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Preface
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The main objective of the project was the theoretical study of the efficiency of

a new scheme for a single photon transistor which is meant to extend the possibility

of experimental realization of that one proposed in Ref. [10].

The thesis is intended for physics master students readers or with an equivalent

background. The main concepts of quantum optics and open systems theory are

introduced in the first two chapters but the reader is assumed to have a background

in quantum mechanics.

My theoretical knowledge of quantum optics, which at the beginning of the

work was basic, has been increased constantly and significantly during all the period

of the work. I also have learned to use the program Matlab which has been necessary

to perform numerical simulations which often have proved to be a valid support to

the analytical work.

A sincere gratitude goes to my supervisor Prof. Anders S. Sørensen, whose

belongs all the main ideas of the project. He has provided patient help whenever I

needed, explaining me new theoretical techniques, correcting my errors and showing

me how to interpret the results. Among the other members of the group special thanks

goes to Florentin Reiter who provided me useful help with the superconducting circuits

literature. Furthermore I would like to thank Prof. Matteo Paris who offered to be

my supervisor in Milan and made possible my Erasmus candidature and this work.
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English summary

In this thesis we propose and study a new scheme for the realization of a sin-

gle photon transistor, i.e. a device in which a single control photon determines the

transmission or reflection of a stronger photonic field. In 2007 a scheme for such a

transistor has been proposed in Ref. [10] using the strong coupling between plas-

monics modes on a one-dimensional nanowire and a nearby three-level atom with a

Λ-configuration of the levels. The difficulty in realizing experimentally such a system

has lead us to develop a new scheme, based on a three-level atom of Ξ kind inserted in

a cavity. Our scheme has the great advantage to be suited for an implementation with

superconducting circuits which has been proved to realize cavity QED system with a

coupling constant up to 104 times larger than in traditional microwaves cavities.

The system used consists in a two-side cavity with the two walls coupled to

two one-dimensional waveguides at a loss rate of κ. The cavity mode is resonant

with the transition between the excited state |e〉 and the upper ground state |g〉 with

coupling constant g. The transition between |g〉 and the lower ground state |f〉 is far

off-resonance but can be driven by a classical external field. The two upper levels can

decay spontaneously with rates respectively γ2 and γ1. The strong coupling regime

is assumed, i.e g � κ� γ1,2.

The protocol consists of two steps. In the first step the atom is prepared in

the state |ai〉 = 1/
√

2(|g〉 + |f〉) and a pulse of time width σT � 1/κ consisting of

zero or one photon is sent. In the case of one photon the phase of the state |f〉 is

flipped. After a time T > σT a classical π/2 pulse is performed. We prove that this

ideally realizes the map |0〉 |ai〉 → |0〉 |g〉 , |1〉 |ai〉 → |1〉 |f〉. During the second step a

coherent state is sent and we prove that for intensities lower than g2/4κ if the atom

is in |g〉 a large part of the intensity is reflected while is it is in |f〉 there is complete

transmission. In this way we have shown that all the conditions for the working of

the transistor are satisfied. In the thesis we have not only limited our attention to

the ideal limit, but we have also taken into account the imperfections and quantified

their contributions to the probability of error.

The dynamics of the first step is studied in detail with a Schrödinger approach

and the coefficients of reflection and transmission for a single photon are determined.

We also consider the situation in which the lower transition is still off-resonance but

cannot be neglected. Combining these result with a detailed analysis of the protocol
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a compact expression, containing the different sources of errors, for the probability of

fail is derived. For optimized values of κ and σT it goes as (γ1γ2/g
2)2/5, thus it works

remarkably well if g � γ1,2. The dynamics of the multiphoton case is determined

by solving numerically the master equation. In this way we obtain the curves of

transmission and reflection as function of the input intensity. We find that the gain

of the transistor for T ′ = 1/γ1 is g2/4κγ1, which with the optimized values of κ and

σT scales as the inverse of the error probability of the first step.
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Riassunto in italiano

In questa tesi proponiamo e studiamo un nuovo schema per la realizzazione di

un transistor a fotone singolo, vale a dire un dispositivo in cui un singolo fotone de-

termina la trasmissione o riflessione di un campo più intenso. Nel 2007 uno schema

per un tale transistor è stato proposto nella Ref. [10] usando il forte accoppiamento

tra i modi plasmonici su un nanoconduttore monodimensionale e un atomo a tre liv-

elli posto nelle vicinanze con configurazione Λ dei livelli. La difficoltà nel realizzare

sperimentalmente un tale schema ci ha condotto a proporne uno differente, basato su

una atomo a tre livelli con configurazione Ξ posto in una cavità. Il nostro schema

ha inoltre il grande vantaggio di poter essere realizzato utilizzando circuiti super-

conduttori che è stato dimostrato possono realizzare sistemi di cavity QED con una

costante di accoppiamento fino a 104 volte più grande che non nelle tradizionali cavità

a microonde.

Il sistema usato consiste in una cavità a due pareti, ciascuna accoppiata con una

guida d’onda monodimensionale e un rate di perdita κ. Il modo della cavitÃ è riso-

nante con lo stato eccitato |e〉 e con il piú alto dei due stati fondamentali |g〉 con una

costante di accoppiamento g. La transizione tra |g〉 e lo stato fondamentale inferiore

|f〉 è lontana dalla risonanza ma puó essere stimolata da un campo classico esterno.

I due livelli superiori possono decadere spontaneamente con rate rispettivamente γ2

e γ1. Assumiamo un regime di accoppiamento forte, cioè g � κ� γ1,2.

Il protocollo consiste di due fasi. Nella prima l’atomo è preparato nello stato

|ai〉 = 1/
√

2(|g〉+ |f〉) e un impulso di larghezza temporale σT � 1/κ consistente in

uno o nessun fotone è inviato. Nel caso di un fotone la fase dello stato |g〉 cambia

di segno. dopo un tempo T > σT un impulso classico di area π/2 viene mandato.

Nella tesi proviamo che queste operazioni realizzano idealmente la mappa |0〉 |ai〉 →

|0〉 |g〉 , |1〉 |ai〉 → |1〉 |f〉. Durante la seconda fase un campo in uno stato coerente

viene inviato e abbiamo dimostrato che se l’intensità è minore di g2/4κ l’atomo in

|g〉 riflette gran parte dell’intensità mentre l’atomo in |f〉 realizza una trasmissione

completa. In questo modo abbiamo dimostrato che tutte le condizioni necessarie per

il funzionamento del transistor sono soddisfatte. La nostra analisi non si è limitata

al limite ideale, ma le varie imperfezioni sono state prese in considerazione e il loro

contributo alla probabilità di errore è stato quantificato.

La dinamica della prima fase è studiata in grande dettaglio con un approccio
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alla Schrödinger e i coefficienti di riflessione e trasmissione vengono determinati. In

oltre consideriamo anche il caso in cui la transizione inferiore é fuori risonanza ma

non al punto di essere trascurata completamente. Combinando questi risultati con

un’analisi dettagliata del protocollo ricaviamo un’espressione compatta per la prob-

abilità di fallimento che contiene le diverse fonti di errore. Con i valori ottimizzati

di κ e σT troviamo che questa probabilitá va come (γ1γ2/g
2)2/5. La dinamica del

caso multifotonico è determinata risolvendo numericamente la master equation. In

questo modo otteniamo le curve di riflessione e trasmissione in funzione dell’intensità

entrante. Troviamo che il guadagno del transistor, per T ′ = 1/γ1, vale g2/4κγ1 che

con i valori ottimizzati di κ e σT scala come l’inverso della probabilità di errore del

primo step.

La struttura della tesi è la seguente:

• Capitolo 2: Presenta i concetti fondamentali dell’ottica quantistica come la

quantizzazione del campo elettromagnetico e il modello di Jaynes-Cumming

per la descrizione dell’interazione di un atomo con un singolo modo del campo.

• Capitolo 3: Introduce la teoria dei sistemi aperti da un punto di vista opera-

toriale, cioè per mezzo delle equazioni di Heisenberg-Langevin, e da un punto di

vista dello stato del sistema, attraverso la teoria della master equation. Inoltre

la teoria del ”quantum jump” è esposta.

• Capitolo 4: Descrive il modello di transistor fotonico proposto da Chang in et

al. nel 2007 e la nostra proposta. Una sezione è dedicata ai sistemi supercon-

duttivi.

• Capitolo 5: Presenta la derivazione analitica dei risultati. La dinamica del

primo step del protocollo è risolta nel caso generale e nel caso di impulso gaus-

siano e rettangolare. La dinamica del secondo step viene trattata nell’approssimazione

di stato stazionario per un campo entrante coerente.

• Capitolo 6: Presenta la derivazione della formula per l’errore del primo step.

Vengono trovati i valori ottimali dei parametri κ e σT e viene fornita un’espressione

della probabilità di errore e del guadagno del transistor nel caso ottimale.
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Chapter 1

Introduction

Quantum optics is a field of physics in which quantum mechanics is applied to the

theory of light and of its interaction with matter [1, 2, 3, 4, 5]. It is at present one

of livest area of research in physics, and the interest in it has increased in the last

two decades with the developing of quantum computation and quantum information

theory [6]. Despite the fact that the model systems for physical implementation of

quantum information processing devices ranging from almost all areas of physics has

been proposed and everyday studied, those one which have reached the status of

”products on the market”, i.e. communication devices using quantum cryptography

protocols, rely on quantum optics systems such as optical fibers and photodetectors.

Central in quantum optics is the concept of photon, which has been introduced

by Einstein in 1905 to explain the photoelectric effect, even if a complete and modern

combination of wave-like and particle-like aspects of light is due to Dirac in 1927,

one year after the born of quantum mechanics. In Dirac’s theory each mode of the

electromagnetic field is considered as a quantum harmonic oscillator and the number

of photons of the field correspond to the number of excitations of the oscillators. One

consequences of the quantization of the electromagnetic field is the rise of vacuum

fluctuations, necessary to explain the spontaneous emission of atoms. Most of phe-

nomena of lights are explainable by the Maxwell classical theory [7] and others by a

semi-classical approach in which atoms are quantized but light is treated classically,

but some phenomena like quantum beats in Λ-atom require a full quantum theory.

3
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To make photons interact with others photons is one of the most important

challenges of quantum optics. Photons rarely interact and though in some media

is possible to obtain non-linear effects by exploiting the fact that their refraction

index is a function of the intensity of the field, these effects are very small. Opti-

cal non-linearities can be obtained at the level of single photons, by making them

interact with single atoms. Recently the interaction of photons propagating on one-

dimensional waveguide with two-level emitters has been studied by some authors [8, 9]

and the transmitted properties of the emitter has been exploited to project a single-

photon transistor by the authors of Ref. [10] . The working of this proposal requires

the use of a three-level atom in a Λ configuration, i.e. an atom with an excited state

and two ground states with different energies. Up to date, the absence of such an

atom strongly coupled to the waveguides has, however, prevented the experimental

realization of the scheme.

Strong coupling between atoms and light can be achieved placing the atoms in

cavities with high quality factor. The subfield of quantum optics which deal with this

subject is called cavity QED, and its importance cannot be underestimated. The use

of cavities in which just a discrete set of modes are allowed permits the practical re-

alization of the Jaynes-Cumming model for the interaction between atoms and light.

This model is simple but extremely powerful and the dynamics generated by it can be

solved exactly in a number of situation. Our work consists mainly in a new scheme for

the photonic transistor relying on the properties of a three-level Ξ-atom. The main

goal of this thesis is to validate it theoretically. The language and the formalism used

in the work is that one of cavity QED, even if the ideal practical implementation of

the scheme consists in the use of an artificial superconducting atoms. Indeed it has

been shown that superconducting circuits can reproduce cavity QED systems with

the great advantage of reaching a stronger coupling between (artificial) atoms and

field than in microwave and optical cavities[11]. The field of superconducting circuits

has risen in the last fifteen years and is a very promising alternative to the use of

optical system for the realization of quantum information processes, since quantum

effects are obtained at a mesoscopic level.

The thesis outline is:

• Chapter 2: Presents the fundamentals concepts of quantum optics, in par-
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ticular the quantization of the electromagnetic field and the Jaynes-Cumming

model for the description of the interaction of an atom with a single mode of

the field.

• Chapter 3: Introduces the theory of open systems from both an operatorial

and a density matrix approaches, i.e Heisenberg-Langevin equations and master

equation theory. Furthermore the ”quantum jump” theory is explained. The

knowledge of open systems tools is essential to introduce in the Hamiltonian of

our system the decay of atomic levels. Also some approximations used in this

chapter, such as the Markov approximation, will prove useful to solve for the

dynamics of our system.

• Chapter 4: Describes the scheme for the transistor proposed by Chang et al.

nel 2007 and our proposal. A section of this chapter is dedicated to a brief

review of superconducting systems.

• Chapter 5: Presents the analytical derivation of the results, i.e. the dynamics

of the system atom-cavity-waveguides is solved for the general case of an incom-

ing single photon, then the result is specialized to the case of a gaussian and a

rectangular pulse. The transmission and reflection coefficients of the cavity for

a single photon are derived. In the end the multi-photon case is treated in the

situation of a coherent input field.

• Chapter 6: Presents the derivation of the error formula for our scheme and

gives the optimized parameters of the scheme and the gain of the transistor,

summarizes the results with the state-of-art available values of our scheme pa-

rameters and provides a brief description of some application of the photonic

transistor.



Chapter 2

Interaction between light and

atoms

2.1 The quantization of the electromagnetic field

1The quantization of light is fundamental in the complete explanation of several facts

and experiments. Among them we find the spontaneous emission, the Lamb shift, the

gyromagnetic moment of the electron and, for what concerns closely our work, the

dynamics of an atom in a resonator.

Following [2] we briefly review the quantization of a single-mode cavity field.

Let’s consider a perfect cavity of volume V , i.e. a cavity without losses. A mono-

chromatic mode polarized in the x̂ direction, satisfying Maxwell equations and bound-

ary condition, has form

E(z, t) = x̂q(t)

√
2ω2

ε0V
sin kz, (2.1)

where q(t),Ω and k are the amplitude, the frequency and the wave number of the field.

Of course, to satisfy the boundary condition, ω = cmπ/L, with m a certain integer.

From the Maxwell equations without sources is immediate to obtain the magnetic

field

B(z, t) = ŷ
q̇(t)

c2k

√
2ω2

ε0V
cos kz. (2.2)

1The literature for this chapter is contained in [1, 2, 3]. A more detailed treatment of the extension
to the multi-mode field of the concepts exposed is contained in [4]

6
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The electromagnetic energy density associated with the field is known to be

U =
1

2

[
ε0E

2 +B2/µ0

]
(2.3)

so that the Hamiltonian that describe the single-mode field is

H =
1

2

∫
dV

[
ε0E

2 +B2/µ0

]
. (2.4)

If we insert eqs. (2.1) and (2.2) in (2.4) we find that the Hamiltonian is simply

H =
1

2

(
p2 + ω2q2

)
, (2.5)

where we have put q̇ = p. We recognize eq. (2.5) to be the Hamiltonian an harmonic

oscillator of unitary mass. The quantization of an harmonic oscillator is a well known

procedure, reported on every book of quantum mechanics. We take q and p as canon-

ical variables for the classical system associated and replace them with the operators

q̂ and p̂ satisfying the commutation relation

[
q̂, p̂
]

= i~. (2.6)

It is convenient and traditional to replace the canonical hermitian operators

with two non-hermitian operators, defined as

â = (2~ω)−1/2(ωq̂ + ip̂) (2.7)

â† = (2~ω)−1/2(ωq̂ − ip̂). (2.8)

It is just algebra to show that the commutation relation between these operators is

[
â, â†

]
= 1, (2.9)

and that the Hamiltonian is

H = ~ω
(
â†â+

1

2

)
. (2.10)

Replacing the position operator in (2.1) in term of the operators â and â† give us the
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expression for the electric field

Ê(z, t) = x̂

√
2ω2

ε0V
(â† + â)sin kz. (2.11)

The quantization of a multi-mode field is quite obvious. We replace (2.1) with

E(z, t) =
∑
s

ε̂sqs(t)

√
2ω2

s

ε0V
sin ksz, (2.12)

where ε̂s is the polarization of mode s, ωs = cks, ks = sπ/L with s = 1, 2, 3.. and L

is the length of the cavity in the z direction. Now the Hamiltonian is the sum of the

single-mode Hamiltonians,

H =
∑
s

Hs =
∑
s

~ωs
(
â†sâs +

1

2

)
, (2.13)

with commutation relations of the annihilation and creation operators

[
âs, â

†
s′

]
= δs,s′ . (2.14)

2.2 Fock states

2 The eigenstates of the Hamiltonian (2.10) are called Fock states and are denoted as

|n〉. They have eigenvalues En, i.e.

H |n〉 = En |n〉 , (2.15)

with

En = ~ω
(
n+

1

2

)
, n = 0, 1, 2, ... (2.16)

It is clear from eq. (2.16) that n is the number of quanta of energy ~ω present in the

single-mode field when it is in the |n〉 state. It is common to say, in an equivalent

formulation, that n is the number of photon of the field. The states |n〉 are an

orthonormal basis of the Hilbert space of the Hamiltonian (2.10). This means that

every state of the field can be written as a superposition of Fock states.

2From here we use the convention to put an hat on operators only when there can be ambiguity.
We denote with H the classical Hamiltonian and with H the quantized operator Hamiltonian.
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The action of the operator â on the state |n〉 is

â |n〉 =
√
n |n− 1〉 , (2.17)

that means to remove a photon from the state. For this reason â is called annihilation

operator. On the opposite the operator â† creates a photon,

â† |n〉 =
√
n+ 1 |n+ 1〉 , (2.18)

and so it is called creation operator. The operator â†â = n̂, that appears in the

Hamiltonian, is called number operator for obvious reasons and its expectation value

on a generic state is the average number of photons in the field.

The generalization to the multi-mode case consists simply in taking the tensor

product of single-mode basis. The general state of the field is

|ψ〉 = |ψ1〉 |ψ2〉 |ψ2〉 .. (2.19)

where |ψ1〉,|ψ2〉,.. are single-mode states, i.e. superpositions of single mode Fock

states.

2.3 Coherent states

If we take the expectation value of the electric field (2.11) on a Fock state we get zero,

no matter how large is the value of n. Classically we deal with electric and magnetic

field that are not null, so that the ordinary light cannot be composed by Fock states

but must be a superposition of them. If we replace in (2.11) operators with continuous

variables we find that the electric field has the classical form. To do that we have to

find some states that are eigenstates of the creation and annihilations operators. It

turns out that just the annihilation operator has eigenstates. These states are called

coherent states and it is possible to show that, in the Fock states basis, they have the

form

|α〉 = exp
(
− 1

2
|α|2

) ∞∑
n=0

αn√
n!
|n〉 . (2.20)

The expectation value of the operator n̂ and so the average number of photons of

the state is clearly |α|2. The distribution of the probability to measure n photons is
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poissonian, i.e.

Pn = e−|α|
2 |α|2n

n!
. (2.21)

The coherent states are ”the most classical state of light” in fact, as already

stated, the expectation value of the electric field is

〈α|Ex(z, t) |α〉 = 2|α|
√

~ω
2ε0V

sin(ωt− kz − θ), (2.22)

that corresponds to a classical field, see Fig. 2.1. Furthermore, while the uncertainty

of the electric field on a Fock state is

∆Ex =

√
~ω

2ε0V

(
n+

1

2

)1/2

, (2.23)

for a coherent state it is just
√

~ω/2ε0V , being equal to that one of the vacuum. Also,

the fractional uncertainty in the number of photon and the uncertainty in the phase

become smaller as the number of photon increases.

<E(t)>

t

Figure 2.1: Coherent state expectation value of the electric field as function of time
for a fixed point. The fluctuations of the field are the same as those of the vacuum
state and are independent of the time.

The coherent states span all the Hilbert space but they are not orthonormal,

indeed

| 〈β|α〉 |2 = e−|β−α|
2

, (2.24)

and the completeness relation is

∫
|α〉 〈α| dα

2

π
= 1 (2.25)
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2.4 The Jaynes-Cumming model

In this section we deal with the problem of the dynamics of an atom interacting with

a single-mode field. The physical situation corresponding to this problem is that one

of an atom placed in a cavity supporting only one mode. On the contrary, a free

atom interacts with an infinite number of modes so that the dynamics it is not well

described by assuming only a single-mode field.

We consider an atom of two levels |g〉 and |e〉, interacting with a field

Ê(z, t) = ê

√
~ω

2ε0V
(â† + â)sinkz. (2.26)

where ê is an arbitrary oriented polarization vector. The interaction Hamiltonian is

H(I) = −d̂ · Ê, (2.27)

where d̂ = −er̂ is the dipole moment of the atom. Eq. (2.27) can be rewritten as

H(I) = −d̂λ(â† + â), (2.28)

where d̂ = d̂ · ê and

λ = −
√

~ω
2ε0V

. (2.29)

It is convenient to introduce the atomic-transition operators

σ+ = |e〉 〈g| , σ− = |g〉 〈e| = σ†+ (2.30)

and the inversion operator

σ3 = |e〉 〈e| − |g〉 〈g| . (2.31)

Because the eigenstates of the atomic Hamiltonian have defined parity, just the off-

diagonal elements of the dipole operator have nonzero values. Thus we can write

d̂ = dσ− + d∗σ+ = d(σ− + σ+), (2.32)

where we set 〈e| d̂ |g〉 = d and assumed that d is real. The interaction Hamiltonian

assumes the form

H(I) = ~g(σ− + σ+)(â† + â). (2.33)
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where g = dλ/~.

If we define the zero of the energy halfway between the energy of the atomic

ground state and of the excited state we have that the Hamiltonian of the atom is

H
(a)
0 =

1

2
~ω0σ3, (2.34)

where ω0 = Ee − Eg. If we drop the zero-point energy term the Hamiltonian of the

free-field is

H
(f)
0 = ~ωâ†â. (2.35)

The interaction Hamiltonian consists in four products of operators. In the free-field

case the operators â† and â evolve as

â†(t) = â†(0)eiωt, â(t) = â(0)e−iωt, (2.36)

and similarly

σ+(t) = σ+(0)eiω0t, σ−(t) = σ−(0)e−iω0t. (2.37)

Thus we can approximate the evolution of the four terms of the Hamltonian (2.33) as

σ+â ∼ ei(ω0−ω)t

σ−â
† ∼ e−i(ω0−ω)t

σ+â
† ∼ ei(ω0+ω)t

σ−â ∼ e−i(ω0+ω)t

(2.38)

The last two terms vary much more rapidly than the first two and furthermore they

do not conserve energy, indeed, for instance, the third one creates a photon and at

the same time excites the atom. Thus they can be dropped, doing the so-called rotat-

ing wave approximation (RWA). The resulting Hamiltonian, called Jaynes-Cumming

Hamiltonian, is

H =
1

2
~ω0σ3 + ~ωâ†â+ ~g(σ−â

† + σ+â). (2.39)

2.5 The dressed states

There are several ways to solve for the dynamics generated by the Hamiltonian (2.39),

including solving the time-dependent Schrödinger equation for a definite Fock state
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and then extrapolating for the case of a general state. In this section we focus on the

method consisting in finding the stationary states of the Hamiltonian. We noticed

that (2.39) causes only transitions of the form

|n〉 |e〉 ↔ |g〉 |n+ 1〉 , (2.40)

thus the Hilbert space is decomposed in a series of subspaces H (n) of dimension

two, in which is confined the dynamics. The product state |n〉 |e〉 and |g〉 |n− 1〉 are

referred as ”bare” states of the Jaynes-Cumming model. Using the notation

|ψ1n〉 = |n〉 |e〉

|ψ2n〉 = |g〉 |n+ 1〉
(2.41)

and defining H
(n)
ij = 〈ψin|H |ψjn〉, we find that the matrix element of the Jaynes-

Cumming Hamiltonian are

H
(n)
11 = ~

[
nω +

1

2
ω0

]
H

(n)
22 = ~

[
(n+ 1)ω − 1

2
ω0

]
H

(n)
12 = H

(n)
21 = ~g

√
n+ 1

(2.42)

or, equivalently, in matrix form

H(n) = ~

nω − 1
2ω0 g

√
n+ 1

g
√
n+ 1 (n+ 1)ω − 1

2ω0

 . (2.43)

ħΔ ħΩn(Δ)

Bare states

Dressed states

Figure 2.2: Splitting in the energies of the levels due to the interaction atom-field.
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The eigenvalues of H(n) are

E±(n) =
(
n+

1

2

)
~ω ± ~

2
Ωn(∆), (2.44)

where

Ωn(∆) = [∆2 + 4g2(n+ 1)](1/2), (2.45)

with ∆ = ω−ω0, is the Rabi frequency, see Fig. 2.2. The eigenstates associated with

these eigenvalues are

|n,+〉 = cos(Φn/2) |ψ1n〉+ sin(Φn/2) |ψ2n〉

|n,−〉 = −sin(Φn/2) |ψ1n〉+ cos(Φn/2) |ψ2n〉
(2.46)

where

Φn = tan−1

(
2g
√
n+ 1

∆

)
. (2.47)

The states |n,±〉 are referred ad ”dressed” states of the Jaynes-Cumming model. To

solve for the dynamics of a general state is straightforward, in fact every state can

be written as a superposition of bare states |ψ11〉 , |ψ12〉 , .., |ψ1n〉 , |ψ2n〉 , .., which can

all be expressed as combination of dressed states |1,+〉 , |1,−〉,..,|n,+〉, |n,−〉 , .. Since

the dressed states are eigenstates of the Hamiltonian the evolve in time simply as

|n,±〉 (t) = exp
[
− i

~
E±(n)t

]
|n,±〉 (0), (2.48)

thus, once that we have written the general state as superposition of dressed states,

we have only to multiply each term by the appropriate phase factor.



Chapter 3

Open systems

It is a common situation in physics that a small system, for instance an atom, is cou-

pled to a large system, usually called environment or bath, for instance the continuum

of modes of the electromagnetic field. Often one is just interested in dynamics of the

small system and can ignore that one of the field. In general the approximations made

to eliminate the environment dynamics, bring to an irreversible decay of the small

system, as happens in the Weisskopf-Wigner theory of spontaneous emission.

Systems of this kind, coupled to a much larger system are called open systems.

There are different approached to deal with them. The Heisenberg one leads to the

introduction of quantum noise operators, while the Schrödinger one to the so-called

master equation. The master equation can be solved with the method of MonteCarlo

wave functions that permits to decompose the dynamics in two parts, a deterministic

Schrödinger-like one and a probabilistic one.

In our work we are not going to consider any part of our composed system as an

environment, nevertheless, in our calculations, we use some of the approximations of

the open systems such as the Markov approximation. We also will write the Hamilto-

nian of our system as non-hermitian in the spirit of ”quantum jump”. For this reason

we present here briefly the basic results of open system theory.1

1The literature for this chapter is contained in [2], [5] and [12].

15
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3.1 Heisenberg-Langevin equations

Let’s consider an harmonic oscillator (the system) coupled to a bath (or reservoir) of

harmonic oscillators. The Hamiltonian describing the overall system is

H = HS +HB +HSB (3.1)

where

HS = ~Ωâ†â (3.2)

is the unperturbed Hamiltonian of the system,

HB =
∑
j

~ωj b̂†j b̂j (3.3)

is the unperturbed Hamiltonian of the bath, and

HSB = ~
∑
j

(gj â
†b̂j + g∗j âb̂

†
j) (3.4)

is the interaction Hamiltonian, for which when an excitation is created in the system

one is destroyed in the bath and viceversa. From the Hamiltonian (3.1) is immediate

to obtain the Heisenberg equation of motion for the system and bath operators:

˙̂a(t) = −iΩâ(t)− i
∑
j

gj b̂j(t), (3.5)

˙̂
bj(t) = −iωj b̂j(t)− ig∗j â(t). (3.6)

We can integrate formally (3.6) to get

b̂j(t) = b̂j(t0)e−iωj(t−t0) − ig∗j
∫ t

t0

dt′â(t′)e−iωj(t−t′)

≡ b̂free(t) + b̂radiated, (3.7)

where the first term is the solution of the homogeneous equation associated with

(3.6) and represents the free evolution of b̂j in the absence of interaction with the

system, while the second term gives the modification to the free evolution given by
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the coupling with the system. Inserting eq. (3.6) into eq. (3.5) we find

˙̂a(t) = −iΩâ(t)− i
∑
j

gj b̂j(t0)e−iωj(t−t0) −
∑
j

|gj |2
∫ t

t0

dt′â(t′)e−iωj(t−t′). (3.8)

Now we eliminate the first term introducing the operator

Â(t) = â(t)eiΩt, with [Â(t), Â†(t)] = 1, (3.9)

obtaining the equation

˙̂
A(t) = −

∑
j

|gj |2
∫ t

t0

dt′Â(t′)e−i(ωj−Ω)(t−t′) + F̂ (t), (3.10)

where

F̂ (t) = −i
∑
j

gj b̂j(t0)e−i(ωj−Ω)(t−t0) (3.11)

and it is called noise operator. The reason is that it varies rapidly in time due to the

presence of all reservoir frequencies, giving origin to fluctuations. Also, if the density

operator describing the bath is diagonal in the energy representation, and we always

assume that, 〈F (t)〉b vanishes.

Now we replace the sum on j in eq. (3.10) with an integral on the frequencies

∑
j

→
∫
dωD(ω) (3.12)

where D(ω) is the density of state and we do the Markov approximation. This consists

in assuming that Â(t) varies little over a time of the order of the inverse of the

bandwidth of the bath. This allows us to extend the time integration to infinity and

so to get a πδ(t− t′) when performing the integration over ω. Thus we get

˙̂
A(t) = −γ

2
Â(t) + F̂ (t) (3.13)

with γ = 2πD(Ω)|g(Ω)|2. If we take the expectation value of eq. (3.10) we get the

simple equation

〈 ˙̂
A(t)〉 = −γ

2
〈Â(t)〉 (3.14)

that can simply be integrated to get

〈Â(t)〉 = e−γt/2 〈Â(0)〉 . (3.15)
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We can be tempted to extend this solution to the operator equation (3.13), neglecting

the noise term, but this would be completely wrong since the commutation relation of

Â would not be preserved as it is easy to verify. The noise operator, which fluctuates

rapidly and averages to zero, plays a role similar to that one of the Langevin force

in the Brownian motion. For this reason equations of the form of (3.13) are called

quantum Langevin equations.

3.2 Input-output relations for a cavity

An interesting application of the Heisenberg-Langevin formalism, explained in the

previous section, is to find the input-output relations of a cavity coupled with an

external field. We consider a single-side cavity. The Hamiltonian is the same as in

(3.1), with the abstract sum on j replaced by an integral on the frequencies ω of the

external field. The operator â here represents clearly the single-mode intra-cavity

field operator, while b̂ is again the extra-cavity reservoir field operator. With this

modification the interaction Hamiltonian is

HFC = ~
∫ ωb

−ωb

dω κ(ω)[b̂(ω)â† + b̂†(ω)â], (3.16)

where κ(ω) is the coupling constant and 2ωb is the width of the field spectrum.

The Heisenberg equation of motion for the operators are

˙̂a = −iΩâ− i
∫ ωb

−ωb

dω κ(ω)b̂(ω), (3.17)

˙̂
b(ω) = −iωb̂(ω)− iκ(ω)â, (3.18)

where the time dependence of the operator is sublet. Eq. (3.18) can be integrated in

two ways, depending on whether we choose to solve it in terms of the initial conditions

(the input) or in terms of the final conditions (the output). The two solutions are

respectively

b̂(ω) = b̂0(ω)e−iω(t−t0) − iκ(ω)

∫ t

t0

dt′ â(t′)e−iω(t−t′), (3.19)

where t > t0 and b̂0 is the value of b̂ at time t0, and

b̂(ω) = b̂1(ω)e−iω(t−t1) + iκ(ω)

∫ t1

t

dt′ â(t′)e−iω(t−t′), (3.20)



CHAPTER 3. OPEN SYSTEMS 19

where t1 > t and b̂1 is the value of b̂ at time t1. Inserting the solution (3.19) in (3.17)

we get

˙̂a = −iΩâ− i
∫ ωb

−ωb

dω κ(ω)b̂0(ω)e−iω(t−t0) −
∫ ωb

−ωb

dω κ(ω)2

∫ t

t0

dt′ â(t′)e−iω(t−t′).

(3.21)

We make the assumption that the coupling constant κ can be considered constant

over a band of frequencies around the cavity frequency Ω, and, as above, we define

γ = 2πκ(Ω)2. We also define the input field operator

âIN (t) = − i√
2π

∫ ωb

−ωb

dω b̂0(ω)e−iω(t−t0). (3.22)

Doing the Markov approximation in the last term of eq. (3.21) and using (3.22) we

can rewrite it as

˙̂a = −iΩâ− γ

2
â(t) +

√
γâIN . (3.23)

This equation is of the Heisenberg-Langevin kind and the noise term is given by the

input field. If we do the steps from eq. (3.21) using the solution in terms of the final

conditions and with the definition of an output field operator

âOUT (t) = − i√
2π

∫ ωb

−ωb

dω b̂1(ω)e−iω(t−t1). (3.24)

we get

˙̂a = −iΩâ+
γ

2
â(t) +

√
γâOUT . (3.25)

If we subtract eq. (3.25) from eq. (3.23) we get the important boundary condition

âIN (t)− âOUT (t) =
√
γâ(t). (3.26)

If we Fourier transform eq. (3.23) we get the equivalent equation in frequency

space [
i(Ω− ω) +

γ

2

]
â(ω) =

√
γâIN , (3.27)

and similarly Fourier transforming (3.25) we get

[
i(Ω− ω) +

γ

2

]
â(ω) =

√
γâOUT . (3.28)

Now combining eqs. (3.27), (3.28) and (3.26) we obtain the desired input-output



CHAPTER 3. OPEN SYSTEMS 20

âIN

âOUT

â

Figure 3.1: Representation of a one-side cavity, with the intra-cavity, the input and
the output fields.

relation

âOUT = −ω − Ω− iγ/2
ω − Ω + iγ/2

âIN , (3.29)

which shows that an incoming field interacting with a cavity get a frequency-depending

phase shift.

3.3 Quantum regression theorem

In this section we demonstrate an important theorem related to the expectations

values of products of system operators, the quantum regression theorem. In section 3.1

we have shown the evolution of a system operator Âµ is described by an Heisenberg-

Langevin equation, which has form

d

dt
Âµ(t) = D̂µ(t) + F̂µ(t) (3.30)

where D̂µ(t) is the drift term and F̂µ(t) is the noise term which averages to zero. We

can use this equation to calculate the expectation value of the product of two system

operators. In fact multiplying on the right eq. (3.30) for Âν(t′), with t′ < t, and
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taking the expectation value we get

d

dt
〈Âµ(t)Âν(t′)〉 = 〈D̂µ(t)Âν(t′)〉+ 〈F̂µ(t)Âν(t′)〉 . (3.31)

Since in the Markov approximation the system operator Âν(t′) at cannot be influ-

enced by the future noise, the second term on the r.h.s. factorizes in a product of

two expectation values and so vanishes. We have obtained the quantum regression

theorem:
d

dt
〈Âµ(t)Âν(t′)〉 = 〈D̂µ(t)Âν(t′)〉 , (3.32)

which simply states that the expectation value of the two-time correlation function

satisfies the same equation of motion as the single operator expectation value. This

theorem is very useful when one has to hand with several two-time correlation func-

tions since it proves that it is sufficient to calculate the equations of motion for the

operators.

3.4 Master equation

An alternative way to solve for the dynamics of a system coupled to reservoir is to

solve the Schrödinger equation. Denoting as ρsb the density matrix of the overall

system, the Schrödinger equation is

ρ̇sb = − i
~
[
H, ρsb

]
. (3.33)

Since we are not interested in the dynamics of the bath, we can trace out the degrees

of freedom of the bath, to get the reduced density operator of the system ρs(t) =

Trbρsb(t). Once that we know ρs(t) for all times we can determine the expectation

values of the system operators simply taking

〈Ô(t)〉 = Trs{Ôρs(t)}. (3.34)

The equation of motion for ρs(t) is called master equation.

It is convenient to move to the interaction picture, where the density operator

is defined as

ρ̃sb = eiH0(t−t0)ρsbe
−iH0(t−t0). (3.35)
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where H0 = HS + HB Differentiating (3.35) with respect to the time we get the

equation of motion of the density operator in the interaction picture

∂ρ̃sb
∂t

= − i
~
[
H̃I(t− t0), ρ̃sb

]
, (3.36)

where

H̃I(t− t0) = eiH0(t−t0)HIe
−iH0(t−t0) (3.37)

is the interaction Hamiltonian in the interaction picture. We find a second order

solution of eq. (3.36) in perturbation theory using an iterative method. We start

integrating eq. (3.36) from t0 to t to obtain a first order solution. We get

ρ̃sb(t) = ρ̃sb(t0)− i

~

∫ t

t0

dt′
[
H̃I(t

′ − t0), ρ̃sb(t
′)
]
. (3.38)

Now we do another integration and we insert the first order expression of ρ̃sb(t) as

approximation. We obtain

ρ̃sb(t) = ρ̃sb(t0)− i

~

∫ t

t0

dt′
[
H̃I(t

′ − t0), ρ̃sb(t0)
]
+

− 1

~2

∫ t

t0

dt′
∫ t′

t0

dt′′
[
H̃I(t

′ − t0),
[
H̃I(t

′′ − t0), ρ̃sb(t0)
]

(3.39)

where in the last commutator we have put ρ̃sb(t) ≈ ρ̃sb(t0) to get a close expres-

sion. Now we can trace out the degree of freedom of the bath and denoting ρ̃s(t) =

Trb{ρ̃sb(t)}, we define a coarse-grained equation of motion

˙̃ρs(t) =
ρ̃s(t)− ρ̃s(t− τ)

τ
, (3.40)

where τ is a time large compared to the bath memory time τc but small compared to

the time ρs varies significantly. Using the explicit form of the last commutator of eq.

(3.39) [
H̃ ′I ,

[
H̃ ′′I , ρ̃sb

]
= H̃ ′IH̃

′′
I ρ̃sb − H̃ ′I ρ̃sbH̃ ′′I + adj., (3.41)

we have that the coarse-grained equation of motion deriving from eq. (3.39) is

˙̃ρsb(t) = − i

~τ

∫ τ

0

dτ ′Trb
[
H̃I(τ

′), ρ̃sb(t)
]
+

− 1

~2τ

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′ Trb{H̃I(τ
′)H̃I(τ

′′)ρ̃sb(t)− H̃I(τ
′)ρ̃sb(t)H̃I(τ

′′)}+ adj.

(3.42)
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Using the explicit forms of the Hamiltonians (3.2)-(3.4) it can be shown easily that

H̃I(τ) = ~â†F̂ (τ) + ~â†F̂ †(τ), (3.43)

where

F̂ (τ) = −i
∑
j

gj b̂je
i(Ω−ωj)τ (3.44)

and is the analogous of the noise operator in the Heisenberg picture. When we trace

over the bath the first term of eq. (3.42) is composed of two terms of the form

Trb{â†F̂ (τ)ρ̃sb(t)} = â†ρ̃s(t)Trb{F̂ (τ)ρ̃b(t)}. (3.45)

The second trace is the expectation value of the operator F (τ), which, assuming that

the density operator of the bath is diagonal in the energy, is zero. Substituting eq.

(3.43) in eq. (3.42) and using the cyclic property of the trace we get

˙̃ρs(t) = − 1

~2τ

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′
[
â†âρ̃s(t) 〈F̂ (τ ′)F̂ †(τ ′′)〉b− âρ̃s(t)â

† 〈F̂ (τ ′′)F̂ †(τ ′)〉b +

+ ââ†ρ̃s(t) 〈F̂ †(τ ′)F̂ (τ ′′)〉b − â
†ρ̃s(t)â 〈F̂ †(τ ′′)F̂ (τ ′)〉b +

+ ââρ̃s(t) 〈F̂ †(τ ′)F̂ †(τ ′′)〉b − âρ̃s(t)â 〈F̂
†(τ ′′)F̂ †(τ ′)〉b +

+ â†â†ρ̃s(t) 〈F̂ (τ ′)F̂ (τ ′′)〉b − â
†ρ̃s(t)â

† 〈F̂ (τ ′′)F̂ (τ ′)〉b
]

+ adj. (3.46)

Using eq. (3.44) we find that the bath average terms present in (3.46) are of the form

〈F̂ (τ ′)F̂ †(τ ′′)〉b =
∑
i,j

gig
∗
j 〈b̂ib̂

†
j〉b e

iΩ(τ ′−τ ′′)ei(ωjτ
′′−ωiτ

′) =

=
∑
i

|gi|2 〈b̂ib̂†i 〉b e
i(Ω−ωi)(τ

′−τ ′′) (3.47)

where the second equality is valid provided that the bath operators are diagonal. This

kind of averages are first order correlation function of the bath and they depend only

on the time difference T = τ ′ − τ ′′.

Now, as we did using the Heisenberg formalism, we perform the Markov ap-

proximation, assuming that the correlation time τc, that is the time for which the

correlation function are non-null, is infinitely short compared to all the other times
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of interest. This permits us to extend the time integral in

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′ 〈F̂ (τ ′)F̂ †(τ ′′)〉b =

=

∫ τ

0

dτ ′
∑
i

|gi|2 〈b̂ib̂†i 〉b
∫ τ ′

0

dTei(Ω−ωi)T (3.48)

to infinity. Thus, replacing the sum with an integral over frequencies we get

∫ τ

0

dτ ′
∫ ωb

−ωb

dωD(ω)|g(ω)|2 〈b̂(ω)b̂†(ω)〉b
∫ ∞

0

dTei(Ω−ω)T =

=
γτ

2
〈b̂(Ω)b̂†(Ω)〉b , (3.49)

where, again, γ = 2πD(Ω)|g(Ω)|2. The average of the number operator b̂†b̂ is given

by the thermal distribution an so it is a function of the temperature of the reservoir.

Denoting by n̄ and computing all terms in (3.46) by mean of (3.48), we get finally

the master equation

˙̃ρs(t) = −γ
2

(n̄+ 1)
[
â†âρ̃s(t)− âρ̃s(t)â†

]
− γ

2
n̄
[
ρ̃s(t)ââ

† − â†ρ̃s(t)â
]

+ adj. (3.50)

which at zero temperature reduces to

˙̃ρs(t) = −γ
2

(
{â†â, ρ̃s(t)} − 2âρ̃s(t)â

†). (3.51)

It is easy to move back the Schrödinger picture, from eq. (3.50) we find

ρ̇s(t) = − i
~
[
Hs, ρs(t)

]
−γ

2
(n̄+1)

[
â†âρs(t)−âρs(t)â†

]
−γ

2
n̄
[
ρs(t)ââ

†−â†ρs(t)â
]
+adj. =

= − i
~
[
Hs, ρs(t)

]
+ L[ρs], (3.52)

where the term L[ρs] describe the interaction of the system with the bath. It can be

shown that, to preserve the trace of the density operator, it has to be of the form

L[ρs] = −1

2

∑
i

{Ĉ†i Ĉi, ρs}+
∑
i

ĈiρsĈ
†
i , (3.53)

where Ĉi are system operators. In the case of the harmonic oscillator they are

Ĉ1 =
√
γ(n̄+ 1)â

Ĉ2 =
√
γn̄â.

(3.54)
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In the case, for us more interesting, of a two-levels atom, the system operators are σ̂−,

σ̂+ and σ̂3 with their well-known algebra. It can be easily proved that the operators

in the master equation are the same as in (3.54) with â replaced by σ̂−.

It is an important fact that we can rewrite the master equation (3.52) as

ρ̇s(t) = − i
~
(
Heffρs − ρsH†eff

)
+ Ljump[ρs], (3.55)

where

Heff = Hs −
i~
2

∑
i

Ĉ†i Ĉi (3.56)

is a non-hermitian effective Hamiltonian which provides a Schrödinger-like evolution,

and

Ljump[ρs] =
∑
i

ĈiρsĈ
†
i (3.57)

is a ”jump” term. In the case of the two-levels atom with decay from the upper level

the two terms are

Heff =
~ω0

2
σ3 − i~Γ(n̄+

1

2
)σ+σ−, (3.58)

and

Ljump[ρs] = Γ(2n̄+ 1)σ−ρsσ+. (3.59)

It is not completely clear for now which is the role of the two terms in the time

evolution of the density matrix and why the second term is called ”jump”. It will

be much more clear considering the Monte-Carlo wave functions method in the next

section.

3.5 Monte-Carlo wave functions method

As we have seen in the previous section the evolution of the density matrix of a system

interacting with a reservoir cannot be reduced to a Schrödinger-like deterministic

evolution. The Monte-Carlo wave function method is a stochastic method that results

very powerful to solve the dynamics of open system. Let’s take the system in a pure

state |ψ〉 at time t0, it will be clear how to generalize the method to a system starting

in a mixed state. The master equation (3.55) for the system density operator is

˙|ψ〉 〈ψ|+ |ψ〉 ˙〈ψ| = − i
~
Heff |ψ〉 〈ψ|+

i

~
|ψ〉 〈ψ|H†eff +

∑
i

Ĉi |ψ〉 〈ψ| Ĉ†i . (3.60)
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The first term on the right side derives from the non-hermitian Schrödinger-like evo-

lution

i~ ˙|ψ〉 = Heff |ψ〉 , (3.61)

while the second term, which is clearly different, project the state from |ψ〉 to one of

the states |ψ〉i = Ĉi |ψ〉, for this reason it is called ”jump” term.

Decomposed the evolution in these two parts, we can solve the master equation

numerically, evolving the state |ψ〉 under the action of Heff for small intervals δt. To

the first order we have

|ψ(t+ δt)〉 =

(
1− iHeffδt

~

)
|ψ(t)〉 . (3.62)

Because of the non-hermitian nature of Ĥeff we have that |ψ(t+ δt)〉 is not normal-

ized. A quick calculation shows that the squared norm is 1-δp, where

δp = δt
∑
i

〈ψ(t)| Ĉ†i Ĉi |ψ(t)〉 ≡
∑
i

δpi. (3.63)

This means that if we want to preserve the norm during the evolution we have to take

into account also the jump part. We are also brought to consider δpi as the probability

for the jump |ψ〉 → Ĉi |ψ〉 to occur. Now we have all the elements to implement a

simple evolution scheme using Monte-Carlo method, i.e. random numbers. For each

step of the evolution a number 0 < r ≤ 1 is generated, if 0 < r ≤ δp1 the state is

projected on |ψ〉1, if δp1 < r ≤ δp1 + δp2 the state is projected on |ψ〉2 and so on.

If δp1 + ... + δpn < r ≤ 1 the Schrödinger-like evolution of eq. (3.62) is performed.

After each step the state is normalized. The evolution of the state obtained in this

way from the initial time t0 to the final time tf is called a quantum trajectory.

Since the process is stochastic, for the nature itself of the master equation,

we obtain different trajectories for the same initial state, so that to have a reliable

picture of the evolution we have to average many trajectories, i.e. to run the program

many times. The generalization to a mixed initial state is straightforward, indeed,

since the density matrix is linear, is enough to repeat the process with the different

possible initial states, averaging the trajectories over the initial probabilities Pi of

the states. The great advantage of the Monte-Carlo wave functions method is that it

deals just with state vectors. This means that if the number of state to consider is

N the memory required to use this method scales with N . On the contrary dealing
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with the density matrix, which dimension is N2, requires a memory space that scales

with N2!

In some situations we are not interested in all the states of the system, for

instance we can sometimes neglect the levels of an atom to which an upper level

decays, being just interested in the dynamics of the upper level. In these situations

we can ignore the jump part of the evolution and use only the effective Hamiltonian

to get the dynamics. In this spirit we will make use of non-hermitian Hamiltonians

to describe our system in the chapters that follow.



Chapter 4

A photonic transistor

To make photons interacting with photons is one of the fundamental challenges of

quantum optics. To have optical non-linearities, i.e. non-trivial interactions between

photons, is in fact a requirement to realize quantum computation with photons or

with atoms and photons [6]. A conceptually simple idea involving the problem of

interaction between photons is that one of the photonic transistor. The electronic

transistor is device in which two pairs of electric terminals are applied to a semi-

conductor material and a small current flowing between one of the pair changes the

flowing between the other pair [13]. For analogy, it is called photonic transistor a

device where a small optical field is used to control another optical field. Its funda-

mental limit is the single-photon transistor, where the control field consists in just

one photon, so that is the presence or the absence of this control photon to permit

or deny the propagation of the controlled field. The applications of this device are

several, going from photo-detection to quantum computation processes.

4.1 Proposed Λ-atom model

A model of photonic transistor has been proposed in 2007 by Chang et al. [10]. Here

strong nonlinear interactions are realized by exploiting the strong coupling between

individual photon emitters and surface propagating plasmons confined to a conduct-

ing nanowire. Surface plasmons are propagating electromagnetic modes confined to

the surface of a dielectric-conductor interface. The nanowire on which plasmons are

confined can be thought as a one-dimensional guide and the modes can be indexed by

28
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the wavevectors k. The advantage in using nanowires instead of optical fibres is that

they exhibit good confinement also when the radius is much shorter than the opti-

cal wavelenght. The confinement results in a strong coupling between the plasmonic

modes and any emitter with a dipole-allowed transition, for instance a two-levels

emitter, placed in proximity of the wire. It has been shown [14], using just classical

electrodynamics considerations, that for an emitter placed to an optimal distance from

the nanowire the ratio between the spontaneous emission rate Γpl in the plasmonics

modes and the emission rate Γ′ into all the other possible channels can exceed 103.

The Hamiltonian describing such a system, i.e. a single emitter strongly coupled

to a continuum of one-dimensional modes, is

H = ~(ωeg − iΓ′)σee +

∫
dk ~c|k|â†kâk − ~g

∫
dk(σ+

egâk + σ+
egâ
†
k), (4.1)

where a linear dispersion relation (ωk = ck) for the plasmons has been assumed. The

Hamiltonian is non-hermitian in the spirit of the quantum jump to account for the

decay of the level |e〉 in modes different from the plasmonic ones, and the coupling

constant is been assumed to be frequency-independent. Considering the scattering of

the single photon one finds that the coefficient of reflection is

r(δk) = − Γpl
Γpl + Γ′ − 2iδk

, (4.2)

where δk = ck − ωeg is the photon detuning. The transmission coefficient is given by

t(δk) = 1 + r(δk). On resonance r ≈ −(1 − 1/P ) where P = Γpl/Γ
′ is called Purcell

factor, that for the value reported above makes the system acting as nearly perfect

mirror. The situation is different for the scattering of a multiphoton state. In the

case of a coherent input of amplitude ξc on resonance the reflectance, i.e. the absolute

square value of the reflection coefficient, are found to be

R = |r|2 =

(
1 +

1

P

)−2
1

1 + 8(Ωc/Γ)2
, (4.3)

where Ωc =
√

2πgξc and Γ = Γpl + Γ′. It is clear from eq. (4.3) that the emitter

exhibits saturation at high power since the reflectance decrease to zero.

The idea presented in [10] to realize the photonic transistor is represented in

Fig. 4.1. It is based on the use of a three-level atom with levels configuration of

the Λ kind. Beside the two levels |g〉 and |e〉 is present a third level |s〉 which is
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Figure 4.1: Representation of the scheme of the transistor proposed in ref. [10].

coupled to |e〉. The state |s〉 is assumed to be decoupled from the plasmon modes,

but coupled to |e〉 through some classical control field. If this field is turned on an

incoming photon can be captured and stored in |s〉. If the atom sits in |s〉 clearly an

incoming photon does not see the atom and is completely transmitted. On the other

way, if no photon is present the control field has no effect and the atom remains in |g〉.

Thus the protocol proposed consists mainly in two steps: (1) the atom is started in |g〉

and the classical field is turned on for a time T ′ during which it makes the operation

(α |0〉 + β |1〉) |g〉 → |0〉 ((α |g〉 + β |s〉), (2) a multiphoton state is sent for a time T ′′

to the atom and its propagation is conditioned by the state of the atom at the end

of the first step. The efficiency of the first step is given by the probability of storing

the photon. It has been shown that is 1 − 1/P . During the second step the main

limit is the characteristic time over which a spin flip can occur. These depends on the

number ratio of the decay rates of |e〉 to |g〉 and |s〉. It is easy to see that the number

of scattered photon is n ∼ Γe→g/Γe→s. This is the ”gain” of the transistor, i.e. the

difference between the number of photons controlled and the number of photon in the

control input.

4.2 Superconducting qubits

An obstacle in the realization of the transistor scheme exposed in the previous section

is the absence of three-levels Λ atoms coupled strongly with one-dimensional waveg-

uides. Experimentally the most ideal coupling of (artificial) atoms to waveguides is

achieved in superconducting system. Several systems have been proposed to realized

qubit, i.e. ideal two-levels system, using microscopic degrees of freedom [6]. They

range from nuclear and electron spins to atoms in cavities to ions trapped in mag-
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netic fields. The realization of qubits using superconducting circuits is something

radically different, indeed here qubits are constructed from collective electrodynamics

modes of macroscopic electrical elements, rather than microscopic degrees of freedom

[11, 15, 16].

In a classical circuits currents, voltage etc. in each branch have a definite value

and can be measured simultaneously, conversely in quantum circuits these quantities

obey the superposition principle and are described by operators that do not necessarily

commute. A consequence of the quantum behavior is that we can have current flowing

at the same time in two opposite directions, exactly like quantum particles. The

superconductivity of the elements is a necessary condition for that, indeed to have

a quantum behavior the first requirement is the absence of dissipation. The cooling

of metals to temperature of the order of decimals of 1 K is the standard process to

achieve superconductivity. The simplest quantum circuit is the LC circuit, i.e. a

circuit with a capacitor and an inductor. As is known from circuits theory an LC

circuit behaves like an harmonic oscillator in the sense the equation of motion for

the current flowing in the circuit is exactly the second-order differential equation of

the harmonic oscillator. From the equation of motion is straightforward to obtain a

Lagrangian and then an Hamiltonian of the system, that results to be

H =
1

2C
p2

ΦL
+

1

2L
Φ2
L, (4.4)

where

Φi =

∫ t

−∞
dt′ Vi(t

′) (4.5)

and pΦj is the canonical conjugate momentum. This Hamiltonian can be quantized

in the same way as the electromagnetic field has been quantized in section 2.1., i.e.

with the replacing

ΦL → Φ̂L

pΦL
→ p̂ΦL[

Φ̂L, p̂ΦL

]
= i~.

(4.6)

The LC resonator is not the best choice to realize a superconducting qubit, for the

obvious reason that an harmonic oscillator has an uniform separation between the

energy eigenvalues.

What is required to have a good approximation of a two-level system is an an-
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harmonicity in the levels configuration, which is achieved by introducing a non-linear

element in the circuit. There is only one element which is both non-linear and non-

dissipative at arbitrary low temperature: the superconducting tunnel junction, also

called Josephson junction. This element consists of a sandwich of two superconduct-

ing thin films separated by an insulating layer that is thin enough to allow tunnelling

of discrete charges through the barrier (Fig. 4.2a). The phase difference δ between

the two sides is the important variable characterizing the junction. The relations be-

tween this phase and the current and voltage across the junction are called Josephson

relations. The first relation is

I = Ic sin δ, (4.7)

where Ic is the critical current of the junction, i.e. the maximal current that can flows

through the junction, whose value depends on its material, geometry and dimension.

The second relation is

V =
Φ0

2π

dδ

dt
, (4.8)

where Φ0 = h/2e, is the dual of the Cooper pair charge, the flux quantum. Combining

(4.5) and (4.8) we get

δ = 2π
Φ

Φ0
, (4.9)

which inserted in eq. (4.7) gives

I = Ic sin 2π
Φ

Φ0
. (4.10)

A relation of the kind I = I(Φ) corresponds in general to an inductor. We see that

in this case the inductance is non-linear and is given by

LJ(δ) =

(
∂I

∂Φ

)−1

=
LJ0

cos δ
, (4.11)

where LJ0 = Φ0/2πIc. Thus the Josephson junction behave in a circuit as a non-linear

inductor. Furthermore it brings an intrinsic capacity Cj , so that can be represented

as a circuit with a non-linear inductor in parallel with a capacitor, like in Fig. 4.2c.

From the expression of the inductance can be demonstrated that the energy associated

with a Josephson induction is

EJ(Φext) = −EJcosπ
Φext
Φ0

, (4.12)

where Φext is the flux externally imposed and EJ = Φ0Ic/2π is a constant called
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Josephson energy.

cba

fed

= = 

Vg

Cg

LJ

C

Φe

I

Cooper pair

Superconductor

Superconductor

Insulator

Box 1 | Superconducting qubits

Figure 4.2: from Ref. [11]: a) basic scheme of a Josephson junction; b) symbol in
circuit diagrams of a Josephson junction; c) equivalent circuit of a Josephson junction
(the arrow represents the non-linearity of the inductance); d) charge qubit circuit; e)
flux qubit circuit; f) phase qubit circuit;

Until now three main kinds of superconducting qubits have been used. The

classification is based on the variables by which they are controlled and excited. We

describe them briefly, without entering the technical details and omitting completely

the important part of the read-out procedure.

The simplest of them is the charge qubit, or Cooper pair box qubit. Its circuit

implementation consists of a Josephson junction, a capacitor Cg and a voltage source

U in series, see Fig. 4.2d, so that one of the two superconducting pieces of the junction,

being wired with one armature of the capacitor is isolated. The Hamiltonian of the

circuit can be proved to be

HCPB = EC(N −Ng)2 − EJcos θ, (4.13)

where N is the operator number of Cooper pairs on the island and θ = δmod 2π is

the canonical conjugate operator. EC = (2e)2/2(CJ + CC) is the charging energy of

the island and Ng = CgU/2e is the number of pairs due to the polarization of the

capacitor Cg and, contrary to N , assumes a continuum of values. Ng and EJ are a

parameter that can be controlled externally, the former by acting on the voltage U ,
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and the latter by applying a field through the junction or by using a split junction

and applying a field through the loop. . The qubit states correspond to adjacent

Cooper pair number states |N = 0〉 and |N = 1〉. For Ng = 1/2 the two levels are

degenerate in energy. Near this point it can be shown that the Hamiltonian assumes

the simple form

HCPB = −Ez(σz +Xcontrolσx), (4.14)

where Ez in the limit EJ � EC , which is the normal regime for the Cooper pair box,

reduces to EJ/2 and Xcontrol = 2(1/2−Ng)EC/EJ . We see from this expression for

the Hamiltonian how the qubit can be manipulated controlling the voltage U .

The second kind of qubit is the flux qubit, it consists in a superconducting

loop (with inductance L) interrupted by one ore three Josephson junctions, see Fig.

4.2e. A current through an external inductor generates a magnetic flux which induces

clockwise or anticlockwise supercurrents in the loop. Here the conjugate variables are

the flux through the loop φ and the charge on the capacitance q and the Hamiltonian

is

HF =
q2

2CJ
+
φ2

2L
− EJ cos

[
2e

~
(φ− Φext)

]
. (4.15)

The potential in this case is no more a reversed cosine but has a parabolic shape

with a cosine corrugation. The first two energy eigenstates are the symmetric and the

antisymmetric combination of the two wavefunctions localized in the two wells. The

external flux Φext plays here the role of the charge Ng in the Cooper pair box qubit.

The third type of qubit is the phase qubit, which consists in a single Josephson

junction in series with a current source, see Fig. 4.2f. The current alters the phase

at the two side of the junction according to eq. (4.7). Here the conjugate variables

are the phase δ and the charge 2e on the capacitance. The Hamiltonian is

HP = ECJp
2 − Iφ0δ − Icφ0 cos δ, (4.16)

where ECJ = (2e)2/CJ and I is the current in the current in the junction. The

potential has the shape of a tilted washboard.

The reason for which we focused on the superconducting circuits is that it

has been proved they can be used to reproduce cavity QED systems, realizing the

so-called circuit QED [17, 18]. The strong coupling limit of cavity QED, i.e. the
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condition g � κ, γ, where κ and γ are the decay rates of the cavity and the atom, has

been reached using superconducting circuits for the first time in 2004. The structure

used in the experiment consists in transmission-line resonator coupled to a Cooper

pair box qubit, represented in Fig. 4.3. The transmission-line resonator is realized by

mean of central superconducting nanowire running through two coplanar planes. Two

gaps in the wire, placed an integer number of wave-lengths apart, are the ’mirrors’

used to form a ’cavity’. The piece of wire placed between the gaps has an inductance L

and a capacitance C in order to behave like an harmonic oscillator. The predominant

source of dissipation are is the loss of the photons from the resonator through these

ports at rate κ, which can be modified engineering the size and shape of the gaps,

while the internal loss of the resonator are negligible. The qubit, an isolated Josephson

junction is placed between the wire ant the ground planes at an antinode of the voltage

standing wave on the line so that it couples with the electric field. The dipole atom

of this artificial atom is very large, and so it is the electric field amplitude, due to the

small confinement. This results in a coupling that is orders of magnitude larger than

that one of real atoms and optical and microwaves photons. Another advantage of

the circuit QED is that the position of the artificial atom is defined inside the cavity

with great precision, so that all the problems relating to the trapping and cooling of

the atom are avoided.

Figure 4.3: Schematic layout and equivalent lumped-circuit representation of the
implementation of a cavity using superconducting circuits, from Ref. [17]. In blue is
represented the 1-D transmission-line resonator, while in green the Cooper pair box
qubit.
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4.3 New Ξ-atom-in-cavity model

As we have seen in the previous section the developing of superconducting circuits

technologies permits the achievement of strong coupling regime of CQED in an un-

precedented way. The transmission properties of a cavity in that regime are the

natural candidate for the realization of a photonic transistor. The use of supercon-

ducting qubit imposes a strict limitation on the model: the levels of the atom have

to be in a ladder configuration.

The use of three-level atoms in cavity has already been proposed to realize quan-

tum computation. Duan and Kimble in 2004 [19, 20] proposed a scheme to realized

a phase-flip gate based on a ladder three-level atom in one side cavity using photons

polarization to encode the quantum information. In their scheme the transition be-

tween the two upper levels |e〉 and |g〉 is resonant with the cavity frequency, while the

transition between |g〉 and the lowest level |f〉 is strongly detuned. For an incoming

photon pulse with time width σT � 1/κ centered around ωge, the properties of the

reflected pulse depend on the state of the atom. If the atom sits in |f〉 the atom does

not play any role and the pulse acquires a π phase. If the atom is in |g〉 the reflection

is modified by the coupling, and because of the detuning of the dressed frequency

from that of the incoming pulse, the photon pulse acquires no phase change. On this

property is based the scheme for quantum computation proposed. The dynamics of

the a system has been studied computationally by the authors and empirical formulae

for the error probability and the fidelity of the gate have been found.

Our model for the photonic transistor is based on essentially the same system

used in [19], though we are mainly interested in transmission properties instead of

phase shift. We choose to discuss a two-sides cavity, even if also a procedure with

a one-side cavity and some linear optics element can be realized. As summarized

above and represented in Fig. 4.3 we take a Ξ-system, assuming that it is sufficiently

anharmonic such that the cavity is resonant with the upper transition between state

|g〉 and |e〉, but off-resonant from the lower transition between |f〉 and |g〉. We

therefore ignore the cavity coupling on the lower transition and assume that the

cavity only interacts with the upper transition with a coupling constant g. With

this arrangement we can be in a regime where there is a strong cavity enhancement

of the decay of the upper level |e〉 such that it decays rapidly compared to the two

lower levels |g〉 and |f〉, provided that the coupling constant is much larger than

the decay rate of the lower transition γ1 and that the cavity decay rate κ is chosen
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Figure 4.4: Assumed atomic level structure. The cavity field resonantly couples the
upper states |g〉 and |e〉 of a Ξ-system with a coupling constant g, while it is far off
resonance from the lower transition between |f〉 and |g〉. The levels |g〉 and |e〉 decay
to the level below with decay rates of γ1 and γ2 respectively.

accordingly, where κ is the total decay rate of the cavity mode into the input and

output waveguides, and γ1 the decay rates from |g〉 to |f〉. We also consider in our

system a decay rate of |e〉 to |g〉 in modes different from the cavity one, while we

assume completely negligible the losses of the cavity in channels different from the

waveguides and the decay from |e〉 to |f〉. Fundamental for our transistor realization

is the possibility to drive the transition |g〉 ↔ |f〉 classically. In essence this combined

system of the Ξ-atom and the cavity thus have two metastable levels which mimic

the Λ-type atom in the original transistor proposal [10].

The Hamiltonian describing the system is

H = HA
0 +HC

0 +HW
0 +HAC +HCW =

= ~(ωe − iγ2/2)σee + ~(ωg − iγ1/2)σgg + ~c
∫
dk k

[
b̂†k b̂k + ĉ†k ĉk

]
+ ~ωcâ†â+

+ i~g
[
â†σ̂−eg − âσ̂+

eg

]
+ i~c

√
κ/2π

∫
dk
[
b̂kâ
† − b̂†kâ+ ĉkâ

† − ĉ†kâ
]
, (4.17)

where the first line contains the non-interacting Hamiltonians of atom, cavity and

external fields, which are represented by operators b̂ and ĉ for the the field modes

on the left and right side of the cavity. The second line contains the Hamiltonians

of the interaction atom-cavity and cavity-external fields. A linear dispersion relation

has been assumed for the external modes, and κ has been assumed to be frequency-
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independent, which is reasonable for pulses not too spread in momentum.

We explain for now our protocol in the ideal case, i.e. where γ1 = γ2 = 0,

leaving a detailed analysis of the errors in a successive chapter. Similarly to the

original transistor proposal our protocol consists of two steps, the first one is the

interaction of the system with the gate photon, while the second consists of sending

a multi-photon signal field. A key ingredient in our scheme is the difference in the

scattering dynamics for photons scattering off the cavity depending on the state of

the atom. If the atoms is in state |f〉 the atoms do not interact with the cavity

field and the incoming resonant photon is transmitted through the cavity. If on the

other hand the photon is in state |g〉 the atom and the cavity form dressed states

at frequencies ωc ± g. If the atoms is in |g〉 an incoming photon will effectively be

off resonance and will be reflected. The state of the atom thus controls whether the

cavity is transmitting or not and acts as a switch. We can thus realize the single

photon transistor if we can flip the state of the atom conditioned on the presence of a

photon in the first gate pulse. To do this we use the procedure of Ref. [19] and start

with the atom initialized in the state |Ψ0〉a = 1/
√

2(|g〉+ |f〉) using the classical field

on the transition between |g〉 and |f〉. Then for a time T we send in the gate pulse

containing a single photon or not. This gate pulse is sent in symmetrically as shown

in Fig. 4.5. By taking the incoming photon to be a superposition of a pulse coming

from the left and from the right we cannot determine the atomic state from whether

the photon has been transmitted or reflected. There is, however, a phase difference

between the reflection and transmission such that the whole evolution is

|0〉 |Ψ0〉a →
1√
2
|0〉 (|g〉+ |f〉)

|1〉 |Ψ0〉a →
1√
2
|1〉 (|g〉 − |f〉).

(4.18)

Since the phase of the superposition now depends on the absence or presence of a

single photon we can map this into the population with a π/2-pulse:

|g〉 π/2−−→ 1√
2

(|g〉 − |f〉)

|f〉 π/2−−→ 1√
2

(|g〉+ |f〉).
(4.19)
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The overall transformation in the first step is then given by

|0〉 |Ψ0〉a → |0〉 |g〉

|1〉 |Ψ0〉a → |1〉 |f〉 ,
(4.20)

which exactly realizes a conditional flip of the atomic state.

Figure 4.5: First step. A control field is sent in symmetrically from the left and right.
This makes it indistinguishable whether the photon was reflected or transmitted, but
still a phase difference is imparted on the atom (see text). This phase difference can
be used to flip the atom depending on the presence or absence of a photon in the
field.

The second step consists in sending in signal photons to the system for a time

T ′. In this step the beam of photons is only incident from the left as shown in Fig.

4.6. Since the transmission or reflection of these photons is determined by atomic

state, the presence or absence of a photon in the first step controls the transmission

in the second step.

Figure 4.6: Second step. A strong field is sent in from the left. The field is reflected
if the atom is in state |g〉 (full arrow), and transmitted if the atom is in state |f〉
(dashed arrow).



Chapter 5

Analytical solutions

In this chapter we search for an analytical solution of the dynamics generated by

the Hamiltonian (4.17) in some cases of interest for the working of our proposal of

transistor. First of all we solve for the general case of a single incoming photon, from

which we derive the coefficients of transmission and reflection and the probability to

loose the photon during the interaction with cavity. Then we specialize the general

solution to the cases of a pulse with a gaussian or rectangular shape. Lastly we find

a solution for the case of a coherent input state in the steady state condition.

5.1 Incoming single photon

In this section we solve the Schrödinger-like part of the dynamics generated by the

Hamiltonian (4.17). Our system, considered as the ensemble of all its elements, atom,

cavity and waveguides, is an open system, indeed the coupling of the atom with

electromagnetic modes different from that one of the cavity is a source of quantum

noise. To take it into account, in the spirit of the ”quantum jump” explained in

sec. 3.5 we have inserted in the Hamiltonian the non-hermitian terms −iγ2 |e〉 〈e| and

−iγ1 |g〉 〈g|. However to solve the Schrödinger equation with the effective Hamiltonian

is not enough to describe completely the dynamics, it is indeed required to consider

the ”jump” part of the evolution. Thus it seems that we are prevented to give a

deterministic solution. Analyzing the first step of the protocol we notice that at end

of it an externally driven π/2 pulse mixes the states |g〉 and |f〉. This means that,

if the probabilities obtained with Schödinger equation for the atom to stay in |g〉

40
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or in |f〉 before the π/2 pulse are Pg and Pf (where Pg + Pf < 1 because of the

non-hermitianity of the Hamiltonian), after the pulse the probabilities are

P ′g = Pg +
1

2
(1− Pg − Pf ) =

1

2
(1 + Pg − Pf ) (5.1)

and

P ′f = Pf +
1

2
(1− Pf − Pg) =

1

2
(1 + Pf − Pg). (5.2)

This fact is extremely important since it means that the probabilities Pg and Pf are

sufficient and we can neglect completely the stochastic part of the evolution.

The Schrödinger equation is [21]

∂

∂t
|ψ〉 = − i

~
Heff |ψ〉 , (5.3)

where |ψ〉 is a generic state of the system, which belongs to an Hilbert space that is

the tensor product of four spaces: one for the atom, one for the cavity and two for the

waveguides. The basis of these spaces are {|f〉, |g〉, |e〉}, {|0〉, |1〉,..,|n〉,..},{|0L〉, |kL〉}

and {|0R〉, |kR〉}, where kL and kR are continuum indexes. Since we are interested in

the case of one excitation we can restrict our attention to a subspace of the Hilbert

space and define an appropriate basis. We take the internal states

|g〉 |1〉 |0〉 |0〉 ≡ |A〉

|e〉 |0〉 |0〉 |0〉 ≡ |B〉

|g〉 |0〉 |0〉 |0〉 ≡ |C〉

|f〉 |1〉 |0〉 |0〉 ≡ |D〉

|f〉 |0〉 |0〉 |0〉 ≡ |E〉

(5.4)

plus the four continuum infinity of states given by b̂†k |C〉, ĉ
†
k |C〉, b̂

†
k |E〉 and ĉ†k |E〉.

We can express the generic state |Ψ〉 using this states:

|Ψ〉 = ca |A〉+ cb |B〉+ cc |C〉+ cd |D〉+ ce |E〉+∫
dk
[
dk b̂
†
k |C〉+ d′k b̂

†
k |E〉+ ek ĉ

†
k |C〉+ e′k ĉ

†
k |E〉

]
. (5.5)
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Using (5.5) we find that the r.h.s. member of the Schrödinger equation (5.3) is

− i(ωg − iγ1/2)ca |A〉 − iωcca |A〉 − gca |B〉 − c
√
κ/2πca

∫
dk
[
b̂†k |C〉+ ĉ†k |C〉

]
+

− i(ωe − iγ2/2)cb |B〉+ gcb |A〉 − i(ωg − iγ1/2)cc |C〉 − iωccd |D〉+

− c
√
κ/2πcd

∫
dk
[
b̂†k |E〉+ ĉ†k |E〉

]
− i(ωg − iγ1/2)

∫
dk dk b̂

†
k |C〉+

− ic
∫
dk k dk b̂

†
k |C〉+ c

√
κ/2π

∫
dk dk |A〉 − ic

∫
dk k d′k b̂

†
k |E〉+

+ c
√
κ/2π

∫
dk d′k |D〉 − i(ωg − iγ1/2)

∫
dk ek ĉ

†
k |C〉 − ic

∫
dk k ek ĉ

†
k |C〉+

+ c
√
κ/2π

∫
dk ek |A〉 − ic

∫
dk k e′k ĉ

†
k |E〉+ c

√
κ/2π

∫
dk e′k |D〉 . (5.6)

By multiplying the two members on the left for each one of the states contained in

(5.5) we get the following decoupled systems for the coefficients

ċa = −i(ωg + ωc − iγ1/2)ca + gcb + c
√
κ/2π

∫
dk dk + c

√
κ/2π

∫
dk ek

ċb = −i(ωe − iγ2/2)cb − gca

ḋk = −
√
κ/2πca − i(ωg + ck − iγ1/2)dk

ėk = −
√
κ/2πca − i(ωg + ck − iγ1/2)ek

(5.7)

and

ċd = −iωccd + c
√
κ/2π

∫
dk d′k + c

√
κ/2π

∫
dk e′k

ḋ′k = −ick d′k −
√
κ/2πcd

ė′k = −ick e′k −
√
κ/2πcd

(5.8)

The first system describe the dynamics when the atom is started in |g〉, while the

second one when it is started in |f〉. The decoupling of the equations in the two

groups follows the fact the in the Hamiltonian there is no term for the transition

between those two atomic states. The transition can happen, as we have seen, just by

a decay process and so by a ”jump”. Clearly the linearity of the Schrödinger equation

makes obvious how to find a solution in the case of an atom in a superposition of

states.

We assume the resonant condition, i.e. ωeg = ωe − ωg = ωc and we move to a

kind of interaction picture replacing the amplitudes of system (5.7) ca,b(t), dk(t), ek(t)

with the amplitudes Ca,be
−i(ωe−iγ1)t, etc. In this way we get the following equations
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for the new amplitudes:

Ċa = g Cb + c
√
κ/2π

∫
dkDk + c

√
κ/2π

∫
dk Ek

Ċb = −(γ2 − γ1)/2Cb − g Ca

Ḋk = −
√
κ/2πca − i(ck − ωc)Dk

Ėk = −
√
κ/2πca − i(ck − ωc)Ek.

(5.9)

The initial conditions are Ca(t0) = Cb(t0) = Cc(t0) = 0, and for convenience we

choose t0 = 0. We formally integrate the third equation of (5.9) and we find

Dk(t) = e−i(ck−ωc)tDk(0)−
√
κ/2π

∫ t

0

dt′ e−i(ck−ωc)(t−t′)Ca(t′) (5.10)

and similarly for the fourth equation. The equation for Ca can as well be formally

integrated:

Ca(t) = g

∫ t

0

dt′ Cb(t
′) + c

√
κ/2π

∫
dk

∫ t

0

dt′ (Dk(t′) + Ek(t′)) (5.11)

If we insert (5.10) in (5.11) we get

Ca(t) = g

∫ t

0

dt′ Cb(t
′) +
√
κ

∫ t

0

dt′
(
DIN (t′) + EIN (t′)

)
−

− κc

π

∫
dk

∫ t

0

dt′
∫ t′

0

dt′′ e−i(ck−ωc)(t′−t′′)Ca(t′′), (5.12)

where we have defined

DIN (t) =
c√
2π

∫
dk e−i(ck−ωc)tDk(0) (5.13)

the photonic incoming field amplitude at the left entrance of the cavity, and similarly

EIN (t). We treat the last integral in eq. (5.12) with the Markov approximation,

discussed in Chapter 3. We get

Ca(t) = g

∫ t

0

dt′ Cb(t
′) +
√
κ

∫ t

0

dt′
(
DIN (t′) + EIN (t′)

)
−

− κ
∫ t

0

dt′ Ca(t′), (5.14)

which means that now Ca is couple just with Cb, since both DIN (t) and EIN (t) are

known from the initial conditions. Taking the time derivative of (5.14) and the second
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equation in (5.9) we get a system of two first order coupled differential equations for

Ca and Cb:

Ċa = −κCa(t) + g Cb(t) +
√
κ
(
DIN (t) + EIN (t)

)
Ċb = −(γ2 − γ1)/2Cb(t)− g Ca(t)

(5.15)

The system is in the form

Ċi =
∑
j

aijxj + bi, (5.16)

and its solution it is well known from the theory of differential equations. First of all

we have to find the eigenvalues of the matrix

aij =

−κ +g

−g −Γ/2

 (5.17)

with Γ = (γ2 − γ1)/2, that result to be λ1,2 = −
(
κ+ Γ±

√
(κ− Γ)2 − 4g2

)
/4. Since

we are in the strong coupling regime, i.e. g � κ, γ1,2, they can be approximated as

λ1,2 = −(κ+ Γ)/2∓ ig = −β∓ ig, with β = (κ+ Γ)/2. With the same approximation

the matrix of the eigenvectors is

S =

i+ β′

g −i+ β′

g

1 1

 (5.18)

where β′ = (κ− Γ)/2.

The matrix whose columns are solutions of the associate homogeneous system

is

X =

(i+ β′

g )eλ1t (−i+ β′

g )eλ2t

eλ1t eλ2t

 (5.19)

and its inverse is

X−1 =
1

2

−ie−λ1t (1 + iβ
′

g )e−λ1t

+ie−λ2t (1− iβ
′

g )e−λ2t

 (5.20)

We know that the solution of system (5.16) is xi(t) =
∑
j cjXij+

∑
j,kXij

∫
dtX−1

jk bk.

In our case the first term on the r.h.s. is given by

c1

 i+ β′

g

1

 eλ1t + c2

 −i+ β′

g

1

 eλ2t, (5.21)
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while the second term is equal to

1

2

(i+ β′

g )eλ1t (−i+ β′

g )eλ2t

eλ1t eλ2t

∫ dt

−ie−λ1t (1 + iβ
′

g )e−λ1t

+ie−λ2t (1− iβ
′

g )e−λ2t

 √κ(DIN (t) + EIN (t)
)

0

 =

1

2

(i+ β′

g )eλ1t (−i+ β′

g )eλ2t

eλ1t eλ2t

∫ dt

 −ie−λ1t

ie−λ2t

√κ(DIN (t) + EIN (t)
)
. (5.22)

Thus the generic solution of system the system that we are solving is

Ca(t) = c1

(
i+

β′

g

)
eλ1t + c2

(
− i+

β′

g

)
eλ2t+

+
1

2

[(
1− iβ

′

g

)
eλ1t

∫
dt e−λ1t

√
κ
(
DIN (t) + EIN (t)

)
+

+

(
1 + i

β′

g

)
eλ2t

∫
dt e−λ2t

√
κ
(
DIN (t) + EIN (t))

]
(5.23)

and

Cb(t) = c1e
λ1t + c2e

λ2t+

+
i

2

[
− eλ1t

∫
dt e−λ1t

√
κ
(
DIN (t) + EIN (t)

)
+

+ eλ2t

∫
dt e−λ2t

√
κ
(
DIN (t) + EIN (t)

)]
. (5.24)

For convenience we call the two function defined by an indefinite integral in (5.23)

and (5.24) F1(t) and F2(t). To determine the coefficients c1 and c2 we use the initial

conditions Ca(0) = Cb(0) = 0:c1(i+ β′

g ) + c2(−i+ β′

g ) + 1
2

(
F1(0)(1− iβ

′

g ) + F2(0)(1 + iβ
′

g )
)

= 0

c1 + c2 + i
2

(
− F1(0) + F2(0)

)
= 0

with solution c1 = i
2F1(0)

c2 = − i
2F2(0)

Thus, replacing this solution in (5.23) (5.24), we get the solution for Ca and Cb given

by

Ca(t) =
1

2

(
1− iβ

′

g

)
eλ1t

(
F1(t)− F1(0)

)
+

1

2

(
1 + i

β′

g

)
eλ2t

(
F2(t)− F2(0)

)
(5.25)
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and

Cb(t) = − i
2
eλ1t

(
F1(t)− F1(0)

)
+
i

2
eλ2t

(
F2(t)− F2(0)

)
. (5.26)

By the fundamental theorem of calculus we know that
∫ t

0
dt′f(t′) = F (t)−F (0), where

F is the primitive of f , so that F (t) =
∫ t

0
dt′ f(t′) +F (0). Applying this formula and

inserting the explicit values of λ1 and λ2 we find

Ca(t) =

(
1− iβ

′

g

)√
κ

2
e−(β+ig)t

∫ t

0

dt′ e+(β+ig)t′
(
DIN (t′) + EIN (t′)

)
+

+

(
1 + iβ

′

g

)√
κ

2
e−(β−ig)t

∫ t

0

dt′ e+(β−ig)t′(DIN (t′) + EIN (t′)
)

=

=
√
κ<
[(

1− iβ
′

g

)
e−(β+ig)t

∫ t

0

dt′ e+(β+ig)t′
(
DIN (t′) + EIN (t′)

)]
(5.27)

and

Cb(t) = − i
√
κ

2
e−(β+ig)t

∫ t

0

dt′ e+(β+ig)t′
(
DIN (t′) + EIN (t′)

)
+

+
i
√
κ

2
e−(β−ig)t

∫ t

0

dt′ e+(β−ig)t′(DIN (t′) + EIN (t′)
)

=

=
√
κ=
[
e−(β+ig)t

∫ t

0

dt′ e+(β+ig)t′
(
DIN (t′) + EIN (t′)

)]
. (5.28)

We can now solve in a similar manner the other system, that one for the atom

initially in |f〉. The initial condition is cd(0) = 0. The equation for d′k can be formally

integrated as

d′k(t) = e−i(ck−ωc)td′k(0)−
√
κ/2π

∫ t

0

dt′ cd(t
′) (5.29)

and similarly for the equation for e′k. The equation for cd can be formally integrated

as

cd(t) = c
√
κ/2π

∫
dk

∫ t

0

dt′ (d′k(t′) + e′k(t′)). (5.30)

Inserting eq. (5.29) in eq. (5.30) we get

cd(t) =
√
κ

∫ t

0

dt′
(
D′IN (t′) + E′IN (t′)

)
−

− κ

π
c

∫
dk

∫ t

0

dt′
∫ t′

0

dt′′ e−i(ck−ωc)(t′−t′′)cd(t
′′) (5.31)

where we have defined

D′IN (t) =
c√
2π

∫
dke−i(ck−ωc)td′k(t0) (5.32)
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the photonic field amplitude at the left entrance of the cavity, and similarly for

E′IN (t). Using the Markov approximation in the last term we get

cd(t) =
√
κ

∫ t

0

dt′
(
D′IN (t′) + E′IN (t′)

)
− κ

∫ t

0

dt′cd(t
′) (5.33)

Taking the derivative we respect to t we find

ċd(t) = −κcd(t) +
√
κ
(
D′IN (t′) + E′IN (t′)

)
(5.34)

which has an immediate solution

cd(t) =
√
κe−κt

∫ t

0

dt′ eκt
′(
D′IN (t′) + E′IN (t′)

)
. (5.35)

5.2 Transmission and reflection coefficients

After having found the solution for the amplitudes ca, cb and cd, which represent the

amplitudes of the states with some internal excitation, given the input field, we focus

here on the solution for the output field, again splitting the two cases of the atom

initialized in |g〉 or in |f〉.

Equation (5.10) can be formally integrated also in a different way by using the

final condition on the field, i.e.

Dk(t) = e−i(ck−ωc)(t−T )Dk(T ) +
√
κ/2π

∫ T

t

dt′ e−i(ck−ωc)(t−t′)Ca(t′). (5.36)

We integrate in k eqs. (5.10) and (5.36) using the Markov approximation for the

terms with Ca, with the definitions

DIN (t) =
c√
2π

∫
dk e−i(ck−ωc)tDk(0) (5.13)

and

DOUT (t) =
c√
2π

∫
dk e−i(ck−ωc)(t−T )Dk(T ), (5.37)

and we subtract the second from the first one, getting the equation

DOUT (t)−DIN (t) = −
√
κCa(t), (5.38)

which is an important boundary condition, relating the left incoming field, the left
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outgoing field and the intra-cavity fields.

Let’s go back to the system of differential equation (5.15). If we Fourier trans-

form the amplitudes using δ(k) = ck − ωc, and we denote Dk(0) as DIN (k) and

similarly for the other fields, we get

− iδ(k)Ca(k) = g Cb(k) +
√
κDIN (k) +

√
κEIN (k)− κCa(k)

− iδ(k)Cb(k) = −ΓCb(k)− g Ca(k).
(5.39)

From the second equation we can express Cb in term of Ca:

Cb(k) = − ig

δ(k) + iΓ
Ca(k) (5.40)

which inserted in the first one gives us

−iδ(k)2 + (Γ + κ)δ(k) + iκΓ + ig2

δ(k) + iΓ
Ca(k) =

√
κ
(
DIN (k) + EIN (k)

)
. (5.41)

Using eq. (5.38) to eliminate Ca in eq. (5.41) we get finally the involved but exact

equation which relates the the left output field with the incoming fields

DOUT (k) =
δ(k)2 + iΓδ(k)− g2

δ(k)2 + i(Γ + κ)δ(k)− Γκ− g2
DIN (k)+

+
−iκδ(k) + κΓ

δ(k)2 + i(Γ + κ)δ(k)− Γκ− g2
EIN (k), (5.42)

Since the system is symmetric is immediate to obtain the analogous relation for the

right outgoing field

EOUT (k) =
δ(k)2 + iΓδ(k)− g2

δ(k)2 + i(Γ + κ)δ(k)− Γκ− g2
EIN (k)+

+
−iκδ(k) + κΓ

δ(k)2 + i(Γ + κ)δ(k)− Γκ− g2
DIN (k), (5.43)

From the last equations it is immediate to get reflection and transmission coefficients.

Indeed if we put, for instance, EINR (k) equal to zero we get that the former is the

coefficient of DOUT (k) in (5.42), while the latter is the coefficient of DOUT (k) in (??),

i.e.

r(k) =
δ(k)2 + iΓδ(k)− g2

δ(k)2 + i(Γ + κ)δ(k)− Γκ− g2
(5.44)

and

t(k) =
−iκδ(k) + κΓ

δ(k)2 + i(Γ + κ)δ(k)− Γκ− g2
. (5.45)
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We consider now the simplest case in which the atom is started in |f〉. Replacing

the amplitudes present in system (5.8) with CDe
−iωct, etc we have

Ḋ′k = −i(ck − ωc)D′k −
√
κ/2πCd, (5.46)

which as we have seen can be integrated in two ways, with the initial condition as

D′k(t) = e−i(ck−ωc)tD′k(0)−
√
κ/2π

∫ t

0

dt′ e−i(ck−ωc)(t−t′)Cd(t
′), (5.47)

or with the final condition as

D′k(t) = e−i(ck−ωc)(t−T )D′k(T ) +
√
κ/2π

∫ T

t

dt′ e−i(ck−ωc)(t−t′)Cd(t
′). (5.48)

If we integrate in k eqs. (5.47) and (5.48) using the Markov approximation for the

terms with Cd, with the definitions

D′IN (t) =
c√
2π

∫
dk e−i(ck−ωc)tD′k(0) (5.49)

and

D′OUT (t) =
c√
2π

∫
dk e−i(ck−ωc)(t−T )D′k(T ), (5.50)

and we subtract the second from the first one, we get the equation

D′OUT (t)−D′IN (t) = −
√
κCd(t), (5.51)

which is the same boundary condition as eq. (5.38).

Fourier transforming eq. (5.34) we get

(−iδ(k) + κ)Cd(k) = +
√
κ
(
D′IN (k) + E′IN (k)

)
. (5.52)

Combining eqs. (5.52) and (5.51) we find the relation

D′OUT (k) =
−iδ(k)D′IN (k)− κE′IN (k)

κ− iδ(k)
(5.53)

and for symmetry

E′OUT (k) =
−iδ(k)E′IN (k)− κD′IN (k)

κ− iδ(k)
, (5.54)
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from which we derive the transmission and reflection coefficients

t′(k) = − iκ

δ(k) + iκ
(5.55)

and

r′(k) =
δ(k)

δ(k) + iκ
. (5.56)

Summarizing we have that the field amplitudes in the initial Schrödinger picture

of (5.5) at time T are given by the relations

dk(T ) =
(
r(k)dk(0) + t(k)ek(0)

)
e−i(ωe−iγ1/2)T

ek(T ) =
(
t(k)dk(0) + r(k)ek(0)

)
e−i(ωe−iγ1/2)T

d′k(T ) =
(
r′(k)d′k(0) + t′(k)e′k(0)

)
e−iωct

e′k(T ) =
(
t′(k)d′k(0) + r′(k)e′k(0)

)
e−iωct.

(5.57)

Keeping in mind that we are in a regime in which g � κ � σ, γ1, γ2, where σ

is the width in momentum space of the pulse, we can expand the coefficients (5.45)

and (5.44), we get that

t(k) ≈ κ(iδ(k) + Γ)

g2
≈ 0 (5.58)

and

r(k) ≈ 1− κ(iδ(k) + Γ)

g2
≈ 1, (5.59)

as stated above. Similarly, we see that using just the condition κ � σ we have

t′(k) ≈ −1 and r′(k) ≈ 0, again as expected.

5.3 Gaussian pulse

In this section we use the general solution for the dynamics of an input consisting

in a single photon pulse, derived in the previous sections, with the assumption that

the pulse shape is gaussian . The gaussian case has been studied numerically in Refs.

[19, 20], and we expect to obtain the same results using our analytical calculations.

We take as input field, in the case the atom is |g〉 at T = 0,

DIN (t) =
1

4
√

2πσ2
T

e−(t−T/2)2/4σ2
T . (5.60)
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The peak of the pulse reach the cavity at t = T/2, where T is the time duration that

we consider. With reference to our protocol we can identify T with the duration of

the first step.

We are firstly interested in the form of the amplitudes Ca and Cb. Inserting

(5.60) in (5.11) and (5.28), the argument of the real part in (5.27) is

1
4
√

2πσ2
T

e−(β+ig)t

∫ t

0

dt′ e(β+ig)t′e−δ(t
′)2/4σ2

T , (5.61)

where we have put δ(t) = t − T/2. The integral can be easily solved by completing

the square in the exponent, i.e.

1
4
√

2πσ2
T

e−(β+ig)t

∫ t

0

dt′ e−[δ(t′)2−4(β+ig)δ(t′)σ2
T +4(β+ig)2σ4

T ]/4σ2
T×

× e(β+ig))2σ2
T +(β+ig)T/2 =

=
4
√

8πσ2
T

2
e(β+ig)2σ2

T e−(β+ig)δ(t)

(
1 + erf

[δ(t)− 2(β + ig)σ2
T

2σT

])
, (5.62)

where erf(x) is the error function, defined in the following way

erf(z) ≡ 2√
π

∫ z

0

dy e−t
2

. (5.63)

Now we can write the explicit expression, though rather involved, of the amplitudes

Ca and Cb:

Ca(t) =
4
√

8πκ2σ2
T

2
<
[(

1− iβ
′

g

)
e(β+ig)2σ2

T e−(β+ig)δ(t)×

×
(

1 + erf
[δ(t)− 2(β + ig)σ2

T

2σT

])]
(5.64)

and

Cb(t) =
4
√

8πκ2σ2
T

2
=
[
e(β+ig)2σ2

T e−(β+ig)δ(t)×

×
(

1 + erf
[δ(t)− 2(β + ig)σ2

T

2σT

])]
. (5.65)

We have plotted in Figs. 5.1 and 5.2 the evolution in time of ca and cb, which are

given by e−i(ωe−iγ1/2)tCa(t) and e−i(ωe−iγ1/2)tCb(t), for values of the parameters in

according to the regime g � κ � 1/σ, γ1, γ2, confronting the analytical expressions

(5.64) and (5.65) with purely numerical solutions, i.e. obtained by the direct numerical
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Figure 5.1: ca for a gaussian single-photon incoming pulse as function of time (with
g = 90, κ = 30, γ1 = 0.01, γ2 = 3, T = 4, σT = T/16). Confrontation of the numerical
(dashed line) and the analytical (solid line) results.

integration of the Schrödinger equation. We notice immediately that the agreement

is very good.

In eq. (5.64) the absolute value of the argument of the erf function is large

because g � σT so that we can use the asymptotic approximation (to the first order)

erf(x) ≈ −e−x2

/
√
πx. We find that

Ca(t) ≈ −
4
√

8πκ2σ2
T

2
<
[(

1− iβ
′

g

)
e(β+ig)2σ2

T e−(β+ig)δ(t)×

× e−δ(t)
2/4σ2

T e(β+ig)δ(t)e−(β+ig)2σ2
T

√
π(δ(t)− 2(β + ig)σ2

T )/2σT

]
=

= −σT
g

4

√
8κ2σ2

T

π
<
[

g − iβ′

δ(t)− 2(β + ig)σ2
T

e−δ(t))
2/4σ2

T

]
=

= −σT
4

√
8κ2σ2

T

π

δ(t)− 2Γσ2
T

(δ(t)− 2βσ2
T )2 + 4g2σ4

T

e−δ(t)
2/4σ2

T . (5.66)

The second term in the denominator of the fraction is much larger than the first one,

so that we can neglect it and approximate the expression as

Ca(t) ≈ − 4

√
8κ2σ2

T

π

δ(t)− 2Γσ2
T

4g2σ3
T

e−δ(t)
2/4σ2

T . (5.67)
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Figure 5.2: cb for a gaussian single-photon incoming pulse as function of time (with
g = 90, κ = 30, γ1 = 0.01, γ2 = 3, T = 4, σT = T/16). Confrontation of the numerical
(dashed line) and the analytical (solid line) results.

With the same asymptotic expansion we can show that

Cb(t) ≈ −
4

√
8κ2σ2

T

π

1

2gσT
e−δ(t)

2/4σ2
T . (5.68)

Similarly we deal with the case in which the atom is started in |f〉. Inserting

the gaussian pulse (5.60) in the expression for cd (5.35), we get

cd(t) =

√
κ

4
√

2πσ2
T

e−κt
∫ t

0

dt′ eκt
′
e−δ(t

′)2/4σ2
T =

=
4
√

8πκ2σ2
T

2
eσ

2
Tκ

2

e−κδ(t)
(

1 + erf
[δ(t)− 2κσ2

T

2σT

])
. (5.69)

Using the asymptotic expansion of the erf function we find

cd(t) = −σT
4

√
8κ2σ2

T

π

e−δ(t)
2/4σ2

T

δ(t)− 2κσ2
T

≈

≈ 4

√
8κ2σ2

T

π

4σ4
Tκ

2 − 2σ2
Tκδ(t) + δ(t)2

8σ5
Tκ

3
e−δ(t)

2/4σ2
T , (5.70)

where in the last step we have expanded the denominator around δ(t) = 0 to the

second order.
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5.4 Rectangular pulse

In this section we study the case of an incoming rectangular pulse, in a manner

completely analogous to what we have done in the previous section for the gaussian

pulse. The expression of DIN for a pulse of width σT centered in T/2 is

DIN (t) =
1
√
σT

Θ(t− T/2 + σT /2)Θ(T/2 + σT /2− t) =

=
1
√
σT

rect

(
δ(t)

σT

)
. (5.71)

Inserting this expression in the formula for Ca (5.27) we get

Ca(t) =

√
κ

σT
<
[(

1− iβ
′

g

)
e−(β+ig)t

∫ t

0

dt′ e+(β+ig)t′Θ(δ(t′)+σT /2)Θ(σT /2−δ(t′))
]
,

(5.72)

which is 0 for t < T/2− σT /2 while for T/2− σT /2 < t < T/2 + σT /2 is equal to

Ca(t) =

√
κ

σT
<
[(

1− iβ
′

g

)
e−(β+ig)t e

+(β+ig)t − e+(β+ig)(T/2−σT /2)

β + ig

]
=

=

√
κ

σT
<
[(

1− iβ
′

g

)
1− e−(β+ig)(δ(t)+σT /2)

β + ig

]
=

=

√
κ

σT
<
[

(g − iβ′)(β − ig)

g(g2 + β2)

(
1− e−(β+ig)(δ(t)+σT /2)

)]
≈

≈ −
√

κ

σT

e−β(δ(t)+σT /2)sin g(δ(t) + σT /2)

g
, (5.73)

where in the last step the approximation sign is due to the fact the we have kept the

term of order g−1 and neglect the others. For for t > T/2 + σT /2 the integral is

Ca(t) =

√
κ

σT
<
[(

1− iβ
′

g

)
e−(β+ig)δ(t) e

+(β+ig)σT /2 − e−(β+ig)σT /2

β + ig

]
≈

≈
√

κ

σT

1

g
e−βδ(t)

(
e−βσT /2sin g(δ(t) + σT /2)− e+βσT /2sin g(δ(t)− σT /2)

)
. (5.74)

We can proceed in the same way for cb, inserting (5.71) in (5.28) we get

Cb(t) =

√
κ

σT
=
[
e−(β+ig)t

∫ t

0

dt′ e+(β+ig)t′Θ(δ(t′) + σT /2)Θ(σT /2− δ(t′))
]
, (5.75)

which is 0 for t < T/2− σT /2 while for T/2− σT /2 < t < T/2 + σT /2 is equal to

Cb(t) ≈ −
√

κ

σT

(
1− e−β(δ(t)+σT /2)cos g(δ(t) + σT /2)

g
, (5.76)
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Figure 5.3: ca (dashed line) and cb (solid line) for a rectangular single-photon incoming
pulse as function of time (with g = 90, κ = 30, γ1 = 0.01, γ2 = 3, T = 4, σT = T/2).

while for for t > T/2 + σT /2 is equal to

Cb(t) ≈
√

κ

σT

1

g
e−βδ(t)

(
e−βσT /2cos g(δ(t) + σT )− e+βσT /2cos g(δ(t)− σT )

)
. (5.77)

We have plotted in Fig. 5.3 the evolution of the amplitudes ca and cb for a choice of

the parameters

In the case the atom is started in |f〉, inserting (5.71) in (5.35) we get

cd(t) =

√
κ

σT
e−κt

∫ t

0

dt′ e+κt′Θ(δ(t′) + σT /2)Θ(σT /2− δ(t′)), (5.78)

which is 0 for t < T/2− σT /2 while for T/2− σT /2 < t < T/2 + σT /2 is equal to

cd(t) =
1

√
κσT

(
1− e−κ(δ(t)+σT /2)

)
, (5.79)

while for for t > T/2 + σT /2 is equal to

cd(t) =
1

√
κσT

e−κδ(t)
(
e+σT /2 − e−σT /2

)
. (5.80)



CHAPTER 5. ANALYTICAL SOLUTIONS 56

5.5 Decoherence in the system

Up to this point we have considered the decay of the atomic levels in modes different

from that one of the cavity, i.e. of |e〉 at a rate γ2 and of |g〉 at a rate γ1, but we have

completed neglected the problem of decoherence, that is the decaying of the phase of

a superposition of states or equivalently of the non-diagonal elements of the density

matrix of the system [2].

Referring for simplicity to a two-level system with the upper level decaying at a

rate γ we have seen in sec. 3.4 that the dynamics of the system in presence of decay

can be described by a master equation in the Lindblad form

ρ̇s(t) = − i
~

[Hs, ρs(t)]−
γ

2
{σ+

egσ
−
eg, ρs(t)}+ γσ−egρs(t)σ

+
eg, (5.81)

where Hs is the Hamiltonian of the system. If the non-diagonal element are decaying

exponentially at a rate γ/2 + γd is easy to show that this can be included in the

master equation by introducing the Lindblad operators
√
γdσee and

√
γdσgg. In fact

with this insertion (5.81) becomes

ρ̇s(t) = − i
~

[Hs, ρs(t)]−
γ + γd

2
{σee, ρs(t)} −

γd
2
{σgg, ρs(t)}+

+ γσ−egρs(t)σ
+
eg + γdσeeρs(t)σee + γdσggρs(t)σgg, (5.82)

from which is immediate to obtain the equations of motion for the elements of the

density matrix:

ρ̇ee(t) = − i
~

[Hs, ρee(t)]− γρee(t)

ρ̇gg(t) = − i
~

[Hs, ρgg(t)] + γρee(t)

ρ̇eg(t) = − i
~

[Hs, ρeg(t)]−
(γ

2
+ γd

)
ρeg(t),

(5.83)

as requested. According to sec. 3.5 we can transfer this to the quantum jump picture

where the effective Hamiltonian is

Heff = Hs −
i~(γ + γd)

2
σee −

i~γd
2

σgg. (5.84)

In our three-level system we have to introduce three decoherence rates, one for

each of the three non-diagonal element of the density matrix. So we introduce in the



CHAPTER 5. ANALYTICAL SOLUTIONS 57

master equation the three Lindblad operators
√
γeσee,

√
γgσgg,

√
γfσff , in addition

to
√
γ2σ
−
eg and

√
γ1σ
−
gf . We get that the equations for the six independent elements

of the density matrix are

ρ̇ee(t) = − i
~

[Hs, ρee(t)]− γ2ρee(t)

ρ̇gg(t) = − i
~

[Hs, ρgg(t)]− γ1ρgg(t) + γ2ρee(t)

ρ̇ff (t) = − i
~

[Hs, ρff (t)] + γ1ρgg(t)

ρ̇eg(t) = − i
~

[Hs, ρeg(t)]−
(
(γ1 + γ2)/2 + γe + γg

)
ρeg(t)

ρ̇gf (t) = − i
~

[Hs, ρgf (t)]−
(
γ1/2 + γg + γf

)
ρgf (t)

ρ̇ef (t) = − i
~

[Hs, ρef (t)]−
(
γ2/2 + γe + γf

)
ρef (t),

(5.85)

which confronted with the expected equations for the non-diagonal elements give the

system

γdeg = γe + γg

γdgf = γg + γf

γdef = γe + γf

(5.86)

with solution

γe = (γdeg + γdef − γdgf )/2

γg = (γdeg + γdgf − γdef )/2

γf = (γdef + γdgf − γdeg)/2

(5.87)

In the quantum jump picture this corresponds to the introduction of the terms

i~γi/2σii in the effective Hamiltonian. In the case of the two upper levels this consists

in a simple replacing of γ2 with γ′2 = γ2 + γe and of γ1 with γ′1 = γ1 + γg. The term

γfσff introduces a new kind of decay in the system which afflicts the equations

relative to the state |f〉. The system of equations (5.8) becomes

ċd = −i(ωc − iγf/2)cd + c
√
κ/2π

∫
dk d′k + c

√
κ/2π

∫
dk e′k

ḋ′k = −i(ck − iγf/2) d′k −
√
κ/2πcd

ė′k = −i(ck − iγf/2) e′k −
√
κ/2πcd.

(5.88)

We can move to an interaction picture replacing the three amplitudes with Cde
−i(ωc−iγf/2)t
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in order to have the equations

Ċd = c
√
κ/2π

∫
dkD′k + c

√
κ/2π

∫
dk E′k

Ḋ′k = −iδ(k)D′k −
√
κ/2πCd

Ė′k = −iδ(k)E′k −
√
κ/2πCd.

(5.89)

Thus we have to modify the last two eqs. (5.57) which become

d′k(T ) =
(
r′(k)d′k(0) + r′(k)e′k(0)

)
e−i(ωc−iγf/2)t

e′k(T ) =
(
t′(k)d′k(0) + r′(k)e′k(0)

)
e−i(ωc−iγf/2)t.

(5.90)

The quantum jump part of the evolution reduces, for our purposes, to find the

probability that the atom decoheres to |e〉, in fact, as we have seen the second π/2

pulse mixes the probabilities to be in |g〉 or in |f〉. The probability to have a jump

to the state |e〉 is equal to δt γe ρee. It is important to note that in the gaussian case

the probability to be in the excited state Pe(t) = ρee = |cb(t)|2, replacing the decay

rates according to what said above and using eq. (5.68), is

Pe(t) =

√
2

π

κ

g2σT
e−γ

′
1te−δ(t)

2/2σ2
T , (5.91)

so that time integral of the probability to decohere to the excited state is

PTOTe =
2κγe
g2

e−γ
′
1T/2eγ

′2
1 σ

2
T /2. (5.92)

Thus expression gives just an upper limit to the probability of being effectively in the

excited state at time T , in fact after a jump the excited state can still decay in the

cavity mode or in other modes, leaving the atom in one of the two lower states. Since

this limit is small, and the probability to decay is high, we can neglect completely the

possibility that the atom is in |e〉 at time T .

5.6 Coupling between the levels |g〉 and |f〉

In our description of the system in sec. 4.3 we have stated that the states |g〉 and |f〉

are completely decoupled so that in the quantum jump Hamiltonian no term coupling

these states is present. The reason for the decoupling is the fact the atom is assumed
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to have an anharmonicity such that the transition frequency ωgf is far detuned from

the cavity frequency ωc = ωeg.

A more general theory would include a second Jaynes-Cumming-like term in the

Hamiltonian to provide a coupling between the state |g, 0〉 and the state |f, 1〉, where

the first labels refer to the atomic state and the second to the number of photons.

The energies of these states are respectively ωg and ωf +ωc− iκ/2 where, keeping the

quantum jump approach, the imaginary part account for the decaying of the states

to the lower state |f, 0〉. The detuning of the transition is given by the difference of

the energies and is ∆̃ = ωgf − ωc + iκ/2 = ∆ + iκ/2 where we have called ∆ the

real part. The inclusion of such a coupling complicates considerably the dynamics,

because the state |g〉 can now decay emitting a cavity photon and so we have two-

photon states, increasing the difficulty of solving the equations and troubling the

definitions of transmission and reflection coefficient.

In the case of a far detuned but dipole allowed transition as seems to be our

case we can use an effective Jaynes-Cummings Hamiltonian for far off-resonant inter-

actions [3]. In fact, it can be shown that the Jaynes-Cummings Hamiltonian for the

interactions atom-field in case of large detuning reduces to

Heff =
~g′2

∆̃

[
σ+
gfσ
−
gf + â†â(σgg − σff )

]
=

= ~(χ̃− iκ̃/2)
[
σgg + â†â(σgg − σff )

]
, (5.93)

where g′ is the coupling constant of the transition |g〉 ↔ |f〉, and we have defined

χ̃ =
g′2∆

∆2 + κ2/4
(5.94)

and

κ̃ =
g′2κ

∆2 + κ2/4
(5.95)

Of course the condition necessary to make the use of the effective Hamiltonian valid

is that ∆ � g′. Adding this term to the Hamiltonian of the system we have the
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equations for the amplitudes, obtained by the Schrödinger equation, change becoming

ċa = −i(ωg + 2χ̃+ ωc − iγ′1/2− iκ̃)ca + gcb + c
√
κ/2π

∫
dk dk + c

√
κ/2π

∫
dk ek

ċb = −i(ωe − iγ′2/2)cb − gca

ḋk = −
√
κ/2πca − i(ωg + χ̃+ ck − iγ′1/2− iκ̃/2)dk

ėk = −
√
κ/2πca − i(ωg + χ̃+ ck − iγ′1/2− iκ̃/2)ek

ċd = −i(ωc − χ̃− iγf/2 + iκ̃/2)cd + c
√
κ/2π

∫
dk d′k + c

√
κ/2π

∫
dk e′k

ḋ′k = −i(ck − iγf/2) d′k −
√
κ/2πcd

ė′k = −i(ck − iγf/2) e′k −
√
κ/2πcd.

(5.96)

We see that the equations are still decoupled in two groups, one referring to the atom

in |g〉, the other to the atom in |f〉. The difference with the previous situation is that

there seems to be some shift in the energy of the bare atomic state |g〉 and a further

decay contribute. We replace the resonant condition between the upper transition

and the cavity mode with the condition ωc = ωe − ωg − χ̃.

We can proceed in the same way we have done previously, and solve the first

system of equations in a frame moving with complex frequency ωe − i(γ′1 + κ̃)/2, to

get

Ċa = (−iχ̃− κ̃/2)Ca + g Cb + c
√
κ/2π

∫
dkDk + c

√
κ/2π

∫
dk Ek

Ċb = −(Γ′ + κ̃/2) cb − g Ca

Ḋk = −
√
κ/2πCa − iδ(k)Dk

Ėk = −
√
κ/2πCa − iδ(k)Ek

(5.97)

Formally integrating the equation for Dk we get

Dk(t) = e−iδ(k)tDk(0)−
√
κ/2π

∫ t

0

dt′ e−iδ(k)(t−t′)Ca(t′) (5.98)

and similarly for Ek. The equation for Ca can as well be formally integrated:

Ca(t) = e−i(χ̃−κ̃/2)tCa(0) + g

∫ t

0

dt′ e−i(χ̃−iκ̃/2)(t−t′)Cb(t
′)+

+ c
√
κ/2π

∫
dk

∫ t

0

dt′ e−i(χ̃−iκ̃/2)(t−t′)(Dk(t′) + Ek(t′)) (5.99)
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If we insert (5.98) in (5.99) we get

Ca(t) = e−i(χ̃−iκ̃/2)tCa(0) + g

∫ t

0

dt′ e−i(χ̃−iκ̃/2)(t−t′)Cb(t
′)+

+
√
κ

∫ t

0

dt′ e−i(χ̃−iκ̃/2)(t−t′)(EINL (t′) + EINR (t′)
)
−

− κc

π

∫
dk

∫ t

0

dt′ e−i(χ̃−iκ̃/2)(t−t′)
∫ t′

0

dt′′ e−iδ(k)(t−t′)ca(t′′), (5.100)

where we have defined

DIN (t) =
c√
2π

∫
dk e−iδ(k)tDk(0) (5.101)

and similarly for EIN (t). We treat the last integral in eq. (5.100) with the Markov

approximation. We get

Ca(t) = e−i(χ̃−iκ̃/2)tCa(0) + g

∫ t

0

dt′ e−i(χ̃−iκ̃/2)(t−t′)Cb(t
′)+

+
√
κ

∫ t

0

dt′ e−i(χ̃−iκ̃/2)(t−t′)(DIN (t′) + EIN (t′)
)
−

− κ
∫ t

0

dt′ e−i(χ̃−iκ̃/2)(t−t′)Ca(t′), (5.102)

Multiplying both sides of eq. (5.102) for e+i(χ̃−iκ̃/2)t and taking the time derivative of

it and the second equation in (5.97) we get a system of first order coupled differential

equations for Ca and Cb analogous to (5.15):

Ċa = −(iχ̃+ κ+ κ̃/2)Ca(t) + g Cb(t) +
√
κ(DIN (t) + EIN (t))

Ċb = −(Γ′ + κ̃/2)Cb(t)− g Ca(t)
(5.103)

Fourier transforming the amplitudes, so that the time derivative results in the

multiplication for −iδ(k), we get

(−iδ(k)− iχ̃+ κ+ κ̃/2)Ca(k) = +g Cb(k) +
√
κDIN (k) +

√
κEIN (k)

(−iδ(k) + Γ′ + κ̃/2)Cb(k) = −g Ca(k)
(5.104)

From the second equation we can express Cb in term of Ca:

Cb(k) = − ig

δ(k) + i(Γ′ + κ̃/2)
Ca(k) (5.105)
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which inserted in the first one gives us

δ(k)2 − χ̃(δ(k) + i(Γ′ + κ̃/2)) + iδ(k)(κ+ Γ′ + κ̃)− (κ+ κ̃/2)(Γ′ + κ̃/2)− g2

δ(k) + i(Γ′ + κ̃/2)
Ca(k) =

i
√
κ
(
DIN (k) + EIN (k)

)
. (5.106)

Using the relation

DOUT (t)−DIN (t) = −
√
κCa(t), (5.107)

and operating in the same way we did above we find the reflection and transmission

coefficients

r̃(k) =
δ(k)2 − χ̃(δ(k) + i(Γ′ + κ̃/2)) + iδ(k)(Γ′ + κ̃)− κ̃/2(Γ′ + κ̃/2)− g2

δ(k)2 − χ̃(δ(k) + i(Γ′ + κ̃/2)) + iδ(k)(κ+ Γ′ + κ̃)− (κ+ κ̃/2)(Γ′ + κ̃/2)− g2

(5.108)

and

t̃(k) =
−iκδ(k) + κ(Γ′ + κ̃/2)

δ(k)2 − χ̃(δ(k) + i(Γ′ + κ̃/2)) + iδ(k)(κ+ Γ′ + κ̃)− (κ+ κ̃/2)(Γ′ + κ̃/2)− g2

(5.109)

which generalize (5.44) and (5.45) .

In a similar manner working as in the previous section with the last three

equations in (5.96) we get the equation

Ċd(t) = −i(χ̃− iκ̃/2)Cd(t) +
√
κ(D′IN (t) + E′IN (t)) (5.110)

with

D′IN (t) =
c√
2π

∫
dk e−iδ(k)tD′k(0). (5.111)

Fourier transforming and using the boundary condition we find the transmission and

reflection coefficients for the atom in the lowest state

t̃′(k) = − iκ

δ(k)− χ̃+ i(κ+ κ̃/2)
(5.112)

and

r̃′(k) =
δ(k)− χ̃+ iκ̃

δ(k)− χ̃+ i(κ+ κ̃/2)
(5.113)

which generalize (5.55) and (5.56).

To sum up if we consider decoherence and a weak coupling of the two lower
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states we have that eqs. (5.57) are generalized by

dk(T ) =
(
r̃(k)dk(0) + t̃(k)ek(0)

)
e−i(ωe−i(γ′

1+κ̃)/2)T

ek(T ) =
(
t̃(k)dk(0) + r̃(k)ek(0)

)
e−i(ωe−i(γ′

1+κ̃)/2)T

d′k(T ) =
(
r̃′(k)d′k(0) + t̃′(k)e′k(0)

)
e−i(ωc−iγ′

f/2)T

e′k(T ) =
(
t̃′(k)d′k(0) + r̃′(k)e′k(0)

)
e−i(ωc−iγ′

f/2)T .

(5.114)

5.7 Coherent incoming field in steady state approx-

imation

In this section we move from the single-photon dynamics to the multi-photons case.

We are primarily interested in the situation in which the input field consists of a

coherent state, that, as we have seen in sec. 2.3, is the ”most classical” state of light,

and the atom is started in |g〉,

Because of this fact we can assume a semi-classical description of the external

fields and replace the term responsible for the interaction waveguides modes-cavity

mode in the Hamiltonian (4.17) with the term

HCW = i
√
κE(â† − â), (5.115)

where E is the amplitude of the classical external incoming field, that we have sup-

posed real and on resonance with the cavity frequency. We also have to account

for the decay of the cavity through the two walls introducing two identical Lindblad

operators L̂κ =
√
κâ. The master equation for the system is

ρ̇ = − i
~
[
H, ρ

]
−

∑
i=γ1,γ2,κ

1

2

{
ρ, L̂†i L̂i

}
+ L̂iρL̂

†
i , (5.116)

where in this case H is the hermitian part of the Hamiltonian, and L̂i are the Lindblad

operators which account for the three decays.

Since we are interested in the transmission probability and we want to assume a

steady state approximation, we consider a time T ′ � 1/γ1, otherwise the steady state

solution would be trivially the atom decayed in |f〉. Thus, in the master equation

we can assume γ1 = 0 and eliminate the corresponding Lindblad operator. With

this approximation the Hilbert space reduces to the tensor product between the two-
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dimensional atoic space spanned by |g〉 and |e〉 and the Fock space of the cavity mode

excitations. We get that eq. (5.116) is equivalent to the system of equations

ρ̇ng,ng = +γ2ρne,ne − 2κnρng,ng + 2κ(n+ 1)ρn+1g,n+1g+

+g
√
nDn−1e,ng +

√
κEDn−1g,ng −

√
κEDn+1g,ng

ρ̇ne,ne = −γ2ρne,ne − 2κnρng,ng + 2κ(n+ 1)ρn+1g,n+1g+

−g
√
nDn+1g,ne +

√
κEDn−1e,ne −

√
κEDn+1e,ne

(5.117)

where we have defined Da,b = ρa,b + ρb,a, which satisfy the equations

Ḋng,mg = +γ2Dng,mg − κ(n+m)Dng,mg + 2κ
√
n+ 1

√
m+ 1Dn+1g,m+1g+

+g(
√
nDn−1e,mg +

√
mDng,m−1e) +

√
κE(
√
nDn−1g,mg +

√
mDng,m−1g−

−
√
n+ 1Dn+1g,mg −

√
m+ 1Dng,m+1g),

Ḋne,me = −γ2Dne,me − κ(n+m)Dne,me + 2κ
√
n+ 1

√
m+ 1Dn+1e,m+1e+

−g(
√
n+ 1Dn+1g,me +

√
m+ 1Dne,m+1g) +

√
κE(
√
nDn−1e,me +

√
mDne,m−1e−

−
√
n+ 1Dn+1e,me −

√
m+ 1Dne,m+1e),

(5.118)

and similarly for Dng,mg. In principle this is an infinite dimensional linear system,

but for a given field amplitude E the Hilbert space can be truncated to a number

of excitations n′. The number of states is clearly 2n′ + 1 so that the independent

elements of the density matrix, which is also the dimension of the linear problem, is

d = (2n′ + 1)(n′ + 1).

The system can be solved by a computer for reasonable values of n′. The

transmission intensity is given by the formula

IT = κ 〈â†â〉SS = κTr[â†âρSS ] = κ
∑
n

nρn,n (5.119)

where ρn,n = ρng,ng + ρne,ne. Similarly the intensity lost because of the decay of the

excited state in modes different from the cavity one is

IL = γ2 〈σee〉SS = γ2Tr[σeeρSS ] = γ2

∑
n

ρne,ne. (5.120)

In Fig. 5.4 we report the transmission curve, where we see that the ratio between

the transmitted intensity and the input intensity grows quickly and saturate to one
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when the incoming field E ∼ g/
√
κ. This behavior can be explained considering the

average number of photon in the cavity. In fact for low intensities it replicates the

single photon dynamics and we have a large reflection rate, while at higher intensities

n̄ > 1 and most of the photons do not see the atom so that the behavior of the system

becomes similar to that one of the empty cavity for which we have total transmission.

Looking at the intensity reflected (Fig. 5.5) we see that it reach a maximum and then
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Figure 5.4: Ratio between the transmitted intensity and the input intensity as function
of the input field in unity of g/

√
κ, with g = 400, κ = 100 and γ2 = 2.

remains constant at g2/4κ, which can be considered as the maximum intensity that

can be reflected by the system. The intensity lost because of the decay of the upper

level in modes different from the cavity one (Fig. 5.6) saturates to γ2/2, because

the population of the excited level for strong driving field is 1/2. The value of the

maximum reflected intensity can be derived changing approach in the description of

the dynamics of the system. Up to this point we have used the Schrödinger picture,

now for convenience we move to the Heisenberg picture. From Hamiltonian (4.17) we

can derive the equation of motion of the operator â(t):

d

dt
â(t) = −κâ(t) + gσ−eg(t) +

√
κb̂IN , (5.121)
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Figure 5.5: Reflected intensity as function of the input field in unity of g/
√
κ, with

g = 400, κ = 100 and γ2 = 2.

where we have performed the Markov approximation and defined, in manner analo-

gous to what is done in sec. 3.2, the operator

b̂IN (t) =
1√
2π

∫ +∞

−∞
dk b̂0(k)e−i(ck−ωc)(t−t0). (5.122)

Similarly we can derive the equations of motion of the operators â†, σ−eg, σ
+
eg and σ3

which form a system of coupled nonlinear differential equations. For our purposes we

do not need to deal with it.

We notice that since the input field is in a coherent state we can rewrite eq.

(5.121) replacing the operator b̂IN (t) with a classical field ξ(t) which we assume real:

d

dt
â(t) = −κ

(
â(t)− ξ(t)√

κ

)
+ gσ−eg(t). (5.123)

From this equation we are lead to define the operator

â′(t) = â(t)− ξ(t)√
κ
, (5.124)
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Figure 5.6: Lost intensity as function of the input field in unity of g/
√
κ, with g = 400,

κ = 100 and γ2 = 2.

which has equation of motion

d

dt
â′(t) = −κâ′(t) + gσ−eg(t). (5.125)

Doing this is equivalent to move to a frame in which the cavity has no input field.

In fact, as we have already stated, the field in the cavity without atom would be

ξ(t)/
√
κ, and subtracting it we get the field produced by the atom. The input field

now acts as a classical drive directly on the atom. The reflected intensity is now given

by the operator â′(t), i.e.

IR = κ 〈â′†â′〉 . (5.126)

If we integrate formally eq. (5.125), with the initial condition â′(0) = 0, we get

â′(t) = g

∫ t

−∞
dt′e−κ(t−t′)σ−eg(t

′). (5.127)

Inserting eq. (5.127) and the equivalent for â′† we get

IR = κg2

∫ t

−∞
dt′
∫ t

−∞
dt′′e−κ(2t−t′−t′) 〈σ+

eg(t
′′)σ−eg(t

′)〉 . (5.128)
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We can change the coordinates of integration introducing τ = t′′− t′ and T = t′+ t′′.

Paying attention to the limits of integration we can rewrite the last equation as

IR =
κg2

2

∫ +∞

−∞
dτ

∫ 2t−|τ |

−∞
dTe−κ(2t−T ) 〈σ+

eg(τ)σ−eg(0)〉 , (5.129)

where we have used the fact that in steady state 〈σ+
eg(t

′′)σ−eg(t
′)〉 depends only on the

time difference t′′ − t′. Performing the integral in T we get

IR =
g2

2

∫ +∞

−∞
dτe−κ|τ | 〈σ+

eg(τ)σ−eg(0)〉 . (5.130)

Now 〈σ+
eg(τ)σ−eg(0)〉 has to be evaluated in steady state and integrated for a long time,

compared to the classical Rabi frequency, over the time difference. In steady state and

strong driving there is around 1/2 probability that the atom is in the excited state

and hence σ−eg gives a factor 1/2. At time t = 0 σ−eg brings the atom to the ground

state, but because of time evolution at later times there is a 1/2 probability to find

the atom in the ground state so that σ+
eg gives another factor 1/2. Hence averaged

over time we have 〈σ+
eg(τ)σ−eg(0)〉 = 1/4. Inserting this in (5.130) and doing the last

integral, we get IR = g2/4κ.



Chapter 6

Results and conclusions

6.1 Errors

The validity of the scheme for the photonic transistor we propose depends on the

efficiency of the operations performed with the system. Crucial is the fact that at the

end of the first step the presence of a photon is mapped on the atomic state |f〉, while

the absence is mapped on |g〉. We have to analyze the evolution of the system during

the first step to determine the fidelity of the map. We assume that the operations

performed by a classical control, i.e. the preparation of the atom at t = 0 in the state

1/
√

2(|g〉 + |f〉) and the π/2 pulse at t = T , have fidelity one. We also assume that

the control pulse has a gaussian shape.

In detail what happens during the first step when the control photon is present

is that at t < 0 a photon pulse consisting of a symmetric superposition of a pulse

coming from the left and one coming from the right propagates toward the cavity

while the atom is assumed to sit in the lower state |f〉:

|ψ〉(1)
t<0 =

∫
dk
(
lk(t < 0)b̂†k + rk(t < 0)ĉ†k

)
|E〉 (6.1)

where lk(t) = rk(t) and the state is normalized to one. At t = 0 the classical pulse

69
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mixes the atomic states so that

|ψ〉(1)
t<0

π/2−−→ |ψ〉(1)
t=0 =

1√
2

∫
dk
(
lk(0)b̂†k + rk(0)ĉ†k)

[
|C〉+ |E〉

]
=

=

∫
dk

[(
dk(0)b̂†k + ek(0)ĉ†k

)
|C〉+

(
d′k(0)b̂†k + e′k(0)ĉ†k

)
|E〉

]
(6.2)

where in the last step we have freely renamed the four amplitudes. Note that for now

dk(0) = ek(0) = d′k(0) = e′k(0) and the state is still normalized to one. Then the

system consisting of the external fields, the cavity field and the atom evolves for a

time T , after which the second classical pulse performs the transformation

|g〉 π/2−−→ 1√
2

(|g〉 − |f〉)

|f〉 π/2−−→ 1√
2

(|g〉+ |f〉).
(6.3)

so that the final state is

|ψ〉(1)
FIN =

1√
2

∫
dk

[
dk(T )b̂†k(|C〉 − |E〉) + ek(T )ĉ†k(|C〉 − |E〉) + ca(T )(|A〉 − |D〉+

+
√

2cb(T ) |B〉+ d′k(T )b̂†k(|C〉+ |E〉) + e′k(T )ĉ†k(|C〉+ |E〉) + cd(T )(|A〉+ |D〉)
]
.

(6.4)

As we have anticipated at the beginning of sec. 5.1, since the ideal first step

maps the presence of a control photon into an atomic state |f〉, the error probability

is P ′g given by eq. (5.1):

P ′g = Pg +
1

2
(1− Pg − Pf ) =

1

2
(1 + Pg − Pf ). (5.1)

This form for the probability, as we have explained, depends on the fact that we have

considered a non Hermitian evolution so that at time T the sum of the probabilities

for the atomic states is p < 1, but since the π/2 pulse at time T mixes equally the

two atomic states we can write the normalized probabilities as Pi = Pi + (1 − p)/2.

The probabilities Pg and Pf are readily obtained from the expression of the final state

(6.4):

Pg =
1

2

∫
dk

[
|dk(T ) + d′k(T )|2 + |ek(T ) + e′k(T )|2 + |ca(T ) + cd(T )|2

]
(6.5)
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and

Pf =
1

2

∫
dk

[
|dk(T )− d′k(T )|2 + |ek(T )− e′k(T )|2 + |cd(T )− ca(T )|2

]
. (6.6)

The last contributions in eqs. (6.5) and (6.6) originate from the fact at time T the

photon could be still inside the cavity as excitation of the intra-cavity mode. Also,

and we have neglect this fact in the above discussion, the atom in principle could

be in |e〉 at time T . Nevertheless if we look at eqs. (5.67), (5.68) and (5.70) we see

that the amplitudes ca, cb and cd are proportional to e−δ(t)
2/4σ2

T so that for a ratio

n = T/σT large enough the three contributions are completely negligible.

Now we have just to use the expressions (5.114) for the amplitudes dk(T ), ek(T ),

d′k(T ), e′k(T ). The problem is to perform the integral on k, since the reflection and

transmission coefficients are quite involved. We use the fact that we are in the strong

coupling regime and that the pulse time width is much larger than the time spent

in the cavity by the photon to approximate them. Since dk(0) = ek(0) we need an

expansion of t̃(k) + r̃(k) which expanding the denominator to the first order and

neglecting the terms odd in δ(k) which will be wash out by the integration with a

gaussian with exponent δ(k) gives

t̃(k) + r̃(k) ≈ 1− 2κ(Γ′ + κ̃/2)

g2
− 2κ2δ(k)2

g4
, (6.7)

where we also have omitted all the other terms deriving from the first order expansion

since they are much smaller than that one kept. Using similar arguments we can

expand t̃′(k) + r̃′(k) to get

t̃′(k) + r̃′(k) ≈ −1− 2(iχ̃+ κ̃)

κ
+

2δ(k)2

κ2
. (6.8)

Inserting (6.7) and (6.8) in eqs. (5.114) and using the fact that ek = dk and e′k = ek

and the normalization of the initial amplitudes we find

Pg =
1

4

∣∣∣∣e−(γ′
1+κ̃)T/2

(
1− 2κ(Γ′ + κ̃/2)

g2
− κ2

g4σ2
T

)
+e−γ

′
fT/2

(
−1+

2(iχ̃+ κ̃)

κ
+

1

κ2σ2
T

)∣∣∣∣2
(6.9)

and similarly

Pf =
1

4

∣∣∣∣e−(γ′
1+κ̃)T/2

(
1− 2κ(Γ′ + κ̃/2)

g2
− κ2

g4σ2
T

)
−e−γ

′
fT/2

(
−1+

2(iχ̃+ κ̃)

κ
+

1

κ2σ2
T

)∣∣∣∣2
(6.10)
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Inserting these expressions in (5.1) we find finally the probability of error in the case

that the control photon is present:

P (1)
err =

1

2

[
1− e−(γ1+κ̃+γf )T/2

(
1− 2κ(Γ′ + κ̃/2)

g2
− κ2

g4σ2
T

)(
1− 2κ̃

κ
− 1

κ2σ2
T

)]
(6.11)

We have to consider now the case in which the control photon is not present.

In this case the evolution is much simpler, at time t = 0 the system is prepared in

the state

|ψ〉(0)
t=0 =

1√
2

(
|C〉+ |E〉

)
. (6.12)

The time evolution consists in this case simply in a decay of the amplitude of |C〉 so

that at time t = T before the π/2 pulse the state of the system is

|ψ〉(0)
t=T =

1√
2

(
e−(γ′

1+κ̃)T/2 |C〉+ e−γfT/2 |E〉
)
, (6.13)

and after the classical pulse is

|ψ〉(0)
FIN =

1

2

(
e−(γ′

1+κ̃)T/2(|C〉 − |E〉) + e−γfT/2(|C〉+ |E〉)
)
. (6.14)

It is immediate to get from (6.14) the probabilities for the atomic states:

Pg =
1

4

∣∣e−(γ′
1+κ̃)T/2 + e−γfT/2

∣∣2 (6.15)

and

Pf =
1

4

∣∣e−(γ′
1+κ̃)T/2 − e−γfT/2

∣∣2, (6.16)

so that the probability of error for the case of no control photon is

P (0)
err =

1

2

(
1− e−(γ′

1+κ̃+γf )T/2
)

(6.17)

Assuming that the transistor is used in a way such that the probabilities to have or

not a control field are 1/2 the average probability of error during the first step is

Perr =
1

2

(
P (0)
err + P (1)

err

)
=

=
1

4

[
2− e−(γ′

1+κ̃+γf )nσT /2

((
1− 2κ(Γ′ + κ̃/2)

g2
− κ2

g4σ2
T

)(
1− 2κ̃

κ
− 1

κ2σ2
T

)
+ 1

)]
(6.18)
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If we consider (γ′1 + κ̃+γf )T , κγ2g2 , κ̃/κ and 1
κ2σ2

T
as small parameters, and we expand

eq. (6.18) to the first order in them we find that

Perr ≈
1

4

(
(γ′1 + κ̃+ γf )nσT +

2κ(Γ′ + κ̃/2)

g2
+

2κ̃

κ
+

1

κ2σ2
T

)
. (6.19)

We note that for κ ≤ g we have that σT � κ/g2 so that we can eliminate some terms

from the last expression and reduce it to

Perr ≈
1

4

(
(γ′1 + γf + κ̃)nσT +

κγ′2
g2

+
1

κ2σ2
T

)
. (6.20)

These five terms represent the sources of error that we have, the first, the second and

the fourth terms are due to the decay and decoherence of the atom, the third one is

due to the finite anharmonicity and the last one to the fact that the finite width of

the pulse does not give a perfect phase shift. In general in an experiment of CQED

the parameters that can be engineered quite easily are the coupling constant g, the

cavity decay κ and the pulse width σT .

It is interesting to find the optimal values of the last two parameters, i.e. the

values that minimize the error probability in the simpler case in which the terms due

to the finite anharmonicity and decoherence can be neglected. In this case

Err(κ, σT ) =
1

4

(
γ1nσT +

κγ2

g2
+

1

κ2σ2
T

)
(6.21)

Let’s calculate the zero of the partial derivatives of the error function (6.19):

∂

∂κ
Err(κ, σT ) =

1

4

(
γ2

g2
− 2

κ3σ2
T

)
= 0 (6.22)

and
∂

∂σT
Err(κ, σT ) =

1

4

(
γ1n−

2

κ2σ3
T

)
= 0 (6.23)

The first implies κ =
(γ2σ2

T

2g2

)−1/3
which substituted in the second one gives the optimal

values

κ = 21/5
(
γ1n
)2/5(γ2

g2

)−3/5

σT = 21/5
(
γ1n
)−3/5

(
γ2

g2

)2/5
(6.24)

Since the product of them is proportional to g2/nγ1γ2 they clearly satisfy the condi-



CHAPTER 6. RESULTS AND CONCLUSIONS 74

tion σT � 1/κ. To verify that this is a minimum for Err we have to calculate the

Hessian matrix of the function:

HErr =

 Errκκ ErrκσT

ErrσTκ ErrσTσT

 =

 3
2

1
κ4σ2

T

1
κ3σ3

T

1
κ3σ3

T

3
2

1
κ2σ4

T

 (6.25)

Since both the determinant of HErr, that is 5
4

1
κ6σ6

T
, and Errκκ are positive, values in

(6.24) represent a minimum of Err. Inserting these values in the expression of Err

we find that the optimal error is

Erropt = 2−9/5

(
nγ1γ2

g2

)2/5

. (6.26)

6.2 Gain of the transistor

Characterizing the second step of the protocol depends a little on the exact charac-

teristics which is sought for the transistor. Above we have seen that the transmission

is highly sensitive to the atomic state, but the transmission also depends on the in-

tensity. Ideally the transistor should not transmit any signal photons if there was no

photons in the gate pulse. From the results of section 5.7, we see that this requires

an intensity |ξ|2 � g2/κ. If on the other hand we are mainly interested in having a

large difference in the transmission depending on the state of the first gate pulse, we

can work with a somewhat higher intensity |ξ|2 ∼ g2/4κ. Here we will take the latter

approach. The gain of the transistor is then given by the ratio between the difference

in the number of signal photons and the number of photons in the gate pulse. The

former is of the order of T ′g2/4κ, where T ′ is the time duration of the second steps,

while the latter is one. The time T ′ is limited by the decay of state |g〉 to |f〉. If

we want the gain to be the same in all events we should pick a short time γ1T
′ � 1

to ensure a small probability of decay. On the other hand if we are interested in a

large average gain, we should let the second step last until T ′ ∼ 1/γ1. Inserting the

optimal value of κ and setting T ′ = 1/γ1 we find

G =

(
γ3

2g
4

29n2γ7
1

)1/5

(6.27)

which can be very large.
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6.3 Conclusions and outlook

In this way we have proved that our scheme can provide a valid model for the real-

ization of a single photon transistor. For large anharmonicity and optimal values of κ

and σT , we can do a rough esteem of the error probability and of the gain assuming

that the decay and decoherence rates are all similar to a unique parameter γ. With

this approximation we find readily that the error probability of the first step. i.e. that

the control photon provides a wrong information, scales as s−1, where s = (g/γ)4/5.

On the other hand the gain of the transistor scales as s. Superconducting circuits

state-of-the-art experiments, such as those ones realized in Zürich by the group lead of

A. Wallraf [22, 23] have decoherence time ranging from 0.5 to few microseconds. The

coupling rate g/2π in the same experiments is around 0.4 GHz, 104 times that one of

real atoms in microwaves cavities, so that with these values we have that s ≈ 10.

Problems with these values arise because the typical anharmonicity α/2π ob-

tained with superconducting qubits is around 0.4 GHz, so that the condition g/α� 1

is not satisfied [23]. Since this condition is required for the working of the transistor

it is necessary to decrease g, reducing also in this way the efficiency and the gain.

It is important to note that the condition that can be more relaxed is g � κ, in

fact, despite the fact that we have assumed to be in the strong coupling regime, we

have never used it. As already pointed out by Kimble in Ref. [19], the ratio between

these two parameters has almost no effects on the phase shift of the photon, while

is required that g2/κ � γ2 to have a low probability to loose the photon during the

first step.

We conclude mentioning some possible applications of the single photon tran-

sistor. As pointed out in Ref. [10] the most important and natural application is

high precision photo detection, where the large gain in the signal field enables the

detection of the weak field of the single photon. In this situation, the difference be-

tween the transmitted intensities of the signal fields in the two case is large provided

that that field is not too strong (compared to g2/κ) and can be set to an optimal

value with respect to the sensibility of the classical detector. Another application is

the realization of Schrödinger cat states. These in quantum optics are states of light

consisting in a superposition of states that are macroscopically distinguishable [3]. In

our case if we send during the first step a superposition of zero and one photon we

get that this pulse becomes entangled with a much stronger field.
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