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Abstract

This thesis presents an experimental setup that can be used for entanglement generation between
Cesium-133 atomic ensemble and nanomechanical membrane resonator, and measurements
performed on this setup that demonstrate how by coupling the two systems one is led to reduction
of classical light back-action noise of the measurement. Measurements of this kind define the very
first steps on our group’'s quest towards atom-membrane entanglement. In addition, experimental
work characterizing the atomic part of this setup is presented.
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Introduction

Through technological advances sensitivity of measurements of e.g. gravitational waves, distance,
and time shift is approaching the standard quantum limit (SQL) set by the Heisenberg uncertainty
principle. Overcoming the SQL would, in principle, lead to measurements with vanishing
uncertainty. Among the ideas surrounding SQL-circumventing measurement schemes we can find
ones that are based on e.g. quantum variational measurements [37], two-tone measurements [40], or
use of non-classically correlated light [38, 39].

This thesis considers a protocol proposed by K. Hammerer et al. [12], dealing with entanglement
generation between Cesium-133 atomic ensemble and nanomechanical membrane resonator.
Succeeding in entanglement generation between these two systems can find applications in
measurements of acceleration and magnetic fields below the SQL [13].

The work presented in this thesis is divided into four main chapters.

Chapter 1 presents a theoretical basis serving to explain the atom-membrane entanglement protocol
[12], which is also presented in chapter 2.

Chapter 2 presents the entanglement protocol. In this chapter it is seen how the entanglement
protocol reveals practical considerations common to experimental systems that in principle can be
used for satisfying the entanglement protocol.

Chapter 3 describes the main experimental components of our group's owned experimental setup
that, via laser light, interfaces a Cesium-133 atomic ensemble contained inside our specially
designed microcells and our specially designed nanomechanical membrane resonator that is part of
a cryogenic optomechanical system. This is done in order to see how good our setup can be at
tackling the practical considerations implied by the entanglement protocol. A big focus in this thesis
is put on the atomic part of the atom-membrane interfacing experimental setup, and for that reason
experiments characterizing this part of the setup are presented.

Chapter 4 explains why our atom-membrane interfacing experimental setup can allow us to satisfy
the entanglement protocol, and also presents and explains measurements done using this setup. It is
demonstrated how by coupling the two systems we are led to reduction of classical light back-action
noise of the measurement. Measurements of this kind define the very first steps on our quest
towards atom-membrane entanglement.

In the summary of the main results and outlook I summarize the main results of the thesis and give
an outlook on the future of our atom-membrane entanglement experiment.



Chapter 1: Light's interaction with Cesium-133 atomic
ensemble, and cavity optomechanics

In this chapter | present the necessary theory related to the protocol described in chapter 2, dealing
with entanglement generation between Cesium-133 atomic ensemble and nanomechanical
membrane resonator.

The first half of this chapter deals with the quantum nature of light's interaction with Cesium-133
atomic ensembles, and the second half of this chapter deals with the quantum nature of light's
interaction with a mechanical resonator that is part of a cavity optomechanical system.

The main result of the first half of this chapter is summarized by the propagation equations showing
the interplay between operators characterizing the quantum nature of respectively Cesium-133
atoms and light, and the main result of the second half of this chapter is summarized by the input-
output relations for operators that describe light that is transmitted by a cavity optomechanical
system.

1.1 The energy structures of the ground and the first excited state of a Cesium-
133 atom

In this section | will describe the energy structures of the ground and the first excited state of a
Cesium-133 atom, which is the only stable isotope of a Cesium atom, and is an alkali atom, which
is an atom characterized by having a single valence electron.

In order to be able to describe the energy structures of the ground and the first excited state of (the
valence electron of) a Cesium-133 atom, let us first understand how the electron spin angular
momentum operator § couples to the electron orbital angular momentum operator £, and also how
the electron total angular momentum operator j couples to the nuclear total angular momentum
operator 1, and what the respective couplings result in.

The magnetic interaction between the magnetic dipole moment operators associated with,
respectively, the operator § and the operator # results in an energy splitting of the gross energy
levels into the fine structure energy levels. The electron total angular momentum operator j and the
electron total angular momentum quantum number j then satisfy the relations

j=f+5 , (1.1.1.a)
j=1€—sl,1€—s|+1,....,¢+s , (1.1.1.b)

where s is the electron spin angular momentum quantum number, and ¢ is the electron orbital
angular momentum quantum number.



The magnetic interaction between the electron and the nucleus couples the operator j with the
operator 1 and results in an energy splitting of the fine structure energy levels into the hyperfine
structure energy levels. The atomic total angular momentum operator f and the atomic total angular
momentum quantum number f then satisfy the relations

f=j+i, (1.1.2.3)
f= -1l —-U+1.,j+1, (1.1.2.b)

where I is the nuclear total angular momentum quantum number.

Now, the gross energy levels of (the valence electron of) an alkali atom, such as a Cesium-133 atom,
are labeled as n**1¢, the fine structure energy levels are labeled as n*'¢;, and the hyperfine
structure energy levels are labeled as f. Here n is the electron principal quantum number.

Now:

1. For the ground state of a Cesium-133 atom one has £ = 0, s = 1/2, then according to eq. (1.1.1.b)
j = 1/2; and since n = 6 for the ground state and £ = 0 is labeled with a letter S, then the ground
state gross energy level is 62S with the fine structure energy level being 625, ,,. Additionally, since
for Cesium-133 one has I = 7/2, then according to eq. (1.1.2.b) 6%, , is split into two hyperfine
structure energy levels f = 3 and f = 4.

2. For the first excited state of a Cesium-133 atom one has £ = 1, s = 1/2, then according to eq.
(1.1.1.b)j=1/2 and j = 3/2; and since n = 6 for the first excited state and £ = 1 is labeled with a
letter P, then the first excited state gross energy level is 62P, which is split into two fine structure
energy levels 6°P, /, and 6°P;,. Additionally, since I = 7/2, then according to eq. (1.1.2.b) 6*P, /,
is split into two hyperfine structure energy levels f' = 3 and f' = 4, and 6%P;, is split into four
hyperfine structure energy levels f' = 2, f' =3, f' =4 and f’ = 5.

Note that throughout this thesis, the hyperfine structure energy levels of the ground state are marked
without a prime, and the hyperfine structure energy levels of the first excited state are marked with
a single prime.

The magnetic interaction between an externally applied static magnetic field and the magnetic
dipole moment associated with f results in an energy splitting of the hyperfine structure energy
levels into the Zeeman energy levels. The Zeeman energy levels are labeled by the atomic total
angular momentum projection quantum numbers m¢, where m¢ = —f,— f + 1,...,f. Note that for
the first excited state we have f — f’ in m¢. For e.g. the Zeeman energy levels m¢ of the energy
levels 62S; ,,f = 3 and 62S,,,,f =4 of a Cesium-133 atom the amount of the splitting in energy
for a given external static magnetic field strength can be seen in figure A1, which is a result of a
more detailed treatment of the effect of an externally applied static magnetic field on a Cesium-133
atom seen in appendix A.



The gross energy levels 62S and 62P of a Cesium-133 atom are three-fold degenerate, and all the
degeneracies are lifted by the combined effect of the fine structure splitting, the hyperfine structure
splitting and the Zeeman splitting.

The summary of the different energy level structures that were considered in this section can be
seen in figure 1.

The 6%S,,, = 6°P;, and 6°S;,, — 6P, transitions are called the D line transitions (of Cesium-
133 atom) with 62S, ,, — 6Py, called the Dy line transition and 6*S;,, — 6P, called the D line

transition. The D, line transition can be induced by light of frequency of approximately 895 nm, and
D;, line transition — of approximately 852 nm [43].

Note that all experiments described in this thesis deal with near room temperature Cesium-133
atoms that are contained inside our specially designed microcells, which are described in section 3.2.
Also, the role of the D line transitions is understood in section 3.1, where it is explained how the
laser system used in the performed experiments works.
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Figure 1. The gross, fine structure, hyperfine structure and the Zeeman energy structures for the ground and the first excited state of
the valence electron of a Cesium-133 atom. When the fine structure splitting effect is present, the frequencies of light that can induce
the 6°S;,, — 6P, , transition, called the D, line transition, and the 62S;,, — 62P; , transition, called the D, line transition, are
approximately 895 nm and 852 nm, respectively [43]. Note that the different splittings of the levels are not to scale.

1.2 The coherent spin states of Cesium-133 atom

Consider an ensemble of N, € N atoms of same element.



The atomic ensemble total angular momentum vector operator J * is defined as a sum of the atomic
total angular momentum vector operators f,,, where n denotes the n'th atom in the ensemble, i.e.

N, 2
j=x 2, (1.2.1)
where in three spatial dimensions one has

(1.2.2.3)
, (1.2.2.b)

where TX,Ty,TZ are atomic ensemble total angular momentum operators along the mutually

orthogonal x-, y- and z-axes, respectively, and fx,fy,fz are atomic total angular momentum
operators along x-, y- and z-axes, respectively; they satisfy the commutation relations

[TQ'TW] = ihZB 1€qwrjr J (1.2.3.8.)
[fg. ] = IR 3, equeke (1.2.3.b)

where g, w, r =1, 2, 3 (1 for x, 2 for y, 3 for z), and €g,, is the three-dimensional permutation
symbol.

According to the principles of quantum mechanics, if one chooses the quantization-axis of the
vector operator f to be the z-axis, then the operator f, must satisfy

£,1f me > = hmy | me > (1.2.4)

where |f, m; > is an eigenstate of f,, and m¢ = —f,—f + 1,...,f, and the remaining operators f,
and fy must according to the generalized Heisenberg uncertainty principle

Var(C)var(2) > (=[G, 2]))2 (1.2.5)
for two operators C and Z, satisfy

Var(B,Var(h,) = (2([EB1) = (2 6i0E)) = (20) = (26 meft £ mp)’

=(2 hmf)2 Eme (1.2.6)

21

which is obtained by observing egs. (1.2.3.b) and (1.2.4).
Note that in this thesis we will call the state |f, m; > a spin state.

Now, with z-axis being the quantization-axis, define the ladder operator f, and its hermitian
conjugate f_ as

! The reason, why J is used to stand for the atomic ensemble total angular momentum vector operator instead of the more obvious F,
is conventional.
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they satisfy

ffme>=h/fF+1) —me(me £ 1) [fme+ 1> (1.2.8)
Using now eq. (1.2.8) one sees that for the spin states |f, m¢ = +f > = |f, £f > one obtains
fLIf£f>=0 ; (1.2.9)

and thus it follows that for the expectation values (f, +f|f |f, +f) and (f, £f| (F)?|f, £f), where i = X, y,
that

(£ 4ARe£0) = (£ 20 +EOle 4 =0 (1.2.10.2)

G -Dexf) =0, (1.2.10.b)

2

(£, +£|E)2|f, +£) = <f, | (2 +1)) f,if> =2 (1.2.10.¢)
2

(£ +£|(E)?|f +£) = <f,if (3G -1) |6 if> =2f (1.2.10.d)

and since the variance Var(A) = E ((K)Z) — (E(R) )", where E(.) refers to the expectation value,
then for |f, £f > the following holds:

Var(fx) = Var(fy) . (1.2.11)

The spin states |f, m; > for which the equality in eq. (1.2.11) holds, are called the coherent spin
states of Cesium-133 atom; and since by observing egs. (1.2.10.a-d) one has that for the spin states
|4, +4 > the equality in eq. (1.2.11) holds, then, by definition, |4, +4 > are the coherent spin states
of Cesium-133 atom.

For C, € N Cesium-133 atoms in the coherent spin state |4,4 > one obtains from egs. (1.2.1),
(1.2.3.8), (1.2.5) and (1.2.11) the equality

Var()Var(y) = (2B, D) = (202) = (RESE0) = (RaalsSetal4m) = (Dcne) =

h* h*
= (,%42%= ~Jic, (1.2.12)

4
where J, ¢, = 4C,.
Now, egs. (1.2.4) and (1.2.6) are mathematical formulations of the statement that tells us that if one

chooses the quantization-axis of the vector operator f to be the z-axis, then measurements of the
operators Ty, f, and f, will yield projections of f along x-, y- and z-axes given by the values M,, M,



and M, respectively, where M, = hm¢ withm¢ € {—f,—f + 1,...,f}, and M, and My may both be
equal to any real number as long as the product of variances of measurements of f, and fy is larger

4
or equal to h:mfz; and thus one may argue that in cases, where a great amount of Cesium-133

atoms reside in the coherent spin state |4,4 >, where m; = 4, the operator j, can be treated as a
macroscopic quantity such that J, - (4,4|,|4,4) = C,h4 = hJ,, where ], = J, . where C, is large.
This is a valid argument, because for C, Cesium-133 atoms in the coherent spin state |4,4 > we
have from eq. (1.2.12) that the ratio between the standard deviations of measurements of j, and J,,

\/Var(ix) B JVar(jy) ~ \/hZ];,ca th]z,ca J%

and also J, and J,, is = = =Y 2z _ = ,
Jy ). hz,ca hz,ca hz,ca hz,ca h(4Ca) 8Ca

Note that in section 3.2.2 we observe that the performed experiment on atomic density of Cesium-
133 vapor inside the microchannel of one of our specially designed microcells suggests that we are
dealing with a great amount of Cesium-133 atoms, because for that particular experiment we obtain

a number of atoms that is on the order of 107. In this case the ratio between the standard deviations
1

8C,
us to rightfully assume that here ], can be treated as a macroscopic quantity.

of measurements of J, and J, (and also J, and J,) becomes ~ 10~*, which is small enough for

Note that when the equality Var (], )Var(j,) = %]5 holds, it is said the noise of the operators J, and

iy is at the so-called projection-noise level.

1.3 Characterizing the polarization of light

Consider an ensemble of photons of the same frequency propagating along the x-axis.

By decomposing the electric field operator associated with the ensemble of photons into two
components along the y- and z-axes we have that such electric field operator can be written as

=~ hw

Bensemble(9) = |73 ((ajey +a,e,)e™™ + (aley +afe;)e ™), (131)

where g, is the vacuum permittivity, A is the transverse cross-sectional area of the photonic beam,
Lq is the quantization length along the x-axis, k is the angular wave number along the x-axis, which

is related to the electric field angular frequency w as k = w/c, e, and e, are the (complex)
Cartesian basis vectors along y- and z-axes, respectively, which describe the direction of

polarization, which is perpendicular to k, &;(t) and a]T (t), where j = vy, z, are the photonic

annihilation and creation operators for j-polarized photons in the ensemble, respectively, that satisfy
the commutation relation

la,al| =8 . (1.3.2)

The Stokes four-vector operator characterizing the ensemble of photons is defined as

10



§St = (§0r§) = (§OP§X1 gy; gz) ' (133)

where
$=(5:5,5) . (1.3.4)
is the Stokes three-vector operator, and
& _ 1o o _1ata | ata
So =5 (A, +1,) = (4,3, +3;3,) , (1.35.a)
P 1/ ~ 1 . TA ATA
S, =2(fy—1,) =3 @ala, —alfa,) | (1.3.5.b)
a 1,4 ~ 1 . TAa ATa
Sy =5 (Apgs —M_y5) =5 (a;az + a;ray) ’ (1.3.5.0)
A 1/A A~ 1 ATa ATA
S, = 2(fo, — o) = = (213, —afa,) (1.3.5.d)

. Ayta, . _ a,-a,
a+45 = y\/i , a_45 = y\/i s (136&)
. ay-id, . _ Ay+ia,

s, = yﬁ , 4, = yﬁ : (1.3.6.h)

were used, where fi, = agap with p =, z, +45, —45°, 6., o. is a photon number operator for y-, z-,

+45°-, —45°-, right-circularly-, left-circularly-polarized photons in the ensemble, with a;ﬂ, ap, being
the corresponding creation and annihilation operators, respectively.
Sos Sx» Sy, S, in egs. (1.3.5.a-d) satisfy the commutation relations
[g(I'gW] = i21%=1 eqwrgr ) (1.3.7.&)
[S0,Sw] =0 , (1.3.7.h)

where g, w, r = 1, 2, 3 (1 for x, 2 for y, 3 for z), and €g,, is the three-dimensional permutation
symbol.

From egs. (1.3.5.a-d) we see that the expectation value of the Stokes operator S, gives us half the
number of the photons in the photonic ensemble, i.e. (Sy) = %(ﬁy +1,) = # where Cpp tor € N

is the number of photons in the photonic ensemble, and the Stokes operators S,, §y, S, can be used
to count the differences in photon numbers for polarized photons of the different orthogonal bases;
Sx. Sy, S, can thus be said to characterize the polarization of light.

Assuming now that almost all of the photons in the photonic ensemble are linearly-polarized along
the z-direction we have that the Stokes operator

S, = Sy, (1.3.8)

11



where S, = (5,) = (% (fiy — fi,)) = —%(ﬁz) is a real number.

Note that the light emitted by the probe laser that we use in the experiments is assumed to be
linearly-polarized. Assuming that the light emitted by the probe laser is travelling along the x-axis
and that it is the z-direction along which the probe laser photons are linearly-polarized, it must
therefore be true that for the probe laser light the assumption of eq. (1.3.8) holds. The probe laser is
described in section 3.1.1.

Now, from the generalized Heisenberg uncertainty principle seen in eq. (1.2.5) and egs. (1.3.7.a),
(1.3.8) we see that

Var(8,)VarGy) = (2([8,8.)) = (£60) = (£5.) =252 . 39)

Similarly to section 1.2, we can now arrive at the definition for the coherent states of light: the
states for which the equality

Var(S,) = Var(S,) (1.3.10)
holds are the coherent states of light. According to egs. (1.3.9) and (1.3.10) the equality
Var(gy)Var(gz) = iSXZ (1.3.11)

holds for the coherent states of light; and in such a case it is said the noise of the operators §y and S,
is at the so-called shot-noise level.

1.4 The atom-light system Hamiltonian

The Hamiltonian for an atom-light system can in general be written as
ﬁAL = i:IAtomic + ﬁLight + I:II ) (141)

where Hatomic is the atom Hamiltonian, Hygy is the light Hamiltonian, and Hy is the atom-light
interaction Hamiltonian.

In this section the atom-light system to be considered will be the one treated in the atom-membrane
entanglement protocol described in chapter 2. The atom-membrane entanglement experiment,
which is described in chapter 4, and is an attempt at a real life realization of the entanglement
protocol described in chapter 2, will serve as the basis for the following derivations.

In the first three subsections of this section, the three Hamiltonians Hatomic, Hiignt and Hy will be
treated separately; this will be done in the Heisenberg picture, where the quantum operators are
time-dependent and quantum states are time-independent. Having found the effective atom-light
interaction Hamiltonian HE dealing with off-resonant D, line transition 6281/2,f= 4 -

62P3/2,f‘ = 5, the propagation equations for the operators j; and S;, where i = X, y, z, introduced in

12



sections 1.2 and 1.3, respectively, will be presented in the fourth subsection of this section. In the
fifth subsection of this section the scaled versions of the operators J; and S; will be presented and
the aforementioned propagation equations will be transformed and written in terms of these scaled
operators; these transformed propagation equations will in chapter 2 aid us in understanding how
the atom-membrane entanglement protocol works.

Note that throughout this thesis, that whenever talking about ensembles of Cesium-133 atoms, the
ground hyperfine structure energy levels will be labeled by the unprimed capital letter F, and the
excited hyperfine structure energy levels will be label by the primed capital letter F".

Before presenting Hatomic, Hyighe @nd Hj it is important to know that during the atom-membrane
entanglement experiment the Cesium-133 atoms can be shined on by three lasers: a probe laser, a
pump laser and a repump laser; see figure 4 to see the relevant energy levels of Cesium-133 atoms
addressed by these lasers. As described in section 3.1, the role of the probe laser is to probe the
Cesium-133 atoms by coupling them off-resonantly to the D, line transition 6%S;/,,F = 4 -
62P3/2,F‘ = 5, and the role of the pump and repump lasers is to put as many of the Cesium-133
atoms into the coherent state |F = 4, mg = 4 > of the energy level 62S,,,,F =4,mp =4, as
possible, whereby the Cesium-133 atomic ensemble total angular momentum operator along the
quantization-axis can be treated as a macroscopic quantity. In the derivations below | will be
neglecting the effect of the pump and repump lasers, thus only considering the effect of the probe
laser; and because the Cesium-133 atoms are coupled off-resonantly to the D, line transition
6°S1,2,F = 4 = 6°P3,, F* = 5, by the probe laser, | shall assume that the Cesium-133 atoms lie in
any Zeeman energy level mg of the energy level 6251/2, F = 4 and any Zeeman energy level mg: of
the energy levels 6P;,, F* = 2,3,4,5. Also, since as understood from section 3.2.1, during the
atom-membrane entanglement experiment we only care about the Cesium-133 atoms that are
contained inside the microchannel of our specially designed microcells. This microchannel has an
almost fixed transverse cross-sectional area and length, and the probe laser travelling through the
microchannel interacts with all the atoms during the measurement time; and thus | shall assume that
the transverse cross-sectional area and the length of Cesium-133 atom medium are constant and are
respectively the same as the transverse cross-sectional area of the probe laser light beam and the
quantization length along the propagation direction of the probe laser light. Also, since in the atom-
membrane entanglement experiment described in chapter 4 we have that the probe laser light is
travelling along the x-axis, and that the quantization-axis of | is the z-axis, it will be assumed that
these things also hold in the following derivations.

1.4.1 The atom Hamiltonian

From the considerations made in the introductory text of section 1.4, we have that we can write the
atom Hamiltonian Hayomic as

~ L ~
Hatomic = Z?: Zme\ fo dx h(wy + Af‘)cf‘,mf‘;f\,mf‘(xl tpA (1.4.1.1)
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where the sums are performed over the atomic total angular momentum quantum numbers f* =
2,3,4,5 and the atomic total angular momentum projection quantum numbers m¢- = —f*,—f* +
1,...,f" for each f*, and the integral is performed over x from O to L. Here L is the (constant)
length of the Cesium-133 atom medium, p is the density of the Cesium-133 atom medium, A is the
(constant) transverse cross-sectional area of the Cesium-133 atom medium, wyg is the carrier angular
frequency of the probe laser light, A¢- is the negative angular frequency detuning between wg and
the angular frequency of the D, line transition 62S; ,,f = 4 = 6°P; 5, ", and G-y . m (X, 1) =
If*, me >< 7, me| (%, t) is the density operator, which measures the probability for a Cesium-133
atom in the ensemble at position x and time t of being in the excited spin state |[f*, m¢- >. Note that
the energy of the level 6P;/,,f" is h(wo + Ap), and also note that the energy of the level

62S,,,,f = 4 is taken to be zero, and so, because of that, the term in Hatomic that involves the spin
state |f = 4, m¢ >, where my = —4,— 4 + 1,...,4, is cancelled.

1.4.2 The light Hamiltonian

Since in the introductory text of section 1.4 it is written that the transverse cross-sectional area and
the length of Cesium-133 atom medium are constant and are respectively the same as the transverse
cross-sectional area of the probe laser light beam and the quantization length along the propagation
direction of the probe laser light, and also that the probe laser light travels in the x-direction, we
have that the electric field operator associated with the probe laser light can be written as

E(X: t) = z Eensemble,?\(x' t) =
A

h A A i a * a * —i
= % [ia (Bya®ey +a,®e ) + (af, ) +af,0e;) e %) | (L421)

where

O h A~ a i A~ * a * —i
Eensemble,?\(x; t) = ZS:DAAL ((aY.X(t)ey + az,}\(t)ez)elkkx + (a;)\(t)ey + al-,}\(t)ez) € 1k;\x) (1-4-2-2)

is the electric field operator associated with the probe laser light photons with the angular frequency
wj, ky is the angular wave number along the x-axis, which is related to w; as k) = w;/c, e, and e,

are the (complex) Cartesian basis vectors along y- and z-axes, respectively, which describe the
direction of polarization, which is perpendicular to k; for all A, a;,(t) and ﬁ};\(t), where j =y, z,

are the photonic annihilation and creation operators for j-polarized probe laser light photons with
the angular frequency w,, respectively, that are dimensionless and that satisfy the commutation
relation

ERCENOCIELTO (1.4.2.3)

Note that in eq. (1.4.2.1) E(x,t) is decomposed into two components along the y- and z-axes,
similarly to the case of eq. (1.3.1).
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Now, the electric field E in eq. (1.4.2.1) assumes a discrete resolution in k-space. We would now
like E in eq. (1.4.2.1) to assume a continuous resolution in k-space, i.e. we would like to make the
change Y, Ak — [ dk. To do so, let us define the operator

(1.4.2.4)

such that E(x, t) in eq. (1.4.2.1) becomes

Q hw a a ikx a * a * | 4—ikx
Ext) = [ dk /WOA ((ay(k ey + 8,0k, e, )e™ + (al (k De; + al (k tye; ) e ) | (1.4.25)

where k = w/c, and 3;(k, t) and ﬁ;r(k, t), where j =y, z, are the annihilation and creation operators

for j-polarized probe laser light photons with the angular frequency w, respectively, that have units
of inverse of square root of length (in k-space) and that satisfy the commutation relation

a8k, 0] =58k-Kk) | (1.4.2.6)

Observe that the LHS and RHS of eq. (1.4.2.6) have the same dimension; this is true, because
S(k — k") has units of inverse of length (in k-space) as seen from the identity ff;o dk6(k) =1.
With E in eq. (1.4.2.5) the light Hamiltonian ﬁught we need to consider becomes

Apigne = J dk hck (aT(k, Datk ) +31) | (1.4.2.7)

where the operators a(k,t) and aT(k, t) respectively take into account the operators aj(k,t) and
a]T(k, t), where j =y, z. Note that fi, (t) = at(k a(k t) is a photon number operator for the probe
laser photons with wave numbers in the interval [k, k + dk] at time t.

Hy in eq. (1.4.2.7) is in k-space; in order to obtain ﬁLight in x-space one performs the following
Fourier transformations of a(k, t) and at (k, t):

a(x,t) = %—n [72 dkack, el (1.4.2.8.)
at(e ) = =" dkaf (ke > (1.4.2.8.b)

a(x,t) and aT(x, t) have units of inverse of square root of length (in x-space) and they satisfy the
commutation relation

[ax, 1), aT (¥, )] = 8(x—x) . (1.4.2.9)

Note that fi, (t) = at(x, Hax, t) is a photon number operator for the probe laser photons located in
the spatial interval [x, x + dx] at time t.
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1.4.3 The atom-light interaction Hamiltonian

The atom-light interaction Hamiltonian presented here will assume the electric dipole
approximation. In a case, where Nc € N Cesium-133 atoms are considered, such atom-light
interaction Hamiltonian will thus describe the electric dipole interaction

= —3n dn o EGn0) (14.3.1)

where d,, = —ef, is the (electric) dipole operator, with e being the elementary charge, for the n'th
Cesium-133 atom, x,, is the position of the n'th Cesium-133 atom on the x-axis, and E(x,, t) is the
electric field operator in eq. (1.4.2.5) for the probe laser light defined at x,, and time t.

Note that the electric dipole approximation is justifiable for all experiments described in this thesis,
because when observing sections 3.1.1 and 3.2.1, we see that the transverse cross-sectional area of
the probe laser light and Cesium-133 interface, A, is much larger than the carrier wavelength of the
probe laser light, A,, squared, i.e. A > A3.

Let us for now consider working in the circular basis.

In the circular basis the vector operator t for a single atom is

F=@&, 1, +&,f,+e&,; |, (1.4.3.2)
. . . eytie . .
where the circular basis unit vectors are e;, = Y\E . ey = ey, and the circular basis vector

g+iz
2
the dipole operator d = —ef for a single atom becomes

components of f are fy = , Ty = X,. Using eq. (1.4.3.2) we thus have that in the circular basis

] - 0 * + ~
d - Zf,mf:f‘,mf\(df,mf;f‘,mf\e*0‘+ + df,mf;f‘,mf\eo + df,mf;f‘,mf‘e;_)cf,mf;f‘,mf\ + h c , (1433)

where the sums are performed over the atomic total angular momentum quantum numbers fand f°,

and the atomic total angular momentum projection quantum numbers m¢ = —f,—f + 1,...,ffor
each f, and my = —f°,—f> + 1,...,f" for each f*. Here d;fmf;f\_mf\ = —e(f, mg|T_|f, m¢.)
A mef me = —e(f, m¢|T, |f°, mg-), dgmf;f\,mf\ = —e(f, m¢|Ty|f ", m;.) are the dipole moments, and

Otmgeme = | me >< ", me | is the density operator, which expresses coherence between the
excited spin state |[f*, m¢- > and the ground spin state |f, m¢ >.

In the circular basis the electric field operator in eq. (1.4.2.5) for the probe laser light becomes

O h a a * A A *
Ext = /222 (3, (x De,, +a5 (x ey, +3,_ (x, e, +a5_ (xes ) , (14.3.4)
where the Fourier transformations in egs. (1.4.2.8.a-b) are used, where it is assumed that the electric

field operator in eq. (1.4.2.5) is restricted to a narrow band of frequencies around the carrier angular
frequency o, and eq. (1.3.6.a) is used.
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Using egs. (1.4.3.3) and (1.4.3.4) for d and E(x,t), respectively, and defining the coupling

constants g?inf_f\mf\ = /Zh‘”" d , Where j = 4+, and integrating over the length L of the

GOA f,mf;f‘,mf\ -

ensemble containing the Cesium-133 atoms, we have that H, in eq. (1.4.3.1) becomes

P L ~ _ ~ ~
Hi = St Jy dx pA ([g_g;f;nﬁf\’mra(,+ (%) + 8yt mp-Ao_ (6 D] Bt mpam, (6 1) + h. c.) . (1.4.35)

when the rotating wave approximation is used, that is, when the fast oscillating terms are set to zero.
In H; in eq. (1.4.3.5) we see that the first and the second terms include the annihilation operators
as;, (x,t) and a;_(x,t) for respectively right- and left- circularly polarized photons at position x and
time t, accompanied by the density operators G¢: m.em (X, t) = |f*, me >< £, me|(x, ©), such that a
Cesium-133 atom in the ensemble at position x and time t is taken from the ground spin state
|f, m¢ > to the excited spin state |f*, m¢- > and a photon is absorbed, while the (real) coupling
constants ggjnf;f\,mr and ggr;lf;f\,mf\ govern the strength of the atomic transitions. Note that due to

the selection rules given by egs. (3.1.2.2.b-c) we have that g;’r’;f.f\mf‘ and ggr‘nf;f\'mf\are non-zero
only for mg+ = mg 4+ 1 and mg. = m¢ — 1, respectively.

The atom-light interaction Hamiltonian Hy in eq. (1.4.3.5) is very general, and now, using this
Hamiltonian, we would like to obtain an effective atom-light interaction Hamiltonian, which could
reflect the considerations made about the probe laser light in the introductory text of section 1.4. As
written in the introductory text of section 1.4, the individual Cesium-133 atoms are coupled off-
resonantly to the D, line transition 6°S, ,,f = 4 = 6%P3,,f " = 5 by the probe laser light; for that
reason the absorption effects become negligible, and so, in H; we can rightfully assume that the
excited Zeeman energy level population also becomes negligible such the excited spin states

|f*, m¢ > can be adiabatically eliminated such that when solving for 6y, 4.1, m,(x, t) and

Gt me—1;6",m (X, t) from the Heisenberg's equation of motion
]

~Btmer 1t ,m (% 1) = %[Gﬁmfﬂ;f\,mf(x, t), Hap] we can set the derivative %’o\flmfﬂ;f‘,mf(x, t) = 0,
and thus find the solutions to G¢ 41, m (X, ©) and G m—1;¢~m (%, £) from

%[’o‘f,mfﬂ;f\,mf(x, 1), Hap] = 0. By plugging the solutions to &y 41,6 m, (%, ) and 8¢ —1;¢* m (X, D,
which are similar to the ones found in [1], into the atom-light interaction Hamiltonian H; in eq.
(1.4.3.5) we thus find the effective atom-light interaction Hamiltonian dealing with off-resonant D,
line transition 62S,/,,f = 4 —» 6P;,,f* = 51to be

= eff hcEAZ L a a -
HF = — FADAZS‘[O dX pA(ZaOSO(X, t) + alsZ(X, t)fX(X, t) +

+2a,[So(x OF2(x, ) — Sx(x, O{f2(x. 1) — £2(x, 0} — 25, (x, VL, (x O, (x, D]) , (1.4.3.6)

where § = 2m - 5.22 MHz is the natural FWHM line width of the D, line transition in units of
radians per time [43], Ap2 = 852 nm is the wavelength of the D, line transition, Ag is the negative
angular frequency detuning between o and the angular frequency of the D, line transition
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6255, f =4 > 6Py, f* = 5. In eq. (1.4.3.6) we have that f,(x, t), T, (x, t) and f,(x, ) are defined
through egs. (3.2.4.2.a-c) with N = 1 and F — f and are made dimensionless, and that S;(x, t), where
i =0, X, Y, z, count the number of photons per unit length, which follows from the definitions of the

Stokes operators given by egs. (1.3.5.a-d), and the fact that a(x,t) and at (%, t) have units of inverse
of square root of length as seen in section 1.4.2.

The coefficients a,, a; and a, are in a case of 6°S, /,,f = 4 given by

1 1 7

ao B Z (1_A3,5/A5 + 1—A4‘5/A5 + 8) - 4 ' (1-4-3.7.a)
1 35 21

= E<_ T 8ys/by  T-dys/ts 176) -1, (1.4.3.7.b)
1 5 21

a2 = %(1—A3‘5/A5 B 1-A45/85 + 16) -0, (1437C)

where A¢- ¢ is the negative angular frequency difference between the angular frequency of the D,
line transition 6°S, ,,f = 4 — 6%P3,,f* = 3,4 and the angular frequency of the D line transition
62S1/5,f = 4 = 6°P3,,f" = 5. The asymptotic limits seen in egs. (1.4.3.7.a-c) hold for Ag > A g-.

Note that according to section 3.1.1 and figure 4 the asymptotic limits seen in egs. (1.4.3.7.a-c) are
justifiable for all experiments described in this thesis.

Note that the effective atom-light interaction Hamiltonian dealing with off-resonant D, line
transition 62S;,,f =3 = 62P;,,f* =5, is similar to the one in eq. (1.4.3.6) and with the
coefficients a,, a; and a, being different [1].

In order to interpret A in eq. (1.4.3.6) we have that:

1. the term containing ap makes the off-resonant electric field of the light emitted by the probe laser
to be responsible for the energy splitting of the hyperfine structure energy levels into the Zeeman
energy levels; the amount of splitting will depend on the strength of the electric field. This is known
as the Stark effect and is analogous to the Zeeman effect described in section 1.1: for the Stark
effect it is an off-resonant external electric field that shifts the energies of the Zeeman energy levels,
and for the Zeeman effect it is an external static magnetic field that field that shifts the energies of
the Zeeman energy levels.

2. the term containing a; is responsible for the Faraday rotation of the atomic total angular
momentum operators ?y(x, t),f,(x,t) and the Stokes operators S,(x,t), §y(x, t) around the x-axis;
this effect is apparent from the propagation equations (1.4.4.4.a-f) in section 1.4.4.

3. the term containing a; is responsible for the higher order coupling between the light of the probe
laser and the Cesium-133 atoms; the effect of this term is discussed in detail in [1].
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1.4.4 The propagation equations for the atom-light system

In this subsection | will find the propagation equations for the operators J;(x, t) and S;(x, t), where i
=X,Y, Z.

The Heisenberg's equation of motion for the atomic total angular momentum operators f;(z, t) will
read as

d 2 1 s —~
~hx D =E[fi(x,t), Ha] => (1.4.4.1.a)
d =~ 12 ~

~fit) =[x o, A ; (1.4.4.2)

and the Heisenberg's equation of motion for the Stokes operators S; will become the Maxwell-Bloch
equation [1]:

25t =[S0, Ha] => (1.4.4.1.b)
a 2\ a 1ra —~
(5+c 28D =1 [Six 0, B (1.4.4.3)

Assume now that the retardation effects are not present, i.e. the dynamics on the time scale L/c,
where light at speed c travels through the sample of length L, do not contribute; under this
assumption we have that %ﬁi(x, t) — 0 in the Maxwell-Bloch equation (1.4.4.3). By plugging H¢ff
in eq. (1.4.3.6) with the asymptotic values of ay, a;, a, ineq. (1.4.3.7),i.e. ag =4,a; =1,a, =0,
since we are dealing with the energy level 6°S, ,,f = 4 and as mentioned in section 1.4.3 A5 >
A¢- ¢~ 1s justifiable for all experiments described in this thesis, into egs. (1.4.4.2) and (1.4.4.3), we

obtain the following equations of motion for the operators f; and S;:

%fx(x,t) —0 , (1.4.4.4.3)
210 = —caS,(z O 1) | (1.4.4.4.b)
21,(x 1) = +caS,(z i, (x, 1) (1.4.4.4.c)
2 5,(x 1) = —aS,(x, OE(x D) (1.4.4.4.d)
25,6 0) = +aS,(x, OE (D) (1.4.4.4.6)
%gz(x,t) -0 , (1.4.4.41)

25
51
the dipole interaction between the individual Cesium-133 atoms in the sample and the light emitted
by the probe laser as it travels in the x-direction through the atomic sample:

where a = — which is dimensionless. From these equations we see the following effects of
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1. the atomic total angular momentum operators fy(x, t),f,(x,t) will Faraday rotate around the x-
axis by an amount proportional to the Stokes operator S,(x,t), while the atomic total angular
momentum operator f, (x, t) will be unaffected by the interaction.

2. the Stokes operators §X(x,t),§y(x,t) will Faraday rotate around the x-axis by an amount

proportional to the atomic total angular momentum operator f,(x,t), while the Stokes operator
S, (x,t) will be unaffected by the interaction.

Now, as will be seen in chapter 4, the most essential physical setting for the atom-membrane
entanglement experiment is where the Cesium-133 atomic ensemble total angular momentum
operator along the quantization-axis, being the z-axis, can be treated as a macroscopic quantity, and
the light emitted by the probe laser is travelling in the x-direction through the atomic sample. Since
according to section 3.1.1 the probe laser light is linearly-polarized, and assuming that it is the z-
direction along which the probe laser light is linearly-polarized, then in the entanglement
experiment and other performed experiments that have a similar setting, we have, when observing
section 1.2 and eq. (1.3.8), that f,(x,t) = hf,(x,t), S;(x,t) = Sy (x 1), where f,(x,t) and Sy(x,t)
are real numbers, and thus the RHS of egs. (1.4.4.4.c) and (1.4.4.4.d) is zero; furthermore, in
continuous notation the vector operator J becomes

jt) = [, dz pAf(x ) (1.4.4.5)

(where J in eq. (1.2.1) was defined using discrete notation), and here we let J,(t) — hJ,(t) = h],,
where ], is a real number defined in section 1.2, which is of the order of the number of Cesium-133
atoms in the sample. Define also the Stokes operators

Si®=cSixt) | (1.4.4.6.2)
S"() = Six=0,1) (1.4.4.6.b)
UM =Six=L1Y , (1.4.4.6.C)

where S (t) and SPUt(t) refer to the Stokes operators at the beginning and at the end of the sample
of the length L, respectively. Note that by multiplying by ¢, we have that S;(t), where i = x, y, z
count the number of photons per unit time, because S;(x, t) count the number of photons per unit
length, as seen in section 1.4.3. Summarizing the above we thus have that egs. (1.4.4.4.a-f) yield the
following propagation equations relevant for the atom-light system:

SoU(D) =S (1.4.4.7.3)
SOUt(t) = SIn(t) + aSyJx (D) (1.4.4.7.b)
d -«

Elx(t) =0 , (1.44.7.c)
21,0 = —al, 8 () . (1.4.4.7.d)

where Sy = S, (t) has units of inverse of time, and h = 1 is assumed.
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Note that from now on, whenever S, will be written in this thesis, it will have units of inverse of
time.

Note that the LHS and RHS of egs. (1.4.4.7.a-d) have the same dimension.

From eq. (1.4.4.7.b) we see that the term aS,J,(t) allows us to read out the atomic property J, (t)
from the light property §§3“t(t), and from eq. (1.4.4.7.d) we see that another light property SI(t) is
at the same time mapping onto another atomic property Ty(t) — we denote such and similar effects
as light back-action.

The same propagation eq. (1.4.4.7.b) essentially tells us that the Cesium-133 atoms perform
polarization modulation of the probe laser light, because as understood from section 1.3 and egs.
(1.3.5.b-d), the Stokes vectors can be said to characterize the polarization of light.

Also, from egs. (1.4.4.7.b) and (1.4.4.7.c) we see that a measurement on §§3“t(t) will result in a

quantum non-demolition (QND) measurement of J, (t), because according to eq. (1.4.4.7.c) Jx(t) is
not affected by light back-action during the interaction thus ensuring that the state of J,(t) is not
demolished.

1.4.5 The scaled atomic ensemble total angular momentum operators, the scaled
Stokes operators, and the transformed propagation equations for the atom-light
system

In chapter 2, where atom-membrane entanglement protocol is described, we will be using the scaled
atomic ensemble total angular momentum operators

%=%®E%?, (1.45.1.)

~ ~ Jy (©)
pﬁmwzh, (1.4.5.1.b)

where h = 1 is assumed such that X, and p, are dimensionless and satisfy the canonic commutation
relation [R,(t), pa(t)] = ias seen from eq. (1.2.3.a), and we will also be using the scaled Stokes
operators

A0

Ru(z) =R (x0) = ok (1.4.5.1.c)
pr(z) = pL(x 1) 5% : (1.4.5.1.d)

which have units of inverse of square root of time, because S, §y(t) and S, (t) have units of inverse
of time as mentioned in section 1.4.4.

In the present we assume that almost all of the probe laser photons are linearly-polarized along the
z-direction, such that the operators a,(x,t) = (4,(x,1)) = ila,(x,t)| , aj(x, t) - (a;r(x,t)) =
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—ila,(x,t)|, where a,(x,t) is a complex number representing the complex amplitude of the
photonic ensemble of the probe laser light pulse at position x and time t, and thus the Stokes
operators

5, () > S, () ~ — '“Z“Z"t)'z ~— szh't , (1.45.2.)
e | z( 't)l A A

S0 > 22 @, (x ) —af(x, 1) (1.4.5.2.b)
5,0 > a xn+alxy) (1.4.5.2.c)

Note that eq. (1.4.5.2.a) holds, since here we have §X(t)—><§X(t)>=sxz<§(ﬁy(x,t)—

i, (x, t))) ——(nz(x t)) = Iaz(t)l _ S Zh't, when using eq. (1.3.5.b).

From egs. (1.4.2.9), (1.4.5.1.c-d) and (1.4.5.2.a-c) it follows that X;(x) and P (x) satisfy the
canonic commutation relation [%;,(x, t), pr.(x, t)] = i8(t — t").

In egs. (1.4.5.1.a-d) we have ], =],(t) = 4C,, which follows from the definition J, = 4C, in

pht

section 1.2, and Sy = S, (t) = —
C,t € N denotes a large number of Cesium-133 atoms in the coherent spin state |F = 4, mg = 4 >
at time t, and Cpp ¢ € N denotes a large number of linearly-polarized probe laser photons per unit
time at position X.

, which is seen in eq. (1.4.5.2.a). Here, in the present case,

By making use of the scaled operators given by egs. (1.4.5.1.a-d), when egs. (1.4.5.2.a-c) hold, we
have that the propagation equations (1.4.4.7.a-d) transform to

R = ", (1.4.5.3.3)
Pt = —Pi" —x 2%, (1.4.5.3.b)
d .

wRa=0 (1.453.)
dt™? '

aiPa = \F S (1.45.3.d)

where &P =%, (x = 0), 0" =%, (x = L), p" = p.(x=0), pP"' = p(x =L),and x =
a %r = —a,/Cpp ¢C, T Will be referred to as the atom-light coupling strength, where T is the time

period of the probe laser pulse. k is here seen to be dimensionless; this follows from the fact that

AL, .. . .. . . . .
a=-— ﬁ is dimensionless, C,, is dimensionless and Cp}, ¢ has units of inverse of time.
5

Note that the LHS and RHS of egs. (1.4.5.3.a-d) have the same dimension.

The propagation equations (1.4.5.3.a-d) will in chapter 2 aid us in understanding the atom-
membrane entanglement protocol.
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Note that in appendix C, where balanced homodyne detection is briefly described, we can see how
one can experimentally measure &P"* oc S2Ut(t) and PP oc SU().

1.5 The effect of an externally applied static magnetic field on the transformed
propagation equations for the atom-light system

In order to understand the main effects of an externally applied static magnetic field B on the
Cesium-133 atoms in all of the experiments described in this thesis it is sufficient to consider the
Hamiltonian

Bstatic

= %i(t) B . (15.1)

where pg is the Bohr magneton and g is the Landé g-factor. Now, when the static magnetic field B
is pointing along the z-axis in our experiments, we have that ﬁBstatic in eq. (1.5.1) will read as

_~

HBstatic = %TZ(OBZ = %TZ (t)Bstatic = QLiz(t) ) (1-5.2)

where B, = Bgatic, and Q, = %Bstatic is the Larmor frequency of the Cesium-133 atoms in our

experiments. Q; defines the angular frequency at which J,(t) and Ty(t) will precess around the
direction of B, namely the z-axis. Note that ﬁBstatic makes all the Zeeman energy levels mg of the
Cesium-133 atoms in the performed experiments non-degenerate as understood from appendix A,
and that it forces us to use the direction of B, which in the present case is the z-axis, as the
quantization axis. If we now include the effect of ﬁBstatic into egs. (1.4.4.2) and (1.4.4.3) for the
operators f;(zt) and S;(z,t), respectively, where i = X, y, z, we have that, when using the
commutation relations (1.2.3.b), egs. (1.4.5.3.a-d) turn into

gout — _gin (1.5.3.a)
pret = —pi" — K\Eia , (1.5.3.b)
%ﬁa =—O1pa , (1.5.3.c)
%ﬁa = +Q01%, + K\Eii“ : (1.5.3.d)

It is important to note that the similar equations as the ones above can be shown hold for Cesium-
133 atoms inside a low-finesse ? Fabry-Perot-type cavity [12].

Now, as X, « J,(t) and p, « Ty(t) will precess around the x-axis at the Larmor frequency €, we
for convenience switch to the rotating frame, where we use new operators X; and p; that are related
to X, and p, through a 2 x 2 rotation matrix:

% A dimensionless parameter called the optical finesse F gives the average number of roundtrips before a photon leaves a cavity.
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(5)= (o coscon) B - (L5.4)

Observing eq. (1.5.4) it is clear that once we'll know X3 and p3, then we'll know X, and p,, and vice
versa.

The propagation equations (1.5.3.a-d) are in the rotating frame therefore written as follows:

gout — _gin (1.5.5.a)
B = —Bir — x [2(~Pasin(@,0) + % cos(@,0) (155D)
d A, 2 Ain s

TXa = K\/; K'sin(Qt) (1.5.5.c)
d s 2 sin

P2 = K\/; Ri"cos(Qt) (1.5.5.d)

where eq. (1.5.5.b) is obtained by plugging the expression for X, in eq. (1.5.4) into eq. (1.5.3.b), and
egs. (1.5.5.c) and (1.5.5.d) are obtained by differentiating X; and p; in eq. (1.5.4) with respect to
time t, then the product rule for derivatives is used and then egs. (1.5.3.c) and (1.5.3.d) are used.

The result of eq. (1.5.5.b) tells us that when an externally applied static magnetic field subjects the
Cesium-133 atoms and it is homogeneously pointing along the same direction, being the z-direction,
and p"* is measured, we will simultaneously access information about % and p;. However, we see
from egs. (1.5.5.c) and (1.5.5.d) that XI" is during the interaction piling light back-action onto &%
and p; such that the states of X} and p; are demolished during the interaction. This contrasts the
propagation egs. (1.4.4.7.a-d) (and egs. (1.4.5.3.a-d)), because in the present case we see that we no
longer can perform QND measurements of any kind.

By solving for &3 and p; in egs. (1.5.5.c) and (1.5.5.d) we obtain
%3 = %3(0) = 83(0) + x [= [} dt’ &M (t)sin(Qut’) (1.5.6.a)
Pa = Pa(D) = Pa(0) +x |2 [ dt’ &M (t)cos(QLt’) . (15.6.b)

By plugging the above expressions for &% and P into eq. (1.5.5.b) we observe that as &I"(t) is
during the interaction piling light back-action onto &% and 7, then &I (t") is being transferred onto
pRUt(t), for all times t’ < t. This kind of feedback is referred to as light back-action noise.

1.6 The cavity optomechanical system Hamiltonian

In this section | will consider treating a cavity optomechanical system depicted in figure 2. It
consists of an optical Fabry-Perot cavity, where one of the mirrors is stationary and allows light
field to be transmitted into the cavity, and the second mirror is dynamic, exhibiting pendulum-like
motion. The dynamic mirror acts as a mechanical resonator.
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Impinging light field Optical Fabry-Perot cavity Mechanical resonator

we Ac(t) Qb0
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< cav ’

Figure 2. A schematic for a generic geometry of a cavity optomechanical system. It consists of an optical Fabry-Perot cavity, where
the left mirror is assumed to be stationary and allows light field to be transmitted into the cavity, and the right mirror is dynamic,
exhibiting pendulum-like motion, where x(t) denotes its position from the equilibrium position, which is where the two mirrors are
separated by the distance L.,,. The dynamic mirror acts as a mechanical resonator. In the text we focus on a single optical mode of
the optical Fabry-Perot cavity and a single mechanical mode of the mechanical resonator. Note that the various parameters seen in
this figure are also seen in the text.

The Hamiltonian for a cavity optomechanical system can in general be written as
Hom = He + Hp + Hyom + Extra (1.6.1)

where H, is the optical cavity (a.k.a. optical resonator) Hamiltonian, H,, is the mechanical resonator
Hamiltonian, Hy oy, is the optomechanical interaction Hamiltonian, and the term “Extra" is
associated with cavity photon decay, mechanical friction of the mechanical resonator, influx of
thermal phonons and driving by an external laser and/or a fluctuating vacuum field.

In the following three subsections of this section, the three Hamiltonians H, H,, and Hj ,, will be
put forward; this will be done in the Heisenberg picture, where the quantum operators are time-
dependent and quantum states are time-independent. Having found the linearized optomechanical
interaction Hamiltonian ﬁ};‘{,om, the input-output relations for operators that describe light that is
transmitted by the optomechanical system will be presented in the fourth subsection of this section.
These input-output relations will in chapter 2 aid us in understanding how the atom-membrane
entanglement works.

Note that this section also serves to explain the basic principles of the optomechanical system
described in section 3.4 that is part of our atom-membrane interfacing experimental setup.

1.6.1 The optical cavity Hamiltonian

An optical Fabry-Perot cavity that consists of two highly reflective mirrors that are separated by a
fixed distance L., has the resonance angular frequencies given by

Weayn = NT— (1.6.1.1)

cav

25



where n is the integer number of the optical (Fabry-Perot) cavity mode. In the following we will
focus on a single optical cavity mode, whose angular frequency will be denoted as w..

The Hamiltonian describing the optical cavity is thus that of a single-mode harmonic oscillator and
IS given by

A, = ho, (ai(t)ac(t) + %) , (1.6.1.2)

where a.(t) and ai(t) are the photonic annihilation and creation operators of the optical cavity
mode, respectively, that are dimensionless and that satisfy the commutation relation

[ac®.alm] =1
1.6.2 The mechanical resonator Hamiltonian

To understand the vibrational behavior of a mechanical resonator one can solve the equations of
linear theory of elasticity under appropriate boundary conditions that are determined by the
geometry of the mechanical resonator. Solving the problem vyields a set of equations that can be
used to visualize the vibrational shape for the different mechanical modes and the corresponding
eigenangularfrequencies Qyechn, Where n is the integer number of the mechanical mode. In the
following we will focus on a single mechanical mode, whose angular frequency will be denoted as
Q.

The Hamiltonian describing the mechanical resonator is thus that of a single-mode harmonic
oscillator and is given by

-~

I 1
iy, = 00y, (BLOBm(0) +5 ) =
= ~PR (D) +504RE®1) (1.6.2.1)

where

A A h ~ -~

R = %o () = /Zmeffﬂm (bm(® +B5L(®) (1.6.2.2.2)
5 -5t

A B (0-B1, (1)

Pm = Pm(D) = \/hmeffﬂm(i—ﬁ) (1.6.2.2.b)

are the position and the momentum operators of the mechanical resonator that respectively have

dimensions of square root of time multiplied by dimensions of /mh and the inverse of square root
eff

time multiplied by dimensions of /hmgg, and that satisfy the canonical commutation relation

[&n (), Pm (D] = ih, with b,,(t) and B:rn(t) being the phononic annihilation and creation operators
of the mechanical mode, respectively, that are dimensionless and that satisfy the commutation

relation [Bm(t) ,B:rn(t)] =1.
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1.6.3 The optomechanical interaction Hamiltonian

When the dynamic mirror of the optical Fabry-Perot cavity seen in figure 2 exhibits pendulum-like
motion, then the coupling of optical and mechanical modes is parametric, i.e. the resonance angular
frequency of the optical Fabry-Perot cavity, w.(x), is modulated by the displacement x = x(t) of
the mechanical resonator, and so we can describe w.(x) by the Taylor series

dw¢
dx

we(X) = we +x + - =w.+xG+ -, (1.6.3.1)

d;’: is the optical angular frequency shift per displacement and is

referred to as the frequency-pull parameter.

where w, = w.(0), and G =

Expanding now the Hamiltonian H. in eq. (1.6.1.2) (with the vacuum noise term neglected) to
leading-order in the displacement x we obtain hwc(x)ai(t)ﬁc(t) zh(wc+xG)ai(t)ac(t) -

h
2meffQm

(1.6.2.2.a); and so the optomechanical interaction Hamiltonian becomes

h(we + 2 G)AL (DA (t), where x - %, =

(Bm(t)+6:rn(t)), as defined in equation

i om = hGRmAl (DAL(D) . (1.6.3.2)

The fundamental mechanism that couples the radiation field of the cavity to the motion of the
mechanical resonator is the momentum transfer of the cavity photons onto the mechanical resonator,

i.e. radiation-pressure force. A single photon transfers the momentum |Ap| = 2hk,, where k. = %

is the angular wave number of the cavity photon, in a roundtrip inside the cavity, and as a
consequence the radiation-pressure force (operator) is given by

Fraq = di‘(—m = hGal(Dac() | (1.6.3.3)
where fi (t) = ai(t)ac(t) IS a photon number operator for the cavity photons, and the RHS of the

Apl sta At A cay : . o .
'Tpl ala, = h-2=3la,, where t, = =~ s the cavity roundtrip time, where Lc,y is
(o

equation equals

Lcav
dw¢

~ -2¢ Note that as the motion of the mechanical resonator

dx Lcav

induces a shift to the resonance angular frequency of the optical cavity mode, a change in the
circulating light intensity will happen and so a change in the radiation-pressure force will also
happen. This kind of feedback-loop is referred to as optomechanical back-action.

the length of the cavity, if G =

Since the mechanical resonator Hamiltonian H,, in eq. (1.6.2.1) describes the mechanical resonator
exhibiting mechanical oscillatory motion, it follows that the radiation-pressure force F,.4 in eq.
(1.6.3.3) is a force of varying amplitude, such that F.,4 can be said to deal with light that is
amplitude modulated.

27



Note that in chapter 2 the so-called linearized approximate description of the optomechanical
system will be used. Here we first need to split a.(t) into an average complex amplitude @.(t) =
(a.(t)) and a fluctuating term 8a.(t), i.e. a.(t) = a.(t) + 8a.(t), and plug it in the optomechanical
interaction Hamiltonian H; ., in eq. (1.6.3.2), such that Hy o, reads as

ﬁI,om = hGﬁm(ac(t) + SQC(t))T(RC(t) + 6a.(t)) . (1.6.3.4)

Hy om in eq. (1.6.3.4) may now be expanded in powers of & (t). The part of the expanded ﬁl,om that
will result in linear (coupled) equations of motion is referred to as the linearized optomechanical

interaction Hamiltonian ﬁ}i{{,om, and is

A, = hgke (82c(0) + 880 (1) = g cRmaRe - (1.6.3.5)

where g = Ga,, and g, . =h : g=h ! Go. with a, assumed to be real, is referred to
’ MefrQm MefrQm

h

as the optomechanical coupling strength, %y, , = (Bm(t) + B:rn(t)) is &y divided by |————— such
that X, , is dimensionless, and
2. =R (V) = \E(sac +8al) (1.6.3.6.2)
L 5a.—8al
pc = Be(D) = v = ) (1.6.3.6.0)

denote the quantum fluctuations of the optical cavity mode. Note that X. and p. have dimensions of
Vvh and satisfy the canonical commutation relation [R.(t),p.(t)] =ih. Note that gm,c has
dimensions of inverse of time multiplied by dimensions of vh.

1.6.4 The propagation equations for the cavity optomechanical system

In this subsection | consider finding input-output relations for operators that describe light that is
transmitted by the optomechanical system.

From the cavity optomechanical system Hamiltonian H,, in eq. (1.6.1) we observe that the cavity
optomechanical system is a quantum system that interacts with the environment, which by
definition implies that it is an open quantum system, and thus the equations of motion for an
operator A of the system will be given by the Lindblad-Heisenberg equation of motion

~ 11~ o 1 woo ~tra e ~F 2]
SR == [A Homg] + = iy (Lk[A, L] + [Lk, A] Lk) , (1.6.4.1)
where H,, g is the optomechanical system Hamiltonian H,,, in eq. (1.6.1) without the term "Extra",
and L, are known as Lindlblad operators, which are operators that model the effects of the

environment. Note that H,,, g excludes the term "Extra”, because as understood from the text below
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eq. (1.6.1) this is an environmental term. For the operators X. and p., which are defined in
equations (1.6.3.6.a) and (1.6.3.6.b), respectively, that denote the quantum fluctuations of the
optical cavity mode, we have that the Lindblad-Heisenberg equations of motion will read as [12]

1 =~ ~ ,\,
=—h[ ,Homg] — neke — /2081 (1.6.4.2.3)

1 ~)

~[Pe, Home] = nePe —2nD'T (1.6.4.2.b)

where the operators X (x) = X;.(x,t) and p(x) = pr.(x,t) represent the fluctuating vacuum field
plus the laser field outside of the cavity, such that the operators &' = &'I"(t) and p'I* = p'I%(t)
represent the fluctuating vacuum field plus the driving laser field entering the cavity from the left
mirror in figure 2, and n is the total cavity photon decay rate. Note that as understood from the text
below eq. (1.6.1) &;.(x) and py,(x) may also represent just the fluctuating vacuum field outside of
the cavity, such that &'i® and '™ represent the fluctuating vacuum field entering the cavity from
the left mirror in figure 2. Note as well that &; (x) and Py (x) have units of inverse of square root of
time multiplied by vh and satisfy the canonical commutation relation [&] (x, t), pj. (%, t")] = ih(t —
t"), which, as we observe, is also the case for the scaled Stokes operators %; (x) and py,(x) defined in
egs. (1.4.5.1.c) and (1.4.5.1.d), respectively, but without vh. Note therefore that the LHS and RHS
of egs. (1.6.4.2.a-b) have the same dimension.

Using Homg With H% in eq. (1.6.3.5) and the fact that [, P.] = ih we have that egs. (1.6.4.2)
now read

6 AI

(,t Re = Mk — V2T (1.6.4.3.a)

apc = —MNcPc — chp'm 8mcXmz - (1.6.4.3.b)
Note that the LHS and RHS of egs. (1.6.4.3.a-b) have the same dimension.

Define now the operators &'0"t and p'0"* as the operators that describe light that is transmitted by
the cavity optomechanical system, i.e. Ilght that is transmitted through the dynamic mirror seen in
figure 2, or, equivalently, light that is transmitted back through the stationary mirror in figure 2. The
boundary conditions for &'¢"* and p'¢"* are given by

P =21+ 20k, (1.6.4.4.9)
PPt =P +y/2nche (1.6.4.4.h)

Now, assume that . > Q,, such that one can adiabatically eliminate the optical cavity mode, so

%f(c = 0 such that from eq. (1.6.4.3.a) one obtains %f(c =Nk — /2N KM =0 => g, =

\/?f("{‘, and %ﬁc = 0 such that from eq. (1.6.4.3.b) one obtains %ﬁc = —NPe — /20PN -
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EmcXmz = 0=>p, = — %ﬁ’iﬁ‘ - g;“C'C Rm- Plugging these results for . and p.. into egs. (1.6.4.4.a-

b) one obtains input-output relations for the light operators £'0"* and p'P"t:

ﬁrgut — _)'ZliLrl ’ (1.6.4.5.&)
~t AL DN
prout = _pfin _g \Exm _ (1.6.4.5.b)

These input-output relations will in chapter 2 aid us in understanding how the atom-membrane
entanglement works.

Note that in appendix C, where balanced homodyne detection is briefly described, we can see how
one can experimentally measure &'0"t and p'"*.
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Chapter 2: Protocol for entanglement generation
between Cesium-133 atomic ensemble and
nanomechanical membrane resonator

In this chapter | present a protocol for entanglement generation between Cesium-133 atomic
ensemble and nanomechanical membrane resonator with the help of the theory from chapter 1. The
protocol presented here was first proposed by K. Hammerer et al. [12].

Note that in this chapter it is assumed that h = 1.

2.1 Conditions for generating atom-membrane entanglement

Consider two systems respectively described by a pair of canonical operators X;, p; and X,, p,,
which obey the canonical commutation relations

[1,P1] =[R2, P2l =1, (2.1.1)

and otherwise commute with one another. The two systems are said to be entangled if the following
Einstein-Podolsky-Rosen (EPR) variance criterion is fulfilled [2, 3]

Yer = Var (22) + Var (22) < 1 (2.1.2)

where  epr is referred to as the EPR variance.

Let now the two systems considered above respectively refer to Cesium-133 atomic ensemble and
nanomechanical membrane resonator that is part of an optomechanical system. Let the canonical
variables X, and p, respectively refer to the scaled atomic ensemble total angular momentum
operators X, = X,(t) and p, = p,(t), which respectively are defined in egs. (1.4.5.1.a) and
(1.4.5.2.b), and let the canonical variables X, and p, respectively refer to the position and the
momentum operators of the nanomechanical membrane resonator, X, = X, (t) and P, = pm (1),
which respectively are defined in egs. (1.6.2.2.a) and (1.6.2.2.b). Note that the pairs of operators X,,
P, and X, P Satisfy the canonical commutation relations [, (1), P.(D)] =i, [Rn (D), Pm(t)] =i as
seen previously in chapter 1; and so, from eq. (2.1.2) we have that the Cesium-133 atomic ensemble
and the nanomechanical membrane resonator are entangled if the inequality

Yepr = Var (Xm\/txa) + Var (pmﬁpa) <1 (2.1.3)

holds.
Let us now consider describing a protocol, which deals with entanglement generation between

Cesium-133 atomic ensemble and nanomechanical membrane resonator.
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In figure 3 we can see a schematic of the setup that allows us to entangle the Cesium-133 atomic
ensemble with the nanomechanical membrane resonator. Here the (Cesium-133) atomic ensemble is
seen to be interfaced together with the (nanomechanical) membrane resonator via light bus.
Entanglement can be generated by measuring the light that has interfaced the atomic ensemble and
the membrane resonator. In figure 3 we will refer to the part of the setup that is to the left of the
filter as the atomic part of the setup, and the part of the setup that is to the right of the filter as the
optomechanical part of the setup. The light in the atomic part of the setup is described by the scaled
Stokes operators X, (x) = X.(x,t) and pr.(x) = pr.(x,t), which respectively are defined in equations
(1.4.5.1.c) and (1.4.5.1.d); and the light in the optomechanical part of the setup is described by the
operators X (x) = X.(x,t) and py(x) = p.(x,t), which are defined in section 1.6.4, and the
operators X, = X.(t) and p. = p.(t), which respectively are defined in equations (1.6.3.6.a) and
(1.6.3.6.b). Note that the pairs of operators %;,(x), pr.(x) and %{.(x), p.(X), and R, P satisfy the
canonical commutation relations [y (x,t),pL(xt)] =id(t—t), [RL(X D), PL(x, )] =id(t—1t),
[8:(D), P ()] = ias seen in chapter 1. Note as well that according to chapter 1 we have &I" = £, (x),
pi" = p.(x), where the position x is before the atomic ensemble, K24t = XL(X) pout = pL(X)
where the position x is after the atomic ensemble and before the filter, 1" = &/ (x), p'I" = P} (%),
where the position x is after the filter and before the cavity, &' = %] (x), p ”O“t = pL(X), where the
position X is after the cavity and before the detection.

Vl ¥ (%a,Da.) Filter (21, Prm)

——==—t—{ .

(ﬁll..nﬁi.n) (ﬁout Aout) ()?i : A’in (X pc) )’E fut,’\ out)

Balanced homodyne detection

Figure 3. A schematic of the setup used for entanglement generation between Cesium-133 atomic ensemble and nanomechanical
membrane resonator. A pulse of light described by the operators &I and pi” interacts first with the atomic ensemble described by the
operators X, and p, that are precessing at the Larmor frequency around the z-axis due to a static magnectic field By, pointing along
the z-axis. After the light has interacted with the atoms, it is described by the operators 2"t and p24t. As understood from the
propagation equations (1.4.5.3.a-b) and as noted in the text of section 1.4.4 we have that as the light interacts with the atoms, it
becomes polarization modulated. Now, since as understood from section 1.6.3 the fundamental mechanism that couples the radiation
field of the cavity to the motion of the membrane resonator is the radiation-pressure force described by the operator F,.4 in eq.
(1.6.3.3), and F,,q deals with light that is amplitude modulated, and since it is the light after the atoms that one needs the membrane
resonator to respond to, one builds a filter that can convert the polarization modulated light into amplitude modulated light. After the
filter, the light is described by the operators £'1" and p'i™ and it interacts with the membrane resonator described by the operators &y,
and p,,, because according to Lindblad- Helsenberg equatlon of motion (1.6.4.2) we have that the operators &' and p'i® affect the
time evolution of the operators X, and .. that are used to describe the optical cavity mode. Light leaving the cawty is descrlbed by
the operators &'¢"* and p'2"t, and it is subject to balanced homodyne detection, whose basic principals are described in appendix C.

Let us now understand why the light that is subject to detection carries information about the
commuting EPR observables X,,, + X, and p,, — Pa.
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To start, it is proposed that the Hamiltonians that respectively describe the atomic ensemble and the
membrane resonator are structurally similar.

In order to obtain structural similarity between these two Hamiltonians, one chooses to model the
atomic ensemble as a negative-mass (single-mode) harmonic oscillator, and the membrane
resonator as a positive-mass (single-mode) harmonic oscillator, such that the respective
Hamiltonians of these two systems become

5 1. 1 A Q nra =~
Hatoms = Epg + EQf,nX;E = ; (Paz + Xﬁ) ) (2.1.4.a)

1. 1 ~ Qm /= <
membrane = 7 Pm + E-QIZnX?n == (PI% + Xlzn) ) (2.1.4.b)

an)

H H 5 _ DPa D Pm v — P
where both oscillators are assumed to be of unit mass, P, = Pn N Xa =/ QunRa,

To
X, = \/Q_r@?m, and Q , < 0 is the negative angular frequency of the splitting between the Zeeman
energy levels mg = 3 and mg = 4 of the energy level 6S1,, F = 4 of the atoms, and Q,,, > 0 is the
positive angular frequency of the mechanical mode of the membrane resonator. Qy,,, is non-zero,
because the atoms are subject to a static magnetic field Bgic as seen in figure 3, and so the mg —
levels are made non-degenerate as understood from appendix A; and Q,, is hon-zero, because the
membrane resonator exhibits mechanical oscillatory motion. Also, the reason why Q ,, is negative,
is because the atomic ensemble is modeled as a negative-mass harmonic oscillator, and the reason
why Q,, is positive, is because the membrane resonator is modeled as a positive-mass harmonic
oscillator.

The main difference between negative- and positive-mass oscillators is as follows: in order for a
negative-mass oscillator to create a quantum excitation, a quantum of energy must be extracted,
instead of being supplied, which is the case for a positive-mass oscillator; ergo Q;,, must be
negative, because the energy of 6°Sy, F = 4, me = 3 is smaller than that of 6°Sy,, F =4, mg =4 as
seen in figure Al in appendix A.

In order for the atomic ensemble to be modeled as a negative-mass harmonic oscillator we assume
that all the atoms reside either in the coherent spin state |F = 4, mg = 4 > or the spin state |F =
4, mg = 3 >, and say that when all the atoms are in |4,4 >, then the atomic ensemble is in the
ground state |0) = |+)®Cat of the negative-mass harmonic oscillator, and when all the atoms are in
|4,3 >, then the atomic ensemble is in the state |—)®Cat of the negative-mass harmonic oscillator,
where "®C, " refers to the C,.'th tensor power. Recall from section 1.4.5 that the number C,
appears in the definition of J, = J,(t), i.e. there ], = 4C,, where C, denotes a large number of
Cesium-133 atoms in the coherent spin state |F = 4, mg = 4 > at time t. The excited states of the

oscillator are given by |1) =al|0), |2) =al|1), etc., where &) E\/C;_’]\a'_,_,
a,t
an,t |—);(+1; is the raising operator of the oscillator, such that ﬁ;r|—)®ca't =0;and 3, =

i

where J,, =

—1
VCat a=

Car |+);(—1; is the lowering operator of the oscillator, such that a,|+)®%t = 0. We

i

whereJ,_ =)

33



observe that when one of the atoms in the atomic ensemble is in |4,3 >, then the atomic ensemble is
in the first excited state |1) of the negative-mass harmonic oscillator, etc.

By observing section 1.6.2, and eq. (1.6.2.1) we see that one can model the membrane resonator as
a positive-mass harmonic oscillator. Note that Hy,embrane in €d. (2.1.4.b) is H,, in eq. (1.6.2.1) with
Megr = 1.

As understood from eq. (1.5.2) Q,, = —Q, where Q, is the Larmor frequency, i.e. the angular

frequency at which X, and P, will precess around the direction of the static magnetic field Baatic
seen in figure 3, namely the z-axis.

Note that the pairs of operators X,, P, and X,,,, P, satisfy the canonical commutation relations,
because the pairs of operators X,, p, and X,,,, Pm, satisfy the canonical commutation relations.

Now, observing eq. (2.1.4.a) and section 1.5, we have that the input-output relations for the light
operators Xy, (x) and py,(x) in the atomic part of the setup in figure 3 are the ones given by the input-
output relations (1.5.3.a) and (1.5.3.b), respectively, with the substitution &, - X,, and also
observing eq. (2.1.4.b) and section 1.6.4, we have that the input-output relations of the light
operators X;.(x) and Py (x) in the optomechanical part of the setup in figure 3 are to the ones given
by the input-output relations (1.6.4.5.a) and (1.6.4.5.b), respectively, with the substitution X, = X,

ﬁgut — _ﬁiLn 1 (2.1.5.3.)
ﬁgut — _ﬁiLn _ \/;’Xa ’ (2.1.5.b)
ﬁlgut — _f(liLn 1 (2.1.6.3.)
N ATl 2

p (ﬁut =—p 1Ln _ gm’c\/%xm ’ (2.1.6.b)

where k = —a,/Cpp, :C, (T is the atom-light coupling strength as defined in section 1.4.5, g, . =

1

h

Gu, is the optomechanical coupling strength as defined in section 1.6.4. Recall from

Meffilm
section 1.4.4 that that x is dimensionless, and from section 1.6.4 that g, . has units of inverse of
time multiplied by dimensions of vh, and since in the present case we have h = 1, then 8mc has
units of inverse of time. Note that the assumptions that were made in order to arrive at the input-
output relations (1.5.3.a), (1.5.3.b), (1.6.4.5.a) and (1.6.4.5.b) are assumed also to hold in the
present case.

Let us now consider finding the equations of motion for respectively X, P,, and X,,, P.,.

Observing section 1.4.4 we have that the equations of motion for respectively the operators X, and
P, are found using the Heisenberg equation of motion with the corresponding Hamiltonian ﬁap =

Hatoms + HE™, where HS is given by eq. (1.4.3.6), where the appropriate substitutions involving
the different operators are made use of:
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do 1rs o =
+Xa =7 [Xa Hap] = +Q00P (2.1.5.0)
ds 15 ©5 1 _ e 25in

wh=7 [Pa Hap] = —QunXa +x R (2.1.5.d)

Note that egs. (2.1.5.c) and (2.1.5.d) can also be obtained from egs. (1.5.3.c) and (1.5.3.d),
respectively, with the appropriate substitutions %, — X, and p, — P,, and using Q. , = —Qy.

Observing section 1.6.4 we have that the equations of motion for respectively the operators X,,, and
P, are found using the Lindblad-Heisenberg equation of motion with the corresponding
Hamiltonian Hpe = Hpembrane + Himm . Where AN is given by eq. (1.6.3.5), where the
appropriate substitutions involving the different operators are made used of. This is because the
membrane resonator is subject to environmental effects as it can decay due thermalization, and it is
driven by the quantum fluctuations of the optical cavity mode, i.e. X. and p., which, as seen from
section 1.6, depend on environmental effects.

Assume now that the thermalization decay of the membrane resonator can be neglected; this holds
true if the whole protocol is performed in the time period t; = t such that T < 1/ny,0, Where Ny,
is the membrane resonator mechanical damping rate, and ny, = kgT/Q,, is the mean occupation of
the membrane resonator in thermal equilibrium at temperature T (with h = 1). With this assumption
the equations of motion for respectively the operators X,,,, P,,, are thus found using the Heisenberg
equation with the Hamiltonian H,,,:

dg 1 ~

+ Xm = T[Xm,Hmc] =+0,P, , (2.1.6.)
d = 15 o S A < 2 i

apm =7 [me Hmc] = —0nXm — 8mcXe = ~OmXm + 8myc /EX Lo (2.1.6.d)

In egs. (2.1.6.c) and (2.1.6.d) one uses the canonical commutation relation [Xy,, P| = i. In the last
equality of eq. (2.1.6.d) one uses . = —\/nzﬁ’{“, which follows as explained below egs. (1.6.4.4.a-
b).

As was done in section 1.5, we now write egs. (2.1.5.a-d) and (2.1.6.a-d) in the rotating frame,
where we use new operators X; and P that are related to X; and P, through a 2 x 2 rotation matrix:

Xj cos (Qit)  sin (Qit)) /X,
<§j]*> B <—Sin (fll,-t) cos (Q]]-t)> <’15]] ) ’ (2.1.7)

where j = a,mand Q, = Q. Observe in eq. (2.1.7) how in the case of j = a we are looking at
counter-clockwise rotations, and in the case of j = m we are looking at clockwise rotations; this is
true because €, ,, is negative and Q,, is positive.

Observing egs. (1.5.5.a-d) and (2.1.7) we have that the propagations egs. (2.1.5.a-d) and (2.1.6.a-d)
are in the rotating frame therefore respectively written as
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gout = _gin (2.1.8.9)

o A 2/ =4 . S
pout = —pin — K\/; (=P sin(Qpnt) + Xj cos(Qnt)) (2.1.8.h)
%X; =K \F fMsin(Qpat) (2.1.8.0)
%Ej = K\/% fiMcos(Qp ) (2.1.8.d)
and
gout — _grin (2.1.9.a)
prout = —p'in _ gm'c\% (—E; sin(Q,t) + X2, cos(th)) : (2.1.9.b)
d x _ 2 alin .
aXm = 8mc [ XL sin(Qpt) (2.1.9.c)
d 54 2 ~rin
aPm = 8mc |- XL cos(Qpt) . (2.1.9.d)

Assume now that the light after the atomic ensemble provides the input light to the cavity such that

i u

gin — _gout (2.1.10.a)
Pt =—pptt . (2.1.10.b)

In order to achieve the equalities given by egs. (2.1.10.a-b), light interfaces the atomic ensemble
and the membrane resonator through a filter seen in figure 3. In the text of figure 3 it is explained
what the filter does. Note that in chapter 4, where the atom-membrane entanglement experiment,
which is an attempt at a real life realization of the entanglement protocol presented in this chapter,
is described, it is explained how we experimentally realize the filter.

Assume now further that the atomic and the membrane resonator parameters are matched by

requiring
2 2
K\/; = gme /E , (2.1.11.a)

and that the angular frequencies Q,, and Q, ,, satisfy
Om=—0Qr, . (2.1.11.b)

Using the assumptions given by egs. (2.1.10.a-b) and (2.1.11.a-b) we have that the propagations egs.
(2.1.8.a-d) and (2.1.9.a-d) tell us that

gout — _gin (2.1.12.a)

prout = _pin _ %((ﬁ; —B)sin(Qpnt) + (R + X2) cos(QL’nt)) . (2.1.12.b)
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(R +%m) =0, (2.1.12.0)
S -Pn) =0, (2.1.12.d)

where in eq. (2.1.12.b) one has that sin(Qyt) = sin(—Qp yt) = —sin(Qy ,t) and cos(Qpt) =
cos(—Qpnt) = cos(Qput); in egs. (2.1.12.c-d) one has that &I® = &'I", which follows from eq.
(2.1.10.a) in combination with eq. (2.1.8.a), and that sin(Q,,t) = —sin(Qy ,t) and cos(Qyt) =
cos(Qpnt).

Note that from eq. (2.1.7) it is clear that once we'll know X}, + X5 and P, — P;, then we'll know
X, + X, and P,, — P,, and vice versa. Observe that according to eq. (2.1.7) we have, when using eq.
(2.1.11.b) and the properties sin(—Qy,t) = —sin(Qyt) and cos(—Qp,t) = cos(Qpt), that
X: + X: and Py, — P; and related to X,,, + X, and P,, — P, through a a 2 x 2 rotation matrix:

(an + Y;) B ( cos (Qp,t)  sin (QL,nt)) <Xm + Xa>

- - ) Iy - 2.1.13
P: _p: )~ \—sin (Quut) cos (2. \B -, (2.1.13)

Now, the result of eq. (2.1.12.b) tells us that when an externally applied static magnetic field
subjects the atoms and it is homogeneously pointing along the same direction, being the z-direction,
and p'P"t is measured, we will simultaneously access information about the commuting EPR
observables X;, + X and P}, — P;. According to egs. (2.1.12.¢) and (2.1.12.d) such measurement of
p'out will result in a QND measurement of X;, + X; and P}, — P, because X}, + X and P;, — P;
are not affected by light back-action during the interaction thus ensuring that the states of X}, + X
and Pz, — P; are not demolished. Note that this is exactly the opposite of the case of egs. (1.5.5.a-d)
(and also egs. (2.1.8.a-d) and (2.1.9.a-d)).

X: +X; and P}, — P; can from eq. (2.1.12.b) be gained access to by multiplying 't by
respectively sin(Q,t) and cos(Qy,t) and integrating in time from 0 to T. We consider now
therefore the two operators

P'Dtos = —\E Jy dtcos(Quqt) PP (2.1.14.9)
PN _ 2 . A
P'Lisin = —\E J, dtsin(Qy,t) P . (2.1.14.b)

Performing the Fourier transform of p'2"t in eq. (2.1.12.b) and observing egs. (2.1.12.c-d) therefore
yields

P'Pitos = Plicos T k(X +X3) (2.1.15.)
P'Pisin = Pisin + k(Pm —P5) (2.1.15.0)

where
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pin s = \[ f dt cos(Qpnt) P (2.1.16.a)

Pllsin = f Jy dtsin(Qput) pi* . (2.1.16.b)

Note that in order to arrive at egs. (2.1.15.a-b) it was assumed that fOT dt cosz(QL,nt) ~
Jy dtsin?(Qqt) ~ /2, and that [ dtsin(Qy,nt) cos(Qy,t) = 0, which is justified if the time
period of the protocol, t; ~ T, is much longer than 1/Q;,i.e. T > 1/Q;.

Using egs. (1.3.10), (1.3.11), (2.1.3) and (2.1.13), and the definitions of P,, P,,,, X,, X,,, below egs.
(2.1.4.a-b) we now calculate the sum of the variances of p'}'%s and PP,

Var(p'Pues) + Var(p'Pus,) = Var(pi"s) + Var(piieos) + Var (K()A(’{n + )A(Z)) + Var (K(ﬁ; — E;“))
=14k ZEPR ) (2117)

where the property Var(b,C) = b?Var(C) is used, where b, is a constant and C is an operator.

The first term on the RHS of eq. (2.1.17) is attributed to the shot-noise of the light; this term arises,
because in the present case it is assumed that we are dealing with the light operator pi” that is in the
coherent state of light such that egs. (1.3.10) and (1.3.11) hold. Note that according to section 1.4
and egs. (1.3.10), (1.3.11) and (1.4.5.2.a), the magnitude of the shot-noise is |Var(S,(v))| =

|Var(§z(t))| SX(t)l pht
photons.

, Where it is seen to scale with the number of linearly-polarized

The second term on the RHS of eq. (2.1.17) is the atom-light coupling strength k = —a,/Cpp :C,+T,

as defined in section 1.4.5, squared and multiplied by the EPR variance Y gpr = Var (’?m\;‘a) +

Var (pm\/_pa) as defined in eq. (2.1.3).

We see now from eq. (2.1.17) that by measuring p'P'%os and p'D4i,, we can, with the knowledge of

L,sin»

the atom-light coupling strength k, extract the EPR variance Y epr, and thereby find out whether
EPR variance criterion (2.1.3) is fulfilled.

Using the property Var(b,C + b,Z) = b?Var(C) + b3Var(Z) + 2b,b,Cov(C,Z), where b; and b,
are constants, C and Z are operators, and Cov(C, Z) is the covariance between C and Z, we have that
> epr IN €Q. (2.1.3) in general reads as

Yepr = %(Var()?m) + Var(x,) + Var(p,,) + Var(f)a)) + Cov(Xy, Ra) — Cov(Py, Pa) - (2.1.18)

Assuming that initially, at t = t,, i.e. before the light interfaces the atomic ensemble and the
membrane resonator, the two systems are in their ground states, we have that the covariances in eq.

(2.1.18) disappear, i.e. Cov(Xpy(to),Ra(to)) =0 and Cov(Pm(ty), Palte)) =0, and Yer = 1,
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which according to eq. (2.1.3) tells us that the atoms and the membrane resonator are not entangled,
but nevertheless is the best we can do for the two quantum-uncorrelated systems. Note that as the
two systems are in their ground states at t,, we have, according to egs. (1.2.12) and (1.4.5.1.a-b),

and section 1.2, that the terms Var(X,) = % and Var(p,) = % and that they are attributed to the
projection-noise of the atoms, and, according to eq. (1.6.2.1), that the terms Var(X,) = % and

Var(p,,) = % and that they are attributed to the vacuum noise of the membrane resonator. Now,

after these two systems become interfaced by the light and we have performed the measurement of
p'out and p'O%t ., the covariances in eq. (2.1.18) no longer disappear, i.e. Cov(&pm (t1), Ra(t1)) # 0
and Cov(f)m(tl),f)a(tl)) + 0, where t; = T is the time period of the protocol, i.e. the time elapsed
from t,, till the measurement is performed, and, as shown in [12] > epr becomes reduced, i.e.

1

YERR=—7— ;<1
1+ﬁth,i+4K

(2.1.19)

which according to eq. (2.1.3) tells us that the atomic ensemble and the membrane resonator
become entangled. Here ny, ; is the initial thermal occupation of the membrane resonator.

Note how due to the factor

Nth i
entanglement to be observable even if the membrane resonator initially is well above its ground

2 €[2;0).

in the denominator in eq. (2.1.19), the present protocol allows

state; this is true, because —

1+nth,i
Note as well how eq. (2.1.19) tells us that the more atoms there are in the coherent spin state
|F = 4, mp = 4 > and the more linearly-polarized photons there are to interact with these atoms,
the lower Yepr goes below one; this is true, because k* = a*CpC,et. In [12] it is noted that
moderate values of k2 are k? S 0.25. In chapter 3, where the main experimental components of our
group's atom-membrane interfacing experimental setup are described, an expression for k% will be
put forward that will prove to be convenient from the point of view of our atom-membrane
experiment. By making use of experimental data and parameters that characterize our experiment it
will then be estimated what values for k? we can expect to obtain in the case of our atom-membrane
interfacing experimental setup.

2.2 The dominant impairing effects in atom-membrane entanglement generation

In this section I will discuss the dominant impairing effects that alter the expression for the reduced
EPR variance Y epr given by eq. (2.1.19). By examining the dominant impairing effects the
entanglement protocol will reveal practical considerations common to experimental systems that in
principle can be used for satisfying the entanglement protocol.

The first dominant impairing effect is due to the mismatch between the atomic and the membrane

resonator parameters, i.e. when K\E * gm,c\/nz. Observing egs. (2.1.8.c-d) and (2.1.9.c-d) for

39



respectively%i;, %E;* and %X;‘n, %E;‘l, and also section 1.5, we see that if the atomic and the
membrane resonator parameters are mismatched, then light back-action noise will enter the
expression for p't"*, and thus the expressions for p'P%s and p'Pa,. This will then alter the
expression for Var(p'P') + Var(p'P4s,), and the term describing the light back-action noise will
be absorbed by the expression for the EPR variance  epr. Note that all impairing effects essentially

are absorbed by > epr. According to [12], the EPR variance Y epr given by eq. (2.1.19) will due to
the atomic and the membrane resonator parameter mismatch become Ygpr = YEpr +
— (k=8yMcT)
= (k+8yne0)

membrane resonator parameters, where & is used to describe the degree of this mismatch. Note that

[ex(Ren,; + 2)]°, where e denotes the practical mismatch between the atomic and the

[ex(Ren,; + 2)]” is the leading-order term. Due to this modification of the reduced EPR variance

> Epr, there is a practical limit set to the initial thermal occupation of the membrane resonator. In
1

Otp i
(4.2.1.a-b) one can see the versions of p'P4¢ and p'P'a,, When the atomic and the membrane

resonator parameters are mismatched.

[12] it is noted that for k* S 1 a mismatch of € ~

becomes tolerable. Note that in egs.

The second dominant impairing effect is due to the thermalization decay of the membrane resonator.
Recall that this effect is neglected in the derivation of egs. (2.1.6.c) and (2.1.6.d) for respectively

%)A(m and %'ﬁm. If this effect is not neglected, then there will be additional terms entering egs.

(2.1.6.c-d) that will be proportional to the membrane resonator mechanical damping rate n,,, and
these decay terms will also be accompanied by Langevin operators such that the correct quantum
statistics could be preserved. According to [12], the EPR variance Y epr given by eq. (2.1.19) will
due to the thermalization decay become Y gpr = Ygpr + NmT(in + 1). Due to this modification of
the reduced EPR variance > epg, there is a practical limit to how long the time period t; ~ t of the
protocol can be. We see that the practical requirement for t; ~ t becomes t « 1/n,0,. The size
of n,, is set by the quality factor ® Q,,, of the membrane resonator, since Q,, = Q.. /Mm [17], Where
Q. is the angular frequency of the mechanical mode of the membrane resonator as seen in eq.
(2.1.4.b).

The third dominant impairing effect is due to the loss of light via detection inefficiency and
spontaneous emission in the atom-light interaction. Note that the spontaneous emission can indeed
be treated as a light loss mechanism, because spontaneously emitted photons travel in a random
direction [24]. According to [12], the EPR variance > gpr given by eq. (2.1.19) will due to the loss
of light become Y gpr = (1 — €)Y.gpr + €, Where € denotes the fraction of the photons lost. Due to
this modification of the reduced EPR variance ) epr, the entanglement created by this protocol is
reduced but not removed.

* A quality factor, or Q-factor for short, is a dimensionless parameter that describes how underdamped a resonator is.
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Chapter 3: Experimental system

In this chapter | first describe the main experimental components of the atom-membrane
entanglement interfacing experimental setup described in chapter 4. These experimental
components include: a laser system, a microcell that contains the Cesium-133 atoms, a magnetic
shield for shielding the atoms against stray magnetic fields, a system that can generate useful
magnetic fields that subject the atoms, and a cavity optomechanical system that contains the
nanomechanical membrane resonator.

The material presented in this chapter is used to then put forward an expression for k2 that will
prove to be convenient from the point of view of our atom-membrane entanglement experiment. By
making use of experimental data and parameters that characterize our experiment it will then be
estimated what values for k2 we can expect to obtain in the case of our atom-membrane interfacing
experimental setup.

Note that in this chapter we will be making use of the regular atomic ensemble total angular
momentum operators and the regular Stokes operators, i.e. the operators J,(t) o &,, Ty(t) x P,
J2(0), Sx(©), Sy(0) « pr(z), S,(t) o &, (z), where &, and p,, and &;,(z) and py,(z) are respectively
the scaled atomic ensemble total angular momentum operators and the scaled Stokes operators. All
these operators are introduced in section 1.4.

3.1 The laser system

The laser system used in the experiments is composed of three lasers: the probe laser, the pump
laser and the repump laser, where the latter two constitute an optical pumping system. See figure 4
to see the relevant energy levels of Cesium-133 atoms that are addressed by these lasers. In the
following | will explain the experimental roles of the lasers and what we do in order to lock the
frequency of the respective lasers.
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Figure 4. The relevant energy levels of Cesium-133 atoms addressed by the laser system used in the experiments. The laser system is
composed of three lasers: the probe laser, the pump laser and the repump laser. The probe laser is tuned off-resonantly to the D, line
transition 625, ,,F = 4 - 62P3,, F* = 5 with negative frequency detuning vs; the pump laser is tuned to the D, line transition
62S1/2,F = 4 = 6P, ), F* = 4; and the repump laser is tuned to the D, line transition 62S, 5, F = 3 — 6°P; 5, F * = 4. The figure is
adapted from [1].

3.1.1 The probe laser

The probe laser is used to probe the Cesium-133 atoms. As indicated by figure 4 the probe laser is
tuned off-resonantly to the D, line transition 6°S,;,,,F =4 — 6°P3/,,F* =5 with negative

frequency detuning vg = 2—;; and the light emitted by the probe laser is linearly-polarized. Using this

information we are able to summarize the probe laser's interaction with the Cesium-133 atoms by
the propagation egs. (1.4.4.7.a-d), given that no external magnetic fields are present, and by
propagation egs. (1.5.3.a-d), given that an external static magnetic field is present.

In the experiments a Toptica DLpro diode laser is used as the probe laser; it is tuned off-resonantly
to the D, line transition 62S;/,,F = 4 - 62P;,, F* = 5 with negative frequency detuning vs =
—1600 MHz . According to the online source [41] that sells Toptica DLpro diode lasers, the Toptica
DLpro diode laser produces linearly-polarized light to a high degree (linear > 100:1). Before
subjecting the atoms to the light we clean the linear-polarization even further by making use
polarizing beam splitters, thus making sure that we probe the atoms with linearly-polarized light.

3.1.2 The pump and repump lasers

The pump and repump lasers constitute an optical pumping system, whose role is to put as many of
the Cesium-133 atoms into the coherent spin state |F = 4, mg = 4 > of the energy level 6281/2, F =

4, mgp = 4, as possible. As indicated by figure 4 the pump laser is tuned to the D; line transition
6°S1/2,F = 4 = 6°P; )5, F* = 4, and the repump laser is tuned to the D, line transition 6°S, ,, F =
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3 = 6°P3, F* = 4. In the experiments, the light emitted by the pump and the repump lasers is
right-circulary (o) polarized and travelling along the direction of a static magnetic field that we
produce as explained in section 3.3.

In order to see how our optical pumping system works we may use Fermi's golden rule with the
Hamiltonian for the dipole interaction and derive the following selection rules for the dipole
interaction driven transitions [25]:

AL = +1 (3.1.2.1.8)
AS=0 (3.1.2.1.b)
A]=0,+1 (3.1.2.1.¢)
AF =0,%1 (3.1.2.1.d)
Amg = 0 (m transitions) (3.1.2.2.3)
Amg = +1 (o, transitions) (3.1.2.2.b)
Amg = —1 (o_ transitions) (3.1.2.2.c)

where the quantum numbers L, S, J, F are the quantum numbers defined in section 1.1, but now the
capital letters are used, because we are dealing with ensembles of Cesium-133 atoms. Note that the
Cesium-133 atoms can also decay by spontaneous emission with the selection rule

Amg = 0,41 (Spontaneous emission) (3.1.2.3)

Observing the selection rules for the dipole interaction driven transitions, given by egs. (3.1.2.1.a-d)
and (3.1.2.2.a-c) and the selection rule for spontaneous emission decay, given by eq. (3.1.2.3), we
have that the pump laser light can bring the atoms from the energy levels 6281/2,F =4,mp =
—4, ...,3 to the energy level 6°S, /,,F = 4, mp = 4 with the help of spontaneous emission decay,
and if there are atoms in the energy level 6251/2, F=3,mp = -3, ..., 3, then they will be put to the
energy level 6°S, ,,F = 4, mg = 4 by the repump laser light with the help of spontaneous emission
decay. By increasing the pump and repump laser output power and by making sure that both the
pump and the repump laser light is right-circularly-polarized, the value of mg can be made to
increase on average during the optical pumping process such that all of the Cesium-133 atoms are
put into their coherent spin state |4,4 > of the energy level 6281/2,F = 4, mg = 4. In figure 5 we
can see an illustration showing an example how the optical pumping system will put a Cesium-133
atom into the energy level 6251/2,f = 4, m; = 4, if it starts in the energy level 6281/2,f =4, m; = 2.

— f=d
- f=3

Figure 5. An illustration showing how the optical pumping system will put a Cesium-133 atom into the energy level 6251/2,f=
4, m¢ = 4 with the help of spontaneous emission decay, if the atom starts in the energy level 6251/2,f = 4, m¢ = 2. The pump laser
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action is shown on the left of the figure and the repump laser action is shown on the right of the figure; both lasers are assumed to
produce right-circulary (o) polarized light. Starting with the left figure, a Cesium-133 atom starts in the energy level 6251/2,f=
4, m; = 2, from which it is lifted to the energy level 62P1/2,f= 4, m; = 3 by the pump laser light; from 62P1/2,f = 4, mp = 3 the
atom can spontaneously decay into the energy level 6251/2, f=3withms=2,30r 6251/2, f = 4 with m¢ = 2, 3, 4. If the atom will
only spontaneously decay into the energy level 6281/2,f = 4, it will eventually end up in the coherent spin state |4,4 > of the energy
level 6251/2,f= 4,m; = 4, which is a dark state from which the atom will not move further; if, however, the atom does
spontaneously decay into the energy level 6251/2,f = 3, this will be counteracted by the repump laser light shown on the right of the
figure. This pumping scheme will work due to fact that the light emitted by the pump and the repump lasers travels along the

direction of a static magnetic field, and due to the selection rules given by egs. (3.1.2.1.a-d), (3.1.2.2.a-c) and (3.1.2.3). The figure is
adapted from [1].

In the experiments two separate Toptica DL100 diode lasers are used as the pump and repump
lasers. According to the online source [42] that sells Toptica DL100 diode lasers, the Toptica
DL100 diode laser produces linearly-polarized light to a high degree (linear > 100:1). Before
subjecting the atoms to the light we clean the linear-polarization even further by making use
polarizing beam splitters, similarly to the case of the probe laser light. In order to turn the linearly-
polarized light into right-circulary polarized light in the experiments, we put, in succession, a
quarter-wave plate (QWP), and a half-wave plate (HWP) in the path of the respective light beams.
For e.g. linear horizontally-polarized light entering the QWP, we have according to the Jones matrix

calculus introduced in appendix D, that the QWP must be g-rotated, and the HWP after the QWP

must be g-rotated, such that the linear horizontally-polarized light can be turned to right-circularly-
polarized light.

3.1.3 Locking the frequencies of the lasers

In this subsection I will explain what we do in order to lock the frequencies of our lasers.

Atomic motion causes Doppler broadening of hyperfine atomic transitions. Because atomic
velocities are distributed according to the Maxwell-Boltzmann distribution [26], this broadening has
a Gaussian profile. The full-width-at-half-maximum (FWHM) of this Gaussian profile is given by

_ ,SkBTln(Z)
SVD,FWHM,atom - m 2 Vrest (3131)
atomC

where kg is the Boltzmann constant, T is the temperature, and v..s IS the frequency of the
hyperfine transition, when an atom of mass mg,,, IS at rest with respect to the lab frame, hence
referred to as the rest frequency of the hyperfine transition.

In a case of the repump laser, we have in eq. (3.1.3.1) that v,..s: = vp,, Where vy, is the frequency
of the D, line transition, and also ma, = mcg, Where meg is the mass of a Cesium atom, and
T~293 K is the room temperature, such that

SVD,FWHM,CS;DZ ~ 274 MHz . (3132&)
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Note that there are also other line width broadening effects involved such as, e.g., the power
broadening effect. However, the Doppler broadening effect is here the most significant one, such
that for simplicity we will be neglecting other line width broadening effects.

For comparison, recall below eq. (1.4.3.6) that the natural FWHM line width of the D, line
transition is (in units of inverse of time)

8Vn,FWHM,Cs;D2 = 5.22 MHz . (3132b)

Observing figure 4 and egs. (3.1.3.2.a) and (3.1.3.2.b) we see that the repump laser will take the
Cesium-133 atoms from the hyperfine structure level 62Sy,, F = 3 to any of the other three hyperfine
structure levels 6°P, F' = 2, 3, 5 with a significantly increased probability due to the Doppler
broadening effect.

In order to lock the frequencies of our lasers at the desired points we make use of an experimental
technique known as frequency modulated (FM) saturated absorption spectroscopy. We employ this
technique for each of our lasers by building setups, whose diagrammatic representations can be
seen in figure 6.

(a) (b)
PROBE LASER OPTICAL  ywp  pBs
ISOLATOR n m to experiment
- 1l .
LLLL LLLL
NDF NDF
a a
QWP QWP
e FIBER-COUPLED EOM o
PUMP LASER [ Cs-133 CELL [] Cs-133 CELL
or
REPUMP LASER OPTICAL HWP PBS HWP PBS
ISOLAIOR H Ea to experiment I'I I
signal generator signal generator
! Det ! Det
Pl Pl
controller controller
mixer mixer

Figure 6. (a) and (b) Diagrammatic representations of setups that employ frequency modulated (FM) saturated absorption
spectroscopy, which is an experimental technique that allows us to lock the frequencies of our lasers at the desired points. (a) depicts
the cases of the pump and the repump lasers; and (b) depicts the case of the probe laser. In the figures we have that the solid red lines
are optical paths, the solid blue lines are electrical-signal paths, PBS stands for polarizing beam splitter, HWP stands for half-wave
plate, QWP stands for quarter-wave plate, NDF stands for neutral-density filter, Cs-133 cell is a Cesium-133 vapor cell, Det is a
photodetector, and PI controller is a proportional-integral controller.

In figure 6 we see that the light originating from a given laser travels through an optical isolator and
then a part of this light is reflected by a polarizing beam splitter (PBS), where it used for FM
saturated absorption spectroscopy. Note that the function of the optical isolator is to prevent
potential back-reflections from entering the laser.
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Figure 6 (a) depicts the cases of the pump and the repump lasers. Here we see that the reflected light
travels in succession through the Cesium-133 vapor cell, the quarter-wave plate (QWP), and the
neutral-density filter (NDF), then becomes reflected back on a mirror, and then travels in succession
through the NDF, the QWP, and the cell again, and, finally, gets transmitted by the PBS and picked
up by the photodetector Det. The function of the QWP is to make sure that when the light passes the
cell for the second time, all of this light becomes transmitted by the PBS and nothing gets reflected;
in order to see why this is true, one can make use of Jones calculus introduced in appendix D. Also,
the function of the NDF is to attenuate the light beam.

Figure 6 (b) depicts the case of the probe laser. Here we see that the reflected light first travels
through a fiber-coupled electro-optic modulator (EOM) before it propagates the same way as in the
case of the pump and the repump lasers seen in figure 6 (a). The function of the fiber-coupled EOM
is to create frequency sidebands that allow us to lock the frequency of the probe laser at the large
negative frequency detuning vs = —1600 MHz mentioned in subsection 3.1.1.

Now, from the absorption signal originating from the photodetector, we will see small but distinct
peaks revealing the rest frequencies of the hyperfine transitions, and these peaks will have FWHM
line widths close to the natural FWHM line widths of the corresponding hyperfine transitions.
These peaks result from the motionless atoms and the atoms moving perpendicular to the beam path,
both of which resonate with the counter-propagating light beams, i.e. the strong light beam and the
attenuated light beam. These peaks are produced because the strong light beam will saturate the
transition such that the attenuated beam will induce stimulated emission, and so, a small peak in the
Doppler broadened profile will appear, thus revealing the rest frequency of the hyperfine transition.

Note that between the peaks that reveal the rest frequency of the given hyperfine transition, there
will be cross-over peaks. These cross-over peaks result from the moving atoms that resonate with
the counter-propagating light beams.

We wish the frequency of the given laser to be locked at the center of a designated peak. Locking
the frequency will require a feedback-mechanism to the laser electronics, because the frequency of
the laser might naturally drift. The absorption signal is, however, not used for the locking. Instead,
the derivative of the absorption signal, known as the error signal, is used for the locking.

In order to obtain the error signal, a sine modulation signal sin(wmodt+ (pmod,l) of angular
frequency wm,0q and phase @41 1S Created by a signal generator and fed to the laser electronics.
With this modulation signal, the laser will generate +w,,q-Sidebands. If we were to detect this
frequency modulated light after its interaction with the Cesium-133 vapor cell with a photodetector,
the photocurrent resulting from that photodetector would contain a component oscillating as
sin(wpyeqt) and another component oscillating as cos(wpeqt) . The component oscillating as
sin(wmeqt) is proportional to the difference in absorption of the two sidebands; and the component
oscillating as cos(wyeqt) is proportional to the difference between the phase shift of the carrier and
the (average) phase shift between the two sidebands. In our situation w,,,q =& 4 MHz, which is
small compared to the hyperfine structure energy splitting, and so, the component oscillating as

46



sin(wmyeqt) is the derivative of the absorption signal, i.e. it is the error signal. Now, in order to pick
out the error signal, the photocurrent resulting from the photodetector Det in figure 6 is via a mixer
combined with the sine demodulation signal Sin(wmodt + (pmod‘z) of angular frequency wmeq and
phase @42 Created by a signal generator. By adjusting the phase difference @041 — @mod 2, ON€
is able to pick out the error signal. This error signal is then fed to a proportional-integral (PI)
controller. The signal generated by the Pl controller then travels to the laser electronics, and this
completes the frequency locking feedback-mechanism.

In figure 7 we can see the absorption signal and the error signal for the probe laser light, when the
fiber-coupled EOM is turned off such that sidebands are not produced.

Absorption signal

o~ P o

Signal [a.u.]

Error signal

| | | | -4?2| -2§1| | | | | | |
1 1 1 1 1 1 1 1 T 1 1 1
1200 -1000 -800 -600 -400 -200 O 200 400 600 800 1000
Detuning relative to the 6°S ,, F=4 — 6°P,,, F'=5 transition [MHz]

Figure 7. Absorption and error signals for the probe laser light, when the fiber-coupled EOM seen in figure 6 is turned off such that
sidebands are not produced. The horizontal axis is the detuning relative to the D, line transition 6251/2,F =4- 62P3/2, F'=5.1In
the absorption signal we can see the peaks that reveal the rest frequency of the hyperfine transitions 6251/2, F=4- 62P3/2, F'=
3,4,5; and we can also see the cross-over peaks. Using the information provided by [35], it is possible to know which peaks
correspond to which peaks. The peaks corresponding to the transitions 6251/2, F=4- 62P3/2, F* = 3 and 4 are respectively -452
MHz and -251 MHz away from the 62S;,,F = 4 — 62P;,,F * = 5 transition according to figure 4, and this information is used in

this figure.

3.2 The microcells

The Cesium-133 atoms used in our experiments are in a gaseous form and are contained in glass
microcells. The reason why the atoms are in a gaseous form is because the microcells are held near

room temperature.
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In the following | first present the general characteristics of the microcells used in the experiments
described in this thesis. Next, | present the experiment that determines the atomic density of
Cesium-133 vapor inside the microchannel of a microcell, and then the experiment that determines
the Faraday angle for the linearly-polarized probe laser light as it passes through the microchannel
of a microcell. From the Faraday angle measurements we will see how the spin-depolarization time
T, of the Cesium-133 atoms can be extracted. Next, | explain how to investigate the spin states
|F = 4, mg >, where mg = -4, ... 4, using the magneto-optical resonance method [11], and show
experimentally how to obtain the magneto-optical resonance signal (MORS). By using the
magneto-optical resonance method we will see how the transverse spin-coherence time T, of the
Cesium-133 atoms can be extracted from the MORS.

Note that this section will make it clear why the particular experimental measurements mentioned in
the above paragraph are important for the atom-membrane entanglement experiment described in
chapter 4.

3.2.1 General characteristics of the microcells

In figure 8 (c) one can see how typical microcells used in the experiments look like. The microcells
consist of a chip, seen in figure 8 (a), enclosed by a cylindrical body on which a stem is attached.
The microcells are completely made out of borosilicate glass; the reason for that being that
borosilicate glass has a very low coefficient of thermal expansion [27], making the dimensions of
the microcell almost fixed if it is being heated, or cooled, for the reasons described below. As seen
in figure 8 (a), there is a microchannel in the middle of the chip with dimensions 300 pum X 300 pm
x 10 mm; the light originating from the probe laser passes through this microchannel. As seen in
figures 8 (a) and (b), a microhole of a conical shape is drilled at the top of the chip to create a 20 um
entrance into the microchannel. The microhole allows Cesium-133 atom vapor to enter the
microchannel. In the stem of the microcell there is a reservoir of Cesium-133 atoms in a solid form,
and by heating, or cooling, the microcell one can control the amount of Cesium-133 atom vapor
inside the microchannel that will enter through the microhole. At the both ends of the microchannel
of the bare chip seen in figure 8 (a) one attaches 500 pum thick windows with vacuum tightness;
these windows have an anti-reflection coating on the outside such that beam losses are reduced.
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Figure 8. Photos of a typical microcell used in the experiments with Cesium-133 atoms. (a) bare chip, (b) close-up of the
microchannel in the chip and the laser-drilled microhole, (c) finished microcell with windows that have anti-reflection coating. Photo
credit: Kasper Jensen.

During the manufacturing process of the microcells, an alkene-based anti-relaxation coating is
deposited through the microhole into the microchannel, where it then sticks to the walls of the
microchannel; the particular compound used is alkene 1-nonadecene. As the Cesium-133 atoms
collide with the walls of the microchannel, they can decohere from their quantum spin state; and
with the coating in place it will take longer time for the Cesium-133 atoms to decohere than if there
was no coating in place. As will be understood from section 3.2.3 by means of optical pumping the
coating deposited on the walls of the microchannel can effectively allow us to conduct our atom-
membrane experiment on timescales of milliseconds. However, if there was no coating in place, the
timescale could be reduced to microseconds. The latter can be seen as the Cesium-133 atoms inside
the microchannel follow a Maxwell-Boltzmann distribution for thermal motion, and so their mean
thermal speed at room temperature of 20°C (293 K) is

Viean = |-BT ~ 216 mls (3.2.1.1)

TMCs

where T = 293 K is the temperature. From eq. (3.2.1.1) we see that a Cesium-133 atom should

Ltransverse

collide with the wall of the microchannel every ~ 0.5 ps, where Liransverse = 300 pm is

Vmean

the transverse dimension of the microchannel as seen from figure 8 (b). The real reason why the
anti-relaxation coating works the way it does is not fully understood in the literature; however, from
the documented experimental work of Bouchiat and Brossel on relaxation of alkali atoms on
paraffin surfaces [28], we can learn that alkali atoms (such as Cesium atoms) do not simply scatter
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elastically off the coated surface, but rather stick fast to the coating for some finite time thereby
increasing the time period in which the atoms spend inside the body of the microchannel.

Note that we can neglect the decoherence effects due to intra-atom collisions inside the microcells.
This is justified as in alkali atom vapor, the interaction between the atoms is dominated by spin-
exchange collisions [28]. The rate of the spin-exchange is given by [20]

Tex = POexVmean - (3212)

where p is the atomic density, and o, is the spin-exchange cross-section. Now, p is on the order of
101® m~3 from the atomic density measurements in section 3.2.2 (at ~20°C, according to the lab
thermometer), o, =~ 2 - 10718m? for Cesium atoms [36], and v,ean = 216 m/s from eq. (3.2.1.1);

plugging all this into eq. (3.2.1.2) we thus find that T, = Fi is on the order of 1 second, which is

ex

significantly longer than the effective timescales of milliseconds of our atom-membrane experiment.
It is reasonable to assume that T,y > 1 ms for temperatures close to 20°C, and so, in the end, we
can indeed neglect the decoherence effects due to intra-atom collisions inside the microcells.

We have many microcells in our lab and so we name them. Generic names such as e.g. "D4", "A2",
"F3" are chosen. The capital letter refers to the generation of the mircocell, where "A" refers to the
1st generation, "B" refers to the 2nd generation, etc.; and the numbers 1, 2, 3 etc. refer to the
number of the cell in the particular generation. The characterization measurements seen in the
following subsections were performed using the microcell G2, which is not the same microcell that
is used in the in the atom-membrane entanglement experiment described in chapter 4.

Note that in the experiments the probe laser light beam has a diameter of ~110 um measured at the
middle of the microchannel; in this way the beam fills the microchannel with minimal power
clipping. During the measurement time, the probe laser light will interact with all the Cesium-133
atoms inside the microchannel as they move around.

3.2.2 Atomic density measurements

In this subsection | present the experiment that determines the atomic density of Cesium-133 vapor
inside the microchannel of a microcell.

In this experiment the light beam originating from the probe laser is aligned through the
microchannel of a microcell and the transmitted light is picked up using a photodetector. The probe
laser is scanned in frequency over both hyperfine manifolds of the D, line transition, and as the
probe laser is scanned, the photodetector provides the signal seen in figure 9.
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Figure 9. A signal obtained by sending probe laser light through the microchannel of the microcell G2 and then picking up the
transmitted light using a photodetector. The photodector offset has been subtracted. The probe laser is scanned in frequency over
both hyperfine manifolds of the D, line transition, and the pump and repump lasers are turned off. The two dips that are seen during
either the rising or the falling scan correspond respectively to the Cesium-133 atoms in the energy levels 62S,,,, F = 3 and 62S,,, F =
4 that undergo the transitions 625, ,,, F = 3 = 62P; 5, F* = 2,3,4 and 6°S;,,F = 4 - 62P;,,F ' = 3,4,5, as these atoms absorb
the photons originating from the probe laser. These transitions follow from observing figure 4 and egs. (3.1.2.1.a-d).

Here we see two dips appearing in both the rising and the falling scan of the probe laser. The two
dips that are seen during either the rising or the falling scan correspond respectively to the Cesium-
133 atoms in the energy levels 6°S1;,, F = 3 and 6°Sy,, F = 4 that absorb the photons originating
from the probe laser. The light from the probe laser must be of sufficiently low power (on order of
100 nW) in order to minimize the depumping effects as much as possible. As the scanning changes
from rising to falling, the same energy level is being passed twice. We observe in the figure that the
dip after the rising edge is smaller than the preceding dip. This is caused by the depumping of the
atoms from e.g. 62Sy,, F = 4, such that when the same laser frequency is reached for the second
time there are fewer atoms in the same energy level to absorb the photons. Note that in order to
understand which dip corresponds to which energy level one can shine on the atoms with the
repump laser light. Since from section 3.1.2 we have that the repump laser light will put the atoms
from 6%Sy),, F = 3 t0 6°Sy)5, F = 4 with the help of spontaneous emission decay, we should see that
as the repump laser light is applied, then the dip corresponding to 62Sy,, F = 3 should disappear and
the dip corresponding to 6°Sy;,, F = 4 should increase. When the check with the repump laser is
performed, we can also perform a check on the pump laser, where we apply both pump and repump
laser light and see how the pump laser light puts some of the atoms 62S;,, F = 4 back to 6°Syy,, F =
3; this would make sense since from section 3.1.2 we have that the pump laser light will put the
atoms from 62Sy,, F = 4 to 6°Sy5, F = 3 with the help of spontaneous emission decay.
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Now, from the obtained signal we can calculate the atomic density of Cesium-133 vapor inside the
microchannel by the use of the Lambert-Beer law [26], which tells us that the intensity of light of
frequency v that has propagated a distance z through an attenuating medium can be written as

I,(2) = 1,(0)e P=e™ (3.2.2.1)

where I,,(0) is the incident intensity, p is the atomic density, and o(v) is the absorption cross-
section. From the Lambert-Beert law given by eq. (3.2.2.1), we find for the atomic density p:

_ Jdv{-In[ly(2)/1y(0)]}
p - ZdeO'(V) ’ (3222)

where we now set z = L = 0,01 m, because it is the length of the microchannel as seen from figure 8

(@).

In order to determine the numerator in eq. (3.2.2.2), we first need to take the signal in figure 9
(where the photodetector offset is subtracted as mentioned in the figure text) from either the falling
or the rising scan and convert this signal from the time domain (as it is on the figure) to the
frequency domain. In order to do so, we observe figure Al in appendix A and make use of the fact
that the hyperfine splitting frequency between the energy levels 6°Sy, F = 3 and 6°Sy, F = 4 is
vurs = 9192 MHz, such that the spacing between the dips can serve as a reference in order to
convert from the time domain to the frequency domain. Next, we fit a line to the frequency-domain-
signal with the dips omitted, and then divide each point on this signal with the corresponding point
on the line we just fitted; and so the ratio I,(L)/I,(0) can now be found for the different
frequencies, and thus the numerator in eq. (3.2.2.2), where z = L, can be determined.

In order to determine the denominator in eq. (3.2.2.2) we can write the integral [ dvo(v) in terms
of absorption oscillator strength of a transition between two states respectively characterized by the
electron total angular momentum quantum numbers j and j'; it may be written as

£ = eomec3 2j'+1
L = _
1) 2me2vy2 2j+1 SPon

, (3.2.2.3)

where mg is the mass of an electron, v, is the transition frequency, and Iy, is the spontaneous
emission decay rate. For the Cesium-133 D; line transition, where j = 1/2 and j' = 3/2, we have,
according to [43], that f;;» = 0.7164. In terms of f;;» we have that that the integral

J dvo(v) = meref;;r = 1.9021 - 10‘6mT2 : (3.2.2.4)

where ry) = 2.8179 - 10715 m is the (classical) radius of an electron. Using eq. (3.2.2.4) we are
finally able to determine the atomic density of Cesium-133 vapor inside the microchannel of a
microcell.

The signal seen in figure 9 thus shows that the atomic density of Cesium-133 vapor inside the
microchannel of the microcell G2 is p = 2.40 - 10 m~3. p here is obtained by averaging the result
from both the falling and the rising scan.
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Since the volume of the microchannel is Vhanet = (0.3 x 0.3 x 10) mm? as seen from figure 8 (a),
we find from the density p = 2.40-10'® m™3 the number of Cesium-133 atoms inside the
microchannel to be N¢s_133 = PVehanner = 2.16 - 107.

With a high number of Cesium-133 atoms inside the microchannel it becomes possible to put more
atoms to the coherent spin state |F = 4, mp = 4 > such that x? can be increased.

3.2.3 Faraday angle and T; measurements

In this subsection | present the experiment that determines the Faraday angle of the linearly
polarized probe light as it passes through the microchannel of a microcell. From the Faraday angle
measurements we will see how the spin-depolarization time T; of the Cesium-133 atoms can be
extracted.

The Faraday angle is an angle by which linearly-polarized light is rotated as it propagates through a
given medium.

In our case, we have the linearly-polarized probe laser light propagating through the Cesium-133
vapor medium inside a microchannel of a microcell in the z-direction, and here the Faraday angle is
defined as

0p() = 2(,(®) (323.1)
where (J,(t)) refers to the mean value of the longitudinal Cesium-133 atomic ensemble total
R 2
angular momentum operator J,(t), and a = —% as defined below egs. (1.4.4.4.a-f).
5

A diagrammatic representation of the setup used for the Faraday angle 6 (t) measurement is seen in
figure 10. Here we place a ring magnet next to the microcell in order to subject the atoms to a static
magnetic field pointing along the z-axis. The static magnetic field forces us to use the z-axis as the
quantization axis as understood from section 1.5; and so, by sending a pulse of combined pump and
repump light in the same direction as the magnetic field direction, being the z-direction, we are
according to section 3.1.2 optically pumping the Cesium-133 atoms to the coherent spin state
|4,4 >. Right after the combined pump plus repump laser pulse we send a pulse of linearly-
polarized probe light in the z-direction through the microchannel. The pulse sequence is produced
using acousto-optic modulators (AOMs) with both the pump plus repump pulse and the probing
pulse being of 50 ms duration each.

53



Pulse sequence
PUMP LIGHT
& S. I Pumping I Probing | ’
\- 50 ms 50 ms Y
»
BS1 time
REPUMP LIGHT Sq
OSCILLOSCOPE
Detl
PROBE LIGHT MICROCELL I-I
E  m— | |_|
Det2
BS2 m—e- HWP PBS
Bstatic

Figure 10. A diagrammatic representation of the experimental setup used for the Faraday angle 6z(t) measurement, where 8g(t) is
defined in eq. (3.2.3.1). Photocurrents from photodetectors Detl and Det2 travel to an oscilloscope which is used to read out 8g(t). In
the figure we have that BS stands for 50/50 beam splitter, PBS stands for polarizing beam splitter, HWP stands for half-wave plate,
and Bgatic IS the static magnetic field pointing along the z-axis that the Cesium-133 atoms in the microcell are subject to.

Let us now use Jones matrix calculus introduced in appendix D, and find the intensities picked up
by respectively the photodetector Detl and Det2. From these intensities we will be able to
determine the Faraday angle 6¢(t) in eg. (3.2.3.1). By making use of Jones matrix calculus, we will
need to treat the probe laser light classically.

From eq. (D.1) we have that the Jones vector for the probe light before the microcell in figure 10 is

v _ EH]: EOHei((pH—(Dot) _ EOHei(‘PH_th) (3232)
in® = Ey Eovei(cpv—wot) EOHei(cpﬁ—wot) ' 2.3.

where Ey; and Ey are the (complex) horizontal and vertical polarization components, respectively,
of the electric field E(z t) = Vi, ¢,€'** of a monochromatic plane wave of light, which in the
present case describes the probe laser light, which travels along the z-axis, where k is the angular
wave number and ®y is the angular frequency of the probe laser light with k = w¢/c, and Ey and
Eov are the amplitudes of respectively Ey and Ey with ¢y and ¢y being the respective phases. In
the last equality we assume that Eqg = Eqy and @y = @vy.

The Jones matrices that we will use in the present case are: Mgr(8), Mgwp(®,0) and
M por(Pr, Pv), Which respectively are the Jones matrix for a rotator defined in eq. (D.3.a), the
Jones matrix for a rotated wave plate defined in eg. (D.3.b) and the Jones matrix for a perfect linear
polarizer defined in eq. (D.3.c). Here 6 is the angle of the fast axis of a wave plate with respect to
the horizontal axis, ¢ = @y — @y, and py, py =0or 1.

Observing figure 10 we now find
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1. the Jones vector for the light incident on the Det1:

— — — 0
Vi,6r = Mpps-MuwpMmicroceLL Viner = [EOH(sin(BF(t)) _ COS(GF(t)))ei((pH—mot)] . (3233.9)

2. the Jones vector for the light incident on the Det2:

_ [EOH(Sin(eF(t)) + COS(GF(t)))ei(“’H_‘”"t)] . (323.3h)

V;,0r = Mpgs,a-MuwpMwmicroceLL Vinop 0

In egs. (3.2.3.3.a-b) we assume that the Cesium-133 atoms inside the microchannel of a microcell
act to rotate the linear polarization of the probe laser light by the Faraday angle 6¢(t), and so the
Jones matrix for the microcell is MyjcrocELL = l\=/IR(eF(t)); the HWP is assumed to behave as a
non-rotated half-wave plate which introduces the phase shift ¢ = m between the horizontal and
vertical components of the light such that the light intensities that are picked up by the Detl and
Det2 are the same, when the microcell is not present, and so the Jones matrix for the HWP is

Mpywp = Mpwp(T, 0) ; the polarizing beam splitters used in our experiments transmit the
horizontally-polarized component of the light and reflect the vertically-polarized component of the
light, and so the Jones matrix for the PBS reflecting the light is Mpgg, = M,p0.(0,1) and the Jones
matrix for the PBS transmitting the light is Mpgs . = My poy(1,0).

From egs. (3.2.3.3.a-b) and (D.2) we now find
1. the differences in the intensities picked up by respectively the Detl and Det2 to be

11,91: - IZ,BF X Vf,ep ° Vl,ep - Vz*,ep ° Vz,ep =
4E2y sin(0g(1)) cos(0:(D)) =~ 4EZ40p(D) , (3.2.3.4.9)

where the approximations sin(8z(t)) =~ 0g(t) and cos(Bg(t)) ~ 1 are used.
2. the sum of the intensities picked up by respectively the Detl and Det2 to be

liep + loe, < Vig, ® Vig, + Vig, ® Voo, = 2E3y | (3.2.3.4.h)
Egs. (3.2.3.4.a-b) tell us that

Lior — Lo = 2(11.91: + Iz,ep)eF(t) =>

liop—I20
Or(t) = —Z(IL:FHZGFF) . (3.2.3.5)
The Faraday angle 6z (t) measurement results for different probe light powers using the microcell
G2 are seen in figure 11. We observe that g (t) decays in time. 8g(t)'s decay in time follows from
the definition of 6z (t) in eq. (3.2.3.1), where it is seen that 0z(t) o (J,(t)). Assuming that (J,(t)) =
(J,(0))e~%T1, where T, is called the spin-depolarization time, and is a concept, whose origin is
explained in appendix B, we see that under this assumption T; defines the time at which (J,(t)) has
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decayed by the factor of %from its initial value. Since 8 (t) «< (J,(t)), it must thus under the

assumption that (j,(t)) decays exponentially in time follow that 0z (t) also decays exponentially in
time and that T, now defines the time at which both (j,(t)) and 0g(t) have decayed by the factor of

%from their initial value. The assumption regarding the exponential decay is made use of when

extracting the Faraday angle 6x(0), which is the Faraday angle at the beginning of probing, i.e. at
t = 0, and the spin-depolarization time T;, from the 6z(t) measurements. In figure 12 (a) we can
see that 6x(0)~1.38 ° for the microcell G2. 6z(0) should stay constant with respect to probe light
power Ppyrone, because t = 0 signifies the beginning of the probing, where the depumping of the
Cesium-133 atoms from |4,4 > due to probing cannot yet happen, and there is also nothing in the
definition of the Faraday angle 6g(t), i.e. eq. (3.2.3.1), that would indicate that 6(0) shouldn't stay
constant. One of the reasons why 6(0) is seen not to be constant might be because the microcell
was exposed to stray magnetic fields. In such a case the optical pumping becomes compromised
such that a different amount of Cesium-133 atoms reside in the coherent spin state [4,4 > att =0
for the different measurements, and thus (j,(0)) « 8g(0) is different for the different measurements.
Note that neither the raw data nor the fitting can provide us with a constant 6z(0). See section 3.3,
where we discuss how in the remaining experiments we shield the microcell from stray magnetic
fields. In figure 12 (b) we can see how the inverse of T, depends on the probe light power. We see
that using a higher probe light power will decrease T, ; this is because for higher probe light power
there is a higher chance of the depumping of the Cesium-133 atoms from |4,4 >, because of the
power broadening. Assuming that we may fit a linear curve to the data points seen in figure 12 (b),
we can extract T; for the microcell G2, when there is no probe light; in such a case we obtain
Ty~2.75 ms.
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Figure 11. Experimentally obtained graphs, seen as black lines, showing how the Faraday angle 6 behaves in time t for different
probe light powers Ppqre (S€€N in the legends) using the microcell G2. The red lines are fits to the experimentally obtained graphs. In
order to make reasonably good fitting in the region from 0 to 14 ms, exponential curves with added constant offsets are fitted. If we
assume that the decay of 6g(t) in the region from 0 to 14 ms follows an exponential decay without an added constant offset, it must
thus follow that there is a constant offset produced by the experimental procedure. In order to extract the Faraday angle 6(0), which
is the Faraday angle at the beginning of probing, i.e. at t = 0, and the spin-depolarization time T;, we must thus subtract the constant
offsets. Note that if the experimental procedure does not, however, produce the constant offsets, it must thus follow that 6 (t) does
not follow a simple exponential decay.
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Figure 12. (a) Experimentally obtained data points, seen as black dots, showing how the Faraday angle 6 (0), which is the Faraday
angle at the beginning of probing, i.e. at time t = 0, varies for different probe light powers Ppqe using the microcell G2. As
explained in the text, 6x(0) should stay constant with respect to P Taking the average of 8¢(0) at the different Pyope, We
nevertheless conclude that 6(0)~1.38 ° for the microcell G2. (b) Experimentally obtained data points, seen as black dots, showing
how the inverse of the spin-depolarization time T, varies for different probe light powers Py Using the microcell G2. Assuming
that we may fit a linear curve to the data points, seen as a red line, with the fit being 1/T; = 0.008P o1 + 0.363, we can extract the Ty
for the microcell G2, when there is no probe light; in such a case we obtain T; ~2.75 ms.

The measurements here show that by means of optical pumping the coating deposited on the walls
of the microchannel can effectively allow us to conduct our atom-membrane experiment on
timescales of milliseconds.

3.2.4 MORS and T, measurements

In this subsection | explain how to investigate the spin states |[F = 4, mg >, where mg = -4, ... 4,
using the magneto-optical resonance method and show experimentally how to obtain the magneto-
optical resonance signal (MORS). By using the magneto-optical resonance method we will see how
the transverse spin-coherence time T, of the Cesium-133 atoms can be extracted from the MORS.

A diagrammatic representation of the setup used for this experiment is seen in figure 13. Here we
place the microcell containing Cesium-133 atoms inside a magnetic shield, which can subject the
atoms to a static magnetic field pointing along the z-axis and a radio frequency (RF) magnetic field
oscillating on the x-axis; the magnetic shield used in this experiment is described in section 3.3.
According to appendix A the static magnetic field will make the energy of each Zeeman energy
levels mg change as shown in figure Al; here we see that the frequency difference between the two
closest sets of two nearby m¢ — lines in figure Al is the quadratic Zeeman splitting frequency

Voz = ‘?V—LZ given by eq. (A.5), where Q; = 2mvy, is the Larmor frequency and vygs is the hyperfine
HFS

spilling frequency. To understand the role the RF magnetic field we write down the Hamiltonian
describing the interaction of the static and RF magnetic fields with the atoms as
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HB, 0 Bre = HBoaue + HBge = -3 (1) * B+ 0(B?) (3.2.4.1)

static

where the static magnetic field along the z-axis contributes by Hg__. = %iz(t)Bstatic +
O(BZ.,.i.) to the Hamiltonian, where the second order contribution O(Bstam) mcorporates the

quadratic Zeeman splitting frequency vqz =

A), and the RF magnetic field oscillating on the x-axis contributes by
Hg,, = u%gix(t)lBRpl cos(wgpt + @gp) to the Hamiltonian, where |Bgg| is the amplitude of the RF
magnetic field Bgg of angular frequency wgr and phase @gg. Note that for simplicity the second
order contribution O(B3g) is neglected.

With the z-axis as the quantization-axis let us now write the total angular momentum operators
Jx(©), ]y (©), J.(t) of N Cesium-133 atoms in the hyperfine structure energy level F as

2 C(Fmp) 5 ~
] = IFl’lpl——F mF mF+1,mF + Gmp,mp+1} ’ (3242a)
2 C(F ) (~ ~
] = szp——F mF { mF+1,mF - Gmp,mp+1} ' (3242b)
TZ = NZmF=—FmFGmF,mF ' (3242C)

where h = 1 is used, the time t dependence is suppressed, C(F, mg) = /F(F + 1) — mg(mg + 1),
and

Gij = < IhL1 B = Z TN i Gl (3.2.4.3)

is the density operator for the mg — levels of the F — level, where i, j=mg= -F,-F+1, ..., Fand
the sum is done over N atoms, where O'(k)IS density operator for a single Cesium-133 atom, used in
chapter 1.

For simplicity we now set N = 1; and so, using the density operator G;; in eq. (3.2.4.3) we can

rewrite the Hamiltonian Hg___._p.. as

,BRF

0 F HBg

Hp,,.Brr = Zmp=—F N®OmeOmpmp + = Ympe—r C(F, Mp){Gmp+1m:Brre'“FF + h.c.} |, (3.2.4.4)

where hwp,, is the energy of the mg — level, and Bgp = |Brr|e " 19RF is the complex amplitude of
Brr. The first term is the static magnetic field contribution, and because of the density operators
Ompmg Which measure the probability for Cesium-133 atoms of being in the ground spin state
|F, mg >, we have that it is responsible for the mg — level energy splitting. The second term is the
RF magnetic field contribution in the rotating-wave approximation, where we neglect the fast-
oscillating terms, and because of the density operators G, 41,mp aNd Gmyme+1, Which express
coherence between the ground spin states |F, mg > and |F, mg,; >, we have that it is responsible
for driving the transitions between the mg — levels.
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Now, to understand how the Cesium-133 atoms are transferred between different spin states
|F, mg >, where mg = -F, -F + 1, ..., F, we must know how the off-diagonal density operators G,
i # j, evolve in time; and to do so, we use the Lindblad-Heisenberg equation of motion

0~ 11~ o Tij o .
aci']- = E [Gi,jr HBStatichRF] — TGL]' (1 * ]) ) (3245)

where the second term is the decay term that is due to the interaction with the environment, with T ;
being the decay rate of the transverse total angular momentum operators J,(t) and Ty(t) for mg —

. -1 . .
level transition i — j. We have that I}; = (nT,;.;) , where T,;_,; is the transverse spin-coherence

time for mg — level transition i — j. Transverse spin-coherence time is a concept, whose origin is
explained in appendix B.

In order to understand the method for solving eq. (3.2.4.5), we can pick out a single example. By

inserting the Hamiltonian ﬁBstatic:BRF in eq. (3.2.4.5) for e.g. 6, , we obtain

0 ~ 11~ i3

— Ti2 A~ _ (21 F12)\ ~
7:912 — Gl:Z’HBstatic;BRF] - 012 % (_i - )012—

—%{C(F, 1)[8,2 — 811]|Brre ' RFt + [C(F, 008, — C(F, 2)3, 5|Brrel®RFt} |, (3.2.4.6)

where wy, b, = Wy, — Wy, IS the transition angular frequency between the energy levels with mg =
b, and mg = b,, where b; # b, . Now, in this experiment we can assume that the angle by which
the mean of total angular momentum operator j(t) deviates from being oriented from z-axis is much
less than unity, and so it is justified that 6, ,, 6;3 — 0 in eq. (3.2.4.6). Also, since wgg is close to
the transition angular frequency w,}, in this experiment, we can define the slowly varying operators

61']' = Gi’jei“)RFt ) (3247)
such that eq. (3.2.4.6) now is turned to
a . T12) ~ ~ ~
5012 = (1(00RF — Wy1) — %) 012 — %C(F, 1)[02,2 - 01,1]BRF : (3.2.4.8)

Assuming that in this experiment the spin-depolarization time T, is longer than the transverse spin-
coherence time T ;_,;, i.e. T; > T,;_,;, we have that &, , will follow (62,2 - ’0‘1,1) adiabatically, such
that we can assume that G, , stays constant in time, i.e. %6’1’2 = 0. Using this assumption in eq.
(3.2.4.8) we get

~  _  ppgBrrC(F,1)e I@RFt

, 12 , _A' . LA,
01,2 T )[022 011] (3.2.4.9)

42 (i(wrp—wz,1) -2

We can use the above method for finding all G5, i # j; and substituting these into egs. (3.2.4.2.b)
and (3.2.4.2.c) for respectively J,(t) and J, (t), we obtain [1]
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452 mg=—F I'mg+1,mp

a inggBRrEN wF_ [F(F+1)- +1)]el®RFt ~
Ix(t)=Re{‘“Bg—RF F1 b (e +Lle [Gmp+1,mp+1—0mp,mF]} . (3.2.4.10.a)
l(me+1,mF_0~)RF)_ 2

- _ iuBgBRFN wF-1 [F(F+1)—mp(mp+1)]einFt ~ ~
]y(t) =Im {T mg=—F Img+1,mp [GmF+1,mF+1 - GmF,mF] ' (32410b)
(ompe s mp—rr) IR

Note that Re{u} = %(u + 1) and Im{u} = %(u — 1), where u is a complex number.

Observing egs. (3.2.4.10.a-b) for J,(t) and Ty(t) we see that they can be interpreted as describing a
total amount of 2F two-level systems that all respond to an RF magnetic field of angular frequency
wgr. Two adjacent energy levels mg + 1 and mg will correspond to one of the 2F two-level
systems with resonance frequency wpy+1,m, ahd FWHM line width I, 41 m,. We have that two
adjacent two-levels systems with the resonance frequencies ®wm 41 mp; aNd Omp42mp+1

2
respectively, are split by the quadratic Zeeman splitting angular frequency wqz = 2mvgz = ‘f}"VL ,
HFS
From [1] we have that the line width
19-2mg-m?
1-‘mF+1.mF = FCom + 1-‘pump % . (3.2.4.11)

I'.om IS the decay rate common to all transitions independent of mg; the cause for this type of decay
include different loss mechanisms common to all atoms and the fact that the different atoms in the
microchannel may be subject to a different magnetic field, as the magnetic field that subjects the
atoms might be of different strength at different points in space and it might not be homogeneously
pointing along the same direction. I, is the decay rate caused by the optical pumping process
and it varies for a given transition between the mp — levels. Note that I},,m;, is defined such that for

the mg = 4 - mg = 3 transition for F = 4 we have T3 = [om + Tpump-

We observe that J,(t) and Ty(t) in egs. (3.2.4.10.a-b) can tell us how well we can pump the Cesium-
133 atoms in the microchannel of a microcell to the coherent spin state |4,4 >, and thus how well in
our experiments we can polarize the Cesium-133 atomic ensemble total angular momentum vector
operator J(t) along the quantization-axis; for this reason we define a polarization parameter p,
which quantifies how well J(t) is polarized along the quantization-axis:

) = J2(0) _ Jaca _ Cat

= (3.2.4.12)

— 1¢a4 ~
p = ZZI’)’IF:—‘]- mF(GmF,mF 4N 4N N '

where (.) refers to the mean value, and in the third equality we set (J,(0)) = (4,4]j,(D)]4,4) =
hJ, ¢, () = hJ,c, = h4C,,, where C,¢ € N in the present case denotes the number of Cesium-133
atoms in the coherent spin state |[F = 4,mp = 4 > attime t, and N > C, ; such that if p = 1, then all
N Cesium-133 atoms lie in the coherent spin state |4,4 >, and if p = 0, then there are no Cesium-
133 atoms in the coherent spin state |4,4 >. Note that in eq. (3.2.4.12) h = 1 is assumed.
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Note that from the Cesium-133 atom Hamiltonian H,o,s in €q. (2.1.4.2) in chapter 2, where the
atom-membrane protocol is described, we see that we care most for the decay rate I3 =

-1 IS . . . . . .
(nT2,4_)3) . In a case, where J(t) is well-polarized along the quantization-axis, we define T, =
T, 43 as the transverse spin-coherence time.

Now, from section 1.4 and eq. (1.4.4.7.a) we know that the probe laser light in this experiment will
carry information about the modulated J,(t), when it will pass the atoms, because §§3“t(t) « Jy (£).
In order to measure §§3”t(t) we make use of the balanced homodyne detection scheme seen in figure
C1 (b) (i) in appendix C. In the language of appendix C, we have that the light that is subject to the
balanced homodyne detection is composed of two light fields: the signal field described by the
quadrature operators of the signal field and the local oscillator (LO) that is treated as a classical
light field. The quadrature operators of the signal field in the present case are the Stokes operators
§§3“t(t) and S2Ut(t) that satisfy egs. (C.4.b-c); and the LO in the present case is the probe laser light
with the assumption that the quantum fluctuations of this light are neglected. Since by observing
figure 13 we see that the phase difference between the signal field and the LO is zero, then by figure
C1 (b) (i) and egs. (C.2) and (C.7.a) we have that the balanced homodyne detection will yield the
subtracted photocurrent i(t) = i, (t) — i, (t) « (§§,’“t(t)) « (Jo(t)), where {.) refers to the mean
value, and i, (t) and i; (t) are the photocurrents resulting from the photodetectors Detl and Det2,
respectively, such that

i) = ajx(t)) = aRe{A(1)} = a[Re{A(wgp)} cos(wrpt) — Im{A(wgg)}sin(wgpt)] , (3.2.4.13)

where o is a constant that depends on experimental parameters, and A(t) = A(wgp)e'@RFt =
(Re{A(wgrp)} + iIIm{A(wgp)}) (cos(wgg) + isin(wgg) ) is the mean value of the expression in the
curly brackets in eq. (3.2.4.10.a).

Experimentally, a lock-in amplifier can provide us with the amplitudes of the sine and cosine
components ini(t) in eq. (3.2.4.13). By taking the sum of the squared amplitudes of the sine and
cosine components in i(t) in eq. (3.2.4.13) yields the magneto-optical resonance signal

MORS(wgp) = o?|A(wgp)|? . (3.2.4.14)
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Figure 13. A diagrammatic representation of the experimental setup used for the measurement of the magneto-optical resonance
signal (MORS) given by eq. (3.2.4.14). Photocurrents from the photodetectors Detl and Det2 are subtracted to yield the photocurrent
i(t) o< (§§‘“(t)) « {J,(£)), where (.) at refers to the mean value, which is then fed to a lock-in amplifier and then the MORS signal
can be read out. In the figure we have that BS stands for beam splitter, PBS stands for polarizing beam splitter, HWP stands for half-
wave plate, and Bg.tic and Bge are respectively the static magnetic field pointing along the z-axis and a radio frequency (RF)
magnetic field oscillating on the x-axis, that the Cesium-133 atoms in the microcell are subject to. The mircocell is placed inside a
magnetic shield described in section 3.3.

The MORS measurement results for F = 4 using the microcell G2 are seen in figure 14. Figure 14 (a)
displays a case, where the pump laser is blocked; here we see that eight peaks are visible, which
indicates that the atoms are distributed among all nine mg — levels. Figure 14 (b) displays a case,
where the pump laser becomes unblocked; here we see that only one peak is visible and it is almost
at the same position in frequency as the first peak in figure 14 (a), which indicates that the atoms
are in the energy level mg = 4. In figure 14 (a) we have that p = 0.55, which indicates an average
polarization of the Cesium-133 atomic ensemble total angular momentum vector operator j(t) along
the z-axis (the quantization-axis in this experiment); and in figure 14 (b) we have that p = 0.96,
which indicates a strong polarization of j(t) along the z-axis. The MORS measurements presented
in this section thus show us that it is possible for us to put the majority of the atoms in the
microchannel into the coherent spin state |4,4 > such that k? becomes greatly increased.

Note that during the MORS measurement the repump laser is always on, because we wish to draw
the atoms out from the energy level 6S1,, F = 3; and also note that in the MORS measurements we
need to have I, 11m, < wgqz in order to clearly resolve the peaks.

Now, since T3 = (nTZ,LHg)_1 = (nT,)~ !, where the last equality holds if j(t) is well-polarized
along the quantization-axis, we know that we can extract the transverse spin-coherence time T, of
the Cesium-133 atoms from the MORS measurements, when j(t) is well-polarized along the
quantization-axis. In figures 15 (a), (b) and (c) we can see how the inverse of T, varies for different
Larmor frequencies, RF magnetic field Brr powers and probe light powers, respectively. The data
seen in these figures was obtained using the microcell G2. We see that using a higher probe light
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power will decrease T,; the explanation to that is the same as it is for the T, measurements seen in
section 3.2.3: for higher probe light power there is a higher chance of the depumping of the Cesium-
133 atoms from |4,4 >, because of the power broadening. Assuming that we may fit a linear curve
to the data points in figure 15 (c), we can extract T, for the microcell G2, when there is no probe
light; in such a case we obtain T,~1.72 ms. As understood from egs. (3.2.4.10.a-b), the longer T is,
the longer time the atoms stay in the coherent spin state |4,4 >.
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Figure 14. Experimentally obtained graphs, seen as black lines, showing the magneto-optical resonance signal (MORS), in cases
where (a) the pump laser is blocked, and (b) the pump laser becomes unblocked. In both cases the repump laser is on. fgg is the
frequency of the RF magnetic field. The red lines are the fits to the experimentally obtained graphs. The fits are used to find the
polarization parameter p defined in eq. (3.2.4.12). In the legend seen in (a) we see that p = 0.55; and in the legend seen in (b) we see
that p = 0.96. The fitting in (a) is seen to be of not a good quality, and since the right-most peak is higher and also the third peak
from the right is lower than the fit proposes, the value for p in the case of (a) may be slightly larger than p = 0.55. Note in the figures
how the height of the peak in (b) is about nine times bigger than that of the right-most peak in (a).
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Figure 15. Experimentally obtained data points, seen as black dots, showing how the inverse of the transverse spin-coherence time
T, varies for different (a) Larmor frequencies Q,, (b) radio frequency (RF) magnetic field Bgr powers Pgg, and (c) probe light powers
Pprobe- The measurements were performed using the microcell G2. The fixed parameters used in the different measurements are seen
in the legends of the figures. Curve fitting is only performed in (c). Assuming that we may fit a linear curve to the data points in (c),
seen as a red line, with the fit being 1/T, = 0.10P,n.+ 0.58, we can extract T, for the microcell G2, when there is no probe light; in

such a case we obtain T,~1.72 ms.

3.3 Shielding from stray magnetic fields and generating useful magnetic fields

In highly sensitive experiments such as the MORS experiment described in section 3.2.4, and the
atom-membrane entanglement experiment described in chapter 4, we do not wish the Cesium-133
atoms in the microchannel of a microcell to be exposed to stray magnetic fields from the outside,
because in such a case the optical pumping becomes compromised. Note that in the Faraday angle
experiment described in section 3.2.3, the atoms should not be exposed to stray magnetic fields
either; since it was done the other way around, it might've been one of the reasons why the Faraday
angle 6g(t = 0) was not constant with respect to probe light power, as seen in figure 12 (a).
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In the MORS experiment and the atom-membrane entanglement experiment we shield the atoms
from stray magnetic fields by placing the microcell inside cylinders as the one seen in figure 16;
this cylinder together with endcaps attached to its ends acts as a magnetic shield. When making the
shields one keeps in mind that magnetic shields do not really block magnetic fields but rather alter
the path that magnetic fields take. The materials that magnetic shields should be made of have high
magnetic permeability; this allows magnetic shields to conduct magnetic fields better than e.g. air
such that magnetic fields will prefer to travel inside of the layers of magnetic shields rather than air.
We see that magnetic shields that we use are of cylindrical shape and they are multilayered with the
different layers being spaced. The reason for their cylindrical shape is because magnetic field lines
resist to make sharp turns and cylindrical shape alters the path of the stray magnetic fields entering
from the side such that it becomes harder for these fields to penetrate through; note that a spherical
magnetic shield is of course the best option in our experiments, because stray magnetic fields may
enter from all the sides of the shield. The reason why our magnetic shields are multilayered is
because the stronger the stray magnetic field, the easier it is for this field to penetrate through; and
the reason why the different layers are spaced is because the magnetic field lines in the gaps
between the layers do not follow straight lines, and so the cost of the shields is reduced, because
otherwise the thickness of the layers has to increased. Now, the outermost layer in the shields that
we use is made out of iron and the remaining three layers are made out of mu-metal, which is a
nickel-iron alloy. All the layers high have magnetic permeability with iron having a larger magnetic
permeability than mu-metal (2,5 107*H/m versus 2,5 - 1072H/m, respectively [34]); this is the
reason why the outermost layer is made out of iron.

Note that one strategically places holes in the magnetic shields that we use to allow us to position
the microcell into the shield and enable laser-beam access.
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Figure 16. A multilayered cylinder which is placed around a microcell. This cylinder together with endcaps (not shown in the figure)
attached to its ends acts as a magnetic shield that protects the microcell from stray magnetic fields from the outside. One strategically
places holes in the magnetic shield to allow us to position the microcell into the shield and enable laser-beam access.

Inside the magnetic shield we place a wire-coil system. This wire-coil system subjects the Cesium-
133 atoms to a static magnetic field that homogeneously points along the direction of the
longitudinal-axis of the magnetic shield. This is exactly what we need, because the microcell is
placed inside the magnetic shield such that the microchannel points along the radial direction of the
magnetic shield. Note that if the magnetic field is of different strength in the region, where the
microcell is placed, and in that region it is not be homogeneously pointing along the same direction,
then according to eq. (3.2.4.11) the transverse spin-coherence time T, of the Cesium-133 atoms will
decrease; this is true because the cause for the decay rate I'.,,, includes the fact that the different
atoms in the microchannel may be subject to a different magnetic field, as mentioned in section
3.2.3.

The schematic for the wire-coil system is seen in figure 17. The wire-coil system is wound on an
aluminum cylinder, and it consists of four different wire-coil subsystems. One of the wire-coil
subsystems is wound around six equally spaced aluminum rings placed on the aluminum cylinder.
This wire-coil subsystem creates a magnetic field that nearly homogeneously points along the
longitudinal-axis of the magnetic shield. To compensate for the inhomogeneities along the
longitudinal direction, two more wire-coil subsystems are wound around the aluminum rings: one
of them is a Helmholtz wire-coil subsystem and another one is an anti-Helmholtz wire-coil
subsystem. To compensate for the inhomogeneities along the radial direction one winds double-
saddle wire-coil subsystem; this wire-coil subsystem consists of eight 120° circular arcs wound on
the aluminum cylinder beneath the aluminum rings. When all of the wire-coil subsystems are in use,
one can in the region, where the microcell resides, create a nearly static magnetic field.

In order to produce a time-varying radio frequency (RF) magnetic field in the radial direction, one
uses Helmholtz wire-coil system wound on a plastic spool that is placed inside the aluminum
cylinder.
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Ring number: 1 2 3 4 5 6

Distance in mm: 8 25 8 25 8 25 8 25 8 25 8

44} 24} 45} 45} 24} 44}
20t 204
301 30}

span 120°

Figure 17. (a) and (b) Schematics for the wire-coil system used for subjecting the Cesium-133 atoms to a static magnetic field that
homogeneously points along the longitudinal-axis of the magnetic shield. In (a): the wire-coil subsystem wound around the rings at
positions 1-6 creates a magnetic field that nearly homogeneously points along the longitudinal-axis, and the wire-coil subsystems
wound around the rings at positions 3 and 4 (Helmholtz wire-coil subsystem) and positions 2 and 5 (anti-Helmholtz wire-coil
subsystem) compensate for the inhomogeneities along the longitudinal direction; the number of windings needed for each wire-coil
subsystem and the direction of the windings is shown in the figure. In (b): the double-saddle wire-coil subsystem concentric with the
wire-coil subsystems seen in (a) compensates for the inhomogeneities along the radial direction. The schematics for the wire-coil
system are adapted from [21].

In figures 18 (a) and (b) we can see experimentally obtained data showing how the magnetic field
strength varies in the radial direction of the magnetic shield, in the region, where the microcell
resides, for respectively the wire-coil subsystem wound around the six equally spaced aluminum
rings and the double-saddle wire-coil subsystem; and in figure 18 (c) we can see experimentally
obtained data showing how the magnetic field strength varies in the radial direction of the magnetic
shield, in that same region, when both of these wire-coil subsystems are in use. According to figure
8 (a), the microchannel of the microcell is 10 mm long, so if the microcell would be positioned
around the center of the magnetic shield, then the region, where the microchannel would reside,
would be [—5; 5] mm. Note, however, that our microcells are positioned by translational mounts
that can move the microcells along all three orthogonal axes, such that good light transmission
through the microchannel could be achieved; ergo the measurements are performed in a larger
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region [—9; 9] mm. Note that the transverse cross-section of the microcell is very small according
to figure 8 (a), and the microcells are usually translated very little along the directions that are
different from the radial direction, and so it is not necessary to perform measurements along the
remaining two orthogonal axes in order to understand how the strength of the magnetic field varies
in the region, where the mircrocell resides. By changing the size of the current that flows through a
given wire-coil subsystem, the given wire-coil subsystem will produce a magnetic field of different
strength, and so it becomes important to know which current settings to use such that a nearly static
magnetic field in the region, where the microcell resides, could be created. Using the current
settings seen in figure 18 (c), we thus see from figure 18 (c) that when both of these wire-coil
subsystems are in use, we can in the region, where the microcell resides, create a nearly static
magnetic field.

(a) (b)
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110l IB =2A |
—0.82 1l comp |
@ 117
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o 116}
;L -0 86 1151
114
—9.8d
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(c)
~8 67
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(7]
= +
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a | =2A
E -8.68¢ B omp 1
o I =0,75A
-8.688—f —£ B~ .
~10 5 0 5 10
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Figure 18. Experimentally obtained data points, seen as blue stars, showing how the magnetic field strengths (&) By, (b) Beomp, (C)
Bcomp + By vary in the radial direction of the magnetic shield, in the region, where the microcell resides. Here B, is the magnetic
field produced by the wire-coil subsystem wound around the six equally spaced aluminum rings seen in figure 17 (a), and Beomp IS
the magnetic field produced by the double-saddle wire-coil subsystem seen in figure 17 (b). L .gia = 0 mm denotes the position of the
center of the magnetic shield, and L, > 0 mm and L4, < O mm denote the positions away from the center in the opposite
directions. In the legends of the figures we can see that the particular currents that were used for the generation of respectively B, and
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Beomp Were Ig. = 0.75 Aand I = 2 A. Quadratic curve fitting is performed in (a) and (b); the fits are seen as red lines. The
experimentally obtained data points are seen to fit nicely with the fit.

comp

3.4 The optomechanical system

The optomechanical system used in the atom-membrane entanglement experiment described in
chapter 4 is contained inside a copper structure that can been seen in figure 19 (a). The
optomechanical system consists of a semi-monolithic, high-finesse cavity that can be operated at
cryogenic temperatures and a high-Q silicon nitride (SiN) nanomechanical membrane resonator that
is shielded from the environment by a phononic crystal structure; a closer view of the
nanomechanical membrane resonator can be seen in figure 19 (b). The nanomechanical membrane
resonator is specially designed by our group. The nanomechanical membrane resonator can transmit
laser light and therefore splits the cavity into two separate Fabry-Perot type cavities that are similar
to the one seen in figure 2; the situation is depicted in figure 19 (c). Note in figure 19 (c) that the
transmitted laser light field with the complex amplitude oirans IS picked up by the photodetector Det5
seen in figure 20, which shows a diagrammatic representation of the experimental setup used for the
atom-membrane experiment.

I Copper
I Membrane-spacer stack

I Spring P
E— Mirror

(b)

"¢aa 500 pm x 500 pm x 50

Figure 19. (a) An artist's impression of the optomechanical system used in our group's Cesium-133 atomic ensemble-
nanomechanical membrane resonator interfacing experimental setup. The optomechanical system is contained inside a copper
structure. The silicon nitride (SiN) nanomechanical membrane resonator chip is stacked with two silicon spacers on both sides thus
ensuring that the chip is firmly clamped between the two mirrors. The metallic springs ensure parallelity between the mirrors and are
the reason why the cavity is semi-monolithic. (b) Photos of the silicon nitride (SiN) nanomechanical membrane resonator chip. It
consists of a silicon nitride membrane resonator (white square), a silicon frame (highlighted in red), and a phononic crystal structure
(highlighted in green). The phononic crystal structure shields the membrane resonator from the environment. As indicated by the
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figure, the membrane resonator is 500 um wide, 500 pm long and 50 nm thick. (c) A diagrammatic representation of the
optomechanical system seen in (a). As understood here, the copper structure allows a laser beam to enter from one end and to exit
from another end of the optomechanical system. One can see that the membrane resonator (highlighted in yellow) can transmit laser
light and therefore splits the cavity into two separate Fabry-Perot type cavities that are similar to the one seen in figure 2. The
complex amplitudes o of the different laser light fields are shown in the figure. The output mirror has much higher reflectivity than
the input mirror, and so the light entering the cavity has much higher probability to be reflected out of the cavity than to be
transmitted. The figures are adapted from [9].

The big focus of this thesis is the atomic part of the atom-membrane entanglement experiment, and
for that reason the experiments characterizing our optomechanical system are not included in this
thesis. The interested reader can find the experiments characterizing our optomechanical system in
e.g. [9, 10]. In [9] it is reported that we have achieved the cavity finesse of ~5.6 - 10* and that the
nanomechanical membrane resonator used in the experiments described in [9] has a Q-factor of
~6-10°. In [9] it is also reported that we are capable of cooling the membrane resonator to
T = 3 mK, which gives the probability of 4% for the membrane resonator to be in the ground state.
The membrane resonator that we use in our atom-membrane entanglement experiment is designed
such that it would show significant response at frequencies around Q. = 610 kHz. Using the
formula for the mean thermal occupation of the membrane resonator in thermal equilibrium at

_ KgT
temperature T, Ny, = 5 5

mhQy’
initial thermal occupation ny, ;, which we now set to be equal to ny,, becomes ny,; = 103, where
kg = 1.38-10723]-K Y and h = 1.05 - 1073%] - s are used.

seen in chapter 2, we see that for T = 3 mK and Q,, = 610 kHz the

As understood from section 2.2, due to the thermalization decay of the membrane resonator the

practical requirement for the time period t, = t of the entanglement protocol becomes t «
;. 1ﬁ = i—“‘;‘. Using the reported values Q,, = 6 - 10° and T = 3 mK we see that in such a case we
mllth B

would need to perform the measurements much faster than 15 ms.

3.5 The atom-light coupling strength for the atom-membrane entanglement
experiment

In this section | will express k? = %SX]ZT, defined in section 1.4.5, in terms of parameters that are
convenient from the point of view of our atom-membrane entanglement experiment.
_ Pprobe7\D2

4mhc
where Py, ope is the probe light power, and making the replacement A — A in the definition of

Observing eq. (3.2.3.1) for the Faraday angle 6z = 0(t), and expressing S, as S, =

A3 . . .
a=-— %, where A < A is the effective transverse cross-sectional area of the probe laser beam,
5

which we use, because as seen from section 3.2.1 the probe laser beam doesn't fill the whole
microchannel, we obtain

K,Z — E)\%Z
321T2Aeff|A5 |hC

'Pprobe Op-T=
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56.4
= Agge[cm?2]-|Ag|[MHz] ) l)probe [mW] ' Gp[deg] ' T[ms] , (3_5.1)

where § = 2w - 5.22 MHz and Ap, = 852 nm are used.

By making use of experimental data and parameters that characterize our atom-membrane
experiment let us now from eq. (3.5.1) estimate what values for k? we can expect to obtain in the
case of our atom-membrane interfacing experimental setup. Now:

1. observing figure 8 (b) we see that A = - (150 - 10~* cm)?, and by assuming that we may set
Aegr = 5 We Obtain Agge = - 1.125 - 10~* cm?.
2. observing section 3.1.1 we see that |As| = 2m- 1600 MHz.

3. observing section 3.2.3 we make use of the experimentally obtained value for 6x(t = 0), being
0r(0) = 1.38°, and equate it with 6 in eq. (3.5.1) such that 6 = 1.38 °.

4. observing section 4.2 we see that during the measurements performed using our atom-membrane
interfacing experimental setup the atoms were probed with laser powers being Pyropea =
0.120 mW, 0.122 mW, 0.600 mW; such that in the present case we set Py.ope = Pprobea- We also
see that during these measurements t = 0.1 ms.

Plugging now the values seen above into eq. (3.5.1) we see that
K% = 0.263,0.267,1.314 . (3.5.2)

Assuming that the estimates for k2 seen in eq. (3.5.2) are correct, we understand that in the case of
our atom-membrane interfacing experimental setup we can obtain moderate values of k? = 0.25
noted in the atom-membrane entanglement proposal [12].
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Chapter 4: Experimental work towards entanglement
genration between Cesium-133 atomic ensemble and
nanomechanical membrane resonator

In this chapter | present the experimental setup that we use for working towards entanglement
generation between Cesium-133 atomic ensemble and nanomechanical membrane resonator, and |
demonstrate how this setup can allow us to satisfy the entanglement protocol described in chapter 2.
I also present measurements done using this setup.

4.1 Atom-membrane interfacing experimental setup

In figure 20 we can see a diagrammatic representation of our group's owned experimental setup that,
via laser light, interfaces a Cesium-133 atomic ensemble contained inside our specially designed
microcells described in section 3.2 and our specially designed nanomechanical membrane resonator
that is part of a cryogenic optomechanical system described in section 3.4. This setup is an actual
realization of a schematic of the setup seen in figure 3.

We experimentally realize the filter seen in figure 3 by building a Mach-Zehnder-type
interferometer. A diagrammatic representation of the Mach-Zehnder interferometer that we build is
enclosed in a dashed blue contour in figure 20. As explained in the text of figure 3, the filter's
function is to convert the light that becomes polarization modulated by the Cesium-133 atoms into
amplitude modulated light; and this is exactly what the interferometer does. Recall from chapter 2,
that mathematically, the filter allows us to equate the pairs of the light operators X°Ut and &'I", and
poUut and p'iM as 1" = —xPUt and p'i" = —HPU as seen in egs. (2.1.10.a-b).

In order to see why our interferometer satisfies the role of the filter, and also why our atom-
membrane interfacing experimental setup can allow us to satisfy the entanglement protocol
described in chapter 2, let us now make use of Jones matrix calculus introduced in appendix D and
thoroughly analyze the whole experimental setup. By making use of Jones matrix calculus, we will
need to treat the probe laser light classically.
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Figure 20. A diagrammatic representation of our group's owned experimental setup that, via laser light, interfaces a Cesium-133
atomic ensemble contained inside our specially designed microcells described in section 3.2 and our specially designed
nanomechanical membrane resonator that is part of a cryogenic optomechanical system described in section 3.4. Enclosed in a
dashed blue contour is a Mach-Zehnder-type interferometer, which satisfies the role of the filter seen in figure 3. In the figure we
have that BS stands for beam splitter, PBS stands for polarizing beam splitter, HWP stands for half-wave plate, QWP stands for
quarter-wave plate, PAM stands for piezoelectric-actuated mirror, EOM stands for electro-optic modulator, Detl, Det2, Det3, Det4
and Det5 are photodetectors, Bg;4:ic IS the static magnetic field pointing along the z-axis that the Cesium-133 atoms in the microcell
are subject to, and LO, and LO,, are the local oscillators used for balanced homodyne detection realized by respectively Detl, Det2
and Det3, Det4. The mircocell is placed inside a magnetic shield described in section 3.3.

From eq. (D.1) we have that the Jones vector for the probe light before the polarizing beam splitter
PBS1 in figure 20 is

EOHei((pH_th)
= [ey] - [Eovei(q""‘*’ot) ’ @1

where Ey and Ey, are the (complex) horizontal and vertical polarization components, respectively,
of the electric field E(x,t) = V;,e'™ of a monochromatic plane wave of light, which in the present
case describes the probe laser light, which travels along the x-axis, where k is the angular wave
number and o is the angular frequency of the probe laser light with k = wo/c, and Eyy and Ey are
the amplitudes of respectively Ey and Ey with @y and ¢y being the respective phases.

The Jones matrices that we will use in the present case are: Mg(8), Mrwp (@, 8), Mipor (P, Pv)
and l\=/IpAM(cpH = @y (), oy — ch,*(t)), which respectively are the Jones matrix for a rotator
defined in eq. (D.3.a), the Jones matrix for a rotated wave plate defined in eq. (D.3.b), the Jones
matrix for a perfect linear polarizer defined in eq. (D.3.c) and the Jones matrix for a piezoelectric-
actuated mirror defined in eq. (D.3.d). Here 0 is the angle of the fast axis of a wave plate with
respect to the horizontal axis; @ = @y — @v; py,py = 0 or 1; and l\=/lpAM(cpH = @p. (), oy —
@y .(t)) transforms the phases @y and ¢y in the Jones vector V;, in eq. (4.1.1) into time dependent

phases @y..(t) and @y ().

Note that in appendix E we can see how the Jones matrices for the different optical elements seen in
figure 20 are defined using the Jones matrices given by egs. (D.3.a-d), and also how they look like
in a completely written out form.

Observing figure 20 we now find the Jones vector for the light exiting the lower output port of the
polarizing beam splitter PBS1:

o ipr
a,cos(Qt)e l 4.12)

VPBSl,lp = MPBSl,rVin + MPBSl,trVnoise = l E ei(<PV—¢00t)
ov

The first term of the sum in eq. (4.1.2) and the second term of the sum in eq. (4.1.2) deal with
respectively the probe light entering the right input port of the PBS1 and the fluctuating vacuum
field entering the upper input port of the PBS1. The Jones vector for the fluctuating vacuum field is
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o iQr . . . .
Vioise = |00 COS(th) €|, where @, is an operator representing the fluctuating vacuum field,

is the Larmor frequency of the Cesium-133 atoms, which in the experimental case is 610 kHz, and
@, is the phase of @&,,. The reason why V, ;s IS included, is because the PBS1 has an unused port,
through which fluctuating vacuum field can enter. In figure 20 we see that most of the PBSs have
unused ports; however, for simplicity we shall assume that vacuum fluctuations only enter the PBS1.
From V,,isc We see that the fluctuating vacuum field is of horizontal polarization; this is, however,
only an assumption that allows us to simplify the forthcoming calculations. Now, observing the
Cesium-133 atom Hamiltonian H,oms in €. (2.1.4.2) and the membrane resonator Hamiltonian
Hiembrane iN €0. (2.1.4.b), we see that the atoms will show significant response at the Larmor
frequency Q;, and the membrane resonator will show a significant response at the angular frequency
Q.,; this is true, because Q; and Q,, denote the resonance frequencies of the two oscillators, and
oscillators are known to show significant response at their resonance frequencies. Observing section
3.4 we see that our membrane resonator is designed such that it would show significant response at
frequencies around €Q;, = 610 kHz such that we can set Q,, = Q. Because the fluctuating vacuum
field propagates through the atoms and eventually enters the cavity, where the membrane resonator
resides, and both the atoms and the membrane resonator show significant response at Q;, one
multiplies @, e'r in V,,;se by a forcing term cos(Qt). Now, since the polarizing beam splitters
used in our experiments transmit the horizontally-polarized component of the light and reflect the
vertically-polarized component of the light, and since we need to find the Jones vector exiting the
lower output port of the PBS1, we multiply V;, and V,,,;se by respectively the Jones matrix for the
PBS1 reflecting the light and the Jones matrix for the PBS1 transmitting the light.

Observing figure 20 we now find the Jones vector for the light entering the microcell:

=l

Vmicrocell,in

Em
tot, PBSl Ap ~ l I (4-1-3)

in
EZ a

oMMpuwp1, and

rl:_JEII

where Myo, = Mywp:

. i i )
EJf, = @, cos(@10) €% + (3B, cos(0,) + 3 B, cos() ) Egyel0v-000
Ein = (11 (Qg,t) L (@0 ) Egyel(@veot+3)
za = > 1 cos B, > B, cos(Qy, ove )

Eq. (4.1.3) deals with the light exiting the lower output port of the PBS1, i.e. the light described the
Jones vector Vpgsy1p in €q. (4.1.2). Here the light first travels in succession through the HWP1, the

EOM and the HWP2. It is assumed that the effects of HWP1 and HWP2 can be neglected, and the
collective effect on the polarization in this case can be described by the EOM. The EOM is assumed

to behave as a E-rotated wave plate (8 = E) with ¢ = B cos(Qg, t) + B, cos(Q,t), where B, and B,
are small amplitudes of sinusoidally varying voltages of frequencies Qg and €, respectively, that
we apply to the EOM. Note that we make sure in the experiment that Qg # € ; in particular, we set
Qg = 400 kHz. The sinusoidally varying voltages of amplitudes B, and 3, are applied to the EOM,
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because we here wish to create horizontally-polarized Qg-sidebands centered around the carrier
angular frequency w, and horizontally-polarized €, -sidebands also centered around w,. The Qg-
sidebands are later used for stabilizing the phases of the local oscillators LO, and LOy, seen in
figure 20. The Qg- and Q; -sidebands propagate through the atoms and eventually enter the cavity,
where the membrane resonator resides. Note that it is intentional that the atoms and the membrane
resonator are driven by both the relatively large Q; -sidebands in addition with the fluctuating
vacuum field. The Q;-sidebands are added, because, as shown in section 4.2, these can help us to
combat the mismatch between the atomic and the membrane resonator parameters, i.e. when

K\/% * gm,c\/nz. The idea in the end is not use the classical Q; -sidebands, and drive the Cesium-

133 atoms and the membrane resonator with purely the fluctuating vacuum field; but until we do
not come close to matching the atomic and the membrane resonator parameters, the ; -sidebands

stay added. Note that EI% acquires an additional phase of eig =i, this is done, because in the
present case we have that egs. (1.4.5.2.a-c) hold, where it is assumed that the operators a,(x,t) =
(,(x,0) = ila,(x, O], a5 (x, ) - (& (x,£)) = —ila,(x,t)]. Note as well that Vipicrocenin in €0
(4.1.3) is an approximation, because the terms proportional to @,, and a,B, are neglected, as
these proportionality factors are much smaller than &,, B; and (3,.

Now, the light will propagate through the microcell, where it will interact with the atoms. The
light's interaction with the atoms will transform the scaled Stokes operators X;(z) and py.(z)
according to the input-output relations (2.1.8.a-b). In order to find the Jones vector for the light
exiting the microcell, we need to know how to express the %y, (z) and py,(z) in terms of the (complex)
horizontal and vertical polarization components of the light seen in a Jones vector. Now, since
R1,(2z) « S,() and pp(z) x Sy(t), where S,(t) and S,(t) are the regular Stokes operators that
satisfy egs. (1.4.5.2.b-c), and since the classical Stokes operators may because of egs. (1.4.5.2.b-c)
be defined as S, = %(Ey,aEz,a —Ey,E,,)and S, = %(Ey_aEZ,a +Ey,E,,), where E,, and E, , are

the horizontal and vertical polarization components of the light in a Jones vector for the light in the
atom-light system, respectively, then in our case

o 15 o
21.(2) > (EyaEza + EyaEza) (4.1.4.a)
~ 1 = =

pL(z) = ﬁ(Ey,aEZ,a —EyaE.a) - (4.1.4.b)

Note the similarities between X;.(z) and py,(z) in egs. (4.1.4.a-b) and the Stokes operators given by
egs. (1.4.5.1.c-d), when egs. (1.4.5.2.a-c) are used.

Using egs. (4.1.4.a-b), we have that the input-output relations (2.1.8.a-b) will in our case therefore
read as

f(EUt — _5\(1Ln }

: <=>
aout _ __ain o
pL = -b. +Kg_ p,
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(EQU'EQYt + EQUEQYY) = —(EMER, + ELEl) | (4.1.5.a)

5 (EouEey’ — EguEeY) = = (ELER — EMER) + Kg,p, +  (4.15.)

where E§,‘}a and EI1, are the horizontal and vertical polarization components of the light seen in the

Jones vector for the light entering the microcell, i.e. Vipicrocen,in in €4. (4.1.3), EP4* and E24* are the

horizontal and vertical polarization components of the light seen in the Jones vector for the light
exiting the microcell, and

2/ =4 . Su
Kg, p, = —K\/; (=P sin(Qpnt) + Xj cos(Qnt))
where O, , = —Qy, is the negative Larmor frequency, as defined in section 2.1.

Using egs. (4.1.3) and (4.1.5.a-b) we have that P"* and pP"* are

- ~ EZ E}
RPU ~ \2E gy @, cos(Qt) — B cos(Qg,t) — ~Bzcos(t) ., (4.16.)
poUt x~ \2Eqy @, cos(Qt) + Kg.p, (4.1.6.0)

where approximation signs are used, because the terms proportional to @,f, &,B2, B%, B3, BB, are
neglected, as these proportionality factors are much smaller than @,,, 3, and 3,.

Using egs. (4.1.5.a-b) and (4.1.6.a-b) we thus obtain the Jones vector for the light exiting the
microcell:

- T
— t+_ _~
pout _KX 5 el((PV Wo 2) _ Ema
v —_ Y!a — at a y, 4 1 7
microcell,out — Eout - i((p ® t+ﬂ) . ) ( Bt )
o = V—Wol+> ) _ pin
za —Kg.p,€ 2/ —Eja

where EJY, is EIf, with @, — Eqy@,, and an added phase of e'z = i. Note that E94t and EQ4t acquire
phases of eig = i for the same reason as EIY, does.

Observing figure 20 we now find:

1. The Jones vector for the light incident on the photodetector Detl.:

0

_ . _ ™ , 41.8.a
Ry 2Eone!(?#10 ‘°°t+z)+Kk,aE2};tl ( )

V; = lvItotlvmicrocell,out + l\=/[tot1/Vin = l
2. The Jones vector for the light incident on the photodetector Det2:

_ _ i(eui(D-wot+3) | 7 pout
V, = MtotZVmicrocell,out + Mioi2,/Vin = IKk,aEOHe ( 0 2) + Kk,aEx,a I : (4'1'8'b)
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V. o= o o oo oo
In egs. (4.1.8.a-b) we have Ky , = " (1 —1), Mior1 = Mpgss Mqwp1MppsarMuwpsMpps2 o Muwps.

Miot1, = Mppss Mqwp1Mpgss, e MuawpsMpami Mppss orMuwpsMppsier » and My, and Mg, are
respectively My, and Mo, With Mpggs . = Mpggs . Note that Ky is the complex conjugate of K.

The first terms of the sum in egs. (4.1.8.a) and (4.1.8.b) deal with the light exiting the microcell.
Here the light first travels in succession through the HWP3 and the PBS2. The HWP3 is assumed to
behave as a non-rotated half-wave plate, which introduces the phase shift ¢ = m between the
horizontal and vertical components of the light. The PBS2 transmits the horizontally-polarized
component of the light and reflects the vertically-polarized component of the light; the horizontally-
polarized component is the one we are interested in, because it includes the fluctuating vacuum field,
Qg-sidebands, the Q; -sidebands, and the important atomic signal expressed by Kg_p_, while the
vertically-polarized component includes all of these components except for the atomic signal. The
horizontally-polarized component of the light then travels in succession through the HWP4 and the
PBS4. The HWP4 is assumed to behave as a g-rotated half-wave plate, which will make the PBS4

to send equal amounts of the light into the part of the setup that includes Detl and Det2 and also
into the part of the setup that includes the membrane resonator; note that the rotation angle ofg isin
the present case picked in order to simplify the calculations, as in reality we here wish to send a
smaller amount of the atomic signal into the part of the setup that includes Detl and Det2 and a

larger amount of the atomic signal into the part of the setup that includes the membrane resonator.
The light then travels in succession through the QWP1 and the PBS5. The QWP1 is assumed to
behave as ag-rotated quarter-wave plate, which will make the PBS5 to send the light in equals
amounts into the Detl and also into the Det2, when the right output port of the PBS1 is blocked,
such that the detection becomes balanced. Note as understood from appendix C and also from the
calculations seen further below in this section we have that when both output ports of the PBS1
become unblocked, then Detl and Det2 will in general detect different intensities; the physical
explanation for that is the light interference phenomenon.

The second terms of the sum in egs. (4.1.8.a) and (4.1.8.b) deal with the light exiting the right
output port of the PBS1. Here the light is horizontally-polarized, because our polarizing beam
splitters transmit horizontally polarized components of light. Here the light first travels in

succession through the HWP5 and the PBS3. The HWP5 is assumed to behave as a g-rotated half-

wave plate, which will make the PBS3 to send equal amounts of the light into the part of the setup
that includes the PAML1 and also into the part of the setup that includes the PAM2. The light that is
transmitted by the PBS3 is horizontally-polarized, and when it is reflected by PAML, its phase ¢y

is transformed into the time dependent phase ¢y, (t) + g because the path length of the reflected
light will change in time as the piezoelectric-actuated mirror actuates in time, and a factor ofg IS

added for the same reason as it is for EI,. The light then travels in succession through the HWP6
and the PBS4. The HWP6 is assumed to behave as a g-rotated half-wave plate, which will make the
PBS4 to send equal amounts of the light into the part of the setup that includes Detl and Det2 and

78



also into the part of the setup that includes the membrane resonator; note that the rotation angle ofg

IS in the present case picked in order to simplify the calculations, as in reality we here wish to send
a larger amount of the light into the part of the setup that includes Detl and Det2 and a smaller
amount of the light into the part of the setup that includes the membrane resonator. The light then
travels in succession through the QWP1 and the PBS5. The QWPL1 is assumed to behave as
explained in the paragraph above, and thus it will make the PBS5 to send the light in equals
amounts into the Detl and also into the Det2, when the lower output port of the PBS1 is blocked.

Note that the QWP1, the PBS1, and the photodetectors Detl and Det2 realize the balanced
homodyne detection scheme seen in figure C1 (b) (ii) in appendix C. In the language of appendix C,
we have that the light entering the right input port of the PBS4 and then exiting through the lower
output port of the PBS4 is the signal field, and the light entering the upper input port of the PBS4
and then exiting through the lower output port of the PBS4 is the local oscillator (LO). In the
present case we will call the signal field as the atomic signal field and the LO as LO,.

From egs. (4.1.8.a-b) and (D.2) we now find the difference in the intensities I, and I, of the electric
fields that are picked up by the photodetectors Det2 and Detl, respectively, to be

IZ,lEIZ_IloCVZ*.VZ_Vl*.V1=

= %" cos(1 (1)) + PP sin(¢4 (D) , (4.1.9)

Sout ; sout ; o~ —Eon A E E 2
where X"t is the scaled £0"" in eq. (4.1.6.a) with @, > —2 @y, B1 = == B4, By =@ —=—B,; pO™
2 V8Eqy V8Eqy

is the scaled p¢"* in eq. (4.1.6.b) with @, — _EZ"H @y, Kg_p, = _E—;HK)A(a’lsa; and @, (t) = @y —

=
@1 (D).

Observing appendix C, we see that the result of eq. (4.1.9) is exactly what we would expect by
making use of this particular balanced homodyne detection scheme: by adjusting the LO, phase

@y (t) + g to be such that @y ; () = @y => @4(t) = 0, then the intensity I, ; will yield X“*, and if
the LO, phase is adjusted such that @y ;(t) = @y — g => @, (t) = g then intensity I, , will yield

pout which according to eq. (4.1.6.b) carries the important atomic signal expressed by Kg. 5.

Observing figure 20 we now find the Jones vector for the light entering the cavity, where the
membrane resonator resides:

— Ein
Vimembranein = Mtot,, VPBS4,rp = [ }(Iim] ) (4.1.10)

where Mot = MowpsMpgss - Muwp10Mpgse - Muwp7, and Vppsa rp is the Jones vector for the light

exiting the right output port of the PBS4, which is the same as the Jones vector for the light exiting
the lower output port of the PBS4 with the horizontally-polarized component of the light and the
vertically-polarized component of the light having switched places, and
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Eq. (4.1.10) deals with the light exiting the right output port of the PBS4, i.e. the light described the
Jones vector Vpgsy rp. As understood from before, the light here includes the fluctuating vacuum

field, (g-sidebands, the (), -sidebands, the important atomic signal expressed by Kg 5 , and the
relatively large LO,. Here the light first travels in succession through the HWP7 and the PBS6. The
HWP7 is assumed to behave as a g-rotated half-wave plate, and so, when the light will pass HWP7,

the fluctuating vacuum field, Qg-sidebands, the € -sidebands, and the atomic signal will lie in the
vertically- and the horizontally-polarized components of the light in equal amounts, when the right
output port of the PBS1 is blocked, and also the LO, will lie in the vertically- and the horizontally-
polarized components of the light in equal amounts, when the lower output port of the PBS1 is
blocked; and thus the PB6 will transmit the fluctuating vacuum field, Qg-sidebands, the Q. -
sidebands, the atomic signal, and the LO,. The light here then travels in succession through the fiber,
HWP10 and the PBS8. The HWP10 is assumed to behave as a non-rotated half-wave plate, which
introduces the phase shift ¢ = m between the horizontal and vertical components of the light; note
that the rotation angle of 0 is in the present case picked in order to simplify the calculations, as in
reality the HWP10 might be rotated, because the fiber can rotate the polarization of the light that
enters the fiber, and HWP10 corrects for that rotation such that the light that exits HWP10 is
horizontally-polarized as it was when it has passed the PBS6. Note that, alternatively, the fiber itself
can be used to correct for polarization mismatches. The PBS8 will thus transmit the same light as
the PBS6 and at the same time reflect nothing, thereby not disturbing the light signal that enters the
left input port of the PBS8. The light then travels through the QWP3 before entering the cavity,
where the membrane resonator resides. The effect of the QWP3 is here neglected in order to
simplify the forthcoming calculations. Note that one can neglect the effect of the QWP3, because as
understood from section 1.6.3, cavity optomechanical resonators do not distinguish between
different polarizations of light.

Now, the light will propagate into the cavity, where it will interact with the membrane resonator.
The light's interaction with the membrane resonator will transform the "outside-of-cavity" light
operators X;.(z) and py,(z) according to the input-output relations (2.1.9.a-b). In order to express
%1.(z) and p.(z) in terms of the (complex) horizontal and vertical polarization components of the
light seen in a Jones vector, we observe the definitions of the rotated in-phase and out-of-phase

. . . A~ 1 ~ i ~ .
quadrature operators of a signal field expressed respectively as Xg , , = \/—E(ase ¢Lo 4 aJsre“PLO)

and s, , = %(ase-i%o — ﬁJSrei‘PLO), as seen in appendix C, and also egs. (C.6.a-b) in appendix

C, and thus we know that in our case we may write X; (z) and py,(z) as

R (2) = \/ii (Ey‘me—i((PH,*(t)—wot) + Ey’mei(q’ﬂ,*(t)—wot)) , (4.1.11.a)
pL(z) = % (Ey’me—i((PH,*(t)—wot) — Ey'mei(ﬁpH,*(t)—mot)) , (4.1.11.h)
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where E, , is the horizontal polarization component of the light in a Jones vector for the light

outside of the cavity, and e~!(®n-(D=®ot) js its phase. The reason why Ey,,, and e~ /(®n+(O-w0t) are
used is because in the present case it is assumed that the effect of the QWP3 is neglected such that
horizontally-polarized light enters and also leaves the cavity.

Using egs. (4.1.11.a-b) with E, ,, = EI, from eq. (4.1.10) and e~i(@n.(M-wot) = ei(‘p“'l(t)_“"’““?)
we have that the input "outside-of-cavity" light operators 81" and p'i" are

g = ]i;)l”‘ cos(Qpt) + Doy [31 cos(let) sm(cpl (t)) + Bov [32 cos(Qpt)sin ((pl(t))

oo  (4112a)
j_ 2 cos (@, (1)) + =22 Eon
p'in = — ]i;)_v’\ cos(Qt) — Bl cos(Qslt) cos(¢, (D) — g B2 cos(Qrt)cos (g1 (D))
. (4.1.12.b)

St gin (4, (1)

Now, as seen in egs. (2.1.10.a-b) the filter seen in figure 3 allows us to equate the pairs of the light
operators XUt and &'1", and pPUt and p'iM as K'I" = —xPUt and p'I" = —pOUt. From eqs (4.1.12.a-b)
we have that by adjusting the LO, phase @y (t) + > to be such that Q1) = @y — ; => @, (t) =

g, we obtain
gin = _ Ej_v/\ cos(Qt) + 2 31 cos(Qg, t) + Doy Bz cos(Q.t) + = EOH . (41.1249)
N E ~ K afa
P =- %"an cos(Qpt) — % . (4.1.12.b)

Comparing egs. (4.1.6.a-b) with egs. (4.1.12.a-b) we see that &'I" is —&Put with the scalings

o, - az—“ B — %, B — 282 and an added static term Z2: and p'inis f)ﬁ“t with the scalings

K)A(arl’a
V2
may therefore by observing egs. (2.1.10.a-b) conclude that our interferometer, which is enclosed in

a dashed blue contour in figure 20, satisfies the role of the filter seen in figure 3, when ¢, (t) = g

a, - &2—“ and Kg_p. — . Since the scalings do not invert signs and the added term is static, we

Note that the reason why E ' has the phase e (‘prl(t)_“"’”E) is because, as seen from before, LO,

is horizontally-polarized and so must carry this particular phase.

Note that when @1 (t) = -, then eq. (4.1.9) tells us that

2 —E a E _
I, o pPut = % ncos(Qt) + \/EH Kg.p, (4.1.13)

81



from which we observe that as our interferometer satisfies the role of the filter, we simultaneously
keep track of the fluctuating vacuum field and the atomic signal by the use of the balanced
homodyne detection scheme realized by the QWP1, the PBS1, and the photodetectors Detl and
Det2.

Note that we stabilize the LO, phase via a feedback-mechanism. We first send the subtracted
photocurrent i, ; = i, —1i;, where i; and i, are the photocurrents provided by the photodetectors
Detl and Det2, respectively, to a lock-in amplifier. The lock-in amplifier demodulates the signal
carried by i, at the sideband frequency Qg, and then provides this demodulated signal to a
proportional-integral (PI) controller. The signal generated by the PI controller then travels to the
PAML1, and this completes the LO, phase stabilizing feedback-mechanism.

Note that in the forthcomming calculations we shall assume that the LO, phase is stabilized such
T

that @y 1 (1) = Qv — > => @, (1) = =

Now, using egs. (4.1.11.a-b) we have that the input-output relations (2.1.9.a-b) for the "outside-of-
cavity" light operators %1 (z) and Py (z) in our case read as

Algut — )?IiLn
arout _ __arin +Ko s }<=>
L - L Xm,Pm
\/% (E)(I)'lrlrtle—i((pl.]’z(t)—(,\)ot) + E}e,lrlrtlei(tpﬂ,z(t)—wot)) — —T; (E;r,lme—i(@ﬂ,ﬂt)—@ot"';) + E;r’xmei((PH,l(t)—wot"';)) , (4.1.14.9)

% (Eoute~i(@n2(®-wot) _ Foutei(ena(t-wot)) = % (Eiy{lme‘i(‘PH.l(t)‘ﬂ’ot+§) - Eiy{lmei(‘PHrl(t)“”ot*g)) +Kg,_p,  (4.1.14)

where E;{‘m is the horizontal component of the light seen in the Jones vector for the light entering
the cavity, i.e. Viembrane,in iN €0. (4.1.10), EP}t is the horizontal component of the light seen in the

Jones vector for the light exiting the cavity, e~i(@naO-0ot+3) ¢ tho phase of Eif,, e~i(@n2(0-wot)
is the phase of EQ%, and

Kg_p = —gm’C\E (=P sin(Qpt) + X, cos(Qpt) = —gm,c\/nzC (P sin(Qpnt) + Xiy cos(Qnt))

where O, = —Q,, is used, i.e. the equality in eq. (2.1.11.b), which is justified in our case, because
as already mentioned, our membrane resonator is designed such that it would show significant

response at frequencies around €. Note that E}?}fﬁ has the phase e~ i(@nz(D-wot) where it is seen
that @y 1 (t) = @y (t) — g after the interaction with the membrane resonator; this happens because
the membrane resonator vibrates, and so, the path length of the reflected light will change in time

and by the same token the phase e'z = i can be dropped. Note that '0"t and p'?"t in the present
case describe the light that is reflected out of the cavity; this is in accord with the assumption that
nothing will get transmitted through the cavity. This is a valid assumption, because as mentioned in
the text of figure 19, the output mirror of the cavity has much higher reflectivity than the input
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mirror of the cavity, and so the light entering the cavity has much higher probability to be reflected
out of the cavity than to be transmitted. Note that the small amount of the light that does get
transmitted, gets picked up by the photodetector Det5 seen in figure 20.

Using egs. (4.1.10) and (4.1.14.a-b) we thus obtain the Jones vector for the light exiting the cavity:

Eout Ko = 1((pH 2(0)—wot) + Eln
Vimembrane,out = [ ] l\/— Zin Prn © 0 ' (4.1.15)

where Ein, = %Eoﬁei(@ﬂ.z@-w)#ﬁgg , where EQ4t is EQUt in eq. (4.1.7) with the phases
. . . _ E —K" _

ei(@n2(0-wot) jnstead of el(q’V (‘)OHZ), and K)A(aPa - i%, a, - %an, B, — 1 L and B, — 1—

Notice that Kg_p_, B1 and B in eq. (4.1.15) acquire the phase e'z = just as Kgm_lsm does.

Observing figure 20 we now find:

1. The Jones vector for the light incident on the photodetector Det3:

0
V; = Mtot3vmembrane out T Mtot3l in — [KkmEOHe (ou3(0)—wot) + K Eout] , (4.1.16.&)

2. The Jones vector for the light incident on the photodetector Det4:

(4.1.16.0)

K. ..E e1(<PH3(t) —wot) _ K L Eou
V, = Mtot4Vmembrane out T Mtot4r in [ km™0H ym

0

_1 = _= = _ _ _
In egs. (4.1.16.a-b) we have Ky, = = Motz = MpgsorMuwp11Mpass irMqwps: Miotar =

pBs9,r Muwp11 Mpess - Muwpo Mpgs7,- Mowpz Mpamz Mowpz Mpgs7, trMHWP8MPBS3,rMHWP5Mp851 o’ and My, and

=l

M4, are respectively M,z and M,,;, With MPBSgr - MPBSgtr

The first terms of the sum in egs. (4.1.16.a) and (4.1.16.b) deal with the light reflected out of the
cavity by the membrane resonator. Here the light first travels in succession through the QWP3 and
the PBS8. As noted from before, the effect of the QWP3 was here neglected in order to simplify the

calculations above. In reality, QWP3 should be assumed to behave as a g-rotated quarter-wave plate,

which would make the horizontally-polarized light exiting the upper output port of the PBS8 to be
converted to circularly-polarized light. If such circularly-polarized light then becomes reflected on
the membrane resonator, the handedness of the circular polarization changes because of the
orthogonal angle of incidence, and so, when such light propagates through QWP3 again, this light
then becomes vertically-polarized. The PBS8 will thus reflect all of the light and at the same time
transmit nothing, thereby not disturbing the light signal that enters the lower input port of the PBS8.
If the effect of the QWP3 is neglected, or, equivalently, the QWP3 is not placed after the PBSS, this
will, however, no longer hold, because then PBS8 will actually transmit everything and reflect
nothing as no polarization changes will happen upon reflection on the membrane resonator.
Nevertheless, eq. (4.1.15) still holds, since as mentioned before, cavity optomechanical resonators
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do not distinguish between different polarizations of light; and for that reason we shall rightfully
assume that the light described by Vinembraneout iN €0. (4.1.15) is totally reflected by the PBSS,
where it then travels in succession through the HWP11 and the PBS9. The HWP11 is assumed to
behave as ag-rotated half-wave plate, which will make the PBS9 to send the light in equals

amounts into the Det3 and also into the Det4, when the left input port of the PBS8 is blocked, such
that the detection becomes balanced.

The second terms of the sum in egs. (4.1.16.a) and (4.1.16.b) deal with the light exiting the right
output port of the PBS1. Here the light is horizontally-polarized, because our polarizing beam
splitters transmit horizontally-polarized components of light. Here the light first travels in
succession through the HWPS5 and the PBS3. The HWP5 is assumed to behave as explained below
egs. (4.1.8.a-b); this will make the PBS3 to send equal amounts of the light through its right output
port and through its upper output port. In the present case we deal with the light exiting the upper
output port of the PBS3. Here the light first travels in succession through the HWP8 and the PBS7.
The HWPS is assumed to behave as a m-rotated half-wave plate, which will make the vertically-
polarized light exiting the upper output port of the PBS3 to be converted to horizontally-polarized
light such that the PBS7 can transmit all of the light. The light then travels through the QWP2, is
reflected by the PAM2, and then travels through the QWP3 again. The QWP2 is assumed to behave

as a E-rotated quarter-wave plate, which will make the horizontally-polarized light exiting the upper

output port of the PBS7 to be converted to circularly-polarized light. When the light is reflected by
PAM2, its phase @y is transformed into the time dependent phase ¢y 3(t), because the path length
of the reflected light will change in time as the piezoelectric-actuated mirror actuates in time, and
also the handedness of the circular polarization of the light changes, because of the orthogonal angle
of incidence, and so, when the light propagates through QWP2 again, the light will become
vertically-polarized. The PBS7 will thus reflect all of the light and at the same time transmit nothing,
thereby not disturbing the light signal that enters the lower input port of the PBS7. The light then
travels in succession through the fiber, HWP9 and the PBS8. The HWP9 is assumed to behave as a
mt-rotated half-wave plate, which will make the vertically-polarized light exiting the fiber to be
converted to horizontally-polarized light such that the PBS8 can transmit all of the light. The PBS8
will thus transmit the same light that is reflected by the PBS7, and also at the same time reflect
nothing, thereby not disturbing the light signal that enters the lower input port of the PBS8. The
light then travels in succession through the HWP11 and the PBS9. The HWP11 is assumed to
behave as explained in the paragraph above, and thus it will make the PBS9 to send the light in
equals amounts into the Det3 and also into the Det4, when the lower input port of the PBS8 is
blocked.

Note that the HWP11, the PBS9, and the photodetectors Det3 and Det4 realize the balanced
homodyne detection scheme seen in figure C1 (b) (i) in appendix C. In the language of appendix C,
we have that the light entering the upper input/output port of the PBS8 and then exiting through the
right output port of the PBS8 is the signal field, and the light entering the left input port of the PBS4
and then exiting through the right output port of the PBS8 is the local oscillator (LO). In the present
case we will call the signal field as the membrane signal field and the LO as LOy,.
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From egs. (4.1.16.a-b) and (D.2) we now find the difference in the intensities I, and I of the
electric fields that are picked up by the photodetectors Det4 and Det3, respectively, to be

143514_13“‘,‘: V4_V§<.V3=

, 4.1.17
= X'?" cos (@, (1)) + P’ sin(¢, (1)) ( )
where
ilgut iin + \/_1§E(2)H , (4.1.18.3)
f’/Eut f)an + Kiaﬁa + K)?m,ﬁm , (4118b)

where %1 is the scaled &I in eq. (4.1.6.a) and pi™ is the scaled pi" in eq. (4 1.6.b) with @, -

E
\/EEOHanf B~ \/%31, By — \/—Bz' and Kx p, = —EouKg_ 5, Kx P \/_EOHme Pm

Note that the different scalings in X" and i do not invert signs, and in the definitions of KX
and Kgmﬁm we have that both Ky_p and Ky p_are negated.

Observing eq. (C.7.b) in appendix C, we see that the result of eq. (4.1.17) is exactly what we would
expect by making use of this particular balanced homodyne detection scheme: by adjusting the LOy,
phase @y 3(t) to be @y 3(t) = csz(t) => @,(t) = 0 then the intensity 1, 5 will yield X", and if
the LOy phase @y 3(t) = @y (t) — E => @,(t) ==, then intensity I, 3 will yield p'°Ut, which

according to eq. (4.1.14.b) carries the important membrane signal expressed by Ky 5 and Kg 5 .

Now, observing the definitions of Kg_5_and Kg__, and the above paragraph, and figure 3, and
egs. (2.1.12.a-b), (4.1.17), (4.1.18.a-b), and section 2.2, where the atomic and the membrane

resonator parameter mismatch is mentioned, i.e. when k f # 8mc / we see that p'2U can be

used to derive a similar expression of the modified version of the reduced EPR variance, i.e.
Yepr + [ex(fy, + 2)]? (seen in section 2.2), that includes the atomic and the membrane resonator
parameter mismatch, such that we can conclude that our atom-membrane interfacing experimental
setup can allow us to satisfy the entanglement protocol described in chapter 2.

4.2 Matching of the atomic and the membrane resonator parameters

According to section 2.2, when the atomic and the membrane resonator parameters are mismatched,
i.e. when K\E +* gm,C\/nz , the EPR variance Y egpr given by eq. (2.1.19) becomes modified such that

a practical limit to the initial thermal occupation of the membrane resonator is set. Since controlling
the initial thermal occupation of the membrane resonator involves controlling the temperature of the
resonator, and when the atomic and the membrane resonator parameters are very mismatched, we
may need to cool the resonator to temperatures close to zero Kelvin, which is experimentally
challenging to perform, it then starts to make sense experimentally to minimize the mismatch
between the atomic and the membrane resonator parameters as much as possible.
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Now, in order to find out experimentally, when the atomic and the membrane resonator parameters
become matched, i.e. when K\/% = gm,c\/nz (see eq. (2.1.11.a)), we use an electro-optic modulator

(EOM) to create Larmor frequency (; -sidebands centered around the carrier angular frequency w,
of the probe laser, and let these sidebands propagate through the atoms and eventually enter the
cavity, where the membrane resonator resides. As mentioned in section 4.1, both the relatively large
Q; -sidebands and the fluctuating vacuum field drive the atoms and the resonator. Now, the Q; -
sidebands are different from the fluctuating vacuum field in a sense that the Q; -sidebands are
classical and the fluctuating vacuum field is quantum. Let us now try to understand why this is not
a trivial statement.

In order to gain access to P;, — P; and X}, + X in our atom-membrane entanglement experiment
we first stabilize the LOm phase ¢y3 (1) such that @y 3(t) = @y 2(t) — 7 => @, (t) = 7 such that the

subtracted intensity I, 5 in eq. (4.1.17) yields p'?“*. Then the photocurrent that carries with itself
information about p'04 is fed to a lock-in amplifier. The lock-in amplifier demodulates the signal
carried by the photocurrent at the Larmor frequency );,, and provides us with signals that carry with
themselves information about

ﬁlg}::tos = ﬁiLI,lcos + gm,c\/%X:n + KXZ ) (4.2.1.&)
P'Lain = Diisin * 8mec \/%E}‘l —«Py (4.2.1.b)

which are the atomic and the membrane resonator parameter mismatched versions of p'}'ss and
P'Lsin seen in egs. (2.1.14.a) and (2.1.14.b), respectively. Egs. (4.2.1.a-b) are obtained by making

use of egs. (2.1.14.a-b) with p'?"" in eq. (2.1.12.b) in a case, where K\E * gm,c\/nz, with the
assumptions [ dtX; (©)cos?(Q,nt) ~ [ dtX; (D)sin?(Qpnt) ~ X; (D) ~ and

Jy dtP (©cos?(Qpnt) = [ dtB ()sin?(Qnt) ~ B (D)7, and

fOT dt X (D)sin(Qynt) cos(Qynt) ~ 0, and fOT dt B (D)sin(Qy,nt) cos(Qynt) ~ 0, where j = a, m, and
X: =X;(t) and B’ = P’ (t) are solutions to egs. (2.1.8.c-d) and (2.1.9.c-d):

X; =X500) —x \F f, dt' &P ()sin(Q.t) (4.2.2.3)
P =D;(0) +x \F f,dt =P () cos(ut) (4.2.2.b)
Rin = K2 (0) + gme an f, dt' &P ()sin(Q.t) (4.2.2.0)
Py = P(0) + g \/nz J dt’ &I (t)cos(Qut) (4.2.2.d)
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where Q; , = —Qy, Q,, = Q, and &'i" = %" are used. Note that the aforementioned assumptions
are justified if the time period of the protocol, t; = t, is much longer than 1/Q;, i.e.Tt>» 1/Qy,
which indeed is the case in our atom-membrane entanglement experiment.

~in . . ~ . 2
With 1" in eq. (4.1.18.a) being X" — %I" = —\/2E @&, cos(Q.t) + %" By cos(Qg,t) +
2
%" B2 cos(Qut) = —@, cos(Qt) + B, cos(Q.t) we calculate the mean values of p'P'es and p'D iy

. _ o _ o \
(B'2he) = Blos) + Bime 7= R (00) + e 17 (] A sing) + (% 0)) =1 2 ([ de P Osin(0,9) |

}=>
(B2 = (Bilin) + Bime [P (0)) + Bhne 7 (] de S 9cos(@0) — (i (0)) ~ J G aes@costaun) )

N 2 2
<p E}::E)s = KcosB2 (gfn,c /é - KZ\/;) ) (4.2.3.3-)
N 2 2

020 = Kanba (e [E -1 [F) 4230)

where (. ) refers to the mean value in this section, and fOT dt cos(Qpt) sin(Qt) =K, and

2
fot dt cos?(Qt) =K, where Keos = 1%(9”) and K, =
L

to the integrals, and K o5 < Kgin, When t > 1/0Q;.

cos(Qp1) sin(QLo)+Q1T

are the solutions
Qp

In egs. (4.2.3.a-b) we have that (p{’cos) = (Pllsin) = (X1 (0)) = (X5(0)) = (P;,(0)) = (P;(0)) =
(a,) = 0, because here we are dealing with quantum operators; and {(f3,) # 0, because 3, is a

classical amplitude. Also, in the same egs. (4.2.3.a-b) we have that if the atomic and the membrane
L,sin

resonator parameters are matched, i.e. when K\E = gmlc\/nz, then (p'P4qs) = 0 and (p'P%,) = 0;

however, if the atomic and the membrane resonator parameters are mismatched, i.e. when K\E *

gm,CE, then (p'45¢) # 0 and (P'PU%,) # 0. We see now that the classical Q -sidebands introduce

classical light back-action noise into our measurements, and that by cancelling this noise we can
match the atomic and the membrane resonator parameters.

Note as well that %I — @, cos(Q;.t) — B, cos(Qt), because as mentioned in section 4.1, the atoms
and the membrane resonator show significant response at the Larmor frequency Q;, and so the term
E3yB, cos(Qg, t) appearing in X{™ in eq. (4.1.6.a) can be neglected.

Let us now define
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(B'2hs) = (Blos +K2) = ~Keoufir |2 (4.242)
(5285020 = (Pl = P2) = Ko 2 (42.41)
(B'22hsm) = (Blkos + Eme [ 1K) = KeosPane & e
(P'Ddinm) = (Bllsin + Bmec_ [o- P = KsinBaghoe |17 (4.2.4.d)

where in the equalities one uses egs. (4.2.3.a-b).

Egs. (4.2.4.a-b) refer to a case, when the cavity, where the membrane resonator resides, is off-
resonantly tuned such that the light that is incident on the cavity will get reflected, such that the
photodetectors Det3 and Det4 seen in figure 20 will only pick up the atomic signal; and egs.
(4.2.4.c-d) refer to a case, where the pump and repump lasers are turned off, such that the atoms are
not optically pumped to the coherent spin state |4,4 >, such that the photodetectors Det3 and Det4
will only pick up the membrane resonator signal.

Note that we will say that egs. (4.2.4.a-b) refer to a case, where the membrane resonator is "turned
off", and egs. (4.2.4.c-d) refers to a case, where the atomic ensemble is "turned off".

Note that by observing the definitions for (B’ %6 2), (B’ Paina) (B b oosm) and (B'Lsinm) Seen in egs.
(4.2.4.a-d), we cannot, however, conclude that if (p'D'tnsa) + (B fievsm) =0 OF (B'Daina) +
P 4inm) = 0, when the EOM is producing the classical ; -sidebands, then the atomic and the
membrane resonator parameters become matched, because, as mentioned earlier, these equations
refer to cases where either the atomic ensemble or the membrane resonator is “turned off", such that
the information about two connected systems becomes lost. Nevertheless, this does not translate to
that measurements of (P'P%osa), (P'hrosm): (P'Laina)s and (P'Duinm) would be of little value,
because by comparing by how much the mean values in the atomic and also in the membrane case
are shifted away from the zero-mean we expect to obtain a rough estimate that could show us how

good we are at matching the atomic and the membrane resonator parameters.

Now, we will say that

P L) (4.2.48)
B'Tsins) (4.24.1)
(P'Leosa+) (424.9)
P'Lsina+ (4.2.4.h)

refer to the mean values of p'Pos, P'Dain:s D Leosar P oaina, respectively, in a case, when the
Cesium-133 atoms are optically pumped to the coherent spin state |4, —4 >. This can be achieved
by letting the static magnetic field Bsatic Seen in figure 20 to point in the negative direction of the z-
direction. According to section 2.1, we have that, when the atoms are optically pumped to the
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coherent spin state |4, —4 >, the atomic ensemble is modeled as a positive-mass (single-mode)
harmonic oscillator, just as it is the case for the membrane resonator.

Note that to complement (B'?'vos + ), (B Disin+ ) (P'Dtosa+) @nd (P'D%i, 11 ) We also define

(P'out ) = (P'ouLs) (4.2.4.0)
(s, ) = (PR (4.2.4.j)
(PO a ) = (P2 (4.2.4.K)
(P'sna) = (P90 (4.2.4.1)

where (B'24t ), (B0U%,), (B'2ut, ) and (PP, ) are given by egs. (4.2.3.3), (4.2.3.b), (4.2.4.2) and
(4.2.4.b), respectively.

Note that we will say that eqs. (4.2.4.e-f) and (4.2.4.i-j) refer to a case, where the atomic ensemble
and the membrane resonator are both "turned on".

In figures 21, 22 and 23 we can see experimental data obtained using the atom-membrane
interfacing experimental setup seen in figure 20. This kind of data can show us how good we are at
matching the atomic and the membrane resonator parameters. The kind of measurements that
provide the data seen in these figures define the very first steps on our quest towards atom-
membrane entanglement. The measurements were not performed on the same day, and they were
also performed with different settings as the idea is to find out which settings can best minimize the
mismatch between the atomic and the membrane resonator parameters. The common feature of
these measurements is that the membrane resonator was not cooled.

For the data seen in figure 21 the probe laser power Pp.pe 5 that the atoms were subjected to was
Pprobea = 0.600 mW, and the probe laser power Ppiopem that the membrane resonator was
subjected to was Ppyopem = 0.174 mW. Here the probe laser was running in a continuous regime
and the EOM was being switched on and off to produce the classical Q; -sidebands; the on-off
switching time period was 0.100 ms long.

For the data seen in figure 22 Ppropeqa = 0.120 mW, and Ppropem = 0.006 mW. Here the probe
laser was running in a continuous regime and the EOM was being switched on and off to produce
the classical Q; -sidebands; the on-off switching time period was 0.100 ms long.

For the data seen in figure 23 Ppyopea = 0.122 mW, and Ppropem = 0.003 mW. A data point on the
graphs seen in figure 23 at one specific angular frequency was obtained by setting the EOM to
produce sidebands of that specific angular frequency, then sending a large amount of pulses of
probe laser light each being 0.100 ms long and finally averaging the data.

Note that in figures 22 and 23 we make use of the following definition:

Mgta = Jm'ﬁ}z‘;&*)z Fprout y2 (4.2.5)
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where * = —, +, m, and a,— and a,+; such that mgy,, , - refers to a case, where the membrane
resonator is "turned off" and the atoms reside in |4,4 >, Mg, 4+ refers to a case, where the
membrane resonator is "turned off" and the atoms reside in |4, —4 >, mg,¢am refers to a case,
where the atomic ensemble is "turned off", mq,, — refers to a case, where both the atomic ensemble
and the membrane resonator are "turned on™ and the atoms reside in |4,4 >, and mg,¢, + refers to a
case, where both the atomic ensemble and the membrane resonator are "turned on™ and the atoms
reside in |4, —4 >.

In figure 21 we see that by taking the mean values of the experimental data, i.e. (B} %os a), (ﬁ’ﬁ;}ma),
(P'Losm) and (P'Lsinm), to be where the fitted bell-shaped curves are at their highest, the mean
values corresponding to the coherent cases become shifted further away from the zero-mean
compared to the thermal cases. Observing the coherent cases, we see that in the atomic case the
mean values are shifted away from the zero-mean on the order of 10~#, while in the membrane case
the shift is on the order of 1073. Since the difference in the shifts is on the order of 10, we conclude
that the data presented here indicates that the atomic and the membrane resonator parameter
matching is of poor quality.

In figure 22 we see that the measured values for my,e, o — aNd My,e, oy are shifted away from zero
on the same order, and that the measured values for mq,, + are further away from zero than the
measured values for mg,, —. We observe that the measured values for mg,e, - become the ones that
are closest to zero as the averaging progresses. Observing the definition of mg,¢, — given by eq.
(4.2.5), we see that this demonstrates that by coupling the two systems, when the atomic ensemble
is modeled as a negative-mass harmonic oscillator and the membrane resonator is modeled as
positive-mass harmonic oscillator, classical light back-action noise of the measurement becomes
reduced. We also observe that the measured values for mg,, ; are furthest away from zero. This
makes good sense, because according to the definition of mgye, 4 given by eq. (4.2.5) myqata +
refers to a case, where both the atomic ensemble and the membrane resonator are modeled as
positive-mass harmonic oscillators.

In figure 23 we see that my,¢, ., Where * = —, +, m, and a,— and a,+, are largest close to the
Larmor frequency Q; = 610 kHz and become progressively smaller for frequencies smaller or
larger than Q; in a Lorentzian fashion. This is expected, because from section 2.1 we know that the
atoms and the membrane resonator are modeled as harmonic oscillators, and from section 2.1 we
know that the atoms will show significant response at €;, and from section 4.1 we know that the
membrane resonator is designed such that it would show significant response at Q;. We observe
that the area corresponding to mgy,¢, — i the smallest. Observing the definition of mg,e, -, We see
that again, as in the case of figure 22, this demonstrates that by coupling the two systems, when the
atomic ensemble is modeled as a negative-mass harmonic oscillator and the membrane resonator is
modeled as positive-mass harmonic oscillator, classical light back-action noise of the measurement
becomes reduced. We also observe that the area corresponding to mgae, + IS the largest. This is
attributed to the same reasons as in the case of figure 22.
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Now, let us look at the atomic and the membrane resonator parameter matching condition expressed
by eq. (2.1.11.a), and write it out completely by using the definitions k = —a,/Cpp CarT and

gmc=h /m 5 Ga,. seen in sections 1.4.5 and 1.6.4, respectively:
effs“m

2 , 2
K [-= — <=>
\/; 8m,c Ne

EAE ,
1611122A 1/ phtCat_Gac NeQm (4-2-6)

where the definitiona = — P iZAS is seen in section 1.4.4, and h = meg = 1 is assumed for gy, .
The parameters seen in eq. (4.2.6) that we cannot tweak are & = 21 - 5.22 MHz, which is the natural
FWHM line width of the D, line transition (in units of radians per time), and Ap, = 852 nm, which is
the wavelength of the D, line transition. By recalling what the remaining parameters in eq. (4.2.6)
stand for, we see that a perfect matching of the atomic and the membrane resonator parameters is an
extremely challenging task.

From section 2.2 we understand that matching of the atomic and the membrane resonator
parameters is not a requirement for generating entanglement between the atoms and the membrane
resonator, because the EPR variance Y epr given by eq. (2.1.19) will due to the atomic and the
membrane resonator parameter mismatch become Ygpr — YEpr + [ex(fg, + 2)]% such that
entanglement still can be achieved even though the atomic and the membrane resonator parameters
are mismatched under the condition that membrane resonator has to be cooled. Since from eq.
(4.2.6) we can tell that it is extremely challenging to perfectly match the atomic and the membrane
resonator parameters, we see that the membrane resonator will have to be cooled in order to achieve
entanglement. As understood from section 2.2 an additional thing that we need to take into account
if we want to achieve entanglement, apart from cooling the membrane resonator, is the
thermalization decay of the membrane resonator, which modifies the EPR variance } epr given by

eq. (2.1.19) as Ygpr = YEpr + NmT(Np + 1), such that the practical requirement for the time
_ Quh
NmNth B kT’

period t; = t of the protocol becomes T «

Our task for the future is thus to find the settings under which we may conclude that the mismatch
between the atomic and the membrane resonator parameters is reasonably minimized, and then the
membrane resonator will be cooled and the measurements will have to be performed much faster

than |n order to try to prove entanglement generation between Cesium-133 atoms and the

membrane resonator.
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Figure 21. Histograms obtained by measuring the quantum operators p'f' ., P'Dsinar P'oosm and P'Psin m in respective cases,
where the electro-optic modulator (EOM) in the atom-membrane interfacing setup is producing the classical Q; -sidebands, i.e. the
coherent case in the figure, and not producing these sidebands, i.e. the thermal case in the figure. The data appears to be normally
distributed and thus red bell-shaped curves are fitted on top of the histograms.
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Figure 23. Experimentally obtained graphs, seen as dark blue, green, violet, and red and light blue lines, showing how mga¢, « =

J(@'g};gs,*)z +(p'P4in.)?, where * = m, +, — and a,— and a,+, respectively vary with different frequencies of the classical sidebands

that the electro-optic modulator (EOM) in the atom-membrane interfacing setup is producing. The different graphs are integrated
over angular frequency and the areas that are obtained by integrating and normalizing to unity are seen in the legend.
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Summary of the main results and outlook

By making use of experimental data and parameters that characterize our atom-membrane
entanglement experiment values for «? were estimated for the case of our atom-membrane
interfacing experimental setup. Assuming that these estimates are correct, they show us that in the
case of our atom-membrane interfacing experimental setup we can obtain moderate values of
k? S 0.25 noted in the atom-membrane entanglement proposal [12].

By considering the dominant impairing effects that would alter the expression for the reduced EPR
variance Y epr given by eq. (2.1.19), we saw that by minimizing the atomic and the membrane
parameter mismatch as much as possible we could lower the practical limit imposed on the initial
thermal occupation of the membrane resonator. We saw both theoretically and experimentally how
classical Qy -sidebands introduce classical light back-action noise into our measurements. By
cancelling this noise we can match the atomic and the membrane resonator parameters. It was
demonstrated how by coupling the two systems we were led to reduction of classical light back-
action noise of the measurement.

The measurements involving the reduction of classical light back-action noise of the measurement
define the very first steps on our quest towards atom-membrane entanglement. The next steps of the
experiment are in the order as follows: (i) doing the same measurements but with the membrane
resonator now cooled, (ii) improving the membrane resonator and performing the same
measurements, where the membrane resonator is first not cooled and then cooled, and finally (iii)
characterizing how close to the standard quantum limit we are.

When and if the entanglement generation is successful, it can then serve as a basis for teleporting
collective spin states onto the membrane resonator [12]. This can open a curious possibility to cool
the membrane resonator by teleporting a ground state onto it.
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Appendix A: The effect of an externally applied static
magnetic field on a Cesium-133 atom and quadratic
Zeeman splitting frequency

The effect of an externally applied static magnetic field B on an alkali atom such as a Cesium-133
atom is described by the Hamiltonian

Hp = Hyps + Hz (A1)

where
Hups = hAgpsf o1 (A.2.9)
ﬁz=_(?j.3+%i-B) (A.2.b)

are the hyperfine structure interaction Hamiltonian and the Zeeman interaction Hamiltonian,
respectively, where h is the Planck’s constant, Aygs is the zero-magnetic field hyperfine structure
constant describing the strength of the magnetic interaction between the electron total angular
momentum operator j and the nuclear total angular momentum operator i, p; is the magnetic
moment of the valence electron and y; is the magnetic moment of the nucleus.

Using Hg in eq. (A.1) it can be shown that the energy of a Zeeman energy level m, for the ground
state of (the valence electron of) an alkali atom, where f =j+1 = % + I, will be given by the Breit-
Rabi formula [25]:

_ _hveps hvyrs 4mg 2
Ef.mf To2(20+1) 1 Bmg + 2 \/1 + 21 txt (A3)

_ AHFs

where B = |B] is the strength of B, vyps = - (21 + 1) is the hyperfine structure splitting

(e

VHFS
between the Zeeman interaction and the hyperfine structure interaction.

frequency between the two f-levels, and x = is a parameter describing the relative strength

In figure Al the frequency E¢p, /h is plotted for the Zeeman energy levels ms of the energy levels
62S1)5, f = 3 and 6°Sy),, f = 4 of Cesium-133 atom as a function of B.
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Figure Al. Graphs showing how the Zeeman energy levels m; of the energy levels 62S,,, f = 3 and 62Sy;,, f = 4 of Cesium-133 atom
are split in frequency for a given external static magnetic field strength B. Eq. (A.3) is used here in order to plot the different graphs.
We see that for both small B (< 0,05 Tesla) and large B (> 0,5 Tesla), the frequencies display an approximately linear behavior with
respect to B, whereas in the intermediate region the frequencies display a non-linear behavior with respect to B. The hyperfine
structure effect splits the energy levels 62S,),, f = 3 and 62Sy,, f = 4 by vyrs = 9192 MHz in frequency as displayed in the figure.
The figure is adapted from [11].

By performing the second order expansion of E¢p, . in eq. (A.3) with the approximation y; = 0, it
can be shown that the transition frequency between the m¢'th and the (m; + 1)'th Zeeman level of
Cesium-133 atom is

Emet1=Bme _ (1 ~ M (om, + 1)) , (A4)
h VHFS

where v, « B, where Q; = 2mv;, is the Larmor frequency, which is the characteristic angular
frequency at which the atomic total angular momentum vector operator f = j + 1 will precess
around the direction of the external B-field. From eq. (A.4) we have that the frequency difference
between the two closest sets of two nearby ms — lines in figure Al is

Eme+2—Em Eme+1—Em ZVL2
— f f+1 f f (A5)

Vv =
QZ h h VHFS

which is known as the quadratic Zeeman splitting frequency. v, is of importance in the magneto-
optical resonance signal (MORS) measurements described in section 3.2.4.
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Appendix B: The effect of an externally applied
arbitrary magnetic field on Cesium-133 atoms, the
Bloch equations and the phenomenological relaxation
times T, and T,

When Cesium-133 atoms sense an externally applied arbitrary magnetic field
B(t) = (B(1), By (1), B,(1), the evolution of the total angular momentum operators Jx(t), J,(t), J2(t)
can be understood from the phenomenological rate equations know as the Bloch equations [29]:

My ()

M) = YO X BO), — 22 | (B.1a)
%My(t) = y(M(t) x B(t))y — szt) , (B.1.b)
S M, (1) = y(M(t) x B(1), - %I‘M" , (B.1.)

where M(t) = (M,(t), My (t), M, () is the nuclear magnetization vector, M, is the steady-state
nuclear magnetization, y is the gyromagnetic ratio, and T; and T, are the phenomenological
relaxation times respectively describing the approach of the longitudinal magnetization M, (t) and
the transverse magnetizations M, (t) and M, (t) to equilibrium.

The Bloch equations are used to describe the evolution of the nuclear magnetization vector M(t) for
a given arbitrary magnetic field B(t). M(t) acts as a classical analogue to the atomic ensemble total
angular momentum vector operator j(t) = (Jx(t), Jy(t), J-(t)); and in the quantum mechanical picture
the relaxation times T and T refer to the relaxation times of j(t). If the z-axis is the quantization-
axis, then in this thesis T; will be referred to as the spin-depolarization time and T, will be referred
to as the transverse spin-coherence time.
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Appendix C: Balanced homodyne detection

In this appendix | briefly describe balanced homodyne detection, and explain how we can measure
the pairs of light operators XP"* oc SPUt(t), P o SSUE(t) and &'P™, p'P™, introduced in sections
1.4.5 and 1.6.4, respectively, by using this type of detection.

Note that in appendix C we have that (. ) refers to the mean value.

In figure C1 (a) we can see a diagrammatic representation of an experimental setup used to realize a
prototypical balanced homodyne detection scheme [32].

(a) (b)
(i) (ii)
i X \/E|GL0|(1’A<S,¢LO) i21.5wp \/§|0(Lo|<f<s’<pw) i2,1.qwp X \/E|0(Lo|(f35'<pw)
Detl Detl Detl
Signal field Signal field
T ﬁ1 + ﬁl
Signal field Local oscillator (LO) I Local oscillator (LO) A
- ——{—PY =P
4, P pet2 a, W pet2
HWP PBS Qwp PBS

Local oscillator (LO)

Figure C1. (a) A diagrammatic representation of an experimental setup used to realize a prototypical balanced homodyne detection
scheme [32]. (b) (i) and (ii) Diagrammatic representations of experimental setups used to realize a balanced homodyne detection
scheme in our experiments. In the figure we have that BS stands for beam splitter, PBS stands for polarizing beam splitter, HWP
stands for half-wave plate, QWP stands for quarter-wave plate, and Detl and Det2 are photodetectors. See the text for the remaining
details.

Here a light field known as the signal field is described by the operators X5 = i(ﬁs + ﬁ;r) and

V2
ps = %(as — aj;), where a5 and aJSr are the photonic annihilation and creation operators of the
signal field that are dimensionless and satisfy the commutation relation [ﬁs(t) ,ﬁ}:(t)] =1;and a
light field known as the local oscillator (LO) is described by the operators
1

o~ =1 (5 o-io at aie N =1 (5 a-igro _ 5T Lig a
R1.0,010 = ﬁ(aLoe Lo +3, e LO) and Prop.o = 7 (aLoe Lo —3j€ LO), where 3; and

aJLrO are the photonic annihilation and creation operators of the LO that are dimensionless and
satisfy the commutation relation [ﬁLo(t) ,ﬁio(t)] = 1 with @y, denoting the phase the LO. Note

that X5 and pg are called the in-phase and the out-of-phase quadrature operators of the signal field,
respectively; while X 4, , and pro e, are called the rotated in-phase and out-of-phase quadrature
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operators of the local oscillator, respectively *. After the two fields are superimposed at a 50/50
beam splitter, each outgoing beam from the beam splitter is respectively directed to the
photodetectors Detl and Det2, which provide us with the photocurrents i, and i,, respectively; and
in the final step, the photocurrents i; and i, are subtracted in order to yield the photocurrent
i1 =i, —i;. The annihilation operators of the light fields directed at Detl and Det2 are
respectively given by

(as - aLoe_i(’OLo) , (Cla)

(as + aLoe_i(’OLo) . (Clb)

Assuming that i; and i, are respectively proportional to the classical mean values of the photon
number operators fi; = ajal and 1, = a;faz, and that the LO is intense enough to be treated

classically, i.e the quantum fluctuations of the LO can be neglected, such that a{o - (ﬁ{o) = |0l
aLo — (aLo) = layel, where o is a complex number, we have that i, ; becomes

g1 o (fy — fiy) = (a8, — a14;) = V2lapol{Rs,p.e) = V2laLol ((Rs)cos(@ro) + (Bs)sin(oro)) , (C.2)

where X5 o, , = = L (ase“‘PLO +al “PLO) is called the rotated in-phase quadrature operator of the

\/_
signal field. Note that Ps,, = %(ﬁse‘i‘”w - a;fei%o) is called the rotated out-of-phase
quadrature operator of the signal field.

Observing eq. (C.2) we see that the photocurrent i, ; measures (the mean value of) the quadrature
operator Xs o, ,; and by adjusting the LO phase ¢ to be @ = 0, then i, ; will measure the in-
phase quadrature operator Xs, and if ¢ = m/2, then i, ; will measure the out-of-phase quadrature
operator pg.

Let us now understand how we can measure the pairs of light operators K2t oc SUE(t), POUt o
S°“t(t) and R'0Ut, p'°Ut introduced in sections 1.4.5, and 1.6.4, respectlvely, by using balanced
homodyne detection scheme.

From egs. (1.4.5.1.c-d) and (1.4.5.2.a-c) it follows that the scaled Stokes operators XUt o< SOUE(t),
pRut o S;“t(t) can respectively be written as

)’EEUt \/_(ag),ut + f\out'l') ’ (C3a)
ﬁ(ﬁut \/_(Aout A(}),ut'l') , (C3b)

4 The quadrature operators & = %(a + a*) and p = %(a— a*) represent the real and imaginary component of the photonic

annihilation operator 4, respectively, because, by definition, we have % (a+at) =Re(@ and % (a—at) =m().
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where a9"* = 4,(x = L,t) and ﬁg’,“tT = ”T(x = L,t) are the photonic annihilation and creation

operators for y-polarized probe laser light photons at the end of the Cesium-133 sample of length L,
respectively.

Note that if in egs. (1.4.5.1.c-d) it is assumed that the operators ﬁ;r(x, t) - (ﬁ;r(x, t)) = o, (x,1)],
a,(xt) = (4, (x, 1)) = |o (%, D)1, then

Sx(D) %@ , (C.4.9)
8, (1) - —'“Z(X’”' @l +a,x0) | (C.4.b)
3,(t) - '“Z(X Nalet) —a,(x0) ; (C.4.0)

Sy(® S, (0 . _ 5w
such that [ﬁ; N = [pL;new(X,t),XL;new(X't’)] =i8(t—t'), where PLnew(®} 1) = js—x

with S,(t) in eq. (C.4.c), and so

S, () in eq. (C.4.0), and Xy pew(x, t) = 220

75
cout 1 (aout + Aout'l') (C 5 a)
PL;new N ! e
~ ~ 4 t

Xﬁliltew = 1\/—( ay"t — ?IUt ) ! (C5b)

where ﬁglgcew = Py; new(X - L t) Agl;ltew - XL;new(X = L' t)-

The difference between egs. (C.3.a-b) and (C.5.a-b) is that in egs. (C.3.a-b) the signal field and the
LO are assumed to acquire a phase of e% = i, whereas in egs. (C.5.a-b) the signal field and the LO
are assumed do not acquire a phase. The phase of e? =i is acquired, because in egs. (1.4.5.2.a-C)
we have that the operators 4,(x,t) = (4,(x t)) = ilo, (% t)], 5 (%, t) - (4l (x, £)) = —ila, (% )],
whereas in egs. (C.4.a-c) we have a,(xt) = (3,(x,t)) = |a,(x, )| , ﬁ;r(x, t) = (ai(x, t)) =
|z (%, D).

Now, since from section 1.6.4 we have that the operators %; (x) = X[.(x,t) and pL.(X) = pr.(x,t)
satisfy the canonical commutation relation [%; (x,t), pr.(x,t)] = i8(t — t") for h = 1, which, as we
observe, is also the case for the scaled Stokes operators &; (x) and py,(x) defined in egs. (1.4.5.1.c)

and (1.4.5.1.d), respectively, then the operators X'P"* and p'PU* that describe the light that is
transmitted by a cavity optomechanical system can respectlvely be written as

)/Zlgut (Alout_i_AloutT) , (CGB_)

Pt = f(”"“t groucly (C.6.b)

where 2’°Yt and 2 arout’ are the photonic annihilation and creation operators for the photons

transmitted by a cavity optomechanical system, respectively.
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Observing egs. (C.3.a-b), (C.5.a-b) and (C.6.a-b) we see that the pairs of light operators KP"* o
Sout(t), poUt o Sout(t) and &'¢1t, p'PUt are quadrature operators of light; and thus, by observing eq.
(C.2), we know that by subjectlng light described by one of these pairs of quadrature operators to
balanced homodyne detection as done in figure C (a), we can measure such one pair of quadrature
operators.

We make use of balanced homodyne detection in the Cesium-133 atom sample characterization
measurement experiment presented in section 3.2.4 and in the atom-membrane entanglement
experiment described in chapter 4. The balanced homodyne detection scheme that we use in these
experiments is different from the one seen in figure C1 (a). In the sample characterization
measurement experiment presented in section 3.2.4 we make use of the balanced homodyne
detection seen in figure C1 (b) (i), and in the atom-membrane entanglement experiment described in
chapter 4 we make use of the balanced homodyne detection seen in figures C1 (b) (i) and C1 (b) (ii).
Using these schemes one can also learn about the quadrature operator pairs X214t o< S9Ut(t), pOUt o
Sout(t) and f('EUt' Algut

In the scheme seen in figure C1 (b) (i) we replace the BS seen in figure C1 (a) with a PBS and place
a half-wave plate before the PBS, and send the signal field and the LO into the same port of the
PBS; the half-wave plate here is rotated such that the output modes have equal powers. The scheme
in figure C1 (b) (ii) depicts a similar situation as figure C1 (b) (i), but here the half-wave plate is
replaced with a quarter-wave plate; the quarter-wave plate here is rotated such that the output
modes have equal powers.

Using the a balanced homodyne detection scheme in figure C1 (b) (i), the subtracted photocurrent

iz 1;HWP X \/E|0(Lo|<§(s,<pm) = \/ElaLOl((SZS)COS((PLO) + (f)s)Sin(q)Lo)) , (C.7.9)

which is the same as in figure C1 (a); and in the case of figure C1 (b) (ii), the subtracted
photocurrent

iy 1.0wp % V2]aro(Bse o) = V2larol((Ps)cos(@ro) + (Rs)sin(@ro)) . (C.7.b)
I.e a w/2-phase shift is introduced.

Note that in the aforementioned experiments, the LO is the probe laser light with the assumption
that the quantum fluctuations of this light are neglected.

In the atom-membrane entanglement experiment we need to stabilize the phase ¢ such that it is
different from zero, i.e. @10 # 0. In chapter 4, where this experiment is described, we can see how
we stabilize @y .
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Appendix D: Jones matrix calculus

In this appendix | present Jones matrix calculus formalism [33].

The Jones matrix calculus is used to describe how the polarization of light is transformed by
polarizing optical components. The light is represented by a 2 x 1 matrix, known as the Jones
vector, and the optical components are represented by 2 x 2 matrices, known as the Jones matrices.
When light passes an optical component, the resulting polarization of the transmitted light is found
by taking a matrix product between the Jones matrix of the optical component and the Jones vector
of the incident light.

Note that Jones calculus only deals with light that is fully polarized; this makes Jones calculus
applicable in our experiments, because as written in section 3.1.1 we probe the atoms with linearly-
polarized light.

A Jones vector may in general be written as

_ EH _ EOHei((pH_wt)
VIones = EV] = [Eovei(q)v_wt) ) (D.l)

where Ey and Ey are the (complex) horizontal and vertical polarization components, respectively,
of the electric field E(x, t) = Vjonese’™ of @ monochromatic plane wave of light travelling along the
x-axis, where k is the angular wave number and o is the angular frequency of the light with k = w/c,
and E,y and E,y are the amplitudes of respectively Ey and Ey, with @y and ¢y being the respective
phases. Note that we define the difference between the phases ¢y and @y as @ = @y — @y.

Since E(x,t) = Vloneseikx, then it follows that the intensity of the electric field E(x, t) is

* Eod T E © ©
g = I]ones x V]ones ® V]ones = [EH EV] E‘I-:] = EqEq + EvEy . (D-Z)

The Jones matrices that we use in this thesis are the following ones:

1. The Jones matrix for a rotator:

= __[cos(B) sin(0)

M (6) = [—sin(e) cos (0)] ' (D.3.9)
2. The Jones matrix for a rotated wave plate:

= = 1 0 1=

Mgwp (@, 8) = Mg(—0) [0 e‘i‘P] Mg (0) (D.3.b)
3. The Jones matrix for a perfect linear polarizer:

= 0

M_po(Pu, Pv) = [pOH D ] : (D.3.c)

\%
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4. The Jones matrix for a piezoelectric-actuated mirror:

Mpam (@ = @p,. (0, v = @y, (D) . (D.3.d)

In egs. (D.3.a-d) 6 is the angle of the fast axis of a wave plate with respect to the horizontal axis;

@ = @y — @v; P, Py = 0 0r 1; and Mpay (@y = @, (1), @y = @v.(t)) transforms the phases @y
and @y in the Jones vector Vjones in eq. (D.1) into time dependent phases ¢y .(t) and @y, (t),
respectively.
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Appendix E: List of Jones matrices used in calculations

In this appendix we can see the Jones matrices used in the calculations performed in chapter 4,
where it is explained why our atom-membrane interfacing experimental setup can allow us to
satisfy the entanglement protocol described in chapter 2.

The Jones matrices for

1. the half-wave plates are:

= = = 1 0] = = 1 01=
Muwp1 = Mywpz = Mpor(1,1) = , Mywps = Mpwp(T, 0) = 1| Muwps =
0 1 0 1
= = = = 111 = = =
Muwps = Muwps = Muwp7 = Mrwp (T, 1/8) = 7z [1 _1], Muwps = Muwpo = Mrwp (T, ) =
0 1 1 071 = _ = 11 1
[1 O] Muwp1o = Mgwp (T, 0) = [O _1], Mywp11 = Mrwp (T, 1/8) = 5[1 _1]-

2. the quarter-wave plates are:

= = = 11 —1 1 +1i
Mqowp1 = Mqwpz = Mgwp(T/2,1/4) = =

i o 1

]MQWP3 MppoL(1,1) = 0o 1l

3. the polarizing beam splitters are:

g = = = 1 07,0 0 =
Mpgsj = Mpgs;jir + Mpgsj,r = Mipo1(1,0) + Mipo.(0,1) = [O 0] + [0 1], where Mpgg; o+ =

[(1) 8]’ l\=’lPBSj,r = [8 (1)], wherej =1, ...,9.

4. the electro-optic modulator is:

Moy = Mrwp (61 cos(Qg, t) + B2 cos(QD), )

= 0

Mg ( ) [0 e—l(Bl cos(Qg, t)+B> cos(QLt))] MR

— 0

Mg ( ) [0 1 —i(By cos(Qg,t) + B2 cos(QLt))] -

iB1 r in Qg t iB2 (. iQLt -iQrt iB1 Qg t -iQg. t B2 r iqrt -iQt
1— =2 (el 4 o710 ") — 22 (effLt 4 o7i0T) T(e‘ Bt + e71081T) 4 22 (@10t 4 e7ILY)
1B1 iQg,t -i0g, ty 4 1Bz (iopt —iQut _1B1 ¢ iqg,t —ing, t) _ 1Bz (iqpt —-iQLt
4(e 1 +e 1)+4(eL+e L) 1 4(e 1 +e 1) 4(e +e )
, Where the assumptions that 3; and 3, are small are made.
5. the piezoelectric-actuated mirrors are:

l\=’IPAM1 = l‘=’IPAM @ — @y + =), l‘=’IPAM2 = 1‘=’[PAM((PH - QH_3 (t))-
2
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