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Abstract

Atomic clocks are the most stable frequency references and state-of-the-art
atomic clocks are limited by thermal fluctuations in the reference cavity mir-
rors. Superradiant optical clocks where atoms in a cavity emit collectively are
advantageous as they lie in the bad-cavity regime and are thus insensitive to
noise in the cavity mirrors.

In this work we investigate the theory behind and present a plan for re-
alizing a so-called narrow second-stage magneto-optical trap using the SWAP
(Saw-tooth Wave Adiabatic Passage) scheme that cools strontium atoms to
the µK level. Cooling the atoms to the µK level level will reduce their Doppler
broadening by a factor of 30 thereby bringing the system deeper into the bad-
cavity regime.

Furthermore we investigate whether we can achieve closely spaced superra-
diant lasing pulses by pumping the atoms at short intervals. This is desirable
as it means a reduction of the dead time in the experiment, but we found that
this was not possible as the excited atoms need to decay between pump pulses.

An important quantity needed to characterize the MOT is the atom num-
ber, and in this work we investigate whether we can determine the atom
number from the normal-mode splitting of the coupled atom-cavity system.
We present measurements of the normal-mode splitting and use the Jaynes-
Cummings model to find the atom number in the MOT, yielding a result of
N = (413.08±0.07) ·106. However, we find that this number overestimates the
atom number when compared to the result we obtain from absorption imaging
measurements, N = (129.1 ± 0.8) · 106. However we found that the normal-
mode splitting is insensitive to a range of probe powers meaning we can use it
as a proxy for the total atom number.
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Nomenclature

AOM - Acousto-optic modulator
EOM - Electro-optic modulator
FSR - Free spectral range
FWHM - Full width at half maximum
MOT - Magneto-optical trap
NMS - Normal-mode splitting
PBS - Polarizing beam splitter
RF - Radio frequency
TA - Tapered amplifier
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1
Introduction

The ability to precisely determine time is important in technology as well as
in fundamental research and relies on stable frequency standards. Frequency
standards can be characterized by their accuracy and their stability, and these
terms are illustrated in Figure 1.1 as bullet holes on target. The center of the
target corresponds to the desired frequency of the frequency standard, and the
distance between the bullet holes corresponds to the deviation from the desired
frequency. The most accurate frequency standards are atomic clocks and using
atomic clocks fractional uncertainties of 10−17 [1] have been achieved.

Atomic clocks are used anywhere from GPS satellites to fundamental re-
search. The unit of the second is defined from measurements of the hyper-
fine electronic transition in cesium-133. This frequency lies in the microwave
regime, but as optical frequencies are orders of magnitude larger than mi-
crowave frequencies, using optical frequencies is advantageous in terms of re-
ducing fractional frequency uncertainty.

An illustration of the basic components of an atomic clock can be seen
in Figure 1.2, where a laser oscillating at frequency f with frequency noise
δf is stabilized to an ultra stable reference cavity reducing the noise δf and
then sent through an ensemble of atoms with resonance frequency f0. The
resonance frequency of the atoms provide a reference frequency and can be
used to correct the laser frequency using a feedback system.

(a) Precise and
accurate.

(b) Accurate but
not precise.

(c) Precise but
not accurate.

(d) Not precise
and not

accurate.

Figure 1.1: Illustration of the terms accuracy and precision using a target with
bullet holes.

1
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Figure 1.2: Schematic of the basic components of an optical clock. A laser
with frequency f is stabilized to a reference cavity, which reduces the noise, δf ,
in the laser frequency. The laser light is then corrected using an ensemble of
atoms.

The advantage of using atoms is that atoms of the same species are identical
anywhere in the universe, meaning that the control of the environment is the
limiting factor in the performance of the frequency reference. One approach
to control the atoms is to trap them using a magneto-optical trap (MOT)
localized in the center of an optical cavity, an arrangement of mirrors that can
greatly enhance the coupling between the atoms and the laser.

We distinguish between two different types of optical clocks: Passive and
active. The passive optical clock utilizes the method explained above and
shown in Figure 1.2. In an active atomic clock, the interrogation light itself is
generated by atoms lasing within an optical cavity, thus eliminating the need
for a separate reference laser. This is advantageous as the reference laser needs
to be stabilized to a reference cavity, and thus its noise depends on fluctuations
in the cavity length, which limits the precision. We wish to operate in the so-
called bad-cavity regime, where the coupling to the cavity enables superradiant
lasing, meaning the atoms collectively emit light into the cavity mode.

1.1 Superradiant lasers

A typical laser consists of a gain medium and an enhancement cavity. The
gain medium amplifies the light via stimulated emission and the cavity mir-
rors reflects the light leading to repeated interactions with the medium. For
traditional laser, the linewidth of the cavity, γ, is narrow compared to the
linewidth of the cavity, κ. This so-called good cavity regime, where κ � γ,
leads to the frequency noise of the laser being dominated by fluctuations in
the cavity length. On the other hand, a superradiant laser consists of a gain
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medium with narrow linewidth and a cavity with a broad linewidth, the so-
called bad-cavity regime where κ � γ. Since the gain medium is spectrally
narrow, it is the gain medium that dictates the frequency of the lasing, and
thus the resulting spectrum is not as affected by fluctuations in the cavity
length. A comparison of the good and bad cavity regimes can be seen in
Figure 1.3.

Figure 1.3: Illustration of the good and bad cavity regimes.

1.2 The Strontium Clock Experiment

An overview of the experimental setup can be seen in Figure 1.4. A strontium
sample is heated in an oven producing a beam of strontium atoms that move
out of the oven and are cooled by a Zeeman slower. The atoms are then
trapped in a three-dimensional magneto-optical trap (MOT), the center of
which overlaps with the mode of an optical cavity.

Figure 1.4: Schematic of the of the strontium clock experiment setup. Stron-
tium is heated in an oven and the atoms are cooled using a Zeeman slower and
trapped in a three-dimensional magneto-optical trap. The center of the trap
overlaps with the mode of an optical cavity.
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We can excite the atoms with a pump pulse causing them to emit a pulse
of light (superradiant lasing). However, as we currently only are able to cool
the atoms to a temperature of ∼ 7 mK the ensemble has a Doppler broadening
of a few MHz, meaning the system does not fall under the bad-cavity regime.
Therefore we wish to further cool the atoms using a narrow second-stage MOT
(’red MOT’) using the SWAP (Saw-tooth Wave Adiabatic Passage) scheme
developed by [13]. With this, we expect to reduce the Doppler broadening of
the ensemble by a factor of 30 by cooling to a few µK .

1.3 Outline of the Thesis

This thesis focuses on the work done to experimentally realize a red MOT as
well as experiments with the lasing pulses. In Chapter 2 the theory relevant
to understand the experimental setup of the strontium clock experiment is
presented. In Chapter 3 I present our current plan for the red MOT setup
as well as the problems we ran into causing the red MOT to be delayed.
In Chapter 4 I investigate whether we can use closely spaced pump pulses
to achieve closely spaced lasing pulses. And lastly, in Chapter 5 different
methods to determine the number of atoms in the MOT are investigated, as
this is important for characterizing the current system as well as for the red
MOT.
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Atom-Light Interactions

In this chapter I will present the theory relevant to understand the experiments
described in the later chapters. In our experiments we cool and trap stron-
tium atoms in an optical cavity. First, the energy level structure and relevant
transitions of strontium are presented. The techniques to cool and trap the
strontium atoms are then described and the build-up of the intracavity field
is presented. To model the interaction between the atoms and the cavity field
the Jaynes-Cummings model is used, and it is described here along with the
strong-coupling regime.

2.1 Transitions in Strontium

In our experiments we use 88Sr and the relevant energy levels for this thesis are
shown in Figure 2.1 labelled using Russel-Saunders notation 2S+1LJ , where S is
the total spin, L is the orbital angular momentum, and J is the total angular
momentum J = L + S. The first few values of L 0,1,2 are also written as
S, P,D.

Number Transition Wavelength λ Linewidth γ/2π
1 1S0 ↔1 P1 460.9 nm 32 MHz
2 1S0 ↔3 P1 689.4 nm 7.6 kHz
3 3S1 →3 P1 688.0 nm 5.2 MHz
4 3P0 ↔3 S1 679.3 nm 1.75 MHz
5 3P2 ↔3 S1 707.2 nm 8.9 MHz

Table 2.1: Transition wavelengths and linewidths for relevant transitions of
88Sr [2]. The numbers correspond to the numbers in Figure 2.1.

Strontium is an alkaline earth metal and as such it has two valence electrons
that in the ground state occupy the 5s shell resulting in a spin of S = 0. When
one electron is excited to the 5p shell the spin can be 0 or 1, giving the singlet
1P1 or the triplet 3P0, 3P1, 3P2, respectively.

5
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Figure 2.1: The energy-level structure of 88Sr. Full lines are transitions
driven by lasers, squiggly lines represent decay channels. The wavelengths and
linewidths of the transitions can be found in table 2.1.

The two most important transitions for this thesis are the 1S0 ↔1 P1 tran-
sition and the 1S0 ↔3 P1 transition, which are shown in blue and red in Figure
2.1, respectively. The 1S0 ↔1 P1 transition is used for cooling and trapping.
It has a wavelength of λ = 461 nm and a linewidth of γ/2π = 32 MHz,
and the latter makes it well-suited for cooling the atoms as a broad linewidth
means a short lifetime which means the atoms will absorb photons often. The
1S0 ↔3 P1 transition is for lasing pulses, and we want to use it for second-stage
cooling. It has a wavelength of λ = 689 nm and a linewidth of γ/2π = 7.5
kHz. It is dipole-forbidden in the LS-coupling scheme, as it violates rule 6 in
table 2.2, but can occur because of the spin-orbit coupling. In the electron’s
frame the proton is moving around it and this gives a magnetic field that tries
to align the magnetic moment of the electron along the field. This means that
L and S are no longer good quantum numbers, and and the selection rules for
the LS-coupling scheme start to be violated.

1 ∆J = 0,±1 (J = 0 = J ′ = 0)
2 ∆MJ = 0,±1 (MJ = 0 =MJ ′ = 0 if ∆J = 0)
3 Parity changes
4 ∆l = ±1 One electron jump
5 ∆L = 0,±1 (L = 0 = L′ = 0)
6 ∆S = 0

Table 2.2: Selection rules for electric dipole transitions in the LS-coupling
scheme [3].
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As seen on Figure 2.1 atoms excited to the 1P1 state can decay to the 1D2

level where they can decay to 3P2 and 3P0. They are thus no longer getting
cooled, so these are dark states. To avoid this, repumper lasers are added on
the 3P0 ↔ 3S1 and the 3P2 ↔ 3S1 transitions, so atoms are pumped to 3S1 and
from 3S1 they can decay to 3P1 and subsequently to 1S0.

2.2 Cooling

In our experiment we heat up solid strontium in an oven, where the sample
is heated up to T ∼ 550 ◦C. The strontium atoms exit the oven and travel
into a vacuum chamber. Inside the oven the velocity distribution of the atoms
is given by the Maxwell-Boltzmann distribution, but the distribution for the
atoms in the beam going out of the oven is different. For those atoms the most
probable velocity is [4]

v =

√
3kBT

m
. (2.1)

Here kB is the Boltzmann constant and m is the mass of an 88Sr atom. From
this equation the velocity of the strontium atoms coming out of the oven is
calculated to be v ∼ 480 m/s.

To work with the atoms it is necessary to localize them and thus cool them.
This cooling is done with lasers and it possible because of the momentum of
light. Each photon has a momentum of ~k, where wavenumber k is related to
the wavelength by k = 2π

λ
. When a laser is shined on an atom, as in Figure 2.2,

the atom can absorb a photon and will recoil from the beam. After some time
the atom will spontaneously emit a photon in a random direction. Because
the momentum must be conserved the change in momentum from the recoil is
∆px = −~k. When considering multiple cycles of absorption-emission the total
momentum change will be in the x-direction, since the photon is reemitted in
a random direction so the momentum change averages to zero. The result is a
force that slows the atom down. The magnitude of this force depends on the
rate at which photons are scattered, and for effective cooling we should thus
use a transition with large decay rate.

Figure 2.2: An atom moving towards a laser beam will be cooled if the frequency
of the laser is tuned slightly below atomic resonance.

If the atom is moving towards the laser that has frequency ωL in the labo-
ratory frame, then in the rest frame of the atom the laser frequency is shifted
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up by the Doppler effect and has frequency

ω′L = ωL + kv. (2.2)

If we then tune the laser frequency to be ωL = ω0 − kv and thus below the
atomic resonance frequency then ω′L = ω0 and thus the laser will be in reso-
nance with the atoms moving towards it.

A problem arises as the atoms are cooled because their velocity changes.
As their velocity changes, the Doppler shift changes which effectively changes
their resonance frequency bringing them out of resonance with the lasers. To
account for this we need a force that that is velocity dependent. This can be
achieved with a Zeeman slower, which will be explained in the next section.

2.2.1 Zeeman Slower

A Zeeman slower consists of a slowing beam and a solenoid with layers of
decreasing length as depicted on Figure 2.3, which produces a magnetic field
that varies spatially. This magnetic field changes the resonance frequency of
the atoms and keeps it in resonance with the laser.

Figure 2.3: A Zeeman slower consists of a tapered solenoid and a cooling beam.
As the atoms come out of the oven they are exposed to the varying magnetic
field produced by the solenoid which compensates for the change in Doppler
shift as the atoms are cooled down.

As a magnetic field B is applied to the atom its energy levels with different
values of MJ are no longer degenerate, they split up. For the cooling transition
this means that the level 1P1 splits up into 3 sublevels as seen on Figure 2.4.

The correction to the energy E0 is given by

EZE = gJµBBMJ , (2.3)

where gJ = 3
2
+ s(s+1)−l(l+1)

2j(j+1)
is the Landé g-factor, with gJ = 1 for a singlet state,

and µB is the Bohr magneton. This means that the Zeeman effect increases
the resonance frequency by EZE

~ = µBB
~ and thus the magnetic field should

obey the following relation

ω0 +
µBB

~
= ωL + kv, (2.4)
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Figure 2.4: Schematic showing the splitting of the 1P1 sublevels due to the
Zeeman effect.

where ωL is the angular laser frequency. This means that the atomic resonance
frequency changes with position and thus the atoms are kept in resonance with
the laser.

If the laser is tuned below atomic resonance (red-detuned) to account for
the Doppler shift, then for z > 0 the MJ = −1 transition will be shifted closer
to resonance with the laser frequency and thus the atom will absorb photons
if the beam has σ− polarization. For z > 0 the atom will preferentially absorb
from a beam with σ+ polarization.

2.2.2 Magneto-Optical Trap

When the atoms exit the oven and move in the z-direction they will also have
small velocity components in the x- and y-directions, so they need to be cooled
in all three directions. This can be achieved by having counter-propagating
laser beams in all three directions as shown in Figure 2.5. An atom at rest will
experience equal forces from the beams, but a moving atom will experience a
net force due to the Doppler shift. The moving atom will scatter more light
from the beam opposite its direction of motion if the laser is red-detuned, as
explained in Section 2.2. This technique of slowing atoms is called the optical
molasses technique. With the optical molasses technique the atoms can never
be completely cooled because of the heating that comes from the spontaneous
emission. When an atom spontaneously emits a photon it recoils and these
kicks lead to a random walk in velocity space. Even though the average force
from the random kicks is zero, the average force fluctuations are not zero. This
gives a limit to the achievable temperature, called the Doppler cooling limit,
of

TD =
~γ
2kB

. (2.5)
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Figure 2.5: Illustration of a magneto-optical trap (MOT). The MOT consists
of six intersecting red-detuned laser beams with circular polarization and coils
with currents running in opposite directions that produce a quadrupole magnetic
field.

For the blue cooling transition of 88Sr this gives TD = 0.8 mK.
Optical molasses can not be used to trap atoms. If atoms move away from

the center there is no force to push them back. However, optical molasses
in combination with a magnetic field can be used to make a trap, the so
called magneto-optical trap. The magneto-optical trap (MOT) consists of six
intersecting laser beams that are red-detuned with polarizations as in Figure
2.5, and a magnetic field. The magnetic field is created by two coils with
current running in opposite directions and the result is a quadrupole magnetic
field, which is zero in the middle and grows linearly when moving away from the
middle. An atom located away from the center of the trap will experience the
Zeeman effect due to the nonzero magnetic field which will cause it energy levels
to shift with the shift depending on the atoms position as shown in Figure 2.4.
If the atom is located at z > 0 then because of the Zeeman shift the ∆MJ = −1
transition will be shifted closer to resonance with the laser frequency. The atom
will then absorb photons from the beam with σ− polarization and the resulting
scattering force pushes it back towards the center.

For our MOT the large amount of photons from the 461 nm laser scattered
means the atom cloud can be seen with the naked eye as a glowing sphere. A
picture of the MOT cloud taken with a phone camera can be seen in Figure
2.6.

Our MOT has temperature of ∼ 7 mK (measurements of the temperature
are presented in Chapter 5). The velocity distribution of the atoms is de-
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Figure 2.6: Picture of the MOT cloud taken with a phone camera.

scribed by the Maxwell-Boltzmann distribution, which leads to a distribution
of Doppler shifts resulting in a Gaussian lineshape. This Doppler broadening
can be characterized by the FWHM of the Doppler broadened linewidth, which
is given by [4]

νD =
2ν0

c

√
2 ln(2)

kBT

m
, (2.6)

where ν0 is the frequency of the transition and T is the temperature.

2.3 The Cavity

To enhance the interaction with the light on the narrow 1S0 ↔3 P1 transition
the cold atoms are inside a cavity, which consists of two mirrors facing each
other. We can describe the cavity using the assumptions that the mirrors are
parallel and highly reflective and this type of cavity is known as a Fabry-Pérot
cavity [6]. Such a cavity can be seen in Figure 2.7.

Inside the cavity a standing wave forms, as light entering the cavity will be
reflected and interfere with itself. This means that the in order for the light to
be resonant with the cavity, the length of the cavity has to be an integer of half
wavelengths, meaning L = q λ

2
and thus the allowed frequencies are ν = qc

2L
.

The spacing between adjacent resonance frequencies is called the free spectral
range and is given by

FSR =
c

2L
. (2.7)

For a lossless cavity the frequency of the light must be exactly qc
2L

or the
waves will destructively interfere. This means the resonances are sharp peaks.
When losses, such as finite transmission of the mirrors to be able to extract and
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Figure 2.7: Illustration of a Fabry-Perot cavity.

inject light from and into the cavity, are introduced the spectrum is broadened,
since the lifetime of photons inside the cavity becomes finite. The FWHM of
the resonances, ∆ν, is related to the FSR by the finesse F :

F =
FSR

∆ν
(2.8)

As we shall see in the following section, the finesse is also a measure of the
intensity amplification in the cavity.

2.3.1 The Intracavity Field

To find out how much the cavity amplifies the light in the cavity, we calculate
the field circulating in the cavity, Ecirc in Figure 2.7. Denoting the propagation
phase accumulated over one round trip in the cavity as φ, the total electric
field circulating in the cavity can be written as [10]

Ecirc = t1Ein + Ecircr1r2e
iφ, (2.9)

The intensity of the circulating field can then be found by taking the absolute
square

Icirc ∝ |Ecirc|2 =
t21Iin

1− 2r1r2 cos(φ) + r2
1r

2
2

. (2.10)

Taylor expanding the cosine to second order gives

Icirc ≈
t21Iin

1 + r2
1r

2
2 − 2r1r2(1− 1

2
φ2)

=
t21Iin

(1− r1r2)2 + r1r2φ2
. (2.11)

From the above expression we see that the circulating intensity is a Lorentzian,
and from that it is possible to find the half width at half maximum by solving
Icirc(φ1/2) = 1

2
Icirc(φ = 0) for φ1/2. Doubling φ1/2 gives the full width at half

maximum, ∆φ as
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∆φ =
2(1− r1r2)
√
r1r2

. (2.12)

The finesse is then found using the definition in Equation 2.8 and FSR =
2π

F =
FSR

∆φ
=

π
√
r1r2

1− r1r2

. (2.13)

Assuming that the cavity mirrors have the same transmittance t1 = t2 = t,
and the same reflectivity r1 = r2 = r, and that the transmittance is much
larger than any other losses we find that r2 + t2 = 1 and the intensity of the
circulating field on resonance, φ = 0, is

Icirc
Iin

=
1− r2

1− 2r2 + r4
=

1

1− r2
=
F
πr

(2.14)

Assuming high finesse and thus r ∼ 1 we find that the cavity enhances the
intensity by the order of the finesse. This makes the cavity a useful tool in our
experiment, as it enhances the interaction between the atoms and the light.

2.4 The Jaynes-Cummings Model

The Jaynes-Cummings model describes an electromagnetic field interacting
with a two-level atom. Both the field and the atom are quantized. The atom
consists of ground state |g〉 and excited state |e〉 and has resonance frequency
ω0. The field is a single-mode cavity field with frequency ω and can be written
as

~̂E =

√
~ω

2ε0V
(â+ â†)~ε, (2.15)

where V is the cavity volume, ε0 is the vacuum permittivity and and ~ε is the
polarization vector.

The interaction Hamiltonian describing the interaction between the atom
and the cavity is

ĤI = − ~̂d · ~̂E, (2.16)

where ~̂d is the dipole moment operator given by

~̂d = 〈g|~d|e〉 (|g〉〈e|+ |e〉〈g|) = ~̂dge(σ̂eg + σ̂ge). (2.17)

Here ~̂dge = 〈g| ~̂d|e〉. σ̂eg = |e〉〈g| and σ̂ge = |g〉〈e| are the atomic transition

operators. Using the expressions for ~̂d and ~̂E the interaction Hamiltionan
becomes
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ĤI = ~g(σ̂eg + σ̂ge)(â+ â†). (2.18)

Here g = ε̂ · dge
√
ω/(2ε0V ~) is the coupling constant, which describes the

coupling between the atom and the field. g is described further in section
2.4.2. The full Hamiltonian, ĤJC , is created by adding ĤI to the atomic
Hamiltonian, Ĥatom, and the field Hamiltonian, Ĥfield, which gives

ĤJC = Ĥatom + Ĥfield + ĤI (2.19)

= ~ω0σ̂ee + ~ωâ†â+ dg(σ̂eg + σ̂ge)(â+ â†), (2.20)

where σ̂ee = |e〉〈e|. In the above expression for ĤJC the terms σ̂egâ
† and σ̂geâ

do not conserve energy and so we make the rotating wave approximation and
neglect these terms. The Jaynes-Cummings Hamiltonian is then given by

ĤJC = ~ω0σ̂ee + ~ωâ†â+ ~g(σ̂egâ+ σ̂geâ
†). (2.21)

2.4.1 Dressed states

The eigenstates of ĤJC for no interaction (ĤI = 0) are called bare states and
can be written as

|ψ1n〉 = |e〉 |n〉 |ψ2n〉 = |g〉 |n+ 1〉 . (2.22)

As such the system either is in the excited state while having n photons or is
in the ground state while having n + 1 photons. The bare states can be used
as a basis to obtain the matrix elements of ĤJC , Ĥ

(n)
ij = 〈ψin|ĤJC |ψjn〉, which

results in the following matrix

H
(n) = ~

[
ω0 + ωn g

√
n+ 1

g
√
n+ 1 ω(n+ 1)

]
, (2.23)

The eigenenergies of H(n) are

E±(n) = ~
(
nω + ω0 +

∆

2

)
± ~

2
Ωn(∆), (2.24)

where ∆ = ω − ω0 is the detuning, and Ωn(∆) is the Rabi frequency, which is
given by

Ωn(∆) =
√

∆2 + 4g2(n+ 1). (2.25)

The eigenstates, |±, n〉, associated with the two eigenenergies, E±, are called
the dressed states. The bare states, ψ1n and ψ2n, are split by ~ω − ~ω0 = ~∆
and are thus degenerate for zero detuning. As depicted in Figure 2.8 the bare
state pairs are separated by ~ω as for each pair the system contains another
photon.
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. . .

. . .

Figure 2.8: In the Jaynes-Cummings model the bare states, |e〉 |n〉 and
|g〉 |n+ 1〉, which are degenerate for zero detuning, split up into the dressed
states, |±, n〉.

The dressed states are non-degenerate even for zero detuning, where they
are split by the frequency Ωn(∆) = 2g

√
n+ 1. As seen from Eq. 2.25 the

dressed states are split even for 0 photons in the cavity field. This effect is
called the vacuum-Rabi splitting. This means that when probing the coupled
atom-cavity system two resonances will be present as can be seen in Figure
2.9. The vacuum Rabi splitting for zero detuning is 2g, however for N atoms
it is 2g

√
N , and so it is easier to observe for a higher number of atoms.

Figure 2.9: When atoms are present in the cavity, the cavity transmission will
split into two peaks seperated by 2g

√
N .

This splitting of the modes is not an exclusively quantum phenomenon,
but also appears in coupled oscillators, where the frequencies of the coupled
modes split as in the quantum case. Therefore the splitting is also referred to
as normal-mode splitting.
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2.4.2 Atom-cavity Coupling and the Strong Coupling
Regime

The atom-cavity coupling factor g in Equation 2.18 is given by [9]:

g0 = −ε̂ · dge
√

ω

2ε0V ~
, (2.26)

where dge = 〈g|d|e〉 is the dipole matrix element and V is the cavity mode
volume. The cavity mode volume can be estimated by modelling the cavity
mode as a standing-wave Gaussian mode and integrating over the length which
gives V = πw2

cL/4, where L is the length of the cavity and wc is the cavity
waist radius. The dipole matrix element is related to the spontaneous emission
rate by γ = ω3

0d
2
ge/(3πε0~c3), and using this relation as well as the expression

for V we find

g0 =

√
6c3γωc
w2
cLω

3
0

, (2.27)

where ωc is the cavity resonance frequency. Taking the cavity mode into
account, the atom will only see this coupling when it is in an antinode and
in the middle of the Gaussian mode. Therefore we model the coupling as a
maximal coupling multiplied by a standing wave and a Gaussian

g = g0 · sin
(ωcz
c

)
· exp

(
−x

2 + y2

w2
c

)
. (2.28)

Together with κ and γ the coupling defines the characteristic time scales
of the system. The Jaynes-Cummings model describes the system well when
the system is in the strong coupling regime where g � κ, γ. This means that
the dynamics of the system are not significantly affected by dissipation and
thus that the system retains coherence. Or in other words, a photon emitted
into the cavity mode is reabsorbed by the atom faster than it is lost. For an
ensemble of N atoms the condition for strong coupling is

√
Ng � κ, γ, so a

larger N means strong coupling will be easier to obtain in the system.
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3
Towards a Red MOT

In this chapter I will explain the motivation for building a red MOT and
present the setup as well as explaining the difficulties we ran into with regards
to switching off the magnetic field.

We wish to make a MOT on the narrow 1S0 ↔3 P1 transition, which would
lead to colder atoms, as that transition has a Doppler temperature only of
0.18 µK. The red MOT will be a second-stage MOT, such that we use the blue
MOT first, because the red MOT cannot capture hotter atoms before they
have been cooled by the blue MOT to ∼ 5 mK. With a red MOT that relies
on a mechanism where the MOT beam frequencies are swept in a saw-tooth
pattern temperatures of 10 µK have been achieved [11]. With a temperature of
this magnitude the Doppler broadening of the 1S0 ↔3 P1 transition, which is a
few MHz for the current blue MOT, would be reduced by a factor of ∼ 20, thus
bringing the system deeper into the bad-cavity regime. Other improvements
include increased coupling to the cavity and better pumping of the atoms.

3.1 SWAP MOT

We wish to make a so-called Saw-tooth Wave Adiabatic Passage (SWAP) MOT
as in [13] using the 689 nm 1S0 ↔3 P1 transition. A SWAP MOT is similar to a
regular MOT, except that the laser frequency is swept across atomic resonance
in a saw-tooth patteren, as seen in Figure 3.1a. The atoms are illuminated by
3 pairs of counter-propagating beams with opposite circular polarization. If
the atoms move away from zero magnetic field, they are exposed to a magnetic
field gradient and their Zeeman levels are shifted, as shown for the 1S0 ↔3 P1

transition in Figure 3.1b. Because of the Zeeman shift, the transition from the
ground state to one of the shifted levels can be made with one of the MOT
lasers. As the lasers are swept upward in frequency, the level that is shifted
downwards will be brought into resonance first, meaning that the population
is transferred to this state. When the other level is brought into resonance
the atoms cannot absorb more photons, because of the long lifetime of the 3P1

17
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(a) In a SWAP MOT the laser frequency
is swept in a saw-tooth pattern over the
frequency of the excited states. The
dashed lines correspond to the Zeeman
sublevels as depicted in Figure 3.1b.

(b) For the 1S0 ↔3 P1

transition in 88Sr a mag-
netic field will cause the mj

sublevels of 3P1 to split.

Figure 3.1: Illustrations of mechanisms used to create a SWAP MOT.

level. Assuming that the rest of the sweep is long enough for the atoms to
decay back to 1S0 before the next sweep starts, a given atom will absorb more
photons from one beam than the other. This leads to a force on the atom that
depends on the magnetic field and thus the atomic position. This means we
can use the 1S0 ↔3 P1 transition to trap the 88Sr atoms.

An advantage of using a SWAP MOT is that the sweeping of the frequency
means it is possible to address atoms with a larger range of velocities, thus
making it possible to capture more atoms.

3.1.1 Adiabatic Transfer

The adiabatic part of the SWAP MOT can be understood by looking at the
dressed state picture. Dressed states were introduced in section 2.4.1 in refer-
ence to the Jaynes-Cummings model. In a frame rotating at the frequency of
the field the Hamiltonian is [9]

H = −~∆σ̂ee +
~Ω

2
(σ̂eg + σ̂ge). (3.1)

The Eigenvalues of this Hamiltonian gives the dressed state energies, which
are

E± = ~

(
−∆

2
± Ω̃

2

)
, (3.2)

where Ω̃ =
√

Ω2 + ∆2 is the generalized Rabi frequency. When plotting the
bare and the dressed states as in Figure 3.2 we see that the energies of the bare
states, 0 and −~∆, cross at zero detuning, ∆ = 0. For the dressed states, the
coupling to the field makes an avoided crossing, and thus they are no longer
degenerate at zero detuning. Starting with an atom in the ground state and
the laser frequency at large negative detuning, then as the laser frequency is
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swept over atomic resonance and as we move to the right on the plot following
the bottom branch, the atom will be transferred to the excited state. The
condition for the sweep to follow the bottom line is that the space between
the branches is large enough compared to the rate of the frequency sweep,
Ω2 � d∆/dt.

Figure 3.2: In the Jaynes-Cummings model the bare states have energy Eg = 0
and Ee = −~∆. When turning on the coupling between the atom and the
cavity field an avoided crossing in the energy level structure appears. Adiabatic
transfer means we follow the bottom branch.

3.2 Setup for the Red MOT

The setup for the red MOT is shown in Figure 3.3. A stable clock laser locked
to a cavity of finesse F ≈ 8000 is used to inject slave diode 1 by sending a weak
beam of a few mW which has the correct frequency into the diode. Light from
slave diode 1 is then used to inject slave diode 2. We use a tapered amplifier
to amplify the light, and optical isolators are used to protect the slave diodes
and the tapered amplifers from back reflections. The pump AOM seperates
the beam used for the red MOT and the beam used for the pump pulse. When
the pump AOM is off, the n = 0 order goes through another AOM used to
switch the red MOT on and off. The switch AOM uses the n = +1 order,
and we use a pinhole to block the n = 0 order. The n = +1 order from the
switch AOM goes into the sweep AOM, which is used to sweep the frequency.
From the sweep AOM the n = −1 first order is selected and the n = 0 order
is blocked using a pinhole. A lens focuses the beam from the sweep AOM
into a mirror, a so-called cat’s eye configuration. The sweep AOM is a double
pass configuration, where the n = −1 is reflected back through the AOM, so
that the alignment is less sensitive to variations in diffraction angle caused by
sweeping the frequency. From the sweep AOM the light goes through a PBS
that divides the light into two beams, one for the xy MOT beams and one for
the z beams. For the z beam the blue and the red beams are combined using



Page 20 of 54 Chapter 3 Towards a Red MOT

a short pass dichroic mirror, which allow for the blue beam to be transmitted
and the red beam to be reflected. An achromatic λ/4 plate is used to make
the polarization circular. For the xy beams the light is coupled into a fiber. A
long pass dichroic mirror, which transmits the red light and reflects the blue
light is used to combine the red and the blue light and an achromatic λ/4-plate
is again used to make the polarization circular.

Figure 3.3: The experimental setup for the red MOT beams. The figure is made
using an Inkscape library made by Alexander Franzen.

3.2.1 AOM frequencies

In [13] the red MOT beams are swept by ∼ 7 MHz every 50 µs. In our exper-
iment the clock laser is detuned by +40 MHz from the 1S0 ↔3 P1 transition.
When the pump AOM is on the light passing through it is shifted by -40 MHz,
bringing it into resonance with the atoms. The red MOT beams are not af-
fected by the pump AOM, as they come from the 0th order. The switch AOM
has a frequency of +120 MHz, which means that if the double-pass sweep
AOM a frequency of 80-81 MHz at the end of the sweep the light will end up
being just below resonance of the 1S0 ↔3 P1 transition. The frequency of the
sweep AOM is varied using an arbitrary waveform generator that generates
the signal shown in Figure 3.1a.
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3.3 Switching of the Magnetic Field

When switching from the blue 461 nm MOT to the red 689 nm MOT, we
would like to capture as many atoms from the blue MOT as possible. The
capture radius of the MOT is defined as the distance from the center where
the detuning of the MOT beams, equals the Zeeman shift

∆MOT = κ
dB

dz
z, (3.3)

where κ = gJµB
~ . Comparing the blue and the red MOT, the red MOT uses a

smaller detuning for effective cooling. A MOT beam detuning of ∆MOT = Γ/2
gives the fastest damping, but larger detunings give larger capture velocities
[15], so it is beneficial for us to use a final detuning of a few hundred kHz
for the red MOT, compared to - 41 MHz for the blue MOT. In addition to
the smaller detuning, the Zeeman shift for the red transition is also larger
κ/2π = 2.1 MHz compared to κ/2π = 1.4 MHz for the blue transition, leading
to a smaller gradient needed.

For the red MOT we need a magnetic field gradient of a few G/cm [11].
To quantize the needed reduction of the magnetic field gradient, we want to
estimate the gradient we currently use for the blue MOT. This is done by
measuring the magnetic field with a Gaussmeter probe above the top window
of the vacuum chamber along the vertical axis, and results are seen in Figure
3.4. For the blue MOT we normally use a current of 50-60 A. However, the
Gaussmeter saturates at 5 A, so the measurements were performed at a cur-
rent of 5 A, and then upscaled due to the linearity between the current and
the magnetic field strength. The background field, shown in Figure 3.4a was
measured with the no current running through the coils.

(a) The background field, measured with
no current running through the coils.

(b) Magnetic field with a current of I =
5 A running through the top and bottom
coil. The background, plotted in Figure
3.4a, has been subtracted from each data
point.

Figure 3.4: Magnetic field measurements along the vertical MOT axis with 0
being the position of the top window of the vacuum chamber.
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To find the gradient we consider the expression for the magnetic field of a
current loop given by

B(z) =
µ0

2

R2I

(z2 +R2)3/2
. (3.4)

Here µ0 is the vacuum permeability, R is the radius of the current loop, I is the
current and z is the distance along the vertical axis intersecting with the loop
center. As the magnetic field for the MOT is made from two current fields,
the function used to fit the data in Figure 3.4b is a sum of two current loops,

Bfit(z) =
µ0

2
R2AI

(
1

((z + z0− d)2 +R2)3/2
− 1

((z + z0 + d)2 +R2)3/2

)
.

(3.5)
In the above equation, A is to compensate for the increase in the field due

to the number of turns, z0 is the offset on z due to the distance being measured
above the top window and d is the distance from z = 0 the coils are placed
at. The fit can be seen in Figure 3.5 where z0 has been subtracted from the fit
as well as the data, so z = 0 corresponds to the position on the vertical axis
between the two coils.

Figure 3.5: The data in Figure 3.4b fitted to Equation 3.5. The fit parameters
are shown.

From the fit in Figure 3.5 we can find the derivative,
dBfit
dz

, at z = 0 and
since the expression depends on the current we can find the gradient for a
current of I = 55 A, which results in a gradient of 33.7 G/cm. This means we
need to reduce the gradient by a factor of 10 for the red MOT. The switching
of the magnetic field has to be done fast, on the order of a few ms, as the
thermal velocities after the blue MOT are on the order m/s, which causes the
atoms to quickly move out of the capture region. This is a challenge, as the
change in the magnetic flux, ΦB, has opposite sign compared to the emf, ε, as
described by Lenz’s law
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ε = −dΦB

dt
. (3.6)

Consequently, the current produced by the emf in our coil holders, the so-called
eddy currents, opposes the change in the magnetic flux. In other words, the
eddy currents resist the switching off the magnetic field. Measurements of the
magnetic field when switching of the coils (see Appendix A.1) revealed a decay
constant of 10 ms. This meant it was necessary to design and produce a new
MOT coil holder, where eddy currents are suppressed, which can be seen in
Figure 3.6. The new coil holder has a gap in order to reduce the magnitude
of the eddy currents in the aluminium coil holder. With the new coil holder
a decay constant of 1 ms has been measured, which should make a red MOT
possible. The design and production of the new holders (as well as a new
vacuum chamber) delayed the red MOT and as of the date of the hand-in of
this thesis a red MOT has not been made in the lab.

Figure 3.6: Illustration of the new MOT coil holder with a gap to limit eddy
currents.
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4
Pulse Train Lasing

In this chapter we present the results of experiments where excited atoms
collectively emit a pulse into the cavity mode. First we make a simulation of
an atom interacting with a running-wave laser, which describes the dynamics
when we use a pumping pulse to excite the atoms. Then we look at the setup
for the experiment and present the result of using a single pump pulse to excite
the atoms, which has been described in [12]. We investigate whether we can
get many, closely spaced pulses by pumping the atoms at short intervals. To
get a lasing pulse we first need to capture the atoms with the blue MOT and
send a pump pulse to the atoms, and thus it is desirable to be able to get many
closely spaced pulses as the dead time is then reduced.

4.1 Setup for the Pump Pulse

Atoms are cooled in a 3D MOT and the center of the trap overlaps with the
center of a cavity, as illustrated in Figure 4.1. The atoms are then excited by
a pump pulse incident at a 45° angle. When an atom is excited by the pump
pulse it can decay spontaneously into the cavity mode, and then the light is
amplified by stimulated emission from other atoms which results in a lasing
pulse into the cavity mode. The light leaks out of one of the cavity mirrors
and is detected on a photodetector. In these experiments the cavity is locked
on resonance with the atoms using a reference field coupled into a cavity mode
far off resonance (detuned by 1 FSR).

A clock laser which is stabilized to a cavity with finesse F = 8000 is used
to inject a slave diode which produces the light used for the amplifies the clock
laser light, and this light is used for the probe beam. Light from the probe
path is used to inject another slave diode which produces the pumping light
as can be seen on Figure 3.3. This light is further amplified by a tapered
amplifier and sent through an AOM, which when a radio frequency signal is
applied, diffracts the light into different orders. The order that has the correct
frequency to interact with the atoms is then selected. A photodetector placed
on the opposite of the vacuum chamber detects the pumping power transmitted

24
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Figure 4.1: Experimental setup for making lasing pulses. 88Sr are cooled and
trapped in a MOT and excited to the 3P1 level by a pumping pulse causing a
lasing pulse to be emitted.

through the vacuum chamber. We expose the atoms to the pumping pulse
when the MOT beams are turned off. During this time the atom cloud expands,
and the atoms are lost after a few milliseconds.

4.2 Dynamics of the Pump Pulse

To trigger superradiant pulses we need to excite the atoms from the ground
state to the 3P1 state. This can be done by shining light with the correct
frequency on the atoms. To find out what happens to an atom when you
shine light on it, we will look at a model consisting of a simple two-level
system interacting with a running-wave laser. The two-level system consists
of ground state |g〉 and excited state |e〉 and has resonance frequency ω0. The
model is semiclassical, such that the atom is quantized, but the laser is not.
The Hamiltonian is

Ĥ = ~ω0σ̂ee − ~̂d · ~E. (4.1)

The first term is the energy of the atom, where the zero-point has been
defined at |g〉, and the second term is the interaction of the atom with the

laser, where ~̂d is the dipole operator and ~E is the electric field. Making
the dipole approximation and thus removing the spatial dependence of the
electric field over the size of the electron cloud, the electric field becomes
~E = ~εE0 cos(ωLt), where ~ε is the polarization vector. The dipole operator is

given as d̂ = 〈g|~d|e〉 (σ̂eg + σ̂ge). In the interaction picture with respect to
H0 = 1

2
~ωLσ̂ee the Hamiltonian is

ĤI = Ĥ − Ĥ0 = ~∆σ̂ee +
E0

2
〈g|~d · ~ε|e〉 (σ̂eg + σ̂ge), (4.2)

where ∆ = ω0 − ωL is the detuning, with ωL being the laser frequency.
The rotating-wave approximation has been made, removing the terms which
oscillate fast. We want to know how the atom responds to the light, so we
want to find equations of motion for 〈σ̂ee〉 and 〈σ̂ge〉. This can be done using
the interaction picture version of the master equation [7]
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〈 ˙̂
A〉 =

i

~
〈[ĤI , Â]〉+ L̂(Â), (4.3)

where L̂ is the Lindblad superoperator, which contains the decay rate Γ.
Inserting HI in the master equation gives

〈 ˙̂σee〉 = i
Ω

2
(〈σ̂ge〉 − 〈σ̂eg〉)− Γ〈σ̂ee〉 (4.4)

〈 ˙̂σge〉 =

(
i∆− Γ

2

)
〈σ̂ge〉+ i

Ω

2
(〈σ̂ee〉 − 〈σ̂gg〉). (4.5)

Here Ω = − 〈g|~d·~ε|e〉E0

~ is the Rabi frequency. Assuming a Gaussian beam we
can write the Rabi frequency as [9]

Ω =

[
2η0|〈g|dz|e〉|2P

π~2w2
0

]1/2

, (4.6)

where η0 is the impedance of free space, w0 is the beam waist, and P is the
power of the laser. The dipole matrix element is related to the decay rate by

|〈g|dz|e〉|2 =
3πε0~c3Γ

ω3
0

. (4.7)

This can be simulated by numerically integrating Eq. 4.4 and 4.5. We use
simulation parameters corresponding to the 1S0 ↔3 P1 transition and a power
of P = 50 mW, a waist of w0 = 2.5 mm, and zero detuning, ∆ = 0. The
results for the population in the excited state, 〈σ̂ee〉 are shown in Figure 4.2.

(a) The light causes the population
to make so-called Rabi-oscillations be-
tween the ground and excited state.

(b) By turning off the laser when the ex-
cited state population is at the first max-
imum, we can make a so-called π-pulse
that transfers most of the population to
the excited state.

Figure 4.2: The excited state population 〈σ̂ee〉 found by numerically integrating
Eq. 4.4 and 4.5 for the 1S0 ↔3 P1 transition with a power of P = 50 mW, a
waist of w0 = 2.5 mm, and zero detuning, ∆ = 0.

In Figure 4.2a we see that the population oscillates between the ground
and excited state, the so-called Rabi oscillations. Because of the decay rate the
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oscillations decrease in amplitude over time, and the excited state population
will eventually reach a stady state at 0.5. If we want to excite the atoms to
the 3P1 state, so they can emit a pulse of light, we can turn off the laser after a
certain time, corresponding to a time where the excited state population is at
a maximum. In this way we make a pulse that pumps the atoms to the excited
state. If we choose the time corresponding to the first maximum, t = 228
ns, the pulse is a so-called π-pulse. In Figure 4.2b such a π-pulse has been
simulated, and we see that the excited state population decays with the decay
rate Γ. This simulation does not show superradiance, as we only simulate one
atom interacting with a running-wave laser as opposed to multiple atoms in a
cavity.

4.3 Single Lasing Pulse

An example of a single lasing pulse can be seen in Fig. 4.3 along with the
pump pulse. The data shown is an average over 43 datasets selected as the
pulses with a peak power larger than half the pulse with maximum peak power
of 100 datasets. We see that the pulse decays faster than than the spontaneous
decay time 1/Γ = 22 µs, which is an evidence of collective emission. The pulse
does not start at 0 W, and this background is due to the reference field used
to lock the cavity.

Figure 4.3: A single lasing pulse in the cavity output. The data is an average
over 43 datasets, with the 43 datasets being the ones with the largest pulses
selected from 100 datasets.

The time between the end of the pump pulse and the lasing pulse is also
a characteristic of collective emission as it takes time to build up coherence in
the system.
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4.4 Varying the Time between the Pump Pulses

We wish to investigate whether we can we get many, closely spaced lasing
pulses before the atoms leave the cavity mode after turning of the blue MOT
lasers.

We use a DG535 Digital Delay/Pulse Generator to turn off the MOT lasers
and start the pump pulse. The MOT lasers are turned off for 600 µs and right
after the pump pulse is started. That signal is used to trigger a function/
arbitrary waveform generator (DG1062Z) that makes 5 pulses with a duration
of 270 ns each (the duration was optimized for the size of the pulses). The
time between the pulses is what will be varied in this experiment. The signal
from the function generator is fed to the pulse AOM. We then measure the
light transmission through the cavity.

We take data for 12 different pump spacings from 16 µs to 100 µs, and
100 datasets for each pump spacing. Examples of one dataset for each pump
spacing can be seen on Figure 4.4, where the orange signal is the cavity trans-
mission, the blue signal is the MOT fluorescence and the purple signal is the
pump pulse detector.

Figure 4.4: Example of one dataset for each pump spacing. The datasets are
offset on the vertical axis.

The lasing pulses shown in Figure 4.4 are not representative of the all
datasets with the same pump spacing, but show how the spacing between the
pulses evolve in relation to the time the MOT is turned off. For a specific pump
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spacing the lasing pulses vary quite a bit in peak power, as seen on Figure
4.5, which shows six different datasets (rows) for a pump spacing of 80 µs.
These variations can be due to the fact that the MOT has to be recaptured
between each measurement, and thus it slightly shifts between measurements.
Considering one row separately the variations of peak size within a row are
appear large as the variations between the rows. Variations within one row
could be due to the pump pulses fluctuating.

Figure 4.5: Example of 6 datasets with 80 µs spacing, offset on the vertical
axis. The pulses vary significantly in size.

Next we look at the peak power of each of the 5 lasing pulses as a function
of the time between the pump pulses, as is plotted in Figure 4.6, where pulse
1 is the first pulse after the MOT is turned off, pulse 2 is the second, and so
on. The sizes are found using the function scipy.signal.find peaks in Python.
If no peak is found, where a pulse is expected, the pulse is counted as having
a size of 0 W. Each point is an average over the 100 pulses.

We see that the first lasing pulse is somewhat constant in size for all pump
spacings. The 2nd to 5th pulses are small, if not 0, for small pump spacings,
and increase in size as the pump spacing becomes larger than the lifetime of
the 3P1 state, to become almost as large as the first pulse for pump spacings
longer than 50 µs. That the 2nd to 5th pulses are not as intense as the first
pulse for small pump spacings can be explained by the fact that not all of the
excited atoms take part in the lasing (the fraction of atoms that take part
in the lasing will be determined in Chapter 5). This means that after the
lasing pulse is emitted, we have to wait for the rest of the atoms to decay, in
order for the system to ”reset”. If we do not wait the next pump pulse will
cause stimulated emission for some of the still exicted atoms, while exciting the
atoms in the ground state that were not excited by the previous pump pulse
or have had time to decay. For longer pump spacings the atoms will have had
time to decay, and thus the pulses after the first pulse can be as large as the
first.

To find out whether the lasing pulses are independent, we select the dataset
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Figure 4.6: The average size of the pulses as a function of the pump spacing.
The curves each represent one of the five pulses, where pulse number 1 is the
first pulse after the MOT is turned off, pulse 2 is the second, and so on.

where the first pulse is larger than half the size of the largest pulse, and look at
the sizes of the subsequent pulses. If the first pulse for a certain pump spacing
is less than half the size of the largest first pulse the dataset is discarded. This
removes between 50% and 60% of the data. From Figure 4.7 we see that the
curve representing pulse 1 is larger than the corresponding curve in Figure 4.6,
which makes sense since we selected only the largest first pulses. Pulse 2-5 in
Figure 4.7 have however neither decreased nor increased in size, compared to
Figure 4.6, which would indicate that they are independent from pulse 1.

Another way to confirm that the pulses are independent is to explicitly
check whether pulse 2 depends on the size of pulse 1. As seen in Figure 4.8
the curve representing the peak power of pulse 2 when pulse 1 is large overlaps
with the curve representing the peak power of pulse 2 when pulse 1 is small for
pump spacings larger than ∼ 70 µs. For pump spacings smaller than this, the
trend seems to be, that the second pulse is large when the first pulse is large.
This makes sense, as the larger the lasing pulse, the more atoms have changed
state, so the next pump pulse will be able to excite more atoms. However, for
pump spacings larger than 70 µs even if the first pulse is not large the atoms
will have had time to decay, and thus the second pulse is independent of the
first.

Thus we cannot use closely spaced pulses to reduce the dead time in our
experiment and get a longer duty cycle. However, pulse 2-5 contains informa-
tion about the decay time of the 1S0 ↔3 P1 transition, as a larger portion of
the atoms have time to decay for larger pump spacings. In Figure 4.9 we plot
the average of pulse 2-5 and fit an exponential function to the data.

The fitting function used is

f(t, a, τ, k) = a
(

1− e−
t+k
τ

)
, (4.8)
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Figure 4.7: The average size of the
pulses as a function of pump spac-
ing. Here only dataset where the first
pulse is larger than half the size of the
largest pulse are shown.

Figure 4.8: The average peak size of
the 2nd pulse as a function of pump
spacing. The blue curve represents
the size of the 2nd pulse where the
first pulse is large, and the orange
represents the size of the 2nd pulse
where the first pulse is small.

Figure 4.9: The average size of pulse 2-5 as a function of pump spacing. From
the exponential fit the decay time is found to be 22.4± 1.4 µs.

where k is the offset on the time-axis and τ is the decay time. For the fitting,
pump spacings with few pulses are skipped. From these data the fit time the
decay is found to be 22.4± 1.4 µs, which agrees well with the expected value
of 20.9 µs. However, this analysis assumes that the peak height of the lasing
pulses scales linearly with the population which may not be the case.
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4.5 Continuous incoherent repumping

As explained in section 4.2 Rabi-oscillations make it possible to use light to
excite atoms, by using a pulse with a certain length. The problem with using
this method as we have seen in the previous section is that the atoms have to
decay to the ground state before they are able to emit a new pulse of light.
This can be solved with continuous repumping, which is the scheme shown in
Figure 4.10.

Figure 4.10: Incoherent repumping scheme, where a 688 nm laser excites the
Zeeman sublevel mJ = −1 of the 3P1 state to the 3S1 state. The 679 nm and
the 707 nm laser excite the atoms that decay from 3S1 to 3P0 and 3P2, respec-
tively. Full lines indicate pumping/repumping, dashed lines indicate pump-
ing/repumping as well as spontaneous emission, and wavy lines indicate spon-
taneous emission.

With continuous repumping a 688 nm laser excites the Zeeman sublevel
mJ = −1 of the 3P1 state to the 3S1 state. This allows spontaneous decay to
the 3P1 mJ = 0 level and can be used to create continuous lasing as atoms are
continuously being excited to the 3P1 state without depopulating the mJ =
0 state. This scheme is not currently used in our experiment, but can be
implemented with a 688 nm laser and a static magnetic field. Due to the
Zeeman effect caused by the magnetic field, the sublevels of 3P1 split, making
it possible to excite the atoms in mJ = ±1.
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5
Determining the Number of Atoms

in the MOT

In this chapter three different methods to determine the number of atoms in
the MOT are investigated. The number of atoms in the blue MOT is important
to determine to characterize the efficiency of the transfer of atoms to the red
MOT.

First, measurements of the normal mode splitting in the coupled atom-
cavity system are presented and the method to determine the atom number is
explained. Then the method of absorption imaging and determining the tem-
perature of the MOT from time of flight measurements is described. Lastly
we investigate how to find the number of atoms by counting photons in super-
radiant pulses.

5.1 Normal-Mode Splitting

Normal-mode splitting was presented in Section 2.4 as a signature of strong
coupling in an atom-cavity system. In Figure 2.8 we saw how the energy levels
of the bare atom and cavity field split when turning on the coupling between
the atom and the cavity giving the so-called dressed states. This splitting can
be seen in the cavity transmission as two peaks instead of one, as seen on
Figure 2.9.

Equation 2.24 gives the energy of the dressed states. In that equation the
detuning, ∆ = ∆c = ωc − ω0 is the detuning of the empty cavity with respect
to the atomic resonance. In our experiment we vary ∆c by varying the length
of the cavity. We use a 689 nm laser to probe the coupled atom-cavity system.
As we probe the transition between the ground state and the |±, 0〉 where
one photon is shared between the cavity field and the atom we set n = 0 in
Equation 2.24 to get an expression for the laser detuning, ∆L

∆L = ω± − ω0 =
∆c

2
± Ω0

2
, (5.1)

33
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where Ω0(∆c) =
√

∆2
c + 4Neffg2

0 is the Rabi frequency with Neff being the
effective number of atoms in the cavity mode. When varying the laser detuning
and the cavity detuning we can map out the avoided crossing seen in Figure
3.2, and from this we can determine the number of atoms as the splitting scales
with

√
Neff.

5.1.1 Experimental Setup

The experimental setup used to measure the normal-mode splitting is illus-
trated on Figure 5.1. To map out the avoided crossing we need to have a
range of cavity detunings for each laser detuning (or the other way around).
We can scan the laser and the cavity simultaneously. If one scan is much
slower than the other we can assume one of the detunings is constant while
varying the other. To do this we use two function generators. CH1 on the top
one in Figure 5.1 produces a square signal that goes to a switch that controls
whether the RF signal that drives the AOM is passed on. The AOM is then
able to turn the MOT lasers on and off. The MOT lasers are on for 20 ms
and off for 500 µs. CH2 on the top function generator is used to trigger the
bottom function generator to start the laser scan. The laser and the cavity
are scanned using the second function generator. The laser scan on CH1 is a
triangle signal with a frequency of 1 kHz (unless otherwise stated). The output
from CH1 goes to a VCO (voltage controlled oscillator) that controls the AOM
for the probe laser putting the laser frequency on resonance with the atoms.
The cavity is scanned slowly also with a triangle signal with a frequency of 200
mHz. This signal goes to the piezo controller where we can control the offset
of the cavity scan, which goes to the cavity piezo that controls the length of
the cavity.

We view the cavity transmission with an R&S RTB2004 oscilloscope. This
model has a history function making it possible to save the entire cavity scan
by saving 150 segments.

A single scan of the cavity transmission can be seen in Figure 5.2 and
represents one cavity detuning. The orange curve is the laser scan, the blue
curve is the MOT fluorescence, and the yellow curve is the cavity transmission.
The laser is first scanned down in frequency, then up, meaning we see the
normal mode splitting twice. The first splitting which is around 370 µs is with
the MOT beams on as can be seen from the MOT fluorescence. The second
and less intense splitting is at around 800 µs and is with the MOT beams on.
The peaks at 200 µs and 500 µs are sidebands on the probe laser are generated
by an EOM (elecro-optic modulator) at ±15 MHz. These are used to calibrate
the time-axis from the oscilloscope to the detuning.
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Figure 5.1: Setup for measuring the normal-mode splitting by mapping out the
avoided crossing. Two function generators are used. The top one controls the
MOT beams, and the bottom one scans the laser and the cavity.

Figure 5.2: Data for a single laser scan. The blue curve is the MOT fluores-
cence, the orange curve is the laser scan, and the yellow curve is the cavity
transmission.

5.1.2 Results

We plot all 150 segments on a color plot as seen in Figure 5.3, which constitutes
an entire cavity scan. We have zoomed in on the time axis, so we only look at
the data where the MOT beams are turned off. The transmission intensity is
indicated by the color scale. We see the normal mode splitting for the middle
laser scans (around scan number 75) and we see it for both the center peak
and the sidebands.

We can, alternatively, switch CH1 and CH2 on the bottom function gen-
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Figure 5.3: Cavity transmission
showing normal-mode splitting. For
this data the laser was scanned with a
frequency of 1 kHz and the cavity fre-
quency of 200 mHz, meaning the cav-
ity frequency will be approximately
constant for one laser scan. The axis
with ”scan number” corresponds to
the cavity axis, and the time axis cor-
responds to the laser axis.

Figure 5.4: Cavity transmission
showing normal-mode splitting. For
this data the cavity was scanned with
a frequency of 1 kHz and the laser
was scanned frequency of 200 mHz.
The axis with ”scan number” corre-
sponds to the laser axis, and the time
axis corresponds to the cavity axis.
The normal-mode splitting is assy-
metrical due to the fast scanning of
the cavity piezo.

erator on Figure 5.1, so we scan the laser slowly and the cavity fast, and the
result is seen on Figure 5.4. We see that the splitting is asymmetrical, which
is contrary to our expectation. If the cavity piezo is scanned to fast it will
exhibit non-linear behavior, which could explain the asymmetry. For quan-
titative analysis we therefore choose to look mainly at the ”cavity slow/laser
fast” scanning method. In Figure 5.4 we do not see splitting in the sidebands
as the laser scan is not wide enough (see Appendix A.2).

On both Figure 5.3 and 5.4 we see a small component of the cavity trans-
mission following the empty cavity resonance and thus not participating in the
splitting. This could be due to saturation of the transition, meaning that some
of light does not interact with the atoms.

Calibration of Axes

To find the number of atoms we would like to fit Equation 5.1 to the data.
In order to do this the axes on Figure 5.3 are converted to cavity detuning
(vertical) and laser detuning (horizontal). This is possible since we know the
sidebands are at ± 15 MHz with respect to the carrier peak. To calibrate the
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axes we consider two scans: The middle scan and the end scan as illustrated
in Figure 5.5, where we have zoomed in onto a single cavity scan.

Figure 5.5: To calibrate the axes we consider the middle laser scan and the end
laser scan. We find the values of t15, t0,end and t0,middle by fitting a Lorentzian
function to the cavity transmission peaks as seen in Figure 5.6. This figure
uses the same colorbar as Figure 5.3.

For the middle scan we fit a sum of two Lorentzians to the split carrier peak
to find the value of t corresponding to zero laser detuning, t0,middle, see Figure
5.6a. For the end scan we fit a sum of three Lorentzians to find the positions
of the sidebands t15 as well as the position of the carrier peak, t0,middle. This
fit can be seen in Figure 5.6a.

The laser detuning in MHz can then be calculated from the time array, t,
as

∆L(t)

2π
=
t− t0,middle
t15 − t0,end

· 15MHz, (5.2)

which gives an array of laser detunings. Asumming that the end scans do
not show normal mode splitting the laser detuning will be equal to the cavity

(a) Cavity transmission for the laser
scan corresponding to ”end scan” in
Figure 5.5. The fit function is a sum
of three Lorentzians.

(b) Cavity transmission for the laser
scan corresponding to ”middle scan”
in Figure 5.5. The fit function is a
sum of two Lorentzians.

Figure 5.6: Fits used to find the values for t15, t0,end and t0,middle.
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detuning, ∆L = ∆c for the end scan. The maximal cavity detuning in MHz
can then be calculated as

∆c,max

2π
=
t0,end − t0,middle
t15 − t0,end

· 15MHz. (5.3)

This value is used to create a linear array of cavity detunings using numpy.

Varying the Probe Power

Knowing the power in the cavity is important as we want to know whether or
not the atoms are saturated. The transmitted signal measured in mV can be
converted to power by measuring the height (in mV) of the transmission peak
without atoms by blocking the MOT lasers. This number can be converted to
a power by measuring the outgoing power with a powermeter and comparing
that to the intensity measured on the oscilloscope in mV. We find that 1 mV
measured on the oscilloscope corresponds to a power of 1.8 nW.

The saturation intensity of the 689 nm transition can be calculated using
γ = 2π · 7.5 kHz and λ = 689 nm as [3]

Isat =
πhc

3λ3
γ = 0.03

W

m2 . (5.4)

Making the assumption that the laser beam cross section is a circle with radius
equal to the cavity mode radius, w0 = 450 µm, we can calculate the power
necessary to saturate the atoms as Psat = πw2

0Isat = 19.1 nW.
For the data shown in Figure 5.3 a power of 184 nW is used. This is the

transmitted power and needs to be multiplied by F
π

(as was demonstrated in
Section 2.3) to find the intracavity power. Using F = 1260 we find that the
intracavity power is 74 µW, and thus the atoms are very saturated. This can
affect the dynamics as not all photons interact with the atoms. Another effect
to consider is the Doppler broadening, which leads to not all of the atoms being
resonant with the probe at the same time, and thus we want to investigate
the influence of saturation. Therefore we take data for lower powers, some
of which can be seen in Figure 5.7. In total we take measurements for five
different power levels.

For a transmitted power of 16 nW as seen in Figure 5.7c the noise com-
pared to the signal starts to become too large making the data hard to fit. A
transmitted power of 16 nW corresponds to an intracavity power of 6 µW, and
thus the atoms are still saturated. We were not able to get data for a probe
power that did not saturate the atoms.

Fitting

To find the number of atoms from Equation 5.1 we need to position of the
carrier peak. Therefore we split the data into two parts at zero laser detuning,
splitting all the laser scans in two. To each half of a scan we fit a Lorentzian
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(a) Data for a
transmitted power
of 184 nW.

(b) Data for a
transmitted power
of 84 nW.

(c) Data for a
transmitted power
of 16 nW.

Figure 5.7: Avoided crossings for three different probe powers.

function to find the position of the carrier peak. This gives us the green points
shown in Figure 5.8 for a transmitted power of 184 nW (maximum). To fit a
function to these points we need to know the cavity detuning in terms of the
laser detuning, which from Equation 5.1 is given as

∆c =
Neffg

2
0 −∆2

L

∆L

. (5.5)

The fit for a transmitted power of 184 nW can be seen in Figure 5.8. The
only fitting parameter is Neff, as the coupling parameter g0 is calculated from
Equation 2.27.

In Figure 5.9 values of Neff for five different powers are shown. For all five
powers Neff is around 7.5 · 106 and does not vary significantly or show any
clear trend as a function of power. However for all the measured probe powers
the atoms are saturated, as the lowest transmitted power corresponds to an
intracavity power of 6 µW which is enough to saturate the 689 nm transition.
The fact that the normal-mode splitting does not change significantly in the
probe power range here means we can use a high probe power giving a good
signal-to-noise ratio and derive a proxy for the total atom number. It also
suggests that a more complete description of the system should include the
Doppler broadening.

Also shown in Figure 5.9 are the results for Neff found from the data where
the MOT beams were on. This is only shown for the two largest powers as the
transmission peaks measured with the MOT lasers on were much less intense,
as can be seen in Figure 5.2. With the MOT beams on we find Neff ∼ 5 · 106

atoms. Part of the decrease in atoms could be due to the 461 nm light, which
excites a portion of the atoms to the 1P1 state.
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Figure 5.8: Equation 5.5 fitted to the cavity transmission. The transmitted
power is 184 nW.

Figure 5.9: The effective number of atoms in the cavity mode, Neff, obtained by
fitting Equation 5.5 to the data shown in Figure 5.7 as a function of transmitted
power.

Number of atoms in the MOT

To create a proxy for the total number of atoms in the MOT we consider the

model for the coupling g = g0 · sin
(
ωcz
c

)
· exp

(
−x2+y2

w2
c

)
, described in section

2.4.2. We generate positions from Gaussian distributions (see Figure 5.10
taking into account the size of the MOT (which will be determined in the next
section).

From the positions we can calculate the sine and the exponential in the
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Figure 5.10: 106 atom positions generated from a Gaussian distribution.

expression for g and replace g0 with g in the fitting routine. From this we find
N = (413.08± 0.07) · 106 atoms in the MOT.

5.2 Absorption Imaging

Given the shortcomings of the model for the observed normal mode splitting
it is very useful to employ an independent method to determine an estimate
for the number of atoms in the MOT. An alternative method, already used in
the group, to measure the number of atoms is absorption imaging. For this
method a beam of 461 nm light with a diameter larger than the MOT cloud
diameter is shined on the atoms. The atoms absorb the light and a shadow
image is taken with a Flir Blackfly CCD camera (model BFLY-U3-23S6C-C).
Comparing the shadow image to an image of the beam with no atoms we can
find the number of atoms in the MOT cloud. The sequence used for absorption
imaging can be seen in Figure 5.11. The MOT beams are on for 800 ms, and
0.2 ms after they are turned off the image light is turned on for 0.2 ms and
the camera takes a picture for 1 ms (image1). 40 ms later when the MOT has
dispersed, another picture is taken (image2). The image beam has a power of
0.2 mW.

An example of a shadow image can be seen in Figure 5.12a and the cor-
responding image without atoms in Figure 5.12b. The images shown are a
mean of 6 images. 8-bit resolution is used, so each pixel can take 256 values
as indicated by the colorbar.

The method used to find the number of atoms is described in [16], [17].
Beer’s law for a beam on resonance with the atomic transition is given by

I(z) = I0(z)e−OD ⇒ OD = − ln

(
I(z)

I0(z)

)
. (5.6)

In this equation OD is the optical depth defined by OD = σ0n, where σ0 =
3λ20
2π



Page 42 of 54 Chapter 5 Determining the Number of Atoms in the MOT

Figure 5.11: Sequence used for absorption imaging. The MOT beams are on
for 800 ms. 0.2 ms after they are turned off the image light is shined on the
atoms for 0.2 ms. The camera is turned on right when the MOT beams are
turned off and is on for 1 ms. After 40 ms where the MOT cloud has dispersed
another picture is taken in the same way.

and n is the column density of atoms, meaning the number of atoms within
the area of one pixel. The optical depth can be found from image1 and image2
by

OD = ln

(
Image2

Image1

)
. (5.7)

The optical depth of the MOT cloud is plotted in Figure 5.13. (note: this
optical depth is not calculated from the images shown in Figure 5.12). A 3D
plot of the optical depth is shown in Figure 5.14 (bottom). The number of
atoms in the MOT cloud can be found by summing over the number of pixels
as N = A

σ0

∑
pixelsOD, where the area is A = (2·5.86·10−6m)2, since the length

of one pixel is 5.86 · 10−6 m and we use 2x2 binning. Instead of summing we
can also integrate over the optical depth, and this can be advantageous if the
cloud size is larger than the CCD chip of the camera, as integrating includes the
”tails” of the cloud. We can integrate over the cloud by fitting a 2d Gaussian

f(x, y, B, x0, y0, σx, σy) = B exp

(
−
(

(x− x0)2

2σ2
x

+
(y − y0)2

2σ2
y

))
(5.8)

where B is a constant, x0, y0 is the center of the cloud, and σx, σy is the
width of the cloud along the x and the y direction, respectively. The fit can
be seen in Figure 5.14 (top).

From the fit N is then found by

N =
1

σ0

∫ ∞
−∞

∫ ∞
−∞

f(x, y, B, x0, y0, σx, σy)dxdy. (5.9)

From 7 images taken the same day as the NMS measurements we find N =
(129.1± 0.8) · 106.

5.2.1 Temperature of the MOT

The temperature of the MOT can be determined by absorption imaging by
varying the expansion time. The temperature of the MOT is important to
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(a) Image1: Image taken 0.2 ms af-
ter the MOT beams are turned off.
The MOT cloud absorbs the image
light and can be seen as a clear
shadow on the image.

(b) Image2: Image taken 40 ms after
the MOT beams have been turned off.
The MOT cloud has dispersed.d

Figure 5.12: Images taken with the sequence in Figure 5.11. Both images are
an average of 6 images.

know in relation to the red MOT, as we are interested in significantly reducing
the temperature. The temperature of the blue MOT can be found by following
the same sequence in 5.11, except that we vary the delay time between the
MOT beams turning off and the image beam turning off, allowing the MOT
cloud to expand in between. We start with a delay of 0.2 ms and add 0.2
ms for each new expansion time for a total of 8 expansion times. The results
are shown in Figure 5.15, where the optical depth is plotted. Each OD profile
shown is an average over 4 consecutive measurements.

For each expansion time a 2D Gaussian (Equation 5.8) is fitted giving us
a σx and σy for each expansion time. For a cloud with a Gaussian thermal
equilibrium velocity distribution and Gaussian shape we expect the radii along
the i’th axis to obey by the following relation [18]

σi(t, T, σ0) =

√
kBT

m
t2 + σ2

0, (5.10)

where t is the expansion time, T is the temperature, σ0 is the width of the
cloud at t = 0 and m is the atomic mass of 88Sr. This function is fitted to the
data in Figure 5.16 with the fitting parameters T and σ0.

The temperature along the x-axis is found to be Tx = (6.73 ± 0.01) mK
and the temperature along the y-axis is found to be Ty = (7.03 ± 0.01) mK.
The errors on the Tx and Ty found from the fit are very small, however there
could be systematic errors, for example the density distribution not being a
perfect Gaussian.
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Figure 5.13: Op-
tical depth of the
MOT cloud. Aver-
age of 7 images.

Figure 5.14: 3D plot of the MOT
cloud (bottom) and fit (top).

Figure 5.15: Optical depth of the MOT cloud for 8 different expansion times.
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(a) The width of the MOT cloud
along the x-axis for varying ex-
pansion times.

(b) The width of the MOT cloud
along the y-axis for varying ex-
pansion times.

Figure 5.16: σx and σy found from fitting 2D Gaussians to the OD in 5.15.
The fit is Equation 5.10.

5.3 Lasing Pulses

A third way to find the number of atoms is using the superradiant pulses
described in chapter 4. We use the same setup as described in section 4.1,
except the MOT lasers are turned on right after the pump pulse is turned off,
leading to the lasing pulse being emitted when the MOT lasers are turned on,
as seen in Figure 5.17 where one such measurement is plotted.

Figure 5.17: Example of one of the 19 datasets used to find the number of
atoms.

In Figure 5.18 an average of 19 pulses is shown. From integrating the area
between the cavity output and the background we can determine the energy
of the pulse, E and thus the number of photons

n =
E

~ω
= 1.4 · 106. (5.11)
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The number of photons emitted corresponds to the number of atoms changing
state due to emitting photons during the lasing process. However, as described
in chapter 4 not all atoms take part in the lasing process.

Figure 5.18: Average of 19 lasing pulses. The energy of the pulse is found by
integrating the area between the cavity output and the background.

To determine what fraction of the total number of atoms take part in the
lasing process, we can use the the MOT fluorescence, as it contains information
about the population transferred between the 1S0 and 1P1 state. The fluores-
cence level when the MOT beams are on before the pumping pulse corresponds
to all atoms contributing to the MOT fluorescence. When the pump beam is
turned on a fraction of the atoms are excited to the 3P1 level. As the MOT
beams are turned on immediately after the pump pulse the fluorescence level is
reduced. From the ratio of the fluorescence level the fraction of excited atoms
can be determined.

Figure 5.19: MOT fluorescence data used to determine the excited state popu-
lation.

The excited population is shown in Figure 5.20 (blue curve). As the data
is quite noisy a moving average is shown on top of the actual data. An expo-
nential function (red curve) is fitted to the fluorescence data after the lasing
pulse (green data). This exponential decay of the excited population is due to
the spontaneous emission from the 3P1 state. By subtracting the exponential
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Figure 5.20: The excited population (blue curve) with moving average plotted
on top due to the noise. An exponential function (red curve) is fitted to the
fluorescence data after the lasing pulse (green data). The number fraction of
atoms participating in the lasing is found from the black curve which is the
exponential fit subtracted from the total excited population.

fit from the total excited population (black curve) the fraction of atoms par-
ticipating in the lasing process can then be found by taking the difference in
the black curve before and after the lasing pulse. This is found to be (1.4 ±
0.9)%, meaning that the number of atoms in the MOT is N = (98± 63) · 106.
However, the fraction of atoms participating in the lasing is quite uncertain
due to the noise in the data. In [19] the signal to noise ratio was improved by
averaging over 1024 measurements.

5.4 Comparison of the Different Methods

In this chapter three different methods for determining the number of atoms
in the MOT have been presented. The number of atoms in the MOT can
vary from day to day depending on fluctuations in the power and alignment of
the MOT beams. In order to compare the numbers obtained for the different
methods, it is important that the measurements have been taking within a
short time of each other. As the measurements with the lasing pulses were
taken many months before the NMS and absorption imaging measurements,
it is difficult to compare the number obtained from the lasing pulse measure-
ments with the two others. However, the measurements of the NMS and the
absorption imaging were taken on the same day, so it makes more sense to
compare those two.
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For the NMS measurements (for maximum power) the number of atoms in
the MOT was found to be N = (413.08 ± 0.07) · 106 and for the absorption
imaging measurements N = (129.1±0.8) ·106, which is a significant difference,
and is most likely an indication of a systematic error in the number found
from the NMS measurements. The model used to determine this number does
not include the Doppler broadening and saturation of the atoms, which makes
it insufficient for describing our system. A more complete model would be
necessary to determine the atom number precisely, but this was not possible
in this thesis due to time constraints. However, we have verified that the
normal-mode splitting for our system is insensitive to a range of probe powers
meaning we can use it as a proxy for the total atom number.
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6
Conclusion

In this thesis we looked at the steps needed to experimentally realize a second-
stage narrow-line SWAP MOT to cool strontium atoms to µK level. A temper-
ature of this magnitude would reduce the Doppler broadening of the 1S0 ↔3 P1

linewidth by a factor of ∼30 and bring the system deeper into the bad-cavity
regime. However, the fast switching of the magnetic field necessary for creat-
ing the MOT caused delay of the process as it was necessary to produce new
MOT coils to limit eddy currents.

We also investigated whether we could get closely spaced superradiant las-
ing pulses by pumping the atoms at short intervals. This was not possible due
to the need for the system to decay back to the ground state between pump
pulses.

Finally we investigated different methods to determine the number of atoms
in the current blue MOT. We measured the normal-mode splitting of the cou-
pled atom-cavity system and using the Jaynes-Cummings model found the
atom number to be N = (413.08± 0.07) · 106. The model used does not take
Doppler broadening and saturation into account which is present in our system,
which means that we find a large difference between this result and the result
found from the method of absorption imaging which was N = (129.1±0.8)·106.
However, by investigating the normal-mode splitting we found that it is in-
sensitive to a range of probe powers meaning we can use it as a proxy for
the total atom number. For the last method we found the atom number by
counting photons in the lasing pulses. These measurements gave a result of
N = (98±63) ·106, and the large uncertainty is due to noise in the data which
could be minimized by taking more measurements.

6.1 Future Prospects

The next step for the strontium clock experiment is making the red MOT and
characterizing it by measuring the number of atoms and the temperature us-
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ing the same methods as have been used in this thesis to characterize the blue
MOT.

Inchoherent repumping of the atoms would solve the problem with the tim-
ing constraints of the pump pulses. To experimentally realize this scheme we
need a 688 nm laser which is currently being set up as well as a static magnetic
field to split the 3P1 state, which we plan to achieve by ramping just one of
the MOT coils.

To get an accurate number of atoms from the normal-mode splitting data
we need a model which includes Doppler broadening and saturation of the
atoms. The Doppler broadening can be experimentally studied by preparing
clouds at different temperatures, which will be interesting to do in relation
to the red MOT. The normal-mode splitting can also be further investigated
by preparing MOT clouds with different and independently measured atom
numbers.
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Appendices

A.1 Decay of the Magnetic Field

Figure A.1 shows the difference magnetic field decay measured with a Gaus-
meter between using the old and the new coil holder, the latter being ther one
depicted in Figure 3.6. The decay constant is found from an exponential fit,
and as seen in Figure A.1 the new coil holder reduces the decay time by a
factor of 10.

(a) Magnetic field decay using the old
coil holder.

(b) Magnetic field decay using the new
coil holder depicted in Figure 3.6.

Figure A.1: The magnetic field measured with a Gaussmeter after turning of
the coils.
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A.2 NMS with Fast Scanning of the Cavity

In Figure A.2 we show measurements of the normal-mode splitting for the same
conditions as in Figure 5.4 except the laser scan is wider (100 mHz) making it
possible to see normal-mode splitting of one of the sidebands.

Figure A.2: Cavity transmission showing normal-mode splitting. The cavity i
scanned with a frequency of 1 kHz, and the laser was scanned with a frequency
of 100 mHz.
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