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Abstract

Due to increased luminosity and bunch crossing rate at the HL-LHC an
improvement to the trigger system at the ATLAS detector is needed. In
this thesis convolutional neural networks are suggested to improve charged
particle candidate finding in Hough transformed images of hits in the
Inner tracker. The results presented are based on simulated proton-proton
collisions and single muons within a region 0.3 < ϕ0 < 0.5, 0.1 < η < 0.3.
As an example at 99% the average candidate count is found to decrease
from 216 to 97 by using a two-layer CNN method compared to the current.
This is a significant decrease that could have a significant influence on
the viability of the Hough transform method when considering the future
trigger system for ATLAS at the LHC.
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1 Introduction
Due to an upgrade at the Large Hadron Collider (LHC) the mean number of
interactions per bunch-crossing is expected to increase dramatically. Therefore
new fast hardware based methods are needed in the Trigger Data Acquisition
(TDAQ) process of the ATLAS detector to handle the high event frequency and
pile up per event. For this a Hardware Tracker for the Trigger (HTT) has been
suggested to implement fast tracking based on Inner Tracker (ITk) data. This
is described in section 2.

Before fitting clusters of ITk hits to tracks in the HTT a fast algorithm is
needed to narrow down what clusters to fit to or the computation time would
explode. As an alternative to the currently intended application-specific inte-
grated circuits (ASICS) matching clusters of ITk hits to pattern banks, a Hough
transform based method described in section 2.4 has been suggested[1] for fast
charged particle track identification. However, this Hough transform method
still leaves a rather high amount of possible charged particle tracks to fit to. A
reason for this might be that the information hidden in the Hough transformed
images is not fully utilized in the current implementation of the HTT simulation
described in section 4.

For this reason this thesis suggests using a convolutional neural network
(CNN) for image recognition in section 3 to increase both precision and accu-
racy of charged particle track identification in Hough transformed images. By
reducing the time spent on track fitting more of the relevant data can be saved in
the DAQ-process. This will eventually increase the precision with which physics
process of interest can be probed.

As the new High Luminosity-LHC and the upgraded ATLAS detector are not
yet built this thesis is based on simulated data of muons and a mean number
of µpp = 200 proton-proton collisions per bunch crossing. Section 5 presents
results for the current and suggested track finding methods. As an example is
found that the number of charged particle track candidates can be reduced to
less than half from 216 to just 97 within the investigated region 0.3 < ϕ0 < 0.5,
0.1 < η < 0.3 without reducing efficiency from 99% in finding muon tracks by
using a 2-layer CNN method.

Finally in sections 5.10 and 5.11 the method is analyzed and is found not
to have any significant biases at the measured precision. The performance has
been studied in details and found to be stable in kinematic parameters.
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2 High Luminosity Large Hadron Collider (HL-
LHC)

Across the border between Switzerland and France lies the Large Hadron Col-
lider at the CERN laboratory. The collider is so named because it is built to
collide hadrons at very high energies (latest at

√
s = 13 TeV in run 2). In this

thesis we shall focus on proton-proton collisions.
The probability of an inelastic event between the colliding particles is de-

pendent both on the couplings between the colliding particles and, for bound
objects like hadrons, the parton distribution functions. In a classical analogue
this can be described as a tiny cross section for a beam to hit for the interac-
tion to happen. The luminosity is the number of incoming particles per area
per time interval and is thus directly proportional to the number of interac-
tions. The total number of events over a time period can then be described as
nevents = σ

∫
Ldt were L is the luminosity and σ is the cross section. In collision

experiments cross sections are often described in barn, b = 10−28m2.
After the end of the current run the LHC is going to be upgraded, the so

called ”Phase II upgrade”. This upgrade will increase the collission energy to
14TeV , but the primary upgrade is an increase in the beam intensity called
luminosity. After the upgrade the LHC will be renamed the High Luminosity
LHC (HL-LHC). This is because the luminosity will increase way beyond its
current max of L = 2 · 10−5 1

fb·s = 6 · 102 1
fb·year in the second half of 2017 to

L = 7.5 · 10−5 1
fb·s = 2.5 · 103 1

fb·year in the ultimate configuration, or about 4
times as much as the current max[2]. As the number of interactions depends
on the luminosity the mean amount of interactions pr. crossing µpp will also
increase. Specifically µpp will increase beyond its max of up to 60 in second half
of 2017 to up to 200 in the ultimate configuration[2]. This due in part to an
increased number of protons per bunch and in part an improved focusing of the
beam[1].

The increase in luminosity is important as it greatly increases the amount of
data gathered for studied processes. But it also puts even higher demands on
the detectors and the data acquisition. Colliding hadrons allows for very high
collision energies, but it comes at a price. Hadrons are affected by the strong
force which has a very high coupling constant for low energies which creates
showers of particles in the detector. All these events are called ”minimum bias”
and result in a huge ”pile up” of data in the detectors per event. This along with
a bunch crossing rate of 40 MHz gives an expected collision frequency of 8 GHz
worth of proton-proton collision pile up for the ultimate configuration. This
huge increase in data naturally puts very high requirements on the detectors
precision to seperate objects and the data acquisition speed to be able to save
events of interest. In the following chapter the ATLAS detector will be described
followed by a chapter on how the data acquisition will be updated to cope with
the increased data frequency.

2.1 The ATLAS Detector
The ATLAS Detector is one of the detectors at the LHC gathering data from the
collisions. It is a 44 meters long cylinder with a diameter of 25 meters. At the
HL-LHC it consists of the inner tacker (ITk) surrounded by two calorimeters
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Figure 1: Drawing of the inner tracker, implied symmetric rotating around z
and mirrored in z = 0. Red lines are pixel layers. Blue lines are double strip
layers. The yellow lines show the area investigated, |z| < 150mm, 0.1 < η < 0.3.
B stands for the magnetic field in the ITk which is a uniform field of 2T along
the beam axis. The magnetic field makes charged particles rotate in the plane
transverse to the beam axis. Image taken from [3] and modified by me.

which are again surrounded by magnets[1]. In addition to these cylindrical
subdetectors there are end caps, but as this paper will focus on charged particles
in the 0.1 < η < 0.3 region these are of no relevance. Here η is the pseudo
rapidity, η = − ln θ/2 where θ is the angle down to the z-axis. As marked with
yellow in figure 1 the end caps of the ITk are outside the area of study.

This project is focused on charged particle detection from clusters of hits
in the ITk. This is especially important since one of the ways that the AT-
LAS collaboration intends to deal with this large increase in pileup is through
tracking. This decision is based on two main arguments. The first being that
a track fit gives parameters, especially the transverse momentum pT , that can
be used to characterize whether the found particle is of interest. Additionally
though, tracks can be used to find primary vertices of interaction which is a
robust way of grouping particles originating from the same event. As the cur-
rent detector is fried by radiation it is therefore even more important to find a
good replacement. The inner tracker used for Phase II will be an all new unit of
silicon detectors. The new detector covers a larger pseudo-rapidity range than
the previous (up to η ∼ 4 as shown in figure 1). The ITk-barrel has five layers
of pixel detectors closest to the beam surrounded by four double sided layers of
silicon strip detectors outside these[2].

Figure 1 is an illustration of the ITk. The five red lines in the bottom left
corner are the pixel layers and the four blue above are the silicon strip layers.
The ITk is positioned in a uniform magnetic field of 2T pointing along the beam
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Figure 2: The image shows where different kinds of particles are detected in the
ATLAS detector. This image describes the detector before the Phase II upgrade.
Therefore all that is currently marked as ”tracking” should be interpreted as the
Phase II ITk shown in figure 1. It shows that the charged tracks are detected
and bent in the ITk. The proton should be interpreted as an example of long
lived charged hadrons, i.e. protons, charged kaons an especially charged pions
and corresponding anti particles. The image should be interpreted as showing
the particles in the detector within some (z, η)-region all projected down on the
transverse plane. Image taken from [6].

axis[3]. This is to help charged particle detection as moving charged particle
tracks are bent in a magnetic field according to their charge and momentum.

The strips are down to 24mm long meaning that the barrel strips each have
a rather low resolution along the z-axis. This is compensated for by adding
them in layer pairs that are slightly tilted compared to each other (3o) to also
enable identification of the z-component[2]. They can also be used individually
though when the exact z-position is not of importance. In the Hough transform
described in chapter 2.4 the strip layers will be used as individual layers as the
exact z-position is of lesser importance. This is because the movements of the
charged particle in the transverse plane is independent on the movement in the
z-direction when the magnetic field is uniform pointing along z. The pixels are
so small that a single pixel hit is sufficient to give a good spatial bound on the
hit point.

The pixels and strips detect electromagnetically charged particles passing,
that is charged hadrons and charged leptons except for those that decay within
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Figure 3: The left hand side of the figure shows so called ”key layer slicing”.
Each colored region is a region with a starting point within |z| ≤ 150mm and
η within 0.1 to 0.3. This key layer slicing is focused around the second pair
of strip layers. The light grey area of the right hand figure corresponds to the
η = 0.3 region covered by the blue slice of the left hand figure while the dark
grey area shows the η = 0.1 region covered by the blue slice. Image taken from
[5] and modified by me.

the beam pibe illustrated by a white circle of figure 2.
Looking further into the layers of figure 2 the innermost calorimeter is the

electromagnetic calorimeter which stops and measures the energy of photons
and electrons. The outermost calorimeter is the hadronic calorimeter stops and
measures the energy of charged hadrons.[1]. The outermost magnets are for
muon detection. The muon spectrometer hits along with energy deposits in the
calorimeters is what is currently used to trigger on interesting events. Adding
information from the ITk will therefore correspond to a whole new trigger level.

The problem remains however that analyzing the incoming data from each
bunch crossing is made difficult due to the increased amount of minimum bias
pile up. A way to deal with this problem is to split the data accumulated in the
detector into multiple parts when analyzing. In this project six so called slices
are used in z and η as shown in figure 3. Each of these coloured slices contains all
particles with a certain η value going through some z-region of the so called ”key
layer” chosen. The second pair of strip layers is used as this key layer. Focusing
on the blue slice on the left hand side of figure 3, the right hand side of figure 3
shows that it covers η = 0.3 within the starting region −130mm ≲ z0 ≲ −60mm
and η = 0.1 within the starting region −10mm ≲ z0 ≲ 60mm where the index
0 is to indicate that it describes z at r = 0.[5]

Originally slicing was based on the beam axis as the key layer but the new
slicing has been introduced so as to reduce overlap between slices and thereby
minimize the pile up for each slice. Considering that the amount of pile up
scales with the size of the detector region, slicing clearly constitutes a significant
decrease in the amount of pile up per investigated region at the cost of some
overlap.

2.2 Data acquisition
As the mean number of interactions per crossing will increase from up to 60 to
up to 200 at a frequency of 40 MHz this is a huge increase to the amount of data
that has to be saved. Just continuing with the same trigger requirements would
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Figure 4: A simplified illustration of the TDAQ system. Events come in at a
rate of 40 MHz and are reduced to 1MHz by the Level-0 trigger using infor-
mation form the calorimeters and muon spectrometers. The event filter, now
also drawing information form the ITk, does additional processing to reduce the
event rate to 10kHz. The event rate is hereby reduced by a factor of 400 in total
by the trigger system. Image taken from [7].

mean that one would have to make very large cuts on pT to still be able to store
data and thereby loose much of what is gained by the increase in luminosity. In
fact ATLAS aims to improve the Trigger system so much that the pT cuts can
stay similar to the current or even decrease for some trigger parameters.[7]

In general hardware implementations run faster than software. Therefore
when the input rate of events is at 40 MHz and you don’t have infinite money
for general purpose computing farms you have to run it in specialized hardware.
The exact choice of design for the trigger system is not final, but the baseline
trigger system of the Trigger and Data Acquisition (TDAQ) is two-leveled. It
contains a first rough Level-0 trigger followed by the event filter as the second
layer of the trigger system. A rough sketch of the TDAQ is drawn in figure 4.

As the input is of rate 40 MHz the first trigger level-0 has to be extremely
fast. It uses hits in the muon spectrometers and energy deposits in the calorime-
ters to do this first sorting of events. The event filter is a processor farm that is
shown in the lower left hand corner of figure 4 to be assisted by the Hardware
Tracking for the Trigger (HTT). The HTT consists of hardware processors such
as field programmable gate arrays (FPGAs) and ASICs and uses hits from the
ITk to perform quick charged particle track finding implemented in hardware
to optimize the speed. ASICs especially are cost efficient when many are used,
but unprogrammable. The design and implementation of the event filter is not
yet final, but the algorithms studied in this thesis, described in sections 2.4 and
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Figure 5: An illustration of the two main steps of the HTT. In the ASICs the
HTT performs pattern matching between the clusters in the ITk and the pattern
bank. When track candidates are found the FPGAs perform track fitting. Image
taken from [7].

5 can be used in any design.
The HTT consists of two parts, the regional (rHTT) and the global (gHTT).

As the names suggest gHTT performs tracking in the whole detector while the
rHTT performs tracking in specific regions specified by the L0-trigger. The
gHTT and the rHTT can perform these tasks for pT > 1GeV at 100 kHz and
pT > 2GeV at 1 MHz respectively[2].

As the rHTT is able to work at a higher rate than the gHTT there exists
an evolved system where the rHTT is used as an individual trigger level (level
1) before the Event filter. This is intended for if the pile up of data proves too
large. Then the data rate after the level 0 trigger of the ITk will be allowed to
be up to 4 MHz, and the L1 trigger which shall then reduce the data rate to
6-800 kHz before the Event Filter[2].

The HTT is to consist of two main steps. After first combining hits to
clusters these are matched to predefined patterns in associative memory (AM)
ASICs. This is done using pattern banks of simulated muon hits in the ITk.[1]
An illustration of the procedure is shown in the left hand side of figure 5. There
the rectangles and squares represent clusters of hit strips and pixels respectively.
The red lines represent the simulated muon match from the pattern bank using
eight layers including the outer strip layers and at least 1 pixel layer. If a match
is found the event passes as a candidate track for track fitting. Track fitting is
done in FPGAs in the HTT.

In [1] using the Hough transform is suggested as an alternative to the pattern
matching AM ASICs in case the ASICs become delayed or perform worse than
expected.

Track fitting is a task whose time consumption scales very quickly with the
amount of combinations of points to be fitted to. Therefore it is important to
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make a rough search for possible charged particle tracks to reduce the amount
of possible hits used for track fitting. Instead of using a bank of patterns the
Hough transform identifies charged particle tracks in a magnetic field as crossing
lines in a transformed space described in section 2.4.

2.3 Collision simulations
To study the performance of the Hough transform algorithm described in section
2.4 on ITk input, test data is needed. Naturally as the HL-LHC is not yet built
this will have to be simulated. The simulations consist of two parts. The first
part is the collision simulation done in Pythia8, see documentation at [8]. This
gives the outcomes of the µpp = 200,

√
s = 14 TeV proton-proton collisions.

The second part of the simulation is the particle behavior inside the detector
(the ITk specifically) including subsequent decays. This is done in Geant4, see
documentation at [9].

In this project we use two sets of input files. The first is a signal file. As
just explained we intend to find charged particle tracks in the detector and
thus the signal file should consists of long lived charged particles. This includes
leptons (electrons and muons), mesons (charged pions and kaons primarily)
and baryons (protons) along with all their corresponding antiparticles. A file
of muons is chosen as these behave rather nicely in general, but a file of any
of the previous particles had been valid. These simulated muons are made
using Geant4 only. They are made to be flat in the region 0.3 < ϕ0 < 0.5,
0.1 < η < 0.3 (where ϕ0 is the starting angle in the transverse plane) and 1/pT ,
where 1GeV ≤ pT ≤ 800GeV . The files include the true muon track parameters
along with the corresponding detector hits.

The second is a minimum bias file. This is to include the result of 200 proton
proton collisions at

√
s = 14 TeV to be used as background. A low percentage

of the elements in these collisions is charged particles of the sort mentioned
earlier. An even lower percentage actually fall into the η, z region within which
we search. Those that do not will leave seemingly random tracks in the lower
layers or traverse multiple slices. However, the vast majority of ITk hits come
from so called ”soft QCD” particles, i.e. low pT hadrons, as the strong force is
extremely strong at low energies. These bend so much in the electromagnetic
field of the ITk that they will often only hit few of the ITk layers or hit them
at very different angles in the transverse plane.

Such interactions are the result of strong force interactions and parton dis-
tributions that are not possible to calculate directly from the standard model.
Therefore there is naturally some difference between a simulated and a real
dataset, but as seen in [8] the error on the differential cross sections are rather
small at

√
s = 13 TeV and we shall therefore assume that these errors are also

reasonably small at
√
s = 14 TeV. After creation in Pythia8 these particles

are also simulated in the detector using Geant4 returning them as hits and
corresponding tracks.

To these files are also added muons for all η and all ϕ and has pT = 10GeV .
As this muon is useless for testing because it rarely falls within the area of
investigation (0.1 ≤ η ≤ 0.3, 0.3 ≤ ϕ0 ≤ 0.5 ) and only has one pT value this
is manually removed by removing clusters in which this is the major pT con-
tributor. When other particles occasionally made hits contributing to the same
cluster this might add a tiny error, but in combination with the rarity that the
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muon even falls within the region of interest this is completely irrelevant.

Now talking about the use of particle hits in the ITk, clusters are combina-
tions of hits that are identified as most likely originating from the same object.
An example can be seen in figure 5. Focusing on the bottom left layer one can
see 5 hit pixels, but only two matching track patterns. That is because the five
hits are identified as only two individual clusters.

Having now described the data acquisition, the signal and the background we
are ready to present the Hough transform used for charged track identification
using input clusters in the ITk.

2.4 Hough Transform
As mentioned this thesis will focus on the Hough transform as an alternative to
the AM ASICS for first sorting of hits when searching for charged particle tracks
in the ITk. The Hough Transform is a reparameterization of the problem. For
our problem at hand we shall focus on the circular Hough transform which is
used to detect circles from points. We shall let the points be the collision point
paired with the detector clusters, and the circles are the circular paths that the
charged particles traverse in a uniform magnetic field inside the ITk transverse
to the beam axis. If multiple detector clusters correspond to a similar circular
path, they might originate from a charged particle traveling through the ITk!
This way long lived charged particles of sufficient transverse momentum can be
detected.

Assuming a particle to be a primary particle, it must be created on the beam
axis, that is at the origin of the transverse plane. If the particle makes a cluster
in the ITk we will then have two points of the particle track, the origin and the
cluster. Using the equation of the circle:

r2 = (x− a)2 + (y − b)2 (1)

We can use the equation of the circle for these two points to find the parameters
of the circular motion:

x2 + y2 = (x− xi)
2 + (y − yi)

2

⇕
2r = ri

sin ϕi sin θ+cos ϕi cos θ

(2)

Where we used the polar coordinates (x, y) = (r cos θ, r sin θ). In this equation
(xi, yi) or (ri, ϕi) are the coordinates of the cluster and (r, θ) are the polar
coordinates for the center of circular motion all shown in figure 6.

It can be seen from figure 6 that the starting angle ϕ0 of the particle track
can be found from θ: θ = ϕ0 − π/2. Inserting this into equation 2 and using
some trigonometric identities we get:

r(ϕ0) =
ri

sin (ϕ0 − ϕi)
(3)

Equation 3 is the Hough transform of the problem. However, we’d like to also
relate the radius of the circular motion to a kinetic variable of the particle. For
this we will use that the ITk is positioned in a uniform magnetic field along the
beam-axis (z).
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Figure 6: The red is the circle of motion for the particle. (r, θ) is the coordinates
of the center of circular motion. The green line refers to a hit in a detector layer
and (xi, yi) and ri, ϕi describes its position. ϕ0 is the starting angle of the
particle moving from the origin. It is seen that θ = ϕ0 − π/2

.

In a magnetic field with negligible electrical field the Lorentz force on a
charged particle is described by:

F̄EM = qv̄ × B̄ (4)

where q is the particle charge, v̄ is the particle velocity and B̄ is the magnetic
field of the detector.

Assuming that no other force affects the particle, it will move in spirals
perpendicularly to the direction of the uniform magnetic field. As the cross
product between two parallel vectors is 0 we can allow ourselves to extract and
ignore the z-component of the particles spiraling movement as B̄ = Bẑ and
focus on the movement in the transverse plane.

v̄T = vT ϕ̂ (5)

Inserting again into equation 4:

F̄EM = qvTBr̂ (6)

As this is the force creating the circular motion it must be equal to the cen-
tripetal force in the plane of circular motion:
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F̄C = pT vT
r r̂

⇕
qBr = pT

(7)

We have thus established the relationship between the transverse momentum
and charge of the particle and the radius of its circular movement. This can
now be combined with the Hough transform of equation 3:

B
q

pT
=

sin (ϕ0 − ϕi)

ri
(8)

Which is the Hough transform in kinematic variables (ϕ0, q/pT ) for a detector
hit (ϕi, ri) from a primary charged particle in a uniform magnetic field. As the
particle momenta that we are looking for are quite high (pT >= 1GeV ) ϕ0 −ϕi

is in general rather small which means that the lines of the Hough transformed
image are very close to straight lines:

B
q

pT
≈ ϕ0 − ϕi

ri
(9)

From which it is also seen that q/pT always grows with ϕ0 for high pT . Also the
constant ri specifying the radius from the origin of the hit means that for high
radii q/pT grows more slowly with respect to ϕ0 than at low radii. Focusing on
hits in ITk layers this means that clusters in the innermost layers of the tracker
will create steeper lines. Therefore clusters from the same charged particle
hitting different layers will make lines of different slope coefficient crossing in
the same point corresponding to the true (ϕ0, q/pT )-value of the track.

A made up example of use is shown in figure 7. The figure illustrates a
charged particle track producing five clusters in different layers of the ITk. The
blue area shows the bins corresponding to 4-5 hit layers while the green area
shows the bins corresponding to 3 hit layers. The fact that multiple lines cross
the same (ϕ0, q/pt) bin indicates that these clusters originate from a charged
particle track following a circular path in the uniform magnetic field. In general
the higher bin count the more likely it is that they originate from a charged
particle traveling through the ITk with the corresponding (ϕ0, q/pT ).

Data is accumulated within some region in η, z. If one uses the entire range
|z| ≤ 150mm, 0.1 < η < 0.3 this corresponds to a lot of accumulated background
noise. Therefore slicing in z and η is used as described in 2.1.

An example of a muon and the same muon inside minimum bias can be seen
in figure 8. The images are represent Hough transformed images of clusters in
the ITk. The bin count is the amount of lines from different hit layers crossing
that bin. While identifying the charged particle track seems like a very straight
forward task on the left hand image of figure 8, it gets a bit more complicated
in the right hand image.

One can go straight by each bin count, but as seen in the single muon image
it is not just the central bin, but an entire area that has high intensity. Multi-
ple machine learning methods have been developed for pattern recognition, but
especially convolutional neural networks (CNNs, see [10] for a general intro-
duction) have become almost synonymous with image recognition as they are
excellent at combining and interpreting information of a spatial nature. This
will therefore be introduced in the next section as a way to improve charged
particle finding in Hough transformed images of ITk clusters.
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Figure 7: The figure shows an example Hough Transform image of a charged
particle in a detector leaving 5 clusters of hits in different detector layers. The
grid is the binning in (ϕ0, q/pT ) and the arrows point towards higher q/pT and
ϕ0. Each hit corresponds to a relation between charge and momentum and
starting angle described by equation 8. When the lines have different slope in
the Hough Transformed image it means that they originate from different ITk
layers. Each bin can be assigned a count equal to the amount of clusters from
different layers corresponding to that bin. In this figure the blue area marks all
bins corresponds to 4-5 hit layers and the green area marks all bins with 3.

.

Figure 8: The left hand image shows a lone muon in a Hough transformed image,
summed so that the bin counts represent the number of lines from different hit
layers crossing that bin. The red point is the target used for training, see
3.2. The right hand image is a Hough transformed image of the same muon in
minimum bias. It is seen from this image that more high intensity regions exist
than that of the added muon.

.
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3 Artificial neural networks (ANN)
To efficiently recognize charged particle-like patterns from the Hough Trans-
formed image an artificial neural network is applied. An artificial neural net-
work (ANN) or just neural network for short (NN) is a very diverse category of
machine learning methods, but we shall here focus on the simplest types called
feed forward neural networks (FFNN).

Put generally a NN is any algorithm that maps x̄ ∈ Rn → ȳ ∈ Rm through
a series of linear transformations, often separated by nonlinear functions. Iter-
atively this can be written as:

xl+1
j = f l+1

(
W l+1

j,i xl
i

)
(10)

In which xl
i is the neurons(the vector) of layer l and W l+1

j,i and f l+1 are the
linear transformation and the activation function between layers l and l + 1
respectively. xl=0

i is the input and yj = xl=L
j is the output of the network. In

figure 9 is illustrated a simple FFNN of three dense layers. A dense layer is a
layer where each element of the layer is allowed to depend on all elements of
the previous layer. I omitted the bias parameter which we absorbed into W l+1

j,i

for notational convenience. The bias is simply another model parameter that
is added to every neuron of the new layer independently of the previous layer.
Comparing figure 9 to our problem x0

i corresponds to the Hough transformed
image and ym corresponds to some output determining which bins correspond
to muons and which do not.

Figure 9: This example FFNN maps x0
i ∈ R6 → ym ∈ R8.

.

As any sequence of linear transformations is also a linear transformation an
n-layered network without any nonlinear transformations can be described by a
single layer transformation. The only way to model non-linear dependencies is
thereby to use nonlinear activation functions. I shall call the number of layers in
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the model the ”depth” of the neural network and the combination of layer count,
neuron count prer layer and nonlinear activation functions ”model complexity”.

The goal of a neural network is in general to “best” produce a target from
the input. The target is completely dependent on the problem. The purpose
at hand is to identify a charged particle track and this physics signal is to be
represented as a target. This can be seen as a classification problem, which
would in the simplest case correspond to mapping the entire input onto a vector
with length equal to the number of classes. For instance, a vector of input
parameters could either originate from a charged particle, or not originate from
a charged particle giving two output classes in all. “Is” and “is not”. What
exactly to choose as target proved to be non-trivial and is further discussed in
5.

Having defined now a problem of identification the meaning of “best” pro-
ducing a target becomes more clear. The best model is the one that minimizes
some error between the output of the model yi and the target truth ti.

3.1 Loss functions
There are multiple words used for these functions describing the error between
output and target, but most often “loss function” is used. The purpose however
is to describe how large of an error we make by trusting the model output (or
the ”loss” of information).

The loss function used depends on the problem and it is not necessarily
trivial to choose a suitable loss function. However for a classification problem
it is well established to use the negative cross entropy:

Er (y, t) = −
∑
i

ti log yi (11)

Which can be interpreted as “the measure of surprise”. That is, if we in-
terpret yi as the probability given the model that the event is of the i’th class
then the cross entropy describes the overlap between the two distributions and
thereby how “surprised” (or not) the model is by the truth.

For the model output yi to be properly interpreted as a probability it ought
naturally to be normalized such that 0 ≤ yi ≤ 1 and

∑
i

yi = 1. One could

choose any normalization satisfying this requirement, but it is conventional to
use the softmax function:

yi =
eai∑
j

eaj
(12)

Where ai should be interpreted as the output of the last layer, just before ac-
tivation function. As there is, in general, no analytical solution to finding the
lowest loss a gradient descent based method is used for the minimum search.
A gradient descent uses the negative gradient for the current model to move
towards lower values and eventually a minimum. If we list all the model pa-

rameters into one vector θ =


W 0

0,0

W 0
0,1
...

WL
I,J

 we can in the simplest form write the

17



stochastic gradient descent method:

θs+1 = θs − η∇θEr(θs, x, t) (13)

Where θ are the model parameters, x is the current input vector, t is the corre-
sponding target and s is the iteration index of the model and η is an adjustable
learning rate used to avoid overshooting. Here x, t are understood to be a sub-
sample from the entire set. Many momentum based methods have been evolved
(adding information from previous steps) but we shall not dwell more on this
than the basic principle here. The gradient descent used in this project is the
one called ADAM as implemented in Pytorch, see Pytorch documentation[11].
For the original paper on ADAM see[12].

With the gradient decent and a loss function the model can now be opti-
mized. However, it is not always given that NN model will find the best possible
model parameters. The more parameters a model has, the more prone it will
be to over fitting. That is a very deep (many layered) NN model with many
neurons per layer will tend to find a solution that is ”too good to be true” if the
high degree of freedom allows it to account for all spuriousities of the training
data. Also, even if the model doesn’t over fit, it may take very long to converge,
and may never, if the signal gets overshadowed by useless information. A way
to restrict the flow of information in the model for problems with a local nature
is through convolutions.

3.2 Convolutional neural networks (CNNs)
The idea of using a convolutional neural network is that some problems are of
a spatial nature. That is the interpretation of one point is way more dependent
on its neighbours than on far away points. In the Hough transformed image of a
muon as shown in the left hand image of figure 8 one sees that it creates a high
intensity pattern in the region q/pT ∼ −0.7 to −0.5 and ϕ0 ∼ 0.36 to 0.39. It is
the focal point of the lines in this region that makes it possible to identify the
charged particle track. However it is clear, that apart from this small region,
the image is quite low on information about this muon. Adding now that the
right hand image of figure 8 in which minimum bias is in included representing
the real world scenario is full of noise, using all the neurons at the same time
will be of way more confusion than use.

If instead of fully connected layers one guides the network by using convo-
lutions in the 2D image only local patterns will be identified. The formula for
a discrete 2D-convolution is given by:

ym,n = (g ∗ f)m,n =
∑
i,j

gi,j · fm−i,n−j (14)

Where g is a matrix called a convolutional kernel. But what would give a better
intuition of its use however would be a simple example showing that it can be
used to identify patterns in an image. Let us take as an example the noisy image
of figure 10 in which a square is hidden.

A square is characterized by having four straight lines in two parallel pairs
and we can define two convolutional kernels that will find these lines. These
are shown in figure 11. Here g1 is a horizontal line identifier and g2 is a vertical
line identifier. Using each of these two kernels on the noisy image of figure 10
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Figure 10: A square hidden in random noise.

Figure 11: Two convolutional kernels represented as 2D images. Yellow cor-
responds to a value of 1 while dark blue corresponds to a value of 0. g1 is a
horizonatal line identifier, while g2 is a vertical line identifier.

.

we acquire the images shown in figure 12. We can see that g1 and g2 identifies
the horizontal and vertical lines respectively suggesting that there is a square in
the image. This example shows how simple convolutions can be used to identify
spatial patterns. More sophisticated networks with more layers of convolutions
can learn more sophisticated patterns building on the patterns identified in the
previous layer. In the end a dog can be distinguished from a cat!

The shape of the convolutional kernels is a so called hyper parameter to
tweak before training the network. The choice of kernel for this problem is
discussed in 5.5. The main parameters to tweak for a CNN model are:

• The convolutional kernel shapes

• The amount of layers in the model and how they are connected

• Which activation functions to use
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Figure 12: The left hand image is the result of convoluting figure 10 with the
horizontal line identifier g1 of figure 11. The right hand image is the result of
convoluting figure 10 with the vertical line identifier g2 of figure 11. The areas
marked with red show the lines fromt the original square found by convoluting
with g1 and g2.

• Which loss function to use

• Whether to use stride and/or max pooling

• How many channels to use

Where channels means using multiple kernels on the same image. This way
more features of the image can be extracted as in figure 12 where the convolution
with g1 and g2 give two different images containing different information also
called channels. Stride means to reduce the image size by ”jumping” over some
integer number of bins while convoluting. Max pooling is in general used along
with stride and is simply replacing each n×m area by its maximal value. This
way the most important information can be saved for most problems while the
complexity is reduced. Activation functions are in general meant to apply non-
linear properties or add certain characteristics to the output of a layer, like the
softmax function shown in 12 which is non-linear and maps outputs to a value
between 0 and 1 summing to 1. The most used function between layers in neural
networks is the rectified linear unit (ReLU) function:

f(x) =

{
x, x ≥ 0
0, x < 0

(15)

Which allows for sophisticated patterns while still being cheap in computation
time.

The problem at hand is not the most classical classification problem. The
problem is not just to identify whether there is any charged particle track within
the Hough transformed image, but rather where it is. So to maintain it as a
classification problem the output of the model will have to be two values pr.
image bin. These will represent the probability that this bin is a muon-target
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and the probability that it is not respectively. I.e. we map x ∈ Rnq/pt
×nϕ0 →

y ∈ Rnq/pt
×nϕ0

×2. The target will then for each bin be a vector
[
1
0

]
if the bin

is a muon-target and a
[
0
1

]
if it is not. For this reason using stride and max

pooling is problematic for the problem at hand as the information of the exact
target position will be lost when the granularity is reduced.

It should be noted, that the most muon-like objects in the minimum bias
data actually are charged particle tracks and they are therefore valid to identify.
It was however not possible to get the exact target position from the current
data extract for these objects and as a result anything but added muons is
characterized as background in both training and testing.

4 HTT Simulation
To test and optimize the performance of the HTT system a simulation of it has
been made called HTTSim. The goal of HTTSim is to take input hits left by
particles in the ITk layers and use these for track finding and fitting to identify
charge particle tracks for later use in the Event Filter. Below the current HTT
simulation is described.

The current HTT simulation takes as input a number of input hits. These are
then combined into clusters of hits and these clusters are then sent to the road
finding tool. In this thesis we shall focus on the Hough transform as the charged
particle road finding tool as described in section2.4. In the study presented in
this thesis clusters from all the three outermost strip layer pairs, from one of
the innermost strip layer pair and the outermost pixel layer are used. See figure
13.

The Hough transform algorithm maps clusters from within a given slice in
a given η-region onto a 2D-histogram in the (ϕ0,q/pT ) space. This can be done
for multiple slices in z, η individually as described in section 2.1. As muons
with pT ≥ 1GeV will in general hit the same layer only once we are for the
purpose of charged particle track finding not interested in how many clusters
correspond to a specific bin in the layer but only if it has any at all. Therefore
the aggregated images over all 8 layers have bin counts equal to the number of
layers hit corresponding to that bin, not the total amount of clusters. The higher
the bin count, the more layers have a cluster corresponding to that (ϕ0, q/pT )-
value, and the more likely it is that it comes from a charged particle traveling
through the ITk. To illustrate this procedure equation 16 is shown as a made
up example of only two 3× 3 layers (meaning a Hough transformed image with
3 bins along each axis for only 2 ITk layers) where the bin count in each layer
should be interpreted as the number of clusters corresponding to that bin in
that layer. I use the function I call ”bool” where

bool(i) =

{
1, i > 0
0, i = 0

, i ∈ N

The result is then the aggregated image of the two layers:
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Figure 13: Drawing of the inner tracker with the 8 layers used in the Hough
transform marked with black lines. One strip layer from the innermost strip
layer pair is not used why there is only one black line at radius 400 mm, but
two at the others.
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bool(layer1) + bool(layer2) = bool

 0 0 1
0 2 1
2 0 0

+ bool

 0 1 3
0 2 0
2 1 0


=

 0 0 1
0 1 1
1 0 0

+

 0 1 1
0 1 0
1 1 0

 =

 0 1 2
0 2 1
2 1 0


(16)

Every bin of the aggregated image with a hit layer count above a given threshold
is then characterized as a possible road a charged particle might have followed.
This is done for every slice in the event. From now on each aggregated image
created for each of the 6 slices in each event will be simply called an ”image”.

After this process the found roads are either used directly for track fitting or
they undergo so called “duplicate removal”. The purpose is to eliminate found
roads likely to originate from the same object. This is done within an n×n-bin
area of the image. The idea is, that close to the focal point of multiple lines
there will in general be multiple high count bins in the image as illustrated in
figure 7. Therefore possible charged particle roads are in the duplicate removal
of the current HTTSim required to fulfill at least 1 of the following conditions
withing an n× n-area around the bin:

• It has more hit layers than any other nearby bin.

• It is tied for the most hit layers but has more total clusters than any other
nearby bin.

• It is tied for the most hit layers and the most total clusters but has more
clusters than the bottom left bin.

The first criterion makes sense as the higher the bin count is the more likely
the bin is to contain a muon. The second criterion is likely because the prob-
ability that a particle of interest hit a bin is in general larger if many particles
hit the bin than if only few did, there are simply more ”lottery tickets”. The
last condition is an arbitrary choice made for consistency.

For the duplicate removal 3×3, 5×5 and 7×7-bin areas are used and results
using own implementation of the current algorithm are shown in section 5.9.

4.1 Data
The data used in this project for the presented results is unaggregated images for
each layer extracted from the Hough transform algorithm. The images are made
from single muon events and minimum bias events created as described in section
2.4 and extracted before aggregating the layers. This is because it increases the
amount of ways in which data can be used, but in general the images will be
aggregated as described in 4 before use. To fully utilize the extracted data I
perform data augmentation. Data augmentation is to use data in different ways
to fully utilize the information in the data in the training. In classification of
real life images this is in general done by turning the image in different ways
and mirroring it as a dog upside down or a mirrored dog is still a dog. For
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the same purpose single muon images are mixed with different minimum bias
images while both training and testing. This is done for the Hough Transformed
images of the layers before creating the aggregated images. This way the same
muon will have to be found in different backgrounds altering the difficulty of the
exercise significantly depending on the density of the background in the region
of the muon focal point making the algorithm much less prone to overfitting.
It should be noted here, that as the suggested method involves convolusions
drawing information from the local area around each bin this method will be
much more affected by this mixing than a simple bin count threshold.

In the current Hough Transform algorithm the following parameters can be
adjusted:

• Whether to use slicing in z and η as shown in figure 3.

• Number of q/pT - and ϕ0-bins of the Hough transform image.

• The q/pT and ϕ0-range.

• Number of extra bins (called padding) in q/pT and ϕ0 in both ends. This
extends the range of the Hough transformed image beyond the chosen
q/pT and ϕ0-range by adding more bins at the edges.

• Whether to use an extra layer (e.g. use the currently unused strip layer,
see figure 13).

• Hit extension (Whether to extend clusters to adjacent bins in ϕ0 for each
layer). If a layer has a hit extend of 1 then not just the bin corresponding
to a cluster gets a count, but also the bins adjacent in ϕ0 at either side.
This is represented as a vector representing the hit extend in that layer
going from inner to outer.

• Whether to use a convolution before applying threshold and if so, which.

I have opted to use the most used setup. I have done this to maximize
comparability with the current results. The adjuster parameters are listed in
table 1.

Number of slices nsl 6
Number of q/pT and ϕ0-bins nq/pT

, nϕ0
216, 216

Padding bins nq/pT−pad, nφ0−pad 2, 6
q/pT and ϕ0-range q/pT , φ0 -1 to 1 GeV, 0.3 to 0.5 rad
Whether to use extra layer extra layer? No
Hit extension (for each layer) nextend 2, 1, 0, 0, 0, 0, 0, 0
Convolution kconv Unused

Table 1: Adjustable parameters in the currently implemented Hough transform
algorithm.

Table 2 shows the amount of images used for training and testing.
The muons and minimum bias events are then mixed in different ways while

training and testing in mini-batches of 8 (a few are smaller) creating the com-
bination numbers listed when mixing. The amount of data is relatively low
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Training Test
Minimum bias 1.842 464
Muons 1.703 1.500
Combinations 392.114 73.080

Table 2: Data used for training and testing. The combinations number is created
by combining muons with different minimum bias files. Not all combinations
are used in the results shown.

because data extraction takes a long time, but the data augmentation allows
for much more efficient use of the saved data.

For each event there are 6 slices. Each are by the current and the sug-
gested method treated as were they individual events, except when investigating
whether the added muon was truly found in efficiency calculations.

5 Results
This section is first devoted to describing how the suggested CNN-based method
for road finding should improve the results compared to the current method
and how the methods will be evaluated. Next the algorithm used for target
finding for the model training will be described before single and two layer CNN
methods are presented with results. Finally the method dependence on different
parameters will be analyzed along with the channels of the neural network.

5.1 Current road finding optimization method
Currently the method for optimizing the road finding algorithm using Hough
transform wrt. efficiency and roads found (see 5.3) consists of manually opti-
mizing each parameter and putting a threshold on the bin count. This includes
every parameter mentioned in section 4.1

It is clear that these variables are so many that it will be hard to test a
sufficient part of the solution space. Most likely the reason that the use of
convolutions has, to some extent, been abandoned though suggested in [1] is,
that it is too difficult to find a good solution solely by trial and error when both
the kernel size and values in the convolution used are to be determined along
with every other parameter at the same time. Yet as argued in 3.2 convolutions
will likely be of use to improve muon detection compared to simple thresholds
on bin counts.

If a CNN was used however this would eliminate a factor of trial and error
by introducing gradient descent to determine the parameters of the convolution.
Additionally it would add new options such as the use of multiple layers of con-
volution and non-linear activation functions enabling non-linear dependencies.

5.2 Suggested road finding method
Compared to just putting a threshold on the bin count a CNN should always
be able to do as good (if no interesting information is found in nearby bins) or
better. More importantly though, convolutional neural networks are very good
at identifying sophisticated spatial patterns. A CNN should both be able to
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identify patterns that are “muon-like” and patterns that are “non-muon-like”
and combine this information to most efficiently sort the muon-like patterns
from the background.

In general by using scores acquired through a CNN you also expand the
spectrum of possible scores to be continuous1. This allows you to fine tune for
the desired efficiency and set a threshold accordingly instead of being restricted
to an integer number of hit layers between 0 and 8. This can also be the
explanation as to why it has not yet been of any help to increase the number
of layers used. With only 8 (or 9 when adding an extra layer) hit layers as
different possible thresholds you have to be lucky to find that a threshold exists
that gives a good balance between efficiency and road count. Adding an extra
layer might push this balance.

Adding the extra layer has not been tried in this thesis, but it would be
interesting to see if the model would benefit form this information.

5.3 Method evaluation
When comparing methods it is necessary to be clear as to what characterizes a
good one. The purpose of the method is to find as many of the added muons as
possible while finding the least amount of roads possible. A road is a bin in the
Hough transformed image that by a given method is characterized as a muon
road candidate for later track fitting. I define efficiency as how large a portion
of the true muons are found, that is:

Effmuon =
nfound

ntotal
(17)

What muons are characterized as roads is decided by the method used on a
mixed single muon and minimum bias file. For the current method this means a
threshold on the bin count and on the suggested method this means a threshold
on an output score of the CNN. For a muon to be characterized as found I
require that any bin with at least six hit layers in the single muon file within a
slice is selected as a road. This is because the HTT track fitter requires at least
six hit layers to fit a track.[1] For the same reason the given efficiencies are only
for muons that make at least 6 hits within a single slice as the rest are deemed
unfindable by this definition. Roads are found independently for every slice of
the event. However, the muon needs only be found inside a single slice to be
characterized as found even if it leaves a sufficient amount of hits in more slices.

The efficiency alone is not sufficient to evaluate the quality of the model,
reducing computation time is the main goal of using the Hough Transform before
track fitting. The computation time scales with the number of combinations of
clusters that are to be fitted to. This is calculated by multiplying the numbers
of clusters in each layer of each found road and adding for all the roads. As the
total combination number per event hereby naturally scales with the number of
found roads, the road count is used as measure of computation time.

1Limited only by model complexity (number of layers, neurons and activation functions)
and computer precision.
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5.4 Model training
Convolutional neural networks can in general be arbitrarily complex models and
optimizations should thus start from a simple model and then gradually evolve
into a more complex model with complexity limited by the complexity of the
data, the signal strength, the amount of data and computational power.

In terms of computational power the suggested models are limited to be
able to train on an 8 GB GPU (GeforceRTX 2060 Super) as this is what was
accessible.

5.5 Target finding
For a supervised network to be able to train, a target ti is needed to compare
the output of the network yi to. As a reminder I intend to minimize the negative
cross entropy to optimize model:

Er (y, t) = −
∑
i

ti log yi

In which ti contains the information of whether the bin is a target bin or not
and yi is how likely the network predicts that this bin is to be a target bin.

However as mentioned in section 3 target finding proved non trivial. The
obvious target would be to have ti1 =

[
1
0

]
in the bin corresponding to the true

(ϕ0, q/pT )-parameters of the muon and ti =

[
0
1

]
for i ̸= i1. However there is

in general a displacement between the true parameters and the focal point of
the lines in the image. The reason for this might be deviations in the magnetic
field for which corrections are not yet added to the Hough Transform algorithm.
But for now, as the goal is to find the actual detector clusters for track fitting
and not an ideal set of parameters, the truth parameters will not be a ”good”
target.

Instead we should start by defining what is meant by a ”good” target for
this problem:

1. A good target is a target, that if found, will be good for track fitting.

2. A good target is recognizable by the chosen model and distinguishable
from non-muon-like patterns.

Point 1 is obvious. There is no reason to train the network to find something
that we cannot use for track fitting. Point 2 is about being able to train the
network and depends on the chosen model type. We have chosen a CNN, which
means that a local area around the target-bin should be recognizable and distin-
guishable from other patterns in the image. How this is done will be discussed
later in this section. If the target is not highly recognizable or distinguishable,
then the network will have a hard time finding the target, thus one will get a
high road count for a given efficiency, when training it to find this target.

The two criteria are ambiguous and highly problem dependent and finding
an algorithm for optimal target finding is thus also. Below I describe how I
choose a target that fulfills both of these requirements.
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Figure 14: A zoom in on the focal point of the lines at in the left hand image
of figure 8. It is seen that the focal point apart from the high intensity is
characterized by being very thin transverse to the lines.

.

Point 1 means that the muon should have multiple hit layers corresponding to
this bin so that a good track fitting can take place. This requirement is already
somewhat satisfied by requiring at least 6 hit layers by the muon. Further, I
require that the number of layers hit by the muon for the chosen bin is the
maximal for the entire slice. The currently implemented algorithm requires
at least 7 hit layers in a bin to identify it as a road. A requirement of only
6 hit layers should therefore allow for finding more muons that are currently
undetected by the current method.

In general, there will be more than 1 bin with the maximal number of layers
hit by the muon for the given slice. One could choose to use all such points as
targets, but that would interfere with the second point; the target should be
”recognizable”. The local information for each of these points will in general be
of a different nature and the algorithm would therefore be looking for multiple
distinct patterns simultaneously making the target difficult to recognize. This
suggest that only 1 bin per slice should be used as target.

I therefore use maximal recognizability as criterion to identify which of the
remaining bins should be chosen as target. In figure 14 I have plotted the focal
point of the lines for the muon shown in the left hand side of figure 8.

The chosen method (a CNN) predicts how likely a bin is to be a muon-target
based on local information of the Hough transformed image. By using nearby
bins to decide which bin should be the target we can thus make sure that the
target is recognizable by the model. One should now notice that the center area
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Figure 15: The same muon focal point as in 14, but with an orange circle mark-
ing the bin in which steepness is calculated and two red and two purple circles
marking the two different directions in which steepness is measured. The total
steepness in the direction across the lines is given by equation 18 in combination
with each bin count to be 2 · 8− 2− 0 = 14 and similarly for the direction along
the lines given by equation 19 is 2 · 8− 8− 7 = 1.

of figure 14 is characterized by being very thin orthogonal to the lines, it is very
”focused”. Should multiple lines meet by chance, it is unlikely that they should
meet exactly as for the true muon.

To describe the shape in this high intensity area I define steepnesses for every
point in some given direction. For the bin marked by an orange circle in figure
15 the steepness ”across” the lines is calculated by subtracting the bins marked
by red circles from 2 times the orange circle bin.

stacross88,45 = 2 · image88,45 − image87,46 − image89,44 = 2 · 8− 2− 0 = 14 (18)

Similarly I define the steepness ”along” the lines by subtracting the purple circle
bins from two times the orange circle bin.

stalong88,45 = 2 · image88,45 − image87,43 − image89,47 = 2 · 8− 8− 7 = 1 (19)

These steepnesses can be calculated for any bin however. Among bins in
single muon images that have at least 6 hit layers, that is maximal within the
slice, these parameters can be used to identify which bin to choose as target.
Choosing the bin with the lowest steepness along the lines and resolving any
further ties by choosing the bin with the highest steepness across the lines a
target can be chosen.

Plotting the distribution of these steepness parameters for the found target
but now in muon + minimum bias against other points of sufficient intensity in
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Figure 16: The plots show distributions for the steepness parameter for the
direction across the lines and along the lines. The plots are subdivided into the
amount of hit layers are in each bin in minimum bias (or minimum bias + muon
for the target) as steepness naturally scales with the value in the measured bin.
The green graphs show all bins with the corresponding value in minimum bias.
The red graph is specifically for the points specified as targets. The brown
area is where the targets and the background overlaps. It is seen that there is
a slight distinction between the target chosen to represent the signal and the
other bins along the ”across”-steepness direction. Along the lines however there
is a very high distinction between the target chosen to represent the signal and
the background.

minimum bias (background) one can see that these target points are indeed to
some degree distinguished from the rest, see figure 16.

It is clear from these distributions that there is some possibility to distinguish
between the targets and minimum bias other than just the number of hit layers.
Especially the steepness along the lines differs highly from the rest of the bins as
seen in the distributions at the bottom row of 16, but also the steepness across
shown at the top row provides slight distinction.

As the central target-bin will in general have a high value (at least 6 of 8)
having low steepness in the steepness along the lines requires high values in the
bins subtracted also. Indeed looking at the bottom left distribution of figure
16 you see that more than 70 % of the target 8 hit layers bins have steepness
0 along the lines, meaning that the bins along the lines at either side also have
8 hit layers. This pattern can therefore be rewarded by a convolutional kernel
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with high values in these points, for instance:

convalong =

1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

 (20)

Where the relative positions of the ”1”’s in the convolution are the same as
the relative positions of the orange and purple circle bins of figure 15. Similarly
the high steepness in the direction across the lines can be rewarded by this
convolutional kernel:

convacross =

0 0 0 −1 0
0 0 1 0 0
0 −1 0 0 0


as the negative values in the convolution will give high negative contributions

to bins that also have high bin counts in the direction across the lines.
As both of these steepness parameters, can be rewarded by convolutions, I

have thus found targets that are useful for track fitting and that are recognizable
by the chosen method, a CNN. We are therefore ready to efficiently train the
network to find a target. In addition it is clear that at least a 3 × 5 kernel is
needed so as to utilize the low steepness along the lines as in equation 20 that
was found to have high distinctive power in figure 16. Indeed models using 3×5
kernels proved to perform better than square kernel ones (like 3× 3 and 5× 5)
in tried models not presented here.

5.6 Model setup
In general, the count in a bin scales with nearby bins. This makes sense as for
any bin where many lines cross we will expect to find nearby bins in which all or
some of the same lines also meet. If we focus on the orange mark bin in figure
15 with 8 hit layers we will notice that directly to the left we have another bin
of 8 hit layers. And down and to the right we also find a bin with 7 hit layers.
But to treat all 6,7 and 8 hit layer bins evenly this is a problem as the 8 hit
layers bins will in all simple (few layered) CNNs tend to map to more extreme
values as convolutions are simply multiplications within a local area. A way to
deal with this problem is to divide the bin count after convolution with the bin
count before convolution. This is shown below using equation 14 with an added
bias term k.

f l+1
m,n =

(
g ∗ f l

)
m,n

+ k = k +
∑
i,j

gi,j ·f l
m−i,n−j

f̃ l+1
m,n =

(
g ∗ f l

)
m,n

/f l
m,n = k/f l

m,n +
∑
i,j

gi,j ·f l
m−i,n−j/f

l
m,n

Assuming now that we are in a target bin indexed (m1, n1) and the sur-
rounding bins are somewhat proportional to the central bin we can extract the
central bin count giving f l

m1−i,n1−j ≈ f l
m1,n1

· si,j , where I will call si,j the
”texture” and s0,0 = 1. This allows me to reduce the equation slightly:

f̃ l+1
m1,n1

≈ k/f l
m1,n1

+ f l
m1,n1

/f l
m1,n1

·
∑
i,j

gi,j ·si,j

= k/f l
m1,n1

+
∑
i,j

gi,j ·si,j
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The bias term which now gives a k/f l
m1,n1

-term could be removed, but it
appears that the model benefits from this non-linearity. It is worth noticing
that k is in itself an independent model parameter allowing the model to scale
this non-linear term to the need. The other term is now assumed independent
of the central bin value and could thus be interpreted as a measure of ”texture”
comparable between 6, 7 and 8 hit layer target bins. To enable the model to still
use the bin value directly f l

m1,n1
this can be added through a separate parallel

layer. Hereby we have avoided the forced bias of the network between different
count bins yet allowed an intentional bias as a separate parameter. We thus
arrive at the formula for the first convolutional layer used:

f̃1
m,n =

∑
i,j

gi,j ·f0
m−i,n−j/f

0
m,n + k/f0

m,n + f0
m,n (21)

2

5.7 Single layer CNN
Figure 17 shows a single layer CNN intended to find the bins most likely to
contain a muon-target. The red rectangle shows a two channel 3 × 5 kernel
convolution mapping to the topmost image. Two channels are here used because
two are needed to have an ”is” and ”is not” a target for each bin of the input
image as described in section 3.2. ”Normalization” is noted referring to the
division by the central bin as in f̃ by equation 21. To still allow a direct
dependence on the central bin value this is added as a separate 1×1 convolution
marked with blue. These are then simply added together making a 1-layer
network with non-linear dependence on the image as described in equation 21.
The outermost edge of the image is cut to reduce edge effects caused by lack
of information outside the image range. As the last step the softmax-function,
see equation 12, is used on the two channels mapping each bin pair to values
between 0 and 1 summing up to 1.

If the mathematical model used to describe a problem, here a CNN, is very
complex compared to the complexity of the input data and the amount of input
data, over fitting might occur. Over fitting means that the complex mathemat-
ical model starts describing behaviour that is due to random variations, not
inherent structures, in the training data. A way to test whether over fitting
occurs is to see whether the loss measured on an alternative data set (drawn
from the same problem) converges as low as the loss on the training data set.
If it does not, it must mean that the model is accounting for random variations
in the training data which is naturally useless for solving the general problem.
The CNNs presented in this thesis are however very simple in comparison to
the amount of data used, and the complexity of the data, so over fitting has
not been a problem. Converging loss functions can be found in the appendix
however, section 7.1 in which the training and validation loss follow nicely.

The method is, as explained, intended to find the muon, while finding the
least amount of total roads. As an example of the CNN performance we can use
the muon of figure 18 shown in and outside minimum bias for a single slice. On
the minimum bias + muon image (the right hand image) we can use the current

2Divison by 0 never happens as this is only evaluated for bins of at least 6 hit layers, as all
other are all ready known to have 0 probability of being a muon target by definition.
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Figure 17: The figure is an illustration of the 1-layer CNN. The red rectangle
illustrates the use of two channels of 3×5 kernels with subsequent normalization
according to equation 21. The image below shows the result of the two channels
of 1 × 1 convolutions without this normalization. The images are then simply
added together giving the full equation 21 for two channels. The resulting image
is subject to the softmax-function of equation 12 and evaluated using the cross-
entropy loss as described in section 3.2. This means that the output can be
interpreted as the probability that the given bin corresponds to a target, given
the model. The outermost edge of the image is not used so as to reduce edge
effects. While it is only a single layer model, it still has a non-linear dependence
on the input from the normalization.

method and the suggested single layer CNN-method (evaluated at a threshold
corresponding to 99% efficiency). The resulting images are shown in figure 19.
These images mark all bins yellow that have a score above the chosen threshold
and are therefore counted as roads by the current and the suggested method
respectively. As the reds dot shows the bins containing at least 6 layers hit by
the muon these are what the methods are intended to find.

It is clear that while both methods find the muon, the suggested CNN model
produces much less roads. The methods are evaluated as described in section
5.3 and averaged over all test images. For comparison my implementation of
the current method with a threshold of 7 hit layers, as is most used, has an
efficiency of 99.2 % and finds 349 roads.

The results for the 1 layer model is presented for multiple efficiencies in table
3. The first row is the result for the current method and the following gives the
road count for the suggested method evaluated at different efficiencies. It is
clear from the table that the results can be improved significantly by this 1
layer CNN (with a nonlinear dependence on the input).

Focusing on 99 % efficiency we get only 143 roads against the 349 for the
current method or a reduction by almost 3/5 with a slight loss of efficiency.
Alternatively the efficiency can be increased to 99.5 % finding now 257 corre-
sponding to a reduction of road counts by about 1/4. This is just for a 1-layer
CNN. By adding additional layers non-linearities and bins from further away
can be added which increases the allowed complexity of the model and thereby
possibly the performance.
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Figure 18: The left hand image is the Hough transformed image of a single
muon. The right hand image is the same muon in minimum bias. The red dots
are the bins that have at least 6 layers hit by the muon. That means that if a
track finding method finds any of these the track finding method has found the
muon.

Method Efficiency Number of roads
Current method, threshold 7 99.2 % 349
Single layer CNN 98.0 % 90
Single layer CNN 98.5 % 119
Single layer CNN 99.0 % 161
Single layer CNN 99.5 % 229

Table 3: Efficiency and road counts for the current model which is a simple
threshold of 7 hit layers and the results for the single layer CNN.

5.8 Two layer CNN
In figure 20 two 3 × 5 convolutional layers are used separated by a ReLU-
activation function, see equation 15. The first layer maps each slice onto 5
channels (of which 4 are from the red 3 × 5 convolution and the last is by the
blue 1× 1 convolution in figure 20. This is similar to the 1-layer model, yet the
1 × 1 convolution is here interpreted as an independent channel, not added to
the result of the other convolution). This is followed by a ReLU-function and
another 3 × 5 convolution on to 2 channels. Compared to the 1 layer network
this is allowed to use information from a larger area, as two consecutive 3 × 5
convolutions collectively use a 5×9 area. Additionally it is allowed to have more
complex dependencies on the input, by the increase in channels used before the
added ReLU-activation function.

Converging loss functions can be found in the appendix, subsection 7.1, but
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Figure 19: The leftmost image shows the possible charged particle roads marked
as yellow dots found in figure 18 with the current model. The rightmost image
are the found roads for the suggested single layer CNN-model at a threshold
corresponding to 99% efficiency. The red dots mark the bins that have 6 or
more layers hit by the muon. The single layer CNN method reduces the amount
of roads found in this image significantly while both models are able to find the
true muon as both have found roads in the red dot area.

this network does not shown signs of over fitting either.
Focusing once again on the image on the right hand side of figure 21, the

output of the single layer network and the suggested two layer CNN model for
a threshold corresponding to 99% efficiency is shown in figure 21.

Comparing the two images of figure 21 there does not seem to be much
of a difference in the road counts. The results averaged over the test set is
shown in table 4. Here one sees however, that the two layer CNN constitutes
an improvement on all evaluated efficiencies compared to the single layer CNN.

Method Efficiency Number of roads
Current method, threshold 7 99.2 % 349
Two layer CNN 98.0 % 70
Two layer CNN 98.5 % 86
Two layer CNN 99.0 % 127
Two layer CNN 99.5 % 209

Table 4: Efficiency and road counts for the current method which is a simple
threshold of 7 hit layers and the results for the two layer CNN.

At 99% efficiency this method is able to bring down the number of roads
by almost 2/3 compared to the original which is quite some improvement. In-
creasing the efficiency to 99.5% instead the road count falls from 349 to 209 or
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Figure 20: The figure is an illustration of the 2-layer CNN. The red rectangle
illustrates the use of 4 channels of 3× 5 kernels with subsequent normalization
according to equation 21. The image below shows the result of the single channel
of 1× 1 convolutions marked with blue without this normalization. The images
are then concatenated into 5 channels (in contrast to addition in the single layer
CNN). This image is then subject to the ReLU function followed by another 3×5
convolution onto 2 channels. The resulting image is subject to the softmax-
function and evaluated using the cross-entropy loss as described in section 3.2
meaning that the output can be interpreted as the probability that the given
bin corresponds to a muon, given the model. The outermost edge of the image
is not used to reduce edge effects.

Figure 21: The leftmost image shows the possible charged particle roads found
in figure 18 with the single layer network at a threshold corresponding to 99%
efficiency. The rightmost image are the found roads for the suggested two layer
CNN at the same efficiency. There does not seem to be much of a difference
between the two images.
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Figure 22: The figure shows score distributions for background and signal. The
background is evaluated in minimum bias only on bins with at least 6 hit layers
as all others are set to 0 probability all ready and are therefore sorted out auto-
matically. Even then, far most of the background scores almost 0 probability of
being a target. The signal here is the best scoring sufficient bin for each event.
”Sufficient” here means that it has at least 6 true muon hits. This is chosen as
they represent the minimal threshold needed to find a true muon road in this
event. The errors shown is the standard deviation of a binomial with a uniform
prior distribution as described in [13]. The brown is where the two distributions
overlap

by about 2/5 compared to the current method. It is worth noting that a two
layer CNN without ReLU between the layers, thus corresponding to one big
5 × 9 convolution has been tried, but yielded higher road counts at measured
efficiencies. Apparently the model benefits from this added nonlinearity.

Figure 22 shows the distribution of background and signal scores assigned
by the two layer CNN. The signal scores are the highest scoring bin in each
event with a sufficient amount of layers hit by the muon. This is chosen because
they represent the maximal threshold that can be put on the score and still
find the muon and we gain nothing by finding the same muon more than once.
It is clear that the two layer CNN is rather efficient in distinguishing signal
from background assigning probabilities of being a target very close to 0 for far
most of the 6 or more hit layers background. Most likely the highest scoring
background bins are charged particles from the origin. The distribution for the
signal only is shown in figure 23

In figure 24 the lowest scoring bins have been taken out to show more clearly
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Figure 23: The figure shows the score distribution for the signal only. A peak
in the distribution is seen around the score 0.05.

the effect of the 99% efficiency threshold. While naturally removing about 1%
of the signal the cut removes 95% of the 6 or more hit layers background.

The result can be represented by a roc curve as shown in figure 25 describing
the false positive rate acquired for a given efficiency. The roc curve shows a high
distinction between signal and background. The high slope of the roc curve at
high efficiency says that significant road reductions could be acquired by small
reductions in efficiency if desired.

I have tried to add additional layers of convolutions, but they always acquire
higher road counts for the same efficiency than the two layer model. The reason
might be that adding information further from the muon center allows for more
noise relative to the signal, see also section 5.11.

5.9 Duplicate removal
To reduce the number of found roads after the currently implemented algorithm
“duplicate removal” can be performed as described in section 4. The purpose is
to eliminate excess roads that originate from the same object. Reducing road
counts within a 3×3 and a 5×5 area on the current model leads to the efficiencies
and road counts showed in table 5.

It is seen that the efficiency is only slightly affected by the 3x3 reduction. On
the other hand the number of found roads is reduced by almost 2/5. It is here
worth noting though that this is still higher than even the result for the single
layer model at 99% efficiency. Using the 5x5 reduction an even bigger road
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Figure 24: The figure shows a zoom in on the lowest scores of figure 22. The
red area is the signal, the green is the background. The brown area is overlap
between signal and background. The figure shows that more than 90% of the 6 or
more hit layers background is removed when choosing a threshold corresponding
to an efficiency of 99%.

Figure 25: The figure shows the false positive rate acquired for a given true
positive rate (efficiency). As an example is drawn the 99% efficiency yielding a
false positive rate of about 5% (not counting bins with less than 6 hit layers).
It is of course important to notice while only a small fraction of the background
is accepted, there is still many more background than signal bins.
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Method Efficiency Number of roads
Current method, threshold 7, 3× 3 removal 99.0 % 216
Current method, threshold 7, 5× 5 removal 98.1 % 154

Table 5: The resulting road counts and efficiency by using duplicate removal
within an area of 3× 3 and 5× 5.

Figure 26: The leftmost image shows the possible charged particle roads found
in figure 18 with the current model with reduction within a 3 × 3 area. The
right hand image shows the found roads for the suggested two layer CNN with
reduction within a 3×3 area at 99% efficiency. While the amount of roads found
in the current method image is significantly lower than what is found without
the 3× 3 reduction, the suggested two layer method still reduces the amount of
found roads significantly more.

reduction of almost 4/7 is acquired but the efficiency also drops significantly to
only 98.0%. Due to this high drop in efficiency for the 5× 5 reduction we shall
focus on the result for the 3× 3 reduction.

One can in a similar way reduce the number of found roads for the suggested
algorithm. When looking at an n × n area in the image the number of roads
can be reduced by using only bins if they have the highest score within the
area utilizing the continuous scoring. We are here similarly assuming that the
high scoring bins inside a local area in general come from the same signal. The
resulting images for the current method and the two layer method on the muon
+ minimum bias image of figure 18 is shown in figure 26

In the left hand image of figure 26 you clearly see that the current method
reduces the amount of roads found significantly in the red muon-area. You see
the same effect in the right hand image of figure 26 however and still the current
method finds roads in many areas that are ignored by the two-layer CNN. For
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the CNN methods we get the road counts of table 6 for maximizing within a
3× 3-area.

3× 3-maxing 98.0 % 98.5 % 99.0 % 99.5 %
Single layer CNN 71 100 136 271
Two layer CNN 55 70 97 192
No 3× 3-maxing 98.0 % 98.5 % 99.0 % 99.5 %
Single layer CNN 90 119 161 229
Two layer CNN 70 86 127 209

Table 6: The table shows the results acquired by choosing only bins that are
maximal within a 3× 3 area. The previous results without this 3× 3 reduction
is included in the rows below.

For the single layer CNN we find improvements in road counts all the way
up to and including 99% efficiency. For the two layered network however there
seems to be improvement all the way up to and with 99.5% efficiency, though
especially for lower efficiencies. Comparing this to the reduced road count of
the current algorithm the 2 layer model is able to reduce the total road count
from 216 to 97 which is less than half while maintaining the same efficiency.

5.10 Method analysis
In this section the two layer method will be analyzed. The figure 26 clearly
shows that while both the current and the suggested two layer method are able
to find the muon the total amount of roads is significantly reduced by using the
CNN model with and without 3× 3 reduction. A hint of what happens can be
seen by focusing on the region 0.41 ≤ ϕ0 ≤ 0.44,−0.9GeV ≤ q/pT ≤ −0.7GeV
in figure 18. This is a general high intensity region and is thus by the current
method identified as possible muon roads when a bin has 7 hit layers or more.
On the other hand, the suggested method does not identify any possible muon
roads in this region, likely because true muons do not generate larger areas of
high intensity. They make sharp high intensity peaks as can be seen in the
muon image in the left hand side of figure 18. So while the crossing of multiple
lines does indicate the presence of a muon, the CNN apparently identifies that
the general behavior in the local area is not very ”muon-like”.

To be able to account for possible biases of the method, its dependency on
different parameters is presented below. As the two layer method with 3 × 3
reduction produced the lowest road count at 99% efficiency the plots will be
made for this algorithm.

Most of the simulated muons are in the central slices as shown in figure
27, where slices represent a region in (z, η). Additionally the amount of test
muons is relatively low (1500). Therefore the threshold on the score is set to
acquire a 98% total efficiency when plotting the distribution of muons by slice
to better see any potential differences. It does not seem however that there is a
significant slice dependency, but there could likely be if the amount of data was
larger as there is a significant difference in the amount of background between
the innermost and the outermost slices. This could count in both ways. More
background makes higher amounts of hit layers per bin on average which is
highly correlated with the probability that there is a muon in the specified bin
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Figure 27: The distribution of added muons by slice. See figure 3 for an illus-
tration of the slice-regions.

Figure 28: The efficiency on muon identification on the test set for 98% total
efficiency by slice. 98% is chosen to increase the visibility of eventual deviations.
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Figure 29: The amount of muons distributed by number of hit layers within a
single slice.

Figure 30: The amount of muons found by number of hit layers within a single
slice with a cut on score so that 99% total efficiency is acquired. Unsurprisingly
the efficiency increases with the amount of layers the muon hits.

why the muons more often will be found in central slices when putting a simple
threshold on the bin count. On the other hand the general noise in an area will
distort the charged particle pattern possibly reducing the probability assigned
by the model identifying the pattern as ”non-muon like” and the correlation is
therefore not that trivial for a CNN method.

A parameter that will definitely affect the efficiency is the amount of layers
hit by the muons. Most of the added muons in the test set hit all 8 layers. But
33 and 113 muons hit only 6 and 7 different layers respectively within a single
slice as shown in figure 29.

The currently implemented algorithm will find all muons that hit at least
7 layers inside a single bin, but only few that hit 6. The proposed algorithm
on the other hand utilizes not just the central bin value but also the patterns
surrounding it enabling it to find a larger portion of the 6 hit layers muons. In
figure 30 the efficiency is put to 99% and shows how many 6,7 and 8 hit layer
muons are found respectively.

As not all the 7 hit layer muons are found, the image shows that once in a
while a 6 hit layer muon will be easier to find, either by own pattern or by the
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Figure 31: The amount of muons found by 1/pT with a cut on score so that
98% total efficiency is acquired.

minimum bias clouding the image of 7 hit layers muons. The 8 hit layer muons
are apparently so clear though that all in the test set are found no matter what
minimum bias file they are mixed with.

Similarly the ϕ0 and pT distributions can be plotted. The distribution of
muons found over all pT (when choosing 98% efficiency) is shown in figure 31
and the same for ϕ0 in figure 32.

There is no clear tendency in the distributions for pT for ϕ0 though there
could be with a larger data sample. The model is a “local model”. That means,
it takes information from the surroundings, not the values of pT and ϕ0. The
only situations in which the model could depend on these is thus if the muon
patterns are themselves dependent on these parameters or when found close to
the edge of the image where the lag of information could lead to the model
having a hard time to identify the signal. The former is unlikely as the lines are
almost straight and the pattern near the crossing should therefore be almost
the same for all (q/pT , ϕ0) within the image. The latter is partially corrected
for by not evaluating on the out most edge of the image. However 2 consecutive
3 × 5 convolutions means that any point can be affected by the 5 × 9 nearest
bins meaning that there is definitely some room for unfortunate edge effects,
especially in ϕ0. This would be something that could be corrected for however
by not evaluating on the (2, 4) outer most bins in q/pT and ϕ0 respectively.

5.11 Network analysis
The following section will attempt to identify what information the 2-layer CNN
bases its decision making on. In general neural networks are difficult to interpret
as they in include many variables and often are non-linear functions. This is
also the case for the two layer network, even though it is rather simple. However
there are certain techniques to visualize the information used by the network.
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Figure 32: The amount of muons found by ϕ0 with a cut on score so that 98%
total efficiency is acquired.

By looking at the outputs of the last layer (inspired by the CAM-method,
see [14]) of the network you can get an idea of what the network is looking for.
In figure 33 is shown an image of a single muon and the same muon in minimum
bias respectively.

The final convolutional layer of the two-layer cross entropy model has 10
filters (5× 2 for mapping 5 channels to 2 as seen in figure 20). In figure 34 are
shown two image outputs of the last layer that each contribute to the probability
that there is a muon in each given point of the right hand image of figure 33. For
an example of all filters contributing to the value representing the probability
that there is a target in each bin see the appendix, section 7.2

The leftmost filter that I have named “Muon finding filter” seems to find
the general position of the muon. The second image is a bit harder to interpret.
But it seems that it finds thin lines of high intensity, along with valleys of
low intensity adjacent to each other. In other words it seems to be focusing
the probabilities. The problem of the focusing filter seems to be that it finds
two hotspots in the image: around ( ϕ0 = 0.345, q/pT = 0.52) and around
(ϕ0 = 0.34, q/pT = 0.485). But combining with the information from the muon
finding filter, there is no doubt which of these regions is the correct one!

Adding the result of these two filters we already see quite some increase in
the intensity around the muon compared to the background from the original
image of figure 33 to the combined image in figure 35.

Using the full model, that is, adding all 10 filters, allowing only bins with at
least 6 hit layers and using the softmax function the final result of the model
on this image is shown in figure 36.

In figure 36 it can be seen that the model has assigned 22 % for the central
bin to be the target it is trained to look for and only assigning probabilities above
2.5 % to two other bins (which also have 8 layers hit by the muon). It should
be noted that 22 % is a rather high number as even true charged particles from
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Figure 33: A muon focal point to the left, and the same muon in minimum bias
to the right.

Figure 34: Two filters contributing to the evaluated probability that there is
a muon in each bin of the right hand image in figure 33. The leftmost I have
labeled ”Muon finding filter” as it intensifies the overall probability in the area
where the true muon is found relatively to the other high intensity area bottom
left of the muon. The rightmost I have labeled ”Focusing” filter as it creates
thin lines of high intensity. On the other hand it seems to have assigned high
values to the background to the bottom left of the muon. One could say that
the Muon finding filter is very accurate, but not very precise. On the other
hand the focusing filter is rather precise, but not very accurate.

46



Figure 35: This image is the result of adding the two filters of figure 34. It
appears more focused than the rightmost image of figure 33

Figure 36: Probability scale
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Figure 37: This image shows the change in resulting probability in the central
bin caused by setting each bin around a muon target to 0 one at a time averaged
over multiple images. ∆ϕ0 and ∆(q/pT ) denote the shift in ϕ0 and q/pT with
respect to the target bin. The shape of the image is 5×9 as this is the maximal
range that can affect the bin probability after two layers of 3× 5 convolutions.

the minimum bias are considered false while training and the prior probability
being only 0.06 %. By prior probability I mean the probability that we should
by chance pick the bin with the muon target out of all the 6 or more hit layer
bins.

The two layer CNN model cannot be represented by a single convolutional
kernel. One can try and estimate this however by, for multiple targets inside
minimum bias, finding all bins that can affect it. For the two layer model
we then have a 5 × 9 area for each image centered at the target point. Then
one can try dropping them out (setting them to 0) 1 at a time to get a linear
interpretation of how each bin affects the output result. Figure 37 shows how
the value of each of these bins on average over many targets in minimum bias
affect the score assigned to the target bin.

The yellow areas are where there is a loss of 5.5 % to 6 % probability on
average that there is a muon, given the CNN, in the central point. Curiously
it shows that 5 other points than the central bin itself (the 4 other yellow bins,
and the dark blue) are almost as important for the presence of a target in the
central point. In words the model states, that very important information is lost
by using only the central bin value as is done for the current method. Also quite
interestingly it shows that the presence of high values just above and below the
center is a very bad sign. In other words a high steepness (see section 5.5) is
required along the vertical axis . This suggests also that high steepness along
the vertical axis had probably been an even more important factor in target
finding than along the diagonal (called ”across” in section 5.5) which was used.
This should probably be investigated in future target finding for this problem.
Also it seems that low steepness on the vertical axis would be a strong indicator
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for a good target. The fact that these high importance bins are within 3 × 5
around the center also tells us why the single layer 3×5 kernel is able to acquire
relatively good results. While missing some bins, and some nonlinear properties,
it still has information from the most important ones.

Furthermore the low values along the edges of figure 37 can also be a clue
as to why attempts to add extra layers have been unsuccessful. Information
at this distance from the center is down prioritized, indicating that the model
thinks the signal is feeble compared to the noise in this region. Considering
that the strength of the signal decreases going further from the target point,
adding extra long distance points would thus further increase the amount of
noise compared to signal possibly disturbing rather than helping the training.

6 Conclusions and outlook
The increase in luminosity of the HL-LHC increases the demands for the data ac-
quisition speed. Therefore the trigger system will be upgraded to better choose
interesting events rather than put high cuts on pT . For this the HTT is pro-
posed as a hardware based method for fast triggering based on tracking that is
stable in high minimum bias.

As an alternative to the pattern matching ASICs of the HTT the Hough
transform can be used to identify charged particle tracks for later track fitting.
However, the current method for charged particle road finding through Hough
transform is missing important information. By using a CNN an optimal func-
tion based on local information can be found through gradient descent to find
optimal solutions. It is therefore expected to decrease road counts compared to
the current method significantly.

Picking out examples of the improvement in performance, the efficiency and
road count is found to go from 99.2% efficiency and 349 roads for the current
to 99% efficiency and 161 roads for the single layer CNN or just 127 for the
two layer CNN. Reducing the number of roads within a 3×3 area decreases the
efficiency and road count of the current method to 99% and 216, but similarly
the road count for the two layer method decreases to just 97. A CNN based
method is thus able to reduce the road count per image to less than half of the
current method at 99% efficiency. This is such a decrease in road counts that
it could have a significant influence on the viability of the Hough transform
method when considering the exact final setup of the TDAQ. The decreased
road counts for track fitting comes at a prize of increased computations in this
step, why it is relevant to notice that even the single layer CNN without 3× 3
reduction constitutes an improvement.

The two layer model with 3 × 3 reduction is not found to have any bias on
investigated particle parameters within the measured precision. The two layer
model uses multiple filters, but it is found that one of them tends to find the
general position of the muon, while another focuses the high probabilities into
small regions in figure 34. In figure 37 it is found that the most important bins
for the probability given the two layer CNN that there is a muon in the central
bin of a true target are also contained by the single layer model. Interestingly
also, it seems that many bins are assigned almost as much importance as the
central bin value, which is all that is used by the current method, showing that
the CNN thinks that there is much more information to be gained than the
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central bin.

For further work on CNNs for road finding in Hough transformed images
it remains to be evaluated how the CNN would in practice be implemented in
the TDAQ event filter more than just show what it can achieve as is the work
presented here. Further the performance needs to be studied in other regions of
the detector, in particular other regions of η where the amount of background
noise will be higher.

In relation to computational power this study presents road counts that are
proportional to the computations needed for track fitting. The computation
time saved in track fitting is not measured compared to the increase in the
track finding process and this is naturally essential to fully evaluate which road
finding method to use.

Currently some of the background is interesting objects, in the sense that
they are charged particles of sufficient momentum and within the area of inter-
est. The training could possibly be helped therefore by a data extract in which
it would be possible to assign the same target finding as for the single muons. In
relation to this it is naturally necessary also to evaluate the model performance
on other charged particles than muons.

To improve the CNNs an important consideration is the quality of the target
finding as this is essential for the quality of the training. A possible way to
optimize this is to try other steepness parameters like the horizontal and vertical
that are shown in figure 37 to be of importance.

The remaining strip layer could be added to the Hough transform. Likely
this would increase the performance of the CNN as more layers means higher
certainty that a high count bin originates from a charged particle and not ran-
dom hits.

A stronger GPU could be useful as the size of the current has been some
limit. While indications from trial and error in this study are that there it is no
benefit by using information from further away, the amount of channels could
be increased to possibly search for more patterns and would ease training and
evaluation for larger statistics.
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7 Appendix
7.1 App1: Loss convergence plots
Here is presented plots of converging loss functions for the two suggested CNNs
in figures 38 and 39. The loss shown is the cross entropy loss divided by the
number of bins with counts of 6 or more as the rest are ignored. The losses start
relatively low because a prior probability is calculated for the model based on
how many targets there are compared to bins of at least 6 counts. This is added
as a starting value for the final bias term so that image independent models will
map each bin to this prior probability. In both plots the loss of the train and
validation set seem to follow each other nicely indicating that the networks are
not over fitted.

Figure 38: The plots shows the converging loss for the single layer model. The
training loss does not seem to divergence from the validation loss, indicating
that the model is not over fitting.
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Figure 39: The plots shows the converging loss for the 2 layer model. The
training loss does not seem to divergence from the validation loss, indicating
that the model is not over fitting. It converges much quicker than the single
layer model.
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7.2 App2: Network filters
All five filters of the last layer of the two layer CNN contributing to the bin rep-
resenting the probability that there is a muon are shown in figure 40. Apparently
filter 3 does nothing, indicating that one less channel would be sufficient. Filter
0 finds two highest intensity positions and filter 1 and 4 help indicating the
correct of these. Filter 2 seems to have been miss led by the background but
the resulting image after soft max and removing low hit layer bins looks nice.
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Figure 40: A muon focal point and the same muon in minimum bias are pre-
sented on the first row. The next are all filters of the two layer CNN contributing
to the probability that there is a muon in each bin. The last image is the output
probabilities. Apparently filter 3 does nothing.56
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