vs
ET bins are illustrated (similar to figure 5.2).
Here, we see fluctuations between the increasing and decreasing of
performance compared with Ecalib(BDT). DeepCalo especially strug-
gles at very high energies. However, in and beyond the crack region
(|η| > 1.4), DeepCalo exceeds Ecalib(BDT)consistently, except at very
high energies.
Nevertheless, the performance of DeepCalo on a single electron is a

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
|η|

10−1

2 × 10−2

3 × 10−2

4 × 10−2

6 × 10−2

eI
QR

75

DeepCalo
ET: [20, 30], Number of events: 61718
ET: [30, 40], Number of events: 62126
ET: [40, 50], Number of events: 62411
ET: [50, 60], Number of events: 61992
ET: [60, 70], Number of events: 62441
ET: [70, 80], Number of events: 61913
ET: [80, 90], Number of events: 62294
ET: [180, 200], Number of events: 77132
ET: [500, 1000], Number of events: 15466

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
|η|

ATLAS
ET: [20, 30], Number of events: 61718
ET: [30, 40], Number of events: 62126
ET: [40, 50], Number of events: 62411
ET: [50, 60], Number of events: 61992
ET: [60, 70], Number of events: 62441
ET: [70, 80], Number of events: 61913
ET: [80, 90], Number of events: 62294
ET: [180, 200], Number of events: 77132
ET: [500, 1000], Number of events: 15466

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
|η|

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

re
IQ
R 7

5

Figure 5.8: Predictions are on MC.
Top figures show the eIQR75 of RE
as a function of |η| and ET with
a bin size of 0.1 in |η| for the EG
samples. They share a y axis and
the legend shows the number of
events in each ET bin. Bottom fig-
ure shows a comparison between
the two models using reIQR75 for
all the |η| and ET bins.

bit disappointing, as we had hoped for better generalization at high
energies. Yet, the performance might increase with large MC sam-
ples.

electron reconstruction 63

5.3 Analysis of DeepCaloZee,data

Discrepancies between MC and Data are mostly accounted for when
looking at the 1D and 2D variable distributions, yet higher order
discrepancies in N > 2 variable space are not corrected and are
prominent when comparing DeepCaloZee,mc performance for MC and
Data. Variations in high dimensions are nearly impossible to ac-
count for. However, we might be able to help DeepCalo understand
these discrepancies by training directly on Data. As was briefly ex-
plained in chapter 4, we have developed two methods for training
on Data, which will be explained in greater detail in the coming
sections. Both methods involve Ecalib(BDT), as only events within
86 GeVs ≤ Mee ≤ 97 GeV are selected, with Ecalib(BDT) being used
for calculating Mee.

Regression to the mean

The first method we tested was constructing the invariant mass of the
particle pairs in the loss function and evaluating it to the invariant
mass of the parent particle. The functions used in the loss function
can be seen in equation 5.5.

M2 = 2pT,1 pT,2(cosh(η1 − η2)− cos(φ1 − φ2))

L(ŷ) = log(cosh(91.192 −M2)) for Z → ee.
(5.5)

However, this loss function has multiple drawbacks. It reduces the
number of evaluations by half, and it can be a problem if too few
events are within 86 GeVs ≤ M ≤ 97 GeV. η, φ and EventNumber are
required to calculate the invariant mass, so they have to be added in
the output layer. While not a problem for η and φ, this poses a prob-
lem for DeepCalo, as it outputs float32, leading to the EventNumber
overflowing, as it is int64 precision. This can be solved by sorting
the events beforehand, not shuffling during training, and only using
a single GPU so the data is separated. The loss function was not vec-
torized either, making it very slow. Lastly, the method is dependent
on the batch sizes to correct for the approximation2 and achieve a 2 The approximation referring to the as-

sumption that the invariant mass is not
a distribution but a fixed mass.

meaningful gradient from the loss function. Here, a large batch size
is required, meaning a large amount of memory on the GPU is nec-
essary. Due to these drawbacks, this methods will not be used in the
further analysis. The next method, however, will be.

Constructing Elabel,data

This method will be applied when training directly on Data. This
method involves constructing an estimate of Etruth,data from Ecalib(BDT).
Thus, no change in loss function is required, resulting in none of the
drawbacks previously mentioned. However, it would still be a ap-
proximation. Using equation 5.6, we can construct Etruth,data using

64 masters thesis

Ecalib(BDT)and setting M2 to the mean value of the resonance peak.

M2 = 2pT,1 pT,2(cosh(η1 − η2)− cos(φ1 − φ2)), pT = ET l

Elabel,data =
M2

2ET,2(cosh(η1 − η2)− cos(φ1 − φ2))
,

with ET,2 = Ecalib(BDT) and M2 = 91.192

(5.6)

Afterwards, the Elabel,data can be used directly in training without
any additional changes. An important property to evaluate is the
accuracy of Etruth,data. This will be assessed in chapter 7.

Results from training in Data

Figure 5.9 illustrates the predictions from DeepCaloZee,data trained
using the Reconstruct Etruth,data method. To ensuring comparability,
the test sample is the same as used for DeepCaloZee,mc. Looking at
the performance for σCB, we see a increase of

〈1−
σ

DeepCalo
CB

σATLAS
CB

〉 = 5.9± 0.9% (5.7)

(a) Energy estimates from Ecalib(BDT)

(b) Energy estimates from DeepCaloZee,data

Figure 5.9: The figure show the
BW

⊗
CB fit to the energy estima-

tions from DeepCaloZee,data and
Ecalib(BDT)on Data. The criteria
from table 3.7 have been used to se-
lect events in Data.

in performance when compared with Ecalib(BDT). This is a de-
crease from the DeepCaloZee,mc model of about ≈ 3%, which might
lead us to discard this method, but this method has important fea-
tures other than reducing the width of the BW

⊗
CB fit. As explained

in chapter 1, corrections are made to Ecalib(BDT) to account for dis-
crepancies between MC and Data, and to ensure that the µBW is
not shifted in Data. Looking at µCB in figure 5.6 and 5.9, we see
µCB = 0.073 GeV for the DeepCaloZee,data and µCB = −0.5659 GeV
for the DeepCaloZee,mc model, indicating that when training on Data,
the network will learn the corrections to Data. The average shift of
DeepCaloZee,mc and DeepCaloZee,data for Data can be seen in equation
5.8 with uncertainties.

〈µmc,CB〉 = −1.159± 0.009 GeV

〈µdata,CB〉 = −0.004± 0.009 GeV
(5.8)

〈µmc,CB〉 is from DeepCaloZee,mc and 〈µdata,CB〉 is from DeepCaloZee,data.
As seen in equation 5.8, the DeepCaloZee,data model reduces the shift
of the BW

⊗
CB fit and determines the µ of the distribution very close

to the Z mass. Note that to reconstruct Etruth,data, the correct mass of
the parent particle is needed, so if the mass of the parent particle is
unknown, we can not apply this method. Nevertheless, the proper-
ties of DeepCaloZee,data will be useful for the next DeepCalo model
below.

5.4 Ensemble method

As seen above, we were able to train the DeepCalo model on MC
and Data, each with its own benefits and drawbacks. By combining
them, we might be able to take advantage of the benefits without the

electron reconstruction 65

drawbacks. We have therefore developed a DeepCaloensemble method,
where we mix training on MC and Data, giving the model the possi-
bility of learning the discrepancies between MC and Data and correct
for them. As defined previously in section 4.4, when Etruth is known,
the logcosh from equation 4.1 can be applied. Thus, it would be possi-
ble to extend the ensemble model of DeepCalo to be trained with the
ensemble loss function seen in equation 5.9.

L(y, ŷ) = L(y(Zee, MC), ŷ(Zee, MC)) + L(y(Zee, Data), ŷ(Zee, Data))+

L(y(Zµµγ, MC), ŷ(Zµµγ, MC)) + L(y(Zµµγ, Data), ŷ(Zµµγ, Data))+

L(y(Hγγ, MC), ŷ(Hγγ, MC))

(5.9)

This will solve the four main problems of the previous models,

1. Non-channel-specific: The same model will be able to reconstruct
both electrons and photons from Z → ee, Z → µµγ and H → γγ.

2. Correction to Data made during training.

3. Non-sample-specific: By training on MC and Data, the Data sam-
ple might assist the model in the misalignment between MC and
Data.

4. Assist H → γγ in Data: The amount of background photons in the
H → γγ channel prohibits training on Data. However, by combin-
ing H → γγ MC with Z → µµγ MC/Data, the model might learn
the patterns of γ in Data.

0.96 0.98 1.00 1.02 1.04
Epred/Etruth

0

2000

4000

6000

8000

10000

12000

#

21.593% improvement in eIQR75
24.565% improvement in eIQR95

ATLAS eIQR75: 0.0348
DeepCalo eIQR75: 0.0273

Figure 5.10: Predictions are on
MC. The figure show the RE of
Ecalib(BDT)and DeepCaloZee,mc/data
with IQR75, reIQR75 and reIQR95 in
the legend.

For the ensemble model, the Regression to the mean method cannot
be used, as it calculates the M2

inv in the loss function. This poses a
problem, as the scale for the MC and Data loss will not be identical.
To test the ensemble method, we will in the following section show
the results for the DeepCaloZee,mc/data ensemble model. Here, DeepCalo
has been trained in the Z → eechannel on both MC and Data.

5.4.1 Analysis for DeepCaloZee,mc/data

Monte Carlo

We start by evaluating the performance on MC and compare it to
DeepCaloZee,mc. The performance can be seen in equation 5.10. Both
metrics are within the uncertainties of the DeepCaloZee,mc model per-
formance. This shows that the additional Data samples do not con-
fuse the accuracy of the model. An example of the MC performance
can be seen in figure 5.4.

〈reIQRDeepCalo
75 〉 = 22.1± 0.3%

〈reIQRDeepCalo
95 〉 = 25.3± 0.8%

(5.10)

As seen from the BW
⊗

CB fit of the DeepCaloZee,mc model on MC,
the reIQR75 and σCB improvements are very similar.

66 masters thesis

Data

Nevertheless, the essential thing is the performance of DeepCalo on
Data. An example of the DeepCaloZee,mc/data performance on Data
can be seen in figure 5.12, where we can see a large decrease of σCB.
The combined performance of the four models can be seen in equa-
tion 5.11.

〈1−
σ

DeepCalo
CB

σATLAS
CB

〉 = 1− 1.86± 0.010
2.271± 0.019

= 18.3± 0.8%, (5.11)

with an average shift in Data in equation 5.12.

〈µdata,CB〉 = −0.392± 0.009 GeV (5.12)

As seen, the shift has shrunk between DeepCaloZee,mc/data and
DeepCaloZee,mc, with the former now being less than the Ecalib(BDT)shift
(see equation 5.12).

(a) Energy estimates from Ecalib(BDT) (b) Energy estimates from DeepCaloZee,mc/data
Figure 5.11: The figure shows the
BW

⊗
CBfit to the energy estima-

tions from DeepCaloZee,mc/data and
Ecalib(BDT)on Data. The criteria
from table 3.7 have been used to se-
lect events in Data.

The construction and performance of the DeepCaloZee,mc/data model
facilitates further ensemble models, as we see a large performance
gain. Many different samples can easily be combined for further gen-
eralization. However, when adding multiple sample types, DeepCalo
might require a variable called type for specifying whether the sam-
ple is MC or Data, as this will indicate if the network has learned
the corrections of Data for that specific channel. This type variable
should be an additional scalar variable.

We could continue with creating a unified model DeepCaloMC/Data,Zee,Hγγ,Zµµγ

that would be able to reconstruct both electrons a photons. How-
ever, due to time constraints, we did not finish the creation of this
model. However, as the model might learn MC discrepancies from
Z → ee , it would have been interesting to combine training on Data
for Z → ee and MC for H → γγ to see if there would be an improve-
ment in H → γγ Data.

electron reconstruction 67

Learning differences between MC and Data

Training an ensemble method raises some interesting questions when
it comes to MC and Data. How prominent is the misalignment and
how well is the network able to distinguish between MC and Data?
Changing the final activation function to sigmoid, setting truth to
binary 0 (Data) and 1 (MC) and changing the loss function to bi-
nary cross-entropy, the model can be transformed from a regression
model to a classification model. The resulting accuracy can be seen
in figure 9.5 in the form of a ROC curve and its AUC. It can be seen
that the model is good at distinguishing MC from Data, meaning the
misalignment is pretty prominent. If work went into the explainabil-
ity of DeepCalo, the ensemble model might aid the understanding of
discrepancies between MC and Data and account for them.

0.96 0.98 1.00 1.02 1.04
Epred/Etruth

0

2000

4000

6000

#

17.827% improvement in eIQR75
21.066% improvement in eIQR95

ATLAS eIQR75: 0.0317
DeepCalo eIQR75: 0.0261

Figure 5.12: Predictions are on MC.
General performance of DeepCaloσ

and Ecalib(BDT)using the reIQR of
the RE.

5.5 Additional properties from Neural Networks

Uncertainties of predictions - DeepCalomc,σ

As explained in section 4.2.1, we are able to modify DeepCalo so the
network outputs an energy with an additional uncertainty. We will
only be showing the DeepCaloσ model for Z → ee trained on MC
and refer to it as DeepCaloσ, as this section is a proof of concept for
the DeepCaloσ. However, it could easily be extended to other chan-
nels. Performance will be measured by sorting Stest by σM, splitting
Stest into five bins with 20% of the sample in each bin (similar to
figure 5.5). As σM should indicate confidence or an uncertainty, it is
expected that the lowest σM provides the highest precision and that
when σM increases, performance degrades. Note that the DeepCaloσ

model has only been run once. The performance of the DeepCaloσ

will be assessed for both MC and Data, so σCB will be used as the
metric. Therefore, the predicted uncertainties will be used to calcu-
late the uncertainty of the Z mass, denoted σM.The expression used
to calculate the uncertainty on the Z mass can be seen in chapter 9.

Figure 5.13: Predictions are on MC.
The figure shows the pull residual
of the five σ bins of DeepCaloσ. A
Gaussian χ2 fit has been applied to
measure the mean and width of the
distributions. The parameter of the
Gaussian can be seen in the legend
of the figure.

Monte Carlo

The general DeepCaloσ performance can be seen in figure 5.12, where
we see a small performance decrease compared with DeepCaloZee,mc

(see figure 5.3). As the DeepCaloσ model is additionally tasked with
predicting σ, this decrease is expected. The performance decrease is
not as noticeable as expected. We will discuss the decrease and how
it might be improved on in chapter 7. Note that σ will also be used
to refer to σM

σM performance

The important property is σM and how it can be used as a confidence
or uncertainty measure. Figure 5.14 illustrates the performance of
DeepCaloσ on MC and Data, where σ′ has been transformed back
to σ =

√
eσ′ and used to calculate σM. The uncertainties have been

68 masters thesis

sorted and divided into five percentiles, with the BW
⊗

CB fit applied
to each bin, measuring the performance of each percentile or σM bin.
The performance of each bin is shown in figure 5.14 for both MC and
Data.
Figure 5.14a is the DeepCaloσ performance on MC, it can be seen that
σM is indeed an uncertainty of the estimation, since σCB increases
with σM. We also see DeepCaloσ consistently perform more accu-
rately than Ecalib(BDT). Additionally, figure 5.13 shows the pull plot
of the five σM bins with a Gaussian fit measuring the width and
mean of the distributions. If we discard the last σM = [10.04, 17.02]
bin, as it has a tail, the widths of the Gaussians show that the σMs
are about 4.5 times too large3. While not perfect, the pull residuals3 Because the width of the pull residuals

must be 1. have a reasonable distribution to re-scale the uncertainties with 4.5 to
achieve an almost unit Gaussian. The re-scaled pull plot can be seen
in figure 9.29. For figure 5.14b on Data, we see the same behavior

(a) DeepCaloσ on MC samples (b) DeepCaloσ on Data samples

Figure 5.14: The figure shows the
performance of the DeepCaloσ on
MC and Data (left figure and right
figure, respectively). The error bar
plot in each figure belongs to the
left y-axis, which is the σCB mea-
sure. The colored histogram be-
longs to the right y-axis, which
counts the number and range of the
σM in each of the five bins.

for σM, namely that with increasing σM the performance degrades.
However, we see some irregularities in Data. The distribution of σM

mostly follows that of MC, except for the first bin at σ > 5, where a
large number of events are located. As can be seen from figure 9.28,
there is a cluster of poorly reconstructed events at E = [0, 10] in Data
that is not present in MC. These events might be a cause for these
irregularities. These irregularities must be investigated before using
the confidence in a final model.

5.6 Corrections and resolutions

From the results above, we see a general performance increase by
applying DeepCalo. As covered in chapter 1, the Ecalib(BDT)consists
of multiple corrections for the invariant mass between MC and Data
to be aligned. In the following section, we will apply one of these
corrections, namely an η shift, to each of the |η| bins. Afterwards,

electron reconstruction 69

we will calculate the |η| resolution for both MC and Data to measure
the |eta| performance on MC and Data. It will all be applied to the
DeepCaloZee,mc.
We illustrate the number of events in each of the |η| bins in figure
5.15, as bins with low statistic will have an effect on fitting (see figure
7.1). As seen in figure 5.15, we have multiple bins with low statistics,

Figure 5.15: Figure shows the
amount of events in each |η| bins
for both MC (right) and Data (left).
The figure is symmetric. The color-
coding range is not shared between
the two figures.

namely in the crack and at high |η|. This must be kept in mind when
viewing the results, as the fit may not be as accurate as desired.

η shifting

As seen in the fit from figures 5.4, 5.6, 5.9 and 5.12, the µCB is
non-zero, so the peak is not centered at the Z-boson mass. This
may seem like a small shift, but it can lead to a flattening of the
BW

⊗
CB distribution if the shifts are misaligned in the |η| bins, (see

figure 9.2). Looking at figure 5.16, we see that µCB varies significantly
on MC and Data. Thus, aligning the distribution might improve the
width of BW

⊗
CB fit.

This shift can be corrected for by applying a small fraction αi to an
energy in the ith |η| bin4. The complete derivation for finding the αi

4 The energy shift will be Ecorr
pred = Epred ·

(1 + αi).can been seen in equation 9.7 with the result in equation 5.13.

χ2(α) = ∑
(i,j)∈accpected

µij −mreco
Z,ij · (

αi+αT
i

2)

σµi,j

2

(5.13)

A χ2 fit is applied to solve for αi. There may be some bins where
the BW

⊗
CB fit is not successful. These should not contribute to αi,

and only accpected (i, j) bins, where the fit was successful, will be
used. The resulting αis for the |η| shift can be seen in figure 5.17 for
both MC and Data. As a sanity check, we expect a larger shift for
Data compared to MC, because the µCBs in figure 5.16 are larger in
Data then MC. From figure 5.17, we see the αis are almost twice as
large for Data compared to MC, so the assumption holds. The result
from the |η| shift can be seen in figure 5.18. It has to be compared
with figures 5.4 and 5.6. The µCB parameter has shifted significantly
closer to the invariant mass of the Z-boson for both MC and Data.

70 masters thesis

(a) η shift for MC. (b) η shift for Data.

Figure 5.16: The figures shows the
µCB for both Data (figure a) and
MC (figure (b)) in each |η| bin.

Figure 5.17: The figure shows the
αis from MC and Data for Z → ee
with uncertainties. The values are
computed by solving equation 5.13.

electron reconstruction 71

For MC, a small improvement in σCB of about ≈ 1% can be seen. We
sadly see no improvement for Data, as σCB increases compared with
figure 5.6.

(a) |η| corrections in MC. (b) |η| corrections in Data.

Figure 5.18: The BW
⊗

CB fit of the
same model as used in figure 5.6
and 5.4, but with the |η| correction
from 5.17 added.

|η| resolution

Using the results from section 5.6, we are able use the BW
⊗

CB fit
in each |η| bin to compute an |η| resolution for both MC and Data.
We define σCB of each bin as σij, constructed as σ2

ij = σ2
i + σ2

j . We
thus have 5 unknowns and 15 knowns from figure 5.19, which we
can solve using equation 5.14.

σ2
ij = σ2

i + σ2
j

χ2(σi) = ∑
i,j∈accepted

(
σ2

ij − (σ2
i + σ2

j)

σ2
σCB

)
m

we then have to optimize χ2(α) = ∑
i,j∈accepted

(
σ2

ij − (α2 + α2
T)

σ2
σCB

)
(5.14)

As we use the BW
⊗

CB fit, we need to make sure not to use σCB

from fits that do not follow its distribution. Thus, as previously,
we only use accepted i, j in the sum. In figure 5.19, we can see the
σCB measure from each |η| bin. Solving equation 5.14 with the val-
ues from figure 5.19, we obtain the |η| resolutions seen in figure
5.20. Here, we see a quite significant improvement between DeepCalo
and Ecalib(BDT), except for the bin at large |η|, where we only see a
small improvement. We see an interesting behavior when comparing
the MC and Data performance between DeepCalo and Ecalib(BDT).
The Ecalib(BDT) reconstruction is consistently more accurate for Data
than MC, where DeepCalo has the opposite behavior. It would be ex-
pected that the MC performance for both models are the most accu-
rate as ooth are trained in MC.

However, additional corrections to the Ecalib(BDT) have been made
in Data, and this may indicate that these correction have significantly
improved Ecalib(BDT) Data performance.

72 masters thesis

(a) σCB of the BW
⊗

CB fit in MC. (b) σCB of the BW
⊗

CB fit in Data.

Figure 5.19: The figure shows
the σCB from DeepCaloZee,mc for
both MC (figure a) and Data
(figure (b)) in each |η| bin. Its
Ecalib(BDT) counterpart can be
seen in figure 9.3. The number of
events per bin can be seen in figure
5.15.

Figure 5.20: The figure shows
the resolution of DeepCalo and
Ecalib(BDT) in the |η| bins. The res-
olution is found by solving equa-
tion 5.14 using values from figure
5.19. While each resolution has an
error associated with it, it is very
small and not visible on the figure.
The dashed lines are the MC reso-
lution, and the solid ones are Data.

6 Photon Reconstruction

In continuation with the previous chapter, we will in the follow-
ing one evaluate the photon energy reconstruction capabilities of
DeepCalo. Note that some of the DeepCalo properties shown in chap-
ter 5 also exist for photon reconstruction, but that they will not be
shown, as the capabilities have already been assessed in the pre-
vious chapter. From table 4.6, the decay channels in question are
H → γγ (for MC) and Z → µµγ (for MC/Data). Note that chapter 3

and 4 describe an architecture optimized for Z → ee. However, only
small changes have been made in the architecture to process photons.
Most notably, the input to ScalarNet has been changed, as photons do
not have charge, and are therefore not measured in the ID, resulting
in no track associated with them.

H → γγ

6.1 Analysis of DeepCaloHyy,mc

20 40 60 80 100
ET, truth [GeV]

20

40

60

80

100

E T
,p
re
d [

Ge
V]

ATLAS

20 40 60 80 100
ET, truth [GeV]

20

40

60

80

100

E T
,p
re
d [

Ge
V]

DeepCalo

100

101

102

103

Figure 6.1: Predictions are on MC.
The figure shows a correlation plot
between ET,truth and the model
prediction from Ecalib(BDT)or
DeepCaloHyy,mc. The black dashed
line is a linear line. The color
concentration is logarithmic, indi-
cating the amount of events.

6.1.1 Monte Carlo

Energy evaluation

For energy reconstruction in MC, we use the same metric as in the
previous chapter. We compare DeepCaloHyy,mc and Ecalib(BDT) to Etruth

and use the reIQR to compare the two models. In equation 6.1, we
see the performance of the DeepCaloHyy,mc model with an example
of the RE in figure 6.3.

〈reIQRDeepCalo
75 〉 = 12.8± 0.3%

〈reIQRDeepCalo
95 〉 = 12.4± 0.4%

(6.1)

We see an improvement of ≈ 12% for the photon reconstruction in
H → γγ for both reIQR75 and reIQR95, which is a significant per-
formance gain. However, compared with the improvements in elec-
tron reconstruction, this is a diminution. Further investigations are
needed to shed light on the shortcomings of the model.

The correlation plot in figure 6.1 may give a small hint to the decline
in performance. As we saw before, for Z → ee, DeepCalo improves the
underestimated low energy outliers compared to Ecalib(BDT). How-
ever, the general performance of Ecalib(BDT)on H → γγ is far more

74 masters thesis

accurate to Etruth than its Z → ee counterpart (see figure 5), and, as a
result, making improvements to Ecalib(BDT) becomes more difficult.
The accuracy of Ecalib(BDT) in H → γγ and Z → ee can be seen in
the legend of figure 5.3 and 6.31.1 For H → γγ, the ATLAS eIQR75 =

0.0197 but for Z → ee it is eIQR75 =
0.0348, meaning Ecalib(BDT) for H →
γγ is much closer to Etruth than for Z →
ee.

The performance in the |η| vs ET bins can be seen in figure 6.2 with
the bottom plot comparing the two models. We see at low |η| values
that the performance gain is roughly 20%. However, at |η| ≥ 1.5 (in
and after the crack), we see a performance decline for the |η| and
ET bins. Figure 6.2 shows the underlying reason for a performance

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
|η|

10−2

10−1

eI
QR

75

DeepCalo
ET: [20, 30], Nu ber of events: 16074
ET: [30, 40], Nu ber of events: 30960
ET: [40, 50], Nu ber of events: 50050
ET: [50, 60], Nu ber of events: 71525
ET: [60, 70], Nu ber of events: 58763
ET: [70, 80], Nu ber of events: 26782
ET: [80, 90], Nu ber of events: 14307

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
|η|

ATLAS
ET: [20, 30], Nu ber of events: 16074
ET: [30, 40], Nu ber of events: 30960
ET: [40, 50], Nu ber of events: 50050
ET: [50, 60], Nu ber of events: 71525
ET: [60, 70], Nu ber of events: 58763
ET: [70, 80], Nu ber of events: 26782
ET: [80, 90], Nu ber of events: 14307

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
|η|

−0.1

0.0

0.1

0.2

0.3

0.4

re
IQ
R 7
5

Figure 6.2: Predictions are on MC.
eIQR75 of σcalib/σtruth as a function
of |eta| and ET with a bin size of 0.1
in |η|. They share a y axis and the
legend shows the number of events
in each ET bin.

gain of only ≈ 12%. The photons beyond the crack are poorly recon-
structed. Increasing performance at |η| ≥ 1.5 will help the general
reconstruction performance of DeepCaloHyy,mc (see figure 6.3). A dis-
cussion on improving the performance in the |η| ≥ 1.5 region is
included in chapter 7. For more detailed plots, see figure 9.15, where
the amount of events in each bins can be seen as well.

The pileup behavior of DeepCaloHyy,mc can be seen in figure 6.4,
where the pileup range has been divided into five bins. The fig-
ure shows the Ecalib(BDT) model suffering more than DeepCalo from
pileup. This follows the same behavior as the DeepCaloZee,mc model,
which is promising for the future upgrades of LHC and ATLAS. Un-
fortunately, H → γγ samples with ECAL images are unavailable in
Data. Thus, performance on Data can not be shown.0.96 0.98 1.00 1.02 1.04

Epred/Etruth
0

1000

2000

3000

4000

5000

#

13.027% improvement in eIQR75
12.973% improvement in eIQR95

ATLAS eIQR75: 0.0197
DeepCalo eIQR75: 0.0171

Figure 6.3: Predictions are on MC.
Ecalib/Etruth for Ecalib(BDT)and
DeepCaloMC with reIQR as in
the legend. The more narrow the
distribution, the better.

However, using the Z → ee reconstruction as a basis, we can give
an approximation of performance on Data for H → γγ. For Z → ee,
we saw a deduction of 50% from DeepCaloZee,mc to Data. Assum-
ing this holds, we would expect an improvement of about ≈ 6% for

photon reconstruction 75

H → γγ. However, we make this assumption tentatively, as the rela-
tionship between MC and Data for electrons might not be the same
as photons.

The invariant mass distribution and additional information to the |η|
vs ET figure can be found in section 9.5.3. A double Gaussian has
been used to fit the invariant mass of the H → γγ.

0.0225

0.0250

0.0275

0.0300

0.0325

0.0350

0.0375

eI
QR

IQR 75
Dee Calo
ATLAS

0.07

0.08

0.09

0.10

0.11

0.12

eI
QR

IQR 95
Dee Calo
ATLAS

0.0< ⟨μ⟩ < 20.0 20.0< ⟨μ⟩ < ⟨0.0 ⟨0.0< ⟨μ⟩ < ⟩0.0 ⟩0.0< ⟨μ⟩ < 80.0 80.0< ⟨μ⟩ < 100.0
0.00

0.05

0.10

0.15

0.20

re
IQ
R

0.0< ⟨μ⟩ < 20.0 20.0< ⟨μ⟩ < ⟨0.0 ⟨0.0< ⟨μ⟩ < ⟩0.0 ⟩0.0< ⟨μ⟩ < 80.0 80.0< ⟨μ⟩ < 100.0
0.00

0.05

0.10

0.15

0.20

re
IQ
R

10⟨

105

Fr
eq
ue
nc
ie
s

10⟨

105

Fr
eq
ue
nc
ie
s

Figure 6.4: Predictions are on MC.
The figure shows the pileup per-
formance of the DeepCaloHyy,mc
model in both eIQR75 and eIQR95.
The error bar plot indicates the
eIQR with its x-errors showing the
range of the bins. The histogram
shows the number of events in
each bin. The bottom plot shows
the reIQR of the eIQR between
DeepCalo and Ecalib(BDT).

76 masters thesis

Z → µµγ

10 20 30 40 50
ET, truth [GeV]

5

10

15

20

25

30

35

40

45

50

E T
,p
re
d [

Ge
V]

ATLAS

10 20 30 40 50
ET, truth [GeV]

5

10

15

20

25

30

35

40

45

50

E T
,p
re
d [

Ge
V]

DeepCalo

100

101

102

103

Figure 6.5: Predictions are on MC.
The figure shows a correlation plot
between ET,truth and the model
prediction from Ecalib(BDT)or
DeepCaloHyy,mc. The black dashed
line is a linear line. The color
concentration is logarithmic,
indicating the amount of events.

6.2 Analysis of DeepCaloZµµγ,mc

The photon reconstruction performance in Data cannot be tested
for H → γγ as the Data files are unavailable. However, for Z →
µµγ Data images are available and can be used for photon recon-
struction.

Note that the energy ranges between Z → µµγ and H → γγ are only
mildly overlapping (see figure 1.11), so Z → µµγ on Data can only
give us a small indication of performance for low energy photons,
and cannot be directly translated to H → γγ performance.

Monte Carlo

Energy evaluation

To validate the MC performance for Z → µµγ, the same metric as
previously will be used. An example of the DeepCaloZµµγ,mc model
can be seen in figure 6.8. From equation 6.2, the DeepCaloZµµγ,mc

model achieves a average improvement of≈ 18% compared to Ecalib(BDT).

〈reIQRDeepCalo
75 〉 = 18.0± 0.8%

〈reIQRDeepCalo
95 〉 = 18.3± 1.4%

(6.2)

From the correlation plot in figure 6.1.1, the model has no visible
biases, but, as seen from the previous correlation plots, a visible re-
duction in outliers compared to Ecalib(BDT).

(a) Energy estimates from Ecalib(BDT)

(b) Energy estimates from
DeepCaloZµµγ,data

Figure 6.6: The figure shows the
BW

⊗
CB fit to the energy estima-

tions from DeepCaloZµµγ,mc and
Ecalib(BDT) on MC.

The |η| vs ET performance is illustrated in figure 6.7. Before the
crack region, the gain in performance using DeepCalo is between 15%-
35%, with some of the low statistic bins fluctuating. However, the
model is again struggling with reconstructing photons beyond the
crack region. Possible improvements and causes will be discussed in
section 7.4 and 7.5, respectively.
The pileup evaluation for MC and Data are illustrated in figure 6.10

and figure 9.19.

Mass evaluation

The invariant mass of Z → µµγ is dominated by the resolution of
two muons. Hence, testing the BW

⊗
CB metric on MC samples is

important in order for the BW
⊗

CB fit to be translated to a pho-
ton resolution. It is highly recommended to take a look at figure
9.17 before continuing, where Etruth,γ has been applied. It shows the
muon domination of the fit. Due to the background photons in the
Z → µµγ selection, a background function is required. This is ex-
plained in section 4.2.2, but, in summary, it is a BW

⊗
CB fit with an

additional Gaussian term for the background distribution with the

photon reconstruction 77

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
|η|

10−2

10−1

σ E
ca

lib
/E

ge
n

DeepCalo
ET: [5, 10], Number f events: 18836
ET: [10, 15], Number f events: 116492
ET: [15, 20], Number f events: 81669
ET: [20, 25], Number f events: 54657
ET: [25, 30], Number f events: 36883
ET: [30, 35], Number f events: 21949
ET: [35, 500], Number f events: 7139

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
|η|

ATLAS
ET: [5, 10], Number f events: 18836
ET: [10, 15], Number f events: 116492
ET: [15, 20], Number f events: 81669
ET: [20, 25], Number f events: 54657
ET: [25, 30], Number f events: 36883
ET: [30, 35], Number f events: 21949
ET: [35, 500], Number f events: 7139

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
|η|

−0.1

0.0

0.1

0.2

0.3

0.4

re
IQ
R 7

5

Figure 6.7: eIQR75 of σcalib/σtruth
as a function of |eta| and ET with
bin size of 0.1 in |η|. They share a y
axis and the legend shows the num-
ber of events in each ET bin.

f_bkg_mZ parameter as the ratio of background function used. An
example of the DeepCaloZµµγ,mc performance on the BW

⊗
CB fit on

MC can be seen in figure 6.6, with the general DeepCaloZµµγ,mc per-
formance being shown in equation 6.3.

〈1−
σ

DeepCalo
CB

σATLAS
CB

〉 = 1− 1.625± 0.006
1.764± 0.013

= 7.9± 0.8%. (6.3)

Despite the dominance of muons, the DeepCaloZµµγ,mc achieves an
7.9± 0.8% improvement over Ecalib(BDT)on MC. Using σCB from fig-
ure 9.17, the muon dominance can be removed so the improvement
in photon reconstruction from BW

⊗
CB can be measured.

1− 1.625± 0.006− 1.269± 0.012
1.764± 0.013− 1.269± 0.012

= 28.1± 2.4% (6.4)

0.96 0.98 1.00 1.02 1.04
Epred/Etruth

0

500

1000

1500

2000

2500

#

18.061% improvement in eIQR75
18.231% improvement in eIQR95

ATLAS eIQR75: 0.0494
DeepCalo eIQR75: 0.0405

Figure 6.8: Predictions are on MC.
Ecalib/Etruth for Ecalib(BDT)and
DeepCaloMC with reIQR as in
the legend. The narrower the
distribution, the better.

An increase in photon reconstruction will only improve a fraction
of the CB width, as it is dominated by the muons. However, removing
the muon dominance in the BW

⊗
CB fit reveals a 28.1% improvement

in the photon reconstruction.

Data performace

The general performance of the DeepCaloZµµγ,mc model can be seen
in equation 6.6. An example of a fit can be seen in figure 6.9.

〈1−
σ

DeepCalo
CB

σATLAS
CB

〉 = 1− 1.606± 0.009
1.646± 0.016

= 2.4± 1.1% (6.5)

78 masters thesis

The DeepCaloZµµγ,mc achieves a small improvement in the BW
⊗

CB fit.
Assuming the muon dominance in Data is similar to MC, we can re-
move the dominance from the BW

⊗
CB fit.

1− 1.606± 0.009− 1.269± 0.012
1.646± 0.016− 1.269± 0.012

= 10.6± 4.5% (6.6)

(a) Energy estimates from Ecalib(BDT)

(b) Energy estimates from
DeepCaloZµµγ,data

Figure 6.9: Predictions are on
MC. The figure shows the
BW

⊗
CB fit to the energy esti-

mations from DeepCaloZµµγ,mc and
Ecalib(BDT)on Data. The selection
of events follows table 3.7.

Thus, with the assumption that muon reconstruction performance
is transferable between MC and Data, the DeepCaloZµµγ,mc model
achieves a photon reconstruction improvement of 10.6% compared
to Ecalib(BDT). However, the muon reconstruction performance on
MC and Data has not been tested.
The pileup performance in both MC and Data can be seen in figure
6.10 using σCB as a metric (so it will be affected by the muon domi-
nance).

The improvements in pileup are not as prominent as for previous
models (due to the muon dominance), but a general improvement
is visible. Note that the muon dominance has not been removed in
the σCBs. For Z → ee we were able to calculate the |η| resolution for
MC and Data (see figure 5.20). Computing the |η| resolution for Z →
µµγ is easier, as only a single particle in each event is reconstructed.
Thus, sorting photons in the |η| bins and measuring the σCB will re-
veal their resolution (with muon dominance). The |η| resolutions for
MC and Data can be seen in figure 6.11 for both DeepCaloZµµγ,mc

and Ecalib(BDT). We see an improvement over Ecalib(BDT) across the

Figure 6.10: The figure shows
the pileup performance of
the DeepCaloZmumugam,mc and
Ecalib(BDT)models on MC and
Data. The metric on the y-axis is
the σCB value and the bottom plot
shows the ratio comparing the two
models. 1.6

1.7

1.8

1.9

σ C
B

Z→ μμγ
DeepCalo MC
ATLAS MC
DeepCalo MC
ATLAS MC

0%< ⟨μ⟩ ≤ 20% 20%< ⟨μ⟩ ≤ 40% 40%< ⟨μ⟩ ≤ 60% 60%< ⟨μ⟩ ≤ 80% 80%< ⟨μ⟩ ≤ 100%
0.00

0.05

0.10

1⟨
σ D

ee
pC

μl
o⟩σ

AT
LA
S

five |η| bins for MC and Data. For MC, DeepCaloZµµγ,mc had prob-
lems with reconstructing photons beyond the crack region, which is
also seen in figure 6.11. However, this behavior is not present in the
Data resolution. It is mostly constant in the |η| bins with a ≈ 2.5%
improvement following equation 6.6.

photon reconstruction 79

Figure 6.11: The figure shows the
|η| resolution of DeepCaloZµµγ,mc

and Ecalib(BDT)on MC and Data.
The MC performance is shown
with dashed lines and the Data
performance with solid lines. The
metric used is σCB from the
BW

⊗
CB fit.

1.4

1.6

1.8

2.0

2.2

2.4

2.6

σ i

Energy resolution in |η| bins
DeepCalo data
ATLAS data
DeepCalo c
ATLAS c

[0, 0.8] [0.8, 1.37] [1.37, 1.52] [1.52, 2.01] [2.01, 2.47]
|η|

0.00

0.05

0.10

1−
σ D

ee
pC

al
o/σ

AT
LA

S

Data
MC

7 Discussion

7.1 Metric performance

Fitting is an art and the BW
⊗

CB fit is very advanced and has many
parameters that can be tweaked. In the following section, we will
show the dependency of σCB on some of these parameters to ensure
that they are not biased towards a specific regression algorithm. Pre-
dictions from the DeepCaloZee,mc model will be used.

Effects of number of bins

In figure 7.1, the σCB measure at varying numbers of bins of the
BW

⊗
CB fit can be seen. Fortunately, it shows that the number of

bins does not have an significant effect on the σCB and, in the bottom
plot, the ratios are within the uncertainties of each other.

Figure 7.1: The figure shows the in-
fluence in the number of bins on
the BW

⊗
CB fit. In the top figure,

the y-axis shows the σCB of the
different BW

⊗
CB fits at different

numbers of bins. The bottom figure
shows the relative metric used to
compare DeepCalo and Ecalib(BDT).
This is use to see if the metric is bi-
ased towards any of them. The de-
cay is Z → ee and DeepCaloZee,mc is
used.

1.8

1.9

2.0

2.1

2.2

2.3

σ C
B DeepCalo

ATLAS

100 200 300 400 500
Bin size

0.225

0.230

0.235

1−
σ D

ee
pC

al
o/σ

AT
LA

S

Zee MC

Effects of number of events

There may be fluctuations in σCB dependent on the number of events
in the fit. To see the influence of the fluctuations, we vary the number
of events in Z → ee and apply BW

⊗
CB fit to measure the σCB. The

results are shown in figure 7.2, where we see a variation in σCB at a
low number of events, but no significant effects on the BW

⊗
CB fit

above 250.000 events. The variation at < 100.000 events may be a
problem, as performance in |η|, ET and 〈µ〉 are often split in bins

discussion 81

Figure 7.2: The figure shows the in-
fluence of the number of events on
the BW

⊗
CB. The top figure, the y-

axis shows the σCB of the different
BW

⊗
CB fits at different numbers

of events. The bottom figure shows
the relative metric used to compare
DeepCalo and Ecalib(BDT). This is
use to see if the metric is biased
towards any of them. The decay is
Z → ee and DeepCaloZee,mc is used.

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

σ C
B DeepCalo

ATLAS

100000 200000 300000 400000 500000
size N

0.20

0.25

1−
σ D

ee
pC

al
o/σ

AT
LA

S

Zee MC

with a few number of events (see figure 5.15). This must be kept in
mind when reviewing the performance for |η|, ET and 〈µ〉 of the
models.

Effects of nCB and αCB

It is important to note the other fitting parameters of the CB, as
they will have small effects on the width measure of the distribution.
These parameters are nCB and αCB, and their effects can be seen in
figure 7.3.

Figure 7.3: The figure shows the CB
distribution with different nCB and
αCB values. Here, it is possible to
see how these parameters affect the
width of the CB. Figure from [49].

The expression for the CB function can be seen in section 9.1.1,
where the parameters are explained as well. We will not go into a
detailed description of the CB parameters. However, it is important
to note that when using σCB as a performance measure between two
model, nCB and αCB have to be similar between the models. The fits
used in this thesis, nCB and αCB, are within the reasonable intervals.

Figure 7.4: The figure displays the
convergence of DeepCaloσ. Both
dashed lines are MSE, and the solid
line is the σ loss function given
in equation 4.3. The color indicates
training or validation samples.

7.1.1 Correlation plots

In the MC analysis in chapter 5 and 6, many correlation plots be-
tween ET,truth and ET,pred were shown. As the reader might have no-
ticed, the correlation plots from Ecalib(BDT) has a cone-like shape of
outliers. This is due to equation 3.4 in section 3.4, where k = 0.6 was
applied to remove outliers above k. If equation 3.4 had not been ap-
plied, the correlation plot for figure 6.1.1 would look like figure 7.5
(for Z → µµγ). As seen in the correlation plot of Ecalib(BDT), a large
amount of outliers are present, especially at low energies.

By applying equation 3.4, the performance of Ecalib(BDT) will be im-
proved, as outliers are removed. However, for some events it is diffi-
cult to know whether an outlier is due to an error in the clustering or
poor reconstruction by Ecalib(BDT). A restricting k = 0.6 was chosen,
ensuring that only "correctly" reconstructed Ecalib(BDT) events were
selected. Applying k will result in

82 masters thesis

• improving the Ecalib(BDT) accuracy, as poorly reconstructed event
will also be removed,

• ensuring an Ecalib(BDT)-biased performance comparison between
Ecalib(BDT)and DeepCalo,

• making the DeepCalo less robust, as the events Ecalib(BDT)failed to
reconstruct will be removed. This might be unique events that are
present in Data.

Having a Ecalib(BDT)-biased performance comparison is acceptable,
as conclusions can easily be drawn when we see a large performance
increase using DeepCalo. However, we would like to train on poorly
reconstructed events. A solution could be a wider k or to only remove
events where the pair share Etruth.

10 20 30 40 50
ET, truth [GeV]

5

10

15

20

25

30

35

40

45

50

E T
,p
re
d [

Ge
V]

ATLAS

10 20 30 40 50
ET, truth [GeV]

5

10

15

20

25

30

35

40

45

50

E T
,p
re
d [

Ge
V]

DeepCalo

100

101

102

103

Figure 7.5: Correlation plot be-
tween ET,truth and ET,pred, where
equation 3.4 has not been used. The
color-scale is logarithmic.

7.2 Loss function of DeepCaloσ

In section 5.5, the performance of DeepCaloσ was evaluated. It re-
vealed a small performance decrease compared to DeepCaloZee,mc.
This was expected and can be explained from figure 7.6. For the solid
line, at a large σ value, the difference between the lines are non-
existent, meaning the error term

(
(y− ŷ)2) is meaningless. When

decreasing σ, the error term increases its influence, and at σ = 10
we begin to see a noticeable difference between the error= 10 and
the lower errors. However, for the dashed line (σ′), the error term
has no influence at σ = 10 and σ has to be significantly reduced
before a noticeable difference between errors can be seen. This late

Figure 7.6: The figure displays the
distributions of equation 4.3 (solid
line) and 4.4 (dashed line) at differ-
ent (y− ŷ)2 levels, also called error
levels.

error optimization for the dashed line will have an effect on the pre-
cision of the predictions. As an example, figure 7.4 shows the conver-
gence of DeepCaloσ. Here, the misaligned spikes indicate the focus
of minimizing σ rather than MSE. A solution could be to add an ad-
ditional error term. We propose a solution by adding an error term

discussion 83

(y− ŷ)/(1 + σ′) to the loss function.

L(y, ŷ, σ) =
1
2

(
(y− ŷ)2

eσ′
+ σ′ +

1
1 + σ′

(y− ŷ)
)

(7.1)

The resulting distribution can be seen in figure 7.7, where the error
now has influence at higher σs.

Figure 7.7: The figure displays the
same as figure 7.6, except for the
addition of equation 7.1.

7.3 Reconstruction of Etruth in Data

In chapter 5, DeepCalo was trained on Data on Z → ee samples using
methods described in section 4.2. Elabel,data was constructed knowing
it contained an error. This error can be measured by applying the
same method on MC (creating Elabel,mc) and comparing it with Etruth.
The correlation plots of Eacc and Elabel,mc to Etruth can be seen in figure
7.8, with a logarithmic color bar indicating the number of events per
bin. There is a high concentration of events following the dashed
black line, which means Elabel,mc is a good approximation to Etruth.
However, there are also outliers with significantly large errors with
regards to the Etruth, some with more than double the Etruth. For
the Eacc, we do not see the size and amount of outliers as before,
however, it has the bias of underestimating the energy as well as
being an affine linear line1, meaning the shift is not uniform. 1 What is meant by affine is that the

distribution is not parallel to the black
dashed line (f (x) = x), but rather affine
f (x) = ax + b.

Figure 7.9 illustrates the RE of the two energies. The figure shows
that Eacc has a narrow RE compared to Elabel,mc but is not centered at
1, whereas Elabel,mc is.
Overall, Elabel,mc performs fairly well in reconstructing Etruth, as no
shifts or biases are present. Although, if the distribution and behavior
of Eacc is similar between MC and Data, it may also be interesting to
use it for reconstruct Etruth,acc in Data and investigate if that will
yield more accurate results. However, using Eacc may be a problem
as the Eacc is a direct result of the ECAL images, hence a regression
algorithm would merely sum the cells.

Figure 7.8: Left figure shows the cor-
relation between Eacc and Etruth.
Right figure shows the correlation
between Etruht,mc and Etruth. The
figure compares the Elabel,mc and
Eacc to Etruth to evaluate the per-
formance of the reconstruction of
Etruth. Note that the color scale is
logarithmic.

Figure 7.9: The figure shows the RE
of the Elabel,mc and Eacc, with the
IQR75 in the legend.

84 masters thesis

7.3.1 Variable distributions of DeepCaloZee,mc outliers

From the correlation plot in figure 5, most events follow the dashed
black line. However, the events far from the line are interesting, as
they must have some behavior that make them difficult to recon-
struct. In figure 9.26 and 9.27, the variable distribution of the outliers
and the non-outliers2 are illustrated. They can indicate if there are2 The events labeled as outliers can be

seen in figure 7.10. any systematic outliers.
From η and ηindex variables, we can see that many of the poorly re-
constructed event are within the crack region, as expected. DeepCaloZee,mc

also has problems with high ntrack events, which may indicate that
additional track information is needed.
Looking at the long tails of f 0cluster and R12, the reconstruction is
also highly affected if the showers begin before or in the pre-sampler
or if the energy is deposit in the tile-gap (see ETG3 and Etile−gap).

Figure 7.10: Correlation plot of
DeepCaloZee,mc, where all events
with an absolute error (AE) below
2.5 have been removed. The color
map was changed so it was easier
to see which events were deemed
outliers.

7.4 Improving DeepCalo performance

When operating many different input types, the high customization
of a NN comes in handy. However, finding the optimal architecture
is very time consuming due to the possible permutations of the net-
work. In the following section, we will go through some of the addi-
tional changes that may improve the performance but were unfortu-
nately not tested.

Variables

Out of the 16 scalars variables, none of them are specialized for
the photon. Most notably, the conversion properties of converged
photons that are used in Ecalib(BDT) were not a part of the scalar
variables. These will most definitely improve photon reconstruction.
Scalar variables that must be tested are listed below.

• For charged particles, dPOverP (∆p/p): Is the momentum lost by
tracks between the last measurement point and the perigee, all
divided by the momentum at perigee. This will give an estimate
of the lost momentum of the track.

• For photons, ConvType (single/double): Indicates if the tracks from
the electron pair of a converted photon can be seen as a single or
double track in the ECAL3.3 If the electron pair has equal amounts

of energy, the magnetic field in the ID
is not able to separate the tracks before
entering the ECAL. If the energy is split
80%/20%, both tracks can be seen in the
ECAL, but if the ratio is 99%/1%, the
small energy electron will curl and will
not enter the ECAL while the other one
will.

• For photons, isConv/γConv: Indicates if the photon was converted
or not.

• For photons, rConv: This is the estimated radius of the conversion
of a photon in the transverse plane and should indicate when in
the detector the photons are converted.

• For all, 〈µ〉: Pileup present in the event must also be added.

The three photon variables should help DeepCalo reconstruct con-
verted photons, which likely will improve the photon reconstruction

discussion 85

at |η| beyond the crack.

In addition, the geometric scalar variables that are dependent on η

could be transformed to use |η| instead, as the detector is symmetric.
This will double the amount of statistics in |η| bins when training the
model. For electrons, all the geometric track variables could also be
transformed by subtracting the reconstructed track from the electron.
However, this cannot be applied when training an ensemble model
for both electron and photons, as this cannot be done for photons.
It is difficult to know if a variable will improve the performance or
not. When training on MC and testing on Data, we need to ensure
that additional variables do not add to the discrepancy between MC
and Data.

Architecture

The additional module connections is missing in table 4.4 and could
be tested, as some of them might yield improved performance.

The implementation of the ECAL time images has not been thor-
oughly investigated and should be implemented differently in order
to take full advantage of the information. Instead of concatenating
them to the energy image, we would have liked to implement sig-
moidal gating on the energy image using the time image. Using a
gating algorithm, the network would be able to re-weight individual
pixels in the energy images and be a part of the back propagation so
that the network also learns where to turn them off.

7.4.1 Minimizing discrepancies between MC and Data

Minimizing discrepancies between MC and Data will improve the
performance gap between the MC and Data performance measure
we saw in chapter 5 for the MC trained model. There are visible dis-
crepancies in 1D seen in figures 3.3 and 3.4. They could be corrected
for using histogram equalization on the MC variables to align them
with Data.

Histogram equalization of MC

Histogram equalization is widely used in gray-scale image process-
ing to equalize the light in a gray-scale image. Given two CDFs,
one CDF can be mapped to another, which makes the two distri-
bution share a PDF. Using histogram equalization, we can map MC
histograms to its Data counterparts, which might help to improve
the accuracy of MC trained DeepCalo on Data. In figure 9.4, his-
togram equalization has been applied to the MC distribution of Z →
ee scalar variables (see table 3.3) and it has been mapped to Z →
ee data. While most of the distributions between MC and data are not
aligned, the transformed MC (MCtrans) is much more aligned with
the Data in 1D, but testing the transformed variables in DeepCalo is
required.

86 masters thesis

Auto-encoder

Notice that histogram equalization only transforms variables in 1D,
yet, most discrepancies are in higher dimensions. An auto-encoder
could be used to account for higher order discrepancies. Auto-encoders
will not be explained in detail, but they essentially map variables
unto themselves using a NN or a CNN. However, the output can be
changed so the auto-encoder maps MC to Data and this may help
account for the inconsistencies between MC and Data.

In future projects it may be beneficial to look at the discrepancies
between MC and Data and attempt to correct them using an auto-
encoder.

7.4.2 Extrapolate between Z → µµγ energy ranges

As seen in table 3.1, Rucio only contained Z → µµγ files with ET =

[10, 35] and [70, 140], not spanning the entire energy range. In fig-

Figure 7.11: The figure shows the
distribution of Ecalib(BDT)in the
Data used in this Thesis. The verti-
cal lines shows the intervals where
we have MC samples.

ure 7.11, we can see the distribution of Ecalib(BDT) in MC and Data.
The MC samples are clearly missing energy ranges compared to
Data and the reconstruction of Z → µµγ will most certainly bene-
fit from extending the ranges in MC, as we have Data events with
energies ET > 40 GeV but not in MC. However, additional files of
Z → µµγ were not available on Rucio.

7.5 Material budget

In the reconstruction of photons (see chapter 6.), a general increase
in performance was measured when using DeepCaloZµµγ,mc. How-
ever, this increase in performance vanishes beyond the crack region
(|η| > 1.4), which poses a problem from the general performance of
the photon reconstruction. From figure 7.12, we see the amount of

discussion 87

Figure 7.12: Figure from [4]. It
shows the material budget of the
ID with the color-code indicating
the detector type of the material.
While it extends to the forward re-
gion η = [−4, 4], we are only look-
ing at η = [−2.5, 2.5].

material in the ID that the particles pass through. At |η| > 1.4, we
see a general increase of material, especially in the Pixel and SCT lay-
ers. This might lead the photons to deposit more of their energy, and
at high |η|, the conversion variables for photons will have a greater
effect due to increased travel length.

Additional testing of the photon reconstruction is also needed. The
optimizing and modeling of DeepCalo has been focused on electron
reconstruction for Z → ee, so a thorough analysis of the DeepCalos
behavior for photon reconstruction could increase performance too.

Performance measure at extended 〈µ〉

Due to the upgrades to HL-LHC, the pileup of pp collisions will
rise. We shown the pileup performance of DeepCalo in all the decay
channels tested in this thesis. Nevertheless, the pileup range in the
MC sample only extends to 80, so performance at very high pileup is
still unknown. However, if it follows the trend shown in this thesis,
DeepCalo will be much more accurate than Ecalib(BDT) at high pileup.

8 Conclusion

The aim of this thesis was to improve the energy reconstruction of
electrons and photon in the channels seen in table 1.3. This improve-
ment should be achieved using a convolutional neural network archi-
tecture developed in the thesis called DeepCalo which took advantage
of the electromagnetic calorimeter images. The accuracy of DeepCalo
was tested on Monte Carlo simulated data (MC) and real world Data,
where Etruth was used to evaluate performance in MC, and the σCB

of a Breit-Wigner convoluted with a Crystal Ball function (BW
⊗

CB)
was used to evaluate in Data.

Electron reconstruction

For the electron reconstruction, Z → ee was tested on MC and Data.
The DeepCaloZee,mc model had a performance gain of 〈reIQRDeepCalo

75 〉 =
22.4± 0.7% and 〈reIQRDeepCalo

95 〉 = 25.9± 0.9% over the Ecalib(BDT) on
MC. Using the BW

⊗
CB fit on MC, DeepCaloZee,mc had a 23.5± 0.4%

performance increase over Ecalib(BDT)following the previous results.
However, when used on Data, it achieved a performance increase of
9.4± 0.9%. The model achieved a uniform performance increase over
ET , |η| and 〈µ〉 on MC and Data.

The DeepCaloZee,data model used a method developed in this the-
sis that reconstructed an approximation of Etruth,data for Data. The
Etruth,data was used to train DeepCalo directly on Data. It obtained a
performance increase of 5.9± 0.9% compared with Ecalib(BDT). Fur-
ther, it was able to center the invariant mass at the Z boson mass,
which DeepCaloZee,mc on Data was not.

This led to the construction of the DeepCaloZee,mc/data model (the en-
semble model), where training of the two previous models was com-
bined so that the model was trained on both MC and Data. For MC,
the model achieved an improvement of 〈reIQRDeepCalo

75 〉 = 22.1 ±
0.3% and 〈reIQRDeepCalo

95 〉 = 25.3± 0.8%, similar to DeepCaloZee,mc.
For Data, the model obtained a high performance increase of 18.3±
0.8% compared with Ecalib(BDT).

DeepCalo was also tested on an Electron-Gun sample without any
decay channel. Here, DeepCalo achieved a performance gain over
Ecalib(BDT)of 〈reIQRDeepCalo

75 〉 = 6.811± 0.077% and 〈reIQRDeepCalo
95 〉 =

13.81± 0.12%. The performance over |η| and ET was also tested, al-

conclusion 89

though it was difficult to draw a conclusion as there were fluctua-
tions in the performance. Nevertheless, a small gain was visible.

Photon reconstruction

For the photon reconstruction, H → γγ was tested on MC and Z →
µµγ on MC and Data. The same extensive review of the different
model types was not done for the photon reconstruction, but can
easily be extended to the photon reconstruction. Only the perfor-
mance of the MC models were shown.

For the DeepCaloHyy,mc model, it achieved 〈reIQRDeepCalo
75 〉 = 12.8±

0.3% and 〈reIQRDeepCalo
95 〉 = 12.4± 0.4% with a uniform performance

increase over 〈µ〉 and ET for MC. However, the DeepCaloHyy,mc model
was not able to accurately reconstruct events beyond the crack region
|η| < 1.4. This is liekly due to the photon conversion at higher |η|,
which is not a part of the variables for DeepCalo.

The DeepCaloZµµγ,mc model was able to reconstruction 〈reIQRDeepCalo
75 〉 =

18.0± 0.8% and 〈reIQRDeepCalo
95 〉 = 18.3± 1.4% better than Ecalib(BDT)for

MC. It suffers from the same behavior as the DeepCaloHyy,mc with
poorly reconstruction of photons beyond the crack region. The model
was also tested using the BW

⊗
CB fit on MC. Here, it achieved a per-

formance gain of 7.9± 0.8%. The small increase in σCB is due to the
Z → µµγ being dominated by the energy resolution of the muons.
Using the BW

⊗
CB fit on Data, the model had a performance gain

of 2.4± 1.1. Further, this performance gain was uniform over |η| and
did not suffer beyond the crack region in Data.

Additional developments and summary

Using DeepCalo, it is possible to predict an additional uncertainty to
the energy prediction by changing the loss function of the architec-
ture to equation 4.3. The results from DeepCaloσ can be seen in figure
5.14, where σ can be used to select events with a high precision in
MC and Data. The pull residuals in figure 5.13 show that the pre-
dicted uncertainties are about 4.5 times too large, as the width of the
Gaussains are σ ≈ 0.2.
A framework was also developed that creates Python ready files from
the DxAOD format containing the ECAL imagery.

Table 8.1 shows a summary of the improvements achieved by DeepCalo.
There are significant performance improvements throughout the tested
samples, when comparing to the Ecalib(BDT) by ATLAS, that has
been developed over many years. Although performance of DeepCalo
on Data is not as impressive, still better. It can surely be improved,
if the four corrections applied to Ecalib(BDT) were applied as well to
DeepCalo. With the assistance from within ATLAS (in particular De-
bottam B. Gupta), the DeepCalo architectures is being implemented
in the ATLAS software, and it will be interesting to see, if the al-
gorithm or further developments of it at some point becomes used

90 masters thesis

in public ATLAS results. In particular the good performance despite
higher pileup might be the key to convincing others of the merits of
the DeepCalo approach along with some of the other innovations of
this master thesis.

Monte Carlo Data
Channel Model IQR75 σCB σCB

Z → ee

DeepCaloZee,mc 22.4± 0.7% 23.5± 0.4% 9.4± 0.9%
DeepCaloZee,data 5.9± 0.9%
DeepCaloZee,mc/data 22.1± 0.3% 23.3± 0.4%∗ 18.3± 0.8%
DeepCaloσ 17.4± 1.5% 9.0± 0.9%∗ 6.4± 1.0%∗

EG DeepCaloEG 6.81± 0.08%
H → γγ DeepCaloHyy,mc 12.8± 0.3% 5.95± 1.19%∗
Z → µµγ DeepCaloZµµγ,mc 18.0± 0.8% 7.9± 0.8% 2.4± 1.1%

Table 8.1: Table showing the per-
formance of all the DeepCalo mod-
els. ∗ indicates performance mea-
sures that was not shown in the
analysis chapter, but figures can be
found in the appendix.

9 Appendix

9.1 Proof of concept

(a) Here, a Breit-Wigner distribtuion has been fitted to the
resonance peak of the Z. Both σBW and µBW have been set
to constants at σBW = 2.4952 and µBW = 91.1876, which are
their theoretical values.

(b) Here, a Breit-Wigner convoluted with a Crystal Ball has
been fitted to the same as in (a). Again, σBW and µBW are
constant, but the CB parameters are floating.

Figure 9.1: In this figure, the ef-
fects of the convolution between
BW and CB can be seen. Both are
fits on the same Monte Carlo data,
using its truth parameter with de-
cay channel Z → ee.

9.1.1 Crystal Ball function

Crystal ball (CB) is a Gaussian function with a power-law as a low-
end tail at some threshold α. It is often used in high-energy physics
with a BW to explain the resonance peaks. CB is given by a fork
function, where it changes to a power law at some α

f (x; α, n, x̄, σ) = N ·

exp
(
− (x−x̄)2

2σ2

)
, for (x−x̄)

σ > −α

A · (B · x−x̄
σ
−n

), for (x−x̄)
σ ≤ −α

, (9.1)

92 masters thesis

Where the parameters A, B, C, D and N depend on the fitting pa-
rameters

A =

(
n
|α|

)n
· exp

(
−|α|

2

2

)
,

B =
n
|α| − |α|,

C =
n
|α| ·

1
n− 1

· exp
(
−|α|

2

2

)
,

D =

√
π

2

(
1 + erf

(
|α|√

2

))
,

N =
1

σ · (C + D)

Figure 9.1 displays the effects of the convolution with CB and illus-
trates the shortcoming of a single BW, as it is not able to describe
Z-boson resonance. Note that in figure 9.1 (b) both σCB and µCB are
small, meaning most of the peak and width is described by the BW.
Thus, CB is mostly used to describe the tails of the distribution, and
σCB and µCB could be set to zero without changing the fit.

9.1.2 Calculating the uncertainties

To use the uncertainties from the BW
⊗

CB fit, we will use weighted
mean and its uncertainty to compute the average of the σCB and µCB.
The expression used can be seen in equation 9.2, where δ indicates
the error of the parameter.

x =
∑n

i=1
xi

δxi

∑n
i=1

1
δxi

δx =

√
1

∑n
i=1

1
δxi

(9.2)

If an expression uses a parameter with uncertainties, propagation of
errors will be used to calculate the complete uncertainty.

Uncertainty on the invariant mass

Using equation 1.1 and propagation of errors, the uncertainty on the
invariant mass of a two particle decay can be calculated. Starting at

M2 = 2
E1 · E2

cosh(η1) · cosh(η2)
(cosh(η1 − η2)− cos(φ1 − φ2)) (9.3)

redefining the invariant mass to

M =
√

E1 · E2 · k, k = 2
(cosh(η1 − η2)− cos(φ1 − φ2))

cosh(η1) · cosh(η2)
(9.4)

appendix 93

using propagation of errors

σ2
M =

(
∂M
∂E1

σE1

)2
+

(
∂M
∂E2

σE2

)2

=

(
E2 · k√

E1 · E2 · k
· σE1

)2
+

(
E1 · k√

E1 · E2 · k
· σE2

)2

=

(
k√

E1 · E2 · k

)2
· (E2

2σ2
E1

+ E2
1σ2

E2
).

(9.5)

Thus, the uncertainty on the invariant mass of a two particle decay
is

σM =

√(
k√

E1 · E2 · k

)2
· (E2

2σ2
E1

+ E2
1σ2

E2
). (9.6)

9.2 Eta-shift

In section 5.6, eta-shift is applied to the resonance peak with the hope
of a more narrow peak. It was achieved for MC but unfortunately
not for Data. The idea behind shifting eta can be seen in figure 9.2.
The resonance peak for different η bins might be shifted and this can
result in a wider peak, as seen in figure 9.2.

Figure 9.2: The figure shows three
Gaussians that should indicate the
Z → ee resonance. Dist1 and Dist2
should be in two different η bins,
where their µ is shifted from the
one of the Z.

Derivation of η shift

In the following equation, the deviation of the η correction can be
seen.

Invariant mass of massless particles: m2
ij = 2EiEj · (1 + cos(θ))

Mass correction: Ecorr = Epred · (1 + αi)

94 masters thesis

where i, j are the different η bins,

m2
Z = 2Ecorr

i Ecorr
j · (1 + cos(θ)) m

m2
Z = 2Epred

i Epred
j · (1 + cos(θ)) · (1 + αi) · (1 + αj) m

m2
Z = (mpred

Z,ij)
2 · (1 + αi) · (1 + αj) m

mZ = mpred
Z,ij ·

√
(1 + αi + αj + αiαj) αiαj ≈ 0 m

mZ = mpred
Z,ij ·

√
(1 + αi + αj), (1 + x)k = 1 + k · x +(binomialseries) m

mZ = mpred
Z,ij · (1 +

αi + αj

2
) m

µij = mpred
Z,ij ·

(αi + αj)

2
, µij = mZ −mpred

Z,ij m
(9.7)

µij is the meanCB for each η fit We would then like to minimize:

χ2(α) = ∑
(i,j)∈accpected

µij −mpred
Z,ij · (

αi+αj
2)

σµi,j

2

(9.8)

Equation 9.8 is the equation that is solved in chapter 5. The peak shift
of Ecalib(BDT) can be seen in figure 9.3.

Figure 9.3: The figure shows the
σCB from Ecalib(BDT) for both MC
(figure a) and Data (figure (b)) in
each |η| bin. Its DeepCalo counter-
part can be seen in figure 5.19. The
number of events per bin can be
seen in figure 5.15.

(a) σCB of the BW
⊗

CB fit in MC. (b) σCB of the BW
⊗

CB fit in Data.

appendix 95

9.3 Transformation of MC

In figure 9.4, histogram equalization has been applied to the scalar
variables of MC and mapped to the same variables of Data. This
could help improve the misalignment between MC and Data and, as
can be seen from the figure, the variables between MC and Data are
better aligned.

0 100 200

10
¤3

10
¤2

p_eAccCluster

MC

Data

reweighted MC

0 20 40 60 80 100

10
¤3

10
¤2

p_cellIndexCluster

MC

Data

reweighted MC

0.0 0.2 0.4 0.6 0.8 1.0

10
¤2

10
¤1

10
0

10
1

p_f0Cluster

MC

Data

reweighted MC

0.0 0.5 1.0 1.5

10
¤2

10
¤1

10
0

p_R12

MC

Data

reweighted MC

0 25 50 75 100 125

10
¤4

10
¤3

10
¤2

p_pt_track

MC

Data

reweighted MC

2 4 6

10
¤1

10
0

10
1

p_nTracks

MC

Data

reweighted MC

�2 �1 0 1 2

10
¤1

1.25 × 10
¤1

1.5 × 10
¤1

1.75 × 10
¤1

2×10
¤1

2.25 × 10
¤1

2.5 × 10
¤1

2.75 × 10
¤1

p_eta

MC

Data

reweighted MC

�0.04 �0.02 0.00 0.02 0.04

10
¤1

10
0

10
1

10
2

p_deltaPhiRescaled2

MC

Data

reweighted MC

0.000 0.005 0.010 0.015 0.020 0.025

3.6 × 10
1

3.8 × 10
1

4 × 10
1

4.2 × 10
1

4.4 × 10
1

4.6 × 10
1

p_etaModCalo

MC

Data

reweighted MC

�0.02 �0.01 0.00 0.01 0.02

10
0

10
1

10
2

p_deltaEta2

MC

Data

reweighted MC

10 20 30
10

¤4

10
¤3

10
¤2

10
¤1

NvtxReco

MC

Data

reweighted MC

20 30 40 50 60 70

10
¤3

10
¤2

10
¤1

averageInteractionsPerCrossing

MC

Data

reweighted MC

0.0 0.2 0.4 0.6 0.8 1.0

10
0

2 × 10
0

3 × 10
0

p_poscs2

MC

Data

reweighted MC

�0.04 �0.02 0.00 0.02 0.04

10
1

9 × 10
0

9.5 × 10
0

1.05 × 10
1

1.1 × 10
1

p_dPhiTH3

MC

Data

reweighted MC

0.0 0.2 0.4 0.6 0.8 1.0

10
¤2

10
¤1

10
0

10
1

10
2

p_fTG3

MC

Data

reweighted MC

0 5 10 15

10
¤3

10
¤2

10
¤1

10
0

tile_gap_Lr1

MC

Data

reweighted MC

Figure 9.4: The scalar variables of
MC have been transformed using
histogram equalization such that
their PDF is the same as for Data.

96 masters thesis

9.4 Classifying the difference between MC and data

In the ensemble method DeepCaloZee,mc/data, where we combine train-
ing of both MC and Data, for better generaliztion on Data, although
without a indicator of the event were a MC event or a Data event.
However, we can measure the distinction and this will give us an in-
dicator of how well MC is modeled after Data. In figure 9.5, we have
changed the loss function and the last activation layer of the network
so it would be able to classify whether an event is MC or Data. To
measure the performance, we used a receiver operating characteristic
curve (ROC), which is a measure of true positive classification (TPR)
compared to false positive classification (FPR). The area-under-curve
(AUC) is then a direct measure of how well the algorithm performed.
Looking at figure 9.5, we see that the AUC = 0.82, so the algorithm
clearly distinguishes between MC and Data. However, as we saw
from chapter 5 and 7, the increase of reconstruction performance
and the correlation plot of MC agrees that some event are correctly
reconstructed by creating Elabel,mc.

Figure 9.5: The ROC curve has the
TPR on the y-axis and FPR on x-
axis, with the AUC in the legend
(AUC = 0.82).

9.5 Analysis plots

In the following section, some additional analysis figures have been
added.

9.5.1 Z → ee

In figure 9.6, we see the invariant mass from the energies recon-
structed by Ecalib(BDT) and DeepCal as well as the Etruth. Thus, the
resonance peaks can be compared visually. We see a clear perfor-
mance increase from Ecalib(BDT) to DeepCalo, however, we also see
that we still have a ways to go for estimating Etruth. In figure 9.7, we
see the BW

⊗
CB fit performance of the DeepCaloσ model.

appendix 97

Figure 9.6: The Z → ee resonance
peak for MC using Etruth, EDeepCalo

and Ecalib(BDT) energies.

75 80 85 90 95 100 105
Mee [GeV]

0

5000

10000

15000

20000

25000

30000

#

DeepCalo
ATLAS
Truth

(a) Z → ee performance on MC for DeepCaloσ . (b) Z → ee performance on Data for DeepCaloσ .
Figure 9.7: The figures show
the BW

⊗
CB fit performance of

DeepCaloσ for both MC and Data

98 masters thesis

Zee |η| vs ET

In figure 9.8, we see the eIQR and reIQR of different ET and |η| bins.
It is meant to give more context to figure 5.2, as we see both the 75
and 95 reIQR and the number of events per bin shown by the gray
histogram.

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

eI
QR

η: [0.0, 0.8], IQR: 75
DeepCalo
ATLAS

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
eI

QR
η: [0.0, 0.8], IQR: 95

DeepCalo
ATLAS

0 25 50 75 100 125 150 175 200
GeV

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

re
IQ

R

0 25 50 75 100 125 150 175 200
GeV

0.00

0.05

0.10

0.15

0.20

0.25

0.30

re
IQ

R

102

103

104

105
Fr

eq
ue

nc
ie

s

102

103

104

105

Fr
eq

ue
nc

ie
s

(a) Z → ee events with |η| = [0.0, 0.8[

0.02

0.04

0.06

0.08

0.10

eI
QR

η: [0.8, 1.37], IQR: 75
DeepCalo
ATLAS

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

eI
QR

η: [0.8, 1.37], IQR: 95
DeepCalo
ATLAS

0 25 50 75 100 125 150 175 200
GeV

0.00

0.05

0.10

0.15

0.20

0.25

re
IQ

R
0 25 50 75 100 125 150 175 200

GeV

0.00

0.05

0.10

0.15

0.20

re
IQ

R

102

103

104

Fr
eq

ue
nc

ie
s

102

103

104

Fr
eq

ue
nc

ie
s

(b) Z → ee events with |η| = [0.8, 1.37[

0.04

0.06

0.08

0.10

0.12

0.14

0.16

eI
QR

η: [1.37, 1.52], IQR: 75
DeepCalo
ATLAS

0.1

0.2

0.3

0.4

0.5

eI
QR

η: [1.37, 1.52], IQR: 95
DeepCalo
ATLAS

0 25 50 75 100 125 150 175 200
GeV

0.0

0.1

0.2

0.3

0.4

re
IQ

R

0 25 50 75 100 125 150 175 200
GeV

0.0

0.1

0.2

0.3

0.4

re
IQ

R

102

103

104

Fr
eq

ue
nc

ie
s

102

103

104

Fr
eq

ue
nc

ie
s

(c) Z → ee events with |η| = [1.37, 1.52[

0.02

0.04

0.06

0.08

0.10

0.12

eI
QR

η: [1.52, 2.01], IQR: 75
DeepCalo
ATLAS

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

eI
QR

η: [1.52, 2.01], IQR: 95
DeepCalo
ATLAS

0 25 50 75 100 125 150 175 200
GeV

0.00

0.05

0.10

0.15

0.20

0.25

re
IQ

R

0 25 50 75 100 125 150 175 200
GeV

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

re
IQ

R

102

103

104

Fr
eq

ue
nc

ie
s

102

103

104

Fr
eq

ue
nc

ie
s

(d) Z → ee events with |η| = [1.52, 2.01[

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

eI
QR

η: [2.01, 2.47], IQR: 75
DeepCalo
ATLAS

0.05

0.10

0.15

0.20

0.25

0.30

eI
QR

η: [2.01, 2.47], IQR: 95
DeepCalo
ATLAS

0 25 50 75 100 125 150 175 200
GeV

0.00

0.05

0.10

0.15

0.20

0.25

0.30

re
IQ

R

0 25 50 75 100 125 150 175 200
GeV

0.00

0.05

0.10

0.15

0.20

0.25

0.30

re
IQ

R

102

103

104

Fr
eq

ue
nc

ie
s

102

103

104

Fr
eq

ue
nc

ie
s

(e) Z → ee events with |η| = [2.01, 2.5[
Figure 9.8: The figure shows the
eIQR at 75 and 95 of DeepCal and
Ecalib(BDT) , as well as the com-
pared performance reIQR between
the two. It also shows the number
of events in each of the |η| vs ET
bins.

9.5.2 Z → ee ensemble model

A correlation plot without a logarithmic color scale of number of
events can be seen in figure 9.9. Here the shift in Eacc is visible.
The figure shows the correlation between Elabel,mc and Etruth The
BW

⊗
CB fit of the DeepCaloZee,mc/data model on MC can be seen in

figure 9.10.

appendix 99

Figure 9.9: Left figure shows the cor-
relation between Eacc and Etruth.
Right figure shows the correlation
between Etruht,mc and Etruth. The
figure compares the Etruth,mc and
Eacc to Etruth to evaluate the per-
formance of the reconstruction of
Etruth. Note that the color scale is
logarithmic.

Figure 9.10: The fit shows
the BW

⊗
CB fit on the

DeepCaloZee,mc/data.

100 masters thesis

Electron cannon

Figure 9.11: The figure shows the η

and Etruth distribution for the EG.

In figure 9.11, we see the distribution of Etruth for the EG samples.
We see that the energy range is far larger compared to Z → ee, which
helps us test the generalization in energies for DeepCalo.

Figure 9.12 is the same as figure 9.8, but for the Electron Gun sample.
As it is the EG sample, the ET could have been extended, however,
we still see some drops in the number of events at 200 GeV, so the
upper ET was kept the same as previously.

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

eI
QR

η: [0.0, 0.8], IQR: 75
DeepCalo
ATLAS

0.05

0.10

0.15

0.20

0.25

0.30

0.35

eI
QR

η: [0.0, 0.8], IQR: 95
DeepCalo
ATLAS

0 25 50 75 100 125 150 175 200
GeV

0.00

0.02

0.04

0.06

re
IQ

R

0 25 50 75 100 125 150 175 200
GeV

0.00

0.02

0.04

0.06

re
IQ

R

1.3 × 104

1.4 × 104

1.5 × 104

1.6 × 104

1.7 × 104

1.8 × 104

1.9 × 104

2 × 104

2.1 × 104

Fr
eq

ue
nc

ie
s

1.3 × 104

1.4 × 104

1.5 × 104

1.6 × 104

1.7 × 104

1.8 × 104

1.9 × 104

2 × 104

2.1 × 104

Fr
eq

ue
nc

ie
s

(a) EG events with |η| = [0.0, 0.8[

0.02

0.04

0.06

0.08

0.10

0.12

eI
QR

η: [0.8, 1.37], IQR: 75
DeepCalo
ATLAS

0.1

0.2

0.3

0.4

0.5

eI
QR

η: [0.8, 1.37], IQR: 95
DeepCalo
ATLAS

0 25 50 75 100 125 150 175 200
GeV

0.00

0.02

0.04

0.06

0.08

re
IQ

R

0 25 50 75 100 125 150 175 200
GeV

0.000

0.025

0.050

0.075

0.100

re
IQ

R

104

9 × 103

1.1 × 104

1.2 × 104

1.3 × 104

1.4 × 104

Fr
eq

ue
nc

ie
s

104

9 × 103

1.1 × 104

1.2 × 104

1.3 × 104

1.4 × 104

Fr
eq

ue
nc

ie
s

(b) EG events with |η| = [0.8, 1.37[

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

eI
QR

η: [1.37, 1.52], IQR: 75
DeepCalo
ATLAS

0.1

0.2

0.3

0.4

0.5

0.6

eI
QR

η: [1.37, 1.52], IQR: 95
DeepCalo
ATLAS

0 25 50 75 100 125 150 175 200
GeV

0.0

0.1

0.2

0.3

0.4

re
IQ

R

0 25 50 75 100 125 150 175 200
GeV

0.0

0.1

0.2

0.3

0.4

re
IQ

R

2.2 × 103

2.4 × 103

2.6 × 103

2.8 × 103

3 × 103

3.2 × 103

3.4 × 103

3.6 × 103

Fr
eq

ue
nc

ie
s

2.2 × 103

2.4 × 103

2.6 × 103

2.8 × 103

3 × 103

3.2 × 103

3.4 × 103

3.6 × 103

Fr
eq

ue
nc

ie
s

(c) EG events with |η| = [1.37, 1.52[

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

eI
QR

η: [1.52, 2.01], IQR: 75
DeepCalo
ATLAS

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

eI
QR

η: [1.52, 2.01], IQR: 95
DeepCalo
ATLAS

0 25 50 75 100 125 150 175 200
GeV

0.000

0.025

0.050

0.075

0.100

0.125

re
IQ

R

0 25 50 75 100 125 150 175 200
GeV

0.000

0.025

0.050

0.075

0.100

re
IQ

R
104

7 × 103

8 × 103

9 × 103

Fr
eq

ue
nc

ie
s

104

7 × 103

8 × 103

9 × 103

Fr
eq

ue
nc

ie
s

(d) EG events with |η| = [1.52, 2.01[

0.02

0.04

0.06

0.08

0.10

eI
QR

η: [2.01, 2.47], IQR: 75
D pCalo
ATLAS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 I
QR

η: [2.01, 2.47], IQR: 95
D pCalo
ATLAS

0 25 50 75 100 125 150 175 200
G V

−0.04

−0.02

0.00

0.02

0.04

0.06

r
IQ
R

0 25 50 75 100 125 150 175 200
G V

0.00

0.02

0.04

0.06

0.08

r
IQ
R

104

7×103

8×103

9×103

Fr
 q

u
nc
i
s

104

7×103

8×103

9×103

Fr
 q

u
nc
i
s

(e) EG events with |η| = [2.01, 2.5[
Figure 9.12: The figure shows the
eIQR at 75 and 95 of DeepCalo
and Ecalib(BDT) as well as the com-
pared performance reIQR between
the two for the EG sample. It also
shows the number of events in each
of the |η| vs ET bins.

appendix 101

9.5.3 H → γγ

We have not shown any fits to the invariant mass of the Higgs bo-
son due to no Data being available. Thus, measuring performance
from the resonance fit was not important, however, the Higgs reso-
nance does not follow a BW

⊗
CB fit either. It follows a Gaussian dis-

tribution. We have tested different fitting functions and found that
two Gaussians will do the job for the reconstructed energy. The fit-
ting attempts can be seen in figure 9.13. The invariant masses of

(a) (b)

(c)
Figure 9.13: The figures shows a
double Gaussian fit on the invari-
ant mass for the H → γγ. The
title of the figure indicate the re-
construction method used. p e is
the Ecalib(BDT) (figure b), CNN is
DeepCalo (figure a) and p truth e is
the Etruth (figure c).

H → γγ follows fairly well the double Gaussian. It is not able to fit
to the invariant mass of Etruth as it only has a width of a few MeV
(in figure 9.13, the reconstructed η and φ are used, which is why the
invariant mass of Etruth has a width.).

In figure 9.14, we see the invariant mass from the energies recon-
structed by Ecalib(BDT) and DeepCal for H → γγ. Thus, the reso-
nance peak can be compared visually. We see a small performance

102 masters thesis

increase from Ecalib(BDT) to DeepCalo, however, as seen from figure
9.13, there is still much to be gain to achieve reconstruction close to
Etruth.

Figure 9.14: The H →
γγ resonance peak in MC
using Etruth, EDeepCalo and
Ecalib(BDT) energies.

120 122 124 126 128 130
Mee [GeV]

0

250

500

750

1000

1250

1500

1750

2000

#

DeepCalo
ATLAS

|η| vs ET

Figure 9.15 shows the |η| vs ET bins of the H → γγ DeepCalo model.
It is a more detailed depiction of figure 6.2, as the eIQR, reIQR for 75
and 95 and number of events can be seen in the figure.

appendix 103

0.01

0.02

0.03

0.04

0.05

0.06

eI
QR

η: [0.0, 0.8], IQR: 75
DeepCalo
ATLAS

0.05

0.10

0.15

0.20

0.25

0.30

0.35

eI
QR

η: [0.0, 0.8], IQR: 95
DeepCalo
ATLAS

0 25 50 75 100 125 150 175 200
GeV

0.00

0.05

0.10

0.15

0.20

re
IQ

R

0 25 50 75 100 125 150 175 200
GeV

0.00

0.05

0.10

0.15

0.20

re
IQ

R

103

104

Fr
eq

ue
nc

ie
s

103

104

Fr
eq

ue
nc

ie
s

(a) H → γγ events with |η| = [0.0, 0.8[

0.01

0.02

0.03

0.04

0.05

0.06

0.07

eI
QR

η: [0.8, 1.37], IQR: 75
DeepCalo
ATLAS

0.05

0.10

0.15

0.20

0.25

eI
QR

η: [0.8, 1.37], IQR: 95
DeepCalo
ATLAS

0 25 50 75 100 125 150 175 200
GeV

0.00

0.05

0.10

0.15

0.20

re
IQ

R

0 25 50 75 100 125 150 175 200
GeV

0.00

0.05

0.10

0.15

re
IQ

R

102

103

104

Fr
eq

ue
nc

ie
s

102

103

104

Fr
eq

ue
nc

ie
s

(b) H → γγ events with |η| = [0.8, 1.37[

0.02

0.04

0.06

0.08

0.10

0.12

0.14

eI
QR

η: [1.37, 1.52], IQR: 75
DeepCalo
ATLAS

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

eI
QR

η: [1.37, 1.52], IQR: 95
DeepCalo
ATLAS

0 25 50 75 100 125 150 175 200
GeV

0.0

0.2

0.4

0.6

re
IQ

R

0 25 50 75 100 125 150 175 200
GeV

0.0

0.2

0.4

re
IQ

R

102

103

Fr
eq

ue
nc

ie
s

102

103

Fr
eq

ue
nc

ie
s

(c) H → γγ events with |η| = [1.37, 1.52[

0.02

0.03

0.04

0.05

0.06

0.07

0.08

eI
QR

η: [1.52, 2.01], IQR: 75
DeepCalo
ATLAS

0.05

0.10

0.15

0.20

0.25

0.30

eI
QR

η: [1.52, 2.01], IQR: 95
DeepCalo
ATLAS

0 25 50 75 100 125 150 175 200
GeV

−0.10

−0.05

0.00

re
IQ

R

0 25 50 75 100 125 150 175 200
GeV

−0.10

−0.05

0.00

0.05

re
IQ

R
102

103

104

Fr
eq

ue
nc

 e
s

102

103

104

Fr
eq

ue
nc

 e
s

(d) H → γγ events with |η| = [1.52, 2.01[

0.01

0.02

0.03

0.04

0.05

0.06

eI
QR

η: [2.01, 2.47], IQR: 75
DeepCa o
ATLAS

0.025

0.050

0.075

0.100

0.125

0.150

0.175

eI
QR

η: [2.01, 2.47], IQR: 95
DeepCa o
ATLAS

0 25 50 75 100 125 150 175 200
GeV

−0.1

0.0

0.1

re
IQ

R

0 25 50 75 100 125 150 175 200
GeV

−0.10

−0.05

0.00

0.05

0.10

re
IQ

R

102

103

Fr
eq

ue
nc

ie
s

102

103

Fr
eq

ue
nc

ie
s

(e) H → γγ events with |η| = [2.01, 2.47[
Figure 9.15: The figures show
the performance in DeepCalo and
Ecalib(BDT) in |η| and ET bins for
H → γγ.

104 masters thesis

9.5.4 Z → µµγ

In figure 9.16, we can see the comparison between the invariant mass
distribution between DeepCalo and Ecalib(BDT). As seen from the fig-
ure, we only see a small increase in performance using DeepCalo com-
pared to Ecalib(BDT). However, we also see that both reconstruction

Figure 9.16: The Z →
µµγ resonance peak in MC
using Etruth, EDeepCalo and
Ecalib(BDT) energies with re-
constructed η and φ.

60 70 80 90 100 110 120 130
Mee [GeV]

0

5000

10000

15000

20000

#

DeepCalo
ATLAS
Truth

methods are not far from Etruth compared to H → γγ and Z → ee.
This is due to the Z → µµγ channel being dominated by the accuracy
in the µ reconstruction, as seen in section 9.5.4.

Muon domination in Z→ µµγ

In Z → µµγ, the invariant mass is highly dominated by the recon-
structed energy of the two muons. How much it is dominated cannot
be measured for Data, however, we can measure it for MC by using
Etruth,γ and Ecalib(BDT) for the two muons. This has been done in
figure 9.17, where we can see, by using Etruth,γ, that the σCB of the
fit is still at σCB = 1.269± 0.012. Thus, the energy resolution of the
muons still has a significant impact on the width.

|η| vs ET

In figure 9.18, we again show the |η| vs ET bins, but this time for
Z → µµγ of the DeepCalo model. It is a more detailed depiction of
figure 6.7, as the eIQR, reIQR for 75 and 95 and number of events can
be seen in the figure.

MC |η| performance

The evaluation of pileup performance can be seen in figure 9.19,
where the bottom plots display the reIQR comparing DeepCalo and
Ecalib(BDT). The reIQR is steadily increasing with pileup. Thus, fol-

appendix 105

Figure 9.17: The figure shows the
BW

⊗
CB fit to Z → µµγ, where

Etruth,γ has been used for the pho-
ton and Ecalib(BDT) for the two
muons.

lowing the trend from the previous models, DeepCalo is not as af-
fected by increasing pileup, as Ecalib(BDT)is.

106 masters thesis

0.01

0.02

0.03

0.04

0.05

0.06

eI
QR

η: [0.0, 0.8], IQR: 75
DeepCalo
ATLAS

0.05

0.10

0.15

0.20

0.25

0.30

0.35

eI
QR

η: [0.0, 0.8], IQR: 95
DeepCalo
ATLAS

0 25 50 75 100 125 150 175 200
GeV

0.00

0.05

0.10

0.15

0.20

re
IQ

R

0 25 50 75 100 125 150 175 200
GeV

0.00

0.05

0.10

0.15

0.20

re
IQ

R

103

104

Fr
eq

ue
nc

ie
s

103

104

Fr
eq

ue
nc

ie
s

(a) Z → µµγ events with |η| = [0.0, 0.8[

0.01

0.02

0.03

0.04

0.05

0.06

0.07

eI
QR

η: [0.8, 1.37], IQR: 75
DeepCalo
ATLAS

0.05

0.10

0.15

0.20

0.25

eI
QR

η: [0.8, 1.37], IQR: 95
DeepCalo
ATLAS

0 25 50 75 100 125 150 175 200
GeV

0.00

0.05

0.10

0.15

0.20

re
IQ

R

0 25 50 75 100 125 150 175 200
GeV

0.00

0.05

0.10

0.15

re
IQ

R

102

103

104

Fr
eq

ue
nc

ie
s

102

103

104

Fr
eq

ue
nc

ie
s

(b) Z → µµγ events with |η| = [0.8, 1.37[

0.02

0.04

0.06

0.08

0.10

0.12

0.14

eI
QR

η: [1.37, 1.52], IQR: 75
DeepCalo
ATLAS

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

eI
QR

η: [1.37, 1.52], IQR: 95
DeepCalo
ATLAS

0 25 50 75 100 125 150 175 200
GeV

0.0

0.2

0.4

0.6

re
IQ

R

0 25 50 75 100 125 150 175 200
GeV

0.0

0.2

0.4

re
IQ

R

102

103

Fr
eq

ue
nc

ie
s

102

103

Fr
eq

ue
nc

ie
s

(c) H → γγ events with |η| = [1.37, 1.52[

0.02

0.03

0.04

0.05

0.06

0.07

0.08

eI
QR

η: [1.52, 2.01], IQR: 75
DeepCalo
ATLAS

0.05

0.10

0.15

0.20

0.25

0.30

eI
QR

η: [1.52, 2.01], IQR: 95
DeepCalo
ATLAS

0 25 50 75 100 125 150 175 200
GeV

−0.10

−0.05

0.00

re
IQ

R

0 25 50 75 100 125 150 175 200
GeV

−0.10

−0.05

0.00

0.05

re
IQ

R

102

103

104

Fr
eq

ue
nc

 e
s

102

103

104

Fr
eq

ue
nc

 e
s

(d) Z → µµγ events with |η| = [1.52, 2.01[

0.01

0.02

0.03

0.04

0.05

0.06

eI
QR

η: [2.01, 2.47], IQR: 75
DeepCa o
ATLAS

0.025

0.050

0.075

0.100

0.125

0.150

0.175

eI
QR

η: [2.01, 2.47], IQR: 95
DeepCa o
ATLAS

0 25 50 75 100 125 150 175 200
GeV

−0.1

0.0

0.1

re
IQ

R

0 25 50 75 100 125 150 175 200
GeV

−0.10

−0.05

0.00

0.05

0.10

re
IQ

R

102

103

Fr
eq

ue
nc

ie
s

102

103

Fr
eq

ue
nc

ie
s

(e) Z → µµγ events with |η| = [2.01, 2.47[
Figure 9.18: The figures show
the performance in DeepCalo and
Ecalib(BDT) in |η| and ET bins for
Z → µµγ.

appendix 107

0.05

0.06

0.07

0.08

0.09

eI
QR

IQR 75
Dee Calo
ATLAS

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375
eI
QR

IQR 95
Dee Calo
ATLAS

0.0< ⟨μ⟩ < 22.0 22.0< ⟨μ⟩ < 36.0 36.0< ⟨μ⟩ < 50.0 50.0< ⟨μ⟩ < 6⟩.0 6⟩.0< ⟨μ⟩ < 78.0
0.00

0.05

0.⟨0

0.⟨5

0.20

0.25

re
IQ
R

0.0< ⟨μ⟩ < 22.0 22.0< ⟨μ⟩ < 36.0 36.0< ⟨μ⟩ < 50.0 50.0< ⟨μ⟩ < 6⟩.0 6⟩.0< ⟨μ⟩ < 78.0
0.00

0.05

0.⟨0

0.⟨5

0.20

0.25

0.30

re
IQ
R

⟨05

Fr
eq
ue
nc
ie
s

⟨05

Fr
eq
ue
nc
ie
s

Figure 9.19: The figure shows
the pileup performance of the
DeepCaloZmmg,mc model for both
eIQR75 and eIQR95. The errorbar-
plot indicates the eIQR75 and its x-
errors show the range of the bin.
The histogram associated with the
right axis shows the number of
events in each bin. The bottom plot
is the reIQR of the eIQR between
DeepCalo and Ecalib(BDT).

108 masters thesis

9.6 Variables

9.6.1 Track variables

Figure 9.20 is related to the track variables from table 3.4 that can be
seen in 9.20. It shows the geometrics of the track variables in the xy
and zR plane.

Figure 9.20: From [37]. The figure
illustrates the perigee parameters
of the tracks in the x, y plane in left
figure and in the R, z plane in the
right figure.

9.6.2 ECAL images

Figure 9.21 illustrates that if upscaling is not applied before filling
the pixel values, the barycentre is shifted. It should be compared to
figure 3.6. This is why the image is up-sampled before filling the
pixel values.

Figure 9.21: From [18], where the
energies have been filled in before
the up-sampled.

9.6.3 Standardization techniques

Two types of standardization were applied in this thesis, both algo-
rithms from scikit-learn [33]. QuantileTransformer was used on dis-

appendix 109

tributions with a heavy-tail and RobustScaler was applied on the rest.

The RobustScaler is robust towards outliers, but instead of using the
mean and standard deviation of a distribution1, it uses the median 1 Where both the mean and standard

deviation are outlier dependent.for centering and the interquantile range for scaling. Each variable is
standardized using

x̂ =
x−Q2(x)

Q3(x)−Q1(x)
(9.9)

x being the variable and Qn denoting the nth quartile.

For heavy-tailed distributions, QuantileTransformer is applied. It can
transform variables to follow a uniform or a normal distribution to
reduce the impact of outliers. The algorithm estimates the cumula-
tive distribution function G−1 of a feature and applies it to construct
a uniform distribution. Afterwards, a quantile function of a desired
output distribution is mapped to the previous obtained distribution.
The transformation is non-linear, so it may distort the linear correla-
tion between features at same scale, but makes features measured at
different scales more comparable.

Using RobustScaler and QuantileTransformer for scaling variables

In figure 9.22 and 9.23, the RobustScaler from [33] has been used to
standardize the variables. Many of the variables still have an unin-
tended long-tail, which can be problematic for a NN.

0.0 2.5 5.0 7.5 10.0 12.5 15.0

10−3

10−1

p_eAccClu−.er
KS test: 0.0

MC
Da.a

0 1 2 3 4 5

10−2

100

p_nTrack−
KS test: 2.2295517219341525e-251

MC
Data

−2 0 2 4 6

10−3

10−2

10−1

100

N0t1Reco
KS test: 0.0

MC
Da.a

−1.0 −0.5 0.0 0.5 1.0
10−2

10−1

100

p_cellInde1Clu−.er
KS test: 4.3423034484911976e-156

MC
Data

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

10−2

10−1

100
p_e.a

KS .e−.: 1.3856034588794834e-40
MC
Data

−1 0 1 2 3 4 5
10−2

10−1

100

a0erageInteraction−PerCro−−ing
KS test: 0.0

MC
Da.a

0 10 20 30 40 50

10−3

10−1

p_f0Clu−.er
KS .e−.: 9.16618277511941e-54

MC
Data

−300000 −250000 −200000 −150000 −100000 −50000 0

10−6

10−4

p_deltaPhiRe−caled2
KS test: 1.5295662275524823e-34

MC
Data

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

100

4×10−1

6×10−1

p_po−c−2
KS test: 0.775619168210655

MC
Da.a

−60 −40 −20 0 20 40

10−4
10−3
10−2
10−1

p_R12
KS .e−.: 1.931563726851672e-200

MC
Data

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

4×10−1

5×10−1

p_e.aModCalo
KS .e−.: 0.0006709467398613631

MC
Da.a

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

4.4×10−1
4.6×10−1
4.8×10−1
5×10−1

5.2×10−1
5.4×10−1
5.6×10−1
5.8×10−1

p_dPhiTH3
KS .e−.: 0.06342631490558204

MC
Da.a

0 1000 2000 3000 4000 5000

10−5

10−3

p_p._.ra k
KS .e−.: 7.4928106304e-314

MC
Data

−400000 −300000 −200000 −100000 0

10−7

10−5

p_deltaEta2
KS te−t: 3.8379601073095046e-114

MC
Data

0 1 2 3 4 5

10−2

100

p_fTG3
KS te−t: 2.8944512153043455e-59

MC
Data

Figure 9.22: The figure shows the
distribution of the scalar variables
in MC standardized by the Ro-
bustScaler. The scalar distributions
belong to the Z → ee MC sample.

110 masters thesis

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
10−1

100

101

tracks_dR
KS test: 2.1430791611427416e-293

MC
Data

−40 −30 −20 −10 0 10 20 30 40

10−4

10−3

10−2

10−1

tracks_d0
KS test: 6.428058790763096e-31

MC
Data

−4 −2 0 2 4 6 8

10−2

100

tracks_scthits
KS test: 5.2500320171007895e-08

MC
Data

0 50 100 150 200 250

10−4

10−2

100
tracks_pt

KS te t: 0.0
MC
Data

−15 −10 −5 0 5 10 15 20

10−3

10−1

track _z0
KS te t: 0.0

MC
Data

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
10−1

100

track _theta
KS te t: 4.489893044913453e-35

MC
Data

−1.0 −0.5 0.0 0.5 1.0

10−2

10−1

tracks_eta
KS test: 4.489893044913453e-35

MC
Data

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

10−2

100

tracks_trthits
KS test: 9.45085520380166e-62

MC
Data

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

3×10−1

4×10−1

6×10−1
tracks_phi

KS test: 6.906304680852098e-05
MC
Data

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16

10−2

100

tracks_vertex
KS te t: 0.0

MC
Data

−3 −2 −1 0 1 2 3 4 5

10−2

10−1

100

101

track _pixhit
KS te t: 0.19222554078607723

MC
Data

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 9.23: The figure shows the
distribution of the track variables
in MC standardized by the Ro-
bustScaler. The track distributions
belongs to the Z → ee MC sample.

To fix the long-tailed distributions we apply the QuantileTrans-
former instead RobustScaler to the distribution with the tail. The re-
sult can be seen in figure 9.24 and 9.25, where the long-tailed dis-
tributions have been removed. Note that when using QuantileTrans-
former, the linear correlation between variables might change.

−4 −2 0 2

10−3

10−2

10−1

p_eAccCluster
KS test: 0.0

MC
Da.a

0 1 2 3 4 5

10−2

100

p_nTrack−
KS test: 2.2295517219341525e-251

MC
Data

−2 0 2 4 6

10−3

10−2

10−1

100

N0t1Reco
KS test: 0.0

MC
Da.a

−1.0 −0.5 0.0 0.5 1.0
10−2

10−1

100

p_cellInde1Clu−.er
KS test: 4.3423034484911976e-156

MC
Data

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

10−2

10−1

100
p_e.a

KS .e−.: 1.3856034588794834e-40
MC
Data

−1 0 1 2 3 4 5
10−2

10−1

100

a0erageInteraction−PerCro−−ing
KS test: 0.0

MC
Da.a

−2 0 2 4

10−2

100

p_f0Clu−.er
KS .e−.: 9.16618277511941e-54

MC
Data

−4 −2 0 2 4

10−3

10−2

10−1

p_deltaPhiRe−caled2
KS test: 1.5295662275524823e-34

MC
Data

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

100

4×10−1

6×10−1

p_po−c−2
KS test: 0.775619168210655

MC
Da.a

−4 −2 0 2 4

10−3

10−2

10−1

p_R12
KS .e−.: 1.931563726851672e-200

MC
Data

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

4×10−1

5×10−1

p_e.aModCalo
KS .e−.: 0.0006709467398613631

MC
Da.a

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

4.4×10−1
4.6×10−1
4.8×10−1
5×10−1

5.2×10−1
5.4×10−1
5.6×10−1
5.8×10−1

p_dPhiTH3
KS .e−.: 0.06342631490558204

MC
Da.a

−4 −2 0 2 4

10−3

10−2

10−1

p_p._.ra k
KS .e−.: 7.4928106304e-314

MC
Data

−4 −2 0 2 4

10−3

10−2

10−1

p_deltaEta2
KS te−t: 3.8379601073095046e-114

MC
Data

0 1 2 3 4 5

10−2

100

p_fTG3
KS te−t: 2.8944512153043455e-59

MC
Data

Figure 9.24: The figure shows the
distribution of the scalar vari-
ables in MC standardized by the
RobustScaler and QuantileTrans-
former. QuantileTransformer has
been used for distributions with a
long tail. The scalar distributions
belong to the Z → ee MC sample.

appendix 111

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
10−1

100

101

tracks_dR
KS test: 2.1430791611427416e-293

MC
Data

−4 −2 0 2 4

10−3

10−2

10−1

tracks_d0
KS test: 6.428058790763096e-31

MC
Data

−4 −2 0 2 4 6 8

10−2

100

tracks_scthits
KS test: 5.2500320171007895e-08

MC
Data

−4 −2 0 2

10−3

10−2

10−1

tracks_pt
KS te t: 0.0

MC
Data

−4 −2 0 2 4

10−3

10−2

10−1

track _z0
KS te t: 0.0

MC
Data

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
10−1

100

track _theta
KS te t: 4.489893044913453e-35

MC
Data

−1.0 −0.5 0.0 0.5 1.0

10−2

10−1

tracks_eta
KS test: 4.489893044913453e-35

MC
Data

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

10−2

100

tracks_trthits
KS test: 9.45085520380166e-62

MC
Data

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

3×10−1

4×10−1

6×10−1
tracks_phi

KS test: 6.906304680852098e-05
MC
Data

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16

10−2

100

tracks_vertex
KS te t: 0.0

MC
Data

−3 −2 −1 0 1 2 3 4 5

10−2

10−1

100

101

track _pixhit
KS te t: 0.19222554078607723

MC
Data

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 9.25: The figure shows
the distribution of the track vari-
ables in MC standardized by the
RobustScaler and QuantileTrans-
former. QuantileTransformer has
been used for distributions with a
long tail. The track distributions
belong to the Z → ee MC sample.

9.6.4 Variable distributions of Outliers

In figure 9.26 and 9.27, the distribution of scalar and track vari-
ables of MC for Z → ee used in testing the DeepCaloZee,mc model
are shown. The variables have been divided into outliers and non-
outliers depending on whether their absolute error (AB) is above 2.5.
The correlation plot of the outliers selected can be seen in figure 7.10.
Figures 9.26 and 9.27 are used in the discussion to present any pos-
sible systemics in the outliers.

112 masters thesis

Figure 9.26: The figure shows the
distribution of the scalar vari-
ables of MC for the outliers (Blue)
and the non-outliers (Red) for the
DeepCaloZee,mc model from chapter
5. The outliers have been identified
as the events with a AE > 2.5 and
the number of outliers can be seen
in the legend.

appendix 113

Figure 9.27: The figure shows the
distribution of the track variables
of MC for the outliers (Blue)
and the non-outliers (Red) for the
DeepCaloZee,mc model from chapter
5. The outliers have been identified
as the events with a AE > 2.5 and
the number of outliers can be seen
in the legend.

114 masters thesis

9.7 Performance for the uncertainties

Figure 9.28 shows the energy prediction from DeepCaloσ for MC and
Data for the five bins. In Data, there is a cluster of poorly recon-
structed events at E = [0, 10] that is not visible in MC. In figure 9.29,

(a) Prediction on MC (b) Prediction on Data
Figure 9.28: The figure shows the
distribution of energies predicted
by DeepCaloσ for the five σ bins.

we see the pull plot using the re-scale uncertainties from DeepCaloσ.
The uncertainties are reduced by 4.5.

Figure 9.29: The figure shows the
distribution of energies predicted
by DeepCaloσ for the five σ bins,
where the σM has been reduced by
4.5.

9.8 DeepCalo architecture

´ In the following section, we will be showing the sub-module archi-
tectures of DeepCalo for Z → ee , illustrated used Tensorflow. Some of
the figures are small, as they must fit on a page, so viewing them in
PDF form is recommend.

appendix 115

Figure 9.30: The figure shows the
DeepCalo architectures with its sub-
modules.

Figure 9.31: The figure shows the
FiLM gen. of DeepCalo.

Figure 9.32: The figure shows the
ScalarNet of DeepCalo.

116 masters thesis

Figure 9.33: The figure shows the
TrackNet of DeepCalo.

appendix 117

Figure 9.34: The figure shows the
Top of DeepCalo.

118 masters thesis

Figure 9.35: The figure shows the
CNNnet of DeepCalo.

Bibliography

[1] G. Aad et al. “A search for the Zγ decay mode of the Higgs
boson in pp collisions at

√
s = 13 TeV with the ATLAS de-

tector.” In: Physics Letters B (2020), pp. 1–3. doi: 10.1016/j.
physletb.2020.135754. url: http://dx.doi.org/10.1016/
j.physletb.2020.135754.

[2] M (CERN) Aleksa et al. ATLAS Liquid Argon Calorimeter Phase-I
Upgrade Technical Design Report. Tech. rep. 2013. url: https:
//cds.cern.ch/record/1602230.

[3] Malte Algren. NTupleProduction. url: https://gitlab.cern.
ch/disciples-of-troels/ntupleproduction/-/tree/CellEnerg.

[4] Evelina Bouhova-Thacker and Vakhtang Kartvelishvili. “Elec-
tron bremsstrahlung recovery in ATLAS tracking using Dynamic
Noise Adjustment.” In: (Sept. 2021), Figure 2.

[5] James Catmore. DerivationFramework. url: https://twiki.
cern.ch/twiki/bin/viewauth/AtlasProtected/DerivationFramework.
(accessed: 25.11.2020).

[6] CERN. Facts about CMS. 2013. url: https : / / cms - docdb .
cern.ch/cgi-bin/PublicDocDB/RetrieveFile?docid=4030&

version=4&filename=CMSFactsheet_EN_Sept2013.pdf. (ac-
cessed: 20.09.2021).

[7] ATLAS Experiment CERN. The Inner Detector. 2020. url: https:
//atlas.cern/discover/detector/inner-detector.

[8] S. Chatrchyan et al. “Observation of a new boson at a mass
of 125 GeV with the CMS experiment at the LHC.” In: (2012),
p. 1. doi: 10.1016/j.physletb.2012.08.021. url: http:
//dx.doi.org/10.1016/j.physletb.2012.08.021.

[9] ATLAS Collaboration. “"Observation of a new particle in the
search for the Standard Model Higgs boson with the ATLAS
detector at the LHC".” In: (2012).

[10] CERN collaboration. Rucio documentation. url: https://rucio.
cern.ch/. (accessed: 01.08.2021).

[11] The ATLAS Collaboration. “Electron and photon energy cal-
ibration with the ATLAS detector using 2015–2016 LHC pro-
ton–proton collision data.” In: (2019), pp. 6–9. url: http://
dx.doi.org/10.1088/1748-0221/14/03/P03017.

https://doi.org/10.1016/j.physletb.2020.135754
https://doi.org/10.1016/j.physletb.2020.135754
http://dx.doi.org/10.1016/j.physletb.2020.135754
http://dx.doi.org/10.1016/j.physletb.2020.135754
https://cds.cern.ch/record/1602230
https://cds.cern.ch/record/1602230
https://gitlab.cern.ch/disciples-of-troels/ntupleproduction/-/tree/CellEnerg
https://gitlab.cern.ch/disciples-of-troels/ntupleproduction/-/tree/CellEnerg
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/DerivationFramework
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/DerivationFramework
https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/RetrieveFile?docid=4030&version=4&filename=CMSFactsheet_EN_Sept2013.pdf
https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/RetrieveFile?docid=4030&version=4&filename=CMSFactsheet_EN_Sept2013.pdf
https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/RetrieveFile?docid=4030&version=4&filename=CMSFactsheet_EN_Sept2013.pdf
https://atlas.cern/discover/detector/inner-detector
https://atlas.cern/discover/detector/inner-detector
https://doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/j.physletb.2012.08.021
https://rucio.cern.ch/
https://rucio.cern.ch/
http://dx.doi.org/10.1088/1748-0221/14/03/P03017
http://dx.doi.org/10.1088/1748-0221/14/03/P03017

120 masters thesis

[12] The ATLAS Collaboration. “Electron and photon performance
measurements with the ATLAS detector using the 2015-2017

LHC proton-proton collision data.” In: (2019), pp. 11–13. doi:
10.1088/1748-0221/14/12/P12006. url: https://cds.cern.
ch/record/2684552.

[13] The ATLAS Collaboration. “The ATLAS Experiment at the
CERN Large Hadron Collider.” In: (2008).

[14] Atlas Collection. Athena. url: https://gitlab.cern.ch/
atlas/athena. (accessed: 27.08.2021).

[15] Chris Cunningham. Data Transfer Rates Compared (RAM vs PCIe
vs SATA vs USB vs More!) url: https://blog.logicalincrements.
com/2018/08/data-transfer-rates-bandwidth-cpu-ram-

pcie-m-2-sata-usb-hdmi/.

[16] Timothy Dozat. “Incorporating Nesterov Momentum into Adam.”
In: (2016).

[17] Harm de Vries Vincent Dumoulin Ethan Perez Florian Strub
and Aaron C. Courville. “FiLM: Visual Reasoning with a Gen-
eral Conditioning Layer.” In: (2017), pp. 1–4. url: http://
arxiv.org/abs/1709.07871.

[18] Frederik G. Faye. Energy reconstruction of electrons and photons
using Convolutional Neural Networks. 2019.

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. http : / / www . deeplearningbook . org. MIT Press,
2016, pp. 326–365.

[20] Peter Hansen. Particle detectors and accelerators Lecture notes.
3rd. 2016, pp. 9–12, 77–80, 93–95, 97–99, 101–106.

[21] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Ac-
celerating Deep Network Training by Reducing Internal Co-
variate Shift.” In: (2015), pp. 1–5. url: http://arxiv.org/
abs/1502.03167.

[22] Shruti Jadon. Introduction to Different Activation Functions for
Deep Learning. url: https://medium.com/@shrutijadon10104776/
survey- on- activation- functions- for- deep- learning-

9689331ba092. (accessed: 01.07.2021).

[23] Jeremy Jordan. Setting the learning rate of your neural network.
url: https://www.jeremyjordan.me/nn-learning-rate/.
(accessed: 01.08.2021).

[24] Alex Kendall and Yarin Gal. “What Uncertainties Do We Need
in Bayesian Deep Learning for Computer Vision?” In: (2017),
pp. 1–4. url: http://arxiv.org/abs/1703.04977.

[25] Susanne Kuehn. “Impact of the HL-LHC detector upgrades on
the physics program of the ATLAS and CMS experiments.” In:
().

[26] Sandrine Laplace. HGamma DxAOD samples. url: https://
twiki.cern.ch/twiki/bin/view/AtlasProtected/HggDerivationSamples#

HIGG1D1_and_HIGG1D2_skimming. (accessed: 25.11.2020).

https://doi.org/10.1088/1748-0221/14/12/P12006
https://cds.cern.ch/record/2684552
https://cds.cern.ch/record/2684552
https://gitlab.cern.ch/atlas/athena
https://gitlab.cern.ch/atlas/athena
https://blog.logicalincrements.com/2018/08/data-transfer-rates-bandwidth-cpu-ram-pcie-m-2-sata-usb-hdmi/
https://blog.logicalincrements.com/2018/08/data-transfer-rates-bandwidth-cpu-ram-pcie-m-2-sata-usb-hdmi/
https://blog.logicalincrements.com/2018/08/data-transfer-rates-bandwidth-cpu-ram-pcie-m-2-sata-usb-hdmi/
http://arxiv.org/abs/1709.07871
http://arxiv.org/abs/1709.07871
http://www.deeplearningbook.org
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
https://www.jeremyjordan.me/nn-learning-rate/
http://arxiv.org/abs/1703.04977
https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HggDerivationSamples#HIGG1D1_and_HIGG1D2_skimming
https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HggDerivationSamples#HIGG1D1_and_HIGG1D2_skimming
https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HggDerivationSamples#HIGG1D1_and_HIGG1D2_skimming

BIBLIOGRAPHY 121

[27] Y. LeCun et al. “Backpropagation Applied to Handwritten Zip
Code Recognition.” In: Neural Computation 1 (1989), pp. 541–
551.

[28] Scott Lundberg and Su-In Lee. SHapley Additive exPlanations.
url: https://github.com/slundberg/shap. (accessed: 24.08.2021).

[29] Giovanni Marchiori. EGamma AOD derivations. url: https://
twiki.cern.ch/twiki/bin/view/AtlasProtected/EGammaxAODDerivations#

Derivations_defined_for_egamma. (accessed: 25.11.2020).

[30] Peter McCready. Atlas and the search for dark matter. 2018. url:
http://news.bbc.co.uk/2/hi/science/nature/7534850.

stm. (accessed: 20.09.2021).

[31] Gordon E. Moore. “Cramming more components onto inte-
grated circuits, Reprinted from Electronics, volume 38, num-
ber 8, April 19, 1965, pp.114 ff.” In: IEEE Solid-State Circuits
Society Newsletter 11.3 (2006), pp. 33–35. doi: 10 . 1109 / N -

SSC.2006.4785860.

[32] Nvidia. CUDA C++ Programming Guide - The Benefits of Us-
ing GPUs. url: https://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html.

[33] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python.”
In: Journal of Machine Learning Research 12 (2011), pp. 2825–
2830.

[34] Course by Peter Hansen and Jens Jørgen Gaardhøje. Introduc-
tion to Nuclear and Particle Physics. 2018.

[35] Karolos Potamianos. “The upgraded Pixel detector and the
commissioning of the Inner Detector tracking of the ATLAS
experiment for Run-2 at the Large Hadron Collider.” In: (2016),
pp. 2–3.

[36] Andrew Purcell. https://cds.cern.ch/record/1473657. 2nd. 2017.

[37] K. Ran. “Study on Simulation of ATLAS ITK Strips.” In: (2016),
[figure 8]. url: https://www.desy.de/f/students/2016/
reports/KunlinRan.pdf.gz.

[38] Sebastian Ruder. “An overview of gradient descent optimiza-
tion algorithms.” In: (2016). arXiv: 1609.04747. url: http:
//arxiv.org/abs/1609.04747.

[39] Yevgeny Seldin. Machine Learning Lecture Notes. Department of
Computer Science, University of Copenhagen, 2019, pp. 20–26.

[40] Eduardo Simas, Jose M. Seixas, and Luiz Caloba. “Self-organized
mapping of calorimetry information for high efficient online
electron / jet identification in ATLAS.” In: (2007), [Figure 2 on
page 3]. doi: 10.22323/1.050.0055.

[41] Leslie N. Smith. “No More Pesky Learning Rate Guessing Games.”
In: (2015), pp. 1–5. url: http://arxiv.org/abs/1506.01186.

[42] S. Stärz. “Upgraded readout electronics for the ATLAS LAr
calorimeter at the phase I of LHC.” In: (2013).

https://github.com/slundberg/shap
https://twiki.cern.ch/twiki/bin/view/AtlasProtected/EGammaxAODDerivations#Derivations_defined_for_egamma
https://twiki.cern.ch/twiki/bin/view/AtlasProtected/EGammaxAODDerivations#Derivations_defined_for_egamma
https://twiki.cern.ch/twiki/bin/view/AtlasProtected/EGammaxAODDerivations#Derivations_defined_for_egamma
http://news.bbc.co.uk/2/hi/science/nature/7534850.stm
http://news.bbc.co.uk/2/hi/science/nature/7534850.stm
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1109/N-SSC.2006.4785860
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.desy.de/f/students/2016/reports/KunlinRan.pdf.gz
https://www.desy.de/f/students/2016/reports/KunlinRan.pdf.gz
https://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
https://doi.org/10.22323/1.050.0055
http://arxiv.org/abs/1506.01186

122 masters thesis

[43] M. Tanabashi et al. “Review of Particle Physics.” In: Phys. Rev.
D 98 (3 2018), pp. 33–35. doi: 10.1103/PhysRevD.98.030001.
url: https://link.aps.org/doi/10.1103/PhysRevD.98.
030001.

[44] Tensorflow. TensorBoard: TensorFlow’s visualization toolkit. url:
https://www.tensorflow.org/tensorboard.

[45] Tensorflow. TFRecord and tf.train.Example. url: https://www.
tensorflow.org/tutorials/load_data/tfrecord.

[46] Tensorflow and Google. XLA Architecture. url: https://www.
tensorflow.org/xla/architecture.

[47] Tensorflow and Nvidia. Mixed precision. url: https://www.
tensorflow.org/guide/mixed_precision.

[48] Scott Thornton. NVMe vs SATA: What’s the difference and which
is faster? url: https://www.microcontrollertips.com/why-
nvme-ssds-are-faster-than-sata-ssds/.

[49] Wikipedia. Crystal Ball Function. url: https://en.wikipedia.
org/wiki/Crystal_Ball_function#/media/File:CrystalBallFunction.

svg. (accessed: 27.08.2021).

[50] Nishio M. Do R.K.G. et al. Yamashita R. “Convolutional neu-
ral networks: an overview and application in radiology.” In:
(2018), pp. 611–629. doi: \url{https://doi.org/10.1007/
s13244-018-0639-9}.

https://doi.org/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/tutorials/load_data/tfrecord
https://www.tensorflow.org/tutorials/load_data/tfrecord
https://www.tensorflow.org/xla/architecture
https://www.tensorflow.org/xla/architecture
https://www.tensorflow.org/guide/mixed_precision
https://www.tensorflow.org/guide/mixed_precision
https://www.microcontrollertips.com/why-nvme-ssds-are-faster-than-sata-ssds/
https://www.microcontrollertips.com/why-nvme-ssds-are-faster-than-sata-ssds/
https://en.wikipedia.org/wiki/Crystal_Ball_function#/media/File:CrystalBallFunction.svg
https://en.wikipedia.org/wiki/Crystal_Ball_function#/media/File:CrystalBallFunction.svg
https://en.wikipedia.org/wiki/Crystal_Ball_function#/media/File:CrystalBallFunction.svg
https://doi.org/\url{https://doi.org/10.1007/s13244-018-0639-9}
https://doi.org/\url{https://doi.org/10.1007/s13244-018-0639-9}

List of Figures

1.1 The figure shows interactions between fermions-bosons and bosons-
bosons of the SM particles. 1

1.2 Overview of the Standard model from [36]. The charge, color,
mass and spin of the particles can all be seen in the figure as
well as groups and subgroups. 2

1.3 The figure shows the geometry of the ATLAS detector. It shows
the range of η, φ and θ. The cylinder (top figure) and circle (bottom
figure) indicate the ATLAS detector. Figure from [40]. 5

1.4 An overview of the ATLAS detector with labels on the central
detector parts. Many of these parts will be elaborated on in the
following sections. The figure is from [13]. 5

1.5 Schematic overview of the barrel layers within the ID before LS1.
The figure is from [13]. The top figure shows the barrels and end-
caps of the ID with all its layers and their |η| coverage. Below
that figure, a zoom-in of the pixel detector and a table displaying
the radius and height of the layers can be seen. 6

1.6 From [13]. The figure shows the accordion of the ECAL, namely
layers 1,2 and 3. Layer 0 (pre-sampler) is not displayed on the
figure and is before layer 1. The illustrates the η × φ granularity
of cells within each layer as well as the accordion shape of the
ECAL. 9

1.7 From [42]. The figure shows the (η, φ) resolution of the ECAL
layers in the barrel. 9

1.8 Signal read-out of cells [2]. The figure read-out behavior of a
cell and the additional correct because of the fast bunch cross-
ings. 11

1.9 MC sample for the decay channel, Z → ee. σCB will be explained
in chapter 4, but for now it is just a measure for how well the
invariant mass is reconstructed, with σCB = 0 being best. 14

1.10 The figure shows the discovery of the Higgs boson from [9]. 14

1.11 Energy range by-product of the decay of interest to this thesis.
The black dashed line is the borderline between the motivation
channels and the control channels. The box plots indicate energy
ranges, where we have available Data or MC. See table 3.1 to find
the file containers used in this thesis. 15

124 masters thesis

2.1 The figure shows the different scenarios and shortfalls that can
appear when training a machine learning model, and why a
validation sample is used to select the correct h. If training is
terminated in the under-fit region, there is still generalization
aspects to be found, which can be seen from the loss on both
Strain and Sval . In the over-fit region, the loss from the Strain will
decrease, however, the loss from the Sval will increase as the
model over-fits to statistical fluctuations in Strain. The sweet spot
is on the dotted line, where both have their minimum. 17

2.2 A sketch of a Neural Network. Each circle indicates a neuron
with the arrow being where data is fed from. 19

2.3 The sketch shows a single neuron with n connections, where
a is the vector output and g is a given activation function. For
easy readability, the linear transformation is set up as a sum.
However, using equation 2.7 will decrease computation time and
is used in real-world algorithms. 20

2.4 Possible activation functions. Figure from [22]. 20

2.5 The sketch shows an example of an output layer of a NN. C# is
the cost of the #th batch (# ∈N). 21

2.6 Sketch of cross-correlation (equation 2.17) between a input im-
age (3× 4× 1) and a kernel (2× 2). For simplicity during the
thesis, cross correlation will be referred to as convolutions. Fig-
ure from [19]. 23

2.7 Zero padding has been performed on a 3× 3 image. Afterwards,
a 3 × 3 kernel is used. This results in an image that is 3 × 3,
meaning the dimensions of the image is kept constant. 23

2.8 2× 2 max-pooling applied on a 4× 4 matrix, resulting in a 2× 2
matrix. Figure from [50]. 24

2.9 γi,c and βi,c are created from FiLM gen, and then the FiLM layer
within the CNN applies the transformations to the channels. Fi,c

is the cth channel of ith convolution. Figure from [17]. 25

2.10 θ is the parameters of the network and J(θ) is the loss function.
While J(θ) is very simple, an increase of the complexity of θ will
lead to an increase of the complexity of J(θ) as well. Figure from
[23] 27

2.11 Example of 1cycle LRS and cyclical LRS. The cyclical LRS has
additional hyperparameters that can change the behavior of the
learning rate eg. the upper bound can exponentially decay as a
function of iterations. 28

2.12 Figure from [18]. The figure illustrates the number of epochs
needed for CLR and oneCLR to convergence to the same loss. It
can be seen that oneCLR is many epochs faster than CLR. 28

3.1 The pipeline from xAOD to DxAOD. Green symbolizes a collec-
tion of data files, red are C++ files and blue is the folder that
combines the files. The striped grid indicates that the algorithm
is a part of Athena [14]. 30

BIBLIOGRAPHY 125

3.2 The figure shows the pipeline from DxAOD to .h5. Green sym-
bolizes data files, red are C++ files, yellow are Python files, blue
are the folders that combines the scripts. The striped grid indi-
cates that the algorithm is a part of Athena [14]. 31

3.3 The figures show the distributions of scalar variables in MC and
Data. The scalar distributions belong to the Z → ee channel. The
blue-colored histogram is MC and the red one is Data. 35

3.4 The figures show the distributions of track variables in MC and
Data. The track distributions belong to the Z → ee channel. The
blue-colored histogram is MC and the red one is Data. 36

3.5 Up-sampling works by dividing the cell into small sub-cells with
the total sum and size of the original cell. Here, the large cell
with energy 9 is scaled to 9 smaller cells with size and energy
1/9 of the large cell. 37

3.6 The figures illustrates the ECAL energy images in MC for Z →
ee after upsampling. The time images from the same event can
be seen in figure 3.8. Note that the color-map is in logimatic
scale and the unit is GeV. The previous resolution of the layers
are still noticeable. 37

3.7 Figure from [18]. The figure illustrates the reason cells are se-
lected after re-sampled, showing the results from cell selection
with and without up-sampling. The red star indicates the barycen-
tre, where the particle hit. We when wish to construct a 1× 1 im-
age indicated by the red square. The left columns shows the cells
selected if the image was not up-sampled. It can be seen that the
barycentre is not centered in the image. In the right columns, the
image has been up-sampled before selecting the cell of the 1× 1
image. It can be seen that the barycentre is now more centered
than in the previous selection. 38

3.8 An example of absolute time images from ECAL in MC for
Z → ee after the up-sampling. The illustrated time images are
from the same event as figure 3.6. Note that the color-map is in
logimatic scale and the unit is ns. 39

3.9 Left figure shows the distribution of Ecalib(BDT)/Etruth with four
different values of k applied to display the selection of events.
Events close to 1 indicate Ecalib(BDT)≈ Etruth. The right figure
illustrates the distribution of Etruth. The distribution suggests
events are uniformly removed, except for low Etruth values, which
means many mislabeled event have a low Etruth. The table 3.6,
we can see the ratios of events left after cutting. 40

4.1 From [32]. The schematic shows the memory and core levels of
the CPU and GPU. The elements are color-coded so the L1 cache,
core and control can also be seen on the GPU figure. Storage
could also be a part of the figure, but it is linguistically usually
not referred to as memory. 44

4.2 The figure illustrates the behavior of three possible loss func-
tions MAE, MSE and logcosh. The x-axis gives the error between
ŷ and y. 47

126 masters thesis

4.3 The figure illustrates the DeepCalo architecture, where colored
boxes are modules and the gray ones are input. The dashed lines
indicate the possible connections to the main network, namely
CNNnet and Top layers. The network outputs Ŷ, but can also out-
put the uncertainty σŷ. Images are also up-sampled in DeepCalo
(by Upscale) to save on file size of the data and Merge is used to
concatenate the Gate and ECAl images. 50

4.4 The figure shows the internal layout of the CNNnet. 51

4.5 The figure shows conv1d performed on the sequence data from
the tracks. The kernel size and number of filters can vary de-
pending on preference. In the figure, the number of track vari-
ables is 13, however, in table 3.4 there are only 11. The number of
tracks in the figure is 10, however, the number of tracks selected
in each event will be determined in the TrackNet section. 51

4.6 The figure shows the internal layout of TrackNet. 52

4.7 The figure shows the internal layout of the FiLM gen.. The FiLM
gen. outputs a vector λ with scale and shift parameters for the
channels in the CNNnet. 52

4.8 The figure illustrates the architecture of the Top module. It is a
simple NN with a single or double output. 52

4.9 The blue histogram shows the number of tracks in 100.000 Z →
ee events. The green line is the CDF of the histogram and the
black vertical line indicates the number of tracks that are selected
for DeepCalo. ≈ 98% of present tracks are selected. 53

4.10 Tensorflows HParams has been applied to find the most optimal
TrackNet. Each iteration has been trained five times with random
initial weights. The lime colored line shows the most optimal
architecture. Tensorboard is used to display the image. num_dense
is the number and size of the Dense block and follows 2i, eg.
[64, 16] means 3 hidden layers with 64, 32 and 16 neurons in
each layer, respectively. The number of filters and kernel sizes
are combined in one hyper-parameter called num_conv. 53

4.11 Permutation Feature Importance has been run five times for each
variable giving uncertainties. If a feature is not contributing to
the performance of the network, it should be negative. 54

4.12 Tensorflows HParams have been applied to obtain the most opti-
mal CNNnet. All samples were loaded into memory to minimize
latency, however, due to memory constraints, the complete set
of data was not used. The sample sizes were Strain = 2.000.000,
Sval = 750.000 and Stest = 500.000, with early-stopping at 15
epochs. Logcosh is the performance measure, and the lime-colored
line shows the best-performing one. 54

4.13 Determining the oneCLR learning rate range. The DeepCalo model
has been trained for one epoch five times to measure the mean
and standard deviation of the loss. The learning rate has then
been gradually changed during the epoch to measure learning
rate at which the network learns the most. 55

BIBLIOGRAPHY 127

5.1 Predictions are on MC. The figure shows a correlation plot be-
tween ET,truth and transverse predictions from Ecalib(BDT)or DeepCaloZee,mc.
The black dashed line is a linear line (f (x) = x). The closer to
the black line the better. The color indicates the number of events
and the color-scale is logarithmic. We see DeepCalo being placed
closer to the dashed line than Ecalib(BDT). 58

5.2 Predictions are on MC. Top figures shows the eIQR75 of RE as a
function of |η| and E, with bin size of 0.1 in |η| for Z → ee. They
share a y axis and the legend shows the number of events in each
ET bin. Bottom figure show a comparison between the two model
using reIQR75 for all the |η| and ET bins. 59

5.3 Predictions are on MC. The figure shows the RE between Etruth,
Ecalib(BDT)and DeepCaloZee,mc. The vertical dashed lines are the
IQR75 and IQR25 of the distributions with the reIQR75 and reIQR95

performance in the legend text. 59

5.4 The figure shows the BW
⊗

CB fit to the energy estimations from
DeepCaloZee,mc and Ecalib(BDT)in MC. Only true electrons have
been used in the fit. The best performing model has the lowest
σCB. 60

5.5 Top figure shows the pileup (〈µ〉) performance of DeepCaloZee,mc

for both MC (dashed line) and Data (solid line). The pileup
range between MC and Data are not the same, so both ranges
have been divided into five equally sized bins. The performance
measure is σCB from the BW

⊗
CBfit. Bottom figure shows the

comparison between DeepCalo and Ecalib(BDT) using 1−σDeepCalo/σATLAS.
The pileup range for MC is [10, 80] and for Data it is [15, 40]. 61

5.6 The figure show the BW
⊗

CB fit to the energy estimations from
DeepCaloZee,mc and Ecalib(BDT)on Data. The criteria from table
3.7 have been used to select events in Data. 61

5.7 Predictions are on MC. The histogram shows the RE of DeepCaloEG

and Ecalib(BDT) with the eIQR improvement to DeepCalo in the
legend. The vertical dashed line are the IQR75 and IQR25 of both
distributions. 62

5.8 Predictions are on MC. Top figures show the eIQR75 of RE as
a function of |η| and ET with a bin size of 0.1 in |η| for the EG
samples. They share a y axis and the legend shows the number of
events in each ET bin. Bottom figure shows a comparison between
the two models using reIQR75 for all the |η| and ET bins. 62

5.9 The figure show the BW
⊗

CB fit to the energy estimations from
DeepCaloZee,data and Ecalib(BDT)on Data. The criteria from table
3.7 have been used to select events in Data. 64

5.10 Predictions are on MC. The figure show the RE of Ecalib(BDT)and
DeepCaloZee,mc/data with IQR75, reIQR75 and reIQR95 in the leg-
end. 65

5.11 The figure shows the BW
⊗

CBfit to the energy estimations from
DeepCaloZee,mc/data and Ecalib(BDT)on Data. The criteria from
table 3.7 have been used to select events in Data. 66

5.12 Predictions are on MC. General performance of DeepCaloσ and
Ecalib(BDT)using the reIQR of the RE. 67

128 masters thesis

5.13 Predictions are on MC. The figure shows the pull residual of the
five σ bins of DeepCaloσ. A Gaussian χ2 fit has been applied to
measure the mean and width of the distributions. The parameter
of the Gaussian can be seen in the legend of the figure. 67

5.14 The figure shows the performance of the DeepCaloσ on MC
and Data (left figure and right figure, respectively). The error
bar plot in each figure belongs to the left y-axis, which is the
σCB measure. The colored histogram belongs to the right y-axis,
which counts the number and range of the σM in each of the five
bins. 68

5.15 Figure shows the amount of events in each |η| bins for both MC
(right) and Data (left). The figure is symmetric. The color-coding
range is not shared between the two figures. 69

5.16 The figures shows the µCB for both Data (figure a) and MC (fig-
ure (b)) in each |η| bin. 70

5.17 The figure shows the αis from MC and Data for Z → ee with
uncertainties. The values are computed by solving equation 5.13.

70

5.18 The BW
⊗

CB fit of the same model as used in figure 5.6 and 5.4,
but with the |η| correction from 5.17 added. 71

5.19 The figure shows the σCB from DeepCaloZee,mc for both MC (fig-
ure a) and Data (figure (b)) in each |η| bin. Its Ecalib(BDT) counterpart
can be seen in figure 9.3. The number of events per bin can be
seen in figure 5.15. 72

5.20 The figure shows the resolution of DeepCalo and Ecalib(BDT) in
the |η| bins. The resolution is found by solving equation 5.14

using values from figure 5.19. While each resolution has an error
associated with it, it is very small and not visible on the figure.
The dashed lines are the MC resolution, and the solid ones are
Data. 72

6.1 Predictions are on MC. The figure shows a correlation plot be-
tween ET,truth and the model prediction from Ecalib(BDT)or DeepCaloHyy,mc.
The black dashed line is a linear line. The color concentration is
logarithmic, indicating the amount of events. 73

6.2 Predictions are on MC. eIQR75 of σcalib/σtruth as a function of
|eta| and ET with a bin size of 0.1 in |η|. They share a y axis and
the legend shows the number of events in each ET bin. 74

6.3 Predictions are on MC. Ecalib/Etruth for Ecalib(BDT)and DeepCaloMC

with reIQR as in the legend. The more narrow the distribution,
the better. 74

6.4 Predictions are on MC. The figure shows the pileup performance
of the DeepCaloHyy,mc model in both eIQR75 and eIQR95. The
error bar plot indicates the eIQR with its x-errors showing the
range of the bins. The histogram shows the number of events in
each bin. The bottom plot shows the reIQR of the eIQR between
DeepCalo and Ecalib(BDT). 75

BIBLIOGRAPHY 129

6.5 Predictions are on MC. The figure shows a correlation plot be-
tween ET,truth and the model prediction from Ecalib(BDT)or DeepCaloHyy,mc.
The black dashed line is a linear line. The color concentration is
logarithmic, indicating the amount of events. 76

6.6 The figure shows the BW
⊗

CB fit to the energy estimations from
DeepCaloZµµγ,mc and Ecalib(BDT) on MC. 76

6.7 eIQR75 of σcalib/σtruth as a function of |eta| and ET with bin
size of 0.1 in |η|. They share a y axis and the legend shows the
number of events in each ET bin. 77

6.8 Predictions are on MC. Ecalib/Etruth for Ecalib(BDT)and DeepCaloMC

with reIQR as in the legend. The narrower the distribution, the
better. 77

6.9 Predictions are on MC. The figure shows the BW
⊗

CB fit to
the energy estimations from DeepCaloZµµγ,mc and Ecalib(BDT)on
Data. The selection of events follows table 3.7. 78

6.10 The figure shows the pileup performance of the DeepCaloZmumugam,mc

and Ecalib(BDT)models on MC and Data. The metric on the y-
axis is the σCB value and the bottom plot shows the ratio com-
paring the two models. 78

6.11 The figure shows the |η| resolution of DeepCaloZµµγ,mc and Ecalib(BDT)on
MC and Data. The MC performance is shown with dashed lines
and the Data performance with solid lines. The metric used is
σCB from the BW

⊗
CB fit. 79

7.1 The figure shows the influence in the number of bins on the
BW

⊗
CB fit. In the top figure, the y-axis shows the σCB of the

different BW
⊗

CB fits at different numbers of bins. The bottom
figure shows the relative metric used to compare DeepCalo and
Ecalib(BDT). This is use to see if the metric is biased towards any
of them. The decay is Z → ee and DeepCaloZee,mc is used. 80

7.2 The figure shows the influence of the number of events on the
BW

⊗
CB. The top figure, the y-axis shows the σCB of the dif-

ferent BW
⊗

CB fits at different numbers of events. The bottom
figure shows the relative metric used to compare DeepCalo and
Ecalib(BDT). This is use to see if the metric is biased towards any
of them. The decay is Z → ee and DeepCaloZee,mc is used. 81

7.3 The figure shows the CB distribution with different nCB and αCB

values. Here, it is possible to see how these parameters affect the
width of the CB. Figure from [49]. 81

7.4 The figure displays the convergence of DeepCaloσ. Both dashed
lines are MSE, and the solid line is the σ loss function given
in equation 4.3. The color indicates training or validation sam-
ples. 81

7.5 Correlation plot between ET,truth and ET,pred, where equation 3.4
has not been used. The color-scale is logarithmic. 82

7.6 The figure displays the distributions of equation 4.3 (solid line)
and 4.4 (dashed line) at different (y− ŷ)2 levels, also called error
levels. 82

130 masters thesis

7.7 The figure displays the same as figure 7.6, except for the addition
of equation 7.1. 83

7.8 Left figure shows the correlation between Eacc and Etruth. Right fig-
ure shows the correlation between Etruht,mc and Etruth. The figure
compares the Elabel,mc and Eacc to Etruth to evaluate the perfor-
mance of the reconstruction of Etruth. Note that the color scale is
logarithmic. 83

7.9 The figure shows the RE of the Elabel,mc and Eacc, with the IQR75

in the legend. 83

7.10 Correlation plot of DeepCaloZee,mc, where all events with an ab-
solute error (AE) below 2.5 have been removed. The color map
was changed so it was easier to see which events were deemed
outliers. 84

7.11 The figure shows the distribution of Ecalib(BDT)in the Data used
in this Thesis. The vertical lines shows the intervals where we
have MC samples. 86

7.12 Figure from [4]. It shows the material budget of the ID with the
color-code indicating the detector type of the material. While it
extends to the forward region η = [−4, 4], we are only looking
at η = [−2.5, 2.5]. 87

9.1 In this figure, the effects of the convolution between BW and CB
can be seen. Both are fits on the same Monte Carlo data, using
its truth parameter with decay channel Z → ee. 91

9.2 The figure shows three Gaussians that should indicate the Z →
ee resonance. Dist1 and Dist2 should be in two different η bins,
where their µ is shifted from the one of the Z. 93

9.3 The figure shows the σCB from Ecalib(BDT) for both MC (figure
a) and Data (figure (b)) in each |η| bin. Its DeepCalo counterpart
can be seen in figure 5.19. The number of events per bin can be
seen in figure 5.15. 94

9.4 The scalar variables of MC have been transformed using his-
togram equalization such that their PDF is the same as for Data. 95

9.5 The ROC curve has the TPR on the y-axis and FPR on x-axis,
with the AUC in the legend (AUC = 0.82). 96

9.6 The Z → ee resonance peak for MC using Etruth, EDeepCalo and
Ecalib(BDT) energies. 97

9.7 The figures show the BW
⊗

CB fit performance of DeepCaloσ for
both MC and Data 97

9.8 The figure shows the eIQR at 75 and 95 of DeepCal and Ecalib(BDT) ,
as well as the compared performance reIQR between the two.
It also shows the number of events in each of the |η| vs ET

bins. 98

9.9 Left figure shows the correlation between Eacc and Etruth. Right fig-
ure shows the correlation between Etruht,mc and Etruth. The figure
compares the Etruth,mc and Eacc to Etruth to evaluate the perfor-
mance of the reconstruction of Etruth. Note that the color scale is
logarithmic. 99

9.10 The fit shows the BW
⊗

CB fit on the DeepCaloZee,mc/data. 99

BIBLIOGRAPHY 131

9.11 The figure shows the η and Etruth distribution for the EG. 100

9.12 The figure shows the eIQR at 75 and 95 of DeepCalo and Ecalib(BDT) as
well as the compared performance reIQR between the two for
the EG sample. It also shows the number of events in each of the
|η| vs ET bins. 100

9.13 The figures shows a double Gaussian fit on the invariant mass
for the H → γγ. The title of the figure indicate the recon-
struction method used. p e is the Ecalib(BDT) (figure b), CNN is
DeepCalo (figure a) and p truth e is the Etruth (figure c). 101

9.14 The H → γγ resonance peak in MC using Etruth, EDeepCalo and
Ecalib(BDT) energies. 102

9.15 The figures show the performance in DeepCalo and Ecalib(BDT) in
|η| and ET bins for H → γγ. 103

9.16 The Z → µµγ resonance peak in MC using Etruth, EDeepCalo and
Ecalib(BDT) energies with reconstructed η and φ. 104

9.17 The figure shows the BW
⊗

CB fit to Z → µµγ, where Etruth,γ has
been used for the photon and Ecalib(BDT) for the two muons. 105

9.18 The figures show the performance in DeepCalo and Ecalib(BDT) in
|η| and ET bins for Z → µµγ. 106

9.19 The figure shows the pileup performance of the DeepCaloZmmg,mc

model for both eIQR75 and eIQR95. The errorbar-plot indicates
the eIQR75 and its x-errors show the range of the bin. The his-
togram associated with the right axis shows the number of events
in each bin. The bottom plot is the reIQR of the eIQR between
DeepCalo and Ecalib(BDT). 107

9.20 From [37]. The figure illustrates the perigee parameters of the
tracks in the x, y plane in left figure and in the R, z plane in the
right figure. 108

9.21 From [18], where the energies have been filled in before the up-
sampled. 108

9.22 The figure shows the distribution of the scalar variables in MC
standardized by the RobustScaler. The scalar distributions belong
to the Z → ee MC sample. 109

9.23 The figure shows the distribution of the track variables in MC
standardized by the RobustScaler. The track distributions belongs
to the Z → ee MC sample. 110

9.24 The figure shows the distribution of the scalar variables in MC
standardized by the RobustScaler and QuantileTransformer. Quan-
tileTransformer has been used for distributions with a long tail.
The scalar distributions belong to the Z → ee MC sample. 110

9.25 The figure shows the distribution of the track variables in MC
standardized by the RobustScaler and QuantileTransformer. Quan-
tileTransformer has been used for distributions with a long tail.
The track distributions belong to the Z → ee MC sample. 111

9.26 The figure shows the distribution of the scalar variables of MC
for the outliers (Blue) and the non-outliers (Red) for the DeepCaloZee,mc

model from chapter 5. The outliers have been identified as the
events with a AE > 2.5 and the number of outliers can be seen
in the legend. 112

132 masters thesis

9.27 The figure shows the distribution of the track variables of MC for
the outliers (Blue) and the non-outliers (Red) for the DeepCaloZee,mc

model from chapter 5. The outliers have been identified as the
events with a AE > 2.5 and the number of outliers can be seen
in the legend. 113

9.28 The figure shows the distribution of energies predicted by DeepCaloσ

for the five σ bins. 114

9.29 The figure shows the distribution of energies predicted by DeepCaloσ

for the five σ bins, where the σM has been reduced by 4.5. 114

9.30 The figure shows the DeepCalo architectures with its sub-modules. 115

9.31 The figure shows the FiLM gen. of DeepCalo. 115

9.32 The figure shows the ScalarNet of DeepCalo. 115

9.33 The figure shows the TrackNet of DeepCalo. 116

9.34 The figure shows the Top of DeepCalo. 117

9.35 The figure shows the CNNnet of DeepCalo. 118

List of Tables

1.1 Granularities of the layers within the central (|η| < 2.5) calorime-
ters. It is important to note the different granularities, as this
poses a central problem for the regression algorithm used in
chapter 5 and 6. However, it will be solved in chapter 4. 10

1.2 List of variables used in the Ecalib(BDT) for energy reconstruc-
tion. List is from [11]. 14

1.3 The table shows the control and motivation channels. Control
channels are where we will test improvement of the ER, and
the motivation channels are channels that would benefit from
an improvement. 15

2.1 The table shows the symbols and definitions of properties in
ML. D is the dimension. 16

2.2 The table shows the main types of number, except for complex
numbers C, as these are not relevant in ML. 18

3.1 The table lists the containers used in the analysis. Decay channel,
name of the container, type of data, and at which deviation level
the files are in can all be seen in the table. Each container consists
of multiple xAOD or DxAOD files. 29

3.2 The table shows a summary of [26] and [29]. Z → ee and Z →
µµγ are using EGAM1 and EGAM4, respectively. For H → γγ,
EGAM4 is used, because HIGG1D1 and HIGG1D2 do not con-
tain images. 30

3.3 The table shows the scalar variables that will be used in DeepCalo.
Some variables are only measured for the electron. This is indi-
cated using "only e" in the table. ∗ assumes a constant cell size
in η of 0.025. 33

3.4 The table shows the track variables used in DeepCalo. The vari-
ables should help the network understand how the pileup con-
tributes to the energy in the ECAL images. Tracks are only left
by charged particles. 34

3.5 Dimensions of the layers in ECAL with respect to layer 2. This
can be used to illustrate how each ECAL layer images must be
up-sampled so they all have the same dimension. 38

3.6 The table shows the different k cuts from figure 3.9 and the
ratio of events left. Selecting k = 0.6, 60% of the sample re-
mains. 40

134 masters thesis

3.7 This table shows the selection of events in Data for the differ-
ent decay channels. • indicates a check (or if statement), and
if the statement is satisfied, the remaining particles are selected.
However, if not, additional cuts below are needed. If the last

• is not satisfied, the event is dropped. The Z → µµγ cuts are
connected, as the channel requires two muons and a single pho-
ton. 41

4.1 The table lists the place and size of the different memory op-
tions. Mo refers to the motherboard. 43

4.2 The table shows possible performance metrics. MAE gives equal
weight to every prediction. MSE will focus on outliers, which
will weigh heavily in the average. RMSE also weights outliers
heavily, but attempts to make the error more relatable similar to
MAE by applying the square root. 48

4.3 The hyperparameters chosen in the GridSearch of CNNnet. The
parameters in bold are the parameters of the most accurate model. 54

4.4 Performance of the various sub-module combinations. Each model
has been trained twice on MC Z → ee. Three permutations
are missing, and we unfortunately did not have time to test
them. 55

4.5 The table shows a summary of the important parameters se-
lected for DeepCalo. Note that the activation function used through-
out the network is Leaky ReLU, except for the output layer that
uses ReLU. 56

4.6 The table displays the channels that will be explored and the
number of events in the test sample for both MC and Data. 57

8.1 Table showing the performance of all the DeepCalo models. ∗
indicates performance measures that was not shown in the anal-
ysis chapter, but figures can be found in the appendix. 90

	Abstract
	Abstract
	Introduction
	Particle Physics
	The Building Blocks of the Universe
	The Large Hadron Collider (LHC)
	Reconstruction
	Motivation

	Machine Learning
	Supervised Machine Learning
	Neural Networks
	Convolutional neural networks

	Pre-processing of data
	xAOD to DxAOD
	DxAOD to h5
	Image format and data types
	Pre-processing
	Selecting candidates from Data

	Model Architecture
	High-performance Computing
	Optimizing networks
	Model components
	Optimization

	Electron Reconstruction
	Analysis of DeepCaloZee, mc
	Electron gun
	Analysis of DeepCaloZee,data
	Ensemble method
	Additional properties from Neural Networks
	Corrections and resolutions

	Photon Reconstruction
	Analysis of DeepCaloHyy, mc
	Analysis of DeepCaloZ, mc

	Discussion
	Metric performance
	Loss function of DeepCalo
	Reconstruction of Etruth in Data
	Improving DeepCalo performance
	Material budget

	Conclusion
	Appendix
	Proof of concept
	Eta-shift
	Transformation of MC
	Classifying the difference between MC and data
	Analysis plots
	Variables
	Performance for the uncertainties
	DeepCalo architecture

