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Abstract

Type Ia supernovae have become an increasingly popular tool among astronomers,
as they offer a precise and accurate way to calibrate distances on large scales in
the universe. Using data from the Young Supernova Experiment, I analyse the
properties of the light curves of type Ia supernovae with the light curve fitting tool
SNooPy, and apply the results to different areas of cosmology. This is done using
Bayesian inference in combination with Markov Chain Monte Carlo.

Initial calibration of the supernova sample is important for quality assurance. I
perform a standardization of the Ia supernova sample I gather from the Young
Supernova Experiment in the BV and gr filters. I find that depending on which
filters are used, one should expect to obtain different results. Furthermore, I inves-
tigate if an uncertainty on the redshift is present in my sample. I find that a single
supernova outlier can drive an uncertainty in the redshift, but no uncertainty is
present if the sample quality is assured.

The Hubble constant plays a key role in cosmology, as it determines the expansion
rate of the universe. I measure the Hubble constant for two different calibration
samples, and find H0 = 72.11 ± 2.02 km s−1 Mpc−1 using the SH0ES calibration
sample, and H0 = 66.81± 2.45 km s−1 Mpc−1 using the SBF calibration sample.

The linear growth can help determine, if new theories of gravity might be needed to
explain Dark Energy. I measure the linear growth, fσ8, for three different samples
of varying sizes. The most precise measurement is obtained by combining my sam-
ple with a subsample of the Foundation survey, for which I find fσ8 = 0.37± 0.07,
in agreement with the Planck cosmology.

Because using type Ia supernovae for distance estimation is widely used among
astronomers, it is important to use as good a light curve fitting tool as possible.
I compare the two main light curve fitting tools, SNooPy and SALT2, by testing
how well they calibrate my sample of Ia supernovae. This is done for two samples:
one where all supernovae are shared, and one where the sample size is maximized
individually. I find that for both samples, SALT2 performs a better calibration
than SNooPy, by a measure of the intrinsic scatter. Using SALT2, I find σint =
0.12± 0.02 for the shared sample and σint = 0.18± 0.02 for the maximal sample,
versus values from SNooPy of σint = 0.17± 0.04 and σint = 0.21± 0.03.
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1 Introduction

1.1 Introduction and thesis goal

Supernovae (hereafter SN(e)) are some of the most extreme events in the uni-
verse, and therefore also some of the most interesting. Each type of SN has its own
trademark making it unique, but especially one has played a key role in cosmology,
namely the type Ia SN. A type Ia SN is special, because the prerequisites for one
to occur are very specific, which creates a tight correlation between theory and
observation. This allows for the use of type Ia SNe as cosmic yardsticks, resulting
in a reliable and precise distance estimator. Because of this, Ia SNe have risen to
be a center of attention and studying for many cosmologists in the recent decades,
and has likewise been a part of several scientific accomplishments. This includes
the discovery that the expansion of the universe is accelerating, as well as increas-
ingly precise measurements of the Hubble constant. They are thus a powerful tool
for cosmologists, and the impact they have had, and continue to have in modern
research, verifies this.

The Young Supernova Experiment is an experiment aimed at observing transient
astronomical events, which includes type Ia SNe. In this thesis, the aim is to use
early data from the experiment to analyze the light curves (hereafter LC(s)) of
type Ia SNe, and then apply the results of the LC analysis to several areas of
relevance within cosmology.

The Hubble constant describes the expansion of the universe, and therefore have
big implications on our understanding of it. Much work has gone into measuring
this constant, and over the last couple of decades, the certainty to which this has
been accomplished has become impressively high. However, as a result of increas-
ingly precise measurements, a tension has risen due to a conflict between results
obtained using different methods. Using an approach to measuring the Hubble
constant based on early-universe physics, seems to produce a different result than
approaches relying on late-universe physics. As such, it is of great importance to
build a significant sample of measurements. This will help to determine whether
our understanding of the physics are wrong, and hence if the model that these mea-
surements are based upon needs modifications, or if the tension can be attributed
to errors in the methods. I wish to use Ia SNe to obtain the first measurement of
the Hubble constant based on data from the Young Supernova Experiment.

Since the discovery of the accelerated expansion of the universe, astronomers have
been trying to explain the cause of this phenomenon. The source of the acceler-
ation has been dubbed Dark Energy due to its mysterious nature, but not much
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is known about this force. Some scientists have tried to explain Dark Energy by
a modification in the theory of gravity, making it important to investigate if the
currently accepted cosmological model corresponds with observations. If this is
not the case, these modified theories of gravity might be needed to explain Dark
Energy. I aim to determine the linear growth using my sample of Ia SNe, as this
observational quantity can help constrain theories and models when compared to
their theoretical predictions.

Lastly, I will investigate if the two main LC fitting tools produce similar results,
when applied to the same sample of SNe. As these programs are based on models,
it is not unreasonable to think that one might perform better than the other. If
one appears to produce better results, it might be worth considering which LC
fitting tool to use in future work with Ia SNe.

In Section 1 I explain more about the background and motivation of the project.
In Section 2 I describe the methods I have used to work towards the aim of the
thesis. I present the results of the analyses in Section 3, and in Section 4 the
results are discussed and put into a broader context. The main conclusions of the
thesis are summarized in Section 5.

1.2 Measuring cosmological distances

Distances between objects in the universe have been notoriously difficult to mea-
sure throughout the history of astronomy. As there exists no option to directly
measure distances to objects very far away, clever methods are needed to determine
these. These methods are what makes up what is known as the cosmic distance
ladder. The methods used in the cosmic distance ladder all wary in applicability,
as they are limited by distance. As such, which method, or rung, of the cosmic
distance ladder one has to use, depends on the object to investigate. The reason
the cosmic distance ladder has gotten its name, is that each rung of the distance
ladder is used to calculate the next. This succession of methods to determine dis-
tances to celestial objects are needed, as no single method can determine distances
on all scales. However, this in turn means, that the distance measurements derived
from the cosmic distance ladder are all dependent on the fact, that the prior steps
are accurate.
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1.2.1 Direct distance measurements: parallax, eclipsing binaries, and
megamasers

On one of the lowest scales of the cosmic distance ladder, we find direct distance
measurements. These are methods, with which we can obtain a direct distance
measurement to an object, independent of other distances. These can thus be
considered the base of the cosmic distance ladder.

To measure direct distances within our own galaxy, we often resort to the method
of trigonometric parallax. If we observe a star at two different points, the position
of the star will shift by an angle θ. The standard technique is to measure the shift
in θ from the current position of the earth, compared to half a year later, using
the distance from the Sun to the Earth as a baseline. The distance to the star will
then be given by:

d =
1

p

Where the parallax is p = θ/2 in arcseconds, and d is the distance to the star in
parsec. This formula holds, if the baseline we use for the triangle is 1 AU, i.e. the
distance between the Earth and the Sun. Because we know the distance from the
Earth to the Sun with great precision, the accuracy of the measurements using
stellar parallax is limited only by how precisely we can measure θ. Because the
parallax becomes smaller with greater distance, we can only use this method for
relatively nearby objects. One of the most prominent uses of the parallax method,
is to measure the distance to Cepheid variable stars (hereafter Cepheids) in the
Milky Way. The main sources of parallax measurements are from the older Hip-
parcos satellite, and the newer actively observing Gaia space observatory.

Another method to obtain direct distance measurements, is by the use of eclipsing
binaries. This method requires, that we are lucky to observe a binary system of
stars with an orbital plane along our line of sight. As the stars undergo a full orbit,
we will observe two decreases in the brightness of the binary system, corresponding
to when the stars pass in front of each other with respect to us as observers. The
width of these eclipses in combination with a measurement of the radial velocity
of each star, will give us the size of each star. Stellar models can then give us a
good estimate of the luminosity of the stars, which in combination with a mea-
surement of their apparent magnitude will yield the distance to the system. This
method is applied in [Pietrzyński et al., 2013], where they use cooler stars with
accurate stellar models, to estimate the distance to the Large Magellanic Cloud to
an accuracy of 2%.

Finally, megamasers can also provide a direct distance measurement. A megamaser
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is a component of a galaxy which emits energy through intense radiation, typically
in the microwave wavelength range. This happens because the component, for
example a gas cloud, is experiencing stimulated spectral line emissions. Through
interferometric observations of megamasers in accretion disks around supermassive
black holes (SMBHs), these masers can act as tracers of the Keplarian motion
about a point mass. Using the megamasers as tracers of position and velocity in
combination with centripetal acceleration, the distance to the megamaser can be
estimated. This is done in [Pesce et al., 2020], where they use water megamasers
in the accretion disks of SMBHs to place constraints on the distance to and the
mass of the SMBH.

1.2.2 Cepheid variable stars

On the next rung of the cosmic distance ladder, we can measure distances using
Cepheids, building on the methods of direct distance measurements. Cepheids are
luminous supergiant stars, which are pulsationally unstable. The main accepted
theory for why Cepheids pulsate is the so-called ’κ-mechanism’. It is believed,
that the helium in the outer layers of the Cepheid is the main driving force behind
the process. At the dimmest part of a Cepheid’s pulsation cycle, the outer layers
of helium are doubly ionized. Doubly ionized helium is opaque, meaning that the
radiation from the inner layers of the Cepheid can not escape. Because of this
the temperature rises, which causes an expansion of the outer layers. Because of
the expansion, the outer layers begin to cool, and the helium becomes less ionized,
and therefore also less opaque. The radiation from the inner parts can now escape,
increasing the luminosity of the Cepheid. As the cooling proceeds, at some point
the radiation pressure will not be able to withstand the gravitational attraction of
the Cepheid, resulting in a contraction. This then restarts the cycle of expansion
and contraction. Because of this pulsation, the luminosity of Cepheids vary due
to changes in their surface area and surface temperature.

Henrietta Leavitt found a correlation between the time of maxima in the observed
brightness, denoted the period P , and the mean flux f̄ , averaged over one period
[Leavitt and Pickering, 1912]. She found, that Cepheids which have the longest
period also have the highest averaged flux. Using this correlation, we can cali-
brate Cepheids and use them as standard candles, if we can find the distance to a
single Cepheid using one of the direct distance methods. A standard candle is a
cosmological object that has a known absolute magnitude, which is related to the
distance to the object. In reality, we use as many Cepheids as possible and not
just a single Cepheid, as a greater sample yields a more accurate normalisation of
the period-luminosity relation.
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We can accurately measure the flux and periods of Cepheids out to a luminosity
distance of dL ∼ 30 Mpc.

1.2.3 Surface brightness fluctuations

The method of using surface brightness fluctuations (hereafter SBF) for distance
measurements was first proposed by [Tonry and Schneider, 1988]. The SBF used
for distance measurements comes from the galaxy image of an early-type galaxy.
In this image, there will be measureable fluctuations in its surface brightness due
to the discreteness of the stars within the galaxy.

Imagine we have two identical galaxies, one placed at a distance of twice the other.
The mean amount of stars in a pixel of the galaxy image N scales with the dis-
tance as N ∼ d2, and the flux scales with the distance as f ∼ d−2. The galaxy
at twice the distance will contain four times as many stars in each pixel, but the
mean amount of flux we would measure would also decrease by a factor of four,
meaning the mean surface brightness that we would measure in every pixel of the
image for each of the two galaxies would be the same. However, the root mean
square between the pixels relative to the mean flux will scale as RMS ∼ d−1. This
means, that the galaxy at twice the distance will appear twice as smooth in the
galaxy image.

The amplitude of these fluctuations thus go with the distance as d−1, and they
can therefore be used as a distance indicator. The calibration of the zero point of
SBF measurements, however, relies on a distance independent observable, such as
Cepheids. SBF can be observed out to a distance of ∼ 100 Mpc, which is further
compared to the distance of ∼ 30 Mpc for Cepheids, with an uncertainty of 5−10%
[Cantiello et al., 2018].

If we wish to find the distance to celestial objects further away, we need an even
more luminous object, such as a SN.

1.2.4 Supernovae and type Ia

SNe are some of the most luminous events in the universe. The outcome of the
SN and its properties are greatly dependent on the mass of the progenitor star.

For high mass stars, typically around M > 8 M�, the SN is driven by a core
collapse, as the outwards radiation pressure produced at the core of the star, can
no longer withstand the inwards gravitational pressure caused by its own mass.
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For medium mass stars, such as our sun, the process is quite different, and does
not directly result in a SN. When the core of a medium mass star consists of
carbon and oxygen, it does not have the required temperature and pressure to
begin higher element fusion processes, contrary to the high mass stars. Due to
mass ejection, its outer layers are stripped away, and what remains is a planetary
nebulae, as well as the hot core consisting of carbon and oxygen. As there are
no nuclear reactions in the core, it cools down and shrinks over time, settling to
become what we know as a white dwarf.

The white dwarf does not keep decreasing in size however, as most of the electrons
in the core are degenerate, which gives rise to electron degeneracy pressure. This
degeneracy pressure arises, because the Pauli exclusion principle does not allow
two identical half-integer spin particles, such as electrons, to occupy the same
quantum state. As a result, a pressure will arise resisting compression of matter
further. This does not mean, that the white dwarf can not end in a SN. If ei-
ther a white dwarf in a binary system is able to accrete gas from the outer layers
of the companion star, or two white dwarfs merge, the mass of the white dwarf
will increase. As the mass of the white dwarf approaches what is known as the
Chandrasekhar limit, which is a mass of M ∼ 1.4 M�, the increase in pressure
of the interior of the white dwarf allows for the fusion of carbon. As a result,
the temperature increases as well. Because the white dwarf is made of degener-
ate matter, it can not expand and cool, even though the temperature continues
to increase. The result is a runaway process of reactions, eventually leading to a
thermonuclear explosion of the white dwarf. This is what is known as a type Ia SN.

Observationally, type I SNe are classified by the absence of hydrogen emission lines
in their spectra, and type Ia SNe are further classified by a Si λ6355 absorption
feature in their spectrum. The LCs of type Ia SNe are powered by the radioactive
decay of 56N to 56Co.

1.2.5 Type Ia SNe as standard candles

Even though SNe are very luminous events, they do not usually allow for dis-
tance estimations. Under normal circumstances, there would be little way to tell if
we were looking at a very dim nearby SN, or a very bright SN far away. However,
because the process for a type Ia SN to occur is so specific, if we can identify a
given SN as a type Ia, it fixes the mass and luminosity of the SN, allowing us to
use it as a standard candle. This means, that we can assume any deviance from
the expected brightness is due to the distance between the observer and the SN.
The luminosity of a type Ia SN at peak brightness is about L = 4× 109 L�. Thus,
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for a moderately bright galaxy, the type Ia SN can outshine all of the other stars
in the galaxy combined. Type Ia SNe have been observed at a redshift of z ∼ 2.5,
meaning we can use them as distance indicators to approximately this redshift
[Rodney et al., 2014][Graur et al., 2014].

Because type Ia SNe can be used as standard candles, we can estimate the distance
to all observed type Ia SNe, if we know the distance to just one. This means, that
type Ia SNe can then also be used as the next rung of the cosmic distance ladder.
The typical approach to calibrating the distance to Ia SNe, involves observing a
SN in the same galaxy as a Cepheid. Because we can estimate the distance to
the Cepheid using the lumniosity-period relation in a given galaxy, we can also
estimate the distance to the SN. Like for the calibration of Cepheids, we use as
big of a sample as possible of Cepheid and SN related events to calibrate the dis-
tance to a given SN. Once we have the distance to a type Ia SN, we can proceed
to estimate the distance to any observed Ia SN without the need for a Cepheid
calibration measurement in the galaxy, by comparing the observed luminosities of
the two events. A prerequisite for this method is, that we observe a Cepheid and a
Ia SN in the same galaxy, which is a rare occurrence. Because of this, the sample
size of these calibration SNe is relatively small, and an important limiting factor
in the precision to which we can estimate distances to other Ia SNe.

Because we know the expected luminosity of the Ia SN, we can also correct for
the extinction of the emitted light. Extinction is the result of absorption and scat-
tering of light, as it traverses through a medium. Dust causes a lot of extinction
between an observer and the source, either by scattering or absorbing the light. It
is therefore critical to account for extinction features, when working with cosmo-
logical observations.

1.3 Phillips Relation and color correction

Even though the theoretical expectation of the peak magnitude of all type Ia
SNe should be roughly the same, due to the fact they stem from the same mecha-
nism, this is not what is observed. Observations of galaxies in which Ia SNe occur,
where the distances to the galaxies have been determined using Cepheids, show
that Ia SNe do not always have identical peak magnitudes. In fact, the luminosity
appears to vary from L ≈ (3− 5)× 109 L�.

This could pose a problem for the usability of type Ia SNe as standard candles, as
there would then be no way to determine the absolute magnitude of a given SN
with great certainty. This in turn means that there is no way of telling, if we are
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looking at a Ia SN which happens to be very luminous, or if the distance to the
SN is low.

It has been observed, however, that there is a correlation between the peak lumi-
nosity of Ia SN and its LC shape. This relation is known as the Phillips Relation,
or the luminosity-decline relation, and was formulated by Mark Phillips in 1993
[Phillips, 1993]. Phillips observed nine Ia SNe in the B, V , and I bands, with
relative distance measurements to their host galaxies. Correcting for the extinc-
tion, he was able to find a reasonable estimate of the absolute magnitude of the
SNe. Using the absolute magnitudes and LCs of the SNe, Phillips noticed a strong
correlation between the peak luminosity and the decline rate of the luminosity,
with the steepest slope of the correlation in the B band, becoming progressively
flatter in the longer wavelength bands V and I. The correlation Phillips noticed,
is that the higher the absolute magnitude of a type Ia SN, the greater its decline
rate. Phillips formulated the luminosity-decline relation as a correlation between
the peak luminosity of the light curve, and, after some experimenting, the param-
eter ∆m15. This parameter is defined as the decline in the magnitude in the B
band after 15 days. Phillips used ∆m15, as he found this parameter to provide the
greatest discrimination.

In addition to a term relating the shape of the LC to its peak, the observed SN
is also affected by a shift in color. As such, if we wish to use Ia SNe as stan-
dard candles, we need to correct for this color shift. This can be done by using a
color correction parameter, which correlates the peak magnitude of the SN with
its measured color. This was first done by [Tripp, 1997]. The shift in color usually
comes from several factors and not a single place. This includes dust from the
intergalactic medium, the interstellar medium of the host galaxy, as well as the
intrinsic color of the SN. However, seeing as it makes no difference what the con-
tribution from each source is if we want to correct for the total shift in color, the
effects of these dust sources are all contained within a single parameter, denoted
as R.

Thus, the use of type Ia SNe as standard candles can be recovered, despite fluctu-
ations in the peak luminosity and a shift in color, if they are first calibrated using
the associated corrections.

1.4 The Hubble Constant

The current standard cosmological model to describe the nature of our universe,
is the Λ Cold Dark Matter model (hereafter ΛCDM). The ΛCDM model best
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describes the data we observe, however the model is not without flaws. One of
the most important parameters in our current understanding of the universe is the
Hubble Constant, H0. H0 describes the Hubble flow, i.e. the expansion rate of the
universe, which sets the distance scale. It is defined as:

H0 = a−1
da

dt

when a, the scale factor of the universe, is a = 1.

Because H0 is a central parameter in the ΛCDM model, it is of great interest to
scientists to determine its value as accurately as possible. There are several ways
to accomplish this, however especially two methods have gained popularity based
on their applicability, and the precision to which they are able to measure the
parameter.

The first method applies the ΛCDM model to describe early-universe physics, us-
ing fluctuations in the Cosmic Microwave Background (hereafter CMB) to produce
a model consistent with what we observe. The model which best fit the overall
data of the observed CMB spectrum in a flat ΛCDM universe, results in a value
of H0 = 67.4± 0.5 km s−1 Mpc [Aghanim et al., 2020].

The second method uses observations of the late universe (the universe as it is
today), to measure the distance-redshift relation from which we can obtain H0.
As described in Section 1.2, this method relies on building a distance ladder,
which uses Cepheid calibrations of the luminosity to measure the distance to
type Ia SNe. Using this method, [Riess et al., 2021] have measured a value of
H0 = 73.2± 1.3 km s−1 Mpc.

The two methods, although different in nature, should agree on the final result of
H0. However, as can clearly be seen, they do not. This discrepancy in H0 is known
as the Hubble tension. The measurements are in clear disagreement at ∼ 4.2σ,
meaning it is very unlikely that it is due to random statistical effects that the
measurements disagree. This also means, that beyond unlikely random statisti-
cal effects, there are two overall alternatives which can explain the Hubble tension:

(1) Hidden and currently unaccounted for systematic errors in the Planck or Riess
determinations of H0.

(2) The ΛCDM model is wrong and requires modification, because H0 determined
from the CMB depends on the assumed cosmological model.
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As such, for the method using observations of the distance-redshift relation, it
becomes important to build an increasingly larger sample size of Ia SNe, to verify
the validity of the results, or obtain evidence to justify modification of the ΛCDM
model. Observations from YSE of Ia SNe can help build this larger sample. In
Section 2.4, I use the Ia SNe from YSE to estimate the Hubble constant.

1.5 The peculiar velocity field

Peculiar velocities are motions of objects which deviates from the general and
homogeneous expansion of the universe, i.e. the Hubble flow. Peculiar velocities
can be attributed to the fact that on scales smaller than ∼ 100 Mpc, the dis-
tribution of matter is not homogeneous, and they can therefore be used to trace
this distribution. We can link peculiar velocities to perturbations in the density
of matter, which can be used to constrain cosmological parameters describing the
underlying matter distribution, which in turn describes the large scale structure
of the local universe.

The cosmological principle states, that when viewed on a large enough scale, the
distribution of matter in the universe is homogeneous and isotropic. However, for-
mation of structures such as galaxies proves that, on smaller scales, this is not the
case. It is believed, that these structures are the result of gravitational instabilities
in the early universe. These small density deviations can be seen in the CMB, as
they are coupled with the small temperature fluctuations we observe in the CMB
today.

We can use linear perturbation theory to describe the relationship between the
observed peculiar velocities of objects, and the mass density fluctuations on scales
larger than ∼ 10 Mpc. On smaller scales than this, the linear theory breaks down
and becomes inapplicable. The density perturbations are commonly characterized
by the fractional difference, which we assume to be small:∣∣δ(r)∣∣ =

ρ− ρ̄
ρ̄
� 1 (1)

Where ρ is the density and ρ̄ the mean density of the universe. The relationship
between δ and the peculiar velocity field v(r) is given by:

v(r) =
f(Ωm)

4π

∫
d3r′δ(r′)

r′ − r

|r′ − r|3
(2)

where r is measured in km s−1. f(Ωm) is the growth rate of density perturbations,
with f ≈ Ωγ

m, where γ ≈ 0.55 for the ΛCDM model. However, this is assuming

Page 10 of 65



that the currently accepted theory of gravity, the theory of General Relativity
(hereafter GR), holds. For modified theories of gravity, γ might take on a different
value, and hence measurements of peculiar velocities can also be used to constrain
theories of gravity [Boruah et al., 2020].

This becomes especially relevant when trying to explain the accelerated expansion
of the universe. The ΛCDM model attributes the acceleration to Dark Energy,
which is included as a cosmological constant in the equations of GR. Because of
this, GR also describes the growth of structure. Measuring the growth of structure
is therefore of great importance, to confirm whether the predictions derived from
the ΛCDM model and GR accurately describes the universe on large scales. If
this is not the case, modified theories of gravity might be needed to explain the
acceleration of the universe. One of the most prominent models of modified gravity
is the f(R) model [Linder, 2009]. This model can be challenging to distinguish
from GR, as it can have an expansion history mimicking the ΛCDM model, yield-
ing a similar redshift-distance relation. The two are however distinguishable by
their prediction in growth of structure. The first step to determine if such modi-
fied theories of gravity are needed, is to check the consistency of the ΛCDM model.

According to the ΛCDM model, most of the matter in the universe is made up
of dark matter. This means, that we can not observe most of the matter density
contrast, and so to use Eq. 2, we must make an assumption about the distribution
of matter relating to observations of galaxies. Galaxies can be thought of as high
peaks of an underlying initially randomly distributed density field. We therefore
assume, that we can trace the true distribution of the mass density field, using
observations of the distribution of galaxies while accounting for the bias associated
with these observations. Assuming linear biasing holds on large scales, we can
relate the distribution of galaxies to the mass density distribution by:

δg = bδ

where b is the linear galaxy bias, defined as the ratio of the mean overdensity of
galaxies to the mean overdensity of mass. This linear bias allows us to describe the
relationship between the spatial distribution of galaxies and the underlying dark
matter density field. Inserting this into Eq. 2, we can use it to predict peculiar
velocities, where:

β =
f

b
(3)

describes the relationship between gravitational acceleration and peculiar veloci-
ties [Carrick et al., 2015].
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Under the assumption of linear biasing, we can write b = σg8/σ8, where σ8 is the
root mean square density fluctuation in a sphere of radius 8 h−1Mpc. Inserting
this into Eq. 3 yields:

β =
fσ8
σg8
⇒ fσ8 = βσg8 (4)

where fσ8 is what we measure, as a product of the linear growth and σ8. We
can measure σg8 directly from the distribution of galaxies, and so by estimating β
from the peculiar velocity field, the cosmological parameter fσ8 can be constrained.

Using the reconstructed density and radial velocity code from [Carrick et al.,
2015]1, I construct Figure 1 showing the density field (a) and the radial velocity
field (b) in the supergalactic plane. The distances these are based on are obtained
in an iterative way in [Carrick et al., 2015]. First, they assume no peculiar velocity
correction in the redshift-distance relation, and compute the density and pecu-
liar velocity fields. Then, using this first estimate, they recalculate the distances,
where the redshift-distance relation is now modified by peculiar velocities of the
first estimate. Repeating these steps several times, their results converge to what
they represent as the final estimate. At the center of both figures (0,0) is the Local
Group, within which the Milky Way lies. Furthermore, several galactic superclus-
ters have been marked, showing that several regions of overdensity corresponds
with the position of these. Comparing the radial velocity field to the position of
these superclusters, we can see that with respect to the local group, the radial
velocities behave as we would expect them to. The superclusters gravitationally
attract the matter in their vicinity, and so from our point of view, we will either
see radial velocities around a supercluster receding from us or approaching us,
corresponding to a Doppler redshift and a Doppler blueshift, respectively. Accord-
ingly, the radial velocities have been marked either with red to indicate a Doppler
redshift, or blue to indicate a Doppler blueshift. Overall, it is clear to see that the
velocity field traces the underlying mass density distribution.

The observed redshift of a galaxy stems from a combination of peculiar velocity,
and a recessional velocity due to the Hubble flow. To use peculiar velocities to
constrain β, then, once needs to know the distance to the galaxy in order to
separate these two components. The contribution from the Hubble flow component
in a non-relativistic limit, v ≈ cz, can be found by v = Hr. Type Ia SNe are great
distance indicators, and can hence be used for this purpose.

1Publicly available: https://cosmicflows.iap.fr/
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Figure 1: The reconstructed density field (a) and radial velocity field (b) of galaxies within
200 h−1 Mpc from [Carrick et al., 2015] shown in galactic coordinates. The Local Group have
been marked at (0,0) with a circle. The position of several superclusters near the Local Group
is shown with an x.

1.6 The Young Supernova Experiment

The Young Supernova Experiment (hereafter YSE) is a three year long ex-
periment, focused on discovering and following up transient astronomical events
(hereafter transients). Transients are astronomical events whose duration are of
varying length, but can range from hours to years. Transients are given their
name due to the contrast in their timescales, when compared to the timescales of
the evolution of galaxies, stars, and other long-time evolving astronomical objects.
Transients include a wide range of objects, such as tidal disruption events, SNe,
and more. YSE uses, at the time of writing, the telescope Pan-STARRS1 (here-
after PS1) to perform wide-field surveys of the sky, covering an area of 750 deg2,
taking up 7% of the total observation time of PS1. The use of wide-field surveys
significantly increases the chance of discovering a transient, as transient events are
unpredictable, meaning the greater an area surveyed, the greater the chances of
discovering a transient. In time, YSE plans on using Pan-STARRS2 in their survey
for transients as well, increasing the surveyed area to 1500 deg2 [Jones et al., 2021].

Pan-STARRS observes through six broadband filters, grizywP1, but YSE uses only
the griz filters. PS1 can observe to a depth of gri ≈ 21.5 mag and z ≈ 20.5 mag,
spanning a wavelength range of 3943.40 − 9346.00 Å, up to a redshift of z ≈ 0.2.
YSE provides increased coverage in the iz bands, providing opportunities to ob-
serve transients at redder wavelengths. A lot of rare classes and subclasses of
transients have low luminosity, are fast evolving, or are reddened. These rare

Page 13 of 65



classes and subclasses include for example subclasses of type Ia SNe, tidal dis-
ruption events, and low-luminosity transients. Observing at longer wavelengths
will allow YSE to increase the amount of rare transient discoveries. A reason it is
preferable to observe at longer wavelengths, is due to the presence of dust between
the observer and the transient. To minimize the effect of dust in the Milky Way,
YSE avoids observations in the galactic plane.

Most importantly for this thesis, YSE will observe a great number of type Ia SNe.
Because low redshift type Ia SNe can be used as probes for the large-scale structure
of the universe, these are of great interest. A high amount of already made low-z
Ia SNe observations are also subpar when compared to today’s standards, as they
were compiled in a time when the uncertainty on cosmological observations were
not in the order of milli-magnitudes. As such, replacing these legacy observations
with more precise measurements of Ia SNe are of great interest for studies making
use of Ia SNe.

YSE will also be able to provide important data for future facilities. The Vera C.
Rubin Observatory (previously named and hereafter denoted LSST), named after
Vera C. Rubin who did pioneering work on galactic rotation rates, is expected to
see first light in 2022. LSST will, among other things, observe the sky for tran-
sients like PS1, however it will not be able to produce a low-z sample of transients.
This means LSST will have to rely on external low-z data sets, when making cos-
mological measurements. Furthermore, as time is of the essence when observing
transients to determine potential followup observations or full LC classifications,
there is a need to be able to identify interesting transients out of a large sample.
YSE will be able to provide training data for machine learning algorithms aimed
at identifying these rare transients. The multi-color LCs observed by PS1 and PS2
will be most useful to have in the training data, as there is a lack of coverage of
LCs in the iz bands from other current time-domain surveys.

1.6.1 YSE-PrioritiZe

YSE-PrioritiZe (hereafter YSE-PZ) is a web-based application built on a MySQL
database. The data from PAN-STARRS observations go through an extensive
sorting process to find bona fide transients. This involves both machine learning
algorithms trained on slow-moving asteroids to recognize ’good’ objects, as well as
a manual vetting process. If a transient is deemed real, it is sent to both the tran-
sient name server and YSE-PZ. YSE-PZ thus contains the data of what is deemed
to be real transients from all of YSE. The data for every transient is available on
its individual summary page.
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YSE-PZ also ingests photometric data from other surveys. For example, the YSE
survey tries to interleave observations with those of the Zwicky Transient Facility,
increasing the ability to identify young transients. This can help to better visualize
the LC of a given transient, because of the potential for an increase in photometric
data when observations from the two surveys are combined.

To access large amounts of data, YSE-PZ makes use of a query explorer. In the
query explorer, one can write an SQL script to sort YSE data by tags. By doing
this, the user can construct their own table of data, containing specific parameters
of interest for any transient included in the chosen tags.

2 Method
The data used in this thesis is from YSE-PZ. Because I want only data from

type Ia SNe, the SQL script to gather the data from the query explorer includes a
requirement, that a given transient has been spectroscopically classified as a type
Ia SN. Also, the script includes the requirements, that the photometric data points
are from YSE, and that an observation is made with the GPC1 camera of the PS1
telescope.

The data output from the script does not exclude data points from filters differ-
ent from the desired griz filters. To make sure this data is not included in further
analysis, further data filtration is done in Python, where measurements made with
other filters are discarded. The Python script also removes measurements with no
defined magnitude or error on the magnitude. Finally, the script sorts the mea-
surements by time from earliest to latest, and outputs a file for each SN containing
the necessary data for a LC fitting program to use it. After the initial data gath-
ering process is complete, I have data from N = 157 spectroscopically classified Ia
SNe.

2.1 Markov Chain Monte Carlo

The work in this thesis deals with fitting a wide range of models to different
kinds of data sets, such as LCs of Ia SNe, estimation of H0, peculiar velocity mod-
els etc. In all cases, I measure the model parameters using the Markov Chain
Monte Carlo (hereafter MCMC) technique.
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MCMC has become an increasingly used and preferred method in many aspects of
science, when working with scientific inference. An increase in the availability of
computational power over the last couple of decades, has allowed for the concept
of Bayesian data analysis to become much more accessible. Bayesian theory is a
theory to interpret data, allowing for prior knowledge of a given model together
with the observed data, to constrain the parameters of a model. This is done by
computing the probability distribution function, which have led to the outcome
of the observed data. At the heart of Bayesian analysis is Bayes theorem. Bayes
theorem tells us, that the posterior probability distribution is directly proportional
to the product of the prior distribution and the likelihood distribution:

P
(
Θ|D

)
∝ P (D|Θ)P (Θ) (5)

Where P
(
Θ|D

)
is the probability of the model parameters being true given the

observed data (called posterior), P
(
D|Θ

)
is the probability of observing the data

given the model parameters (called likelihood, hereafter LH), and P (θ) is any
knowledge we have of the model prior to obtaining the observed data (called prior).

It is generally rare that an analytical solution of the posterior is obtainable, how-
ever MCMC allows for estimation of the posterior distribution, by sampling from
the distribution. This then allows for estimation of parameters within the model.
The MCMC method consists of two parts, namely a Markov Chain and a Monte
Carlo method.

A Markov Chain is a collection of states, where the next state depends only on the
current state. The transition probability matrix between the states of a Markov
Chain in a discrete space can be written as

Kxy = Prob
(
Xn+1 = y | Xn = x

)
(6)

An important property of a Markov Chain, is its ability to reach a stationary
distribution. A stationary distribution is a distribution of states, in which the
transition probability between all the states in the stationary distribution ensures,
that the next state of the Markov Chain is also within the stationary distribution.
In other words, if a Markov Chain reaches a stationary distribution, it will stay in
this distribution. Thus, the aim is to engineer a Markov Chain, whose stationary
distribution is the target distribution from which we wish to sample. The approach
to accomplish this varies for different MCMC algorithms.

The Monte Carlo aspect of MCMC is from the fact that we simulate samples
from a distribution. However unlike other methods to simulate samples from a
distribution, such as the Accept-Reject method, MCMC takes the information of
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its current position into account, which makes it more computationally efficient.
Using the law of large numbers theorem, we can say that the expectation value of
a function g(Θ) over a stationary distribution π will be given by the average value
of the Markov Chain.

For this thesis, I use the python package emcee to perform MCMC, as it is a well-
tested and efficient MCMC sampler Foreman-Mackey et al. [2013]. The algorithm
of emcee is based on an affine-invariant ensemble sampling algorithm Goodman
and Weare [2010]. The algorithm works by using a number of walkers chosen by
the user, each exploring the parameter space to find the stationary distribution
through an iterative process. The position of each walker is updated through
every step of the iterations, by evaluation of the probability of a new proposed
position. The reason for choosing to use several walkers (usually in the hundreds),
is that if one is dealing with a multi-modal problem, some walkers might get
stuck in local probability maxima. Using a large number of walkers ensures that
the algorithm will still be effective, and the results accurate, even if some low
number of walkers should get trapped in a local maxima. Furthermore, increasing
the number of walkers does not increase the overall computation time needed to
obtain a statistically significant sample, as if one doubles the amount of walkers,
the amount of samples gained is also doubled. The number of steps a walker goes
through before being in the stationary distribution, is not representative of the
posterior distribution we wish to sample from. Because of this, one usually defines
a ’burn-in’ phase consisting of a number of initial steps, which are then disregarded
when estimating the parameters of a function.

2.2 Fitting light curves

To estimate the parameters of a type Ia SN from its LC, I use a LC fitting
tool. Currently, there are two dominant LC fitting tools used in the literature,
namely the Spectral Adaptive Lightcurve Template (hereafter SALT2) [Guy et al.,
2007], and SuperNovae in object-oriented Python (hereafter SNooPy) [Burns et al.,
2010]. For the main analysis of the SNe from YSE, I choose to use SNooPy. This
is because SNooPy has been trained on fast-declining Ia SNe, allowing for a better
estimation of the parameter correlating the shape of a LC to its peak apparent
magnitude.

SNooPy is a Python package which contains tools to fit the LCs of type Ia SNe,
while also leaving a lot of freedom to the user regarding what to fit and how to
do it. It contains several models to fit the LCs. For this thesis however, only the
’max model’ is used, because this model is the only model which returns all of
the parameters wanted for further analysis of the SNe. The max model does not
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assume a relationship between the different filters one wants to fit, but instead fits
the maximum brightness of each LC. This means, that unless specified otherwise,
the model will return a maximum magnitude in the griz bands, assuming data is
available in all these bands for each SN. Furthermore, the max model also returns
the estimated time of peak magnitude characterized by the parameter Tmax, and
a parameter to describe the luminosity-decline relation.

Since Phillips’ discovery of the luminosity-decline relation and his introduction of
∆m15, other parameters to describe the decline of a LC has also been suggested.
Overall, the correction methods are entirely based on empirical evidence. An ex-
ample of such empirical evidence, is whether the fit around the Hubble line in
a Hubble diagram improves when the corrections are applied. An example of a
Hubble diagram can be seen in Fig 8, where the Hubble line corresponds to the
theoretical line in the figure.

SNooPy allows the user to choose between two parameters to describe the luminosity-
decline relation, ∆m15 and a stretch parameter (also called color-stretch) [Burns
et al., 2014]. The stretch parameter is denoted sBV , for example, when used to
describe the B and V filters. For this thesis, I use the stretch parameter when
using SNooPy. The stretch parameter works by comparing the observed rest frame
LC to typical (normal) templates that the model uses, stretching the template LC
to match the observed LC. This does mean, that the variability of these model
templates can place a restrain on the observed stretch, as no model template will
completely match with observed template. The different parameters describing
the shape of the LC can be related through equations describing their correlation,
however these are based on empirical evidence and not theoretical derivations.

In Section 2.4 I wish to estimate the Hubble constant, which requires calibration
SNe. These calibration SNe have their data in the B and V filters. Because of
this, I need to know the peak magnitude in the B and V filters for the YSE Ia
SNe I use. Even though the photometric data from YSE is in the griz filters,
SNooPy allows the user to select which filters they would like to fit the observed
data to. This means, that after SNooPy has performed an initial analysis in the
griz filters, I can choose other templates to which the data should be fit, which is
done through a comparison of spectral templates. I fit the observed g band with
a B band template, and the observed r band with a V band template. This will
therefore give me Bmax and Vmax, corresponding to a peak apparent magnitude in
the B and V filter. This procedure does mean, that I rely on good templates for
the filters. I assume that the SN templates are complete enough, so that the filter
transformations are safe. The results in all sections of this thesis are obtained us-
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Table 1: The parameters obtained from fitting LC’s using SNooPy and SALT2.

SNooPy sBV σsBV
Bmax σBmax Vmax σVmax Tmax σTmax χ2

red

SALT2 x1 σx1 Bmax σBmax c σc Tmax σTmax χ2
red Cov

ing this conversion in filters, unless stated otherwise. The results of an alternative
calibration, where I work with results from the g and r templates, can be seen in
Section 3.4.

The standard fitting feature in SNooPy uses a Levenberg-Marquardt least-squares
method to fit the LC. This is a method used to solve non-linear least squares
problems, such as minimization problems in least squares curve fitting. This fit-
ting procedure allows for initial estimates, or starting positions, of the parameters
for further analysis. SNooPy has a built-in MCMC feature based on emcee, which
I use to estimate the parameters of a LC. Thus, the results of the initial fit can be
used for the starting positions of the walkers in emcee.

A problem when fitting anything observed at a redshift, is that the spectral en-
ergy distribution (SED) is shifted towards longer wavelengths. To account for this,
SNooPy calculates K-corrections using SED templates from [Hsiao et al., 2007],
which weigh in when estimating the maximum observed magnitude in each filter.
Furthermore, SNooPy uses the right ascension and declination of a SN to correct
for the effect of dust in the Milky Way, by using Schlegel maps [Schlegel et al.,
1998].

The fit result of each SN is appended to a single file, containing all of the relevant
information from the fit of every SN. A list of the appended parameters for both
SNooPy and SALT2 can be seen in Table 1. The ’Cov’ parameter in the SALT2
row represents the covariances between all of the other LC fit parameters. While
SALT2 allows the user to directly obtain these, SNooPy does not. To get the
covariance between the parameters from SNooPy, I manually calculate the covari-
ances based on the tracefile of the walkers from the MCMC for each SN.

Before fitting the LCs with SNooPy, I had data from N = 157 SNe. After fitting,
I am left with fit results of N = 112, excluding SN 2020xqb. This SN is discarded
from all samples for further analysis. The reason for manually discarding this SN
is explained in Section 4.1. This means, that 44 SNe were unsuccessful in fitting.
The most likely reason a SN might not yield a successful fit is because of its LC.
If there are too few measurements to define the LC, SNooPy will not be able to
conclude anything about the shape, and hence the parameters, of the LC. How-
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ever, even though a LC should only contain data after its peak magnitude (after
Tmax), SNooPy is still able to accurately reconstruct the LC and determine its
defining parameters, provided it contains enough measurements. This is because
the defining features of a type Ia SN are observable some time after its peak in
magnitude. However, if the LC of a SN has been perturbed by the variability of
its host galaxy, SNooPy will not be able to accurately reconstruct the LC of the
SN, unless steps are taken to manually remove the noise in the measurements from
the host galaxy. An example of this is SN 2020pki, whose photometric data and
LC fit is shown in Figure A.1 in appendix A. It is clear that in all of the filters,
the photometric data points have been exposed to noise. Manually accounting for
the noise reveals, that 2020pki can be further classified as a 91bg-like Ia SN, which
is a subclass of a type Ia SN. SNe within this subclass show a lower luminosity
than we would expect when compared to the shape of their LC. 2020pki will be
automatically excluded from the sample of SNe, due to requirements implemented
on the SNe. This is explained in Section 2.3.2.

Two examples of LCs fit with SNooPy can be seen in Fig 2. As can be seen from
(a), SNooPy does not need to fit all of the data points of the LC. Some of the
data points located a substantial amount of time after Tmax does not need to be
included in the fit, because they do not contribute much information to constrain
the defining parameters of the LC.

2.3 Hubble diagram

A Hubble diagram is a figure showing the distance modulus µ as a function of
redshift. Using the data obtained from fitting the Ia SNe with SNooPy, I can work
towards creating such a plot for the YSE SNe. All of the redshifts for the SNe are
from NED, and are in the restframe in which the CMB is isotropic.2

2.3.1 Measurements of redshift

The most accurate measurements of a SN redshift comes from a spectroscop-
ically determined redshift of the spectrum of its host galaxy. It can then safely
be assumed that the SN has the same redshift. The YSE-PZ summary page for a
transient includes quick access to the Sloan Digital Sky Survey3 and Nasa/IPAC
Extragalactic Database4 for the transient. From SDSS and NED, one can check

2https://ned.ipac.caltech.edu/velocity_calculator
3http://skyserver.sdss.org/dr16/en/home.aspx
4https://ned.ipac.caltech.edu/
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(a) (b)

Figure 2: Examples of the griz filters of PS1 fit with SNooPy for (a) SN 2020sjo and (b)
2021us. The magnitude is plotted as a function of julian days (time). For both SNe, all the
photometric data points are shown in their measured filters, while the PS1_g and PS1_r filters
are fit with a B and V band template, respectively.

if the redshift of the transient is spectroscopically determined. The uncertainty of
spectroscopically determined redshifts from the host galaxy spectrum can be of the
order of ∼ 10−5, as seen in the SDSS redshift error of an objects optical spectra. It
can thus be assumed to be negligible. Of the 112 SNe which were successfully fit
with SNooPy, Nspec = 55 have a spectroscopically determined redshift from their
host galaxy.

If we wish to use a Ia SN to constrain cosmological parameters, it is of great impor-
tance that we know its redshift to a high accuracy. If the uncertainty of the redshift
is too great, it can cause a bias in the determination of cosmological parameters.
In [Steinhardt et al., 2020], they use the Pantheon sample of Ia SNe to create two
subsamples: a subsample containing only SNe with redshift measurements from
their hosts, and a subsample containing only SNe with redshift measurements from
their individual SN spectrum. They find, that the two samples yield statistically
significant different best-fit cosmological parameters, including a difference of 2.5σ
when measuring H0. Because of this, they argue that combining two samples with
different ways of obtaining the redshift for the SNe can be flawed, but the supe-
rior technique relies on redshift measurements obtained from the host. Although
2.5σ is not an extreme difference, because H0 is a parameter we wish to determine
very accurately, especially due to the present tension between measurements, it is
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important to have a spectroscopically measured redshift of the host galaxy when
measuring H0.

In this section as well as in Section 2.4, I will use a sample consisting only of SNe
with a spectroscopically measured redshift from the host galaxy. The impact on
the results of including SNe without a redshift from the host galaxy, is explored
in Section 2.5. Hereafter, ’Spec’ is defined as the sample of SNe with spectroscop-
ically determined redshifts from their hosts, and ’All’ is defined as the full sample
of SNe, including those which have their redshift measurement from their spectrum.

2.3.2 Ensuring the quality of the Ia SN sample

Even though a SN was fit successfully, it does not necessarily mean the quality of
the fit is good. If SNe with fit values unrepresentative of the actual SN properties
are included in a sample, it will skew the final results. To counteract this, quality
cuts in the fit parameters are usually implemented to ensure the quality of the SN
sample, as is done in [Betoule et al., 2014], [Riess et al., 2018], and [Khetan et al.,
2020]. The cuts implemented on the samples used in this thesis, unless specified
otherwise, are:

(1) − 0.3 < color < 0.3 (2) − 3 < x1 < 3

(3) σTmax < 2 (4) χ2
red < 2 (5) 0.02 < z (7)

In (2), x1 is the term correlating the peak flux to the LC shape in the SALT2
LC fitting tool. x1 can approximately be converted to the stretch parameter of
SNooPy by:

x1 = −0.006 + 5.98 (sBV − 1)− 5.55 (sBV − 1)2 (8)

Even though the correlation between x1 and sBV is strongest for sBV > 0.7 [Burns
et al., 2014], I will assume in this thesis that the equation holds for all of my SNe.

In (4), χ2
red is the reduced chi-squared for the fit of the LC as a whole. Cut (5) is

implemented because SNe at a redshift of z . 0.02 have their motion dominated
by peculiar velocities, making their redshift measurements uncertain.

An example of a SN which failed multiple of these quality cuts, SN 2020onu, is
shown in Figure 3. 2020onu failed cuts (1), (2), and (3). The sparse sampling
with data only after the defining features of the actual LC means, that SNooPy
has difficulties estimating Tmax. This further leads to uncertainties in the peak
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Figure 3: SNooPy’s fit of the LC of SN 2020onu

magnitudes, and hence also the color and sBV . These quality cuts are also the
reason, that the previously mentioned 91bg-like Ia SN 2020pki was automatically
discarded from the sample. SNe which belong to a subclass of type Ia SN will
typically exhibit this deviance from normality in their LC parameters, and hence
not pass the quality cuts.

After applying the quality cuts, the SN sample consists of N = 30 SNe. Plots of
the cuts and how the remaining SNe are distributed with respect to these can be
seen in Figure 4. The amount of SNe which fail to pass the different quality cuts,
as well as the total number of discarded SNe, can be seen in Table 2. LC fits of
the SNe are shown in appendix G.

2.3.3 Creating the Hubble diagram

As mentioned in Section 1.3, the peak luminosity of a type Ia SN varies. Because
of this, they need to be standardized if they are to be used as standard candles.
As such, we need to consider the stretch and color of a SN. The apparent peak
magnitude in the B band is modeled as:
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Figure 4: Distribution of the SNe in the Spec sample, after the quality cuts have been imple-
mented. Each red dot represents a SN, where every subfigure contains N = 30 SNe.

Table 2: Amount of SNe which failed the different quality cuts. The ’Multiple’ column depicts
that a SN failed 2+ of the requirements. Because of this, the sum of Quantity adds up to more
than the value of Total, as a SN can be counted in multiple columns.

Failed Color x1 σTmax χ2
red z Multiple Total

Quantity 9 7 7 9 9 14 25

mT
B = P 0

mod + P 1 (sBV − 1) +R (mB −mV ) + µmod (9)

P 0
mod correlates the absolute magnitude of the SN to the apparent magnitude, P 1

correlates the stretch of the LC to its peak magnitude, and R correlates the peak
magnitude with the color mB −mV .

The last term in Eq. 9, µmod, is a modified distance modulus, given by µmod =
µ(z)+5 log10(H0). In a geometrically flat universe with a Robertson-Walker metric,
the distance modulus can be defined to the second order as:

µ(z) = 5 log10

cz

H0

[
1 +

1

2
(1− q0) z −

1

6

(
1− q0 − 3q20 + j0

)
z2
]

+ 25 (10)

where q0 = −aȧ−2ä is the deceleration parameter, described by the scale factor
of the universe a(t0). j0 = a2ȧ−3

...
a is the cosmic jerk, which describes when the

universe went from being matter dominated to Λ dominated. For this thesis, I
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have adopted the ΛCDM model best-fit values of q0 = −0.55 and j0 = 1 for
these parameters. Even though this distance modulus is an approximation which
requires an assumption about q0 and j0, the change that would be induced by
varying these would be minimal [Dhawan et al., 2020]. As can be seen in Eq.
10, the distance modulus depends on H0. This means, that if we wish to find
the absolute value of µ(z), we need information to calibrate the zero point of the
Ia SNe. The calibration usually comes in the form of Cepheids, as described in
section 1.2.2. However, as I do not use any distance calibrators for now, I will
have only the relative distances between the SNe, which means that I can not say
anything about H0. As such, H0 enters into the measurement of P 0 as:

P 0
mod = P 0 − 5 log10 (H0) (11)

Having now defined the model of the apparent B band magnitude, mT
B, the free

parameters P 0
mod, P 1, and R can be estimated. To do so, I use a Bayesian inference

model with a MCMC, as described in Section 2.1. The LH is usually considered
in a log-likelihood form (hereafter LLH). There are several reasons for this. A few
major reasons are, that it allows for addition instead of multiplication, and in the
case of a Gaussian LH, it allows us to avoid computing the exponential. Both of
these reasons save computational time, which for some problems can be of great
importance. The prior of the model I use in the MCMC is flat, while the LLH is
given by:

lnLcosmo = −1

2

NSN∑
j=1

(
mj
B −mT

B

)2
σ2
cosmo,j

− 1

2

NSN∑
i=j

ln 2πσ2
cosmo,j (12)

where mj
B is the observed magnitude for each SN in the B band, and mT

B is the
modeled magnitude as given by Eq. 9. The variance σcosmo, with correlation
between parameters denoted by C, is given by:

σ2
cosmo,j = C(mb,mb),j + P 12C(sBV ,sBV ),j +R2C(c,c),j − 2P 1C(mB ,sBV ),j

−2RC(mB ,c),j + 2P 1RC(sBV ,c),j

where the correlation terms containing the color can be expanded to produce corre-
lation terms relating to the peak magnitudes in the B and V filters. Furthermore,
an intrinsic scatter is added to the variance. The intrinsic scatter accounts for
systematic uncertainties from effects not considered in the analysis, as well as po-
tential peculiar velocities of the objects. Physically, it is the precision to which
we can measure the distance modulus to a given SN with the model used. This
parameter will also be estimated in the MCMC. This yields the formula for the
cosmological variance of the sample:
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σ2
cosmo,j = σ2

mB ,j
+ P 12σ2

sBV ,j
+R2

(
σ2
mB ,j

+ σ2
mV ,j
− 2C(mB ,mV ),j

)
− 2P 1C(mB ,sBV ),j

−2R
(
σ2
mB ,j
− C(mB ,mV ),j

)
+ 2P 1R

(
C(sBV ,mB),j − C(sBV ,mV ),j

)
+ σ2

int

(13)

Usually it is reasonable to assume that some of the correlation terms are negligible.
For example, we would not expect C(mB ,mV ) which describes the correlation be-
tween magnitude measurements made in the B and V filter, to have a considerable
contribution to the overall variance, as the filters should be independent. Even so,
all of the correlations are included for completeness. The result of the MCMC can
be seen in Figure 7.

Using the results of the MCMC, the Hubble diagram can now be created. By
rearranging Eq. 9, we can obtain the modified distance modulus, corrected for the
effects of stretch and color:

µmod = mB − P 0
mod − P 1(sBV − 1)−R(mB −mV ) (14)

The uncertainty of µmod is given by σcosmo from Eq. 13. The results can be seen
in Section 3.1.

2.4 Estimating H0 with Ia SNe

As previously mentioned, we need distance calibrated SNe if we wish to esti-
mate H0, and this calibration can be performed by the use of Cepheids. One of
the most prominent sample of Cepheids is the SH0ES sample [Riess et al., 2016].
This sample consists of 19 Ia SNe, all of which have measurements in the B and V
filters. The fit values from SNooPy of the LCs from these calibration SNe, as well
as the associated distance moduli and corresponding error, can be seen in Table 3.

To perform the calibration of the SNe, a LLH for the calibration sample needs to
be implemented in addition to the cosmological LLH from Eq. 12. This LLH can
be defined as:

lnLcalib = −1

2

Ncalib∑
i=1

(
mi
B −mT

B

)2
σ2
calib,i

− 1

2

Ncalib∑
i=1

ln 2πσ2
calib,i (15)
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Table 3: The best-fit parameters from SNooPy, and Cepheid estimated distance modulus, for
the 19 Ia SNe from the SH0ES sample. µceph is taken from Table 5 of [Riess et al., 2016].

mB σmB
mV σmV

sBV σsBV
µceph σµ

Supernova [mag] [mag] [mag] [mag] [mag] [mag]

SN1981B 11.974 0.012 11.876 0.019 0.925 0.03 30.906 0.053
SN1990N 12.651 0.013 12.574 0.019 0.976 0.030 31.532 0.071
SN1994ae 13.066 0.013 12.933 0.019 1.124 0.030 32.072 0.049
SN1995al 13.342 0.019 13.173 0.024 1.077 0.044 32.498 0.090
SN1998aq 12.322 0.013 12.414 0.019 0.941 0.030 31.737 0.069
SN2001el 12.826 0.012 12.598 0.019 0.947 0.030 31.311 0.045
SN2002fk 13.206 0.012 13.209 0.019 1.189 0.030 32.523 0.055
SN2003du 13.494 0.012 13.55 0.019 1.017 0.03 32.919 0.063
SN2005cf 13.25 0.012 13.246 0.019 0.948 0.030 32.263 0.102
SN2007af 13.164 0.012 13.058 0.019 0.919 0.030 31.786 0.046
SN2007sr 12.744 0.018 12.569 0.020 1.026 0.031 31.290 0.112
SN2009ig 13.477 0.014 13.371 0.020 1.135 0.032 32.497 0.081
SN2011by 12.89 0.015 12.821 0.021 0.948 0.031 31.587 0.070
SN2011fe 9.931 0.012 9.947 0.019 0.936 0.030 29.135 0.045
SN2012cg 12.115 0.012 11.942 0.020 1.189 0.048 31.08 0.292
SN2012fr 11.977 0.012 11.943 0.019 1.121 0.030 31.307 0.057
SN2012ht 12.395 0.013 12.576 0.019 0.853 0.030 31.908 0.043
SN2013dy 12.756 0.013 12.553 0.02 1.131 0.032 31.499 0.078
SN2015F 12.823 0.012 12.696 0.019 0.866 0.03 31.511 0.053

where the variance of the calibration sample is:

σ2
calib,i = σ2

µcalib,i
+ σ2

mB ,i
+ P 12σ2

sBV ,i
+R2

(
σ2
mB ,i

+ σ2
mV ,i
− 2C(mB ,mV ),i

)
− 2P 1C(mB ,sBV ),i − 2R

(
σ2
mB ,i
− C(mB ,mV ),i

)
+ 2P 1R

(
C(sBV ,mB),i − C(sBV ,mV ),i

)
+ σ2

int

(16)

equal to that given by Eq. 13, except for the addition of a σ2
µcalib

term, which comes
from the uncertainty of the distance modulus obtained from the calibration. The
total LLH will then be: lnL = lnLcalib + lnLcosmo.

While Cepheids are a great tools for distance calibration, they are mostly found
in late-type galaxies (spiral galaxies). Another way of calibrating distances are
by the use of SBF, as described in Section 1.2.3. The SBF method is best used
with stellar populations dominated by evolved stars, meaning early-type galaxies
(elliptical galaxies) are ideal for SBF measurements.
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There are several advantages to SBF calibrations [Khetan et al., 2020]. For exam-
ple, the use of late-type galaxies for distance calibration means, that we need to
make fewer corrections for dust, as the more evolved galaxies usually contain less
dust. The distance to which we can observe SBF is also considerably greater than
that of Cepheids. Furthermore, the observational aspects of SBF are also easier
when compared to Cepheids, as they require only a galaxy image, and not high
resolution stellar photometry or periodic observations of the galaxies in which the
Cepheids are located.

Table 4: The best-fit parameters from SNooPy and SBF estimated distance moduli for the 26
Ia SNe. µSBF is taken from Table 2 of [Khetan et al., 2020], except for SN1981B and SN1991T,
which was provided to me by Luca Izzo from DARK.

mB σmB
mV σmV

sBV σsBV
µSBF σµ

Supernova [mag] [mag] [mag] [mag] [mag] [mag]

SN1970J 14.868 0.013 14.62 0.020 0.916 0.030 33.582 0.151
SN1980N 12.460 0.012 12.335 0.019 0.848 0.030 31.590 0.050
SN1981B 11.974 0.018 11.877 0.020 0.925 0.038 31.090 0.050
SN1981D 12.487 0.048 12.327 0.046 0.852 0.051 31.590 0.050
SN1983G 12.804 0.015 12.621 0.020 1.189 0.030 31.920 0.197
SN1991T 11.589 0.012 11.402 0.019 1.189 0.030 31.090 0.050
SN1992A 12.531 0.012 12.501 0.019 0.777 0.030 31.632 0.075
SN1992bo 15.761 0.013 15.748 0.019 0.715 0.031 34.270 0.150
SN1994D 11.770 0.012 11.828 0.019 0.785 0.030 31.320 0.120
SN1995D 13.386 0.014 13.256 0.019 1.259 0.031 32.600 0.150
SN1996X 13.076 0.013 13.081 0.019 0.893 0.030 32.260 0.190
SN1997E 15.174 0.013 15.082 0.020 0.795 0.031 33.500 0.150
SN1998bp 15.371 0.014 15.073 0.020 0.600 0.032 33.100 0.150
SN2000cx 13.135 0.012 13.070 0.019 0.907 0.030 31.922 0.212
SN2003hv 12.456 0.015 12.545 0.020 0.766 0.030 31.566 0.304
SN2006dd 12.271 0.014 12.288 0.020 0.951 0.031 31.590 0.050
SN2007on 13.048 0.013 12.933 0.019 0.568 0.031 31.526 0.072
SN2008Q 13.459 0.014 13.512 0.019 0.805 0.032 31.922 0.212
SN2011iv 12.449 0.013 12.393 0.020 0.659 0.031 31.526 0.072
SN2012cg 12.114 0.012 11.942 0.020 1.188 0.052 31.020 0.180
SN2012fr 11.976 0.012 11.943 0.019 1.121 0.030 31.510 0.030
SN2014bv 14.045 0.030 13.824 0.029 0.598 0.044 32.190 0.494
SN2015bp 13.703 0.023 13.669 0.029 0.690 0.038 31.737 0.315
SN2016coj 13.205 0.017 12.983 0.020 0.884 0.031 31.922 0.258
SN2017fgc 13.621 0.013 13.346 0.0190 0.958 0.030 32.536 0.133
SN2018aoz 12.515 0.013 12.590 0.0190 0.841 0.030 31.795 0.101

As previously mentioned, however, the SBF measurements used in this thesis all
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have their zero point calibrated using Cepheids. This means, that the SBF cali-
brations does not offer an independent method of measuring distances, but it is
rather a complimentary method to Cepheids. The SBF method is still very useful
however, as it allows for an increase in calibration measurements, which is much
needed when working with Ia SNe. The SBF calibration sample consists of 26 Ia
SNe.
The data for the LCs of the Ia SNe in the SH0ES and SBF sample was graciously
provided to me by Luca Izzo from DARK. As I have the data defining the LCs, I
can fit the two calibration samples using SNooPy to get the LC parameters. The
SNooPy fit parameters for each SN and its associated distance modulus can be
seen in Table 3 for the SH0ES sample, and in Table 4 for the SBF sample.

For both Table 3 and 4, the uncertainties of all the individual fit parameters for
all of the SNe are very similar. For such well-defined LCs as these calibration SNe
have, there is a very low statistical uncertainty associated with the parameters.
However, the systematic uncertainty that SNooPy estimates for each parameter
must also be taken into account, which is why the errors are so similar. The
systematic uncertainty dominates the error budget, as it is usually several times
greater than the statistical uncertainty for these SNe. The systematic error is in-
sensitive to the quality and quantity of the data in a LC. It comes from the fact
that the LC templates SNooPy uses, are not in perfect correspondence with the
observed data we wish to fit, and so when comparing these it gives rise to the
error. This is why all uncertainties for the individual parameters are very similar.

It should be noted, that the SH0ES and SBF samples I use share three SNe, mean-
ing the samples are not completely independent. Even though the Ia SNe in the
two samples are mainly from different types of galaxies, the scale of the morphol-
ogy on which a galaxy is characterized is not discrete, meaning there is room for
overlap.

As I now have means to determine an absolute value of the distance modulus from
Eq. 10 for the YSE SNe, I can estimate H0 using MCMC. The procedure resembles
that of Section 2.3.3, except H0 is now left as a free parameter instead of being
contained within P 0

mod. The result of the MCMC using the SH0ES sample and the
SBF sample can be seen in Section 3.2.

2.5 Exploring redshift uncertainty

As mentioned in Section 2.3.1, the accuracy to which we know the redshift of
a Ia SN plays a big role with regards to its usability. If no spectrum of the host
galaxy is available, we must then resort to other methods to determine the redshift.
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A way to get an estimate of the redshift, is to look at the spectrum of the SN
itself and use a cross-correlation technique [Blondin and Tonry, 2007]. The way
this is performed, is by comparing the observed SN spectrum to a SN spectrum
of a known type and age at zero redshift. A wavelength scaling quantity involv-
ing the redshift of the observed SN is then determined, based on the value which
maximizes the cross-correlation between the two SN spectra. This can allow for
redshift estimations with errors of the order σz . 0.01. While a small part of
the error might come from motions associated with the galaxy within which the
SN is, the largest part of the error stems from the templates used to compare the
observed SN spectrum. These templates are not perfect, and finding a template
which closely matches the observed SN spectrum can be difficult, thus resulting in
errors on the redshift.

To investigate this error for the SNe without spectroscopically measured redshifts
in my sample, I use the All sample of Ia SNe from YSE. An updated plot showing
the distribution of the SNe after performing the quality cuts from Eq. 7 can be
seen in Figure 5. A table showing the numbers of discarded SNe from each cut
can be seen in Table 5. This All sample consists of N = 64 SNe.
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Figure 5: Distribution of the full sample of SNe passing the quality cuts. Each red dot represents
a SN, where every subfigure contains N = 64 SNe

To estimate the error associated with the redshift, it can be included as a parameter
in the MCMC. σz is entered into the total variance by error propagation. The new
variance then becomes:
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Table 5: Amount of SNe which failed the different quality cuts for the full SNe sample. The
’Multiple’ column depicts, that a SN failed 2+ of the requirements. Because of this, the sum of
Quantity adds up to more than the value of Total, as a SN can be counted in multiple columns.

Failed Color x1 σTmax χ2
red z Multiple Total

Quantity 15 9 18 15 9 19 48

σ2
cosmo,j = σ2

mB ,j
+ P 12σ2

sBV ,j
+R2

(
σ2
mB ,j

+ σ2
mV ,j
− 2C(mB ,mV ),j

)
− 2P 1C(mB ,sBV ),j

− 2R
(
σ2
mB ,j
− C(mB ,mV ),j

)
+ 2P 1R

(
C(sBV ,mB),j − C(sBV ,mV ),j

)
+ σ2

int +

(
d

dz
µ(z) σz

)2

(17)

where the last term involving the uncertainty of the redshift is only applied, when
a SN does not have its redshift from the host. The results of using the All sample
and estimating σz can be seen in Section 3.3.

2.6 Peculiar velocities as tracer of mass density

To use peculiar velocities as probes for the underlying density fields requires as
broad and deep a catalogue of galaxies as possible. [Carrick et al., 2015] uses the
2M++ galaxy catalogue to reconstruct the density and radial velocity fields out to
a redshift of z ∼ 0.07. Using the reconstructed density and radial velocity fields,
we can compare the velocity field predictions to observed peculiar velocity data,
which can be measured via. distance indicators such as type Ia SNe. This in turn
allows us to estimate cosmological parameters.

I use the model from [Carrick et al., 2015], which is computed for a fiducial ΛCDM
model with fσ8,lin = 0.401 ± 0.024. When using peculiar velocities to infer σ8, it
is sensitive to potential non-linear evolution. This non-linear evolution has been
corrected for, in order to be able to compare fσ8 to other results obtained at
higher redshift. Comparing this model to the SN data from YSE, I can effectively
determine the fσ8,lin via. the amplitude of peculiar velocities.

To perform the comparison, I use a Forward likelihood method [Pike and Hudson,
2005]. The Forward LH method compares the predicted redshift of a galaxy to the
observed redshift, and maximizes the probability of a galaxy having the observed
redshift. As mentioned in Section 1.5, the observed redshift of an object has a
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contribution from the recessional velocity and from peculiar velocities. We can
use this to define the predicted redshift as:

1 + zpred =

(
1 + zcos(r)

)(
1 +

1

c
(γv + Vext) r̂

)
(18)

where the reconstructed velocity and flow model is represented by the second term.
v is the peculiar velocity prediction from the reconstruction, and Vext is a residual
bulk flow, which contains contributions to the peculiar velocity from structures
outside of the 2M++ redshift surveys volume. The γ that is measured using this
method is a rescaling factor of the fiducial β value estimated in [Carrick et al.,
2015]. It is not to be confused with the γ ≈ 0.55 from the power of Ωm for the
ΛCDM model, as these are totally unrelated quantities.

The cosmological redshift, zcos, can to a second order approximation be defined
as:

zcos =
1

1 + q0

1−

√
1−

(
2H0r

c

)
(1 + q0)

 (19)

where instead of H0, I use the dimensionless Hubble parameter h, which is set
to be h = H0/

(
100 km s−1 Mpc−1

)
. r is the distance to the object for which to

predict the redshift. For the highest redshift I use in the approximation (z = 0.07),
the uncertainty introduced by neglecting higher order terms is ∼ 21 km s−1, which
is much smaller than the precision of the peculiar velocity model.

The Forward LHmethod also corrects for inhomogeneous Malmquist bias. Malmquist
bias is an observational effect which leads to a preference of detection of bright
objects. The inhomogeneity arises from the fact, that on scales of ∼ 100 Mpc the
density distribution of matter in the universe is not homogeneous. To correct for
the inhomogeneous Malmquist bias requires integrating along our line of sight to
the boundary of the 2M++ survey. This takes the inhomogeneities into account,
which are given by the reconstructed density field.

In addition to fitting for the flow model, we can jointly fit for the parameters
calibrating type Ia SNe from the distance indicator [Boruah et al., 2020]. With
the distance indicator parameters Θ = (P 0, P 1, R), the probability of observing a
SN at redshift zobs in the Forward LH method is given by:
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P
(
zobs|v,Vext, γ,Θ

)
=

∫ ∞
0

drP (zobs|r,v,Vext, γ)P (r|Θ) (20)

where P (zobs|r,v,Vext, γ) is given by:

P (zobs|r,v,Vext, γ) =
1√

2πσ2
v

exp

(
−
(
czobs − czpred

)2
2σ2

v

)
(21)

σv is the uncertainty in the peculiar velocity from non-linear perturbations. This
is assumed to be σv = 150 km s−1 as found in [Carrick et al., 2015] by comparison
of N-body simulations.

P (r|Θ) is the radial distribution, and is assumed given by:

P (r|Θ) =
1

N(Θ)
r2 exp

−[µ(r)− µ(Θ)
]2

2σ2
µ(Θ)

[1 + δg(r)
]

(22)

whereN(Θ) is a normalization term to normalize the probability, σµ(Θ) is the error
in the distance modulus of the tracer, i.e. Eq. 13, and δg(r) is the overdensity in
the galaxy field from the reconstruction of the density field. µ(r) is computed as:

µ(r) = 25 + 5 log10(dL)

where dL is the luminosity distance given by: dL = r(1 + zpred).

As can be seen Eq. 18, γ is obtained by comparing the observed velocity field data
that I have from YSE to the model of [Carrick et al., 2015], by scaling their velocity
field. The γ that I obtain can therefore be thought of as an indirect measurement
of β from Eq. 3. γ can be converted to constrain fσ8,lin by the relation:

γ =
fσ8,lin

fσ8,lin,(Carrick)

(23)

Hereafter, the linear growth I obtain will be written as fσ8, with the implicit un-
derstanding that non-linear evolution has been accounted for, and so I will omit
from specifically denoting this.

MCMC can now be used to estimate the rescaling factor γ, external bulk flow Vext,
and the global parameters, by sampling from Eq. 20. I do this using the SNe from
YSE, but also with a combined sample of YSE and the Foundation sample [Jones
et al., 2019]. The results can be seen in Section 3.5.
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2.7 Comparison of SALT2 and SNooPy

When measuring the distance-redshift relation using calibration Ia SNe, a big
part of the error budget is attributed to the process of the calibration itself, as
can be seen in Table 7 of [Riess et al., 2016]. While this may be reasonable, there
is little knowledge of how using different light curve fitting tools impacts the fit
results of the observed LC’s, and hence the cosmological analysis. As mentioned in
Section 2.2, there are two dominant LC fitting tools, namely SALT2 and SNooPy.
To compare them, I implement the SALT2 LC fitting tool using the Python pack-
age sncosmo5.

While two of the parameters SNooPy takes as inputs are the observed magnitude
and observed magnitude error, SALT2 equivalently takes the observed flux and
observed flux error. The conversion between apparent magnitude and flux is given
by:

m = −2.5 log10 (f) + zp⇒ f = 10
zp−m
2.5 (24)

where f is the flux. zp is the zero point, which sets a conversion between the
provided fluxes and the actual magnitude. For PS1, I adopt a zero point of zp =
27.5 for all filters. The uncertainty on the flux is given by:

dm =
2.5

ln (10)

df

f
⇒ σf =

ln(10)

2.5

f

σm
(25)

Examples of SALT2 fits can be seen in Figure 6. For comparability, the figure
shows the same two SNe as in Figure 2. The observed PS1_g and PS1_r bands
have again been fit with a B and V template, respectively. The B and V filter
bands used by SNooPy are from the Carneige Supernova Project6. I implement
these into my application of SALT2, so that the two LC fitting tools fit the LCs
with the same bands.

The SALT2 model I use to perform the fits covers a wavelength range of 2500−8000
Å [Guy et al., 2007], which is why the fit suddenly cuts off at a specific point in
(a). There is however still enough information to determine the defining features
of the LC.

To correlate the peak of a LC to its shape, SALT2 uses the x1 parameter, which
can be correlated to the color-stretch parameter of SNooPy by Eq. 8. Because
of this, the modeled apparent B band magnitude for a SN given by the SALT2

5https://sncosmo.readthedocs.io/en/stable/
6https://csp.obs.carnegiescience.edu/data/filters
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(a) (b)

Figure 6: Examples of the griz filters of PS1 fit with SALT2 for (a) 2020sjo and (b) 2021us.
The g and r bands have been fit with a B and V band template, respectively.

parameters is not the same as I use for SNooPy, but rather it is given by the Tripp
formula [Tripp, 1997]:

mB = M − αx1 +Bc+ µ (26)

where c is the color of the SN, andM and µ becomes equivalent to P 0
mod and µmod,

respectively, if there are no zero point calibrations performed. The letter denoting
the color correction term in the Tripp formula is usually written as β, however to
avoid confusion with the β parameter related to the model of peculiar velocities,
this color correction term is instead written as B.

The variance of the distance modulus using SALT2 parameters is given by:

σ2
cosmo,j = σ2

mB ,j
+ α2σ2

x1,j
+B2σ2

c,j + 2αC(mB ,x1),j − 2BC(mB ,c),j

−2αBC(x1,c),j + σ2
int

(27)

I use SALT2 to perform a similar analysis of the global parameters of the Ia SNe
from YSE, as described in Section 2.3.3. The results of the comparison can be
seen in Section 3.6.

3 Results

3.1 Standardization of Ia SNe and the Hubble diagram
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Figure 7: Estimation of the four parameters from Eq. 9 using MCMC in the BV filters. The
mean value and standard deviation of the distribution for each parameter is shown in the legend.

The estimation of the parameters included in the modeled apparent magnitude
in Eq. 9 obtained using MCMC can be seen in Figure 7. Using these values for
P 0
mod, P

1, R, and σint in combination with Eq. 14, I can create the Hubble diagram.
The result is shown in Figure 8. When accounting for the effects of stretch and
color in every SN measurement, the errors become visually bigger in (b), as we
would expect.
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Figure 8: Hubble diagram for the N = 30 SNe which pass the quality cuts, and has a redshift
from their host. For both plots, a theoretical expectation line has been plotted. (a) shows the
distribution before standardization, and (b) shows the distribution after standardization.

We expect the scatter around the theoretical prediction to decrease after standard-
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ization, and for the scatter to be normally distributed around a value of zero. To
confirm this is the case, Figure 9 shows a histogram comparing the scatter before
and after standardization. The scatter visually decreases, although it can be hard
to justify this is the case due to the low sample size. However, as can be seen in
the legend, σafter < σbefore, which is in alignment with expectations, confirming
the decrease in the scatter. The exact values for all of the estimated parameters
and the residuals are shown in Table 7.
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Figure 9: Histogram of the residual distribution before and after standardization. The his-
togram contains of Nbins = 6 bins, with the value of the standard deviation for each distribution
in the legend. σafter includes both the measurement errors and σint for the Spec sample seen in
Table 7.

As can be seen in both Figure 8 and 9, there are some outliers for which the
standardization does not have a big impact. A reason a SN might not be receive
more of a correction to its apparent magnitude from the standardization process,
can be because of the uncertainties on the parameters from its LC fit. If a SN
has large uncertainties on its LC parameters, it will not contribute a large amount
to constrain the global parameters from the MCMC fit. This results in less of
a correction after standardization. This in combination with the needing a large
correction to align with the theoretical expectation, can result in outliers.

3.2 H0 estimation with SNooPy

As described in Section 2.4, H0 can be measured by leaving it as a free param-
eter in the MCMC, if we use distance calibration measurements. As I have the
data defining the LCs of these calibration measurements from Table 3 and 4, I now
estimate H0 using first the SH0ES sample. The result of the Cepheid calibrated
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H0 measurement can be seen in Figure 10.
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Figure 10: Cornerplot of the posterior distributions from MCMC for the four global parameters
P 0, P 1, R, σint, and the cosmological parameter H0. The values were obtained using the SH0ES
calibration sample. A median value and uncertainty for each parameter can be seen in the title
of the histogram for the specific parameter.

The best-fit value obtained using the SH0ES calibration sample for the Hubble
constant is H0 = 72.11 ± 2.02 km s−1 Mpc−1. This value is lower than the value
obtained in [Riess et al., 2021] of H0 = 73.2 ± 1.3 km s−1 Mpc−1. The measure-
ments are however still consistent.

Page 38 of 65



A way to visualize the luminosity relation with the stretch and color, is to compare
the absolute magnitude of the calibration SNe corrected for the stretch and color.
This is shown in Figure 11.
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Figure 11: Luminosity correlation plots for the SH0ES calibration sample. Figure (a) shows
the absolute magnitude corrected for color vs stretch, and Figure (b) the absolute magnitude
corrected for stretch vs. color. The values of the global parameters are from the MCMC results
of Figure 10. R2 of the model is shown in the legend of each figure.

The absolute magnitude is defined as M = m− µ, whereas for the best-fit model
it is given by P 0 from Figure 10. The coefficient of determination, R2, can be seen
in both plots. This statistic tells us about the quality of the best-fit model with
respect to the data, by quantifying the proportion of the variance in the dependent
variable that is predictable from the independent variable (sBV and mB − mV ).
Ideally R2 attains a value of unity, which means that all of the variance of the
model can be predicted from the independent variable. A value of R2 = 0 means,
that the model is equally as good of a fit to the data as a horizontal line. In both
(a) and (b), R2 takes on quite low values, especially in (a), which means that the
best-fit model is not a great fit to the observed data. Even though this might be
the case, visually it does seem there is a correlation between the luminosity with
respect to color and stretch of the SH0ES Ia SNe.

To investigate how big of a role the cosmological sample size plays with regards to
the uncertainty of H0, we can compare the uncertainty of H0 estimated using the
SH0ES sample to the expected uncertainty. I do this by estimating the relative
error in the distance. The distance modulus as a function of distance goes as:

µ(r) ∼ 5 log10(r)

which lets us write up the relative error in the distance as:
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dr

r
=
σint ln(10)

5
√
N

(28)

where 1/
√
N corrects for the sample size, and I have used dµ = σint. Using N = 30

for my sample size, and σint = 0.17 from Figure 10, I find:

dr

r
= 0.014 = 1.4%

which means that solely from the cosmological sample, we would expect a con-
tribution to the total error budget of approximately 1.4% of the estimated value.
Furthermore, a comparable error is expected from the calibration sample, as the
results from [Riess et al., 2016] are limited by the calibration precision. The total
expected error is then approximately:

σtot ≈
√

0.0142 + 0.0142 ≈ 2%

I find an uncertainty of ∼ 2.8% associated with my measurements of H0 using the
SH0ES sample, indicating that perhaps the error associated with the calibration
might be larger. Nonetheless, the approximate expected error is of similar order.

As can be seen in Eq. 28, the contribution from the error of the cosmological
sample to the total error budget decreases with sample size. For example, if I had
a sample size of N = 100 SNe, the error from the cosmological sample would be
∼ 0.8%. This would not necessarily guarantee a lower error of the MCMC pa-
rameters however, as the quality of the SNe in the sample size is also important.
Thus, if the SNe added to a sample size are of good quality, we would expect better
constraints on the MCMC parameters.

I now perform a similar analysis using the SBF calibration sample, to compare
the results obtained using different forms of calibration, even though these are not
totally independent. A cornerplot of the result can be seen in Figure 12.

Figure 13 shows the luminosity relation for the SBF sample. The R2 for both
figures lie between the two R2 values obtained using the SH0ES sample, meaning
their values are rather low as well. As such, it would seem there is a lot of the
variance in the model which can not be explained by the stretch and color. It
should be noted, that the errors associated with the luminosity correlation plots
for both calibration samples are quite big, leaving room for improvement if tighter
constraints can be placed on the measurements.
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Figure 12: Cornerplot of the posterior distributions from MCMC for the four global parameters
P 0, P 1, R, σint, and the cosmological parameter H0. The values were obtained using the SBF
calibration sample. A median value and uncertainty for each parameter can be seen in the title
of the histogram for the specific parameter.

A table for comparison containing the values for all of the global parameters as
well as H0 can be seen in Table 6. The SBF calibration sample indicates a larger
need for stretch correction, as the value of P 1 has decreased slightly, however still
well in agreement with the value obtained using the SH0ES calibration sample.
Furthermore, the color correction term R is lower, and now is not consistent to
within 1σ of the R value obtained using SH0ES. One can speculate, that the de-
crease in R in the SBF sample compared to the SH0ES sample is not unexpected.
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Figure 13: Luminosity correlation plots for the SBF calibration sample. Figure (a) shows
the absolute magnitude corrected for color vs. stretch, and Figure (b) the absolute magnitude
corrected for stretch vs color. The values of the global parameters are from the MCMC results
of Figure 12. R2 of the model is shown in the legend of each figure.

As mentioned earlier, the host galaxies of the SBF SNe are all early-type galaxies,
which generally contains less dust when compared to late-type galaxies. As such,
the need for a color correction could be smaller for these galaxies, and as R reflects
the total color correction from all sources, a change in the amount of dust in the
host galaxies should be reflected in the parameter, if this is the case.

There is also a difference in σint between the two samples, as this parameter is
only consistent at the 1.41σ level. σint reflects the quality of the calibration, and
tells us the precision to which we can measure the distance modulus per single SN.
This means, that the calibration of the SH0ES sample using Cepheids is better. As
previously mentioned, SBF calibrations require an additional step of calibration
before arriving at estimates of Ia SNe distances. This extra step of calibration in-
troduces more room for errors, which is why we intrinsically expect the calibration
using the SH0ES sample to be better.

Perhaps the most interesting change is in H0. The values are consistent at the
1.67σ level, although because the two measurements share the cosmological sam-
ple of Ia SNe, they are not strictly independent. Looking at the P 0 value of the
two samples gives a more independent comparison of the calibration samples, as
this parameter is tied to the zero point calibration of the Ia SNe. The two values
of P 0 are consistent at the 2.56σ level.

As mentioned earlier, the value of H0 I obtain using the SH0ES sample is consis-
tent to within 1σ of the value obtained by [Riess et al., 2021], whereas the value
for H0 using the SBF sample is consistent only at the 2.3σ level. The value of
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Table 6: The different MCMC fit results of the global parameters and the Hubble constant for
the SH0ES and SBF calibration sample

NSN P 0 P 1 R σint H0

Calibration [mag] [mag] [mag] [km s−1 Mpc−1]

SH0ES 30 −19.15± 0.05 −1.28± 0.24 2.34± 0.29 0.17± 0.03 72.11± 2.02
SBF 30 −19.37± 0.07 −1.40± 0.23 1.95± 0.34 0.23± 0.03 66.81± 2.45

H0 obtained by Planck [Aghanim et al., 2020] is H0 = 67.4 ± 0.5 km s−1 Mpc−1,
which is in good agreement with the value I obtain using the SBF sample.
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Figure 14: The probability density distribution of H0 for the Cepheid and SBF calibration
samples. The probability density is estimated using a Gaussian Kernel Density Estimation.

To visually compare the distributions for H0, I have used a Gaussian Kernel Den-
sity Estimator (KDE) to estimate the probability density function (PDF) of the
distributions, which is shown in Figure 14. The PDF specifies the probability that,
in this case, H0 will fall within a particular range of values. The probability is
then given by the integral between the set of values, meaning the integral of the
entire PDF is equal to unity. As can be seen in the figure, there is an overlap
where the two distributions agree, but for the most part they are separated. The
Cepheid calibration distribution also has a slightly higher peak, corresponding to
the tighter constraint on H0 obtained using the SH0ES sample, when compared
to the SBF sample.
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3.3 Full SN sample and redshift uncertainty

The MCMC result of using the All sample of SNe, while also estimating σz
implemented by Eq. 17, can be seen in Figure 15. The Hubble diagram with
residuals for the full SNe sample is shown in Figure 16.

Table 7 shows the values obtained for the global parameters, using both the Spec
sample and the All sample.
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Figure 15: Estimation of the five parameters global parameters using MCMC in the BV filters
for the full SNe sample. The mean value and standard deviation of the distribution for each
parameter is shown in the legend.

From Table 7, the value of the estimated uncertainty of the redshift σz proves to
have an upper limit value of σz ≈ 0.005, while also being consistent with 0. This
means, that the SNe without a redshift measurement from their host in the All
sample, does not show a trend of having a significant uncertainty associated with
their redshift, even though the redshift might be estimated from the SN spectrum.
As such, it makes no sense to include σz in further analysis, seeing as it is not
statistically significant.

Looking at the global parameters the two samples share, overall the estimates from
the MCMC is quite similar. The biggest notable difference is in P 1, where the two
values are barely consistent at the 1σ level. The smaller uncertainties on all of the
global parameters from All sample can in part be attributed to the fact, that the
sample contains more than twice the amount of SNe compared to the Spec sam-
ple. Even so, the uncertainties are not much higher for the Spec sample, which
can mean the LCs of the SNe in that sample are of higher quality, resulting in LC
parameters which are determined to a higher accuracy. The intrinsic scatter takes
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Figure 16: Hubble diagram for the full sample of N = 64 SNe. For both plots, a theoretical
expectation line has been plotted, as well as the residuals. (a) shows the distribution before
standardization, and (b) shows the distribution after standardization.

on an almost similar value, which means the two samples are nearly equally well
calibrated, even though they differ by more than a factor of two in sample size.
The standard deviation of the residuals after standardization for the two samples
are very similar as well, indicating the samples end up being almost equally well
calibrated. The change in the standard deviation of the residuals is largest for the
Spec sample however, which tells us that the standardization process was slightly
more effective for this sample, even though it is still slightly worse calibrated when
compared to the All sample.

Table 7: The MCMC fit results of the global parameters for the two samples of SNe in the BV
filters. The ’All’ sample includes an estimate of the redshift uncertainty. ’Residual std.’ is the
standard deviation of the residuals after standardization.

NSN P 0 P 1 R σint σz Residual std. ∆Res. std.
Sample [mag] [mag] [mag]

Spec 30 −28.42± 0.05 −1.19± 0.35 1.95± 0.43 0.22± 0.05 0.28 0.10
All 64 −28.39± 0.03 −0.80± 0.21 1.80± 0.32 0.21± 0.03 (2.77± 2.04)× 10−3 0.26 0.07

3.4 Fitting g and r filters

While fitting the SNe with a B and V band template in SNooPy was a necessity
to estimate the Hubble constant, a more natural choice would be to fit the LCs
with a g and r band template, as these are the filters in which the photometric
data is originally measured. This is the only part of the thesis, in which results
are presented for the g and r filters.
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Because the fits are now performed in different templates than previously, it is not
a guarantee that the same SNe will pass the quality cuts. SNe which passed the
quality cuts in BV filters might not pass the cuts now, meaning the SNe sample
could be different. This turns out to be the case. After the cuts I now have a total
sample of NAll = 56 SNe, where NSpec = 27 have a spectroscopically measured
redshift from their host.

The global parameters for the All and Spec sample are shown in Table B.1, and
the Hubble diagrams in Figure B.1, of appendix B. For the All sample, σz is again
consistent with zero, and so it has not contributed to the error budget in the cre-
ation of the Hubble diagram. Comparing the values of the parameters obtained
to those in the BV filters, there is a decrease in σint for the Spec sample, meaning
the Spec sample in the gr filters is calibrated more accurately compared to in the
BV filters. There is also a significant change in P 1 for the All sample. This result
is significantly different from all other values of P 1 estimated in this thesis.

Because the SN samples between the BV and gr filters are not exactly identical,
one has to be careful when comparing the results. In the Spec sample they share
25 SNe, while in the All sample they share 52 SNe. Due to the fact that the sam-
ples of SNe are not identical, we can not safely attribute any change in the global
parameters to the change in filters. However, because the other global parameters
obtained in the Spec sample for the gr filters resemble the results of both samples
in the BV filters, it seems to suggest there are some SNe in the gr All sample
which drive P 1.

Removing the clear outlier SN 2020kvl, which is highlighted in the Hubble diagram
in Figure B.1 (b), does not resolve the issue of a high P 1 value. On the contrary,
it increases further. Upon further investigation by manual exclusion of potential
odd SNe, P 1 appears to be driven towards 0 by the six SNe: 2019wka, 2020ann,
2020ewx, 2020juq, 2020kbl and 2021iok. Removing these six SNe results in P 1 =
−1.12 ± 0.30, much more in alignment with other values of P 1 estimated in this
thesis. This shows, that switching between filters is a process that requires care,
as the results are not guaranteed to be the same.

3.5 Cosmological parameters from peculiar velocities

All of the results obtained in this section are for the BV filters. Furthermore,
only SNe from the Spec sample will be used, as an accurate redshift is of great
importance. This means, that the sample initially consists of 30 SNe.
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Because the reconstructed density and velocity field I use from [Carrick et al.,
2015] extends to a redshift of z ≈ 0.07, SNe with a redshift of z > 0.07 are initially
discarded. The result of including SNe with z > 0.07 is explored in Section 3.5.1.
This is needed to make accurate predictions using the model, as including SNe
with a higher redshift than the threshold could yield false results. This also means,
that requirement (5) from Eq. 7 concerning the quality cuts does not apply to the
selection. Even though the motion of SNe at low redshift is usually dominated by
peculiar velocities, these are taken into account in the model, so any SN previously
discarded due to this can now be included in the sample. The Spec sample for the
BV filters contains 9 SNe with z < 0.02, but none of them pass the other quality
cuts which are still implemented. After implementing the new cuts with a change
in the redshift requirement, the sample consists of N = 15 SNe.
For the prior, I use the values of the external bulk flow obtained in [Carrick et al.,
2015] of Vext = (89,−131, 17), which I implement in the form of a weak Gaussian
prior. The Gaussian is centered at these values, with a dispersion of 200 km s−1.
The choice of the dispersion value is arbitrary, but this choice is meant to rid of
models with a Vext far from that of [Carrick et al., 2015], while also serving as an
anchor for these values.

Using the sample of 15 SNe, I use MCMC to estimate the global parameters,
the bulk velocity Vext, and the relationship between gravitational acceleration and
peculiar velocities γ. Using Eq. 23, I can convert the estimated value I obtain for
the rescaling factor γ into fσ8. The result can be seen in Figure 17.

3.5.1 Exploring the impact of different samples

While only the SNe with z < 0.07 should be included in estimating Vext and
γ, the discarded SNe can still contribute in constraining the global parameters.
By combining the LLH of [Boruah et al., 2020] and [Khetan et al., 2020] from
Eq. 20 and 12 respectively, the 15 SNe which were included in the initial sample
will still estimate both the global and cosmological parameters, while the 15 SNe
which were previously discarded due to their redshift will estimate only the global
parameters. This means, that the new LLH will be given by:

lnLtot = lnP
(
zobs|v,Vext, β,Θ

)
+ lnLcosmo (29)

where I insert h = H0/(100 km s−1 Mpc−1) into Eq. 10 to be used in Lcosmo. The
first LLH is for SNe with z < 0.07, and the second LLH is for SNe with z > 0.07.

To make sure this combination of LLHs preserves the functional shape of the orig-
inal LLH, while also still having a clear global maxima, I check the shape for
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Figure 17: Cornerplot of the four global parameters, the bulk velocity and fσ8, using the
sample of 15 SNe from YSE.

different values of all the parameters to be estimated. As can be seen in Figure
C.1 in appendix C, the functional shape of the LLH has not changed, and it still
has a clearly defined global maxima. Furthermore, the combined LLH has tighter
constraints on the parameters, as we would expect. I therefore conclude, that the
approach to estimate the parameters using MCMC with Eq. 29 is valid. The
sample now consists of N = 30 SNe, and the results can be seen Figure D.1 in
appendix D.
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Lastly, I add a subsample of the Foundation sample to my sample of 30 SNe [Jones
et al., 2019]. The subsample of the Foundation sample I use consists of 125 spec-
troscopically classified Ia SNe, all with a redshift of z < 0.07. This brings the total
sample size to N = 155 SNe.

While all of the SNe from the Foundation sample will contribute in constraining
Vext and γ, and therefore also fσ8, there is a caveat which must be taken into con-
sideration. Because the Ia SNe I use from the Foundation sample were fit using
the SALT2 LC fitting tool, the parameters defining their LCs are not the same
as the parameters I have from SNooPy which defines the LCs of the YSE SNe.
Therefore, it is not safe to compare the global parameters between the YSE and
the Foundation sample, as they are dependent on the LC fitting tool. This means,
that when using the conjoined sample of YSE and Foundation SNe, it is important
to use the correct formula for the modeled magnitude and the associated variance.
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Figure 18: Gaussian Kernel Density Estimate for the three different sample distributions of
fσ8.

Furthermore, because I do not have the correlation terms of the LC parameters
from SALT2 for the Foundation sample, the variance includes only the correlation
terms which contains the color. As previously mentioned, however, this exclusion
of correlation terms usually results in a negligible difference.
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Table 8: The result of using the Forward likelihood method to estimate fσ8 and Vext for the
three different Ia SN samples.

NSN fσ8 Vx Vy Vx
Sample [km s−1] [km s−1] [km s−1]

YSE (z < 0.07) 15 0.63± 0.20 106.86± 172.12 −178.13± 181.91 124.47± 122.30
YSE (All) 30 0.66± 0.17 146.21± 160.79 −202.83± 178.07 135.71± 112.98

YSE + Foundation 155 0.37± 0.07 −62.47± 59.35 −265.93± 56.84 61.81± 43.37

In total I fit for 12 parameters: four global YSE parameters, four global Foun-
dation parameters, and four cosmological parameters. The result can be seen in
Figure D.2 in appendix D.

To visually compare the estimated values for fσ8, I have used a Gaussian KDE to
show the PDF of the fσ8 distribution for each of the three Ia SN samples, which
is shown in Figure 18. Table 8 shows the values of fσ8 and the three components
of Vext obtained for the samples.

3.6 SNooPy vs. SALT2: comparison of standardization

When making the comparison between SALT2 and SNooPy, I perform the anal-
ysis for two different samples of SNe:

(1) All SNe in the sample are shared. This means, that to be in this sample,
a given SN has to pass the quality cuts for both its SNooPy and SALT2 LC fit
parameters. This sample is denoted ’Shared’.

(2) The SNe in the sample for each LC fitting tool have to pass only the quality
cuts for the fitting tool in which the SN is. This means, that there will be SNe
that are not shared between the two samples. This sample is denoted ’Maximal’.

The result of the standardization can be seen in Figure 19, and a table containing
all of the estimated parameters, as well as residuals, can be seen in Table 9.
Because both samples for both LC fitting tools in the histograms have 8 bins, the
distributions can look uneven. This is due to the fact that if a sample has a larger
scatter, the bins need to stretch further. This is why in both cases, the SNooPy
bins look wider.

As seen in Table 9, the Shared sample consists of 36 SNe. The parameter relating
to color correction for SNooPy, R, seems a bit low, however the uncertainty is also
quite high. The intrinsic scatter between the two LC fitting tools is interesting,
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Figure 19: Hubble diagram for the Shared sample for SNooPy and SALT2. The sample consists
of N = 36 SNe. For both plots, a theoretical expectation line has been plotted, as well as the
residuals. (a) shows the result for SNooPy, and (b) shows the result for SALT2.
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Figure 20: Histograms with Nbins = 8 bins comparing the residuals for SNooPy and SALT2
after standardization. (a) shows the result for the Shared sample, and (b) shows the result for
the Individual sample. The amount of SNe in each sample, and the standard deviation of the
residuals, can be seen in Table 9.
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as there is a difference. SALT2 has a lower intrinsic scatter, indicating that it
does a better job at calibrating the Shared sample. Visually it can also be seen in
Figure 19, where the deviations of SALT2 from the theoretical expectation in (b)
is smaller compared to SNooPy in (a). This is further proven by the fact, that
the spread of the residuals takes on a lower value than in SNooPy, despite having
roughly the same spread before the standardization process.

There are two major outliers in Figure 19 (a), which uses SNooPy parameters for
the LCs, that are not outliers for SALT2 in (b). These two outliers, placed at
z ≈ 0.09 and z ≈ 0.13, are SN 2020zbr and SN 2020tqz. Regarding a difference
in the 2020zbr LC parameters between the two LC fitting tools, SALT2 estimates
a color for 2020zbr of 0.1, while SNooPy estimates a color of -0.1. Regarding a
difference in 2020tqz, SNooPy estimates a high stretch for the LC, while SALT2
estimates a very mild stretch. In both cases, when compared to theoretical expec-
tation after standardization, SALT2 appears to find a more correct value of the
color for 2020zbr and stretch for 2020tqz. The errors in the color and stretch for
the two SNe show no abnormalities when compared to the rest of the sample.

Table 9: The MCMC fit results of the global parameters and the residuals after standardization
for the Shared and Maximal samples for SNooPy and SALT2. Because the two do not share all
parameter notation, where they differ the SNooPy parameter and SALT2 parameter, respectively,
are separated by a comma.

NSN P 0
mod P 1, α R, B σint Residual std. ∆Res. std.

Shared [mag] [mag] [mag]

SNooPy 36 −28.38± 0.04 −1.08± 0.28 1.12± 0.41 0.17± 0.04 0.21 0.06
SALT2 36 −28.32± 0.04 0.14± 0.02 1.94± 0.34 0.12± 0.02 0.14 0.12

Maximal SNooPy 64 −28.39± 0.03 −0.78± 0.20 1.81± 0.32 0.21± 0.03 0.26 0.07
Maximal SALT2 56 −28.30± 0.05 0.10± 0.03 2.28± 0.37 0.18± 0.02 0.20 0.11

The results of using the Maximal sample for each LC fitting tool does not result
in a drastic improvement, even though the sample sizes increase. The value of R
for SNooPy takes on a value closer to what we would expect, but P 1 increases and
takes on a value further from what we would expect compared to in the Shared
sample. SALT2 still performs better in the standardization process, as can be
seen by σint and the residuals. Interestingly, the value of σint increases for both
SNooPy and SALT2 for the Maximal sample, indicating that the calibration is
actually worse than it was for the Shared sample for both LC fitting tools, despite
an increase in the sample size.
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4 Discussion

4.1 Manual exclusion of SN

Although the quality cuts exclude SNe whose data is in some way sub-optimal,
they are not perfect. It is possible for SNe to pass the quality cuts, even though
the fit of their LC is poor. This can in turn result in poor results from the MCMC,
meaning a single outlier which does not get automatically detected, can have a big
impact on the whole sample. The outlier will however usually be clearly visible
on the figures which follow the MCMC analysis. For the data used in this thesis,
SN 2020xqb is one such outlier which does not get discarded by the quality cuts,
for both the BV and gr samples. It does, however, not have a spectroscopically
determined redshift from its host, so for the Spec samples in all filters it does
get discarded. But if this SN is not manually discarded, 2020xqb will have a big
impact on the results.
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Figure 21: MCMC histograms for the All sample in the BV filters, including SN 2020xqb which
was previously discarded manually.

Leaving SN 2020xqb in the sample, will result in an estimate of the redshift un-
certainty σz, which is not consistent with zero. This is shown in Figure 21.
When compared to the values of the All sample from Table 7, we can see that
P 0
mod, P

1 and R experience a slight increase in the spread of their distribution, but
they and σint are still consistent. However, σz is now significant at the 2.56σ level,
meaning it can no longer be considered insignificant.

The Hubble diagram after standardization for this sample is shown in Figure 22.
The estimated value of σz has been applied to all SNe not in the Spec sample.
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From this we can see, that it is hard to say anything conclusive about properties
of such SNe.
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Figure 22: Hubble diagram for the All sample in the BV filters including SN 2020xqb, which
is highlighted. The estimated value of σz has been applied to all SNe which are not in the Spec
sample.

SN 2020xqb is also highlighted in the figure. As can be seen, it is still a big outlier
after standardization, and in tension with the theoretical expectation at 4.58σ.
Due to it being an extreme outlier, there is good reason to discard the SN from
the sample manually.

Because 2020xqb was in need of a strong correction to its redshift to make the
distance modulus fit with the theoretically expected value, it drove the estimate
of σz for all SNe which are not in the Spec sample.

Looking at the fit of the SN from SNooPy, which is shown in Figure A.2 in appendix
A, it does seem there is room for wrong interpretation of the LC parameters, as
the fit looks to be pretty poor. SN 2020xqb is a case that proves that sometimes
there is need for manual inspection, even if the quality cuts manage to discard
almost all of the SNe with poor LC fits.
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4.2 Similarities and differences between SNooPy and SALT2

Even though the purpose of SNooPy and SALT2 is the same, they are defined in
different ways, and are after all models. Because of this, it is not trivial to directly
compare the results of the two. Table 1 shows the parameters which each program
will estimate for a LC.

One of the main differences, is how the two programs correct for the shape of a
LC. Even though both programs use a stretch parameter, they are defined differ-
ently. As can be seen from the modeled apparent magnitudes in Eq. 9 and 26,
for a normal SN in SNooPy, sBV = 1, while for a normal SN in SALT2, x1 = 0.
Therefore it is usually not a good idea to mix the parameters of the two fitting
tools. For example, the quality cuts from Eq. 7 I implement on my SN samples
which I have fit with SNooPy, contain a requirement based on the x1 parameter
from SALT2. As previously mentioned, the two parameters can be converted be-
tween one another using Eq. 8, but this is an approximation based on the fit of a
correlation [Burns et al., 2014]. One could argue, that a more safe approach would
have been to implement a cut using only sBV , as has been done in other works.
In [Khetan et al., 2020], they use a cut of sBV > 0.5 to discard fast-declining LCs.
However, when I implement this requirement for my sample of SNe instead of the
original cut (3), it turns out that it changes very little. For the Spec sample, no
new SNe are added, while for the All sample, 2 new SNe are added. The effect
these two SNe have on the parameters derived using MCMC is almost negligible.
The global parameters are unchanged at the second decimal, while the change in
H0 amounts to 0.02 km s−1 Mpc−1 for the SH0ES calibration sample, and 0.05 for
the SBF calibration sample. This corresponds to a change of (2.77× 10−4)% and
(7.48× 10−4)%, respectively.

The color of the two models are also defined differently. To estimate the color of
a SN, SALT2 uses a functional form for the flux given by7:

F (t, λ) = x0
[
M0(t, λ) + x1M1(t, λ)

]
× 10−0.4CL(λ)c (30)

The first term is aimed at describing the variability of the SN, such as a normal-
ization term relating to the flux, x0, and the stretch parameter, x1. These are
both a function of the rest-frame time since peak luminosity in the B band, t, and
the wavelength in the rest-frame of the SN, λ. The second term aims at modeling
the color of the SN, which is estimated using a color correction law CL(λ). If the
assumed color correction law is wrong, this will translate to a wrong estimation of
the color for the model.

7https://sncosmo.readthedocs.io/en/stable/api/sncosmo.SALT2Source.html
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Whereas SALT2 estimates the color by using it as a parameter in the model of the
flux, the way I obtain the color from SNooPy is by taking the difference between
the B and V estimated magnitudes. The color is thus not used as an explicit pa-
rameter to be determined within the model. It should be noted that this approach
to getting the color is for the max model of SNooPy, which does not assume any
extinction. The difference in how I use the two programs to obtain the color, can
potentially result in abnormalities, such as in Figure 19. The outlier SN 2020zbr
in (a) at z ≈ 0.09 has a very similar fit of its LC between SNooPy and SALT2,
but the two programs find a different color. If the color was obtained in the same
way for SALT2 as for SNooPy, it would likely have been an outlier in (b) as well.
However, because the color is estimated in the SALT2 model as a parameter, it
results in a more accurate estimate in this instance.

Figure 23 (a) compares the color of the Shared sample that SNooPy and SALT2
finds for the SNe. As can be seen, there is a trend of SALT2 finding a consider-
ably lower value of the color than SNooPy. Whereas SNooPy has a roughly even
distribution of SNe above and below zero, SALT2 finds a negative color for a large
part of the sample. This trend in color for SALT2 then results in most of the
residuals prior to standardization being shifted towards negative values, as seen in
Figure 23 (b). The standardization manages to correct for this shift in residuals,
however. The results after shows no similar trend and are centered around zero,
as we would expect.
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Figure 23: (a) shows a comparison of the color between SNooPy and SALT2 for the Shared
sample. (b) shows a histogram with N = 8 bins of the residuals for the SALT2 Shared sample
before and after standardization.

In the end however, although parameters for the LC fitting tool and the global
parameters derived from them may be defined differently, the intrinsic scatter es-
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timated from both models can tell us, which model most accurately calibrates
the sample. Going by this metric, SALT2 does a better job both when using the
Shared sample, and when using the Maximal sample.

4.3 Hubble constant tension

4.3.1 Influence of host properties on Ia SNe

In Section 3.2, I used the Cepheid and SBF calibration samples to obtain
estimates of H0. It can seem odd, that the value I obtain of H0 = 72.11 ±
2.02 km s−1 Mpc−1 using the SH0ES calibration sample does not agree with the
value ofH0 I obtain using the SBF calibration sample ofH0 = 66.81±2.45 km s−1 Mpc−1.
In addition to using a similar late-universe approach, there is also a sort of leakage
of the Cepheid calibration into the SBF calibration, because the SBF sample uses
Cepheid measurements to calibrate the zero point, which could further strengthen
our assumption of obtaining similar H0 values.

It is however important to note, that there is a difference between the Ia SNe of
the SH0ES and SBF sample. The hosts within which the Ia SNe are found are
different, except for the three SNe the two samples share. There are several differ-
ences between late-type and early-type galaxies, such as metallicity, stellar mass,
luminosity etc. If these environmental factors have an impact on the Ia SNe found
in the galaxies, they might explain the difference in H0 between the two methods.

If the cosmological sample of SNe one is working with all have hosts similar to the
hosts of SNe in a given calibration sample, one might expect the calibration to be
more accurate, as the cosmological and calibration sample would then share more
host properties. To investigate if such a correlation of hosts has an impact on the
determination of H0, an additional term can be added to the modeled apparent
magnitude formula in Eq. 9 [Khetan et al., 2020][Riess et al., 2016]. This extra
term is made to correct the magnitude based on the stellar mass of the host galaxy,
which in turn is supposed to act as a tracer of several properties of galaxies, such
as star formation rate, metallicity, and stellar population. In [Khetan et al., 2020]
they find, that such a correction term does not affect the estimated value of H0

much, which could imply that the properties of the host galaxy does not play a
big role.

In this thesis, I do not include any possible dependence on the host properties of
the SNe in my cosmological sample. However if the host properties of the sam-
ples do not have much impact on the estimated parameters, then the discrepancy

Page 57 of 65



between the two values I obtain for H0 using the SH0ES and SBF calibration sam-
ples can not be explained by a difference in host properties. There is still much
to be done in exploring the effect of the host environment on Ia SNe however, so
to completely rule out any effect of the host on the estimate of H0 requires more
investigation.

Nonetheless, if we make the assumption that the host does not have a big impact on
the estimation of H0, one can combine the SH0ES sample with the SBF sample to
a single calibration sample of Ia SNe. This can then be done without experiencing
a lack of quality in the combined sample due to conflict in the parameters, which
could arise due to the host type difference between the two individual samples. If
the two samples were in clear tension, it would not be statistically adviseable to
combine them. But as they are not in tension even though there is a difference
present, this difference could in theory be due to statistical fluctuations.

The result of combing the SH0ES and SBF calibration samples and redoing the
H0 analysis can be seen in Figure E.1 in appendix E. The Hubble constant of the
combined sample is found to be H0 = 69.78 ± 2.10 km s−1 Mpc−1. Not surpris-
ingly, most of the parameters take on a value somewhere in-between the values of
the two samples from Table 6. The SH0ES sample does seem to drive the values
of the parameters more, which can be due to its better calibration.

4.3.2 Comparison of H0 across methods

To review some of the values obtained for H0 and display the tension, Figure 24
displays values of H0 obtained using both different and a similar approaches to the
one used in this thesis.

[Birrer et al., 2020] and [Wong et al., 2020] uses strong gravitational lensing time
delays to measure H0, and find a value in agreement with H0 measured using
Cepheids and Ia SNe. Although the method used by [Birrer et al., 2020] is similar,
they find that the resulting value of H0 agrees with the value obtained using the
CMB from [Aghanim et al., 2020]. [Macaulay et al., 2019] use baryonic acoustic
oscillations (BAO) measured from the CMB to calibrate distances to Ia SNe, and
[Abbott et al., 2018] uses clustering and weak lensing data with BAO calibrated
with the Big Bang Nucleosynthesis estimate of the baryonic mass density Ωbaryons,
to constrain H0. Both of their results are in agreement with the Planck value from
[Aghanim et al., 2020].
The H0 value I obtain using the SBF sample is in best agreement with the Planck
value and the values obtained using BAO. The Planck and BAO values are all
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Figure 24: Comparison of values obtained for H0 using different methods. Values obtained in
this thesis are denoted with †. Values of H0 from top to bottom are taken from the following
references: [Abbott et al., 2021], [Birrer et al., 2020], [Wong et al., 2020], [Riess et al., 2021],
[Riess et al., 2016], [Macaulay et al., 2019], [Abbott et al., 2018], [Aghanim et al., 2020].

obtained using different physics than what is used with the SBF sample, as they
all have an early-universe approach to measuring H0. In fact, the method used
in [Macaulay et al., 2019] is sometimes referred to as the ’inverse distance ladder’
approach, as it uses the CMB to calibrate distance via. the sound horizon scale.

The H0 value I obtain using the SH0ES sample is in best agreement with other
results obtained using Cepheids for calibration, as well as the result from [Wong
et al., 2020] obtained using strong lensing. Apart from my measurement of H0

using the SBF sample, there is trend of agreement between methods which uses
physics from a similar time period of the universe.

While most of these different methods are independent, assumptions about the
cosmology of the universe have to be made in order to estimate H0. For example,
in order to make use of Eq. 10, I assume a universe of zero curvature with a
Robertson-Walker metric. Furthermore, I adopt best-fit values from the ΛCDM
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model of q0 = −0.55 and j0 = 1, although as previously mentioned, varying
these two parameters should have little impact on the final result. Even so, this
means the analysis performed in this thesis is not model-independent, and the
measurements obtained can therefore be thought of as indirect measurements. If
the indirect measurements are based on the correct model, however, they should
agree with direct measurements, if such measurements are ever obtained.

Nonetheless, Figure 24 clearly shows, that there is a tension present between the
different methods used to estimate H0. If the ΛCDM model is the correct model
to describe our universe, measurements which are based upon the model need to
be consistent. As of now, this is not the case for H0, and the reasons why are
still unclear. Even for the values obtained in this thesis, there is a clear difference.
These differences needs to be investigated, to see if they have a natural explanation
that is valid within the ΛCDM model. Despite using the exact same approach to
measure H0 in this thesis, the calibration samples that are used play a big role, and
so this would be a natural place to start to try and explain the difference between
the H0 measurements I obtain. For further analysis, investigating whether the host
properties of Ia SNe actually does have an impact in measurements of H0 would
be very interesting. This would require a cosmological sample containing only Ia
SNe observed within late-type galaxies and early-type galaxies for the SH0ES and
SBF sample, respectively. To accomplish this, while also having a sample of sig-
nificant size, would require more observations of type Ia SNe from YSE. There is
a good opportunity for this, as the YSE experiment is on-going. When the second
telescope at Pan-STARRS, Pan-STARRS2, becomes operational, the amount of
detected Ia SNe should double in size, further increasing the potential for a larger
cosmological sample.

If one is working with a very small sample of Ia SNe and do not include any
dependence on host properties, it could happen by chance that all SNe would share
a similar host environment. This could then potentially impact the estimation of
H0, depending on which calibration sample is used. Even though I do not include
any host dependence in the cosmological sample, my sample is big enough to rule
out a big effect of sample bias. As such, we would not necessarily expect the
difference between the H0 estimations in this thesis to decrease much, even if a
larger cosmological sample is used.

4.4 Constraints on the linear growth

Comparing the three values I have obtained for fσ8, which are shown in Table 8,
it is clear that adding the Foundation sample to the YSE sample has a big impact.
While fσ8 is not consistent with zero for the two YSE samples (YSE (z < 0.07))
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and YSE All), the values and their corresponding uncertainties are considerably
higher than for the combined YSE + Foundation sample. This is also visualized
by the spread of the distributions for the two samples in Figure 18, where it can
be seen that the distribution for the combined YSE + Foundation sample has a
much lower spread.

The three components of the estimated bulk flow velocity are all consistent with
zero for the two YSE samples. Adding the Foundation sample places tighter con-
straint on the bulk flow velocity, especially Vy which becomes much more signifi-
cant.

As previously mentioned, determining fσ8 is important to check if it is consistent
with the ΛCDM model. The values I obtain for fσ8 is obtained using the model
of [Carrick et al., 2015], whose model is based on the ΛCDM model. Thus, if
the ΛCDM model is consistent, I should obtain results similar to what we would
expect using Planck cosmology.

To check this, we can assume Planck cosmology and compare different results
obtained for fσ8 at different redshift, to the expected value for the ΛCDM model.
In [Aghanim et al., 2020], they find the matter fluctuation amplitude at zero
redshift to be σ8 = 0.811 ± 0.006. As a function of redshift, σ8 depends on the
linear growth D, as σ8(z) = σ8(z = 0)D, where by definition D(z = 0) = 1. The
linear growth can be expressed in terms of the scale factor a and the growth rate
f by:

f =
d lnD

d ln a
(31)

where a = 1
1+z

, and in the ΛCDM model f ≈ Ω0.55
m . Using this, we find

ln (1/D) =

∫ z

0

Ω(z)0.55m

dz

1 + z
(32)

and we can then write fσ8(z) as:

fσ8(z) = Ω0.55 exp (D)σ8(z = 0) (33)

The result of the theoretical expectation assuming the ΛCDM model, as well as
measurements taken at different redshifts, can be seen in Figure 25.
The measurements of fσ8 for the YSE + Foundation sample and the YSE (z <
0.07) sample are consistent with the prediction of ΛCDM. Because the error for
both the YSE (z < 0.07) sample and the YSE All sample is quite big, it can
alleviate some of the discrepancy between the fσ8 measurements of these samples
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Figure 25: Comparison of the values of fσ8 obtained in this thesis, as well as other values at
higher redshift from DSS [Stahl et al., 2021], BOSS DR12 [Alam et al., 2017], WiggleZ [Blake
et al., 2012] and VIPERS [De La Torre et al., 2013]. The theoretical expectation assuming Planck
cosmology (ΛCDM model) is also shown.

and the expected value from Planck cosmology, and therefore also argued that
the YSE All measurement of fσ8 is also consistent with the ΛCDM model. The
sample size for these two samples are also quite low when compared to the YSE +
Foundation sample size, which can explain the difference in error. The error goes
as σ ∼ 1/

√
N , which means that if we compare the error on fσ8 measured using

the YSE + Foundation sample with N = 155 SNe, to the error of the YSE All
sample with N = 30 SNe, we would expect the error of fσ8 measured using the
YSE All sample to be ∼ 2.3 times bigger than the error of the YSE + Foundation
sample. This is consistent with what is shown in Table 8.

To conclude whether the ΛCDM model predicts fσ8 accurately requires very pre-
cise measurements with uncertainties of a few percent. Neither the results in this
thesis, the measurement of DSS, or any of the other included measurements at
higher redshift, manages to accomplish this. The measurement with the highest
precision is the DSS measurement with an uncertainty of ∼ 5.9%. As such, there
is still work to be done in the future to determine fσ8 with the desired level of un-
certainty, to conclude if what we observe agrees completely with the ΛCDM model.
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It would be interesting to revisit this analysis at a later time, when YSE has
acquired data from significantly more Ia SNe. According to [Jones et al., 2021], the
predicted amount of Ia SNe YSE expects to observe in a year, based on simulations,
is 3920. My initial sample consisted of N = 157 spectroscopically classified Ia SNe,
and the amount of SNe from YSE which was included in the z < 0.07 sample was
N = 15. This corresponds to ∼ 9.5% of all Ia SNe in the initial sample. Going
by this metric, and assuming that the YSE experiment will be on-going for at
least two more years, the z < 0.07 sample size to constrain fσ8 should increase
to approximately N ≈ 760 Ia SNe. Using a sample of this size would mean, that
the uncertainty on fσ8 using the same approach as in this thesis should be ∼ 2.2
times smaller than that of the YSE + Foundation sample. There are some caveats
associated with this estimate however. It can be difficult to predict the amount
of expected Ia SNe to observe in a year, and the second telescope YSE plans to
use for its survey, Pan-STARRS2, has yet to become operational. As such, the
estimated amount of Ia SNe that should be available from YSE in two years is a
rough approximation, and likely subject to change.
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5 Summary
In this thesis, I have explored different aspects of the usability of LCs from type

Ia SNe. What this encompasses is summarized below.

• Using data from YSE, I have fit the LCs observed in griz filters of all the
Ia SNe contained herein. I fit the LCs with the fitting tool SNooPy, to ob-
tain the parameters defining the LC of a Ia SN. Using these parameters, I
calibrate the sample in the BV and gr filters using MCMC. This is done for
two samples: one consisting only of SNe with a spectroscopically measured
redshift from their host, and one containing all Ia SNe. Using the calibration
parameters relating to the stretch and color of the sample, I standardize the
SNe and create a Hubble diagram. Furthermore, I find that switching the
photometric data from the LCs of the Ia SNe between filters does not neces-
sarily yield identical results. Care must be taken when converting between
filters, as the quality of the data in the used sample can vary with these.

• Using the full sample of SNe, I explore the impact of redshift uncertainty
on the SNe with a redshift estimated from their spectrum. I find that if
the quality of my sample is assured, there is no significant evidence for an
uncertainty in the redshift. If the sample contains an outlier, however, it
takes only a single SN to create a statistically significant uncertainty in the
redshift, proving that sample quality is important.

• I make the first determination of the Hubble constant with YSE SNe, using
Bayesian inference with a MCMC. This is done for two different calibration
samples. The first is the SH0ES sample, which relies on Cepheids for distance
measurements. The second is an SBF sample, which relies on early-type
galaxy images for distance estimates and Cepheids for zero point calibration.
I find the resulting values of H0 are significantly different, although using
the SH0ES sample results in a better calibration. For the SH0ES calibration
sample I obtain H0 = 72.11±2.02, in agreement with other measurements of
H0 obtained using late-universe physics. Using the SBF calibration sample,
I find H0 = 66.81 ± 2.45, which is in agreement with measurements of H0

obtained using early-universe physics.

• I determine the linear growth rate of structure, fσ8, with YSE SNe. The
analysis is performed for three different samples, one of which combines
YSE SNe with a subsample of the Foundation sample. I find that the three
measurements of fσ8 are in agreement with the theoretical expectation of
the ΛCDM model, however the measurements obtained using only YSE SNe
have large errors associated with them, due to their low sample size. The
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value of fσ8 = 0.37± 0.07 obtained using the combined YSE + Foundation
sample results in the tightest constraint on fσ8 between the three samples,
in alignment with what we would expect from a significant increase in sample
size.

• I compare the two main Ia SN LC fitting tools, SNooPy and SALT2, for my
SN sample in the BV filters. Despite different methodologies, such as spec-
tral templates and adopted interpolations, definitions of color and stretch,
both calibrations are consistent. I find that for both the sample where all SNe
are shared between them, and a sample where the sample size is maximized
individually, SALT2 performs a better calibration of the sample.
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A Light curves of SN 2020pki and SN 2020xqb

Figure A.1: Light curve of SN 2020pki with best fit for the four PS1 filters. The photometric
data points of the SN have clearly been exposed to noise, most likely in the form of variability
from its host galaxy.
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Figure A.2: Light curve of SN 2020xqb with best fit for the four PS1 filters. The SN was
manually discarded from the SN sample, as it was a clear outlier in the Hubble diagram.
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B Results of fitting gr filters

Table B.1: The MCMC fit results of the global parameters for the two samples of SNe in the
gr filters. The ’All’ sample includes an estimate of the redshift uncertainty. ’Residual std.’ is
the standard deviation of the residuals after standardization.

NSN P 0 P 1 R σint σz Residual std. ∆Res. std.
Sample [mag] [mag] [mag]

Spec 27 −28.27± 0.06 −1.19± 0.36 2.33± 0.52 0.17± 0.05 0.27 0.04
All 57 −28.29± 0.05 −0.46± 0.25 1.88± 0.40 0.24± 0.04 (3.44± 2.69)× 10−3 0.26 0.05
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Figure B.1: Hubble diagram for the All sample of N = 57 SNe in the gr filters. For both
plots, a theoretical expectation line has been plotted, as well as the residuals. (a) shows the
distribution before standardization, and (b) shows the distribution after standardization. SN
2020kvl has been highlighted in (b) as still being a clear outlier after standardization.
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C Figures of combined LLH
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Figure C.1: The combined LLH from [Boruah et al., 2020] and [Khetan et al., 2020] compared
to just the LLH from [Boruah et al., 2020], for the eight parameters to be estimated with MCMC.
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D Results from using the Forward likelihood method
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Figure D.1: Cornerplot of the MCMC parameters estimated using the sample of N = 30 SNe
from YSE, with the combined LLH described in Section 3.5.1.
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Figure D.2: Cornerplot of the MCMC parameters estimated using the sample of N = 155 SNe
from the combined YSE + Foundation sample, with the combined LLH described in Section
3.5.1.
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Table D.1: The global parameters estimated alongside fσ8 and Vext for the three different
samples, using the Forward likelihood method. Because the YSE and Foundation sample do
not share all parameter notation, the YSE parameters from SNooPy and Foundation parameters
from SALT2, respectively, are separated by a comma.

NSN M + 5 log10 h P 1, α R,B σint
Sample [mag] [mag] [mag]

YSE (z < 0.07) 15 −18.40± 0.11 −1.78± 0.73 2.35± 0.64 0.20± 0.09
YSE (All) 30 −18.45± 0.06 −0.99± 0.41 2.30± 0.47 0.21± 0.05

YSE + Foundation [YSE] 155 −18.42± 0.05 −1.22± 0.38 2.26± 0.46 0.21± 0.05
YSE + Foundation [Found.] 155 −18.55± 0.01 0.13± 0.01 2.77± 0.12 0.02± 0.01
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E Result of the combined SBF and SH0ES calibration
sample
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Figure E.1: Cornerplot of the global parameters and H0 using the combined SBF and SH0ES
calibration sample.
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F Light curve parameters from SNooPy for the BV
All sample

If a SN is also in the Spec sample, its name has been bolded.

mB σmB
mV σmV

sBV σsBV

Supernova [mag] [mag] [mag] [mag]

2020aajf 18.253 0.046 18.261 0.037 0.959 0.125
2020aavd 19.906 0.142 19.758 0.141 1.240 0.208
2020abpt 19.710 0.033 19.611 0.037 0.944 0.195
22020adkc 18.533 0.040 18.461 0.029 1.167 0.059
2020adlp 18.207 0.047 18.253 0.043 1.315 0.058
2020ann 18.761 0.038 18.786 0.036 0.661 0.159
2020atv 18.671 0.032 18.634 0.041 0.992 0.130
2020dow 17.037 0.059 17.202 0.030 1.041 0.053
2020dwg 17.876 0.043 17.632 0.033 0.964 0.039
2020eci 19.504 0.171 19.302 0.119 1.093 0.212
2020ees 16.245 0.014 16.191 0.021 0.985 0.033
2020evu 18.178 0.033 18.05 0.044 1.073 0.051
2020ewx 17.720 0.056 17.750 0.038 1.296 0.045
2020ilb 17.980 0.035 17.757 0.073 0.953 0.068
2020ioz 18.055 0.019 18.056 0.029 1.254 0.037
2020jny 16.398 0.019 16.404 0.021 0.816 0.031
2020juq 19.723 0.036 19.636 0.059 1.475 0.151
2020kaj 19.846 0.041 19.854 0.044 1.163 0.081
2020kbl 19.258 0.037 19.227 0.078 1.244 0.056
2020lbf 17.228 0.059 17.179 0.042 1.127 0.050
2020lht 18.340 0.146 18.551 0.040 0.986 0.322
2020msu 19.042 0.026 18.978 0.033 1.035 0.057
2020myi 17.950 0.102 18.099 0.040 1.042 0.051
2020pf 18.866 0.052 18.812 0.037 1.210 0.140

2020ppe 17.788 0.065 17.592 0.052 0.633 0.036
2020pst 17.302 0.023 17.308 0.024 1.019 0.037
2020psv 19.044 0.061 19.012 0.029 0.851 0.046
2020pyf 18.384 0.037 18.384 0.027 0.838 0.034
2020pyy 19.383 0.047 19.380 0.037 1.043 0.061
2020qkx 19.200 0.071 19.323 0.075 1.083 0.125
2020qql 18.034 0.019 18.085 0.027 1.247 0.037
2020rii 18.773 0.035 18.802 0.057 0.810 0.063
2020rkt 18.962 0.056 18.989 0.043 1.139 0.081
2020rmy 19.759 0.074 19.671 0.064 1.071 0.086
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2020rvq 19.961 0.113 19.778 0.078 1.187 0.129
2020ryb 18.808 0.033 18.928 0.053 0.854 0.060
2020ryn 18.405 0.047 18.451 0.067 1.008 0.067
2020scj 19.264 0.062 19.056 0.072 1.069 0.125
2020sia 18.977 0.068 19.021 0.055 1.089 0.105
2020skd 18.093 0.028 18.068 0.026 1.105 0.048
2020svo 17.049 0.024 17.046 0.026 1.017 0.040
2020tip 19.187 0.076 19.115 0.039 1.073 0.083
2020tqz 20.150 0.055 20.120 0.062 1.347 0.147
2020ulz 18.949 0.068 18.862 0.045 1.016 0.069
2020wux 17.909 0.026 17.921 0.033 1.191 0.054
2020zbr 19.407 0.086 19.511 0.077 1.081 0.090
2020zgc 18.294 0.045 18.369 0.048 0.922 0.053
2020zhh 16.427 0.021 16.414 0.027 0.944 0.033
2021aci 18.458 0.071 18.591 0.053 1.120 0.084
2021afj 19.468 0.071 19.423 0.096 0.734 0.073
2021agu 17.657 0.046 17.711 0.032 1.006 0.044
2021bmb 17.656 0.020 17.469 0.026 1.070 0.046
2021bsf 16.296 0.014 16.367 0.028 0.788 0.034
2021cca 18.712 0.042 18.608 0.062 1.142 0.073
2021ccl 18.854 0.041 18.854 0.030 1.170 0.133
2021dha 18.827 0.104 18.758 0.051 0.860 0.050
2021dnm 17.796 0.035 17.513 0.034 1.071 0.044
2021dpw 18.428 0.101 18.459 0.036 1.187 0.081
2021fwm 18.220 0.052 18.253 0.029 1.078 0.065
2021hlp 18.663 0.047 18.485 0.038 0.819 0.054
2021hol 18.643 0.051 18.636 0.031 0.886 0.050
2021iok 19.546 0.073 19.620 0.076 0.987 0.228
2021pl 18.641 0.062 18.620 0.060 0.873 0.051
2021us 18.684 0.036 18.677 0.038 0.860 0.041

G Light curve fits from SNooPy for the BV All sample

If a SN is also in the Spec sample, its name in the caption has been bolded.
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Figure G.1: SN 2020aajf Figure G.2: SN 2020aavd

Figure G.3: SN 2020abpt Figure G.4: SN 2020adkc
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Figure G.5: SN 2020adlp Figure G.6: SN 2020ann

Figure G.7: SN 2020atv Figure G.8: SN 2020dow
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Figure G.9: SN 2020dwg Figure G.10: SN 2020eci

Figure G.11: SN 2020ees Figure G.12: SN 2020evu
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Figure G.13: SN 2020ewx Figure G.14: SN 2020ilb

Figure G.15: SN 2020ioz Figure G.16: SN 2020jny
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Figure G.17: SN 2020juq Figure G.18: SN 2020kaj

Figure G.19: SN 2020kbl Figure G.20: SN 2020lbf
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Figure G.21: SN 2020lht Figure G.22: SN 2020msu

Figure G.23: SN 2020myi Figure G.24: SN 2020pf
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Figure G.25: SN 2020ppe Figure G.26: SN 2020pst

Figure G.27: SN 2020psv Figure G.28: SN 2020pyf
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Figure G.29: SN 2020pyy Figure G.30: SN 2020qkx

Figure G.31: SN 2020qql Figure G.32: SN 2020rii
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Figure G.33: SN 2020rkt Figure G.34: SN 2020rmy

Figure G.35: SN 2020rvq Figure G.36: SN 2020ryb
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Figure G.37: SN 2020ryn Figure G.38: SN 2020scj

Figure G.39: SN 2020sia Figure G.40: SN 2020skd
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Figure G.41: SN 2020svo Figure G.42: SN 2020tip

Figure G.43: SN 2020tqz Figure G.44: SN 2020ulz
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Figure G.45: SN 2020wux Figure G.46: SN 2020zbr

Figure G.47: SN 2020zgc Figure G.48: SN 2020zhh
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Figure G.49: SN 2021aci Figure G.50: SN 2021afj

Figure G.51: SN 2021agu Figure G.52: SN 2021bmb
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Figure G.53: SN 2021bsf Figure G.54: SN 2021cca

Figure G.55: SN 2021ccl Figure G.56: SN 2021dha
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Figure G.57: SN 2021dnm Figure G.58: SN 2021dpw

Figure G.59: SN 2021fwm Figure G.60: SN 2021hlp
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Figure G.61: SN 2021hol Figure G.62: SN 2021iok

Figure G.63: SN 2021pl Figure G.64: SN 2021us
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