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Abstract 
 

This thesis presents an experimental setup that can be used for entanglement generation between 

Cesium-133 atomic ensemble and nanomechanical membrane resonator, and measurements 

performed on this setup that demonstrate how by coupling the two systems one is led to reduction 

of classical light back-action noise of the measurement. Measurements of this kind define the very 

first steps on our group's quest towards atom-membrane entanglement. In addition, experimental 

work characterizing the atomic part of this setup is presented.   
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Introduction 
 

Through technological advances sensitivity of measurements of e.g. gravitational waves, distance, 

and time shift is approaching the standard quantum limit (SQL) set by the Heisenberg uncertainty 

principle. Overcoming the SQL would, in principle, lead to measurements with vanishing 

uncertainty. Among the ideas surrounding SQL-circumventing measurement schemes we can find 

ones that are based on e.g. quantum variational measurements [37], two-tone measurements [40], or 

use of non-classically correlated light [38, 39].  

This thesis considers a protocol proposed by K. Hammerer et al. [12], dealing with entanglement 

generation between Cesium-133 atomic ensemble and nanomechanical membrane resonator. 

Succeeding in entanglement generation between these two systems can find applications in 

measurements of acceleration and magnetic fields below the SQL [13]. 

The work presented in this thesis is divided into four main chapters. 

Chapter 1 presents a theoretical basis serving to explain the atom-membrane entanglement protocol  

[12], which is also presented in chapter 2. 

Chapter 2 presents the entanglement protocol. In this chapter it is seen how the entanglement 

protocol reveals practical considerations common to experimental systems that in principle can be 

used for satisfying the entanglement protocol. 

Chapter 3 describes the main experimental components of our group's owned experimental setup 

that, via laser light, interfaces a Cesium-133 atomic ensemble contained inside our specially 

designed microcells and our specially designed nanomechanical membrane resonator that is part of 

a cryogenic optomechanical system. This is done in order to see how good our setup can be at 

tackling the practical considerations implied by the entanglement protocol. A big focus in this thesis 

is put on the atomic part of the atom-membrane interfacing experimental setup, and for that reason 

experiments characterizing this part of the setup are presented. 

Chapter 4 explains why our atom-membrane interfacing experimental setup can allow us to satisfy 

the entanglement protocol, and also presents and explains measurements done using this setup. It is 

demonstrated how by coupling the two systems we are led to reduction of classical light back-action 

noise of the measurement. Measurements of this kind define the very first steps on our quest 

towards atom-membrane entanglement. 

In the summary of the main results and outlook I summarize the main results of the thesis and give 

an outlook on the future of our atom-membrane entanglement experiment. 
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Chapter 1: Light's interaction with Cesium-133 atomic 

ensemble, and cavity optomechanics 
 

In this chapter I present the necessary theory related to the protocol described in chapter 2, dealing 

with entanglement generation between Cesium-133 atomic ensemble and nanomechanical 

membrane resonator.  

The first half of this chapter deals with the quantum nature of light's interaction with Cesium-133 

atomic ensembles, and the second half of this chapter deals with the quantum nature of light's 

interaction with a mechanical resonator that is part of a cavity optomechanical system. 

The main result of the first half of this chapter is summarized by the propagation equations showing 

the interplay between operators characterizing the quantum nature of respectively Cesium-133 

atoms and light, and the main result of the second half of this chapter is summarized by the input-

output relations for operators that describe light that is transmitted by a cavity optomechanical 

system. 

 

1.1 The energy structures of the ground and the first excited state of a Cesium-

133 atom 

 

In this section I will describe the energy structures of the ground and the first excited state of a 

Cesium-133 atom, which is the only stable isotope of a Cesium atom, and is an alkali atom, which 

is an atom characterized by having a single valence electron.  

In order to be able to describe the energy structures of the ground and the first excited state of (the 

valence electron of) a Cesium-133 atom, let us first understand how the electron spin angular 

momentum operator    couples to the electron orbital angular momentum operator   , and also how 

the electron total angular momentum operator    couples to the nuclear total angular momentum 

operator   , and what the respective couplings result in.  

The magnetic interaction between the magnetic dipole moment operators associated with, 

respectively, the operator    and the operator    results in an energy splitting of the gross energy 

levels into the fine structure energy levels. The electron total angular momentum operator    and the 

electron total angular momentum quantum number   then satisfy the relations 

           ,                                                                           (1.1.1.a) 

                        ,                                      (1.1.1.b) 

where   is the electron spin angular momentum quantum number, and   is the electron orbital 

angular momentum quantum number. 
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The magnetic interaction between the electron and the nucleus couples the operator    with the 

operator    and results in an energy splitting of the fine structure energy levels into the hyperfine 

structure energy levels. The atomic total angular momentum operator    and the atomic total angular 

momentum quantum number f then satisfy the relations 

           ,                                                                            (1.1.2.a) 

                              ,                                     (1.1.2.b) 

where   is the nuclear total angular momentum quantum number. 

Now, the gross energy levels of (the valence electron of) an alkali atom, such as a Cesium-133 atom, 

are labeled as       , the fine structure energy levels are labeled as        , and the hyperfine 

structure energy levels are labeled as  . Here n is the electron principal quantum number.  

Now: 

 

1. For the ground state of a Cesium-133 atom one has    ,      , then according to eq. (1.1.1.b) 

     ; and since     for the ground state and     is labeled with a letter  , then the ground 

state gross energy level is     with the fine structure energy level being       . Additionally, since 

for Cesium-133 one has      , then according to eq. (1.1.2.b)        is split into two hyperfine 

structure energy levels     and    .  

2. For the first excited state of a Cesium-133 atom one has    ,      , then according to eq. 

(1.1.1.b)       and      ; and since     for the first excited state and     is labeled with a 

letter P, then the first excited state gross energy level is    , which is split into two fine structure 

energy levels        and       . Additionally, since      , then according to eq. (1.1.2.b)        

is split into two hyperfine structure energy levels      and     , and        is split into four 

hyperfine structure energy levels     ,      ,      and     .  

Note that throughout this thesis, the hyperfine structure energy levels of the ground state are marked 

without a prime, and the hyperfine structure energy levels of the first excited state are marked with 

a single prime. 

 

The magnetic interaction between an externally applied static magnetic field and the magnetic 

dipole moment associated with    results in an energy splitting of the hyperfine structure energy 

levels into the Zeeman energy levels. The Zeeman energy levels are labeled by the atomic total 

angular momentum projection quantum numbers   , where                     . Note that for 

the first excited state we have       in   . For e.g. the Zeeman energy levels    of the energy 

levels             and               of a Cesium-133 atom the amount of the splitting in energy 

for a given external static magnetic field strength can be seen in figure A1, which is a result of a 

more detailed treatment of the effect of an externally applied static magnetic field on a Cesium-133 

atom seen in appendix A.  
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The gross energy levels     and     of a Cesium-133 atom are three-fold degenerate, and all the 

degeneracies are lifted by the combined effect of the fine structure splitting, the hyperfine structure 

splitting and the Zeeman splitting.  

 

The summary of the different energy level structures that were considered in this section can be 

seen in figure 1. 

 

The               and               transitions are called the D line transitions (of Cesium-

133 atom) with               called the D1 line transition and               called the D2 line 

transition. The D1 line transition can be induced by light of frequency of approximately 895 nm, and 

D2                                      852 nm [43]. 

Note that all experiments described in this thesis deal with near room temperature Cesium-133 

atoms that are contained inside our specially designed microcells, which are described in section 3.2. 

Also, the role of the D line transitions is understood in section 3.1, where it is explained how the 

laser system used in the performed experiments works. 

 

 
Figure 1. The gross, fine structure, hyperfine structure and the Zeeman energy structures for the ground and the first excited state of 

the valence electron of a Cesium-133 atom. When the fine structure splitting effect is present, the frequencies of light that can induce 

the               transition, called the D1 line transition, and the               transition, called the D2 line transition, are 

approximately 895 nm and 852 nm, respectively [43]. Note that the different splittings of the levels are not to scale. 

1.2 The coherent spin states of Cesium-133 atom 

 

Consider an ensemble of Na    atoms of same element.  
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The atomic ensemble total angular momentum vector operator    1 is defined as a sum of the atomic 

total angular momentum vector operators    , where n denotes the n'th atom in the ensemble, i.e. 

       
  

   
   ,                                                            (1.2.1) 

where in three spatial dimensions one has  

                   ,                                                         (1.2.2.a)  

                   ,                                                         (1.2.2.b) 

where             are atomic ensemble total angular momentum operators along the mutually 

orthogonal x-, y- and z-axes, respectively, and             are atomic total angular momentum 

operators along x-, y- and z-axes, respectively; they satisfy the commutation relations 

                    
 
      ,                                            (1.2.3.a)  

                    
 
      ,                                            (1.2.3.b) 

where q, w, r = 1, 2, 3 (1 for x, 2 for y, 3 for z), and      is the three-dimensional permutation 

symbol.  

According to the principles of quantum mechanics, if one chooses the quantization-axis of the 

vector operator    to be the z-axis, then the operator     must satisfy 

          = ћmf          ,                                             (1.2.4) 

where        is an eigenstate of    , and                     , and the remaining operators     

and     must according to the generalized Heisenberg uncertainty principle  

               ≥  
 

  
          

 

                                            (1.2.5)   

for two operators    and   , satisfy 

                 ≥  
 

  
            

 

=  
 

  
        

 

=  
  

  
      

 

=  
  

  
                

 

 

                                                            =  
  

  
    

 

 = 
  

 
  

   ,                                                      (1.2.6) 

which is obtained by observing eqs. (1.2.3.b) and (1.2.4).  

Note that in this thesis we will call the state        a spin state. 

Now, with z-axis being the quantization-axis, define the ladder operator     and its hermitian 

conjugate     as 

                                                           
1 The reason, why    is used to stand for the atomic ensemble total angular momentum vector operator  instead of the more obvious   , 

is conventional.  
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               ;                                                      (1.2.7) 

they satisfy  

          =                              ,                     (1.2.8) 

Using now eq. (1.2.8) one sees that for the spin states           =        one obtains 

           = 0   ;                                                     (1.2.9) 

and thus it follows that for the expectation values                 and            
       , where i = x, y, 

that 

                      
 

 
                    ,                            (1.2.10.a)   

                      
 

  
                    ,                           (1.2.10.b)   

           
               

 

 
          

 

       
  

 
    ,              (1.2.10.c)   

           
               

 

  
          

 

       
  

 
    ;             (1.2.10.d)   

and since the variance               
 
          

 
, where      refers to the expectation value, 

then for        the following holds: 

                    .                                                (1.2.11) 

The spin states        for which the equality in eq. (1.2.11) holds, are called the coherent spin 

states of Cesium-133 atom; and since by observing eqs. (1.2.10.a-d) one has that for the spin states 

       the equality in eq. (1.2.11) holds, then, by definition,        are the coherent spin states 

of Cesium-133 atom. 

For      Cesium-133 atoms in the coherent spin state       one obtains from eqs. (1.2.1), 

(1.2.3.a), (1.2.5) and (1.2.11) the equality 

                 =  
 

  
            

 

=  
  

  
      

 

=  
  

  
       

  
   

 

=  
  

  
           

  
       

 

=  
  

  
     

 

=                    

                     
  

 
  

   = 
  

 
     

    ,                                                   (1.2.12) 

where      
    .  

Now, eqs. (1.2.4) and (1.2.6) are mathematical formulations of the statement that tells us that if one 

chooses the quantization-axis of the vector operator    to be the z-axis, then measurements of the 

operators    ,     and     will yield projections of    along x-, y- and z-axes given by the values   ,    
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and   , respectively, where        with                         , and    and    may both be 

equal to any real number as long as the product of variances of measurements of     and     is larger 

or equal to 
  

 
  

 ; and thus one may argue that in cases, where a great amount of Cesium-133 

atoms reside in the coherent spin state      , where     , the operator     can be treated as a 

macroscopic quantity such that                           , where         
 where    is large. 

This is a valid argument, because for Ca Cesium-133 atoms in the coherent spin state       we 

have from eq. (1.2.12) that the ratio between the standard deviations of measurements of     and    , 

and also     and     is  
         

      

 
         

      

 
 

       
 

      

 
 

       
 

      

 
        

 

       
 

 

    
.  

Note that in section 3.2.2 we observe that the performed experiment on atomic density of Cesium-

133 vapor inside the microchannel of one of our specially designed microcells suggests that we are 

dealing with a great amount of Cesium-133 atoms, because for that particular experiment we obtain 

a number of atoms that is on the order of    . In this case the ratio between the standard deviations 

of measurements of     and     (and also     and    ) becomes 
 

    
     , which is small enough for 

us to rightfully assume that here     can be treated as a macroscopic quantity. 

Note that when the equality                  
  

 
  
  holds, it is said the noise of the operators     and 

    is at the so-called projection-noise level.  

1.3 Characterizing the polarization of light 

 

Consider an ensemble of photons of the same frequency propagating along the x-axis. 

By decomposing the electric field operator associated with the ensemble of photons into two 

components along the y- and z-axes we have that such electric field operator can be written as 

               
  

        
               

        
   

     
   

           ,          (1.3.1) 

where    is the vacuum permittivity,     is the transverse cross-sectional area of the photonic beam, 

   is the quantization length along the x-axis,   is the angular wave number along the x-axis, which 

is related to the electric field angular frequency   as      ,    and    are the (complex) 

Cartesian basis vectors along y- and z-axes, respectively, which describe the direction of  

polarization, which is perpendicular to  ,        and    
 

(t), where j = y, z, are the photonic 

annihilation and creation operators for j-polarized photons in the ensemble, respectively, that satisfy 

the commutation relation 

         
 
          .                                                      (1.3.2) 

The Stokes four-vector operator characterizing the ensemble of photons is defined as  
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                                  ,                                          (1.3.3) 

where  

   ≡                 ,                                                       (1.3.4) 

is the Stokes three-vector operator, and   

    
 

 
          

 

 
    

        
        ,                                      (1.3.5.a)  

    
 

 
          

 

 
    

        
        ,                                      (1.3.5.b) 

    
 

 
                

 

 
    

        
        ,                             (1.3.5.c) 

    
 

 
     

     
  

 

  
    

        
        ,                                 (1.3.5.d) 

are the Stokes operators, where in the last equality of eqs. (1.3.5.c) and (1.3.5.d) the relations 

        
       

  
,           

       

  
   ,                                           (1.3.6.a) 

     
  

        

  
,       

  
        

  
   ,                                              (1.3.6.b) 

were used, where        
     with p = y, z,  45

°
,  45°, σ+, σ- is a photon number operator for y-, z-, 

 45
°
-,  45°-, right-circularly-, left-circularly-polarized photons in the ensemble, with    

 
,     being 

the corresponding creation and annihilation operators, respectively.  

   ,    ,    ,     in eqs. (1.3.5.a-d) satisfy the commutation relations 

                   
 
      ,                                              (1.3.7.a) 

              ,                                                                 (1.3.7.b) 

where q, w, r = 1, 2, 3 (1 for x, 2 for y, 3 for z), and      is the three-dimensional permutation 

symbol.  

From eqs. (1.3.5.a-d) we see that the expectation value of the Stokes operator     gives us half the 

number of the photons in the photonic ensemble, i.e.       
 

 
          

       

 
, where            

is the number of photons in the photonic ensemble, and the Stokes operators    ,    ,     can be used 

to count the differences in photon numbers for polarized photons of the different orthogonal bases; 

   ,    ,     can thus be said to characterize the polarization of light.  

Assuming now that almost all of the photons in the photonic ensemble are linearly-polarized along 

the z-direction we have that the Stokes operator 

      ,                                                      (1.3.8) 
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where           
 

 
            

 

 
      is a real number. 

Note that the light emitted by the probe laser that we use in the experiments is assumed to be 

linearly-polarized. Assuming that the light emitted by the probe laser is travelling along the x-axis 

and that it is the z-direction along which the probe laser photons are linearly-polarized, it must 

therefore be true that for the probe laser light the assumption of eq. (1.3.8) holds. The probe laser is 

described in section 3.1.1. 

Now, from the generalized Heisenberg uncertainty principle seen in eq. (1.2.5) and eqs. (1.3.7.a), 

(1.3.8) we see that  

                 ≥  
 

  
            

 

=  
 

  
      

 

 =  
 

  
   

 

= 
 

 
  

 
   .              (1.3.9) 

Similarly to section 1.2, we can now arrive at the definition for the coherent states of light: the 

states for which the equality 

                                                                     (1.3.10) 

holds are the coherent states of light. According to eqs. (1.3.9) and (1.3.10) the equality 

                 
 

 
  

 
                                               (1.3.11) 

holds for the coherent states of light; and in such a case it is said the noise of the operators     and     

is at the so-called shot-noise level.  

1.4 The atom-light system Hamiltonian 

 

The Hamiltonian for an atom-light system can in general be written as  

                            ,                                           (1.4.1) 

where          is the atom Hamiltonian,         is the light Hamiltonian, and     is the atom-light 

interaction Hamiltonian.  

In this section the atom-light system to be considered will be the one treated in the atom-membrane 

entanglement protocol described in chapter 2. The atom-membrane entanglement experiment, 

which is described in chapter 4, and is an attempt at a real life realization of the entanglement 

protocol described in chapter 2, will serve as the basis for the following derivations. 

In the first three subsections of this section, the three Hamiltonians         ,         and     will be 

treated separately; this will be done in the Heisenberg picture, where the quantum operators are 

time-dependent and quantum states are time-independent.  Having found the effective atom-light 

interaction Hamiltonian    
    dealing with off-resonant D2 line transition            

            , the propagation equations for the operators     and    , where i = x, y, z, introduced in 
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sections 1.2 and 1.3, respectively, will be presented in the fourth subsection of this section. In the 

fifth subsection of this section the scaled versions of the operators     and     will be presented and 

the aforementioned propagation equations will be transformed and written in terms of these scaled 

operators; these transformed propagation equations will in chapter 2 aid us in understanding how 

the atom-membrane entanglement protocol works. 

Note that throughout this thesis, that whenever talking about ensembles of Cesium-133 atoms, the 

ground hyperfine structure energy levels will be labeled by the unprimed capital letter  , and the 

excited hyperfine structure energy levels will be label by the primed capital letter   . 

Before presenting         ,         and     it is important to know that during the atom-membrane 

entanglement experiment the Cesium-133 atoms can be shined on by three lasers: a probe laser, a 

pump laser and a repump laser; see figure 4 to see the relevant energy levels of Cesium-133 atoms 

addressed by these lasers. As described in section 3.1, the role of the probe laser is to probe the 

Cesium-133 atoms by coupling them off-resonantly to the D2 line transition            

           , and the role of the pump and repump lasers is to put as many of the Cesium-133 

atoms into the coherent state            of the energy level                , as 

possible, whereby the Cesium-133 atomic ensemble total angular momentum operator along the 

quantization-axis can be treated as a macroscopic quantity. In the derivations below I will be 

neglecting the effect of the pump and repump lasers, thus only considering the effect of the probe 

laser; and because the Cesium-133 atoms are coupled off-resonantly to the D2 line transition 

                      , by the probe laser, I shall assume that the Cesium-133 atoms lie in 

any Zeeman energy level mF of the energy level            and any Zeeman energy level mF ' of  

the energy levels                  . Also, since as understood from section 3.2.1, during the 

atom-membrane entanglement experiment we only care about the Cesium-133 atoms that are 

contained inside the microchannel of our specially designed microcells. This microchannel has an 

almost fixed transverse cross-sectional area and length, and the probe laser travelling through the 

microchannel interacts with all the atoms during the measurement time; and thus I shall assume that 

the transverse cross-sectional area and the length of Cesium-133 atom medium are constant and are 

respectively the same as the transverse cross-sectional area of the probe laser light beam and the 

quantization length along the propagation direction of the probe laser light. Also, since in the atom-

membrane entanglement experiment described in chapter 4 we have that the probe laser light is 

travelling along the x-axis, and that the quantization-axis of    is the z-axis, it will be assumed that 

these things also hold in the following derivations.  

1.4.1 The atom Hamiltonian 

 

From the considerations made in the introductory text of section 1.4, we have that we can write the 

atom Hamiltonian           as  

                                            
       

 

     

 
         ,              (1.4.1.1) 
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where the sums are performed over the atomic total angular momentum quantum numbers     

        and the atomic total angular momentum projection quantum numbers                   

           for each    , and the integral is performed over x from 0 to L. Here L is the (constant) 

length of the Cesium-133 atom medium,   is the density of the Cesium-133 atom medium, A is the 

(constant) transverse cross-sectional area of the Cesium-133 atom medium, ω0 is the carrier angular 

frequency of the probe laser light,      is the negative angular frequency detuning between ω0 and 

the angular frequency of the D2 line transition                      , and                    
      

                          is the density operator, which measures the probability for a Cesium-133 

atom in the ensemble at position x and time t of being in the excited spin state           . Note that 

the energy of the level            is           , and also note that the energy of the level 

            is taken to be zero, and so, because of that, the term in          that involves the spin 

state          , where                     , is cancelled.  

1.4.2 The light Hamiltonian 

 

Since in the introductory text of section 1.4 it is written that the transverse cross-sectional area and 

the length of Cesium-133 atom medium are constant and are respectively the same as the transverse 

cross-sectional area of the probe laser light beam and the quantization length along the propagation 

direction of the probe laser light, and also that the probe laser light travels in the x-direction, we 

have that the electric field operator associated with the probe laser light can be written as  

                          

 

  

   
   

                               
           

      
       

      
            ,      (1.4.2.1) 

where  

                   
   

     
                         

           
      

       
      

           (1.4.2.2) 

is the electric field operator associated with the probe laser light photons with the angular frequency 

  ,    is the angular wave number along the x-axis, which is related to    as        ,    and    

are the (complex) Cartesian basis vectors along y- and z-axes, respectively, which describe the 

direction of  polarization, which is perpendicular to    for all  ,          and      
 

(t), where      , 

are the photonic annihilation and creation operators for j-polarized probe laser light photons with 

the angular frequency   , respectively, that are dimensionless and that satisfy the commutation 

relation 

                 
 

               .                                            (1.4.2.3) 

Note that in eq. (1.4.2.1)         is decomposed into two components along the y- and z-axes, 

similarly to the case of eq. (1.3.1). 
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Now, the electric field    in eq. (1.4.2.1) assumes a discrete resolution in k-space. We would now 

like    in eq. (1.4.2.1) to assume a continuous resolution in k-space, i.e. we would like to make the 

change        . To do so, let us define the operator  

         
        

   
    ,                                                   (1.4.2.4)      

such that         in eq. (1.4.2.1) becomes 

            
  

     
                         

        
        

     
        

          ,   (1.4.2.5) 

where      , and          and    
      , where      , are the annihilation and creation operators 

for j-polarized probe laser light photons with the angular frequency  , respectively, that have units 

of inverse of square root of length (in k-space) and that satisfy the commutation relation  

            
  
                        .                               (1.4.2.6) 

Observe that the LHS and RHS of eq. (1.4.2.6) have the same dimension; this is true, because 

        has units of inverse of length (in k-space) as seen from the identity            
  

  
. 

With    in eq. (1.4.2.5) the light Hamiltonian          we need to consider becomes 

                                
 

 
    ,                            (1.4.2.7) 

where the operators         and          respectively take into account the operators          and 

   
      , where j = y, z. Note that                        is a photon number operator for the probe 

laser photons with wave numbers in the interval [k, k + dk] at time t.  

    in eq. (1.4.2.7) is in k-space; in order to obtain         in x-space one performs the following 

Fourier transformations of         and         : 

        
 

   
                 

  
   ,                                  (1.4.2.8.a) 

         
 

   
                   

  
   ;                           (1.4.2.8.b) 

        and          have units of inverse of square root of length (in x-space) and they satisfy the 

commutation relation 

                              .                                      (1.4.2.9) 

Note that                        is a photon number operator for the probe laser photons located in 

the spatial interval [x, x + dx] at time t. 
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1.4.3 The atom-light interaction Hamiltonian 

 

The atom-light interaction Hamiltonian presented here will assume the electric dipole 

approximation. In a case, where      Cesium-133 atoms are considered, such atom-light 

interaction Hamiltonian will thus  describe the electric dipole interaction  

                  
  
      ,                                      (1.4.3.1) 

where           is the (electric) dipole operator, with e being the elementary charge, for the n'th 

Cesium-133 atom,    is the position of the n'th Cesium-133 atom on the x-axis, and          is the 

electric field operator in eq. (1.4.2.5) for the probe laser light defined at    and time t.  

Note that the electric dipole approximation is justifiable for all experiments described in this thesis, 

because when observing sections 3.1.1 and 3.2.1, we see that the transverse cross-sectional area of 

the probe laser light and Cesium-133 interface, A, is much larger than the carrier wavelength of the 

probe laser light,   , squared, i.e.     
 . 

Let us for now consider working in the circular basis. 

In the circular basis the vector operator    for a single atom is 

      
  

       
        

  
      ,                                  (1.4.3.2) 

where the circular basis unit vectors are    
 

      

  
,      , and the circular basis vector 

components of    are     
      

  
,       ,. Using eq. (1.4.3.2) we thus have that in the circular basis 

the dipole operator         for a single atom becomes 

                   

    
                

   
                

    
                              

        ,    (1.4.3.3) 

where the sums are performed over the atomic total angular momentum quantum numbers   and    , 

and the atomic total angular momentum projection quantum numbers                      for 

each  , and                              for each    . Here               

                       , 

              

                       ,               

                        are the dipole moments, and 

               
                  is the density operator, which expresses coherence between the 

excited spin state            and the ground spin state       .    

In the circular basis the electric field operator in eq. (1.4.2.5) for the probe laser light becomes  

         
   

    
     

        
     

         
      

        
     

         
     ,      (1.4.3.4) 

where the Fourier transformations in eqs. (1.4.2.8.a-b) are used, where it is assumed that the electric 

field operator in eq. (1.4.2.5) is restricted to a narrow band of frequencies around the carrier angular 

frequency ω0, and eq. (1.3.6.a) is used. 
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Using eqs. (1.4.3.3) and (1.4.3.4) for    and        , respectively, and defining the coupling 

constants   
             

    
   

    
              

 
, where    , and integrating over the length L of the 

ensemble containing the Cesium-133 atoms, we have that     in eq. (1.4.3.1) becomes  

                           

      
                    

      
                     

            
 

              
   ,   (1.4.3.5) 

when the rotating wave approximation is used, that is, when the fast oscillating terms are set to zero. 

In     in eq. (1.4.3.5) we see that the first and the second terms include the annihilation operators 

    
      and     

      for respectively right- and left- circularly polarized photons at position x and 

time t, accompanied by the density operators                
                           , such that a 

Cesium-133 atom in the ensemble at position x and time t is taken from the ground spin state 

       to the excited spin state            and a photon is absorbed, while the (real) coupling 

constants               

   and               

   govern the strength of the atomic transitions. Note that due to 

the selection rules given by eqs. (3.1.2.2.b-c) we have that               

   and               

  are non-zero 

only for           and          , respectively.  

The atom-light interaction Hamiltonian     in eq. (1.4.3.5) is very general, and now, using this 

Hamiltonian, we would like to obtain an effective atom-light interaction Hamiltonian, which could 

reflect the considerations made about the probe laser light in the introductory text of section 1.4. As 

written in the introductory text of section 1.4, the individual Cesium-133 atoms are coupled off-

resonantly to the D2 line transition                         by the probe laser light; for that 

reason the absorption effects become negligible, and so, in     we can rightfully assume that the 

excited Zeeman energy level population also becomes negligible such the excited spin states 

           can be adiabatically eliminated such that when solving for                
      and 

               
      from the Heisenberg's equation of motion 

 

  
               

      
 

  
                

            we can set the derivative 
 

  
               

       , 

and thus find the solutions to                
      and                

      from 
 

  
                

             . By plugging the solutions to                
      and                

     , 

which are similar to the ones found in [1], into the atom-light interaction Hamiltonian     in eq. 

(1.4.3.5) we thus find the effective atom-light interaction Hamiltonian dealing with off-resonant D2 

line transition                         to be 

                
     

      
 

      
                                        

 
         

                 
                  

         
                                        ,   (1.4.3.6) 

where           MHz is the natural FWHM line width of the D2 line transition in units of 

radians per time [43], λD2 = 852 nm is the wavelength of the D2 line transition,    is the negative 

angular frequency detuning between ω0 and the angular frequency of the D2 line transition 
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                       . In eq. (1.4.3.6) we have that         ,          and          are defined 

through eqs. (3.2.4.2.a-c) with N = 1 and     and are made dimensionless, and that         , where 

i = 0, x, y, z, count the number of photons per unit length, which follows from the definitions of the 

Stokes operators given by eqs. (1.3.5.a-d), and the fact that         and          have units of inverse 

of square root of length as seen in section 1.4.2. 

The coefficients   ,    and    are in a case of            given by 

   
 

 
 

 

         
 

 

         
        ,                             (1.4.3.7.a) 

   
 

   
  

  

         
 

  

         
          ,                  (1.4.3.7.b) 

   
 

   
 

 

         
 

  

         
         ,                        (1.4.3.7.c) 

where           is the negative angular frequency difference between the angular frequency of the D2 

line transition                           and the angular frequency of the D2 line transition 

                       . The asymptotic limits seen in eqs. (1.4.3.7.a-c) hold for             . 

Note that according to section 3.1.1 and figure 4 the asymptotic limits seen in eqs. (1.4.3.7.a-c) are 

justifiable for all experiments described in this thesis. 

Note that the effective atom-light interaction Hamiltonian dealing with off-resonant D2 line 

transition                        , is similar to the one in eq. (1.4.3.6) and with the 

coefficients   ,    and    being different [1]. 

In order to interpret    
    in eq. (1.4.3.6) we have that: 

1. the term containing a0 makes the off-resonant electric field of the light emitted by the probe laser 

to be responsible for the energy splitting of the hyperfine structure energy levels into the Zeeman 

energy levels; the amount of splitting will depend on the strength of the electric field. This is known 

as the Stark effect and is analogous to the Zeeman effect described in section 1.1: for the Stark 

effect it is an off-resonant external electric field that shifts the energies of the Zeeman energy levels, 

and for the Zeeman effect it is an external static magnetic field that field that shifts the energies of 

the Zeeman energy levels. 

2. the term containing a1 is responsible for the Faraday rotation of the atomic total angular 

momentum operators                   and the Stokes operators                   around the x-axis; 

this effect is apparent from the propagation equations (1.4.4.4.a-f) in section 1.4.4. 

3. the term containing a2 is responsible for the higher order coupling between the light of the probe 

laser and the Cesium-133 atoms; the effect of this term is discussed in detail in [1].  
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1.4.4 The propagation equations for the atom-light system 

 

In this subsection I will find the propagation equations for the operators          and         , where i 

= x, y, z. 

The Heisenberg's equation of motion for the atomic total angular momentum operators          will 

read as  

 

  
         

 

  
                  =>                                    (1.4.4.1.a) 

 

  
         

 

  
             

       ;                                          (1.4.4.2) 

and the Heisenberg's equation of motion for the Stokes operators     will become the Maxwell-Bloch 

equation [1]: 

 

  
         

 

 
                  =>                                   (1.4.4.1.b) 

 
 

  
   

 

  
          

 

 
             

       .                               (1.4.4.3) 

Assume now that the retardation effects are not present, i.e. the dynamics on the time scale L/c, 

where light at speed c travels through the sample of length L, do not contribute; under this 

assumption we have that  
 

  
           in the Maxwell-Bloch equation (1.4.4.3). By plugging    

    

in eq. (1.4.3.6) with the asymptotic values of   ,   ,    in eq. (1.4.3.7), i.e.      ,     ,     , 

since we are dealing with the energy level            and as mentioned in section 1.4.3    

          is justifiable for all experiments described in this thesis, into eqs. (1.4.4.2) and (1.4.4.3), we 

obtain the following equations of motion for the operators     and    : 

 

  
             ,                                                               (1.4.4.4.a) 

 

  
                               ,                                    (1.4.4.4.b) 

 

  
                               ,                                    (1.4.4.4.c) 

 

  
                              ,                                    (1.4.4.4.d) 

 

  
                              ,                                    (1.4.4.4.e) 

 

  
             ,                                                              (1.4.4.4.f) 

where    
    

 

      
, which is dimensionless. From these equations we see the following effects of 

the dipole interaction between the individual Cesium-133 atoms in the sample and the light emitted 

by the probe laser as it travels in the x-direction through the atomic sample: 
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1. the atomic total angular momentum operators                   will Faraday rotate around the x-

axis by an amount proportional to the Stokes operator         , while the atomic total angular 

momentum operator          will be unaffected by the interaction. 

2. the Stokes operators                   will Faraday rotate around the x-axis by an amount 

proportional to the atomic total angular momentum operator         , while the Stokes operator 

         will be unaffected by the interaction. 

Now, as will be seen in chapter 4, the most essential physical setting for the atom-membrane 

entanglement experiment is where the Cesium-133 atomic ensemble total angular momentum 

operator along the quantization-axis, being the z-axis, can be treated as a macroscopic quantity, and 

the light emitted by the probe laser is travelling in the x-direction through the atomic sample. Since 

according to section 3.1.1 the probe laser light is linearly-polarized, and assuming that it is the z-

direction along which the probe laser light is linearly-polarized, then in the entanglement 

experiment and other performed experiments that have a similar setting, we have, when observing 

section 1.2 and eq. (1.3.8), that                  ,                  , where         and         

are real numbers, and thus the RHS of eqs. (1.4.4.4.c) and (1.4.4.4.d) is zero; furthermore, in 

continuous notation the vector operator    becomes 

      ≡               
 

 
                                                (1.4.4.5) 

(where    in eq. (1.2.1) was defined using discrete notation), and here we let                  , 

where    is a real number defined in section 1.2, which is of the order of the number of Cesium-133 

atoms in the sample. Define also the Stokes operators  

                   ,                                                   (1.4.4.6.a) 

   
                    ,                                          (1.4.4.6.b) 

   
                    ,                                         (1.4.4.6.c) 

where    
      and    

       refer to the Stokes operators at the beginning and at the end of the sample 

of the length L, respectively. Note that by multiplying by c, we have that       , where i = x, y, z 

count the number of photons per unit time, because          count the number of photons per unit 

length, as seen in section 1.4.3. Summarizing the above we thus have that eqs. (1.4.4.4.a-f) yield the 

following propagation equations relevant for the atom-light system:  

   
          

        ,                                                      (1.4.4.7.a) 

   
          

                  ,                                    (1.4.4.7.b) 

 

  
           ,                                                              (1.4.4.7.c) 

 

  
              

        .                                              (1.4.4.7.d) 

where          has units of inverse of time, and     is assumed.  



21 
 

Note that from now on, whenever    will be written in this thesis, it will have units of inverse of 

time. 

Note that the LHS and RHS of eqs. (1.4.4.7.a-d) have the same dimension. 

From eq. (1.4.4.7.b) we see that the term           allows us to read out the atomic property        

from the light property    
      , and from eq. (1.4.4.7.d) we see that another light property    

      is 

at the same time mapping onto another atomic property         we denote such and similar effects 

as light back-action.  

The same propagation eq. (1.4.4.7.b) essentially tells us that the Cesium-133 atoms perform 

polarization modulation of the probe laser light, because as understood from section 1.3 and eqs. 

(1.3.5.b-d), the Stokes vectors can be said to characterize the polarization of light. 

Also, from eqs. (1.4.4.7.b) and (1.4.4.7.c) we see that a measurement on    
       will result in a 

quantum non-demolition (QND) measurement of       , because according to eq. (1.4.4.7.c)        is 

not affected by light back-action during the interaction thus ensuring that the state of        is not 

demolished. 

1.4.5 The scaled atomic ensemble total angular momentum operators, the scaled 

Stokes operators, and the transformed propagation equations for the atom-light 

system 

 

In chapter 2, where atom-membrane entanglement protocol is described, we will be using the scaled 

atomic ensemble total angular momentum operators 

           
      

   
   ,                                                  (1.4.5.1.a)  

           
      

   
   ,                                                  (1.4.5.1.b) 

where     is assumed such that     and     are dimensionless and satisfy the canonic commutation 

relation                   as seen from eq. (1.2.3.a), and we will also be using the scaled Stokes 

operators 

                
      

   
   ,                                        (1.4.5.1.c)   

                
      

   
   ,                                        (1.4.5.1.d) 

which have units of inverse of square root of time, because   ,        and        have units of inverse 

of time as mentioned in section 1.4.4. 

In the present we assume that almost all of the probe laser photons are linearly-polarized along the 

z-direction, such that the operators                               ,    
           

        



22 
 

           , where         is a complex number representing the complex amplitude of the 

photonic ensemble of the probe laser light pulse at position x and time t, and thus the Stokes 

operators  

              
          

 
  

     

 
   ,                                 (1.4.5.2.a)  

       
         

  
             

             ,                               (1.4.5.2.b) 

       
         

 
             

             .                               (1.4.5.2.c) 

Note that eq. (1.4.5.2.a) holds, since here we have                     
 

 
          

            
 

 
            

        

 
  

     

 
, when using eq. (1.3.5.b). 

From eqs. (1.4.2.9), (1.4.5.1.c-d) and (1.4.5.2.a-c) it follows that        and        satisfy the 

canonic commutation relation                              . 

In eqs. (1.4.5.1.a-d) we have               , which follows from the definition        in 

section 1.2, and           
     

 
, which is seen in eq. (1.4.5.2.a). Here, in the present case, 

       denotes a large number of Cesium-133 atoms in the coherent spin state            

at time t, and          denotes a large number of linearly-polarized probe laser photons per unit 

time at position x.  

By making use of the scaled operators given by eqs. (1.4.5.1.a-d), when eqs. (1.4.5.2.a-c) hold, we 

have that the propagation equations (1.4.4.7.a-d) transform to  

   
        

     ,                                                            (1.4.5.3.a) 

   
        

     
 

 
      ,                                            (1.4.5.3.b)  

 

  
        ,                                                                  (1.4.5.3.c) 

 

  
      

 

 
   

     ,                                                       (1.4.5.3.d) 

where    
           ,    

            ,     
           ,    

            , and   

  
    

 
                will be referred to as the atom-light coupling strength, where   is the time 

period of the probe laser pulse.   is here seen to be dimensionless; this follows from the fact that 

   
    

 

      
 is dimensionless,      is dimensionless and       has units of inverse of time.  

Note that the LHS and RHS of eqs. (1.4.5.3.a-d) have the same dimension. 

The propagation equations (1.4.5.3.a-d) will in chapter 2 aid us in understanding the atom-

membrane entanglement protocol. 
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Note that in appendix C, where balanced homodyne detection is briefly described, we can see how 

one can experimentally measure    
       

       and    
       

      .   

1.5 The effect of an externally applied static magnetic field on the transformed 

propagation equations for the atom-light system 

 

In order to understand the main effects of an externally applied static magnetic field B on the 

Cesium-133 atoms in all of the experiments described in this thesis it is sufficient to consider the 

Hamiltonian 

         
 

   

 
          ,                                                  (1.5.1) 

where    is the Bohr magneton and g is the Landé g-factor. Now, when the static magnetic field B 

is pointing along the z-axis in our experiments, we have that          
 in eq. (1.5.1) will read as 

         
 

   

 
         

   

 
                         ,                        (1.5.2) 

where           , and    
   

 
        is the Larmor frequency of the Cesium-133 atoms in our 

experiments.    defines the angular frequency at which        and        will precess around the 

direction of B, namely the z-axis. Note that          
 makes all the Zeeman energy levels mF of the 

Cesium-133 atoms in the performed experiments non-degenerate as understood from appendix A, 

and that it forces us to use the direction of B, which in the present case is the z-axis, as the 

quantization axis. If we now include the effect of          
 into eqs. (1.4.4.2) and (1.4.4.3) for the 

operators          and         , respectively, where i = x, y, z, we have that, when using the 

commutation relations (1.2.3.b),  eqs. (1.4.5.3.a-d) turn into  

   
        

     ,                                                              (1.5.3.a) 

   
        

     
 

 
      ,                                              (1.5.3.b) 

 

  
             ,                                                          (1.5.3.c) 

 

  
             

 

 
   

     .                                         (1.5.3.d) 

It is important to note that the similar equations as the ones above can be shown hold for Cesium-

133 atoms inside a low-finesse 
2
 Fabry-Perot-type cavity [12].  

Now, as            and            will precess around the x-axis at the Larmor frequency   , we 

for convenience switch to the rotating frame, where we use new operators    
  and    

  that are related 

to     and     through a     rotation matrix: 

                                                           
2
 A dimensionless parameter called the optical finesse F gives the average number of roundtrips before a photon leaves a cavity. 
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    .                                 (1.5.4) 

Observing eq. (1.5.4) it is clear that once we'll know    
  and    

 , then we'll know     and    , and vice 

versa. 

The propagation equations (1.5.3.a-d) are in the rotating frame therefore written as follows: 

   
        

     ,                                                                                (1.5.5.a) 

   
        

     
 

 
     

             
             ,                  (1.5.5.b)  

 

  
   

    
 

 
    

               ,                                                          (1.5.5.c) 

 

  
   

    
 

 
    

             ,                                                           (1.5.5.d) 

where eq. (1.5.5.b) is obtained by plugging the expression for     in eq. (1.5.4) into eq. (1.5.3.b), and 

eqs. (1.5.5.c) and (1.5.5.d) are obtained by differentiating    
  and    

  in eq. (1.5.4) with respect to 

time t, then the product rule for derivatives is used and then eqs. (1.5.3.c) and (1.5.3.d) are used. 

The result of eq. (1.5.5.b) tells us that when an externally applied static magnetic field subjects the 

Cesium-133 atoms and it is homogeneously pointing along the same direction, being the z-direction, 

and    
    is measured, we will simultaneously access information about    

  and    
 . However, we see 

from eqs. (1.5.5.c) and (1.5.5.d) that    
   is during the interaction piling light back-action onto    

  

and    
  such that the states of    

  and    
  are demolished during the interaction. This contrasts the 

propagation eqs. (1.4.4.7.a-d) (and eqs. (1.4.5.3.a-d)), because in the present case we see that we no 

longer can perform QND measurements of any kind.  

By solving for    
  and    

  in eqs. (1.5.5.c) and (1.5.5.d) we obtain 

   
     

        
       

 

 
         

             
  

 

 
   ,                 (1.5.6.a) 

   
     

        
       

 

 
         

             
  

 

 
   .                (1.5.6.b) 

By plugging the above expressions for    
  and    

  into eq. (1.5.5.b) we observe that as    
      is 

during the interaction piling light back-action onto    
  and    

 , then    
       is being transferred onto 

   
      , for all times    < t. This kind of feedback is referred to as light back-action noise.  

1.6 The cavity optomechanical system Hamiltonian  

 

In this section I will consider treating a cavity optomechanical system depicted in figure 2. It 

consists of an optical Fabry-Perot cavity, where one of the mirrors is stationary and allows light 

field to be transmitted into the cavity, and the second mirror is dynamic, exhibiting pendulum-like 

motion. The dynamic mirror acts as a mechanical resonator. 
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Figure 2. A schematic for a generic geometry of a cavity optomechanical system. It consists of an optical Fabry-Perot cavity, where 

the left mirror is assumed to be stationary and allows light field to be transmitted into the cavity, and the right mirror is dynamic, 

exhibiting pendulum-like motion, where x(t) denotes its position from the equilibrium position, which is where the two mirrors are 

separated by the distance     . The dynamic mirror acts as a mechanical resonator. In the text we focus on a single optical mode of 

the optical Fabry-Perot cavity and a single mechanical mode of the mechanical resonator. Note that the various parameters seen in 

this figure are also seen in the text.  

The Hamiltonian for a cavity optomechanical system can in general be written as  

                            ,                                     (1.6.1) 

where     is the optical cavity (a.k.a. optical resonator) Hamiltonian,     is the mechanical resonator 

Hamiltonian,        is the optomechanical interaction Hamiltonian, and the term "Extra" is 

associated with cavity photon decay, mechanical friction of the mechanical resonator, influx of 

thermal phonons and driving by an external laser and/or a fluctuating vacuum field. 

In the following three subsections of this section, the three Hamiltonians    ,     and        will be 

put forward; this will be done in the Heisenberg picture, where the quantum operators are time-

dependent and quantum states are time-independent. Having found the linearized optomechanical 

interaction Hamiltonian         
   , the input-output relations for operators that describe light that is 

transmitted by the optomechanical system will be presented in the fourth subsection of this section. 

These input-output relations will in chapter 2 aid us in understanding how the atom-membrane 

entanglement works.  

Note that this section also serves to explain the basic principles of the optomechanical system 

described in section 3.4 that is part of our atom-membrane interfacing experimental setup. 

1.6.1 The optical cavity Hamiltonian  

An optical Fabry-Perot cavity that consists of two highly reflective mirrors that are separated by a 

fixed distance      has the resonance angular frequencies given by 

         
 

    
   ,                                                 (1.6.1.1) 
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where n is the integer number of the optical (Fabry-Perot) cavity mode. In the following we will 

focus on a single optical cavity mode, whose angular frequency will be denoted as   . 

The Hamiltonian describing the optical cavity is thus that of a single-mode harmonic oscillator and 

is given by 

           
           

 

 
    ,                                      (1.6.1.2) 

where        and    
     are the photonic annihilation and creation operators of the optical cavity 

mode, respectively, that are dimensionless and that satisfy the commutation relation 

            
       . 

1.6.2 The mechanical resonator Hamiltonian 

 

To understand the vibrational behavior of a mechanical resonator one can solve the equations of 

linear theory of elasticity under appropriate boundary conditions that are determined by the 

geometry of the mechanical resonator. Solving the problem yields a set of equations that can be 

used to visualize the vibrational shape for the different mechanical modes and the corresponding 

eigenangularfrequencies        , where   is the integer number of the mechanical mode. In the 

following we will focus on a single mechanical mode, whose angular frequency will be denoted as 

  . 

The Hamiltonian describing the mechanical resonator is thus that of a single-mode harmonic 

oscillator and is given by 

           
           

 

 
   

 
 

 
   

     
 

 
  

    
       ,                                            (1.6.2.1) 

where 

            
 

       
           

        ,                            (1.6.2.2.a) 

                   

           
 

    

   
                                     (1.6.2.2.b) 

are the position and the momentum operators of the mechanical resonator that respectively have 

dimensions of square root of time multiplied by dimensions of  
 

    
 and the inverse of square root 

time multiplied by dimensions of       , and that satisfy the canonical commutation relation 

[                 , with        and    
     being the phononic annihilation and creation operators 

of the mechanical mode, respectively, that are dimensionless and that satisfy the commutation 

relation             
       . 



27 
 

1.6.3 The optomechanical interaction Hamiltonian 

 

When the dynamic mirror of the optical Fabry-Perot cavity seen in figure 2 exhibits pendulum-like 

motion, then the coupling of optical and mechanical modes is parametric, i.e. the resonance angular 

frequency of the optical Fabry-Perot cavity,      , is modulated by the displacement        of 

the mechanical resonator, and so we can describe       by the Taylor series 

          
   

  
            ,                           (1.6.3.1) 

where         , and   
   

  
 is the optical angular frequency shift per displacement and is 

referred to as the frequency-pull parameter.  

Expanding now the Hamiltonian     in eq. (1.6.1.2) (with the vacuum noise term neglected) to 

leading-order in the displacement x we obtain          
                      

           

             
          , where        

 

       
           

     , as defined in equation 

(1.6.2.2.a); and so the optomechanical interaction Hamiltonian becomes 

               
             .                                       (1.6.3.2) 

The fundamental mechanism that couples the radiation field of the cavity to the motion of the 

mechanical resonator is the momentum transfer of the cavity photons onto the mechanical resonator, 

i.e. radiation-pressure force. A single photon transfers the momentum          , where    
  

 
 

is the angular wave number of the cavity photon, in a roundtrip inside the cavity, and as a 

consequence the radiation-pressure force (operator) is given by  

      
       

    
      

             ,                                    (1.6.3.3) 

where           
           is a photon number operator for the cavity photons, and the RHS of the 

equation equals 
    

  
   
 
     

  

    
   
 
   , where    

     

 
 is the cavity roundtrip time, where      is 

the length of the cavity, if   
   

  
 

  

    
. Note that as the motion of the mechanical resonator 

induces a shift to the resonance angular frequency of the optical cavity mode, a change in the 

circulating light intensity will happen and so a change in the radiation-pressure force will also 

happen. This kind of feedback-loop is referred to as optomechanical back-action.   

Since the mechanical resonator Hamiltonian     in eq. (1.6.2.1) describes the mechanical resonator 

exhibiting mechanical oscillatory motion, it follows that the radiation-pressure force       in eq. 

(1.6.3.3) is a force of varying amplitude, such that       can be said to deal with light that is 

amplitude modulated.  
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Note that in chapter 2 the so-called linearized approximate description of the optomechanical 

system will be used. Here we first need to split        into an average complex amplitude        

         and a fluctuating term        , i.e.                      , and plug it in the optomechanical 

interaction Hamiltonian        in eq. (1.6.3.2), such that        reads as 

                            
                    .                    (1.6.3.4) 

       in eq. (1.6.3.4) may now be expanded in powers of       . The part of the expanded        that 

will result in linear (coupled) equations of motion is referred to as the linearized optomechanical 

interaction Hamiltonian         
   , and is 

      
                      

                     ,                     (1.6.3.5) 

where       , and        
 

      
    

 

      
     with     assumed to be real, is referred to 

as the optomechanical coupling strength,                  
      is     divided by  

 

       
, such 

that       is dimensionless, and 

            
 

 
          

     ,                                     (1.6.3.6.a) 

             
          

 
 

   
                                              (1.6.3.6.b) 

denote the quantum fluctuations of the optical cavity mode. Note that     and     have dimensions of 

   and satisfy the canonical commutation relation [                  . Note that      has 

dimensions of inverse of time multiplied by dimensions of   .  

1.6.4 The propagation equations for the cavity optomechanical system 

 

In this subsection I consider finding input-output relations for operators that describe light that is 

transmitted by the optomechanical system. 

From the cavity optomechanical system Hamiltonian      in eq. (1.6.1) we observe that the cavity 

optomechanical system is a quantum system that interacts with the environment, which by 

definition implies that it is an open quantum system, and thus the equations of motion for an 

operator    of the system will be given by the Lindblad-Heisenberg equation of motion 

 

  
   

 

  
            

 

  
     

              
         

 
      ,                (1.6.4.1) 

where        is the optomechanical system Hamiltonian      in eq. (1.6.1) without the term "Extra", 

and      are known as Lindlblad operators, which are operators that model the effects of the 

environment. Note that        excludes the term "Extra", because as understood from the text below 
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eq. (1.6.1) this is an environmental term. For the operators     and    , which are defined in 

equations (1.6.3.6.a) and (1.6.3.6.b), respectively, that denote the quantum fluctuations of the 

optical cavity mode, we have that the Lindblad-Heisenberg equations of motion will read as [12] 

 

  
     

 

  
                            

     ,                         (1.6.4.2.a) 

 

  
     

 

  
                            

     ,                        (1.6.4.2.b) 

where the operators    
        

       and    
        

       represent the fluctuating vacuum field 

plus the laser field outside of the cavity, such that the operators      
       

      and     
       

      

represent the fluctuating vacuum field plus the driving laser field entering the cavity from the left 

mirror in figure 2, and    is the total cavity photon decay rate. Note that as understood from the text 

below eq. (1.6.1)    
     and    

     may also represent just the fluctuating vacuum field outside of 

the cavity, such that     
    and     

   represent the fluctuating vacuum field entering the cavity from 

the left mirror in figure 2. Note as well that    
     and    

     have units of inverse of square root of 

time multiplied by    and satisfy the canonical commutation relation [   
          

               

   , which, as we observe, is also the case for the scaled Stokes operators        and        defined in 

eqs. (1.4.5.1.c) and (1.4.5.1.d), respectively, but without   . Note therefore that the LHS and RHS 

of eqs. (1.6.4.2.a-b) have the same dimension. 

Using        with       
    in eq. (1.6.3.5) and the fact that [            we have that eqs. (1.6.4.2) 

now read 

 

  
                    

     ,                                          (1.6.4.3.a) 

 

  
                    

               .                       (1.6.4.3.b) 

Note that the LHS and RHS of eqs. (1.6.4.3.a-b) have the same dimension. 

Define now the operators     
    and     

    as the operators that describe light that is transmitted by 

the cavity optomechanical system, i.e. light that is transmitted through the dynamic mirror seen in 

figure 2, or, equivalently, light that is transmitted back through the stationary mirror in figure 2. The 

boundary conditions for     
    and     

    are given by  

    
        

             ,                                           (1.6.4.4.a) 

    
        

             .                                          (1.6.4.4.b) 

Now, assume that       such that one can adiabatically eliminate the optical cavity mode, so  
 

  
      such that from eq. (1.6.4.3.a) one obtains 

 

  
                    

     =>     

  
 

  
    

  , and 
 

  
      such that from eq. (1.6.4.3.b) one obtains 
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            =>       
 

  
    

   
    

  
   . Plugging these results for     and     into eqs. (1.6.4.4.a-

b) one obtains input-output relations for the light operators     
    and     

   :    

    
         

     ,                                                          (1.6.4.5.a) 

    
         

        
 

  
      .                                  (1.6.4.5.b) 

These input-output relations will in chapter 2 aid us in understanding how the atom-membrane 

entanglement works.  

Note that in appendix C, where balanced homodyne detection is briefly described, we can see how 

one can experimentally measure     
    and     

   . 
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Chapter 2: Protocol for entanglement generation 

between Cesium-133 atomic ensemble and 

nanomechanical membrane resonator 
 

In this chapter I present a protocol for entanglement generation between Cesium-133 atomic 

ensemble and nanomechanical membrane resonator with the help of the theory from chapter 1. The 

protocol presented here was first proposed by K. Hammerer et al. [12]. 

Note that in this chapter it is assumed that    .  

 

2.1 Conditions for generating atom-membrane entanglement 

 

Consider two systems respectively described by a pair of canonical operators    ,     and    ,    , 

which obey the canonical commutation relations 

                        ,                                              (2.1.1) 

and otherwise commute with one another. The two systems are said to be entangled if the following 

Einstein-Podolsky-Rosen (EPR) variance criterion is fulfilled [2, 3] 

∑EPR      
       

  
      

       

  
      ,                                (2.1.2) 

where ∑EPR is referred to as the EPR variance.  

Let now the two systems considered above respectively refer to Cesium-133 atomic ensemble and 

nanomechanical membrane resonator that is part of an optomechanical system. Let the canonical 

variables     and     respectively refer to the scaled atomic ensemble total angular momentum 

operators            and           , which respectively are defined in eqs. (1.4.5.1.a) and 

(1.4.5.2.b), and let the canonical variables     and     respectively refer to the position and the 

momentum operators of the nanomechanical membrane resonator,            and           , 

which respectively are defined in eqs. (1.6.2.2.a) and (1.6.2.2.b). Note that the pairs of operators    , 

    and    ,     satisfy the canonical commutation relations                  ,                   as 

seen previously in chapter 1; and so, from eq. (2.1.2) we have that the Cesium-133 atomic ensemble 

and the nanomechanical membrane resonator are entangled if the inequality 

∑EPR      
       

  
      

       

  
                                     (2.1.3)    

holds.  

Let us now consider describing a protocol, which deals with entanglement generation between 

Cesium-133 atomic ensemble and nanomechanical membrane resonator.  
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In figure 3 we can see a schematic of the setup that allows us to entangle the Cesium-133 atomic 

ensemble with the nanomechanical membrane resonator. Here the (Cesium-133) atomic ensemble is 

seen to be interfaced together with the (nanomechanical) membrane resonator via light bus. 

Entanglement can be generated by measuring the light that has interfaced the atomic ensemble and 

the membrane resonator. In figure 3 we will refer to the part of the setup that is to the left of the 

filter as the atomic part of the setup, and the part of the setup that is to the right of the filter as the 

optomechanical part of the setup. The light in the atomic part of the setup is described by the scaled 

Stokes operators                  and                , which respectively are defined in equations 

(1.4.5.1.c) and (1.4.5.1.d); and the light in the optomechanical part of the setup is described by the 

operators    
        

       and    
        

      , which are defined in section 1.6.4, and the 

operators            and           , which respectively are defined in equations (1.6.3.6.a) and 

(1.6.3.6.b). Note that the pairs of operators       ,        and    
    ,    

    , and         satisfy the 

canonical commutation relations [                            , [    
          

                , 

[                 as seen in chapter 1. Note as well that according to chapter 1 we have    
         , 

   
         , where the position x is before the atomic ensemble,    

          ,    
          , 

where the position x is after the atomic ensemble and before the filter,     
      

    ,     
      

    , 

where the position x is after the filter and before the cavity,     
       

    ,     
       

    , where the 

position x is after the cavity and before the detection. 

 

Figure 3. A schematic of the setup used for entanglement generation between Cesium-133 atomic ensemble and nanomechanical 

membrane resonator. A pulse of light described by the operators    
   and    

   interacts first with the atomic ensemble described by the 

operators     and     that are precessing at the Larmor frequency around the z-axis due to a static magnectic field Bstatic pointing along 

the z-axis. After the light has interacted with the atoms, it is described by the operators    
    and    

   . As understood from the 

propagation equations (1.4.5.3.a-b) and as noted in the text of section 1.4.4 we have that as the light interacts with the atoms, it 

becomes polarization modulated. Now, since as understood from section 1.6.3 the fundamental mechanism that couples the radiation 

field of the cavity to the motion of the membrane resonator is the radiation-pressure force described by the operator       in eq. 

(1.6.3.3), and       deals with light that is amplitude modulated, and since it is the light after the atoms that one needs the membrane 

resonator to respond to, one builds a filter that can convert the polarization modulated light into amplitude modulated light. After the 

filter, the light is described by the operators     
   and     

   and it interacts with the membrane resonator described by the operators     

and    , because according to Lindblad-Heisenberg equation of motion (1.6.4.2) we have that the operators     
   and     

   affect the 

time evolution of the operators     and     that are used to describe the optical cavity mode. Light leaving the cavity is described by 

the operators     
    and     

   , and it is subject to balanced homodyne detection, whose basic principals are described in appendix C.  

Let us now understand why the light that is subject to detection carries information about the 

commuting EPR observables         and        .   
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To start, it is proposed that the Hamiltonians that respectively describe the atomic ensemble and the 

membrane resonator are structurally similar.   

In order to obtain structural similarity between these two Hamiltonians, one chooses to model the 

atomic ensemble as a negative-mass (single-mode) harmonic oscillator, and the membrane 

resonator as a positive-mass (single-mode) harmonic oscillator, such that the respective 

Hamiltonians of these two systems become 

        
 

 
   

  
 

 
    

    
  

    

 
    

     
     ,                           (2.1.4.a) 

           
 

 
   

  
 

 
  

    
  

  

 
    

     
     ,                    (2.1.4.b) 

where both oscillators are assumed to be of unit mass,     
   

     
,     

   

   
,             , 

          , and        is the negative angular frequency of the splitting between the Zeeman 

energy levels mF  = 3 and mF  = 4 of the energy level 6
2
S1/2, F = 4 of the atoms, and      is the 

positive angular frequency of the mechanical mode of the membrane resonator.      is non-zero, 

because the atoms are subject to a static magnetic field Bstatic as seen in figure 3, and so the mF   

levels are made non-degenerate as understood from appendix A; and    is non-zero, because the 

membrane resonator exhibits mechanical oscillatory motion. Also, the reason why      is negative, 

is because the atomic ensemble is modeled as a negative-mass harmonic oscillator, and the reason 

why    is positive, is because the membrane resonator is modeled as a positive-mass harmonic 

oscillator.  

The main difference between negative- and positive-mass oscillators is as follows: in order for a 

negative-mass oscillator to create a quantum excitation, a quantum of energy must be extracted, 

instead of being supplied, which is the case for a positive-mass oscillator; ergo      must be 

negative, because the energy of 6
2
S1/2, F = 4, mF  = 3 is smaller than that of 6

2
S1/2, F = 4, mF  = 4 as 

seen in figure A1 in appendix A.   

In order for the atomic ensemble to be modeled as a negative-mass harmonic oscillator we assume 

that all the atoms reside either in the coherent spin state            or the spin state    

       , and say that when all the atoms are in      , then the atomic ensemble is in the 

ground state                of the negative-mass harmonic oscillator, and when all the atoms are in 

     , then the atomic ensemble is in the state           of the negative-mass harmonic oscillator, 

where         refers to the     'th tensor power. Recall from section 1.4.5 that the number      

appears in the definition of         , i.e. there         , where      denotes a large number of 

Cesium-133 atoms in the coherent spin state            at time t. The excited states of the 

oscillator are given by          
    ,          

    , etc., where    
  

 

     
     , where       

            
    

  is the raising operator of the oscillator, such that    
            ; and     

 

     
     , 

where                   
    

  is the lowering operator of the oscillator, such that               . We 
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observe that when one of the atoms in the atomic ensemble is in      , then the atomic ensemble is 

in the first excited state      of the negative-mass harmonic oscillator, etc.  

By observing section 1.6.2, and eq. (1.6.2.1) we see that one can model the membrane resonator as 

a positive-mass harmonic oscillator. Note that            in eq. (2.1.4.b) is     in eq. (1.6.2.1) with 

      . 

As understood from eq. (1.5.2)         , where    is the Larmor frequency, i.e. the angular 

frequency at which     and     will precess around the direction of the static magnetic field Bstatic 

seen in figure 3, namely the z-axis.  

Note that the pairs of operators    ,     and    ,     satisfy the canonical commutation relations, 

because the pairs of operators    ,     and    ,     satisfy the canonical commutation relations. 

Now, observing eq. (2.1.4.a) and section 1.5, we have that the input-output relations for the light 

operators        and        in the atomic part of the setup in figure 3 are the ones given by the input-

output relations (1.5.3.a) and (1.5.3.b), respectively, with the substitution        , and also 

observing eq. (2.1.4.b) and section 1.6.4, we have that the input-output relations of the light 

operators    
     and    

     in the optomechanical part of the setup in figure 3 are to the ones given 

by the input-output relations (1.6.4.5.a) and (1.6.4.5.b), respectively, with the substitution        : 

   
        

     ,                                                                   (2.1.5.a) 

   
        

     
 

 
      ,                                                  (2.1.5.b) 

    
         

     ,                                                                 (2.1.6.a) 

    
         

        
 

  
     ,                                          (2.1.6.b) 

where                 is the atom-light coupling strength as defined in section 1.4.5,      

  
 

      
     is the optomechanical coupling strength as defined in section 1.6.4. Recall from 

section 1.4.4 that that   is dimensionless, and from section 1.6.4 that      has units of inverse of 

time multiplied by dimensions of   , and since in the present case we have    , then      has 

units of inverse of time. Note that the assumptions that were made in order to arrive at the input-

output relations (1.5.3.a), (1.5.3.b), (1.6.4.5.a) and (1.6.4.5.b) are assumed also to hold in the 

present case.  

Let us now consider finding the equations of motion for respectively    ,    , and    ,    . 

Observing section 1.4.4 we have that the equations of motion for respectively the operators     and 

    are found using the Heisenberg equation of motion with the corresponding Hamiltonian      

           
   , where    

    is given by eq. (1.4.3.6), where the appropriate substitutions involving 

the different operators are made use of: 
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                      ,                                            (2.1.5.c) 

 

  
    

 

 
                      

 

 
   

      .                          (2.1.5.d) 

Note that eqs. (2.1.5.c) and (2.1.5.d) can also be obtained from eqs. (1.5.3.c) and (1.5.3.d), 

respectively, with the appropriate substitutions         and        , and using         .  

Observing section 1.6.4 we have that the equations of motion for respectively the operators     and 

    are found using the Lindblad-Heisenberg equation of motion with the corresponding 

Hamiltonian                       
   , where       

    is given by eq. (1.6.3.5), where the 

appropriate substitutions involving the different operators are made used of. This is because the 

membrane resonator is subject to environmental effects as it can decay due thermalization, and it is 

driven by  the quantum fluctuations of the optical cavity mode, i.e.     and    , which, as seen from 

section 1.6, depend on environmental effects.   

Assume now that the thermalization decay of the membrane resonator can be neglected; this holds 

true if the whole protocol is performed in the time period      such that           , where    

is the membrane resonator mechanical damping rate, and             is the mean occupation of 

the membrane resonator in thermal equilibrium at temperature T (with    ). With this assumption 

the equations of motion for respectively the operators    ,     are thus found using the Heisenberg 

equation with the Hamiltonian     : 

 

  
    

 

 
                    ,                                                                 (2.1.6.c) 

 

  
    

 

 
                                      

 

  
    

     .       (2.1.6.d) 

In eqs. (2.1.6.c) and (2.1.6.d) one uses the canonical commutation relation            . In the last 

equality of eq. (2.1.6.d) one uses       
 

  
    

  , which follows as explained below eqs. (1.6.4.4.a-

b).  

As was done in section 1.5, we now write eqs. (2.1.5.a-d) and (2.1.6.a-d) in the rotating frame, 

where we use new operators    
  and    

  that are related to     and     through a     rotation matrix: 

 
   

 

   
    

                  

                   
  

   

   

    ,                                   (2.1.7) 

where       and        . Observe in eq. (2.1.7) how in the case of j = a we are looking at 

counter-clockwise rotations, and in the case of j = m we are looking at clockwise rotations; this is 

true because      is negative and    is positive.  

Observing eqs. (1.5.5.a-d) and (2.1.7) we have that the propagations eqs. (2.1.5.a-d) and (2.1.6.a-d) 

are in the rotating frame therefore respectively written as 
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     ,                                                                                (2.1.8.a) 

   
        

     
 

 
     

               
               ,            (2.1.8.b)  

 

  
   

    
 

 
    

                 ,                                                        (2.1.8.c) 

 

  
   

    
 

 
    

               ;                                                         (2.1.8.d) 

and 

    
         

     ,                                                                                     (2.1.9.a) 

    
         

        
 

  
     

             
             ,            (2.1.9.b)  

 

  
   

       
 

  
     

               ,                                                        (2.1.9.c) 

 

  
   

       
 

  
     

             .                                                          (2.1.9.d) 

Assume now that the light after the atomic ensemble provides the input light to the cavity such that  

    
       

      ,                                                    (2.1.10.a) 

     
       

      .                                                   (2.1.10.b) 

In order to achieve the equalities given by eqs. (2.1.10.a-b), light interfaces the atomic ensemble 

and the membrane resonator through a filter seen in figure 3. In the text of figure 3 it is explained 

what the filter does. Note that in chapter 4, where the atom-membrane entanglement experiment, 

which is an attempt at a real life realization of the entanglement protocol presented in this chapter, 

is described, it is explained how we experimentally realize the filter.  

Assume now further that the atomic and the membrane resonator parameters are matched by 

requiring  

  
 

 
      

 

  
   ,                                                 (2.1.11.a) 

and that the angular frequencies    and      satisfy 

           .                                                  (2.1.11.b) 

Using the assumptions given by eqs. (2.1.10.a-b) and (2.1.11.a-b) we have that the propagations eqs. 

(2.1.8.a-d) and (2.1.9.a-d) tell us that  

    
        

     ,                                                   (2.1.12.a) 

    
        

     
 

 
     

     
                 

     
                ,     (2.1.12.b) 
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       ,                       (2.1.12.c) 

 

  
    

     
       ,                   (2.1.12.d) 

where in eq. (2.1.12.b) one has that                                  and          

                      ; in eqs. (2.1.12.c-d) one has that    
       

  , which follows from eq. 

(2.1.10.a) in combination with eq. (2.1.8.a), and that                      and          

          . 

Note that from eq. (2.1.7) it is clear that once we'll know    
     

  and    
     

 , then we'll know 

        and        , and vice versa. Observe that according to eq. (2.1.7) we have, when using eq. 

(2.1.11.b) and the properties                         and                       , that 

   
     

  and    
     

  and related to         and         through a a     rotation matrix: 

 
   

     
 

   
     

 
   

                      

                       
  

       

       

    .              (2.1.13) 

Now, the result of eq. (2.1.12.b) tells us that when an externally applied static magnetic field 

subjects the atoms and it is homogeneously pointing along the same direction, being the z-direction, 

and     
    is measured, we will simultaneously access information about the commuting EPR 

observables    
     

  and    
     

 . According to eqs. (2.1.12.c) and (2.1.12.d) such measurement of 

    
    will result in a QND measurement of    

     
  and    

     
 , because    

     
  and    

     
  

are not affected by light back-action during the interaction thus ensuring that the states of    
     

  

and    
     

  are not demolished. Note that this is exactly the opposite of the case of eqs. (1.5.5.a-d) 

(and also eqs. (2.1.8.a-d) and (2.1.9.a-d)). 

   
     

  and    
     

  can from eq. (2.1.12.b) be gained access to by multiplying     
    by 

respectively            and            and integrating in time from 0 to  . We consider now 

therefore the two operators 

        
      

 

 
                   

    

 
   ,                                (2.1.14.a) 

        
      

 

 
                   

    

 
   .                                 (2.1.14.b) 

Performing the Fourier transform of     
    in eq. (2.1.12.b) and observing eqs. (2.1.12.c-d) therefore 

yields  

        
           

        
     

     ,                                    (2.1.15.a) 

        
           

        
     

     ,                                      (2.1.15.b) 

where  
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   ,                                  (2.1.16.a) 

       
     

 

 
                  

   

 
   .                                   (2.1.16.b) 

Note that in order to arrive at eqs. (2.1.15.a-b) it was assumed that                
 

 

               
 

 
   , and that                         

 

 
 , which is justified if the time 

period of the protocol,     , is much longer than     , i.e.       .  

Using eqs. (1.3.10), (1.3.11), (2.1.3) and (2.1.13), and the definitions of    ,    ,    ,     below eqs. 

(2.1.4.a-b) we now calculate the sum of the variances of         
    and         

   : 

            
                 

                
               

             
     

             
     

    

            ,                                                       (2.1.17) 

where the property             
         is used, where    is a constant and    is an operator.  

The first term on the RHS of eq. (2.1.17) is attributed to the shot-noise of the light; this term arises, 

because in the present case it is assumed that we are dealing with the light operator    
   that is in the 

coherent state of light such that eqs. (1.3.10) and (1.3.11) hold. Note that according to section 1.4 

and eqs. (1.3.10), (1.3.11) and (1.4.5.2.a), the magnitude of the shot-noise is               

               
     

 
  

     

 
, where it is seen to scale with the number of linearly-polarized 

photons. 

The second term on the RHS of eq. (2.1.17) is the atom-light coupling strength                , 

as defined in section 1.4.5, squared and multiplied by the EPR variance ∑EPR      
       

  
  

    
       

  
 , as defined in eq. (2.1.3).  

We see now from eq. (2.1.17) that by measuring         
    and         

   , we can, with the knowledge of 

the atom-light coupling strength  , extract the EPR variance ∑EPR, and thereby find out whether 

EPR variance criterion (2.1.3) is fulfilled.  

Using the property                  
           

                        , where    and    

are constants,    and    are operators, and           is the covariance between    and   , we have that 

∑EPR in eq. (2.1.3) in general reads as 

∑EPR  
 

 
                                                                 .   (2.1.18) 

Assuming that initially, at     , i.e. before the light interfaces the atomic ensemble and the 

membrane resonator, the two systems are in their ground states, we have that the covariances in eq. 

(2.1.18) disappear, i.e.                        and                       , and ∑EPR = 1, 
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which according to eq. (2.1.3) tells us that the atoms and the membrane resonator are not entangled, 

but nevertheless is the best we can do for the two quantum-uncorrelated systems. Note that as the 

two systems are in their ground states at   , we have, according to eqs. (1.2.12) and (1.4.5.1.a-b), 

and section 1.2, that the terms          
 

 
 and          

 

 
, and that they are attributed to the 

projection-noise of the atoms, and, according to eq. (1.6.2.1), that the terms          
 

 
 and 

         
 

 
, and that they are attributed to the vacuum noise of the membrane resonator. Now, 

after these two systems become interfaced by the light and we have performed the measurement of 

        
    and         

   , the covariances in eq. (2.1.18) no longer disappear, i.e.                        

and                       , where      is the time period of the protocol, i.e. the time elapsed 

from    till the measurement is performed, and, as shown in [12] ∑EPR becomes reduced, i.e.  

∑EPR  
 

 

        
    

     ,                                           (2.1.19) 

which according to eq. (2.1.3) tells us that the atomic ensemble and the membrane resonator 

become entangled. Here        is the initial thermal occupation of the membrane resonator. 

Note how due to the factor 
 

        
 in the denominator in eq. (2.1.19), the present protocol allows 

entanglement to be observable even if the membrane resonator initially is well above its ground 

state; this is true, because 
 

        
      .  

Note as well how eq. (2.1.19) tells us that the more atoms there are in the coherent spin state 

           and the more linearly-polarized photons there are to interact with these atoms, 

the lower ∑EPR goes below one; this is true, because                . In [12] it is noted that 

moderate values of    are        . In chapter 3, where the main experimental components of our 

group's atom-membrane interfacing experimental setup are described,  an expression for    will be 

put forward that will prove to be convenient from the point of view of our atom-membrane 

experiment. By making use of experimental data and parameters that characterize our experiment it 

will then be estimated what values for    we can expect to obtain in the case of our atom-membrane 

interfacing experimental setup.  

2.2 The dominant impairing effects in atom-membrane entanglement generation 

 

In this section I will discuss the dominant impairing effects that alter the expression for the reduced 

EPR variance ∑EPR given by eq. (2.1.19). By examining the dominant impairing effects the 

entanglement protocol will reveal practical considerations common to experimental systems that in 

principle can be used for satisfying the entanglement protocol. 

The first dominant impairing effect is due to the mismatch between the atomic and the membrane 

resonator parameters, i.e. when   
 

 
      

 

  
. Observing eqs. (2.1.8.c-d) and (2.1.9.c-d) for 
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respectively 
 

  
   

 , 
 

  
   

  and 
 

  
   

 , 
 

  
   

 , and also section 1.5, we see that if the atomic and the 

membrane resonator parameters are mismatched, then light back-action noise will enter the 

expression for     
   , and thus the expressions for         

    and         
   . This will then alter the 

expression for             
                 

    , and the term describing the light back-action noise will 

be absorbed by the expression for the EPR variance ∑EPR. Note that all impairing effects essentially 

are absorbed by ∑EPR. According to [12], the EPR variance ∑EPR given by eq. (2.1.19) will due to 

the atomic and the membrane resonator parameter mismatch become           

              
 
, where   

         

         
 denotes the practical mismatch between the atomic and the 

membrane resonator parameters, wh         u  d    d  c  b   h  d g        h         ch. Note that 

              
 
 is the leading-order term. Due to this modification of the reduced EPR variance 

∑EPR, there is a practical limit set to the initial thermal occupation of the membrane resonator. In 

[12] it is noted that for      a mismatch of    
 

        
 becomes tolerable. Note that in eqs. 

(4.2.1.a-b) one can see the versions of         
    and         

   , when the atomic and the membrane 

resonator parameters are mismatched.  

The second dominant impairing effect is due to the thermalization decay of the membrane resonator. 

Recall that this effect is neglected in the derivation of eqs. (2.1.6.c) and (2.1.6.d) for respectively 
 

  
    and 

 

  
   . If this effect is not neglected, then there will be additional terms entering eqs. 

(2.1.6.c-d) that will be proportional to the membrane resonator mechanical damping rate   , and 

these decay terms will also be accompanied by Langevin operators such that the correct quantum 

statistics could be preserved. According to [12], the EPR variance ∑EPR given by eq. (2.1.19) will 

due to the thermalization decay become                      . Due to this modification of  

the reduced EPR variance ∑EPR, there is a practical limit to how long the time period      of the 

protocol can be. We see that the practical requirement for      becomes           . The size 

of    is set by the quality factor 
3
    of the membrane resonator, since          [17], where 

   is the angular frequency of the mechanical mode of the membrane resonator as seen in eq. 

(2.1.4.b).   

The third dominant impairing effect is due to the loss of light via detection inefficiency and 

spontaneous emission in the atom-light interaction. Note that the spontaneous emission can indeed 

be treated as a light loss mechanism, because spontaneously emitted photons travel in a random 

direction [24]. According to [12], the EPR variance ∑EPR given by eq. (2.1.19) will due to the loss 

of light become                 , where   denotes the fraction of the photons lost. Due to 

this modification of the reduced EPR variance ∑EPR, the entanglement created by this protocol is 

reduced but not removed.  

                                                           
3
 A quality factor, or Q-factor for short, is a dimensionless parameter that describes how underdamped a resonator is. 
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Chapter 3: Experimental system 
 

In this chapter I first describe the main experimental components of the atom-membrane 

entanglement interfacing experimental setup described in chapter 4. These experimental 

components include: a laser system, a microcell that contains the Cesium-133 atoms, a magnetic 

shield for shielding the atoms against stray magnetic fields, a system that can generate useful 

magnetic fields that subject the atoms, and a cavity optomechanical system that contains the 

nanomechanical membrane resonator.  

The material presented in this chapter is used to then put forward an expression for    that will 

prove to be convenient from the point of view of our atom-membrane entanglement experiment. By 

making use of experimental data and parameters that characterize our experiment it will then be 

estimated what values for    we can expect to obtain in the case of our atom-membrane interfacing 

experimental setup. 

Note that in this chapter we will be making use of the regular atomic ensemble total angular 

momentum operators and the regular Stokes operators, i.e. the operators            ,           , 

      ,       ,              ,              , where     and    , and        and        are respectively 

the scaled atomic ensemble total angular momentum operators and the scaled Stokes operators. All 

these operators are introduced in section 1.4. 

 

3.1 The laser system 

 

The laser system used in the experiments is composed of three lasers: the probe laser, the pump 

laser and the repump laser, where the latter two constitute an optical pumping system. See figure 4 

to see the relevant energy levels of Cesium-133 atoms that are addressed by these lasers. In the 

following I will explain the experimental roles of the lasers and what we do in order to lock the 

frequency of the respective lasers.  
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Figure 4. The relevant energy levels of Cesium-133 atoms addressed by the laser system used in the experiments. The laser system is 

composed of three lasers: the probe laser, the pump laser and the repump laser. The probe laser is tuned off-resonantly to the D2 line 

transition                         with negative frequency detuning   ; the pump laser is tuned to the D1 line transition 

                       ; and the repump laser is tuned to the D2 line transition                        . The figure is 

adapted from [1]. 

3.1.1 The probe laser 

 

The probe laser is used to probe the Cesium-133 atoms. As indicated by figure 4 the probe laser is 

tuned off-resonantly to the D2 line transition                         with negative 

frequency detuning    
  

  
; and the light emitted by the probe laser is linearly-polarized. Using this 

information we are able to summarize the probe laser's interaction with the Cesium-133 atoms by 

the propagation eqs. (1.4.4.7.a-d), given that no external magnetic fields are present, and by 

propagation eqs. (1.5.3.a-d), given that an external static magnetic field is present. 

In the experiments a Toptica DLpro diode laser is used as the probe laser; it is tuned off-resonantly 

to the D2 line transition                         with negative frequency detuning    

          . According to the online source [41] that sells Toptica DLpro diode lasers, the Toptica 

DLpro diode laser produces linearly-polarized light to a high degree (linear > 100:1). Before 

subjecting the atoms to the light we clean the linear-polarization even further by making use 

polarizing beam splitters, thus making sure that we probe the atoms with linearly-polarized light. 

3.1.2 The pump and repump lasers 

 

The pump and repump lasers constitute an optical pumping system, whose role is to put as many of 

the Cesium-133 atoms into the coherent spin state            of the energy level          

      , as possible. As indicated by figure 4 the pump laser is tuned to the D1 line transition 

                       , and the repump laser is tuned to the D2 line transition          
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              . In the experiments, the light emitted by the pump and the repump lasers is 

right-circulary (  ) polarized and travelling along the direction of a static magnetic field that we 

produce as explained in section 3.3. 

In order to see how our optical pumping system works we may use Fermi's golden rule with the 

Hamiltonian for the dipole interaction and derive the following selection rules for the dipole 

interaction driven transitions [25]: 

                                                                 (3.1.2.1.a) 

                                                                   (3.1.2.1.b) 

                                                                (3.1.2.1.c) 

                                                               (3.1.2.1.d) 

 

        (  transitions)                                          (3.1.2.2.a) 

         (   transitions)                                     (3.1.2.2.b) 

         (   transitions)                                     (3.1.2.2.c) 

where the quantum numbers L, S, J, F are the quantum numbers defined in section 1.1, but now the 

capital letters are used, because we are dealing with ensembles of Cesium-133 atoms. Note that the 

Cesium-133 atoms can also decay by spontaneous emission with the selection rule 

         (spontaneous emission)                               (3.1.2.3)     

Observing the selection rules for the dipole interaction driven transitions, given by eqs. (3.1.2.1.a-d) 

and (3.1.2.2.a-c) and the selection rule for spontaneous emission decay, given by eq. (3.1.2.3), we 

have that the pump laser light can bring the atoms from the energy levels               

       to the energy level                 with the help of spontaneous emission decay, 

and if there are atoms in the energy level                     , then they will be put to the 

energy level                 by the repump laser light with the help of spontaneous emission 

decay. By increasing the pump and repump laser output power and by making sure that both the 

pump and the repump laser light is right-circularly-polarized, the value of mF can be made to 

increase on average during the optical pumping process such that all of the Cesium-133 atoms are 

put into their coherent spin state       of the energy level                . In figure 5 we 

can see an illustration showing an example how the optical pumping system will put a Cesium-133 

atom into the energy level                , if it starts in the energy level                . 

 

Figure 5. An illustration showing how the optical pumping system will put a Cesium-133 atom into the energy level          

       with the help of spontaneous emission decay, if the atom starts in the energy level                . The pump laser 
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action is shown on the left of the figure and the repump laser action is shown on the right of the figure; both lasers are assumed to 

produce right-circulary (  ) polarized light. Starting with the left figure, a Cesium-133 atom starts in the energy level          

      , from which it is lifted to the energy level                 by the pump laser light; from                 the 

atom can spontaneously decay into the energy level            with        or            with         . If the atom will 

only spontaneously decay into the energy level           , it will eventually end up in the coherent spin state       of the energy 

level                , which is a dark state from which the atom will not move further; if, however, the atom does 

spontaneously decay into the energy level           , this will be counteracted by the repump laser light shown on the right of the 

figure. This pumping scheme will work due to fact that the light emitted by the pump and the repump lasers travels along the 

direction of a static magnetic field, and due to the selection rules given by eqs. (3.1.2.1.a-d), (3.1.2.2.a-c) and (3.1.2.3). The figure is 

adapted from [1]. 

In the experiments two separate Toptica DL100 diode lasers are used as the pump and repump 

lasers. According to the online source [42] that sells Toptica DL100 diode lasers, the Toptica 

DL100 diode laser produces linearly-polarized light to a high degree (linear > 100:1). Before 

subjecting the atoms to the light we clean the linear-polarization even further by making use 

polarizing beam splitters, similarly to the case of the probe laser light. In order to turn the linearly-

polarized light into right-circulary polarized light in the experiments, we put, in succession, a 

quarter-wave plate (QWP), and a half-wave plate (HWP) in the path of the respective light beams. 

For e.g. linear horizontally-polarized light entering the QWP, we have according to the Jones matrix 

calculus introduced in appendix D, that the QWP must be 
 

 
-rotated, and the HWP after the QWP 

must be 
 

 
-rotated, such that the linear horizontally-polarized light can be turned to right-circularly-

polarized light. 

3.1.3 Locking the frequencies of the lasers 

 

In this subsection I will explain what we do in order to lock the frequencies of our lasers.  

Atomic motion causes Doppler broadening of hyperfine atomic transitions. Because atomic 

velocities are distributed according to the Maxwell-Boltzmann distribution [26], this broadening has 

a Gaussian profile. The full-width-at-half-maximum (FWHM) of this Gaussian profile is given by  

               
         

       
        ,                                      (3.1.3.1) 

where    is the Boltzmann constant, T is the temperature, and       is the frequency of the 

hyperfine transition, when an atom of mass        is at rest with respect to the lab frame, hence 

referred to as the rest frequency of the hyperfine transition.  

In a case of the repump laser, we have in eq. (3.1.3.1) that          , where     is the frequency 

of the D2 line transition, and also          , where     is the mass of a Cesium atom, and 

        is the room temperature, such that 

                         .                                          (3.1.3.2.a) 
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Note that there are also other line width broadening effects involved such as, e.g., the power 

broadening effect. However, the Doppler broadening effect is here the most significant one, such 

that for simplicity we will be neglecting other line width broadening effects. 

For comparison, recall below eq. (1.4.3.6) that the natural FWHM line width of the D2 line 

transition is (in units of inverse of time) 

                          .                                         (3.1.3.2.b) 

Observing figure 4 and eqs. (3.1.3.2.a) and (3.1.3.2.b) we see that the repump laser will take the 

Cesium-133 atoms from the hyperfine structure level 6
2
S1/2, F = 3 to any of the other three hyperfine 

structure levels 6
2
P3/2, F' = 2, 3, 5 with a significantly increased probability due to the Doppler 

broadening effect.  

In order to lock the frequencies of our lasers at the desired points we make use of an experimental 

technique known as frequency modulated (FM) saturated absorption spectroscopy. We employ this 

technique for each of our lasers by building setups, whose diagrammatic representations can  be 

seen in figure 6.  

 
Figure 6. (a) and (b) Diagrammatic representations of setups that employ frequency modulated (FM) saturated absorption 

spectroscopy, which is an experimental technique that allows us to lock the frequencies of our lasers at the desired points. (a) depicts 

the cases of the pump and the repump lasers; and (b) depicts the case of the probe laser. In the figures we have that the solid red lines 

are optical paths, the solid blue lines are electrical-signal paths, PBS stands for polarizing beam splitter, HWP stands for half-wave 

plate, QWP stands for quarter-wave plate, NDF stands for neutral-density filter, Cs-133 cell is a Cesium-133 vapor cell, Det is a 

photodetector, and PI controller is a proportional-integral controller. 

In figure 6 we see that the light originating from a given laser travels through an optical isolator and 

then a part of this light is reflected by a polarizing beam splitter (PBS), where it used for FM 

saturated absorption spectroscopy. Note that the function of the optical isolator is to prevent 

potential back-reflections from entering the laser.  
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Figure 6 (a) depicts the cases of the pump and the repump lasers. Here we see that the reflected light 

travels in succession through the Cesium-133 vapor cell, the quarter-wave plate (QWP), and the 

neutral-density filter (NDF), then becomes reflected back on a mirror, and then travels in succession 

through the NDF, the QWP, and the cell again, and, finally, gets transmitted by the PBS and picked 

up by the photodetector Det. The function of the QWP is to make sure that when the light passes the 

cell for the second time, all of this light becomes transmitted by the PBS and nothing gets reflected; 

in order to see why this is true, one can make use of Jones calculus introduced in appendix D. Also, 

the function of the NDF is to attenuate the light beam.  

Figure 6 (b) depicts the case of the probe laser. Here we see that the reflected light first travels 

through a fiber-coupled electro-optic modulator (EOM) before it propagates the same way as in the 

case of the pump and the repump lasers seen in figure 6 (a). The function of the fiber-coupled EOM 

is to create frequency sidebands that allow us to lock the frequency of the probe laser at the large 

negative frequency detuning              mentioned in subsection 3.1.1. 

Now, from the absorption signal originating from the photodetector, we will see small but distinct 

peaks revealing the rest frequencies of the hyperfine transitions, and these peaks will have FWHM 

line widths close to the natural FWHM line widths of the corresponding hyperfine transitions. 

These peaks result from the motionless atoms and the atoms moving perpendicular to the beam path, 

both of which resonate with the counter-propagating light beams, i.e. the strong light beam and the 

attenuated light beam. These peaks are produced because the strong light beam will saturate the 

transition such that the attenuated beam will induce stimulated emission, and so, a small peak in the 

Doppler broadened profile will appear, thus revealing the rest frequency of the hyperfine transition.  

Note that between the peaks that reveal the rest frequency of the given hyperfine transition, there 

will be cross-over peaks. These cross-over peaks result from the moving atoms that resonate with 

the counter-propagating light beams. 

We wish the frequency of the given laser to be locked at the center of a designated peak. Locking 

the frequency will require a feedback-mechanism to the laser electronics, because the frequency of 

the laser might naturally drift. The absorption signal is, however, not used for the locking. Instead, 

the derivative of the absorption signal, known as the error signal, is used for the locking. 

In order to obtain the error signal, a sine modulation signal                   of angular 

frequency      and phase        is created by a signal generator and fed to the laser electronics. 

With this modulation signal, the laser will generate      -sidebands. If we were to detect this 

frequency modulated light after its interaction with the Cesium-133 vapor cell with a photodetector, 

the photocurrent resulting from that photodetector would contain a component oscillating as 

           and another component oscillating as           . The component oscillating as 

           is proportional to the difference in absorption of the two sidebands; and the component 

oscillating as            is proportional to the difference between the phase shift of the carrier and 

the (average) phase shift between the two sidebands. In our situation           , which is 

small compared to the hyperfine structure energy splitting, and so, the component oscillating as 
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           is the derivative of the absorption signal, i.e. it is the error signal. Now, in order to pick 

out the error signal, the photocurrent resulting from the photodetector Det in figure 6 is via a mixer 

combined with the sine demodulation signal                   of angular frequency      and 

phase        created by a signal generator. By adjusting the phase difference              , one 

is able to pick out the error signal. This error signal is then fed to a proportional-integral (PI) 

controller. The signal generated by the PI controller then travels to the laser electronics, and this 

completes the frequency locking feedback-mechanism.   

In figure 7 we can see the absorption signal and the error signal for the probe laser light, when the 

fiber-coupled EOM is turned off such that sidebands are not produced.  

 

Figure 7. Absorption and error signals for the probe laser light, when the fiber-coupled EOM seen in figure 6 is turned off such that 

sidebands are not produced. The horizontal axis is the detuning relative to the D2 line transition                        . In 

the absorption signal we can see the peaks that reveal the rest frequency of the hyperfine transitions                       

     ; and we can also see the cross-over peaks. Using the information provided by [35], it is possible to know which peaks 

correspond to which peaks. The peaks corresponding to the transitions                         and   are respectively -452 

MHz and -251 MHz away from the                         transition according to figure 4, and this information is used in 

this figure.  

3.2 The microcells 

 

The Cesium-133 atoms used in our experiments are in a gaseous form and are contained in glass 

microcells. The reason why the atoms are in a gaseous form is because the microcells are held near 

room temperature.  
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In the following I first present the general characteristics of the microcells used in the experiments 

described in this thesis. Next, I present the experiment that determines the atomic density of 

Cesium-133 vapor inside the microchannel of a microcell, and then the experiment that determines 

the Faraday angle for the linearly-polarized probe laser light as it passes through the microchannel 

of a microcell. From the Faraday angle measurements we will see how the spin-depolarization time 

T1 of the Cesium-133 atoms can be extracted. Next, I explain how to investigate the spin states 

        , where    = -4, ... 4, using the magneto-optical resonance method [11], and show 

experimentally how to obtain the magneto-optical resonance signal (MORS). By using the 

magneto-optical resonance method we will see how the transverse spin-coherence time T2 of the 

Cesium-133 atoms can be extracted from the MORS.  

Note that this section will make it clear why the particular experimental measurements mentioned in 

the above paragraph are important for the atom-membrane entanglement experiment described in 

chapter 4.  

3.2.1 General characteristics of the microcells 

 

In figure 8 (c) one can see how typical microcells used in the experiments look like. The microcells 

consist of a chip, seen in figure 8 (a), enclosed by a cylindrical body on which a stem is attached. 

The microcells are completely made out of borosilicate glass; the reason for that being that 

borosilicate glass has a very low coefficient of thermal expansion [27], making the dimensions of 

the microcell almost fixed if it is being heated, or cooled, for the reasons described below. As seen 

in figure 8 (a), there is a microchannel     h    dd       h  ch   w  h d          300 μ    300 μ  

  10 mm; the light originating from the probe laser passes through this microchannel. As seen in 

figures 8 (a) and (b), a microhole of a conical shape is drilled at the top of the chip to create a 20 μ  

entrance into the microchannel. The microhole allows Cesium-133 atom vapor to enter the 

microchannel. In the stem of the microcell there is a reservoir of Cesium-133 atoms in a solid form, 

and by heating, or cooling, the microcell one can control the amount of Cesium-133 atom vapor 

inside the microchannel that will enter through the microhole. At the both ends of the microchannel 

of the bare chip seen in figure 8 (a) one attaches 500 μ   h ck w  d w  with vacuum tightness; 

these windows have an anti-reflection coating on the outside such that beam losses are reduced.  
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Figure 8. Photos of a typical microcell used in the experiments with Cesium-133 atoms. (a) bare chip, (b) close-up of the 

microchannel in the chip and the laser-drilled microhole, (c) finished microcell with windows that have anti-reflection coating. Photo 

credit: Kasper Jensen. 

During the manufacturing process of the microcells, an alkene-based anti-relaxation coating is 

deposited through the microhole into the microchannel, where it then sticks to the walls of the 

microchannel; the particular compound used is alkene 1-nonadecene. As the Cesium-133 atoms 

collide with the walls of the microchannel, they can decohere from their quantum spin state; and 

with the coating in place it will take longer time for the Cesium-133 atoms to decohere than if there 

was no coating in place. As will be understood from section 3.2.3 by means of optical pumping the 

coating deposited on the walls of the microchannel can effectively allow us to conduct our atom-

membrane experiment on timescales of milliseconds. However, if there was no coating in place, the 

timescale could be reduced to microseconds. The latter can be seen as the Cesium-133 atoms inside 

the microchannel follow a Maxwell-Boltzmann distribution for thermal motion, and so their mean 

thermal speed at room temperature of     (293 K) is 

       
    

    
     m/s   ,                                        (3.2.1.1) 

where T = 293 K is the temperature. From eq. (3.2.1.1) we see that a Cesium-133 atom should 

collide with the wall of the microchannel every  
           

     
     μs, where                    is 

the transverse dimension of the microchannel as seen from figure 8 (b). The real reason why the 

anti-relaxation coating works the way it does is not fully understood in the literature; however, from 

the documented experimental work of Bouchiat and Brossel on relaxation of alkali atoms on 

paraffin surfaces [28], we can learn that alkali atoms (such as Cesium atoms) do not simply scatter 
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elastically off the coated surface, but rather stick fast to the coating for some finite time thereby 

increasing the time period in which the atoms spend inside the body of the microchannel.  

Note that we can neglect the decoherence effects due to intra-atom collisions inside the microcells. 

This is justified as in alkali atom vapor, the interaction between the atoms is dominated by spin-

exchange collisions [28]. The rate of the spin-exchange is given by [20] 

                ,                                                (3.2.1.2) 

where   is the atomic density, and     is the spin-exchange cross-section. Now,   is on the order of 

         from the atomic density measurements in section 3.2.2 (at     , according to the lab 

thermometer),               for Cesium atoms [36], and           m/s from eq. (3.2.1.1); 

plugging all this into eq. (3.2.1.2) we thus find that     
 

   
 is on the order of 1 second, which is 

significantly longer than the effective timescales of milliseconds of our atom-membrane experiment. 

It is reasonable to assume that       ms for temperatures close to    , and so, in the end, we 

can indeed neglect the decoherence effects due to intra-atom collisions inside the microcells. 

We have many microcells in our lab and so we name them. Generic names such as e.g. "D4", "A2", 

"F3" are chosen. The capital letter refers to the generation of the mircocell, where "A" refers to the 

1st generation, "B" refers to the 2nd generation, etc.; and the numbers 1, 2, 3 etc. refer to the 

number of the cell in the particular generation. The characterization measurements seen in the 

following subsections were performed using the microcell G2, which is not the same microcell that 

is used in the in the atom-membrane entanglement experiment described in chapter 4. 

Note that in the experiments the probe laser light beam has a diameter of      μ      u  d     h  

middle of the microchannel; in this way the beam fills the microchannel with minimal power 

clipping. During the measurement time, the probe laser light will interact with all the Cesium-133 

atoms inside the microchannel as they move around. 

3.2.2 Atomic density measurements 

 

In this subsection I present the experiment that determines the atomic density of Cesium-133 vapor 

inside the microchannel of a microcell. 

In this experiment the light beam originating from the probe laser is aligned through the 

microchannel of a microcell and the transmitted light is picked up using a photodetector. The probe 

laser is scanned in frequency over both hyperfine manifolds of the D2 line transition, and as the 

probe laser is scanned, the photodetector provides the signal seen in figure 9.  
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Figure 9. A signal obtained by sending probe laser light through the microchannel of the microcell G2 and then picking up the 

transmitted light using a photodetector. The photodector offset has been subtracted. The probe laser is scanned in frequency over 

both hyperfine manifolds of the D2 line transition, and the pump and repump lasers are turned off. The two dips that are seen during 

either the rising or the falling scan correspond respectively to the Cesium-133 atoms in the energy levels 62S1/2,  F = 3 and 62S1/2, F = 

4 that undergo the transitions                             and                            , as these atoms absorb 

the photons originating from the probe laser. These transitions follow from observing figure 4 and eqs. (3.1.2.1.a-d).  

Here we see two dips appearing in both the rising and the falling scan of the probe laser. The two 

dips that are seen during either the rising or the falling scan correspond respectively to the Cesium-

133 atoms in the energy levels 6
2
S1/2,  F = 3 and 6

2
S1/2, F = 4 that absorb the photons originating 

from the probe laser. The light from the probe laser must be of sufficiently low power (on order of 

100 nW) in order to minimize the depumping effects as much as possible. As the scanning changes 

from rising to falling, the same energy level is being passed twice. We observe in the figure that the 

dip after the rising edge is smaller than the preceding dip. This is caused by the depumping of the 

atoms from e.g. 6
2
S1/2, F = 4, such that when the same laser frequency is reached for the second 

time there are fewer atoms in the same energy level to absorb the photons. Note that in order to 

understand which dip corresponds to which energy level one can shine on the atoms with the 

repump laser light. Since from section 3.1.2 we have that the repump laser light will put the atoms 

from 6
2
S1/2,  F = 3 to 6

2
S1/2, F = 4 with the help of spontaneous emission decay, we should see that 

as the repump laser light is applied, then the dip corresponding to 6
2
S1/2,  F = 3 should disappear and 

the dip corresponding to 6
2
S1/2,  F = 4 should increase. When the check with the repump laser is 

performed, we can also perform a check on the pump laser, where we apply both pump and repump 

laser light and see how the pump laser light puts some of the atoms 6
2
S1/2,  F = 4 back to 6

2
S1/2, F = 

3; this would make sense since from section 3.1.2 we have that the pump laser light will put the 

atoms from 6
2
S1/2,  F = 4 to 6

2
S1/2, F = 3 with the help of spontaneous emission decay. 
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Now, from the obtained signal we can calculate the atomic density of Cesium-133 vapor inside the 

microchannel by the use of the Lambert-Beer law [26], which tells us that the intensity of light of 

   qu  c  ν  h   h        g   d   distance z through an attenuating medium can be written as 

                      ,                                         (3.2.2.1) 

where           h    c d             , ρ     h       c d      ,   d      is the absorption cross-

section. From the Lambert-Beert law given by eq. (3.2.2.1), w     d      h       c d       ρ: 

  
                     

        
   ,                                         (3.2.2.2) 

where we now set z = L = 0,01 m, because it is the length of the microchannel as seen from figure 8 

(a).  

In order to determine the numerator in eq. (3.2.2.2), we first need to take the signal in figure 9 

(where the photodetector offset is subtracted as mentioned in the figure text) from either the falling 

or the rising scan and convert this signal from the time domain (as it is on the figure) to the 

frequency domain. In order to do so, we observe figure A1 in appendix A and make use of the fact 

that the hyperfine splitting frequency between the energy levels 6
2
S1/2 F = 3 and 6

2
S1/2 F = 4 is 

ν            , such that the spacing between the dips can serve as a reference in order to 

convert from the time domain to the frequency domain. Next, we fit a line to the frequency-domain-

signal with the dips omitted, and then divide each point on this signal with the corresponding point 

on the line we just fitted; and so the ratio             can now be found for the different 

frequencies, and thus the numerator in eq. (3.2.2.2), where z = L, can be determined.  

In order to determine the denominator in eq. (3.2.2.2) we can write the integral         in terms 

of absorption oscillator strength of a transition between two states respectively characterized by the 

electron total angular momentum quantum numbers   and   ; it may be written as  

      
      

 

      
 

     

    
        ,                                        (3.2.2.3) 

where     is the mass of an electron,    is the transition frequency, and       is the spontaneous 

emission decay rate. For the Cesium-133 D2 line transition, where j = 1/2 and j' = 3/2, we have, 

according to [43], that       = 0.7164. In terms of       we have that that the integral 

                                

 
   ,                       (3.2.2.4) 

where                    is the (classical) radius of an electron. Using eq. (3.2.2.4) we are 

finally able to determine the atomic density of Cesium-133 vapor inside the microchannel of a 

microcell. 

The signal seen in figure 9 thus shows that the atomic density of Cesium-133 vapor inside the 

microchannel of the microcell G2 is                .   here is obtained by averaging the result 

from both the falling and the rising scan.  
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Since the volume of the microchannel is Vchannel = (0.3   0.3   10) mm
3
 as seen from figure 8 (a), 

we find from the density                 the number of Cesium-133 atoms inside the 

microchannel to be                           .  

With a high number of Cesium-133 atoms inside the microchannel it becomes possible to put more 

atoms to the coherent spin state            such that    can be increased.  

3.2.3 Faraday angle and T1 measurements 

 

In this subsection I present the experiment that determines the Faraday angle of the linearly 

polarized probe light as it passes through the microchannel of a microcell. From the Faraday angle 

measurements we will see how the spin-depolarization time T1 of the Cesium-133 atoms can be 

extracted. 

The Faraday angle is an angle by which linearly-polarized light is rotated as it propagates through a 

given medium.  

In our case, we have the linearly-polarized probe laser light propagating through the Cesium-133 

vapor medium inside a microchannel of a microcell in the z-direction, and here the Faraday angle is 

defined as  

      
 

 
           ,                                         (3.2.3.1) 

where          refers to the mean value of the longitudinal Cesium-133 atomic ensemble total 

angular momentum operator       , and    
    

 

      
 as defined below eqs. (1.4.4.4.a-f).  

A diagrammatic representation of the setup used for the Faraday angle       measurement is seen in 

figure 10. Here we place a ring magnet next to the microcell in order to subject the atoms to a static 

magnetic field pointing along the z-axis. The static magnetic field forces us to use the z-axis as the 

quantization axis as understood from section 1.5; and so, by sending a pulse of combined pump and 

repump light in the same direction as the magnetic field direction, being the z-direction, we are 

according to section 3.1.2 optically pumping the Cesium-133 atoms to the coherent spin state 

     . Right after the combined pump plus repump laser pulse we send a pulse of linearly-

polarized probe light in the z-direction through the microchannel. The pulse sequence is produced 

using acousto-optic modulators (AOMs) with both the pump plus repump pulse and the probing 

pulse being of 50 ms duration each.  
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Figure 10. A diagrammatic representation of the experimental setup used for the Faraday angle       measurement, where       is 

defined in eq. (3.2.3.1). Photocurrents from photodetectors Det1 and Det2 travel to an oscilloscope which is used to read out      . In 

the figure we have that BS stands for 50/50 beam splitter, PBS stands for polarizing beam splitter, HWP stands for half-wave plate, 

and         is the static magnetic field pointing along the z-axis that the Cesium-133 atoms in the microcell are subject to. 

Let us now use Jones matrix calculus introduced in appendix D, and find the intensities picked up 

by respectively the photodetector Det1 and Det2. From these intensities we will be able to 

determine the Faraday angle       in eq. (3.2.3.1). By making use of Jones matrix calculus, we will 

need to treat the probe laser light classically.  

From eq. (D.1) we have that the Jones vector for the probe light before the microcell in figure 10 is  

      
  

  

  
   

             

             
   

             

             
    ,                (3.2.3.2) 

where    and    are the (complex) horizontal and vertical polarization components, respectively, 

of the electric field              
     of a monochromatic plane wave of light, which in the 

present case describes the probe laser light, which travels along the z-axis, where k is the angular 

w v   u b     d ω0 is the angular frequency of the probe laser light with k = ω0/c, and     and 

    are the amplitudes of respectively    and    with    and    being the respective phases. In 

the last equality we assume that         and      . 

The Jones matrices that we will use in the present case are:       ,            and 

             , which respectively are the Jones matrix for a rotator defined in eq. (D.3.a), the 

Jones matrix for a rotated wave plate defined in eq. (D.3.b) and the Jones matrix for a perfect linear 

polarizer defined in eq. (D.3.c). Here   is the angle of the fast axis of a wave plate with respect to 

the horizontal axis,        , and        0 or 1. 

Observing figure 10 we now find  
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1. the Jones vector for the light incident on the Det1: 

     
                              

  
 

                           
             .    (3.2.3.3.a) 

2. the Jones vector for the light incident on the Det2: 

     
                               

                             
         

 
    .   (3.2.3.3.b) 

In eqs. (3.2.3.3.a-b) we assume that the Cesium-133 atoms inside the microchannel of a microcell 

act to rotate the linear polarization of the probe laser light by the Faraday angle      , and so the 

Jones matrix for the microcell is                       ; the HWP is assumed to behave as a 

non-rotated half-wave plate which introduces the phase shift     between the horizontal and 

vertical components of the light such that the light intensities that are picked up by the Det1 and 

Det2 are the same, when the microcell is not present, and so the Jones matrix for the HWP is 

                ; the polarizing beam splitters used in our experiments transmit the 

horizontally-polarized component of the light and reflect the vertically-polarized component of the 

light, and so the Jones matrix for the PBS reflecting the light is                       and the Jones 

matrix for the PBS transmitting the light is                       .  

From eqs. (3.2.3.3.a-b) and (D.2) we now find  

1. the differences in the intensities picked up by respectively the Det1 and Det2 to be  

     
      

      

       
      

       
 

                                                               
                          

         ,                               (3.2.3.4.a) 

where the approximations                  and              are used. 

2. the sum of the intensities picked up by respectively the Det1 and Det2 to be  

     
      

      

       
      

       
     

   ,                    (3.2.3.4.b) 

Eqs. (3.2.3.4.a-b) tell us that 

     
      

        
      

         => 

      
     

      

       
      

 
   .                                             (3.2.3.5) 

The Faraday angle       measurement results for different probe light powers using the microcell 

G2 are seen in figure 11. We observe that       decays in time.      's decay in time follows from 

the definition of       in eq. (3.2.3.1), where it is seen that               . Assuming that          

              , where    is called the spin-depolarization time, and is a concept, whose origin is 

explained in appendix B, we see that under this assumption    defines the time at which          has 
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decayed by the factor of  
 

 
 from its initial value. Since               , it must thus under the 

assumption that          decays exponentially in time follow that       also decays exponentially in 

time and that    now defines the time at which both          and        have decayed by the factor of  
 

 
 from their initial value. The assumption regarding the exponential decay is made use of when 

extracting the Faraday angle      , which is the Faraday angle at the beginning of probing, i.e. at 

   , and the spin-depolarization time   , from the       measurements. In figure 12 (a) we can 

see that              for the microcell G2.       should stay constant with respect to probe light 

power Pprobe, because     signifies the beginning of the probing, where the depumping of the 

Cesium-133 atoms from       due to probing cannot yet happen, and there is also nothing in the 

definition of the Faraday angle      , i.e. eq. (3.2.3.1), that would indicate that       shouldn't stay 

constant. One of the reasons why       is seen not to be constant might be because the microcell 

was exposed to stray magnetic fields. In such a case the optical pumping becomes compromised 

such that a different amount of Cesium-133 atoms reside in the coherent spin state       at     

for the different measurements, and thus                is different for the different measurements. 

Note that neither the raw data nor the fitting can provide us with a constant      . See section 3.3, 

where we discuss how in the remaining experiments we shield the microcell from stray magnetic 

fields. In figure 12 (b) we can see how the inverse of    depends on the probe light power. We see 

that using a higher probe light power will decrease   ; this is because for higher probe light power 

there is a higher chance of the depumping of the Cesium-133 atoms from      , because of the 

power broadening. Assuming that we may fit a linear curve to the data points seen in figure 12 (b), 

we can extract    for the microcell G2, when there is no probe light; in such a case we obtain 

        ms.  

 

Figure 11. Experimentally obtained graphs, seen as black lines, showing how the Faraday angle    behaves in time t for different 

probe light powers Pprobe (seen in the legends) using the microcell G2. The red lines are fits to the experimentally obtained graphs. In 

order to make reasonably good fitting in the region from 0 to 14 ms, exponential curves with added constant offsets are fitted. If we 

assume that the decay of        in the region from 0 to 14 ms follows an exponential decay without an added constant offset, it must 

thus follow that there is a constant offset produced by the experimental procedure. In order to extract the Faraday angle      , which 

is the Faraday angle at the beginning of probing, i.e. at    , and the spin-depolarization time   , we must thus subtract the constant 

offsets. Note that if the experimental procedure does not, however, produce the constant offsets, it must thus follow that       does 

not follow a simple exponential decay. 
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Figure 12. (a) Experimentally obtained data points, seen as black dots, showing how the Faraday angle      , which is the Faraday 

angle at the beginning of probing, i.e. at time    , varies for different probe light powers Pprobe using the microcell G2. As 

explained in the text,       should stay constant with respect to Pprobe. Taking the average of       at the different Pprobe, we 

nevertheless conclude that              for the microcell G2. (b) Experimentally obtained data points, seen as black dots, showing 

how the inverse of the spin-depolarization time    varies for different probe light powers Pprobe using the microcell G2. Assuming 

that we may fit a linear curve to the data points, seen as a red line, with the fit being 1/T1 = 0.008Pprobe   0.363, we can extract the    

for the microcell G2, when there is no probe light; in such a case we obtain         ms.  

The measurements here show that by means of optical pumping the coating deposited on the walls 

of the microchannel can effectively allow us to conduct our atom-membrane experiment on 

timescales of milliseconds. 

3.2.4 MORS and T2 measurements 

 

In this subsection I explain how to investigate the spin states         , where    = -4, ... 4, 

using the magneto-optical resonance method and show experimentally how to obtain the magneto-

optical resonance signal (MORS). By using the magneto-optical resonance method we will see how 

the transverse spin-coherence time T2 of the Cesium-133 atoms can be extracted from the MORS. 

A diagrammatic representation of the setup used for this experiment is seen in figure 13. Here we 

place the microcell containing Cesium-133 atoms inside a magnetic shield, which can subject the 

atoms to a static magnetic field pointing along the z-axis and a radio frequency (RF) magnetic field 

oscillating on the x-axis; the magnetic shield used in this experiment is described in section 3.3. 

According to appendix A the static magnetic field will make the energy of each Zeeman energy 

levels mF change as shown in figure A1; here we see that the frequency difference between the two 

closest sets of two nearby     lines in figure A1 is the quadratic Zeeman splitting frequency 

    
   

 

     
 given by eq. (A.5), where         is the Larmor frequency and      is the hyperfine 

spilling frequency. To understand the role the RF magnetic field we write down the Hamiltonian 

describing the interaction of the static and RF magnetic fields with the atoms as 
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                ,                (3.2.4.1) 

where the static magnetic field along the z-axis contributes by          
 

   

 
              

         
   to the Hamiltonian, where the second order contribution          

   incorporates the 

quadratic Zeeman splitting frequency     
   

 

     
 (which was derived to second order in appendix 

A), and the RF magnetic field oscillating on the x-axis contributes by  

     
 

   

 
                         to the Hamiltonian, where       is the amplitude of the RF 

magnetic field     of angular frequency     and phase    . Note that for simplicity the second 

order contribution      
   is neglected.  

With the z-axis as the quantization-axis let us now write the total angular momentum operators 

      ,       ,        of N Cesium-133 atoms in the hyperfine structure energy level F as  

      
       

 
          

           
   
        ,                    (3.2.4.2.a) 

      
       

  
          

           
   
        ,                    (3.2.4.2.b) 

               

 
        ,                                                     (3.2.4.2.c) 

where ћ    is used, the time t dependence is suppressed,                         , 

and  

      
 

 
      

   
 

 

 
      

 
   

 
                                             (3.2.4.3)    

is the density operator for the     levels of the    level, where i, j = mF =  -F, -F + 1, ... , F and 

the sum is done over N atoms, where      
   

is density operator for a single Cesium-133 atom, used in 

chapter 1.  

For simplicity we now set N = 1; and so, using the density operator       in eq. (3.2.4.3) we can 

rewrite the Hamiltonian              
 as 

             
      

       

 
      

   

  
                  

    
              

       ,  (3.2.4.4) 

where     
 is the energy of the     level, and           

      is the complex amplitude of 

   . The first term is the static magnetic field contribution, and because of the density operators 

       
, which measure the probability for Cesium-133 atoms of being in the ground spin state 

      , we have that it is responsible for the     level energy splitting. The second term is the 

RF magnetic field contribution in the rotating-wave approximation, where we neglect the fast-

oscillating terms, and because of the density operators          
 and          , which express 

coherence between the ground spin states        and         , we have that it is responsible 

for driving the transitions between the     levels.  
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Now, to understand how the Cesium-133 atoms are transferred between different spin states 

      , where    = -F, -F + 1, ... , F, we must know how the off-diagonal density operators      , 

   , evolve in time; and to do so, we use the Lindblad-Heisenberg equation of motion  

 

  
      

 

  
                    

  
    

 
                 ,                       (3.2.4.5) 

where the second term is the decay term that is due to the interaction with the environment, with      

being the decay rate of the transverse total angular momentum operators        and        for     

level transition    . We have that               
  

, where        is the transverse spin-coherence 

time for     level transition    . Transverse spin-coherence time is a concept, whose origin is 

explained in appendix B. 

In order to understand the method for solving eq. (3.2.4.5), we can pick out a single example. By 

inserting the Hamiltonian              
 in eq. (3.2.4.5) for e.g.       we obtain 

               
 

  
      

 

  
                    

  
    

 
       

    

 
 

    

 
        

 
   

                            
                                   

           ,   (3.2.4.6) 

where       
    

    
 is the transition angular frequency between the energy levels with mF = 

   and mF =   , where       . Now, in this experiment we can assume that the angle by which 

the mean of total angular momentum operator       deviates from being oriented from z-axis is much 

less than unity, and so it is justified that      ,         in eq. (3.2.4.6). Also, since     is close to 

the transition angular frequency      in this experiment, we can define the slowly varying operators 

            
        ,                                                (3.2.4.7) 

such that eq. (3.2.4.6) now is turned to 

 

  
                   

    

 
       

   

    
                         .        (3.2.4.8) 

Assuming that in this experiment the spin-depolarization time    is longer than the transverse spin-

coherence time       , i.e.          , we have that       will follow               adiabatically, such 

that we can assume that       stays constant in time, i.e. 
 

  
       . Using this assumption in eq. 

(3.2.4.8) we get  

      
                   

                 
    

 
 
                .                           (3.2.4.9) 

We can use the above method for finding all      ,    ; and substituting these into eqs. (3.2.4.2.b) 

and (3.2.4.2.c) for respectively        and       , we obtain [1] 
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         ,   (3.2.4.10.a) 

          
        

   
 

                       

          
      

        
 

                    
    

         .   (3.2.4.10.b) 

Note that       
 

 
       and       

 

  
      , where   is a complex number. 

Observing eqs. (3.2.4.10.a-b) for        and        we see that they can be interpreted as describing a 

total amount of 2F two-level systems that all respond to an RF magnetic field of angular frequency 

   . Two adjacent energy levels      and    will correspond to one of the 2F two-level 

systems with resonance frequency         
 and FWHM line width         

. We have that two 

adjacent two-levels systems with the resonance frequencies         
 and           , 

respectively, are split by the quadratic Zeeman splitting angular frequency           
    

 

     
. 

From [1] we have that the line width 

        
           

         
 

 
   .                             (3.2.4.11) 

     is the decay rate common to all transitions independent of   ; the cause for this type of decay 

include different loss mechanisms common to all atoms and the fact that the different atoms in the 

microchannel may be subject to a different magnetic field, as the magnetic field that subjects the 

atoms might be of different strength at different points in space and it might not be homogeneously 

pointing along the same direction.       is the decay rate caused by the optical pumping process 

and it varies for a given transition between the     levels. Note that       is defined such that for 

the           transition for F = 4 we have                 . 

We observe that        and        in eqs. (3.2.4.10.a-b) can tell us how well we can pump the Cesium-

133 atoms in the microchannel of a microcell to the coherent spin state      , and thus how well in 

our experiments we can polarize the Cesium-133 atomic ensemble total angular momentum vector 

operator       along the quantization-axis; for this reason we define a polarization parameter p, 

which quantifies how well       is polarized along the quantization-axis: 

  
 

 
           

  
        

  
 

     

  
 
      

    

 
   ,           (3.2.4.12) 

where     refers to the mean value, and in the third equality we set                           

      
          

       , where        in the present case denotes the number of Cesium-133 

atoms in the coherent spin state            at time t, and       ; such that if p = 1, then all 

N Cesium-133 atoms lie in the coherent spin state      , and if p = 0, then there are no Cesium-

133 atoms in the coherent spin state      . Note that in eq. (3.2.4.12)     is assumed. 
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Note that from the Cesium-133 atom Hamiltonian         in eq. (2.1.4.a) in chapter 2, where the 

atom-membrane protocol is described, we see that we care most for the decay rate      

         
  

. In a case, where       is well-polarized along the quantization-axis, we define    

       as the transverse spin-coherence time. 

Now, from section 1.4 and eq. (1.4.4.7.a) we know that the probe laser light in this experiment will 

carry information about the modulated       , when it will pass the atoms, because    
             . 

In order to measure    
       we make use of the balanced homodyne detection scheme seen in figure 

C1 (b) (i) in appendix C. In the language of appendix C, we have that the light that is subject to the 

balanced homodyne detection is composed of two light fields: the signal field described by the 

quadrature operators of the signal field and the local oscillator (LO) that is treated as a classical 

light field. The quadrature operators of the signal field in the present case are the Stokes operators 

   
       and    

       that satisfy eqs. (C.4.b-c); and the LO in the present case is the probe laser light 

with the assumption that the quantum fluctuations of this light are neglected. Since by observing 

figure 13 we see that the phase difference between the signal field and the LO is zero, then by figure 

C1 (b) (i) and eqs. (C.2) and (C.7.a) we have that the balanced homodyne detection will yield the 

subtracted photocurrent                      
                , where     refers to the mean 

value, and       and       are the photocurrents resulting from the photodetectors Det1 and Det2, 

respectively, such that  

                                                                      ,   (3.2.4.13) 

where   is a constant that depends on experimental parameters, and              
      

                                             is the mean value of the expression in the 

curly brackets in eq. (3.2.4.10.a).  

Experimentally, a lock-in amplifier can provide us with the amplitudes of the sine and cosine 

components in      in eq. (3.2.4.13). By taking the sum of the squared amplitudes of the sine and 

cosine components in      in eq. (3.2.4.13) yields the magneto-optical resonance signal 

                    
    .                                 (3.2.4.14) 
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Figure 13. A diagrammatic representation of the experimental setup used for the measurement of the magneto-optical resonance 

signal (MORS) given by eq. (3.2.4.14). Photocurrents from the photodetectors Det1 and Det2 are subtracted to yield the photocurrent 

         
                , where     at refers to the mean value, which is then fed to a lock-in amplifier and then the MORS signal 

can be read out. In the figure we have that BS stands for beam splitter, PBS stands for polarizing beam splitter, HWP stands for half-

wave plate, and         and BRF are respectively the static magnetic field pointing along the z-axis and a radio frequency (RF) 

magnetic field oscillating on the x-axis, that the Cesium-133 atoms in the microcell are subject to. The mircocell is placed inside a 

magnetic shield described in section 3.3.  

The MORS measurement results for F = 4 using the microcell G2 are seen in figure 14. Figure 14 (a) 

displays a case, where the pump laser is blocked; here we see that eight peaks are visible, which 

indicates that the atoms are distributed among all nine     levels. Figure 14 (b) displays a case, 

where the pump laser becomes unblocked; here we see that only one peak is visible and it is almost 

at the same position in frequency as the first peak in figure 14 (a), which  indicates that the atoms 

are in the energy level     . In figure 14 (a) we have that       , which indicates an average 

polarization of the Cesium-133 atomic ensemble total angular momentum vector operator       along 

the z-axis (the quantization-axis in this experiment); and in figure 14 (b) we have that       , 

which indicates a strong polarization of       along the z-axis. The MORS measurements presented 

in this section thus show us that it is possible for us to put the majority of the atoms in the 

microchannel into the coherent spin state       such that    becomes greatly increased.  

Note that during the MORS measurement the repump laser is always on, because we wish to draw 

the atoms out from the energy level 6
2
S1/2, F = 3; and also note that in the MORS measurements we 

need to have         
     in order to clearly resolve the peaks.   

Now, since               
  

      
  , where the last equality holds if       is well-polarized 

along the quantization-axis, we know that we can extract the transverse spin-coherence time T2 of 

the Cesium-133 atoms from the MORS measurements, when       is well-polarized along the 

quantization-axis. In figures 15 (a), (b) and (c) we can see how the inverse of T2 varies for different 

Larmor frequencies, RF magnetic field BRF powers and probe light powers, respectively. The data 

seen in these figures was obtained using the microcell G2. We see that using a higher probe light 
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power will decrease   ; the explanation to that is the same as it is for the    measurements seen in 

section 3.2.3: for higher probe light power there is a higher chance of the depumping of the Cesium-

133 atoms from      , because of the power broadening. Assuming that we may fit a linear curve 

to the data points in figure 15 (c), we can extract    for the microcell G2, when there is no probe 

light; in such a case we obtain         ms. As understood from eqs. (3.2.4.10.a-b), the longer T2 is, 

the longer time the atoms stay in the coherent spin state      . 

 

Figure 14. Experimentally obtained graphs, seen as black lines, showing the magneto-optical resonance signal (MORS), in cases 

where (a) the pump laser is blocked, and (b) the pump laser becomes unblocked. In both cases the repump laser is on. fRF is the 

frequency of the RF magnetic field. The red lines are the fits to the experimentally obtained graphs. The fits are used to find the 

polarization parameter p defined in eq. (3.2.4.12). In the legend seen in (a) we see that       ; and in the legend seen in (b) we see 

that       . The fitting in (a) is seen to be of not a good quality, and since the right-most peak is higher and also the third peak 

from the right is lower than the fit proposes, the value for p in the case of (a) may be slightly larger than       . Note in the figures 

how the height of the peak in (b) is about nine times bigger than that of the right-most peak in (a). 
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Figure 15. Experimentally obtained data points, seen as black dots, showing how the inverse of the transverse spin-coherence time 

   varies for different (a) L         qu  c    ΩL, (b) radio frequency (RF) magnetic field BRF powers PRF, and (c) probe light powers 

Pprobe. The measurements were performed using the microcell G2. The fixed parameters used in the different measurements are seen 

in the legends of the figures. Curve fitting is only performed in (c). Assuming that we may fit a linear curve to the data points in (c), 

seen as a red line, with the fit being 1/T2 =  0.10Pprobe  0.58, we can extract    for the microcell G2, when there is no probe light; in 

such a case we obtain         ms.  

3.3 Shielding from stray magnetic fields and generating useful magnetic fields 

 

In highly sensitive experiments such as the MORS experiment described in section 3.2.4, and the 

atom-membrane entanglement experiment described in chapter 4, we do not wish the Cesium-133 

atoms in the microchannel of a microcell to be exposed to stray magnetic fields from the outside, 

because in such a case the optical pumping becomes compromised. Note that in the Faraday angle 

experiment described in section 3.2.3, the atoms should not be exposed to stray magnetic fields 

either; since it was done the other way around, it might've been one of the reasons why the Faraday 

angle         was not constant with respect to probe light power, as seen in figure 12 (a). 
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In the MORS experiment and the atom-membrane entanglement experiment we shield the atoms 

from stray magnetic fields by placing the microcell inside cylinders as the one seen in figure 16; 

this cylinder together with endcaps attached to its ends acts as a magnetic shield. When making the 

shields one keeps in mind that magnetic shields do not really block magnetic fields but rather alter 

the path that magnetic fields take. The materials that magnetic shields should be made of have high 

magnetic permeability; this allows magnetic shields to conduct magnetic fields better than e.g. air 

such that magnetic fields will prefer to travel inside of the layers of magnetic shields rather than air. 

We see that magnetic shields that we use are of cylindrical shape and they are multilayered with the 

different layers being spaced. The reason for their cylindrical shape is because magnetic field lines 

resist to make sharp turns and cylindrical shape alters the path of the stray magnetic fields entering 

from the side such that it becomes harder for these fields to penetrate through; note that a spherical 

magnetic shield is of course the best option in our experiments, because stray magnetic fields may 

enter from all the sides of the shield. The reason why our magnetic shields are multilayered is 

because the stronger the stray magnetic field, the easier it is for this field to penetrate through; and 

the reason why the different layers are spaced is because the magnetic field lines in the gaps 

between the layers do not follow straight lines, and so the cost of the shields is reduced, because 

otherwise the thickness of the layers has to increased. Now, the outermost layer in the shields that 

we use is made out of iron and the remaining three layers are made out of mu-metal, which is a 

nickel-iron alloy. All the layers high have magnetic permeability with iron having a larger magnetic 

permeability than mu-metal (             versus            , respectively [34]); this is the 

reason why the outermost layer is made out of iron.  

Note that one strategically places holes in the magnetic shields that we use to allow us to position 

the microcell into the shield and enable laser-beam access.  
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Figure 16. A multilayered cylinder which is placed around a microcell. This cylinder together with endcaps (not shown in the figure) 

attached to its ends acts as a magnetic shield that protects the microcell from stray magnetic fields from the outside. One strategically 

places holes in the magnetic shield to allow us to position the microcell into the shield and enable laser-beam access. 

Inside the magnetic shield we place a wire-coil system. This wire-coil system subjects the Cesium-

133 atoms to a static magnetic field that homogeneously points along the direction of the 

longitudinal-axis of the magnetic shield. This is exactly what we need, because the microcell is 

placed inside the magnetic shield such that the microchannel points along the radial direction of the 

magnetic shield. Note that if the magnetic field is of different strength in the region, where the 

microcell is placed, and in that region it is not be homogeneously pointing along the same direction, 

then according to eq. (3.2.4.11) the transverse spin-coherence time T2 of the Cesium-133 atoms will 

decrease; this is true because the cause for the decay rate      includes the fact that the different 

atoms in the microchannel may be subject to a different magnetic field, as mentioned in section 

3.2.3.  

The schematic for the wire-coil system is seen in figure 17. The wire-coil system is wound on an 

aluminum cylinder, and it consists of four different wire-coil subsystems. One of the wire-coil 

subsystems is wound around six equally spaced aluminum rings placed on the aluminum cylinder. 

This wire-coil subsystem creates a magnetic field that nearly homogeneously points along the 

longitudinal-axis of the magnetic shield. To compensate for the inhomogeneities along the 

longitudinal direction, two more wire-coil subsystems are wound around the aluminum rings: one 

of them is a Helmholtz wire-coil subsystem and another one is an anti-Helmholtz wire-coil 

subsystem. To compensate for the inhomogeneities along the radial direction one winds double-

saddle wire-coil subsystem; this wire-coil subsystem consists of eight 120  circular arcs wound on 

the aluminum cylinder beneath the aluminum rings. When all of the wire-coil subsystems are in use, 

one can in the region, where the microcell resides, create a nearly static magnetic field. 

In order to produce a time-varying radio frequency (RF) magnetic field in the radial direction, one 

uses Helmholtz wire-coil system wound on a plastic spool that is placed inside the aluminum 

cylinder. 
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Figure 17. (a) and (b) Schematics for the wire-coil system used for subjecting the Cesium-133 atoms to a static magnetic field that 

homogeneously points along the longitudinal-axis of the magnetic shield. In (a): the wire-coil subsystem wound around the rings at 

positions 1-6 creates a magnetic field that nearly homogeneously points along the longitudinal-axis, and the wire-coil subsystems 

wound around the rings at positions 3 and 4 (Helmholtz wire-coil subsystem) and positions 2 and 5 (anti-Helmholtz wire-coil 

subsystem) compensate for the inhomogeneities along the longitudinal direction; the number of windings needed for each wire-coil 

subsystem and the direction of the windings is shown in the figure. In (b): the double-saddle wire-coil subsystem concentric with the 

wire-coil subsystems seen in (a) compensates for the inhomogeneities along the radial direction. The schematics for the wire-coil 

system are adapted from [21].  

In figures 18 (a) and (b) we can see experimentally obtained data showing how the magnetic field 

strength varies in the radial direction of the magnetic shield, in the region, where the microcell 

resides, for respectively the wire-coil subsystem wound around the six equally spaced aluminum 

rings and the double-saddle wire-coil subsystem; and in figure 18 (c) we can see experimentally 

obtained data showing how the magnetic field strength varies in the radial direction of the magnetic 

shield, in that same region, when both of these wire-coil subsystems are in use. According to figure 

8 (a), the microchannel of the microcell is    mm long, so if the microcell would be positioned 

around the center of the magnetic shield, then the region, where the microchannel would reside, 

would be        mm. Note, however, that our microcells are positioned by translational mounts 

that can move the microcells along all three orthogonal axes, such that good light transmission 

through the microchannel could be achieved; ergo the measurements are performed in a larger 
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region        mm. Note that the transverse cross-section of the microcell is very small according 

to figure 8 (a), and the microcells are usually translated very little along the directions that are 

different from the radial direction, and so it is not necessary to perform measurements along the 

remaining two orthogonal axes in order to understand how the strength of the magnetic field varies 

in the region, where the mircrocell resides. By changing the size of the current that flows through a 

given wire-coil subsystem, the given wire-coil subsystem will produce a magnetic field of different 

strength, and so it becomes important to know which current settings to use such that a nearly static 

magnetic field in the region, where the microcell resides, could be created. Using the current 

settings seen in figure 18 (c), we thus see from figure 18 (c) that when both of these wire-coil 

subsystems are in use, we can in the region, where the microcell resides, create a nearly static 

magnetic field.  

 
Figure 18. Experimentally obtained data points, seen as blue stars, showing how the magnetic field strengths (a)   , (b)      , (c) 

         vary in the radial direction of the magnetic shield, in the region, where the microcell resides. Here    is the magnetic 

field produced by the wire-coil subsystem wound around the six equally spaced aluminum rings seen in figure 17 (a), and       is 

the magnetic field produced by the double-saddle wire-coil subsystem seen in figure 17 (b). Lradial = 0 mm denotes the position of the 

center of the magnetic shield, and Lradial > 0 mm and Lradial < 0 mm denote the positions away from the center in the opposite 

directions. In the legends of the figures we can see that the particular currents that were used for the generation of respectively    and 
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      were    
        and       

    . Quadratic curve fitting is performed in (a) and (b); the fits are seen as red lines. The 

experimentally obtained data points are seen to fit nicely with the fit. 

3.4 The optomechanical system  

 

The optomechanical system used in the atom-membrane entanglement experiment described in 

chapter 4 is contained inside a copper structure that can been seen in figure 19 (a). The 

optomechanical system consists of a semi-monolithic, high-finesse cavity that can be operated at 

cryogenic temperatures and a high-Q silicon nitride (SiN) nanomechanical membrane resonator that 

is shielded from the environment by a phononic crystal structure; a closer view of the 

nanomechanical  membrane resonator can be seen in figure 19 (b). The nanomechanical membrane 

resonator is specially designed by our group. The nanomechanical membrane resonator can transmit 

laser light and therefore splits the cavity into two separate Fabry-Perot type cavities that are similar 

to the one seen in figure 2; the situation is depicted in figure 19 (c). Note in figure 19 (c) that the 

          d         gh      d w  h  h  c             ud  αtrans is picked up by the photodetector Det5 

seen in figure 20, which shows a diagrammatic representation of the experimental setup used for the 

atom-membrane experiment.  

 

Figure 19. (a) An artist's impression of the optomechanical system used in our group's Cesium-133 atomic ensemble-

nanomechanical membrane resonator interfacing experimental setup. The optomechanical system is contained inside a copper 

structure. The silicon nitride (SiN) nanomechanical membrane resonator chip is stacked with two silicon spacers on both sides thus 

ensuring that the chip is firmly clamped between the two mirrors. The metallic springs ensure parallelity between the mirrors and are 

the reason why the cavity is semi-monolithic. (b) Photos of the silicon nitride (SiN) nanomechanical membrane resonator chip. It 

consists of a silicon nitride membrane resonator (white square), a silicon frame (highlighted in red), and a phononic crystal structure 

(highlighted in green). The phononic crystal structure shields the membrane resonator from the environment. As indicated by the 
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  gu  ,  h     b                  500 μ  w d , 500 μ     g   d 50 nm thick. (c) A diagrammatic representation of the 

optomechanical system seen in (a). As understood here, the copper structure allows a laser beam to enter from one end and to exit 

from another end of the optomechanical system. One can see that the membrane resonator (highlighted in yellow) can transmit laser 

light and therefore splits the cavity into two separate Fabry-Perot type cavities that are similar to the one seen in figure 2. The 

c             ud   α     h  d                 gh      d       h w      h    gure. The output mirror has much higher reflectivity than 

the input mirror, and so the light entering the cavity has much higher probability to be reflected out of the cavity than to be 

transmitted. The figures are adapted from [9]. 

The big focus of this thesis is the atomic part of the atom-membrane entanglement experiment, and 

for that reason the experiments characterizing our optomechanical system are not included in this 

thesis. The interested reader can find the experiments characterizing our optomechanical system in 

e.g. [9, 10]. In [9] it is reported that we have achieved the cavity finesse of          and that the 

nanomechanical membrane resonator used in the experiments described in [9] has a Q-factor of 

      . In [9] it is also reported that we are capable of cooling the membrane resonator to 

      , which gives the probability of 4% for the membrane resonator to be in the ground state. 

The membrane resonator that we use in our atom-membrane entanglement experiment is designed 

such that it would show significant response at frequencies around             Using the 

formula for the mean thermal occupation of the membrane resonator in thermal equilibrium at 

temperature T,      
   

     
, seen in chapter 2, we see that for        and            the 

initial thermal occupation       , which we now set to be equal to     , becomes           , where 

                   and                 are used. 

As understood from section 2.2, due to the thermalization decay of the membrane resonator the 

practical requirement for the time period       of the entanglement protocol becomes   
 

      
 

   

   
. Using the reported values          and        we see that in such a case we 

would need to perform the measurements much faster than      . 

3.5 The atom-light coupling strength for the atom-membrane entanglement 

experiment  

 

In this section I will express    
 

 
     , defined in section 1.4.5, in terms of parameters that are 

convenient from the point of view of our atom-membrane entanglement experiment.  

Observing eq. (3.2.3.1) for the Faraday angle         , and expressing    as     
         

    
, 

where        is the probe light power, and making the replacement        in the definition of 

   
    

 

      
, where      <   is the effective transverse cross-sectional area of the probe laser beam, 

which we use, because as seen from section 3.2.1 the probe laser beam doesn't fill the whole 

microchannel, we obtain  
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                            ,               (3.5.1) 

where               and            are used. 

By making use of experimental data and parameters that characterize our atom-membrane 

experiment let us now from eq. (3.5.1) estimate what values for    we can expect to obtain in the 

case of our atom-membrane interfacing experimental setup. Now: 

1. observing figure 8 (b) we see that                   , and by assuming that we may set 

     
 

 
 we obtain                      .  

2. observing section 3.1.1 we see that                 . 

3. observing section 3.2.3 we make use of the experimentally obtained value for        , being  

            , and equate it with    in eq. (3.5.1) such that          . 

4. observing section 4.2 we see that during the measurements performed using our atom-membrane 

interfacing experimental setup the atoms were probed with laser powers being          

                          ; such that in the present case we set                . We also 

see that during these measurements         .  

Plugging now the values seen above into eq. (3.5.1) we see that 

                       .                                            (3.5.2) 

Assuming that the estimates for    seen in eq. (3.5.2) are correct, we understand that in the case of 

our atom-membrane interfacing experimental setup we can obtain moderate values of         

noted in the atom-membrane entanglement proposal [12].  
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Chapter 4: Experimental work towards entanglement 

genration between Cesium-133 atomic ensemble and 

nanomechanical membrane resonator  
 

In this chapter I present the experimental setup that we use for working towards entanglement 

generation between Cesium-133 atomic ensemble and nanomechanical membrane resonator, and I 

demonstrate how this setup can allow us to satisfy the entanglement protocol described in chapter 2. 

I also present measurements done using this setup.  

 
4.1 Atom-membrane interfacing experimental setup  

 

In figure 20 we can see a diagrammatic representation of our group's owned experimental setup that, 

via laser light, interfaces a Cesium-133 atomic ensemble contained inside our specially designed 

microcells described in section 3.2 and our specially designed nanomechanical membrane resonator 

that is part of a cryogenic optomechanical system described in section 3.4. This setup is an actual 

realization of a schematic of the setup seen in figure 3. 

We experimentally realize the filter seen in figure 3 by building a Mach-Zehnder-type  

interferometer. A diagrammatic representation of the Mach-Zehnder interferometer that we build is 

enclosed in a dashed blue contour in figure 20. As explained in the text of figure 3, the filter's 

function is to convert the light that becomes polarization modulated by the Cesium-133 atoms into 

amplitude modulated light; and this is exactly what the interferometer does. Recall from chapter 2, 

that mathematically, the filter allows us to equate the pairs of the light operators    
    and     

  , and 

   
    and     

   as     
       

    and     
       

    as seen in eqs. (2.1.10.a-b). 

In order to see why our interferometer satisfies the role of the filter, and also why our atom-

membrane interfacing experimental setup can allow us to satisfy the entanglement protocol 

described in chapter 2, let us now make use of Jones matrix calculus introduced in appendix D and 

thoroughly analyze the whole experimental setup. By making use of Jones matrix calculus, we will 

need to treat the probe laser light classically. 
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Figure 20. A diagrammatic representation of our group's owned experimental setup that, via laser light, interfaces a Cesium-133 

atomic ensemble contained inside our specially designed microcells described in section 3.2 and our specially designed 

nanomechanical membrane resonator that is part of a cryogenic optomechanical system described in section 3.4. Enclosed in a 

dashed blue contour is a Mach-Zehnder-type interferometer, which satisfies the role of the filter seen in figure 3. In the figure we 

have that BS stands for beam splitter, PBS stands for polarizing beam splitter, HWP stands for half-wave plate, QWP stands for 

quarter-wave plate, PAM stands for piezoelectric-actuated mirror, EOM stands for electro-optic modulator, Det1, Det2, Det3, Det4 

and Det5 are photodetectors,         is the static magnetic field pointing along the z-axis that the Cesium-133 atoms in the microcell 

are subject to, and     and     are the local oscillators used for balanced homodyne detection realized by respectively Det1, Det2 

and Det3, Det4. The mircocell is placed inside a magnetic shield described in section 3.3.  

From eq. (D.1) we have that the Jones vector for the probe light before the polarizing beam splitter 

PBS1 in figure 20 is  

     
  

  
   

             

             
    ,                                      (4.1.1) 

where    and    are the (complex) horizontal and vertical polarization components, respectively, 

of the electric field                of a monochromatic plane wave of light, which in the present 

case describes the probe laser light, which travels along the x-axis, where k is the angular wave 

 u b     d ω0     h    gu       qu  c      h     b          gh  w  h k = ω0/c, and     and     are 

the amplitudes of respectively    and    with    and    being the respective phases. 

The Jones matrices that we will use in the present case are:       ,           ,               

and                             , which respectively are the Jones matrix for a rotator 

defined in eq. (D.3.a), the Jones matrix for a rotated wave plate defined in eq. (D.3.b), the Jones 

matrix for a perfect linear polarizer defined in eq. (D.3.c) and the Jones matrix for a piezoelectric-

actuated mirror defined in eq. (D.3.d). Here   is the angle of the fast axis of a wave plate with 

respect to the horizontal axis;        ;        0 or 1; and                     

         transforms the phases    and    in the Jones vector     in eq. (4.1.1) into time dependent 

phases         and        . 

Note that in appendix E we can see how the Jones matrices for the different optical elements seen in 

figure 20 are defined using the Jones matrices given by eqs. (D.3.a-d), and also how they look like 

in a completely written out form.  

Observing figure 20 we now find the Jones vector for the light exiting the lower output port of the 

polarizing beam splitter PBS1: 

                                      
               

             
    .            (4.1.2) 

The first term of the sum in eq. (4.1.2) and the second term of the sum in eq. (4.1.2) deal with 

respectively the probe light entering the right input port of the PBS1 and the fluctuating vacuum 

field entering the upper input port of the PBS1. The Jones vector for the fluctuating vacuum field is 
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 , where     is an operator representing the fluctuating vacuum field,    

is the Larmor frequency of the Cesium-133 atoms, which in the experimental case is        , and 

   is the phase of    . The reason why        is included, is because the PBS1 has an unused port, 

through which fluctuating vacuum field can enter. In figure 20 we see that most of the PBSs have 

unused ports; however, for simplicity we shall assume that vacuum fluctuations only enter the PBS1. 

From        we see that the fluctuating vacuum field is of horizontal polarization; this is, however, 

only an assumption that allows us to simplify the forthcoming calculations. Now, observing the 

Cesium-133 atom Hamiltonian         in eq. (2.1.4.a) and the membrane resonator Hamiltonian 

           in eq. (2.1.4.b), we see that the atoms will show significant response at the Larmor 

frequency    and the membrane resonator will show a significant response at the angular frequency 

  ; this is true, because    and    denote the resonance frequencies of the two oscillators, and 

oscillators are known to show significant response at their resonance frequencies. Observing section 

3.4 we see that our membrane resonator is designed such that it would show significant response at 

frequencies around            such that we can set      . Because the fluctuating vacuum 

field propagates through the atoms and eventually enters the cavity, where the membrane resonator 

resides, and both the atoms and the membrane resonator show significant response at   , one 

multiplies         in        by a forcing term         . Now, since the polarizing beam splitters 

used in our experiments transmit the horizontally-polarized component of the light and reflect the 

vertically-polarized component of the light, and since we need to find the Jones vector exiting the 

lower output port of the PBS1, we multiply      and        by respectively the Jones matrix for the 

PBS1 reflecting the light and the Jones matrix for the PBS1 transmitting the light.  

Observing figure 20 we now find the Jones vector for the light entering the microcell: 

                              
    

  

    
  

    ,                                (4.1.3) 

where                         , and  

    
                    

 

 
         

   
 

 
                            

           
      

 

 
         

   
 

 
                        

 
 
                                    

 

Eq. (4.1.3) deals with the light exiting the lower output port of the PBS1, i.e. the light described the 

Jones vector          in eq. (4.1.2). Here the light first travels in succession through the HWP1, the 

EOM and the HWP2. It is assumed that the effects of HWP1 and HWP2 can be neglected, and the 

collective effect on the polarization in this case can be described by the EOM. The EOM is assumed 

to behave as a 
 

 
-rotated wave plate (  

 

 
) with            

             , where    and    

are small amplitudes of sinusoidally varying voltages of frequencies    
 and   , respectively, that 

we apply to the EOM. Note that we make sure in the experiment that      ; in particular, we set 

          . The sinusoidally varying voltages of amplitudes    and    are applied to the EOM, 
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because we here wish to create horizontally-polarized   -sidebands centered around the carrier 

angular frequency    and horizontally-polarized   -sidebands also centered around   . The   -

sidebands are later used for stabilizing the phases of the local oscillators LOa and LOm seen in 

figure 20. The   - and   -sidebands propagate through the atoms and eventually enter the cavity, 

where the membrane resonator resides. Note that it is intentional that the atoms and the membrane 

resonator are driven by both the relatively large   -sidebands in addition with the fluctuating 

vacuum field. The   -sidebands are added, because, as shown in section 4.2, these can help us to 

combat the mismatch between the atomic and the membrane resonator parameters, i.e. when 

  
 

 
      

 

  
 . The idea in the end is not use the classical   -sidebands, and drive the Cesium-

133 atoms and the membrane resonator with purely the fluctuating vacuum field; but until we do 

not come close to matching the atomic and the membrane resonator parameters, the   -sidebands 

stay added. Note that     
   acquires an additional phase of   

 

   ; this is done, because in the 

present case we have that eqs. (1.4.5.2.a-c) hold, where it is assumed that the operators          

                     ,    
           

                   . Note as well that               in eq. 

(4.1.3) is an approximation, because the terms proportional to       and       are neglected, as 

these proportionality factors are much smaller than    ,    and   . 

Now, the light will propagate through the microcell, where it will interact with the atoms. The 

light's interaction with the atoms will transform the scaled Stokes operators        and        

according to the input-output relations (2.1.8.a-b). In order to find the Jones vector for the light 

exiting the microcell, we need to know how to express the        and        in terms of the (complex) 

horizontal and vertical polarization components of the light seen in a Jones vector. Now, since 

              and              , where        and        are the regular Stokes operators that 

satisfy eqs. (1.4.5.2.b-c), and since the classical Stokes operators may because of eqs. (1.4.5.2.b-c) 

be defined as    
 

  
                      and    

 

 
                     , where      and      are 

the horizontal and vertical polarization components of the light in a Jones vector for the light in the 

atom-light system, respectively, then in our case 

       
 

  
                        ,                                  (4.1.4.a)   

        
 

   
                        .                                 (4.1.4.b) 

Note the similarities between        and        in eqs. (4.1.4.a-b) and the Stokes operators given by 

eqs. (1.4.5.1.c-d), when eqs. (1.4.5.2.a-c) are used. 

Using eqs. (4.1.4.a-b), we have that the input-output relations (2.1.8.a-b) will in our case therefore 

read as  
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      ,                            (4.1.5.a) 
 

   
      

       
        

        
     

  

   
      

      
       

       
            

   ,      (4.1.5.b) 

where     
   and     

   are the horizontal and vertical polarization components of the light seen in the 

Jones vector for the light entering the microcell, i.e.               in eq. (4.1.3),     
    and     

    are the 

horizontal and vertical polarization components of the light seen in the Jones vector for the light 

exiting the microcell, and 

        
    

 

 
     

               
               , 

where          is the negative Larmor frequency, as defined in section 2.1. 

Using eqs. (4.1.3) and (4.1.5.a-b) we have that    
    and    

    are 

   
                     

   
 

  
         

   
   

 

  
             ,        (4.1.6.a) 

   
                             

   ,                                 (4.1.6.b) 

where approximation signs are used, because the terms proportional to      ,      ,   
 ,   

 ,      are 

neglected, as these proportionality factors are much smaller than    ,    and   . 

Using eqs. (4.1.5.a-b) and (4.1.6.a-b) we thus obtain the Jones vector for the light exiting the 

microcell: 

                
    

   

    
      

         
          

 

 
       

  

         
          

 

 
      

  
    ,                         (4.1.7)    

where      
   is     

   with           , and an added phase of   
 

   . Note that     
    and     

    acquire 

phases of   
 

    for the same reason as     
   does. 

Observing figure 20 we now find: 

1. The Jones vector for the light incident on the photodetector Det1: 

                                    
 

                       
 

 
          

       ,     (4.1.8.a) 

2. The Jones vector for the light incident on the photodetector Det2: 

                                                          
 

 
           

   

 
    .    (4.1.8.b) 
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In eqs. (4.1.8.a-b) we have      
  

 
     ,                                                   , 

                                                                   , and        and         are 

respectively        and         with                   . Note that     is the complex conjugate of   . 

The first terms of the sum in eqs. (4.1.8.a) and (4.1.8.b) deal with the light exiting the microcell. 

Here the light first travels in succession through the HWP3 and the PBS2. The HWP3 is assumed to 

behave as a non-rotated half-wave plate, which introduces the phase shift     between the 

horizontal and vertical components of the light. The PBS2 transmits the horizontally-polarized 

component of the light and reflects the vertically-polarized component of the light; the horizontally-

polarized component is the one we are interested in, because it includes the fluctuating vacuum field, 

  -sidebands, the   -sidebands, and the important atomic signal expressed by         
, while the 

vertically-polarized component includes all of these components except for the atomic signal. The 

horizontally-polarized component of the light then travels in succession through the HWP4 and the 

PBS4. The HWP4 is assumed to behave as a 
 

 
-rotated half-wave plate, which will make the PBS4 

to send equal amounts of the light into the part of the setup that includes Det1 and Det2 and also 

into the part of the setup that includes the membrane resonator; note that the rotation angle of 
 

 
 is in 

the present case picked in order to simplify the calculations, as in reality we here wish to send a 

smaller amount of the atomic signal into the part of the setup that includes Det1 and Det2 and a 

larger amount of the atomic signal into the part of the setup that includes the membrane resonator. 

The light then travels in succession through the QWP1 and the PBS5. The QWP1 is assumed to 

behave as a 
 

 
-rotated quarter-wave plate, which will make the PBS5 to send the light in equals 

amounts into the Det1 and also into the Det2, when the right output port of the PBS1 is blocked, 

such that the detection becomes balanced. Note as understood from appendix C and also from the 

calculations seen further below in this section we have that when both output ports of the PBS1 

become unblocked, then Det1 and Det2 will in general detect different intensities; the physical 

explanation for that is the light interference phenomenon.  

The second terms of the sum in eqs. (4.1.8.a) and (4.1.8.b) deal with the light exiting the right 

output port of the PBS1. Here the light is horizontally-polarized, because our polarizing beam 

splitters transmit horizontally polarized components of light. Here the light first travels in 

succession through the HWP5 and the PBS3. The HWP5 is assumed to behave as a 
 

 
-rotated half-

wave plate, which will make the PBS3 to send equal amounts of the light into the part of the setup 

that includes the PAM1 and also into the part of the setup that includes the PAM2. The light that is 

transmitted by the PBS3 is horizontally-polarized, and when it is reflected by PAM1, its phase    

is transformed into the time dependent phase         
 

 
, because the path length of the reflected 

light will change in time as the piezoelectric-actuated mirror actuates in time, and a factor of 
 

 
 is 

added for the same reason as it is for     
  . The light then travels in succession through the HWP6 

and the PBS4. The HWP6 is assumed to behave as a 
 

 
-rotated half-wave plate, which will make the 

PBS4 to send equal amounts of the light into the part of the setup that includes Det1 and Det2 and 
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also into the part of the setup that includes the membrane resonator; note that the rotation angle of 
 

 
 

is in the present case picked in order to simplify the calculations, as in reality we here wish to send 

a larger amount of the light into the part of the setup that includes Det1 and Det2 and a smaller 

amount of the light into the part of the setup that includes the membrane resonator. The light then 

travels in succession through the QWP1 and the PBS5. The QWP1 is assumed to behave as 

explained in the paragraph above, and thus it will make the PBS5 to send the light in equals 

amounts into the Det1 and also into the Det2, when the lower output port of the PBS1 is blocked. 

Note that the QWP1, the PBS1, and the photodetectors Det1 and Det2 realize the balanced 

homodyne detection scheme seen in figure C1 (b) (ii) in appendix C. In the language of appendix C, 

we have that the light entering the right input port of the PBS4 and then exiting through the lower 

output port of the PBS4 is the signal field, and the light entering the upper input port of the PBS4 

and then exiting through the lower output port of the PBS4 is the local oscillator (LO). In the 

present case we will call the signal field as the atomic signal field and the LO as LOa.  

From eqs. (4.1.8.a-b) and (D.2) we now find the difference in the intensities    and    of the electric 

fields that are picked up by the photodetectors Det2 and Det1, respectively, to be 

                        
             

       
     

                                   
                  

                                          
   ,           (4.1.9) 

where     
    is the scaled    

    in eq. (4.1.6.a) with     
    

 
   ,    

   

     
  ,    

   

     
  ;     

    

is the scaled    
    in eq. (4.1.6.b) with     

    

 
   ,         

 
    

  
        

; and          

       . 

Observing appendix C, we see that the result of eq. (4.1.9) is exactly what we would expect by 

making use of this particular balanced homodyne detection scheme: by adjusting the LOa phase 

        
 

 
 to be such that            =>        , then the intensity      will yield     

   , and if 

the LOa phase is adjusted such that            
 

 
 =>       

 

 
, then intensity      will yield 

    
   , which according to eq. (4.1.6.b) carries the important atomic signal expressed by         

.  

Observing figure 20 we now find the Jones vector for the light entering the cavity, where the 

membrane resonator resides: 

                             
    

  

 
    ,                           (4.1.10) 

where                                             , and          is the Jones vector for the light 

exiting the right output port of the PBS4, which is the same as the Jones vector for the light exiting 

the lower output port of the PBS4 with the horizontally-polarized component of the light and the 

vertically-polarized component of the light having switched places, and  
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   . 

Eq. (4.1.10) deals with the light exiting the right output port of the PBS4, i.e. the light described the 

Jones vector         . As understood from before, the light here includes the fluctuating vacuum 

field,   -sidebands, the   -sidebands, the important atomic signal expressed by         
, and the 

relatively large LOa. Here the light first travels in succession through the HWP7 and the PBS6. The 

HWP7 is assumed to behave as a 
 

 
-rotated half-wave plate, and so, when the light will pass HWP7, 

the fluctuating vacuum field,   -sidebands, the   -sidebands, and the atomic signal will lie in the 

vertically- and the horizontally-polarized components of the light in equal amounts, when the right 

output port of the PBS1 is blocked, and also the LOa will lie in the vertically- and the horizontally-

polarized components of the light in equal amounts, when the lower output port of the PBS1 is 

blocked; and thus the PB6 will transmit the fluctuating vacuum field,   -sidebands, the   -

sidebands, the atomic signal, and the LOa. The light here then travels in succession through the fiber, 

HWP10 and the PBS8. The HWP10 is assumed to behave as a non-rotated half-wave plate, which 

introduces the phase shift     between the horizontal and vertical components of the light; note 

that the rotation angle of   is in the present case picked in order to simplify the calculations, as in 

reality the HWP10 might be rotated, because the fiber can rotate the polarization of the light that 

enters the fiber, and HWP10 corrects for that rotation such that the light that exits HWP10 is 

horizontally-polarized as it was when it has passed the PBS6. Note that, alternatively, the fiber itself 

can be used to correct for polarization mismatches. The PBS8 will thus transmit the same light as 

the PBS6 and at the same time reflect nothing, thereby not disturbing the light signal that enters the 

left input port of the PBS8. The light then travels through the QWP3 before entering the cavity, 

where the membrane resonator resides. The effect of the QWP3 is here neglected in order to 

simplify the forthcoming calculations. Note that one can neglect the effect of the QWP3, because as 

understood from section 1.6.3, cavity optomechanical resonators do not distinguish between 

different polarizations of light.  

Now, the light will propagate into the cavity, where it will interact with the membrane resonator. 

The light's interaction with the membrane resonator will transform the "outside-of-cavity" light 

operators    
     and    

     according to the input-output relations (2.1.9.a-b). In order to express 

   
     and    

     in terms of the (complex) horizontal and vertical polarization components of the 

light seen in a Jones vector, we observe the definitions of the rotated in-phase and out-of-phase 

quadrature operators of a signal field expressed respectively as        
 

 

  
     

         
        

and        
 

 

   
     

         
       , as seen in appendix C, and also eqs. (C.6.a-b) in appendix 

C, and thus we know that in our case we may write    
     and    

     as 

   
     

 

  
                                               ,             (4.1.11.a) 

   
     

 

   
                                              ,             (4.1.11.b) 
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where      is the horizontal polarization component of the light in a Jones vector for the light 

outside of the cavity, and                  is its phase. The reason why      and                  are 

used is because in the present case it is assumed that the effect of the QWP3 is neglected such that 

horizontally-polarized light enters and also leaves the cavity.  

Using eqs. (4.1.11.a-b) with          
   from eq. (4.1.10) and                                 

 

 
 
 

we have that the input "outside-of-cavity" light operators     
   and     

   are 

 

     
    

   

  
            

   

  
         

             
   

  
                     

 
        

  
            

   

 

   ,   (4.1.12.a) 

 

    
    

   

  
            

   

  
         

             
   

  
                     

          
        

  
           

   .  (4.1.12.b) 

Now, as seen in eqs. (2.1.10.a-b) the filter seen in figure 3 allows us to equate the pairs of the light 

operators    
    and     

  , and    
    and     

   as     
       

    and     
       

   . From eqs. (4.1.12.a-b) 

we have that by adjusting the LOa phase         
 

 
 to be such that            

 

 
 =>       

 

 
, we obtain 

     
    

   

  
            

   

  
         

   
   

  
           

   

 
   ,      (4.1.12.a) 

    
    

   

  
            

        

  
   .                                                               (4.1.12.b) 

Comparing eqs. (4.1.6.a-b) with eqs. (4.1.12.a-b) we see that     
   is     

    with the scalings 

    
   

 
,    

  

    
,    

  

    
 and an added static term 

   

 
; and     

   is     
    with the scalings 

    
   

 
 and         

 
        

  
. Since the scalings do not invert signs and the added term is static, we 

may therefore by observing eqs. (2.1.10.a-b) conclude that our interferometer, which is enclosed in 

a dashed blue contour in figure 20, satisfies the role of the filter seen in figure 3, when       
 

 
. 

Note that the reason why     
   has the phase                 

 

 
 
 is because, as seen from before, LOa 

is horizontally-polarized and so must carry this particular phase. 

Note that when       
 

 
, then eq. (4.1.9) tells us that  

         
    

       

  
            

    

  
        

   ;                  (4.1.13) 
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from which we observe that as our interferometer satisfies the role of the filter, we simultaneously 

keep track of the fluctuating vacuum field and the atomic signal by the use of the balanced 

homodyne detection scheme realized by the QWP1, the PBS1, and the photodetectors Det1 and 

Det2. 

Note that we stabilize the LOa phase via a feedback-mechanism. We first send the subtracted 

photocurrent           , where    and    are the photocurrents provided by the photodetectors 

Det1 and Det2, respectively, to a lock-in amplifier. The lock-in amplifier  demodulates the signal 

carried by      at the sideband frequency   , and then provides this demodulated signal to a 

proportional-integral (PI) controller. The signal generated by the PI controller then travels to the 

PAM1, and this completes the LOa phase stabilizing feedback-mechanism.   

Note that in the forthcomming calculations we shall assume that the LOa phase is stabilized such 

that            
 

 
 =>       

 

 
. 

Now, using eqs. (4.1.11.a-b) we have that the input-output relations (2.1.9.a-b) for the "outside-of-

cavity" light operators    
     and    

     in our case read as 

     
         

                  

       
         

           

     

 

  
     

                         
                    

  

  
     

   
               

 

 
 
      

   
              

 

 
 
   ,                   (4.1.14.a) 

 

   
     

                         
                    

  

   
     

   
               

 

 
 
      

   
              

 

 
 
          

 ,  (4.1.14.b) 

where     
   is the horizontal component of the light seen in the Jones vector for the light entering 

the cavity, i.e.              in eq. (4.1.10),     
    is the horizontal component of the light seen in the 

Jones vector for the light exiting the cavity,                 
 

 
 
 is the phase of     

  ,                  

is the phase of     
   , and 

        
       

 

  
     

             
                 

 

  
    

               
               , 

where          is used, i.e. the equality in eq. (2.1.11.b), which is justified in our case, because 

as already mentioned, our membrane resonator is designed such that it would show significant 

response at frequencies around   . Note that     
    has the phase                 , where it is seen 

that                 
 

 
 after the interaction with the membrane resonator; this happens because 

the membrane resonator vibrates, and so, the path length of the reflected light will change in time 

and by the same token the phase   
 

    can be dropped. Note that     
    and     

    in the present 

case describe the light that is reflected out of the cavity; this is in accord with the assumption that 

nothing will get transmitted through the cavity. This is a valid assumption, because as mentioned in 

the text of figure 19, the output mirror of the cavity has much higher reflectivity than the input 
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mirror of the cavity, and so the light entering the cavity has much higher probability to be reflected 

out of the cavity than to be transmitted. Note that the small amount of the light that does get 

transmitted, gets picked up by the photodetector Det5 seen in figure 20.   

Using eqs. (4.1.10) and (4.1.14.a-b) we thus obtain the Jones vector for the light exiting the cavity: 

               
    

   

 
   

 

  
        

                     
  

 
    ,                     (4.1.15)    

where      
   

 

  
                        

   , where      
    is     

    in eq. (4.1.7) with the phases 

                instead of           
 

 
 
, and         

  
         

 
,     

   

 
   ,     

  

 
, and     

  

 
. 

Notice that         
,    and    in eq. (4.1.15) acquire the phase   

 

   , just as         
 does. 

Observing figure 20 we now find: 

1. The Jones vector for the light incident on the photodetector Det3: 

                                   
 

                               
       ,   (4.1.16.a) 

2. The Jones vector for the light incident on the photodetector Det4: 

                                                                  
   

 
    .    (4.1.16.b) 

In eqs. (4.1.16.a-b) we have      
 

  
,                                      ,         

                                                                                              
, and        and 

        are respectively        and         with                   .  

The first terms of the sum in eqs. (4.1.16.a) and (4.1.16.b) deal with the light reflected out of the 

cavity by the membrane resonator. Here the light first travels in succession through the QWP3 and 

the PBS8. As noted from before, the effect of the QWP3 was here neglected in order to simplify the 

calculations above. In reality, QWP3 should be assumed to behave as a 
 

 
-rotated quarter-wave plate, 

which would make the horizontally-polarized light exiting the upper output port of the PBS8 to be 

converted to circularly-polarized light. If such circularly-polarized light then becomes reflected on 

the membrane resonator, the handedness of the circular polarization changes because of the 

orthogonal angle of incidence, and so, when such light propagates through QWP3 again, this light 

then becomes vertically-polarized. The PBS8 will thus reflect all of the light and at the same time 

transmit nothing, thereby not disturbing the light signal that enters the lower input port of the PBS8. 

If the effect of the QWP3 is neglected, or, equivalently, the QWP3 is not placed after the PBS8, this 

will, however, no longer hold, because then PBS8 will actually transmit everything and reflect 

nothing as no polarization changes will happen upon reflection on the membrane resonator. 

Nevertheless, eq. (4.1.15) still holds, since as mentioned before, cavity optomechanical resonators 
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do not distinguish between different polarizations of light; and for that reason we shall rightfully 

assume that the light described by               in eq. (4.1.15) is totally reflected by the PBS8, 

where it then travels in succession through the HWP11 and the PBS9. The HWP11 is assumed to 

behave as a 
 

 
-rotated half-wave plate, which will make the PBS9 to send the light in equals 

amounts into the Det3 and also into the Det4, when the left input port of the PBS8 is blocked, such 

that the detection becomes balanced.  

The second terms of the sum in eqs. (4.1.16.a) and (4.1.16.b) deal with the light exiting the right 

output port of the PBS1. Here the light is horizontally-polarized, because our polarizing beam 

splitters transmit horizontally-polarized components of light. Here the light first travels in 

succession through the HWP5 and the PBS3. The HWP5 is assumed to behave as explained below 

eqs. (4.1.8.a-b); this will make the PBS3 to send equal amounts of the light through its right output 

port and through its upper output port. In the present case we deal with the light exiting the upper 

output port of the PBS3. Here the light first travels in succession through the HWP8 and the PBS7. 

The HWP8 is assumed to behave as a  -rotated half-wave plate, which will make the vertically-

polarized light exiting the upper output port of the PBS3 to be converted to horizontally-polarized 

light such that the PBS7 can transmit all of the light. The light then travels through the QWP2, is 

reflected by the PAM2, and then travels through the QWP3 again. The QWP2 is assumed to behave 

as a 
 

 
-rotated quarter-wave plate, which will make the horizontally-polarized light exiting the upper 

output port of the PBS7 to be converted to circularly-polarized light. When the light is reflected by 

PAM2, its phase    is transformed into the time dependent phase        , because the path length 

of the reflected light will change in time as the piezoelectric-actuated mirror actuates in time, and 

also the handedness of the circular polarization of the light changes, because of the orthogonal angle 

of incidence, and so, when the light propagates through QWP2 again, the light will become 

vertically-polarized. The PBS7 will thus reflect all of the light and at the same time transmit nothing, 

thereby not disturbing the light signal that enters the lower input port of the PBS7. The light then 

travels in succession through the fiber, HWP9 and the PBS8. The HWP9 is assumed to behave as a 

 -rotated half-wave plate, which will make the vertically-polarized light exiting the fiber to be 

converted to horizontally-polarized light such that the PBS8 can transmit all of the light. The PBS8 

will thus transmit the same light that is reflected by the PBS7, and also at the same time reflect 

nothing, thereby not disturbing the light signal that enters the lower input port of the PBS8. The 

light then travels in succession through the HWP11 and the PBS9. The HWP11 is assumed to 

behave as explained in the paragraph above, and thus it will make the PBS9 to send the light in 

equals amounts into the Det3 and also into the Det4, when the lower input port of the PBS8 is 

blocked. 

Note that the HWP11, the PBS9, and the photodetectors Det3 and Det4 realize the balanced 

homodyne detection scheme seen in figure C1 (b) (i) in appendix C. In the language of appendix C, 

we have that the light entering the upper input/output port of the PBS8 and then exiting through the 

right output port of the PBS8 is the signal field, and the light entering the left input port of the PBS4 

and then exiting through the right output port of the PBS8 is the local oscillator (LO). In the present 

case we will call the signal field as the membrane signal field and the LO as LOm.  
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From eqs. (4.1.16.a-b) and (D.2) we now find the difference in the intensities    and    of the 

electric fields that are picked up by the photodetectors Det4 and Det3, respectively, to be 

             
       

     

                                        
                   

                                          
   ,          (4.1.17) 

where  

     
         

   
 

  
   

    ,                                                  (4.1.18.a) 

     
         

            
          

   ,                                 (4.1.18.b) 

where     
   is the scaled    

   in eq. (4.1.6.a) and     
   is the scaled    

   in eq. (4.1.6.b) with     

        ,    
   

     
  ,    

   

     
  ; and          

             
,          

               
. 

Note that the different scalings in     
   and     

   do not invert signs, and in the definitions of          
 

and          
 we have that both         

 and         
are negated.  

Observing eq. (C.7.b) in appendix C, we see that the result of eq. (4.1.17) is exactly what we would 

expect by making use of this particular balanced homodyne detection scheme: by adjusting the LOm 

phase         to be                 =>        , then the intensity      will yield      
   , and if 

the LOm phase                 
 

 
 =>       

 

 
, then intensity      will yield      

   , which 

according to eq. (4.1.14.b) carries the important membrane signal expressed by         
 and         

.  

Now, observing the definitions of         
 and         

, and the above paragraph, and figure 3, and 

eqs. (2.1.12.a-b), (4.1.17), (4.1.18.a-b), and section 2.2, where the atomic and the membrane 

resonator parameter mismatch is mentioned, i.e. when   
 

 
      

 

  
, we see that      

    can be 

used to derive a similar expression of the modified version of the reduced EPR variance, i.e. 

                   (seen in section 2.2), that includes the atomic and the membrane resonator 

parameter mismatch, such that we can conclude that our atom-membrane interfacing experimental 

setup can allow us to satisfy the entanglement protocol described in chapter 2.  

4.2 Matching of the atomic and the membrane resonator parameters 

 

According to section 2.2, when the atomic and the membrane resonator parameters are mismatched, 

i.e. when   
 

 
      

 

  
 , the EPR variance ∑EPR given by eq. (2.1.19) becomes modified such that 

a practical limit to the initial thermal occupation of the membrane resonator is set. Since controlling 

the initial thermal occupation of the membrane resonator involves controlling the temperature of the 

resonator, and when the atomic and the membrane resonator parameters are very mismatched,  we 

may need to cool the resonator to temperatures close to zero Kelvin, which is experimentally 

challenging to perform, it then starts to make sense experimentally to minimize the mismatch 

between the atomic and the membrane resonator parameters as much as possible.  
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Now, in order to find out experimentally, when the atomic and the membrane resonator parameters 

become matched, i.e. when   
 

 
      

 

  
 (see eq. (2.1.11.a)), we use an electro-optic modulator 

(EOM) to create Larmor frequency   -sidebands centered around the carrier angular frequency    

of the probe laser, and let these sidebands propagate through the atoms and eventually enter the 

cavity, where the membrane resonator resides. As mentioned in section 4.1, both the relatively large 

  -sidebands and the fluctuating vacuum field drive the atoms and the resonator. Now, the   -

sidebands are different from the fluctuating vacuum field in a sense that the   -sidebands are 

classical and the fluctuating vacuum field is quantum. Let us now try to understand why this is not 

a trivial statement.  

In order to gain access to    
     

  and    
     

  in our atom-membrane entanglement experiment 

we first stabilize the LOm phase         such that                 
 

 
 =>       

 

 
 such that the 

subtracted intensity      in eq. (4.1.17) yields      
   . Then the photocurrent that carries with itself 

information about      
    is fed to a lock-in amplifier. The lock-in amplifier  demodulates the signal 

carried by the photocurrent at the Larmor frequency   , and provides us with signals that carry with 

themselves information about 

        
           

        
 

  
   

      
    ,                                    (4.2.1.a) 

        
           

        
 

  
   

      
    ,                                     (4.2.1.b) 

which are the atomic and the membrane resonator parameter mismatched versions of          
    and 

        
    seen in eqs. (2.1.14.a) and (2.1.14.b), respectively. Eqs. (4.2.1.a-b) are obtained by making 

use of eqs. (2.1.14.a-b) with     
    in eq. (2.1.12.b) in a case, where   

 

 
      

 

  
, with the 

assumptions       
                      

                
 

 

 

 
   

    
 

 
, and 

      
                      

                
 

 

 

 
   

    
 

 
, and 

      
                         

 

 
 , and       

                         
 

 
 , where j = a, m, and 

   
     

     and    
     

     are solutions to eqs. (2.1.8.c-d) and (2.1.9.c-d): 

    
     

       
 

 
         

             
  

 

 
   ,                             (4.2.2.a) 

   
     

       
 

 
         

             
  

 

 
   ,                             (4.2.2.b) 

   
     

          
 

  
         

             
  

 

 
   ,                     (4.2.2.c) 

   
     

          
 

  
         

             
  

 

 
   .                      (4.2.2.d) 
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where         ,      , and     
      

   are used. Note that the aforementioned assumptions 

are justified if the time period of the protocol,     , is much longer than     , i.e.       , 

which indeed is the case in our atom-membrane entanglement experiment.  

With     
    in eq. (4.1.18.a) being     

      
                     

   
 

  
         

   

   
 

  
                                   we calculate the mean values of         

    and         
   : 

 
         

             
         

 

  
    

          
  

  

  
          

             
 

 
       

         
 

 
          

             
 

 
 

         
             

         
 

  
    

          
  

  

  
          

             
 

 
       

         
 

 
          

             
 

 
 
 
 
 

 
 

    

         
                

  
  

  
     

 

 
    ,                                 (4.2.3.a) 

         
                

  
  

  
     

 

 
    ,                                 (4.2.3.b) 

where     refers to the mean value in this section, and                     
 

 
     and 

             
 

 
    , where      

           

  
 and      

                    

  
 are the solutions 

to the integrals, and          , when       . 

 In eqs. (4.2.3.a-b) we have that         
            

        
          

          
          

      

       , because here we are dealing with quantum operators; and       , because    is a 

classical amplitude. Also, in the same eqs. (4.2.3.a-b) we have that if the atomic and the membrane 

resonator parameters are matched, i.e. when   
 

 
      

 

  
 , then          

       and          
      ; 

however, if the atomic and the membrane resonator parameters are mismatched, i.e. when   
 

 
 

     
 

  
, then          

       and          
      . We see now that the classical   -sidebands introduce 

classical light back-action noise into our measurements, and that by cancelling this noise we can 

match the atomic and the membrane resonator parameters. 

Note as well that    
                         , because as mentioned in section 4.1, the atoms 

and the membrane resonator show significant response at the Larmor frequency   , and so the term 

   
          

   appearing in    
   in eq. (4.1.6.a) can be neglected. 

Let us now define 
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   ,                            (4.2.4.a) 

           
             

       
           

  
 

 
   ,                             (4.2.4.b) 

           
             

        
 

  
   

             
  

  

  
    ,             (4.2.4.c) 

           
             

        
 

  
   

             
  

  

  
    ,              (4.2.4.d) 

where in the equalities one uses eqs. (4.2.3.a-b).  

Eqs. (4.2.4.a-b) refer to a case, when the cavity, where the membrane resonator resides, is off-

resonantly tuned such that the light that is incident on the cavity will get reflected, such that the 

photodetectors Det3 and Det4 seen in figure 20 will only pick up the atomic signal; and eqs. 

(4.2.4.c-d) refer to a case, where the pump and repump lasers are turned off, such that the atoms are 

not optically pumped to the coherent spin state      , such that the photodetectors Det3 and Det4 

will only pick up the membrane resonator signal.  

Note that we will say that eqs. (4.2.4.a-b) refer to a case, where the membrane resonator is "turned 

off", and eqs. (4.2.4.c-d) refers to a case, where the atomic ensemble is "turned off". 

Note that by observing the definitions for            
    ,            

    ,            
     and            

     seen in eqs. 

(4.2.4.a-d), we cannot, however, conclude that if            
                

       or            
     

           
      , when the EOM is producing the classical   -sidebands, then the atomic and the 

membrane resonator parameters become matched, because, as mentioned earlier, these equations 

refer to cases where either the atomic ensemble or the membrane resonator is "turned off", such that 

the information about two connected systems becomes lost. Nevertheless, this does not translate to 

that measurements of            
    ,            

    ,            
    , and            

     would be of little value, 

because by comparing by how much the mean values in the atomic and also in the membrane case 

are shifted away from the zero-mean we expect to obtain a rough estimate that could show us how 

good we are at matching the atomic and the membrane resonator parameters.  

Now, we will say that  

           
       ,                                                      (4.2.4.e) 

           
       ,                                                       (4.2.4.f) 

            
       ,                                                    (4.2.4.g) 

            
                                                             (4.2.4.h) 

refer to the mean values of         
   ,         

   ,           
   ,           

   , respectively, in a case, when the 

Cesium-133 atoms are optically pumped to the coherent spin state       . This can be achieved 

by letting the static magnetic field Bstatic seen in figure 20 to point in the negative direction of the z-

direction. According to section 2.1, we have that, when the atoms are optically pumped to the 
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coherent spin state       , the atomic ensemble is modeled as a positive-mass (single-mode) 

harmonic oscillator, just as it is the case for the membrane resonator.  

Note that to complement            
    ,            

    ,             
     and             

     we also define 

           
              

       ,                                              (4.2.4.i) 

           
              

       ,                                               (4.2.4.j) 

             
                

       ,                                          (4.2.4.k) 

             
                

       ,                                           (4.2.4.l) 

where          
    ,          

    ,            
     and            

     are given by eqs. (4.2.3.a), (4.2.3.b), (4.2.4.a) and 

(4.2.4.b), respectively. 

Note that we will say that eqs. (4.2.4.e-f) and (4.2.4.i-j) refer to a case, where the atomic ensemble 

and the membrane resonator are both "turned on".  

In figures 21, 22 and 23 we can see experimental data obtained using the atom-membrane 

interfacing experimental setup seen in figure 20. This kind of data can show us how good we are at 

matching the atomic and the membrane resonator parameters. The kind of measurements that 

provide the data seen in these figures define the very first steps on our quest towards atom-

membrane entanglement. The measurements were not performed on the same day, and they were 

also performed with different settings as the idea is to find out which settings can best minimize the 

mismatch between the atomic and the membrane resonator parameters. The common feature of 

these measurements is that the membrane resonator was not cooled. 

For the data seen in figure 21 the probe laser power          that the atoms were subjected to was 

               mW, and the probe laser power          that the membrane resonator was 

subjected to was                mW. Here the probe laser was running in a continuous regime 

and the EOM was being switched on and off to produce the classical   -sidebands; the on-off 

switching time period was       ms long. 

For the data seen in figure 22                mW, and                mW. Here the probe 

laser was running in a continuous regime and the EOM was being switched on and off to produce 

the classical   -sidebands; the on-off switching time period was       ms long. 

For the data seen in figure 23                mW, and                mW. A data point on the 

graphs seen in figure 23 at one specific angular frequency was obtained by setting the EOM to 

produce sidebands of that specific angular frequency, then sending a large amount of pulses of 

probe laser light each being       ms long and finally averaging the data. 

Note that in figures 22 and 23 we make use of the following definition: 

                    
                 

        ,                                   (4.2.5) 
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where * =  ,  , m, and a,  and a, ; such that           refers to a case, where the membrane 

resonator is "turned off" and the atoms reside in      ,           refers to a case, where the 

membrane resonator is "turned off" and the atoms reside in       ,         refers to a case, 

where the atomic ensemble is "turned off",         refers to a case, where both the atomic ensemble 

and the membrane resonator are "turned on" and the atoms reside in      , and         refers to a 

case, where both the atomic ensemble and the membrane resonator are "turned on" and the atoms 

reside in       . 

In figure 21 we see that by taking the mean values of the experimental data, i.e.            
    ,            

    , 

           
     and            

    , to be where the fitted bell-shaped curves are at their highest, the mean 

values corresponding to the coherent cases become shifted further away from the zero-mean 

compared to the thermal cases. Observing the coherent cases, we see that in the atomic case the 

mean values are shifted away from the zero-mean on the order of     , while in the membrane case 

the shift is on the order of     . Since the difference in the shifts is on the order of   , we conclude 

that the data presented here indicates that the atomic and the membrane resonator parameter 

matching is of poor quality. 

In figure 22 we see that the measured values for           and         are shifted away from zero 

on the same order, and that the measured values for         are further away from zero than the 

measured values for        . We observe that the measured values for         become the ones that 

are closest to zero as the averaging progresses. Observing the definition of         given by eq. 

(4.2.5), we see that this demonstrates that by coupling the two systems, when the atomic ensemble 

is modeled as a negative-mass harmonic oscillator and the membrane resonator is modeled as 

positive-mass harmonic oscillator, classical light back-action noise of the measurement becomes 

reduced. We also observe that the measured values for         are furthest away from zero. This 

makes good sense, because according to the definition of         given by eq. (4.2.5)          

refers to a case, where both the atomic ensemble and the membrane resonator are modeled as 

positive-mass harmonic oscillators.  

In figure 23 we see that        , where * =  ,  , m, and a,  and a, , are largest close to the 

Larmor frequency            and become progressively smaller for frequencies smaller or 

larger than    in a Lorentzian fashion. This is expected, because from section 2.1 we know that the 

atoms and the membrane resonator are modeled as harmonic oscillators, and from section 2.1 we 

know that the atoms will show significant response at   , and from section 4.1 we know that the 

membrane resonator is designed such that it would show significant response at   . We observe 

that the area corresponding to         is the smallest. Observing the definition of        , we see 

that again, as in the case of figure 22, this demonstrates that by coupling the two systems, when the 

atomic ensemble is modeled as a negative-mass harmonic oscillator and the membrane resonator is 

modeled as positive-mass harmonic oscillator, classical light back-action noise of the measurement 

becomes reduced. We also observe that the area corresponding to         is the largest. This is 

attributed to the same reasons as in the case of figure 22.  
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Now, let us look at the atomic and the membrane resonator parameter matching condition expressed 

by eq. (2.1.11.a), and write it out completely by using the definitions                 and 

       
 

      
     seen in sections 1.4.5 and 1.6.4, respectively:  

  
 

 
      

 

  
   <=>     

                                                   
    

 

      
                

 

    
   ,                                              (4.2.6) 

where the definition    
    

 

      
 is seen in section 1.4.4, and          is assumed for     .  

The parameters seen in eq. (4.2.6) that we cannot tweak are           MHz, which is the natural 

FWHM line width of the D2 line transition (in units of radians per time),   d λD2 = 852 nm, which is 

the wavelength of the D2 line transition. By recalling what the remaining parameters in eq. (4.2.6) 

stand for, we see that a perfect matching of the atomic and the membrane resonator parameters is an 

extremely challenging task.  

From section 2.2 we understand that matching of the atomic and the membrane resonator 

parameters is not a requirement for generating entanglement between the atoms and the membrane 

resonator, because the EPR variance ∑EPR given by eq. (2.1.19) will due to the atomic and the 

membrane resonator parameter mismatch become                         such that 

entanglement still can be achieved even though the atomic and the membrane resonator parameters 

are mismatched under the condition that membrane resonator has to be cooled. Since from eq. 

(4.2.6) we can tell that it is extremely challenging to perfectly match the atomic and the membrane 

resonator parameters, we see that the membrane resonator will have to be cooled in order to achieve 

entanglement. As understood from section 2.2 an additional thing that we need to take into account 

if we want to achieve entanglement, apart from cooling the membrane resonator, is the 

thermalization decay of the membrane resonator, which modifies the EPR variance ∑EPR given by 

eq. (2.1.19) as                      , such that the practical requirement for the time 

period       of the protocol becomes   
 

      
 

   

   
.  

Our task for the future is thus to find the settings under which we may conclude that the mismatch 

between the atomic and the membrane resonator parameters is reasonably minimized, and then the 

membrane resonator will be cooled and the measurements will have to be performed much faster 

than 
   

   
 in order to try to prove entanglement generation between Cesium-133 atoms and the 

membrane resonator. 
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Figure 21. Histograms obtained by measuring the quantum operators           
   ,           

   ,           
    and           

    in respective cases, 

where the electro-optic modulator (EOM) in the atom-membrane interfacing setup is producing the classical   -sidebands, i.e. the 

coherent case in the figure, and not producing these sidebands, i.e. the thermal case in the figure. The data appears to be normally 

distributed and thus red bell-shaped curves are fitted on top of the histograms.  
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Figure 22. Experimentally obtained data points, seen as blue, green, red and grey dots, showing how 

                    
                 

     , where * =  ,  , m and a, , change as the older data becomes averaged with the newer data in a 

case, where the electro-optic modulator (EOM) in the atom-membrane interfacing setup is producing the classical   -sidebands.  
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Figure 23. Experimentally obtained graphs, seen as dark blue, green, violet, and red and light blue lines, showing how         

            
                 

     , where * =  ,  ,   and a,  and a, , respectively vary with different frequencies of the classical sidebands 

that the electro-optic modulator (EOM) in the atom-membrane interfacing setup is producing. The different graphs are integrated 

over angular frequency and the areas that are obtained by integrating and normalizing to unity are seen in the legend. 
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Summary of the main results and outlook 
 

By making use of experimental data and parameters that characterize our atom-membrane 

entanglement experiment values for    were estimated for the case of our atom-membrane 

interfacing experimental setup. Assuming that these estimates are correct, they show us that in the 

case of our atom-membrane interfacing experimental setup we can obtain moderate values of 

        noted in the atom-membrane entanglement proposal [12].  

By considering the dominant impairing effects that would alter the expression for the reduced EPR 

variance ∑EPR given by eq. (2.1.19), we saw that by minimizing the atomic and the membrane 

parameter mismatch as much as possible we could lower the practical limit imposed on the initial 

thermal occupation of the membrane resonator. We saw both theoretically and experimentally how 

classical   -sidebands introduce classical light back-action noise into our measurements. By 

cancelling this noise we can match the atomic and the membrane resonator parameters. It was 

demonstrated how by coupling the two systems we were led to reduction of classical light back-

action noise of the measurement.  

The measurements involving the reduction of classical light back-action noise of the measurement 

define the very first steps on our quest towards atom-membrane entanglement. The next steps of the 

experiment are in the order as follows: (i) doing the same measurements but with the membrane 

resonator now cooled, (ii) improving the membrane resonator and performing the same 

measurements, where the membrane resonator is first not cooled and then cooled, and finally (iii) 

characterizing how close to the standard quantum limit we are.  

When and if the entanglement generation is successful, it can then serve as a basis for teleporting 

collective spin states onto the membrane resonator [12]. This can open a curious possibility to cool 

the membrane resonator by teleporting a ground state onto it.  

 

 

 

 

 

 



96 
 

Appendix A: The effect of an externally applied static 

magnetic field on a Cesium-133 atom and quadratic 

Zeeman splitting frequency  
 

The effect of an externally applied static magnetic field B on an alkali atom such as a Cesium-133 

atom is described by the Hamiltonian 

                ,                                                     (A.1) 

where 

                   ,                                                      (A.2.a) 

      
  

 
     

  

 
                                                 (A.2.b) 

are the hyperfine structure interaction Hamiltonian and the Zeeman interaction Hamiltonian, 

respectively, where h is the Planck's constant,      is the zero-magnetic field hyperfine structure 

constant describing the strength of the magnetic interaction between the electron total angular 

momentum operator    and the nuclear total angular momentum operator   ,    is the magnetic 

moment of the valence electron and    is the magnetic moment of the nucleus.  

Using     in eq. (A.1) it can be shown that the energy of a Zeeman energy level    for the ground 

state of (the valence electron of) an alkali atom, where       
 

 
  , will be given by the Breit-

Rabi formula [25]:  

     
  

     

       
 

  

 
    

     

 
   

   

    
       ,                       (A.3) 

where       is the strength of  ,      
    

 
       is the hyperfine structure splitting 

frequency between the two f-levels, and   
  

  

 
 

  
 
  

     
 is a parameter describing the relative strength 

between the Zeeman interaction and the hyperfine structure interaction.  

In figure A1 the frequency      
   is plotted for the Zeeman energy levels mf  of the energy levels 

6
2
S1/2, f = 3 and 6

2
S1/2, f = 4 of Cesium-133 atom as a function of B.  
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Figure A1. Graphs showing how the Zeeman energy levels mf of the energy levels 62S1/2, f = 3 and 62S1/2, f = 4 of Cesium-133 atom 

are split in frequency for a given external static magnetic field strength B. Eq. (A.3) is used here in order to plot the different graphs. 

We see that for both small B (< 0,05 Tesla) and large B (> 0,5 Tesla), the frequencies display an approximately linear behavior with 

respect to B, whereas in the intermediate region the frequencies display a non-linear behavior with respect to B. The hyperfine 

structure effect splits the energy levels 62S1/2, f = 3 and 62S1/2, f = 4 by           MHz in frequency as displayed in the figure. 

The figure is adapted from [11]. 

By performing the second order expansion of      
 in eq. (A.3) with the approximation     , it 

can be shown that the transition frequency between the   'th and the       'th Zeeman level of 

Cesium-133 atom is  

         

 
      

  

     
           ,                                  (A.4) 

where     , where         is the Larmor frequency, which is the characteristic angular 

frequency at which the atomic total angular momentum vector operator          will precess 

around the direction of the external B-field. From eq. (A.4) we have that the frequency difference 

between the two closest sets of two nearby     lines in figure A1 is 

    
           

 
 

         

 
 

   
 

     
   ,                                  (A.5) 

which is known as the quadratic Zeeman splitting frequency.     is of importance in the magneto-

optical resonance signal (MORS) measurements described in section 3.2.4. 
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Appendix B: The effect of an externally applied 

arbitrary magnetic field on Cesium-133 atoms, the 

Bloch equations and the phenomenological relaxation 

times T1 and T2 
 

When Cesium-133 atoms sense an externally applied arbitrary magnetic field 

                        , the evolution of the total angular momentum operators   x(t),   y(t),   z(t) 

can be understood from the phenomenological rate equations know as the Bloch equations [29]: 

 

  
                    

     

  
   ,                                     (B.1.a) 

 

  
                    

     

  
   ,                                     (B.1.b) 

 

  
                    

        

  
   ,                               (B.1.c) 

where                          is the nuclear magnetization vector,    is the steady-state 

 uc       g    z     , γ     h  g     g    c      ,   d T1 and T2 are the phenomenological 

relaxation times respectively describing the approach of the longitudinal magnetization       and 

the transverse magnetizations       and       to equilibrium.  

The Bloch equations are used to describe the evolution of the nuclear magnetization vector M(t) for 

a given arbitrary magnetic field     . M(t) acts as a classical analogue to the atomic ensemble total 

angular momentum vector operator       = (  x(t),   y(t),   z(t)); and in the quantum mechanical picture 

the relaxation times T1 and T2 refer to the relaxation times of      . If the z-axis is the quantization-

axis, then in this thesis T1 will be referred to as the spin-depolarization time and T2 will be referred 

to as the transverse spin-coherence time. 
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Appendix C: Balanced homodyne detection  
 

In this appendix I briefly describe balanced homodyne detection, and explain how we can measure 

the pairs of light operators    
       

      ,    
       

       and     
   ,     

   , introduced in sections 

1.4.5 and 1.6.4, respectively, by using this type of detection. 

Note that in appendix C we have that     refers to the mean value. 

In figure C1 (a) we can see a diagrammatic representation of an experimental setup used to realize a 

prototypical balanced homodyne detection scheme [32]. 

 
Figure C1. (a) A diagrammatic representation of an experimental setup used to realize a prototypical balanced homodyne detection 

scheme [32]. (b) (i) and (ii) Diagrammatic representations of experimental setups used to realize a balanced homodyne detection 

scheme in our experiments. In the figure we have that BS stands for beam splitter, PBS stands for polarizing beam splitter, HWP 

stands for half-wave plate, QWP stands for quarter-wave plate, and Det1 and Det2 are photodetectors. See the text for the remaining 

details. 

Here a light field known as the signal field is described by the operators     
 

  
        

   and 

    
 

   
        

  , where     and    
 

 are the photonic annihilation and creation operators of the 

signal field that are dimensionless and satisfy the commutation relation             
       ; and a 

light field known as the local oscillator (LO) is described by the operators 

        
 

 

  
                

        and         
 

 

   
                

       , where      and 

    
 

 are the photonic annihilation and creation operators of the LO that are dimensionless and 

satisfy the commutation relation               
        with     denoting the phase the LO. Note 

that     and     are called the in-phase and the out-of-phase quadrature operators of the signal field, 

respectively; while          
 and         

 are called the rotated in-phase and out-of-phase quadrature 
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operators of the local oscillator, respectively 
4
. After the two fields are superimposed at a 50/50 

beam splitter, each outgoing beam from the beam splitter is respectively directed to the 

photodetectors Det1 and Det2, which provide us with the photocurrents    and   , respectively; and 

in the final step, the photocurrents    and    are subtracted in order to yield the photocurrent 

          . The annihilation operators of the light fields directed at Det1 and Det2 are 

respectively given by  

    
 

  
                   ,                                             (C.1.a) 

    
 

  
                   .                                            (C.1.b) 

Assuming that    and    are respectively proportional to the classical mean values of the photon 

number operators        
     and        

    , and that the LO is intense enough to be treated 

classically, i.e the quantum fluctuations of the LO can be neglected, such that     
       

        , 

                 , where     is a complex number, we have that      becomes  

                   
 
       

 
                    

                                         ,   (C.2) 

where        
 

 

  
     

         
        is called the rotated in-phase quadrature operator of the 

signal field. Note that        
 

 

   
     

         
        is called the rotated out-of-phase 

quadrature operator of the signal field. 

Observing eq. (C.2) we see that the photocurrent      measures (the mean value of) the quadrature 

operator        
; and by adjusting the LO phase     to be      , then      will measure the in-

phase quadrature operator    , and if        , then      will measure the out-of-phase quadrature 

operator    . 

Let us now understand how we can measure the pairs of light operators    
       

      ,    
    

   
       and     

   ,     
   , introduced in sections 1.4.5, and 1.6.4, respectively, by using balanced 

homodyne detection scheme. 

From eqs. (1.4.5.1.c-d) and (1.4.5.2.a-c) it follows that the scaled Stokes operators    
       

      , 

   
       

       can respectively be written as  

   
    

 

  
    

       
        ,                                            (C.3.a) 

   
    

 

   
    

       
        ,                                          (C.3.b) 

                                                           
4  The quadrature operators    

 

  
        and    

 

   
        represent the real and imaginary component of the photonic 

annihilation operator   , respectively, because, by definition, we have 
 

  
               and 

 

   
              . 
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where    
               and     

        
         are the photonic annihilation and creation 

operators for y-polarized probe laser light photons at the end of the Cesium-133 sample of length L, 

respectively. 

Note that if in eqs. (1.4.5.1.c-d) it is assumed that the operators    
           

                 , 

                             , then  

       
          

 
   ,                                                                (C.4.a)  

       
         

 
    

                   ,                                 (C.4.b) 

       
         

  
    

                   ;                                 (C.4.c) 

such that  
      

   
 
      

   
                                     , where             

      

   
 with 

       in eq. (C.4.b), and             
      

   
 with        in eq. (C.4.c), and so 

       
    

 

  
    

       
        ,                                       (C.5.a) 

       
    

 

   
    

       
        ,                                      (C.5.b) 

where        
                 ,        

                 .  

The difference between eqs. (C.3.a-b) and (C.5.a-b) is that in eqs. (C.3.a-b) the signal field and the 

LO are assumed to acquire a phase of  
  

   , whereas in eqs. (C.5.a-b) the signal field and the LO 

are assumed do not acquire a phase. The phase of  
  

    is acquired, because in eqs. (1.4.5.2.a-c) 

we have that the operators                               ,    
           

                   , 

whereas in eqs. (C.4.a-c) we have                              ,    
           

        

         . 

Now, since from section 1.6.4 we have that the operators    
        

       and    
        

       

satisfy the canonical commutation relation [   
          

                  for    , which, as we 

observe, is also the case for the scaled Stokes operators        and        defined in eqs. (1.4.5.1.c) 

and (1.4.5.1.d), respectively, then the operators     
    and     

    that describe the light that is 

transmitted by a cavity optomechanical system can respectively be written as 

    
    

 

  
                   ,                                        (C.6.a)    

    
    

 

   
                   ,                                       (C.6.b) 

where        and         are the photonic annihilation and creation operators for the photons 

transmitted by a cavity optomechanical system, respectively.  
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Observing eqs. (C.3.a-b), (C.5.a-b) and (C.6.a-b) we see that the pairs of light operators    
    

   
      ,    

       
       and     

   ,     
    are quadrature operators of light; and thus, by observing eq. 

(C.2), we know that by subjecting light described by one of these pairs of quadrature operators to 

balanced homodyne detection as done in figure C (a), we can measure such one pair of quadrature 

operators.  

We make use of balanced homodyne detection in the Cesium-133 atom sample characterization 

measurement experiment presented in section 3.2.4 and in the atom-membrane entanglement 

experiment described in chapter 4. The balanced homodyne detection scheme that we use in these 

experiments is different from the one seen in figure C1 (a). In the sample characterization 

measurement experiment presented in section 3.2.4 we make use of the balanced homodyne 

detection seen in figure C1 (b) (i), and in the atom-membrane entanglement experiment described in 

chapter 4 we make use of the balanced homodyne detection seen in figures C1 (b) (i) and C1 (b) (ii). 

Using these schemes one can also learn about the quadrature operator pairs    
       

      ,    
    

   
       and     

   ,     
   .  

In the scheme seen in figure C1 (b) (i) we replace the BS seen in figure C1 (a) with a PBS and place 

a half-wave plate before the PBS, and send the signal field and the LO into the same port of the 

PBS; the half-wave plate here is rotated such that the output modes have equal powers. The scheme 

in figure C1 (b) (ii) depicts a similar situation as figure C1 (b) (i), but here the half-wave plate is 

replaced with a quarter-wave plate; the quarter-wave plate here is rotated such that the output 

modes have equal powers.  

Using the a balanced homodyne detection scheme in figure C1 (b) (i), the subtracted photocurrent 

                        
                                          ,      (C.7.a) 

which is the same as in figure C1 (a); and in the case of figure C1 (b) (ii), the subtracted  

photocurrent 

                        
                                          .      (C.7.b) 

i.e a    -phase shift is introduced. 

Note that in the aforementioned experiments, the LO is the probe laser light with the assumption 

that the quantum fluctuations of this light are neglected.  

In the atom-membrane entanglement experiment we need to stabilize the phase     such that it is 

different from zero, i.e.      . In chapter 4, where this experiment is described, we can see how 

we stabilize    .  
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Appendix D: Jones matrix calculus 
 

In this appendix I present Jones matrix calculus formalism [33]. 

The Jones matrix calculus is used to describe how the polarization of light is transformed by 

polarizing optical components. The light is represented by a     matrix, known as the Jones 

vector, and the optical components are represented by     matrices, known as the Jones matrices. 

When light passes an optical component, the resulting polarization of the transmitted light is found 

by taking a matrix product between the Jones matrix of the optical component and the Jones vector 

of the incident light. 

Note that Jones calculus only deals with light that is fully polarized; this makes Jones calculus 

applicable in our experiments, because as written in section 3.1.1 we probe the atoms with linearly-

polarized light.  

A Jones vector may in general be written as 

        
  

  
   

            

            
    ,                                         (D.1) 

where    and    are the (complex) horizontal and vertical polarization components, respectively, 

of the electric field               
    of a monochromatic plane wave of light travelling along the 

x-    , wh    k     h    gu    w v   u b     d ω     h  angular frequency of the light with k = ω/c, 

and     and     are the amplitudes of respectively    and    with    and    being the respective 

phases. Note that we define the difference between the phases    and    as        . 

Since               
   , then it follows that the intensity of the electric field        is 

                
                  

  

  
                .             (D.2) 

The Jones matrices that we use in this thesis are the following ones: 

1. The Jones matrix for a rotator: 

        
              
              

    ,                                                 (D.3.a) 

2. The Jones matrix for a rotated wave plate: 

                   
  
               ,                             (D.3.b) 

3. The Jones matrix for a perfect linear polarizer: 

               
   
   

    ,                                                    (D.3.c)    
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4. The Jones matrix for a piezoelectric-actuated mirror: 

                               .                                      (D.3.d) 

In eqs. (D.3.a-d)   is the angle of the fast axis of a wave plate with respect to the horizontal axis; 

       ;        0 or 1; and                              transforms the phases    

and    in the Jones vector        in eq. (D.1) into time dependent phases         and        , 

respectively. 
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Appendix E: List of Jones matrices used in calculations 
 

In this appendix we can see the Jones matrices used in the calculations performed in chapter 4, 

where it is explained why our atom-membrane interfacing experimental setup can allow us to 

satisfy the entanglement protocol described in chapter 2. 

The Jones matrices for  

1. the half-wave plates are: 

                           
  
  

 ,                    
  
   

 ,        

                                  
 

  
 
  
   

 ,                          

 
  
  

 ,                     
  
   

 ,                      
 

  
 
  
   

 .  

2. the quarter-wave plates are: 

                             
 

 
 
      
      

                      
  
  

 .  

3. the polarizing beam splitters are:  

                                                   
  
  

   
  
  

 , where           

 
  
  

 ,           
  
  

 , where        . 

4. the electro-optic modulator is: 

                     
              

 

 
  

     
 

 
  

  

                                 
 

 
  

     
 

 
  

  
              

              
     

 

 
  

 
  

   

 
      

        
   

   

 
              

   

 
      

        
   

   

 
              

   

 
                 

   

 
                

   

 
                 

   

 
              

  

, where the assumptions that    and    are small are made.  

5. the piezoelectric-actuated mirrors are: 

                        
 

 
 ,                           
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