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Abstract

The DISPATCH framework is used to simulate molecular clouds of different sizes, containing
gas and dust with a range of different dust particle sizes. A correlation between the dust
particles and gas is found, with larger dust particles being less coupled to the gas. A dust
particle size of approximately 50µm is found as the transition size where dust particles larger
than this will mostly be decoupled from the gas at all scales. The scale independence of
this result is related to the approximately constant column density seen across molecular
clouds at different sizes. A latency is found between gas and dust particles, which makes
dust particles react to a change in the direction of the gas, after the gas has already changed
its direction. Dust particles of size 100µm are found to have a weak coupling to the gas,
creating filaments of dust outside the filaments of gas. The largest velocity dispersion for
the dust is found where the dust density is largest. These discoveries suggests a coherent
movement of dust particles through molecular clouds, creating overdensities where groups
of coherent dust motions overlap. The probability density function of the dust and gas
shows an expansion-like behaviour from high dust density regions towards low dust density
regions. A power law relation is found between the mean dust vrms and the size of the
molecular cloud, with an increasing mean dust vrms for an increasing molecular cloud size.
This power law behaviour is closely related to the famous Larson relations observed for
the gas in molecular clouds, but is a novel result for dust grains. The power law relation
is found to be different for different sized dust particles. A power law relation, for dust
particles smaller than 1µm, is also found between the average difference in the reference
frame between the dust and gas velocity and the size of the molecular cloud observed as well
as between the average difference in the reference frame between the dust and gas velocity
and the size of the dust particle observed.
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1 Introduction

How molecular clouds (MCs) and giant molecular clouds (GMCs) are created has been a big
question since the late 20th century. Today it is the common belief of astrophysicists that
MCs/GMCs may originate from energy injection by stellar feedback and self-gravitating insta-
bilities in the interstellar medium, having its formation and properties influenced by galactic
turbulence associated with the magnetorotational instability (MRI), [1] as well as orbital dy-
namics and dissipative cloud-cloud collisions. This is clearly a complicated process, with a lot of
different dynamics dictating the structure and properties of these MCs/GMCs primarily present
in spiral galaxies [2]. One of the most interesting phenomenons of MCs/GMSs is the formation
of stars, which almost exclusively happens inside of these giant clouds of gas and dust. In Math-
ewson, van der Kruit, and Brouw 1972, an estimate is made of needing 107 years to create a
star inside of a MC/GMC with no external forces required [3] [4]. Star formation was described
in 1987 by Shu, Adams, & Lizano, who knew that stars are made from massive gas clumps
collapsing from self gravitation, but the question of how the massive gas clumps are created was
somewhat a mystery to them. They suggested that there are two ways this accumulation of gas
in MCs/GMCs can occur: either through some process of hierarchical fragmentation, or that
stellar formation is intrinsically an accretion process where a small initial mass is accreted into
a larger mass [5]. Nevertheless what they did not consider was turbulence, which has since been
discovered to be an important property in star formation in MCs/GMCs in the Inter-Stellar
Medium (ISM). This supersonic turbulence in MCs/GMCs creates over-dense regions, which
become so dense that the self gravitation of these regions overpower the force of the turbulence,
in a free-fall collapse, ultimately resulting in star formation [6].

The great difficulty of observing processes inside MCs/GMCs lies in MCs/GMCs primarily being
made up of H2, which lacks a permanent dipole moment, and therefore has no easily observa-
tional rotational transitions. Thus, most observational studies of shocks and regions containing
high levels of ultraviolet emission in MCs/GMCs use rovibrational and fluorescent transitions
for observational purposes. If observational astronomers want to explore physical conditions in
other regions of MCs/GMCs, they need to use tracers like molecules other than H2 and dust.
Molecules colliding with H2 excite different rotational transitions, which we are able to observe.
The most common tracers in MCs/GMCs are a range of isotopic variants of CO, which can help
determine global physical conditions of MCs/GMCs, such as the temperature and volume den-
sity [7]. In order to make dynamics of dust and gas inside MCs/GMCs easier accessible one can
use numerical simulations. In such simulations it is possible to use already observed properties
of MCs/GMCs and reproduce them computationally. This makes it possible to explore different
properties of MCs/GMCs and explore how a change in parameters could impact the dynamics
inside a MC/GMC.

The gas dynamics in MCs/GMCs are interesting when studying star formation, but what about
the dust dynamics in MCs/GMCs? In 1993 Jack J. Lissauer concluded that the planets in our
solar system were formed inside a protostellar disc, which remained after the sun was almost
formed, having a large dust density. He also refers to a planet found outside of the solar system
discovered by Wolszczan and Frail in 1992, but he could not conclude that planet formation
also occurs outside of the solar system [8] [9]. The "maybe-planet" referred to by Lissauer was
indeed a planet, and it was one of the first exoplanets ever discovered. From then, the number
of exoplanets discovered has continued to grow. With telescopes like Kepler [10], Hubble [11]
and TESS [12], more than 4000 exoplanets have been confirmed and more are discovered every
day [13]. With the help of new telescopes such as the James Webb telescope, we will be able to
explore these exoplanets in greater detail. With the James Webb Telescope it will be possible
to investigate the chemical properties of planetary systems, and thereby understand the genesis
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of planets even better than we do today [14]. Thus, the dynamics of dust in MCs/GMCs from
single dust particles to planets is of great interest in the field of early planet formation in astro-
physics today.

The subject of protoplanetary discs, and the formation of planets inside of these, are well de-
scribed, researched, and simulated, although by no means fully understood. These subjects are
continuously developed upon, with new discoveries constantly made [15] [16]. One thing missing
from these simulations and calculations is the dust contributions made from the surrounding
MC/GMC. Interactions of dust molecules in MCs/GMCs can lead to different sizes of molecular
dust due to coagulation and destruction of dust particles. Molecular dust can interact differ-
ently with the protoplanetary systems depending on the size of the dust particles [17] [18]. This
means that the dust dynamics in MCs/GMCs can help us get a better understanding of planet
formation. Both in the form of a contribution of dust when the planet formation phase has
begun, but also how dust becomes present, in the regions of self-gravitating dust clouds on their
way to becoming protostellar clouds, in such a quantity that it can end up creating planets in a
protoplanetary disc.

Having some universal laws of how dust behaves inside a MC/GMC, which describes rela-
tions between quantities observable from telescopes, could possibly help us determine which
MCs/GMCs are more probable to be cradles for planet formation. Knowing more about where
dust accumulates can also illuminate how eight planets can be present within our own solar
system. Additionally, where to find other planetary systems with a large number of planets
revolving around the same sun. According to Tom Barclay, of NASA’s Ames Research Center
in Moffett Field, California: "If you do not have giant planets in your system, you have a very,
very different planetary system". Tom is highlighting the giant gas planets shielding Earth and
the inner terrestrial planets from asteroids, that would otherwise potentially have destroyed the
possibility of life to form [19]. Knowing more about the dust dynamics in MCs/GMCs could
therefore potentially help us find over-dense regions with the right composition for giant gas
planets to form around inner terrestrial planets, which possibly can be a necessity for life.

In this thesis we study dust dynamics inside MCs and GMCs, simulated with the use of the
DISPATCH code, using the HLLC adapted from the RAMSES code. These experiments are
performed to find a relationship between how dust moves in a MC/GMC on average compared
to how gas moves inside a MC or a GMC. Section 2 of this thesis gives an introduction to
the Larson relations, and the physics already developed to explore dynamics inside MCs and
GMCs, with a focus on how the size of a dust particle can affect its dynamics inside a MC or
GMC. Lastly, section 2 gives an introduction to shocks and turbulence inside MCs and GMCs.
Section 3 Explains the DISPATCH and RAMSES framework, and how it is used to create the
experiments needed to analyze the behaviour of dust in MCs and GMCs. Section 4 explains the
setup used, and the inputs and boundaries given in the experiments, when using the DISPATCH
framework to generate data, as well as presenting quantitative results from analysing the average
root mean square velocity for the dust at different dust sizes in different sizes of MC and GMC
experiments, compared to gas dynamics inside the clouds. Section 5 discusses the future work
needed in order to build on top of the work performed throughout this thesis.

2 Molecular Cloud Dynamics

2.1 Larson Relations

In order to explain the dynamical state of a MC/GMC we need to look at the Larson Relations,
also called the Larson laws. There are three Larson laws, which are all important when analyzing
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MCs/GMCs. The three Larson laws according to Heyer et al. (2009) (notice that the second
Larson relation here is different than in Heyer et al (2009) due to a typo in their article, and the
relation in the original Larson (1981) paper is instead used) are given by [20] [21]:

σv ∼ 1.2km/s ·
(
L

1pc

)0.38

, (1)

2σ2vL/GM ∼ 1 , (2)

n ∼ n0
(
L

1pc

)−1.1
. (3)

The first Larson law gives a power law relationship between the velocity dispersion (σv) and the
size of the cloud (L), the second Larson law ensures self-gravitating equilibrium in MCs/GMCs
and the third Larson law is an inverse relationship between the mean density n and the size of
the cloud L. What the Larson laws provide are basically scaling relations between some of the
most well-known observable quantities of MCs/GMCs, which can be used when investigating
the dynamics of MCs/GMCs [20].

2.2 Evolution of dust and gas in a MC/GMC

The Mach number of an experiment is a measure of whether the gas the particles are moving
through is in (or a fluid) is in a subsonic (M < 1), a transonic (M = 1), a supersonic (5 > M >
1), or a hypersonic (M > 5) regime. The Mach number regime of the medium can be important
for compression in front of the particle, as the drag in a supersonic and hypersonic environment
can be much larger than in the subsonic or transonic regimes [22]. The Mach number is given by
the ratio between the velocity dispersion and the speed of sound inside a medium. The definition
of the Mach number can be seen in equation 4, where the definition of the velocity dispersion,
from the first Larson relation, has been used (equation 1), if we use a sound speed of 0.18km/s
for a gas with temperature 10K [23]

M =
σv
cs

= 6.7 · L0.38 . (4)

If we look at the radial evolution of dust inside a system consisting of gas and dust only, the
dust will not dynamically affect the gas if the dust to gas ratio is in the order of 10−2, contrarily
the gas will affect the dynamics of the dust. In order to describe the evolution of dust and gas,
we need to define the eddy turn-over time and the stopping time of a system. The stopping time
of a particle is given by the ratio of the momentum and the drag force acting on it. Depending
on the ratio of the mean free path (λmfp) of the gas molecules and the dust particle size a, as
well as the the Reynolds number (Re = 2au/νmol, where u is the velocity of the dust particle
with respect to the gas and νmol is the gas molecular viscosity) there are four different regimes
for the drag force acting on the particle [17].

The mean free path is given by λmfp = 1/nσH2 where n is the mid-plane number density
and σH2 ≈ 2 · 10−15cm2. If the typical dust particle size is negligible compared to the mean
free path of the gas particles, the dust particles are surrounded by a dilute gas phase and we
can assume the dust particles to be in the Epstein regime. More specifically, in order to be in
the Epstein regime we need λmfp/a & 4

9 [24] [17]. For this thesis I assume the dust to be in
the Epstein regime as we investigate MCs/GMCs. MCs/GMCs have low average densities and
therefore it is safe to assume that the dust particle sizes will be small compared to the mean free
path of the gas [25]. The stopping time for subsonic particles in the Epstein regime is given by:
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ts =
4

3

ρsa

ρgū
. (5)

Where the mean thermal velocity of the gas molecules (ū) is given by:

ū = cs
√
π/8 . (6)

Here ρs is the solid density of the particles, ρg is the local gas density and cs is the speed of
sound [17]. The stopping length of a particle is defined as the length a particle can move inside
a fluid, before the accumulated mass in front of it is equal to the mass of the particle, i.e. the
length over which a particle can travel before being stopped. This stopping length is given by

Lstop · 〈ρg〉πa2 = mp =
4π

3
a3ρs , (7)

Lstop =
4aρs
3〈ρg〉

. (8)

It is now appropriate to define a characteristic scale length (L) which is the size of the box an
experiment is confined inside. From this length scale, we can define the eddy turn over time
(also called the dynamical time), for a MC/GMC, which is defined as the time scale for an eddy
of length l to undergo a significant distortion [26]. The eddy turn over time is given by

tturn =
L

2 · vrms
, (9)

where vrms is the root mean square velocity of the gas flow. The mean root mean square velocity
of a gas inside a MC/GMC is given by the first Larson relation in equation 1 [17]. The root
means square velocity is a measure of the difference in velocity between two points separated
by a distance [27]. Thereby equation 10 can tell us the average velocity difference between two
points in the experiment. The correct correlation between the mean gas vrms and the size of the
MC/GMC the gas moves around in is actively discussed, and there is a relative big spread in
the value to be multiplied by the size of the MC/GMC L, and the factor the size needs to be in
the power of, looking at equation 1. In this thesis, 1.2 and 0.38 was chosen, where others might
have chosen 1 and 0.4. This would be insignificant as the spread in different observed values of
these two numbers are above 10% [20] [21].

vrms =

√
v21 + v22 + v23 + ...v2n

n
. (10)

If we assume that the mass is mostly made up of gas, we can describe the interplay between
dust and gas by the Stokes number of the system, which is a dimensionless coupling constant.
The Stokes number is a relation between the eddy turn over time (tturn) and the stopping time
(ts) of the system and is given by [17]

St =
ts
tturn

. (11)

Now let us consider a dust particle with size diameter a, that travels through a cloud of gas. This
particle will have a cylinder of gas in front of it as it moves through the MC/GMC, illustrated
in figure 1.

This allows us to find the mass of the particle moving inside the MC/GMC with the gas column
in front of it, defined by

mp =
4

3
πa3ρs . (12)
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Figure 1: Example of a gas column in front of a dust particle inside a MC/GMC, which we can analyze the
dynamics and evolution of. a is the radius of the gas column, Lstop is the length of the gas column (i.e. the
stopping length), ∆v is the velocity of the dust particle, ∆t is the stopping time, and n is the number density of
particles inside the gas column.

From the Larson relations we can define the number density of a region inside a MC/GMC by
n = n0

L/1pc , where n0 is the normalization of the number density, which in my thesis is set to
1200cm−3. The column density the dust particle will meet in its trajectory in the distance it
travels before being stopped (stopping length) Lstop, is given by N = nLstop = n0(1pc). The
column density in front of the dust particle will be constant for all different sizes of MCs/GMCs,
since n0 is a constant. The surface density that the dust particles "sees" is given by Σ = Nµmp,
where µ is the mean molecular weight being 2.4 in my thesis, and mp is the proton mass. The
surface density can be seen as the average total mass of gas that impacts the dust particle
through the cloud. The mass of the gas in the gas column in front of the dust particle is given
by

mgas = πa2Σ = πa2µmpn0L(1pc) . (13)

In order to stop a particle inside the MC/GMC, it must meet the condition Lstop < L, which
is the stopping length must be smaller than the length of the experiment. The stopping length
is, as previously disclosed, the distance a particle needs to travel in the gas, before it is stopped
due to friction. In order for the stopping length to be shorter than the length of the experiment
we need the experiment to meet the condition mgas > mdust = 4π

3 a
3ρsolid, otherwise the gas will

not have a big enough effect on the dust to stop it (mgas is the mass inside the cylinder in front
of the particle). If we now set mgas equal to mdust, we will be looking at an experiment exactly
where we transition from the particle not being stopped, to the particle being stopped

4π

3
a3ρsolid = πa2µmpn0L(1pc) . (14)

Rearranging equation 14 we find the critical value for the size of the dust particle a where
particles smaller will be stopped by the gas, but particles larger will not be stopped inside the
MC/GMC, the result of this is

acrit =
3

4

µmpn0(1pc)

ρsolid
. (15)

In my experiments ρsolid was chosen to be ρsolid = 2gcm−3. Solving equation 15 by inserting
the defined values gives us

acrit =
3

4

2.4 · 1.673 · 10−24g · 1200cm−3 · 3.09 · 1018cm

2gcm−3
= 55.83µm . (16)

Therefore, a particle with a size smaller than approximately 50µm will be stopped inside all
sizes of MCs/GMCs, and a particle with a size larger than approximately 50µm, will not be
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stopped inside all sizes of MCs/GMCs. Next we define the dynamical time. In this case, it is the
time it takes before a dust particle in motion fells an effect on its velocity, due to the velocity
of the gas. The dynamical time of a particle is defined as the size of the environment we look
at divided by the typical velocity of the particle tdyn = R/v [28]. In my experiments I abide by
the common interpretation that inside of a periodic box, the distance between two points can
at most be L/2. Thus, the dynamical time can be expressed as

tdyn =
L

2V1pc(
L
1pc)

0.38
, (17)

where ( L
1pc)

0.38 normalizes the dynamical time to the experiment size chosen. In my setup
V1pc = 1.2km/s. We now realize that ρg = nµmp expresses the gas density as the number
density of gas times the mean molecular weight and mass of a proton, and normalize this to
Larson’s 3rd law by dividing it with the length scale of our experiment L. This is given by

ρg =
n1pcµmp

L/1pc
. (18)

In the reference frame of the dust particle it will, on its journey through the gas column, be
bombarded by gas with a bulk and thermal velocity. If the dust particle moves with velocities
larger than the speed of sound cs, the bulk velocity of the gas it is bombarded by is larger than
the thermal velocity. This is due to the scaling of equation 6 where cs is constant. We can
neglect the effects of the thermal velocity and the difference in velocity between the dust and
the gas is therefore independent of the speed of sound in this regime. In order to define the
difference between the dust and gas velocity, we can define the cross section of a dust grain
which is given by equation 19. The cross section of a particle gives the probability of interaction
between two particles, and if we assume the dust particles to be spherically shaped, the cross
section is defined as the area of the circle that goes through the middle of the sphere [29] [30]

σcross = πa2 , (19)

where a is the diameter of the dust particle we are looking at. We can now define the gas mass
swept up in front of the dust particle on its way through the experiment. This mass can be set
equal to the mass of the particle from equation 5

msweep = σcross∆vtsρg = ms . (20)

Rearranging equation 20 and using equation 12 and 18, we find

∆vts =

(
4ρsa

3

)
1

ρg
=

(
4ρsa

3ρ0

)
L

1pc
. (21)

Assuming that ts follows the Larson scaling similar to the dynamical time from equation 17, we
can define:

ts ∝ tdyn ∝
L

vrms
. (22)

Solving equation 21 for ∆v and using the proportionality in equation 22, we get equation 23,
which formally valid only as long as the resulting velocity is indeed supersonic as assumed:

∆v =

(
4ρsa

3ρ0ts

)
L

1pc
∝ avrms . (23)

From equation 23, we can see that the difference between the dust and gas velocity is proportional
to the size of the dust particle and the root mean square velocity of the dust particle. Knowing
that the vrms of a dust particle is proportional to the size of the MC/GMC, we can thus conclude
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that some relation must exist between the average relative difference between the dust and gas
velocity, the dust particle size, and the size of the MC/GMC observed. Another way we can
define the mean difference between the dust and gas velocity

∆v = αV1pc

(
L

1pc

)0.38

, (24)

where α is an amplification factor and V1pc the velocity over the length scale 1pc. If we insert
equation 18 and 24 into the definition of the stopping time in equation 5 we get

ts =
4ρs
3

( L
1pc)

0.62a

αV1pcn1pcµmp
. (25)

When the stopping time of a particle is either equal to or less than the dynamical time, the
particle is significantly affected by the gas motion. This can result in the dust particle following
the dynamics of the gas and cause accumulation of dust particles. If the stopping time exceeds
the dynamical time, the particle will not have enough space inside the experiment, in which the
experiment takes place, to be significantly affected by the dynamics of the gas, and the friction
force from the gas will act like a stochastic forcing on the dust particle. This is just like the before
mentioned case where the stopping time needs to be larger than the size of the experiment. If
we set the dynamic time equal to the stopping time, as done in equation 26 (where V1pc is the
velocity of the dust particles inside the experiment of size 13pc3),

4ρs
3

( L
1pc)

0.62a

αV1pcn1pcµmp
∼ L

2V1pc(
L
1pc)

0.38
. (26)

We see that there must exist a size of dust particles a, if we have a fixed experiment size L,
where the stopping time exceeds the dynamic time and the particle can not be caught by the
gas. We have already found this dust size to be approximately 50µm. The particles exceeding
this diameter will either be caught in larger accumulations of gas outside the experiment or they
will break apart as a consequence of collision with other dust particles.

2.2.1 Collisions

If a particle that are not caught in accumulations of gas are instead broken apart it can be
estimated by looking at the mean free path of the particle given by equation 27.

λmfp =
1

ndustσ
, (27)

where ndust is the number density of particles and σ is the geometric cross-section of a particle
defined by σ = πa2coll, where acoll is the size of the particle. The mean free path is a definition
of how long a particle needs to travel on average before it collides with another particle. If
the mean free path is larger than the experiment length 1pc, the particles in our system are
unlikely to collide. However, if the mean free path is smaller than the length of our experiment
there is a significant probability that the particles collide and break apart. If we look at a 3D
volume element of a MC/GMC that has sides larger than the mean free path but smaller than
the system size L, collisions between particles drives the velocity of the particles to end up as a
Maxwellian distribution, given by

F (~v)d3v =

(
m

2πkT

)3/2

exp

(
−mv

2

2kT

)
d3v . (28)

Here m is the mass of the particle, and T is the kinetic temperature of the gas, which is a
measure of the kinetic energy per particle. If we integrate over the Maxwellian distribution in
equation 28 we get the mean kinetic energy per particle



Molecular Cloud Dynamics 2.3 Self-gravity of the gas, and the Jeans’ length | 8

1

2
m〈v2〉 =

3

2
kT . (29)

Equation 29 suggests that no matter what extra energy we give the particles inside a volume, they
will always, through collision, go back into a kinetic equilibrium with a fixed kinetic temperature
T and a fixed average velocity. This transition back to the equilibrium happens in a timescale
given by [31]

tKE ∼
λmfp

〈v2〉1/2
∼ 1

nσ

(
m

3kT

)1/2

. (30)

2.3 Self-gravity of the gas, and the Jeans’ length

In this sub-section we look schematically at the question of at which scale the self-gravity of
the gas might become important. As a simplified representation of the gas dynamics inside a
MC/GMC, we can look at the gas as a fluid where the different movements of gas inside the
cloud are seen as waves traveling in the cloud. If we look at a MC/GMC, consisting of an ideal
gas with no viscosity or heat conduction, and we only look at the gas in one direction, we can
define the properties of the gas by its time t and its position x. This means that the cloud has
plane parallel symmetry and that the mass continuity equation is given by

∂ρ

∂t
+

∂

∂x
(ρu) = 0 , (31)

the momentum equation is given by

∂

∂t
(ρu) +

∂

∂x

(
ρu2
)

= −∂P
∂x

+ gρ , (32)

and equation 31 multiplied by the bulk velocity u(x, t) subtracted from equation 32 is given by

ρ
∂u

∂t
+ ρu

∂u

∂x
= −∂P

∂x
+ gρ . (33)

Here P is the gas pressure, ρ is the gas density, and g is the gravitational acceleration. If we
now consider a region of the MC/GMC with a uniform gas, a uniform density ρ0, a uniform
pressure P0, and no bulk velocity u0 = 0, we can define small perturbations of the form of

ρ(x, t) = ρ0 + ρ1(x, t) , (34)

u(x, t) = u1(x, t) , (35)

P (x, t) = P0 + P1(x, t) . (36)

Inserting equation 34 to 36 into equation 31 and 33 gives us the linearized mass continuity
equation

∂ρ1
∂t

+ ρ0
∂u1
∂x

= 0 , (37)

and the linearized momentum equation

ρ0
∂u1
∂t

+
∂P1

∂x
= g1ρ0 . (38)

The gravitational acceleration from the density perturbation ρ1(x, t) is given by ∂g1
∂t = −4πGρ1.

If we assume that the pressure is a function of only the density ρ, we can rewrite equation 38
into
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ρ0
∂u1
∂t

+

(
dP

dρ

)
∂ρ1
∂x

= g1ρ0 . (39)

Now we can take the time derivative of equation 37, then take the spacial derivative of equation
39, and subtract the two. This gives us a wave equation

∂2ρ1
∂t2

−
(
dP

dρ

)
∂2ρ1
∂x2

= 4πGρ0ρ1 , (40)

defining the movements in a fluid consisting of gas, with a wave propagation speed given by

cs ≡
(
dP

dρ

)1/2

. (41)

The movements are seen as perturbations, also known as sound waves, as the pressure moves
through the fluid at the speed of sound cs. Looking at a polytrope, the speed of sound is given
by

cs ≡
(
γP0

ρ0

)1/2

=

(
γk

m̄
T0

)1/2

, (42)

with γ being the adiabatic index, m̄ is the mean mass per gas particle, the gas density is ρ0, and
the gas pressure is P0. In an environment without self-gravity, where the waves would propagate
stably with constant amplitude, and a sinusoidal density perturbation, given by ρ1(x, t) ∝
ei(ωt−kx), we can get the dispersion relation by inserting this density perturbation into equation
40. This dispersion relation is given by

ω2 = k2c20 − 4πGρ0 , (43)

where c0 is the sound speed in the unperturbed gas. This wave will propagate stably as long as
the wavenumber is larger than the Jeans wavenumber k > kJ , which is given by

kJ ≡ 2
√
π

√
Gρ0
c0

. (44)

When k < kJ the frequency ω is imaginary and self-gravity will make the amplitude of the
perturbations grows exponentially. All wavelengths larger than the Jeans wavelength will make
the wave unstable to gravitational collapse. The Jeans wavelength is given by

λJ ≡
2π

kJ
=
√
π

c0√
Gρ0

. (45)

If the wavelength of the waves is shorter than the mean free path between gas particle collisions,
the sound wave is unable to propagate. Entering the typical values we have been using so
far, a sound speed of 0.18 km/s and a gas density of 4.8 · 10−21gcm−3, we get a Jeans’ length
of order 5pc, and since in practice the gas velocity is even larger (by the Mach number), we
can conclude that self-gravity is unimportant on average under our conditions. As can be seen
from equation 45 it could become important at sub-pc scales only at gas densities hundreds to
thousands of times larger than the average densities we are using. As discussed in the next sub-
section, turbulence can create densities large enough for self-gravity to become important, but
the resolution of my experiments is not large enough to capture that, and therefore self-gravity
can be neglected [31].
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2.4 Turbulence inside the ISM

A very important property of MCs/GMCs in the ISM is turbulence. It is due to turbulence that
we have a diffusion of gas and dust and a dissipation of kinetic energy inside of MCs/GMCs.
It is also due to turbulence that overly dense regions form, where stars and planet formation
happens [32]. Turbulence consist of irregular motions. In a turbulent flow, the fluid velocity
~u(~x, t) at a fixed point ~x varies in time almost randomly. The same is true for the velocity
of the fluid in a turbulent flow at a fixed time t. Turbulent flow is a chaotic process that we
need to examine statistically [31]. Interstellar turbulence has been shown to be supersonic, and
needs to be driven by an external force in order for it not to die out in a crossing time [32]
[33]. The crossing time is given by: τc = R/v̄ [34]. This driving could be sourced by stellar
feedback, gravitation, magneto-rotational instability, cloud–cloud collisions, or other processes
affecting the ISM, such as supernova explosions. There are two different kinds of turbulence
inside MCs/GMCs, namely solenoidal turbulence, which is divergence-free, or compressive tur-
bulence which is curl-free. Both are present in all clouds, and while the compressive part is the
only one that can create overdensities directly, supersonic solenoidal motions are also important,
since non-linear effects (inertia) tend to turn them into compressional motions. If we create a
density probability distribution function (PDF) of an isothermal turbulent gas, we would find
it to have the shape of a log-normal. The Mach number and the driving parameter can be used
to determine the width of the PDF, and this parameter can also quantify the turbulent stirring.
The driving parameter can move between the limits of 1/3 for purely solenoidal driving and
1 which is entirely compressive driving. If we have a purely compressive driving we will see
a broader density PDF and a larger fraction of gas will be at high densities, and if we have
solenoidal driving we will see smaller widths of the resulting PDF [32].

If we first look at homogeneous and isotropic turbulence, which thus can be seen as incom-
pressible, we can define the maximum length an eddy can have, also called the correlation
length. This is given by

ΛT ≡
1

〈| ~uT |2〉

∫ ∞
0

R(r) dr , (46)

where 〈| ~uT |2〉 is the average squared turbulent velocity, and R(r) is the velocity correlation
function of the distance between two points r. Inside a turbulent flow, we will usually see a lot
of different structures with different sizes, and it is, therefore, convenient to Fourier transform
the turbulent velocity field, as

~uT~k =
1

(2π)3

∫
~uT (~r)ei

~k~r d3r , (47)

here k is the wavenumber (k = 2πν). From equation 47 we can now look at the different Fourier
modes for different wavenumbers k. Next we can define three properties, namely the energy
spectrum of the turbulent flow

E(k) = 2πk2
1

(2π)3

∫
R(r)e−i

~k·~r d3r , (48)

the specific turbulent kinetic energy

εT =
1

2
〈|~uT |2〉 =

∫ ∞
0

E(k) dk , (49)

and if we assume a Newtonian fluid with constant kinematic viscosity, the rate at which the
turbulent kinetic energy is dissipated
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ψd = 2ν

∫ ∞
0

k2E(k) dk . (50)

Here ν is the viscosity, which in equation 50 is assumed to be the constant kinematic viscosity
of a Newtonian fluid. From equation 50 we can see that the dissipation is weighted to high
wavenumbers so that the smallest eddies present dissipates the turbulent energy through viscous
heating. In order for the turbulent flow to remain in a steady-state, there must be an income
of turbulent kinetic energy at the large scales at the same rate as energy is dissipated at small
scales ψd. If this is not the case, the turbulence will die out. According to Kolmogorov, turbulent
velocity fields of incompressible fluids need to be self-similar over a range of length scales.
Combining the dimensions of the energy dissipation ψd (L2T−3) and the viscosity ν (L2T−1),
we can get the length scale

lK =

(
ν3

ψd

) 1
4

, (51)

which is called the Kolmogorov length scale. This length scale defines, roughly, the size of
the smallest features in the fluid, since structures smaller than the Kolmogorov length scale
will dissipate their kinetic energy by viscous heating, and thereby disappear in less than one
dynamical time. Next, we can define the velocity at the Kolmogorov scale, given by

uK = (νψd)
1
4 , (52)

and we can define the time it takes for a structure of that size to dissipate its energy away, which
is given by

tK =
lK
uK

=

(
ν

ψd

) 1
2

. (53)

Kolmogorov assumed an energy spectrum for self-similar turbulence, with power on all length
scales from the smallest lK to the largest ΛK , in the form of

E(k) = u2K lKE∗(lKk) , (54)

where E∗(lKk) is a dimensionless function of the dimensionless wavenumber lKk, and u2K lK that
gives the energy spectrum the right dimensions. Now we assume to be at a wavenumber in the
range Λ−1T � k � l−1K , where negligible dissipation occurs, and the dominant energy process is
the transfer of kinetic energy from large structures to smaller structures by inertial forces. Here
the viscous force also is negligible, and the energy spectrum E(k) thus is independent of ν, and
we have uK = ν1/4ψ

1/4
d and lK = ν3/4ψ

−1/4
d . With all of the just mentioned conditions in mind,

the energy spectrum of the Kolmogorov spectrum can then be defined as

E(k) = αψ
2/3
d k−5/3 ∼ ψ2/3

d l5/3 , (55)

where α is a dimensionless factor of order unity, and l is the radius of the eddies. Now we can
define the typical velocity of structures with size l as

u(l) ∼ uK
(
l

lK

) 1
3

, (56)

and the Reynolds number for scales larger than the smallest eddies lK as

Re =
ul

ν
∝ l4/3 . (57)
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This means that viscous dissipation occurs on the smallest length scales close to lK . From obser-
vations, it has been found that the initial condition stating that MCs/GMCs were incompressible
fluids with a Kolmogorov spectrum of turbulence, is incorrect. Most studies of MCs/GMCs give
a slope steeper than 1/3 for the relationship between σ and l, and we, therefore, need numerical
simulations to adequately simulate the turbulence inside a MC/GMC [31].

3 The simulation code

3.1 An overview of the DISPATCH framework

The DISPATCH code is a high-performance numerical simulation framework, written in the
object-oriented Fortran programming language. It works by updating a collection of patches
in space-time, where it performs a semi-independent task-based solution to partial differential
equations. These patches are further divided into smaller volumes called cells. The tasks can be
a variety of different systems. They can, for instance, solve the partial differential equations of
ideal magnetohydrodynamics (MHD), non-ideal MHD, or particle motion. In my experiments,
I am using a dust particle motion solver in order to solve for the motion of dust particles in
a MC/GMC, and a hydrodynamic-solver in order to solve for the motion of gas in the same
MC/GMC. Two features that make the DISPATCH framework ideal to use are firstly that the
time steps are determined as well as applied locally and secondly, its use of a simple load bal-
ancing algorithm, consisting essentially of over-subscribing the work that needs to be performed,
by having many more tasks then there are arithmetic units (CPU "cores"). The local time step-
ping is important for the overall performance of the framework since it lessens the needed total
number of updates, thereby reducing computing time. The load balancing algorithm reduces
the local load and communication imbalance. In order to solve the partial differential equations
needed to run the simulations in the code, the DISPATCH code imports already existing solvers,
with an augmented performance resulting inside the DISPATCH framework. This augmentation
of the performance comes from more efficient cache usage, vectorization, and local time stepping
[35].

The Fortran language is structured through the definition of objects, which hold both data
and methods to handle the data. The Fortran language makes use of an inheritance structure
where we can define a base object, which has "child classes" automatically inheriting attributes
and methods from their parent class. The inheritance structure can also have "grandchildren
classes" of children classes that inherit the attributes and methods from their parent class, the
class it is made from, and its "grandparent class", and so on. If we, for instance, make a ge-
ometry object, then inside this object we can have a rectangle-class, and a circle-class. These 2
will then be child-classes of the base geometry object. If we have defined the geometry object
with an integer called colour, then the two child classes would also have access to the colour
component. If we make a class under the rectangle class that is called square and give the
rectangle class attributes of length and width, the square class will inherit the length and the
width components, from its parent class rectangle, as well as the colour component from its
grandparent object, the geometry class, which is the base object. [36] [37]. DISPATCH is built
on two base classes of objects namely tasks and task lists. The tasks class hierarchy is made up
of a task data type that holds information of the fundamental state of the experiment like task
position, times, and time steps. The task data type also holds methods for acquiring a task ID
and inquiring about status flags among others.

The base object task is extended into a child-object which holds mesh-based tasks called a
patch data type, holding spatial properties, including size, resolution, number of guard zones,
number of physical variables, and so on. The patch data type also includes methods for measur-
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ing intersections between different patches in space and time, as well as methods for writing and
reading snapshots. The generic properties and methods can be extended into mesh-based solver
data types. These data types can specify the physical variables to be advanced, add methods
to initialise, and advance the patch data forward in time. They can also specify any parameters
specific to the solver in question. Lastly, we can extend the solver data type into experiment
data types. The experiment data types hold experiment specific functionalities, such as initial
and boundary conditions. The experiment data type is also used as a generic wrapper and
can be accessed through the task list hierarchy, which will hide the solver and thereby make it
possible to run the same experiment with different solvers.

The other class hierarchy, namely task lists have as base member a list node data type, which is
defined as a node in a doubly-linked list. The pointers attributed to the nodes are pointers to
the next and previous node, as well as a pointer directed at the head of a neighbour list, consist-
ing of nbor nodes. An nbor generalizes neighbours beyond spatial proximity, thereby including
tasks that are dependent on the current task, and tasks that the current task is dependent upon.

The list node data type is used to define a doubly-linked list of nodes and keeps track of its
properties, as well as containing the methods necessary to manipulate linked lists. This includes
appending, removing, and sorting nodes. Lastly, the list data type extends into a task list data
type which includes methods that are specific to the execution of tasks and the handling of task
relations. It is the task list data type that holds the update method, which is the key procedure
in DISPATCH. The update method handles task selected for updating. Now, when we run a
DISPATCH experiment what essentially happens is that we call the task list update procedure
repeatedly until all tasks are finished [35]. To sum up, the code is structured so that every patch
in the experiment that the user wants to explore, has an instance of the task hierarchy. The
code creates nbor lists that are made up of nbor data types, which point at the node data type.
This is the base data member of the task list hierarchy, and the task data type, being the base
data member in the task data type. For a visualisation see figure 2.

In order to generate these task lists, DISPATCH uses a set of components. Each component
creates a sub-set of tasks, organized in some systematic way. In my experiments, I have used a
component that creates a cartesian grid of patches in 3D.

In order to understand how the DISPATCH code functions, we first explore the DISPATCH
framework running an experiment from the point of view of a single task, as it goes through
its steps cyclically, in the mesh-based experiment. We need to have our guard zone values up-
to-date before a task can advance to the next time step. The guard zones are regions in the
neighbouring patches, that we use in order to get the right results in the boundaries of the patch
we are looking at. These guard zones need to be interpolated in time and space, due to the
patches using local time-stepping, thereby not synchronized in time, and because they can have
different resolutions. In order to interpolate in time, values of field variables, like density and
momentum, are saved in each patch in a number of time slices using a circular buffer [35]. A
circular buffer is a contiguous block of memory that acts like it has an arbitrary beginning and
no end [38]. In order to make an interpolation in space (prolongation) DISPATCH uses conserva-
tive interpolation and averaging operators, the same is true for the reverse process (restriction)
[35]. Conservative interpolation is important when discretizing the experiment to small patches
since the conservative interpolation conserves physical quantities globally like the density of the
experiment [39]. An averaging operator is also important when having a large mesh of patches
since they find the average value between two points and can help make a smoother environment
in the experiment, so we do not see unnatural transitions between the patches [40]. Next the
dispatcher will move the current patch to a (time-sorted) ‘ready queue’, but only if it deter-
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Figure 2: The experiment is divided into different patches so that we can solve equations for a part of the
experiments at a time. Each patch holds an nbor list which points at the task list structure and the task
structure. The nbor structure is, therefore, a list of how the different nodes in the patch are connected.

mines that the neighbouring patches have advanced sufficiently in time to supply guard zone
values to the current patch. When the dispatcher selects a patch for updating it gives it a
’busy’ state indication. Here both the internal values such as the mass or the density as well
as the patch time is updated. After the update, the circular buffer will change the state of the
patch back to ’not ready’, since the guard zone values for the next time step are not yet available.

The dispatcher described above is the task scheduler of the framework. Looking at the DIS-
PATCH framework process from the point of view of the dispatcher, it first selects tasks for
updating and then later returns to evaluate the consequences of the updates on the tasks. As
previously stated, what essentially happens when we run the DISPATCH framework is that it
updates. The way that the update procedure operates is that each OpenMP thread uses it to
pick the oldest task in the "ready queue", goes ahead to update it, while in the mean time
another thread picks up the task that now had become the oldest one [35].

OpenMP is a mechanism common to Fortran and other compiled languages, which makes it
possible for a number of "threads" to execute in parallel, using available CPU "cores". The
code starts out on a single thread, but then branches out to a chosen number of threads, all
executing the same code, thus making the code run faster. Since this keeps all cores busy, there
is no need or benefit to obtain from parallelizing inside each task. After a task update is done,
the code finds and queues any neighbouring patches ready to update because of the update of
the current patch.
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The problem with thread parallelism is that a large number of threads are doing the updat-
ing and nested locks at the same time, and thus the procedure is protected with OpenMP
critical regions so that only one thread is allowed to operate with the ’ready to update’ queue at
one time. The way a task is defined as ’ready to update’, is by examining the difference between
the time of a task and its neighbours. If the condition

tself ≤ tnbor + g∆tnbor (58)

is satisfied, where g is a grace parameter specifying the amount of extrapolation permitted
relative to the neighbour time step, defined as ∆tnbor. Since the update does not happen in-
stantaneously, this condition just needs to be true at some point, and not necessarily when the
update happens. Now if we take the point of view of the input-output subsystem, we can explore
how snapshots can be written to the disk for post-processing. When running an experiment in
DISPATCH the parameter task%out_next is given, and the input/output view will, after the
task has been updated, compare the task’s current time in code units with this parameter. If
it passes the out_next benchmark and it, thereby, is time for an output to be created, the task
output method is called and a snapshot is written out. DISPATCH writes out the patch data
as raw binary data to one file and patch information as text to another file.

The DISPATCH code has ported several well-used and well-documented astrophysical fluid
solvers. These solvers have been tested using DISPATCH and different results have been repli-
cated using these solvers inside the DISPATCH framework [35]. The one used in my experiments
has been the HLLC from the public domain RAMSES code, which is a Godunov-type Riemann
solver.

3.2 The fluid solver used: HLLC

The Euler equations are solved using their conservative form which is given by

∂ρ

∂t
+∇ · (ρu) = 0 , (59)

∂

∂t
(ρu) +∇ · (ρuu) +∇p = −ρ∇φ , (60)

∂

∂t
(ρe) +∇ · [ρu(e+ p/ρ)] = −ρu · ∇φ . (61)

Here ρ is the mass density, u is the fluid velocity, e is the specific total energy, and p is the
thermal pressure given by p = (γ − 1)ρ(e − 1

2u
2), where γ is the ideal gas gamma, and φ is

the gravitational potential. In the experiments in this thesis γ = 1, and φ = 0 [41]. What
is meant by conservative form of the Euler equations is that they can be written on the form
Ut = +F (U)x = 0, where Ut is the vector of conserved variables and F (U) is the vector of fluxes
[42]. One of the main advantages of solving the Euler equations in conservative form is that
no energy sink or source, to numerical errors, has an effect on the flow dynamics. In the above
system of equations, gravity is also included as a non-stiff source term and thus the total energy
is conserved at a percent level. Now we can write the Euler equations with gravitational source
term as

Un+1
i − Uni

∆t
+
F
n+1/2
i+1/2 − F

n+1/2
i−1/2

∆x
= S

n+1/2
i , (62)

where Uni is the numerical approximation to the cell averaged value of (ρ, ρu, ρe) at time tn and
cell i. The code uses a Godunov method, also known as the Piecewise linear model or PLM,
to calculate the time-centered fluxes [41]. As said by Van Leer, Godunov type methods are
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non-oscillatory finite volume schemes that incorporates the solution to a Riemann initial value
problem. The Godunov method uses the numerical values of Uni as cell averages of the analytical
solution U(x, t) at the time level n, which is expressed as

Uni =
1

∆x

∫ xi+1/2

xi−1/2

U(x, n∆t)dx . (63)

Now the fluxes will look like figure 3, and we therefore are left with Riemann problems at the
cell boundaries. In a Godunov method scheme, the Riemann problem is solved locally [43].

Figure 3: The solution to the Godunov method before the Riemann problem of the cell boundaries has been
implemented [43]

.

In order to explain the Godunov solver in the RAMSES HLLC code we look at the solver at a
single grid, which means solving equations 59 to 61. In order to do so, the code needs the correct
boundary conditions, which consist of, looking at the hydrodynamical scheme, two ghost zones
on each side and in each direction. The PLM scheme uses a Riemann solver with left and right
states obtained by a characteristic tracing step, to compute second-order, time-centered fluxes
at cell interfaces for a given time step [41]. A Riemann solver solves the problem that arises
when you have solutions similar to figure 3, where the transition from cell to cell is not smooth.
The most simple Riemann solver, developed by P. L. Roe, looks at the conservation laws we need
to solve in a quasi-linear form: ut + A(u)ux = 0, with Au being the Jacobian matrix ∂f

∂u . This
form of the equations are then linearized in each interval (xi−1, xi), replacing the Jacobian with
interval-wise constant matrices Ã(ui−1, ui). For any two adjacent states uL and uR, we need
the interval-wise constant matrices to be diagonalisable with real eigenvalues (Ã(uL, uR)), we
need Ã(uL, uR)← A(u) as uL, uR ← u, and we need F (uL)−F (uR) = Ã(uL, uR)(uL−uR). We
need these conditions to be fulfilled in order to gain hyperbolicity, consistency and conservation.
The Ã used, is an average of the Jacobian Ã(uL, uR) = A(ū). This average Jacobian Ã is then
diagonalised (X̃Λ̃X̃−1), which gives a set of decoupled linear advection equations in the different
intervals. We can decompose the flux differences in each interval onto the local eigenvalues as

∆f = fR − fL =
n∑
k=1

α̃kλ̃kx̃k , (64)

with α̃ being the coefficient for ∆u, λ̃ being the eigenvalue, and x̃ being the eigenvector, corre-
sponding to the kth characteristic field of Ã [43].
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In the RAMSES HLLC code the first thing that happens when running its Riemann solver
is a standard characteristic analysis which is done by Taylor expanding the wave equations
to second-order and projecting out the waves that cannot reach the interface within the time
step. In order to ensure the monotonicity of the solution, a slope limiter is used to compute
the slopes that enter into the Taylor expansion [41]. A slope limiter, limits the gradient when
reconstructing a cell to the neighbouring centroid, so that it does not exceed the neighbouring
cell average [44]. In the final step, we use the Godunov states to compute the fluxes of the
conserved variables. The output of the single grid algorithm is in the form of fluxes across cell
interfaces [41].

3.3 Parts of the DISPATCH framework used

DISPATCH was used by applying the extras module in the DISPATCH framework, where you
are able to add extra modules, in order to include mechanisms of interest in the world of astro-
physics, at a level between the basic patch and the layers of solvers. It is here the particles in the
experiment are created. The extras module gets access to optional modules, like the one I am
using for my experiments, being the particles_solver_mod responsible for the dust and gas
interaction, explained in more detail later. In order for the extra module to create dust particles,
a function called init_conditions is defined. This function first defines how many particles
there will be present in the experiment, then it creates the particles. Another procedure, called
update, is responsible for updating the particle positions.

The list of particles is made in the module particles_mod. In this module, the velocity of
the gas, the gas density, and the dust density is imported. The time of the particle, which is
needed in order to know at what time we are looking at the particle, is defined. A location
mechanism is set up so that we can locate the particles, which works by looking at their index
(what number cell are the particle in) defined by the parameter q, and by its position in that
cell defined as r. When r is 1 it means that the particle has left that cell and thus the cell
index will change. The particle properties are described by the attributes q r, v, and w. Here
r is the position inside cell q, and v is the velocity in cells per time, and w is the weight of
that particle. Next, the code creates the prerequisites for a list of particles to be created. It
does so by creating a variable of type particle_t, which is a data type for a single particle.
It makes the particles point at the next particle and the next particle and so on by a pointer
called next. It also creates another pointer pointing at the previous particle and the previous
and so on by the name prev. The list stops when the next variable points to a "zero pointer",
called null(). This mechanism makes the list stop if it points at a null(). The procedure
just described is the procedure that creates all particles. A small fraction of the particles are
used to also keep track of the properties of the gas as they move along, using a cell_t data type.

Now we want to define a variable of type particles_t, being a data type for particle lists.
Here we want to define the number of particles in the list, by first making the head and the
tail of the list point at a null(), so that we have defined pointers showing that the list has
come to an end for the first and last particle. Then we define a variable of type integer called
n, which holds the number of particles in the experiment. Now we define an integer called
type, which is defined to be 0 if the particle information is not printed, and 1 if the particle
information is printed. We thereby only receive the information of the particles (like density and
velocity) with type = 1, in the data file created at the end of the framework. Now we create a
variable of type real, that holds the momentum of the experiment in order to make sure the
total momentum is conserved. If we want to remove a particle from the list we just need to
adjust the next or previous pointers, so that they skip a particle, and thereby points at the next
next particle or the previous previous particle. The overstepped particle will then be written
out of the list, but can still be included in another list corresponding to another cell. This is
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useful when a particle e.g. leaves the cell it was in before we proceeded by a time step. This
procedure is more expensive at the start and end of the list. This is why we are not interested
in having real particles, that are crucial for the data in the experiment, in the beginning, and
end of the lists. Therefore we create fake particles, that look like particles, but never need to be
removed, at the start and end of the list holding particles for one cell. If we, for instance, want to
look at 200 dust particles, the list will contain 202 dust particles, 200 real, and 2 unreal particles.

Next, we add various procedures that can calculate different quantities of the experiment, like
the total momentum, density, velocity, and dispersion. These are calculated in the different func-
tions inside the module. In order to calculate the velocity of the particles, the function velocity
is created. This function starts by making the sum of the density and the velocity 0. Then it
creates the pointer p, which points at the particles in the list and automatically skips the first
and last particle when moving between the particles. We also define p%w as the weight of the
particles, where the sum of all the weights is the mass density per unit volume of the particles.
The function loops over the list of particles and calculates sumd = sumd+ p%w, so that sumd,
in the end, is the summed density, and it also calculates sumv = sumv + p%w · p%v, which
calculates the sum of the weighted velocity. After the loop, sumv is calculated as sumv/sumd
if sumd is non zero. If sumd is zero, sumv is set to 0. This gives a weighted velocity normalized
to the density of the dust particles, corresponding to the mean dust velocity. Then a dispersion
function is made where the same procedure is performed as for the velocity, where the RMS
dispersion is calculated by looping over the different particles in the list, making the calculation:
rms = rms+ p%w · ((p%v(1)− vav(1))2 + (p%v(2)− vav(2))2 + (p%v(3)− vav(3))2) . Here v
is the velocity of a single particle and vav is the mean velocity (the same we calculated in the
velocity function just with another name). After the loop we take the square root of the sum of
the squares of the net velocity in all 3 dimensions, corresponding to the RMS dispersion.

The turbulence driving of the experiment is also added in the extras module, through two
other modules called forces_mod and force_mod and is a purely solenoidal driven turbulence.
In the extras_mod a pre_update procedure is called, before the Riemann solver. The forces cre-
ated in the forces_mod and force_mod are extra terms in the prediction step and in the source
update in the Riemann solver. To give a brief presentation of how turbulence is made inside
the DISPATCH code, a force is calculated as a sum of all the different Fourier components of a
random force created, that lies in the form of a cylindrical shell in k-space. Two time snapshots
of forces are created and the turbulence module then interpolates softly between the two forces.
This change in forces creates, after a short amount of time, a cascade that transports energy
between large and small scales, and because the velocities are supersonic inertia creates com-
pressive motions, even though the driving is solenoidal. With a high number of free parameters,
this transport of energy creates turbulence in the experiment.

If we now go into detail with how the DISPATCH code creates turbulence, the inputs that
you can give the turbulence (given in a file called inputs.nml file) is ampl_turb (amplitude of
the turbulence), k1 and k2 (limits and slopes in k-space), t_turn (the turn over time), and seed
(the random seed of the random force). The code then introduces variables needed to run the
force_mod module, including t_turb which is set to −1.5 · t_turb. Then a do-while loop is
started, running until t_turb > time, where time is the task time in code units (since t_turb
is set to a negative value it works from a negative time up until the task time). The turbulence
then works by introducing two random forces, in the form of a shell in k-space (where k is the
wavenumber), and it continues to create new forces every t_turb. The first force is set equal to
the force calculated in the last time step, and the new force is then calculated in the following
code. When calculating the force it assumes that the density, pressure, and the sound speed
inside the experiment is close to unity. The force is, therefore, a Fourier transformation of a
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number of waves each with a wavenumber k, a phase that is randomly chosen, and an amplitude.
The velocity amplitude of the force should be on the order of the input parameter ampl_turb,
and the size scale of the driving motion should be on the order of 1/k1. The turn over time of
the turbulence is then calculated as t_turn = t_turb · ampl_turb = 1/k1 and the acceleration
is of the order ampl_turb/t_turb. The random force is created in a do-while loop, that loops
over t_turb, that is interpolated with t_turn every loop (t_turb = t_turb + t_turn). It then
creates a force snapshot and counts the number of wavenumbers the collected force has. It
counts the number of wavenumbers by first defining a max wavenumber kmax defined as k2+ 1.
Then a 3-dimensional loop is run from -kmax to kmax where the loop variables for the three do
loops are given by jx, jy, and jz with an increment of unity. Then the number of wavenumbers
are counted by creating the wavenumber: fk =

√
jx2 + jy2 + jz2 inside the three do loops, and

if the wavenumber is fk <= k2 + 10−5 or fk >= k1− 10−5 (making sure it is inside the limits)
it adds one to nrand which is the number of wavenumbers. Then it calculates the normalized
acceleration factor of the turbulence with accel = ampl_turb/t_turn/

√
float(nrand)/8, nor-

malized to the number of wavenumbers.

It is important for the turbulence to get a Kolmogorov slope of the driving alone, where the
amplitude a(k) drops with k−11/6 and thus a(k)2 · k2 = k−5/3. The amplitudes of the Fourier
modes need to be proportional to the driving. The module calculates the first part of the Fourier
series namely the e2iπn part, where n is chosen to be a random number. The turbulence scheme
will calculate a force inside a region of the experiment corresponding to the wavenumber k. This
can make the region where this k is used, look like a bump in the density, and thus the Fourier
mode is normalized with k7/6 to avoid this effect. Then the compressive part of the velocity is
subtracted from the Fourier mode to make sure it is divergence-free. Next the power spectrum
of the energy is calculated from fpow = fpow+fact · (fxx2 +fyy2 +fzz2), and is added to the
existing power spectrum. Here fact is a factor due to the amplitude of the wave in the Fourier
series and can take the values 1, 0.5, 0.25, or 0.125, and fxx, fyy, and fzz is the Fourier modes
in the x, y, and z-direction. Now the module loops over the different zones inside the cells, as
well as the ghost zones of the cells, and calculates a · eikr where r is the position inside the cell
of interest, and a is the amplitude/acceleration. Then the collected Fourier mode (a · ei2πkr)
is added to the force, in all three dimensions. The force is then interpolated in time by first
calculating a time w = (t_turn− (t_turb− time))/t_turn, where time once again is the cur-
rent time in seconds since 0:0:0, GMT, 1/1/70. Then a phase is calculated from the time just
derived: w = 0.5 · (1− cos(w ·π)), that can be used to calculate the final force in the experiment
ff(:, :, :, :) = fran(:, :, :, :, 1)+(fran(:, :, :, :, 2)−fran(:, :, :, :, 1)) ·w, where fran(:, :, :, :, 1) is the
old force and fran(:, :, :, :, 2) is the new force just calculated. The force it returns is thereby
the difference between the new and old force added to the old force, which is returned to the
forces_mod.

The forces_mod module works by taking the force calculated in the force_mod module and
adding it to the patch being updated in the pre_update section in the extras_mod module.

Now let us look at the particle_solver_mod module in the DISPATCH framework, creat-
ing the interaction between dust and gas in the experiment. This file starts out by creating
the module particle_solver_mod, which we use in the extra_mod file, calling all the func-
tions created in the file. Now it defines all the lists and parameters needed to make a particle
solver in a particle solver data type called particle_solver_t. This includes the particle_t,
and particles_t data types. Also inside the particle_solver_t is information stored like
gas density, dust density, and so on for the different cells in the experiment. Different integers
used in the particle solver are then defined like the number of bins used, the random seed, the
maximum particle size, and so on. The last thing happening inside the particle_solver_mod
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function is the calculation of the total momentum, in order to make sure it is conserved. This is
counted in the mpi_counter data type. Now the file goes on defining the subroutines inside the
particle_solver_mod module. The first thing it does is to initialize the particle solver, then
reading the parameters, and adding task links. This procedure collects the parameters we write
in the input.nml file when running the experiment, and replaces the integers already defined
like the number of bins and the particle sizes, with the integers in the input.nml file. Then
the drag coefficient is calculated, which is a pre-factor for the drag force. This is calculated
by looking at the density in cgs units for 1 year for a 1cm particle converted to code units by
multiplying with the density scaling and dividing by the value of one year in code units. The
procedure then transforms the scaling to code units, converting dust particle size and mass to
cgs units. Then the patches are made, with the number of patches being dependent on the user
input of the number of bins. Next, the solver solves the partial differential equations of the dust
and gas movement, where the gas velocities are allocated and stored dynamically in an array
having the form of the number of particles per cell bin. Then the gas density is loaded in (since
it is already calculated in the module) as a variable.

Next, the module loops through the different cells in the experiment and calculates r (i.e. the
position of the particles inside their cell) and finds the particles that need to go to another patch,
(i.e. they have traveled from one patch to another). Then it goes through the export lists and
exports the particles that need to be exported. Next, it loops through the bins and the cells.
Inside the loop a pointer is pointing to the particles within the cell, and the number of particles
within the cell is counted. If there are too few particles inside the cell, in order for them to
represent the dust well in a statistical sense, the module adds particles to the cell and renormal-
izes the weights. The module makes a warning and adds particles to the cell that has too few
particles. The module then checks if any cell has too many particles, which will cost too much
memory to run. If this is the case it removes particles from that cell and renormalizes. After
this loop, it loops over the different bins and recalculates the properties of the particles after the
time step. Then inside this loop, it loops over the particles inside the bins and calculates the
friction between the gas and the dust. If we have a non-supersonic environment the friction is
defined to be the density multiplied with the drag coefficient divided by the size of the particle,
which is constant. But we are in a supersonic environment, therefore the module subtracts the
dust velocity from the gas velocity in the three dimensions. Then it finds the supersonic Epstein
constant by

pc = pc0 ·

√
1 +

(
dv(1)2 + dv(2)2 + dv(3)2

cs2

)
, (65)

where pc0 is the constant mentioned when we talked about the subsonic environment (i.e. the
density multiplied with the drag coefficient divided by the size of the particle), dv(1− 3) is the
difference in gas and dust velocity for the three different dimensions, and cs is the speed of
sound. Lastly the drag force is calculated in each direction individually by multiplying pc (the
result from equation 65) with the difference between the gas velocity and dust velocity in each
dimension. If the friction is very large (pc→∞), we need a mechanism in the module to handle
it. This can happen when the dust to gas ratio are extreme, and causes a backreaction. Based
on a forward-centering of the equation of motion, the code uses an expression for the updated
particle velocity that goes asymptotically to the gas velocity, as it should in this case, while for
smaller values of the friction it goes to the Epstein expression limit [35]. If this happens the
module sets the dust particle velocity equal to the gas velocity. Finally, the procedure updates
all the particles and the time.
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4 Results

4.1 Outputs produced by experiments

4.1.1 Setup

In order to understand the dynamics of dust inside MCs/GMCs I started by exploring the
behavior of gas and dust inside the confinements of an experiment, when changing the size of
the dust particles present in the experiment. In this experiment, the dust and gas behave like
a fluid and their motions are found by solving the Euler’s equations of the experiment in the
HLLC hydrodynamic solver. I chose the experiment size to be 13pc3, the number density to be
1200cm−3/pc (the number density of the experiment is calculated as 1200cm−3/L), the velocity
unit to be set to 1km/s, the temperature to be set to 10K, corresponding to a speed of sound of
0.18km/s, and the mean molecular weight of the gas to be 2.4, which corresponds to the mass
of molecular hydrogen, helium, and a small fraction of metals. In the DISPATCH code, length
scales are calculated in code units that are 1pc i.e. 3.086 · 1018cm. The time in code units of the
experiment is calculated for a 13pc3 experiment as

tcode_1pc =
l

u
=

3.086 · 1018cm

105cm/s
= 3.086 · 1013s ≈ 0.98 ·Myr , (66)

where l is the length scale of the experiment, and u is the velocity scale of the experiment, which
in my experiment is set to 105cm/s. The gas density of the experiment is calculated for a 13pc3

experiment as

dcode = nH2 · µ = 1200
particles

cm3
· 2.4 · 1.6726219 · 10−24g = 4.8 · 10−21g/cm3 , (67)

where nH2 is the number density of the gas and µ is the molecular weight in cgs units. Thereby
a density of 1 in code units corresponds to a density of 4.8 · 10−21g/cm3 in real units. The
Courant factor of the system was set to 0.25 in order to have a stable system, and in order to
suppress numerical oscillation, a slope limiter parameter value of 3 was chosen. The amplitude
of the turbulence (ampl_turb), driving the turbulent force cascades in the experiment, was set
to 0.45. In my experiments, I used 48 parallel threads when using OpenMP in the dispatcher.
In my fiducial experiments, which I will discuss in the following, dimensions consist of a 13pc3

sized experiment with 8×8×8 = 512 patches, and 32×32×32 cells per patch. This results in a
total resolution of 256× 256× 256 cells in the experiment. The number of dust particles per bin
was set to 10 so the entire experiment starts out with 10 · 256× 256× 256 = 167, 772, 160 dust
particles. The experiment needs time before it reaches an equilibrium of motions where the dust
and gas has reached its terminal velocity and we see a quasi-steady state through time. There
is, therefore, no need to keep all of the data made by the experiment, we are only interested
in data from a time where the gas in the experiment has a physical state (e.g. the probability
density function is a log-normal), as seen in nature. The data we need to collect is how gas and
dust moves from the time where the quasi-steady state is reached, and a couple of turn over
times ahead. For a 13pc3 experiment the turn over time is, in code units (using equation 9 and
1 combined), given by

tturn =
1pc

2 · 1.2 · (1pc)0.38
≈ 0.42 . (68)

In order to find an appropriate time to start the collection of data in the experiment, we can
look at how the vrms behaves as a function of time, for the 6 different dust particle sizes as seen
in figure 4.

In figure 4 we see that dust of the 6 different sizes are sped up from the added turbulence that
drives its velocity until it reaches a somewhat constant plateau, where the dust starts moving
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Figure 4: The vrms as a function of time for the 6 different dust sizes between the times t = 0 tturn and
t = 24 tturn, for an experiment of size 13pc3.

like a physical MC/GMC. Thus we need to look at experiments after t = 2.4 tturn in order to
use data from when the particles have arrived at a proper vrms, that imitate the movements of
dust in a MC/GMC. I choose to start the experiment after 7 tturn, and run for 7 tturn. In order
to get significant statistics in my experiment data I choose to have 40 snapshots of the time
between the start- and end time which corresponds to an output every 0.24 tturn.

The experiments were set as gravity, friction, and MHD free environments. I took the mean over
8 central cells in the z-axis in order to be able to explore the different parameters of interest
for the gas and the dust in a 2-dimensional representation. First I wanted to explore how the
density of the gas and the dust would behave when looking at a small range of dust sizes (diam-
eter). The dust particle sizes I choose to explore were 0.001µm, 0.01µm, 0.1µm, 1µm, 10µm,
and 100µm.

4.1.2 Outputs of a 1pc× 1pc× 1pc experiment

In order to get an understanding of how the dust and gas density behaves as we move between
the 6 different dust particle sizes we can look at figure 5 and 6.

The way dust and gas can interact in these experiments is by coupling due to friction. Using
the Stokes number (equation 11) to identify the level of coupling, we would expect dust to be
more coupled to the gas when we are looking at smaller dust particles than when we look at
larger dust particles. We would expect larger dust particles to behave more autonomous since
the coupling to the gas will not be as effective for larger dust particles. The reason for the larger
dust particles not being as coupled to the gas as the smaller particles is due to the larger dust
particles having a longer dynamic time by equation 17, than the gas. Another way of looking at
this, is that the large dust particles have a stopping length, from equation 8, that is longer than
the length of the experiment, and will not be stopped inside the experiment. What this means is
that when the large dust particles, affected by the coupling to the gas, change direction because
of the gas changing direction, the gas will already have changed its direction again, since the
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Figure 5: The 10-logarithm of the dust density of 6 different experiments of size 1pc×1pc×1pc, after 14 turnover
times. The colour here represents the 10-logarithm of the density summed over the mean of 8 cells in the z-
direction, being the cells 60− 67 out of 256. The colour bar should be read so that a density of 1 corresponds to
4.8 · 10−21g/cm3 in real units. From the top to the bottom, from left to right we see the result for an experiment
with the dust size being 100µm, then 10µm, and so on all the way down to 0.001µm. The x and y axes of the 6
plots are the cell counts, from 0 to 256.

Figure 6: The 10-logarithm of the gas density of 6 different experiments of size 13pc3, after 14 turnover times. The
colour here represents the 10-logarithm of the density summed over the mean of 8 cells in the z-direction, being
the cells 60− 67 out of 256. The colour bar should be read so that a density of 1 corresponds to 4.8 · 10−21g/cm3

in real units. From the top to the bottom, from left to right we see the result for an experiment with the dust
size being 100µm, then 10µm, and so on all the way down to 0.001µm. The x and y axes of the 6 plots are the
cell counts, from 0 to 256.

larger dust particles needs more time to change direction than the gas does.

If we look at figure 5 and 6, we see that the dust particles of smaller density are accumu-
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lating in formations that replicate the structures of the gas accumulations accurately, inside and
around the dense gas in the bulk. If we, for instance, look at the experiment with dust size
0.001µm, the structure for the dust density is almost identical to the one for the gas density.
We would expect the larger dust grains to be stopped by the large overdense gas structures, due
to a large gas mass being accumulated in front of them, but this is not what we see happen-
ing. The larger the dust particles become, the less the dust density snapshot looks like the gas
density one. If we compare the structure of the snapshot with a dust size of 100µm with the
structure of the gas density, we see that the two have almost no similarity. If we look at the
dust particles of size 1 and 10µm, we see that they also start to have a different dust density
distribution in the experiment, compared to the gas density. The main overdense structures are
replicated for the dust, but there are structures in the dust density figure that are not to be seen
in the gas density figure. Another thing to notice is that some dust density structures similar
to the ones in the gas density are located in different regions of the experiments, indicating a
delay in the coupling effect on the dust created by the gas, caused by the stopping time of the
dust particles being longer than the dynamical time of the gas. This is a clear indication that
the larger 100µm particles are mostly decoupled from the gas, but that the transition from be-
ing coupled to the gas to being mostly decoupled starts happening for dust particles of size 1µm.

If the large dust particles were completely decoupled from the gas, we would expect to see
the dust randomly distributed throughout the experiment, but this is not what we see when
we look at the dust density of large dust particles. If we again look at the dust density of the
100µm dust particles, we see that there are indeed dust structures in the bulk, with a larger dust
density than the rest of the experiment. These overdensities are created through the large dust
particles being affected by the gas though friction, and are therefore still coupled to the gas by a
small friction. The small effect of the friction will result in some effect on the dust particles, and
after some time the small "puffs" due to friction by the gas will have caused the dust particles
to form structures in the dust density. Taking a closer look at the dust density of the 100µm
particles compared to the gas density in the same experiment, we see a large structure from
x = 100, y = 0, to x = 256, y = 200 in both the dust and the gas density. This further confirms
that there still exist a weak coupling between the dust and the gas, for large dust particles,
which will be apparent after some time. What this shows us, is that all the different sized dust
particles will, after a couple of turn over times, move around as groups of coherent dust through
the GMC, due to the coupling to the gas. When two groups of dust cross path, an overdense
dust region will form, seen in figure 5. For smaller dust particles, the coherent dust groups
move with the gas, and therefore create the same overdensities as the gas. This shows us that
an overdensity of dust will be formed for both large and small dust particles. For the smaller
particles below 1µm, the overdensities of dust will be formed in the same regions as the gas, and
for large particles above 1µm, the overdensities of dust will be formed both in the overdense gas
regions but also outside of these overdense gas regions. The larger the dust particle, the more
we see the overdense dust in filaments form outside the confinements of the gas overdensities.

We can also look at the dust to gas ratio, which will give us a clearer representation of the
difference in coupling when looking at smaller and larger particles. This is illustrated in figure
7.

In figure 7 our picture of the larger dust particles being less coupled to the gas than the smaller
dust particles is once again confirmed. The smaller dust particles have a much smaller dust
to gas density ratio than the larger dust particles. For particles smaller than 1µm, we see a
predominantly constant dust to gas ratio over the entire experiment, deviating by having a
larger dust to gas ratio in regions of extremely low gas density. This makes sense, since just a
few dust particles inside a region of very low gas density will have a large impact on the dust to



Results 4.1 Outputs produced by experiments | 25

Figure 7: The 10-logarithm of the dust to gas ratio of 6 different experiments of size 13pc3, after 14 turnover
times. The colour here represents the 10-logarithm of the dust to gas ratio summed over the mean of 8 cells in the
z-direction, being the cells 60− 67 out of 256, which is a mean of the dust ratio divided by the gas density. From
the top to the bottom, from left to right we see the result for an experiment with the dust size being 100µm,
then 10µm, and so on all the way down to 0.001µm. The x and y axes of the 6 plots are the cell counts, from 0
to 256.

gas ratio. For the larger dust particles of size 1µm and larger, we see that the largest dust to
gas ratios are present in regions where the dust density is large, due to the dust accumulating
in different regions than the gas.

As a last way of exploring the coupling of dust to gas for different dust particle sizes, I looked
at the actual Stokes number calculated from equation 11 for the same snapshots we have look
at up until now. Looking at figure 8, shows us the same trend as we have seen so far with a
larger Stokes numbers for the larger dust particles. In the experiment with 100µm particles, we
see that the Stokes number is in the range 0.5− 1000, which means that there are some regions
within the experiment which have a large decoupling from the gas, but there are still regions
that have a Stokes number below 1, indicating that there still exists a locally significant coupling
between the dust and gas. For smaller dust particles, such as the 0.001µm the Stokes number
has a maximum value around 0.1, which means that dust particles of this size is largely coupled
to the gas. We can also see a transition from the dust particles being largely coupled, with
very small Stokes numbers for 0.001µm dust particles, to becoming largely uncoupled, starting
for dust particles of size 1µm. The regions in the experiment containing dust particles of size
0.1µm, with low gas density have Stokes numbers between 1 − 10, indicating that dust starts
concentrating in regions outside of the overdense gas regions for these dust particles. For the
experiment containing dust particles of size 10µm, the Stokes number is roughly 1 throughout
the entire experiment, having some regions with Stokes numbers above 1 and some below 1,
indicating the transition between being largely coupled to being largely decoupled from the gas.

If we consider all of the results so far we can find the transition between where dust is com-
pletely coupled to the gas and where the dust is not mostly decoupled from the gas. Looking
at figure 5 and 6 we see a transition happening between the 1µm and 100µm snapshots. In
the 1µm snapshot, the main structures of the gas are still present in the dust snapshot, which
means that the dust is still coupled to the gas, whereas in the 100µm snapshots, we see that
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Figure 8: The 10-logarithm Stokes number of 6 different experiments of size 13pc3, after 14 turnover times. The
colour here represents the 10-logarithm Stokes number summed over the mean of 8 cells in the z-direction, being
the cells 60−67 out of 256, which is a mean of the Stokes number. From the top to the bottom, from left to right
we see the result for an experiment with the dust size being 100µm, then 10µm, and so on all the way down to
0.001µm. The x and y axes of the 6 plots are the cell counts, from 0 to 256.

the structures present in the gas density plot are not replicated in the dust density plot. The
two plots have almost no similarity, and we can thereby conclude from these experiments that
the dust is mostly uncoupled to the gas when the dust particles have a size between 1µm and
100µm. This is also where we would expect to see a transition from our calculation in equation
16, where we found the dust size that would cause the dust particle to have a longer dynamical
time than the stopping time of the particle inside the gas medium, should be about 50µm.

In order to look at how dust concentrates in MCs/GMCs, consisting of gas and dust, I created
2D-histograms portraying the dust-to-gas ratio as a function of the dust and gas density. This
made it possible to explore if the dust density is concentrated where the gas density is high, or
if it is concentrated where the gas density is low. These figures can be seen in figure 9. From
the figure portraying the dust to gas ratio as a function of the gas density, we see the 0.001,
0.01, and 0.1 gas density is centralized around a dust to gas ratio of 10−2, and we see the dust
to gas ratio taking on a wider range of values for all different gas densities starting from the
1µm plot continuing to the 100µm plot. If we observe the 100µm, 10µm, and to some extend
the 1µm dust to gas ratio as a function of the gas density, we see that there exist a declining
linear trend with a lower dust to gas ratio for larger gas densities and a larger dust to gas ratio
at smaller gas densities. A linear relationship in the loglog space is equivalent to a power law
relationship. This suggests that there is a significant amount of dust outside of the overdense
gas regions. The spread of the different dust to gas ratios over a wide field of gas densities for
the large particles is due to the dust being more present outside regions of high gas density, for
the larger dust particles. This is also what we would expect from the previous discoveries of
large dust particles not being as coupled to the gas as smaller dust particles. We can explain the
smaller dust particles having its dust to gas ratio centralized around 10−2 for all gas densities,
by the smaller dust particles being largely coupled to the gas, and therefore the dust to gas ratio
will be the same in almost all regions of the experiment.
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Figure 9: Dust-to-gas ratio as a function of the density of dust and of gas plotted in a double logarithmic 2d-
histogram, made from an experiment of size 13pc3, after 14 turnover times. The colour bar expresses the number
of dust particles in the given regime of dust-to-gas ratio and gas/dust density. The figures are made for dust
particles of size 0.001µm, 0.01µm, 0.1µm, 1µm, 10µm, and 100µm.

If we now look at the dust to gas ratio as a function of the dust density plots in figure 9,
we see a linear relation in the double logarithmic regime for the larger dust particles of size 1µm
to 100µm, again meaning that a power relationship exists between the dust to gas ratio and the
dust density for the larger dust particles. As we move down to smaller dust particle sizes, we see
that this linear relationship is broken and we now have most of the dust in a dust density region
around 10−3 and a dust to gas ratio of 10−2. Looking at the larger dust particles almost linear
relationship in these double logarithmic plots, we see that the dust density is smaller in regions
with a low dust to gas ratio, and larger in high dust to gas regions. From the previous discoveries
we know that the dust moves with its own velocity field with its own divergence and convergence,
and now we can see that after some time there will, for large particles, be a exponential growth
in the divergent regions. This suggests that dust is distributed in the gas structures for smaller
dust particles, and for larger dust particles the dust will accumulate outside of the overdensities
in the gas with time. There is thereby a larger probability of dust being concentrated in the
gas structures for smaller dust particles than for the larger dust particles. The turning point of
when the dust will be distributed more in its own overdensities is for a dust particle size of 1µm
and larger.

Another important property I have chosen to look at is the vrms of the dust and the gas in the
experiments, which can be seen depicted at the same time as before t = 14 tturn and for the
same size experiment 13pc3, in figure 10 and 11. We can start by comparing the velocity of the
dust in figure 11 with the dust density in figure 5. Doing this we see that where the dust density
is largest the velocity dispersion is largest. This can be explained by the dust density being large
where different groups of coherent dust overlap, and the dust vrms values in these overlapping
regions are therefore also large. We do see that even the largest dust velocity dispersion (vrms)
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Figure 10: The 10-logarithm of the gas vrms of 6 different experiments of size 13pc3, after 14 turnover times. The
colour here represents the 10-logarithm of the vrms of the gas summed over the mean of 8 cells in the z-direction,
being the cells 60 − 67 out of 256. 1 in the colourbar corresponds to 1km/s. From the top to the bottom, from
left to right we see the result for an experiment with the dust size being 100µm, then 10µm, and so on all the
way down to 0.001µm. The x and y axes of the 6 plots are the cell counts, from 0 to 256.

Figure 11: The 10-logarithm of the dust vrms of 6 different experiments of size 13pc3, after 14 turnover times.
The colour here represents the 10-logarithm of the vrms of the dust summed over the mean of 8 cells in the
z-direction, being the cells 60 − 67 out of 256. 1 in the colourbar corresponds to 1km/s. From the top to the
bottom, from left to right we see the result for an experiment with the dust size being 100µm, then 10µm, and
so on all the way down to 0.001µm. The x and y axes of the 6 plots are the cell counts, from 0 to 256.

is not very large, if we look at the colour bars of figure 11. This illustrates that even for the
largest dust particles of 100µm, the dust moves collectively, as a group. This illustrates that
regions of large dust density are created by groups of coherent dust overlaps. If we now look at
figure 10 and 6, we also see that where the gas density is largest the gas vrms is largest. If we
now compare all 4 plots (figure 11, 10, 5, and 6), we see that there is a displacement between
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this mechanism for the dust and the gas, since the dust can not "keep up" with the gas, and
reacts after the gas already changed its direction of movement. This is so because (as previously
stated) the timescale of the dust to change direction is larger than that of the gas. This throws
the dust in many different directions, making more overdensities for the dust than for the gas.

4.1.3 Setup for experiments with different box sizes

In order to explore the difference in dynamics of dust particles of different sizes, when looking at
different MCs/GMCs, I repeated the above experiment for experiments of sizes: 0.333pc3, 33pc3,
93pc3, and 273pc3, and compared these to each other. More specifically I wanted to explore the
mean dust vrms compared to the mean gas vrms. I also ran the 13pc3 experiment data with
new parameters in line with what is explained as follows. In order to scale these experiments
correctly we need to adjust the number density of the gas in accordance to nH2 = 1200/lpc
in code units, and the density as in equation 67 with the correct number density according to
the experiment size. All experiments had a resolution of 103 patches with 363 cells per patch
and thus a resolution of 3603, which was the maximum resolution, the DISPATCH framework
could run without experiencing overuse of memory on a single standard computational node
with 192GB of memory. The time was scaled in agreement with L

vvms
= L

1km/s , which is the
way we calculate time in code units. To figure out where to begin the data collection for the
different experiments of different sizes, we can once again assume that after 2.4 dynamical times
is the best place to start for all the different experiment sizes. If we then choose to have 40
outputs from every experiment and if we want to run the experiments over 10 dynamical times,
since it is enough data to do proper statistics without being too demanding on the storage, we
can now calculate the different times to use in the experiments in code units, and scale them
accordingly. For the 0.333pc3 experiment we have a dynamical time of (from equation 17 and 1):
tdyn = 0.33pc/

(
2 · 1.2pc−0.38km/s · (0.33pc)0.38

)
= 0.21 pc

km/s , but in order to gain it in code units

we need tdyn = L
1km/s , which in our case is tdyn = 0.21 pc

km/s = 0.33pc
1km/s = 0.21 pc

km/s ·
1km/s
0.33pc = 0.63.

And therefore the start time for the 0.333pc3 experiment will be 0.63 · 2.4 = 1.5, the end time
will be 0.63 · 10 + 1.5 = 7.8, and the output time will be 0.63·10

40 = 0.16. Performing the same
calculations on on the experiment sizes we end up with times as seen in table 1.

Another property that needed updating when changing the size of the experiment is the ampli-
tude of the turbulence and the turnover time which needs to be updated with respect to equation
9. The amplitude of the turbulence corresponding to the different experiment sizes was found
by running experiments with different turbulence amplitudes and then calculating the average
gas vrms in the experiment, and comparing it to the expected vrms found from the first Larson
relation (equation 5). By trial and error, it was possible to find the turbulence amplitude that
gave rise to the most correct Larson relation, in order for the experiment to represent a physical
MC/GMC. The different amplitudes and turn over times can be found in table 2.

Experiment size Dynamical time Start time End time Out time

0.333pc3 0.63 1.5 7.8 0.16

13pc3 0.42 1 5.2 0.11

33pc3 0.27 0.65 3.35 0.07

93pc3 0.18 0.43 2.23 0.05

273pc3 0.12 0.29 1.49 0.03

Table 1: Table showing the times used for the experiments of different experiment sizes calculated in the same
way as in the above example.
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Experiment size Mean vrms
in

experiment

vrms from
first

Larson
relation

Turn over
time

Turbulence
amplitude

0.333pc3 0.67 0.66 0.63 0.23

13pc3 1.00 1 0.42 0.38

33pc3 1.51 1.52 0.27 0.78

93pc3 2.31 2.30 0.18 1.6

273pc3 3.50 3.50 0.12 2.88

Table 2: Table showing the turnover time and amplitude of the turbulence for the experiments of different sizes
found from trial and error so that the average gas vrms in the experiments corresponded to the ones found from
the first Larson relation.

4.1.4 Investigating physical and numerical convergence

Specifically two limitations are important when looking at the vrms of particles driven by sim-
ulated turbulence. The first limit is the limit associated with the turbulent cascade in the
experiment. This limit is due to the acceleration per volume of the turbulence, that pushes all
cells in the experiment, having a wavenumber so small that it drives the turbulence on large
scales only. The drive of the acceleration is a sinus wave moving in space. If we look at an ex-
periment of a fixed size, let us say 13pc3, the dust vrms of the experiment, looking at the whole
experiment of 13pc3, will be affected by the turbulent force. If we now look at an experiment
of a larger size, e.g. an experiment of size 33pc3, we could divide this experiment into 27 sub
boxes of size 13pc3. Then if we look at the vrms of the sub boxes of this larger experiment,
the effect of the turbulent force will be lessened since the sub boxes of the larger experiments
turbulence will be driven through cascades of the turbulent force working on 1pc scales. Looking
at the sub boxes of an experiment instead of looking at the entire experiment is a more physical
observation and will thereby represent what we see in MCs/GMCs better. The resolution of the
0.333pc3 experiment is reduced to 120×120×120 cells so that the resolution of the sub boxes of
the 13pc3 experiment has the same resolution as the 0.333pc3 experiment. To reduce this effect
even further we could look at the sub-sub boxes of an even larger experiment. In line with the
examples given above, we could choose an experiment of size 93pc3 and then divide this exper-
iment into 729 sub-sub boxes of size 13pc3. These sub-sub boxes should have an even smaller
effect on the vrms from the turbulent force. The result of these tests can be seen in figure 12.
The resolution of these boxes should be 1080× 1080× 1080 cells, but since MPI is not working
with particles at the moment in the DISPATCH code, it was not possible to run experiments
with that resolution, due to lack of memory when running such memory heavy experiments. Not
having access to enough memory to run experiments with resolutions larger than 3603 cells, has
a large effect on, especially, sub-sub boxes of experiments, which will be explored later.

Looking at figure 12 we see that there is not a big difference in the vrms between the sub-sub
boxes and the sub boxes of the experiments. But there is a significant difference between the full
0.333pc3 experiment and the sub and sub-sub box experiments of 33%−48%. This indicates that
the turbulent force influence on the vrms for the experiments as a whole has a significant effect,
and should be seen as a limitation in the determination of the vrms of the different experiment
sizes.

In figure 13 we explore the effect of the same error as in figure 12, but for the vrms of an
experiment of size 13pc3 compared to the sub boxes of size 13pc3 of an experiment of size 33pc3
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Figure 12: The mean dust vrms plotted as a function of the dust size. Here the blue graph is the results for the
0.333pc3 experiment, the orange graph is the mean over 27 sub boxes of size 0.333pc3, derived from the 13pc3

experiment, and the green graph is the mean over 729 sub-sub boxes of size 0.333pc3, derived from the 33pc3

experiment. The mean vrms is found from the average over 40 snapshots between the times t = 2.4 tturn to
t = 10 tturn.

and the sub-sub boxes of size 13pc3 for an experiment of size 93pc3. Here we see that there
is a larger difference between the sub boxes and the sub-sub boxes, but they still follow the
same trend closely. We still see that there is a gap between the results of the 1203 resolution
experiments vrms, and the vrms of the sub boxes and sub-sub boxes. Here the sub and sub-sub
boxes have a vrms value of 34%− 41% above the vrms of the 1203 resolution experiment, which
further confirms the need to look at this limitation.

The second limitation on the vrms is due to the numerical diffusion being considerably larger
for experiments with larger Mach number i.e. larger experiment sizes (seen from equation 4).
When we look at the vrms for different sub or sub-sub boxes inside an experiment instead of the
vrms at different dust sizes for the whole experiment of same size as the sub or sub-sub boxes, we
will have a bulk motion of the dust particles for the sub and sub-sub boxes. This bulk motion
of the dust particles is not present if we consider the vrms over the entire experiment, since it
encapsulates the experiment, and the gas, therefore, streams through it.

In figure 14 we see the mean dust vrms as a function of the dust particle size for an experiment
of size 0.333pc3 and an average over the sub boxes of size 0.333pc3 of an experiment of size 13pc3,
averaged over 5 experiments with different random seeds for the turbulence of the experiment,
and also averaged over 40 snapshots between the times t = 2.4 tturn to t = 10 tturn. This gives a
better picture of how correct our dust vrms to dust size correlations is. From the errorbars in the
plot we can see that there is a significant spread in the values for the different mean dust vrms,
when we use different random seeds for the turbulence in the experiments. This means that
there is a small limitation corresponding to what random seed you choose in the experiment,
and therefore numerical diffusion limits the results of the experiments.

Since these two limitations are significant, it is safer to look at how the dust moves, normal-
ized to the gas motion, and from these new results, explore how dust with different dust- and
experiment sizes behaves in MCs/GMCs.
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Figure 13: The mean dust vrms plotted as a function of the dust size. Here the blue graph is the results for the
13pc3 experiment, the orange graph is the mean over 27 sub boxes of size 13pc3, derived from the 33pc3 experiment,
and the green graph is the mean over 729 sub-sub boxes of size 13pc3, derived from the 93pc3 experiment. The
mean vrms is found from the average over 40 snapshots between the times t = 2.4 tturn to t = 10 tturn.

Figure 14: The blue figure is the mean dust vrms for experiments with different dust particle sizes, and an
experiment size of 0.333pc3, averaged over 5 different random seeds for the turbulence, with corresponding
errorsbars. The orange figure is the mean dust vrms for experiments with different dust particle sizes, averaged
over the 27 sub boxes of size 0.333pc3 made from experiments of size 13pc3, and averaged over 5 different random
seeds for the turbulence, with corresponding errorsbars. Both figures are averaged over 40 time snapshots from
the times: t = 2.4 tturn to t = 10 tturn.

4.1.5 Outputs for experiments with different experiment sizes

Now that I found that the turbulent cascade had a significant effect when we looked at the vrms
over entire experiments, I choose to look at the mean vrms of dust when normalized to the gas
vrms. This would get rid of the effect of the turbulent cascade as we do not look at the actual
vrms but rather what the ratio in vrms is between the dust and gas in the experiments. The gas
in the experiments was calibrated so that the dust vrms would follow a power law in the form of
equation 1. To begin with, I wanted to test how well this Larson relation was reproduced in the
experiments, by comparing the gas vrms for the different experiment sizes, both for the mean
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over full experiments of sizes 0.333pc3, 13pc3, 33pc3, 93pc3, and 273pc3, the mean over sub boxes
of sizes 0.333pc3, 13pc3, 33pc3, and 93pc3, and the mean over sub-sub boxes of sizes 0.333pc3,
13pc3, and 33pc3 as shown in figure 15.

Figure 15: The gas vrms averaged over the different dust sizes (0.001µm, 0.01µm, 0.1µm, 1µm, 10µm, 100µm,
200µm, and 500µm) and experiment sizes (0.333pc3, 13pc3, 33pc3, 93pc3, 273pc3), in loglog space. The mean was
made over 40 time snapshots going from t = 2.4 tturn to t = 10 tturn. The blue crosses here represents the mean
gas vrms of the entire experiment, the orange crosses represents the mean gas vrms averaged over 27 sub boxes
of the different experiment sizes, and the green crosses represents the mean gas vrms averaged over 729 sub-sub
boxes of the different experiment sizes. Making a fit on the form σ = a · Lb, corresponding to equation 1, gives
a and b values of a = 1.0 ± 0.02 and b = 0.48 ± 0.01 when looking at the entire experiments, a = 1.36 ± 0.01
and b = 0.49 ± 0.01 when looking at the average over 27 sub boxes of the experiments, and a = 1.37 ± 0.02 and
b = 0.5 ± 0.01 when looking at the average over 729 sub-sub boxes of the experiments. The dotted lines in the
figure represent the fit of the mean gas vrms as a function of the experiment size for the mean over the entire
experiment, the mean over the sub boxes, and the mean over the sub-sub boxes.

Looking at figure 15, we see that the mean gas vrms for both the full experiments, the sub
boxes, and the sub-sub boxes have a power law relationship with the experiment sizes. If
we fit the different mean gas vrms as a function of the experiment sizes to an equation on
the form of equation 1, we find the mean gas vrms over the entire experiment to have a Lar-
son relation of vrms(gas box) = 1.00 · L0.48, the mean gas vrms averaged over the sub boxes
of the experiments to have a Larson relation of vrms(gas sub box) = 1.36 · L0.49, and the
mean gas vrms averaged over the sub-sub boxes of the experiments to have a Larson relation of
vrms(gas sub − sub box) = 1.37 · L0.50. Thus we see that a power law of the mean gas vrms as
a function of the experiment size is to be found in my experiments, even though the values of
a and b are different than the ones assumed in my previous calculations. The results here are
between 12− 24% away from the values I have considered previously, which is acceptable when
considering the spread in the values of the mean gas vrms power law when observing the first
Larson relation in MCs/GMCs in the universe. If we look at the power laws, depicted as dotted
lines in figure 15, we see that they overlap with the results accurate enough for us to assume
that the fits are proper approximations of the relation between the gas vrms and the size of the
experiment. A Pearson’s chi squared test on the fits results in p values of 0.99 for all three fits,
which shows that the fits are proper approximations of the data points.

Next, I found the mean vrms of the dust in experiments of size 0.333pc3, 13pc3, 33pc3, 93pc3,
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and 273pc3 for 8 different dust particle sizes, namely 0.001µm, 0.01µm, 0.1µm, 1µm, 10µm,
100µm, 200µm, and 500µm. Then I found the mean vrms of the gas for the same experiments
and divided the mean dust vrms with the mean gas vrms. The result of these calculations can
be seen in figure 16. Then I did the same for the sub boxes of the experiments with sizes 13pc3

(creating 27 0.333pc3 sub boxes), 33pc3 (creating 27 13pc3 sub boxes), 93pc3 (creating 27 33pc3

sub boxes), and 273pc3 (creating 27 93pc3 sub boxes). For the sub boxes, the average dust- and
gas vrms was found in the 27 individual sub boxes of the different experiments, and a mean
was made over the 27 sub boxes, before dividing the two. In the end the same procedure was
performed with the sub-sub boxes of the experiments with sizes 33pc3 (creating 729 0.333pc3

sub-sub boxes), 93pc3 (creating 729 13pc3 sub-sub boxes), 273pc3 (creating 729 33pc3 sub-sub
boxes). For the sub-sub boxes, the average dust- and gas vrms was found in the 729 individual
sub-sub boxes of the different experiments, and a mean was made over the 729 sub-sub boxes,
before dividing the two. The result for the sub boxes can be seen in figure 17 and for the
sub-sub boxes in figure 18. Here the sub box of size 273pc3 is not present since I did not do a
813pc3 experiment, and the sub-sub boxes of size 93pc3 and 273pc3 are not present, since I did
not do a 813pc3 or a 2433pc3 experiment, which would be able to create the sub- and sub-sub
boxes needed. Running experiments of these sizes with a proper resolution would require more
memory than was available. The standard deviation (std) was also found when calculating the
mean dust vrms normalized to the mean gas vrms, which is shown as the errorbars in figure 16
to 18.

Figure 16: The mean dust vrms normalized to the mean gas vrms in the same experiment, as a function of the
particle size, averaged over 40 time snapshots from t = 2.4 tturn to t = 10 tturn, with corresponding errorbars,
for 5 different experiment sizes namely 0.333pc3, 13pc3, 33pc3, 93pc3, and 273pc3. The two sub plots at the top
of the figure is to the left, a zoom in on the mean dust vrms normalized to the mean gas vrms of the experiments
with dust size 100, 200, and 500 µm, and on the right, a zoom in on the mean dust vrms normalized to the mean
gas vrms of the experiments with dust size 0.001, 0.01, 0.1, 1, and 10 µm.

From the experiments shown in figure 16, where we look at the mean over the entire experiment,
we see that the dust particles of size 0.001µm for all the different experiment sizes have the same
normalized mean dust vrms of approximately 1. This means that no matter what experiment
size we look at, all the dust will be coupled almost completely to the gas when looking at dust
particles at size 0.001µm. At 0.01µm the different experiment sizes normalized mean dust vrms
value lies a bit below 1, and are thus still very coupled to the gas, but starts to have a mean
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Figure 17: The mean dust vrms normalized to the mean gas vrms in the same experiment, as a function of the
particle size, averaged over 40 time snapshots from t = 2.4 tturn to t = 10 tturn, with corresponding errorbars,
made from the mean over 27 sub boxes of experiments with sub box size 0.333pc3 made from an experiment
with size 13pc3, sub box size 13pc3 made from an experiment with size 33pc3, sub box size 33pc3 made from an
experiment with size 93pc3, and sub box size 93pc3 made from an experiment with size 273pc3. The two sub plots
at the top of the figure is to the left, a zoom in on the mean dust vrms normalized to the mean gas vrms of the
experiments with dust size 100, 200, and 500 µm, and on the right, a zoom in on the mean dust vrms normalized
to the mean gas vrms of the experiments with dust size 0.001, 0.01, 0.1, 1, and 10 µm.

vrms that lies below the gas vrms, therefore moving a little bit differently than the gas. The
trend continues for the 0.1µm, 1µm, and 10µm dust size experiments. And when we look at the
difference in normalized mean dust vrms between the 10µm experiments and the 100µm experi-
ments, we see a big jump in the general normalized mean dust vrms. This is also what we would
expect since we calculated the dust size, where a smaller dust particle size than this would result
in the dust being stopped by the gas inside the experiment, to be 55.83µm in equation 16. Now
we can look at how the normalized mean dust vrms changes for experiments of different sizes
and a fixed dust particle size. For dust particles of size 0.001 to 10µm we see a approximate
linear trend, where the smallest experiment size has a general mean dust vrms closest to the
mean gas vrms, and as we move towards larger experiment sizes the normalized mean dust vrms
becomes smaller and smaller. The trends of the normalized mean dust vrms as a function of the
experiment size, have a different slope depending on what dust particle size we observe. Looking
now at the last three dust sizes, namely 100µm, 200µm, and 500µm, we see the trend of the
experiment sizes have flipped so that we now see a falling mean dust vrms normalized to the
mean gas vrms going from the largest experiment size to the smallest experiment size. We see
that the general mean dust vrms normalized to the mean gas vrms still has a falling trend from
100µm to 500µm, but that the decrease in normalized mean dust vrms becomes less steep than
between 10µm to 100µm. This is due to the dust particles having a decrease in coupling to the
gas as we go towards larger and larger dust particles and will continue to fall in the normalized
mean dust vrms towards a value of 0.

A non-constant trend in the relation between the normalized mean dust vrms and the size
of the experiment, is due to the power law between the mean dust vrms and the experiment size
deviating from the power law relation between the mean gas vrms and the experiment size. We
see the trends between the normalized mean dust vrms and the experiment size in figure 16 to
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Figure 18: The mean dust vrms normalized to the mean gas vrms in the same experiment, as a function of the
particle size, averaged over 40 time snapshots from t = 2.4 tturn to t = 10 tturn, with corresponding errorbars,
made from the mean over 729 sub-sub boxes of experiments with sub-sub box size 0.333pc3 made from an
experiment with size 33pc3, sub-sub box size 13pc3 made from an experiment with size 93pc3, and sub-sub box
size 33pc3 made from an experiment with size 273pc3. The two sub plots at the top of the figure is to the left, a
zoom in on the mean dust vrms normalized to the mean gas vrms of the experiments with dust size 100, 200, and
500 µm, and on the right, a zoom in on the mean dust vrms normalized to the mean gas vrms of the experiments
with dust size 0.001, 0.01, 0.1, 1, and 10 µm.

18 for dust particles of size 0.01 to 500µm. When we have a decreasing slope, having larger
normalized mean dust vrms for smaller experiment sizes, like for experiments containing dust
particles of size 0.001µm, 0.01µm, 0.1µm, 1µm, and 10µm, the power law relation between the
mean dust vrms and the experiment size will have a smaller exponent than in the Larson relation
for the gas in the experiment. If we have an increasing slope, having larger normalized mean dust
vrms for larger experiment sizes, as we have for experiments with dust particles of size 100µm,
200µm, and 500µm, the power law relation between the mean dust vrms and the experiment
size will have a larger exponent than in the Larson relation for the gas in the experiment.

If we now look at the normalized mean dust vrms figures taking the mean over the sub boxes
and the sub-sub boxes, namely figure 17 and 18, we see that the normalized mean dust vrms is
less when looking at the entire experiments as compared to the mean over the sub boxes and
the sub-sub boxes. If we look at the 500µm experiments we see that the entire experiment
normalized mean dust vrms has a value between 0.14 − 0.17, for the mean over sub boxes the
normalized mean dust vrms is between 0.15 − 0.18, and for the mean over sub-sub boxes the
normalized mean dust vrms is between 0.17 − 0.19. This is due to the dust particles having
the possibility of obtaining a larger velocity inside larger experiments, since a particle inside
a 33pc3 experiment where we take the mean over the 729 sub-sub boxes of size 0.333pc3, will
have a larger volume to be worked on by the turbulent force and thereby be accelerated to
larger velocities than if we only have a 0.333pc3 experiment and we find the vrms over the en-
tire experiment. This gives a larger general normalized mean dust vrms when taking the mean
over the sub boxes as compared to looking at the entire experiment, as well as an even larger
normalized mean dust vrms when taking the mean over the sub-sub boxes as compared to the
normalized mean dust vrms over the entire experiment. Another difference between the three
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figures is the errorbars, being larger for mean over the entire experiment compared to the mean
over the sub-sub boxes. This is due to the number of cells used in the experiments is the same
when we look at the mean over the entire experiment, the mean over the sub boxes, and the
mean over the sub-sub boxes, resulting in the sub boxes having a lower resolution than the entire
experiments, and the sub-sub boxes having an even lower resolution than the sub boxes. The
increase in standard deviation is thus due to the large noise in the data for the sub- and sub-sub
boxes connected to a low resolution. The uncertainties are the largest at very large and very
small dust particles for the sub- and sub-sub boxes, which is a sign of significantly low resolution.

Now I wanted to find the power law between the normalized mean dust vrms and the experi-
ment/sub box/sub-sub box size. I did this by fitting a power law (vrmsdustnorm = a ·Lb) to the
different values found at every dust particle size individually. The result from these fits can be
found in figure 19 to 21.

Figure 19: The mean dust vrms normalized to the average gas vrms in experiments with the same sized dust
particles, as a function of the experiment size in pc, averaged over 40 time snapshots from t = 2.4 tturn to
t = 10 tturn, with corresponding errorbars and power law fits. In the top left figure, we have the normalized
mean dust vrms for a 0.333pc3 experiment, a 13pc3 experiment, a 33pc3 experiment, a 93pc3 experiment, and a
273pc3 experiment (from left to right in the figure), for experiments containing dust particles of size 500µm. The
upper left figure also has a dashed line corresponding to the power law fit made for the normalized mean dust
vrms as a function of the experiment sizes for the 500µm experiment. The power law is shown in the legend box.
Going from the top left to the top right and then from the bottom left to the bottom right, we see the same figure
as just described for experiments containing dust particles of size 200µm, 100µm, 10µm, 1µm, 0.1µm, 0.01µm,
and 0.001µm.

The fits made using the mean over the sub-sub boxes, shown in figure 21, have been made using
only three normalized mean dust vrms values. These three values all have a significant standard
deviation, and should only be used as an extra indicator in combination with the fits for the
mean over the entire experiments and the mean over the sub boxes since the fit coefficients
mostly have the same- and a smaller value than their uncertainties. Looking at the three figures
we see that the fits follows the actual values accurately both when we look at the mean over the
entire experiments, the mean over the sub boxes, and the mean over the sub-sub boxes. Doing a
Pearson’s Chi squared test on the fits, gives a p values of 0.99 for all of the fits made in the three
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Figure 20: The mean dust vrms normalized to the average gas vrms in experiments with the same sized dust
particles, as a function of the sub box size in pc, averaged over 27 sub boxes and averaged over 40 time snapshots
from t = 2.4 tturn to t = 10 tturn, with corresponding errorbars and power law fits. In the top left figure, we have
the normalized mean dust vrms for the mean over 27 0.333pc3 sub boxes, over 13pc3 sub boxes, over 33pc3 sub
boxes, and over 93pc3 sub boxes (from left to right in the figure), for experiments containing dust particles of size
500µm. The upper left figure also has a dashed line corresponding to the power law fit made for the normalized
mean dust vrms as a function of the sub experiment sizes for the 500µm experiment. The power law fitted is
shown in the legend box. Going from the top left to the top right and then from the bottom left to the bottom
right, we see the same figure as just described for experiments containing dust particles of size 200µm, 100µm,
10µm, 1µm, 0.1µm, 0.01µm, and 0.001µm.

figures, which means that the power law fit is the most proper fit for the normalized mean dust
vrms as a function of the experiment/sub box/sub-sub box size, for experiments that contain
dust particles of a single size.

The fit made for the normalized mean dust vrms as a function of the experiment sizes for
an experiment containing dust particles of size 500µm, is given by vrms(500 µm full) =
0.1539 ± 0.0003 · L0.0384±0.001, for the mean over the 27 sub boxes of each experiment size
the power law relationship fitted is given by vrms(500 µm sub) = 0.162 ± 0.001 · L0.047±0.005,
and for the mean over the 729 sub-sub boxes of each experiment size the power law relationship
fitted is given by vrms(500 µm sub − sub) = 0.1824 ± 0.0009 · L0.035±0.005. From figure 15, we
know that the first Larson relation in the experiments have been, when taking the mean over
the entire experiment: vrms(gas box) = 1.00± 0.02 · L0.48±0.01, when taking the mean over the
27 sub boxes: vrms(gas sub box) = 1.36± 0.01 · L0.49±0.01, and when taking the mean over the
729 sub-sub boxes: vrms(gas sub− sub box) = 1.37± 0.02 ·L0.50±0.01. Now we are interested in
finding the power law fits for the unnormalized mean dust vrms. In order to do so we need to
look at how the fits in figure 19 to 21 are defined, which is given by

Norm Dust vrms =
vrms(dust)

vrms(gas)
. (69)

If we want to find the mean dust vrms we have to solve the relation in equation 69 for vrms(dust),
as
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Figure 21: The mean dust vrms normalized to the average gas vrms in experiments with the same sized dust
particles, as a function of the sub-sub box size in pc, averaged over 729 sub-sub boxes and averaged over 40 time
snapshots from t = 2.4 tturn to t = 10 tturn, with corresponding errorbars and power law fits. In the top left
figure, we have the normalized mean dust vrms for the mean over 729 0.333pc3 sub-sub boxes, over 13pc3 sub-sub
boxes, and over 33pc3 sub-sub boxes (from left to right in the figure), for experiments containing dust particles
of size 500µm. The upper left figure also has a dashed line corresponding to the power law fit made for the
normalized mean dust vrms as a function of the sub-sub experiment sizes for the 500µm experiment. The power
law fitted is shown in the legend box. Going from the top left to the top right and then from the bottom left
to the bottom right, we see the same figure as just described for experiments containing dust particles of size
200µm, 100µm, 10µm, 1µm, 0.1µm, 0.01µm, and 0.001µm.

vrms(dust) = vrms(norm)·vrms(gas) = anorm ·Lbnorm ·agas ·Lbgas = adust ·agas ·Lbnorm+bgas . (70)

Using equation 70, we can find the power law relation between the mean dust vrms and the
experiment sizes for the 500µm experiment

vrms(500µm) = 0.1539± 0.0003 · 1.00± 0.02 ·L0.0384±0.001+0.48±0.01 = 0.154± 0.003 ·L0.52±0.01 .
(71)

By doing the same procedure as just shown, we can find the mean dust vrms for the fits made
over all 8 dust particle sizes between the mean dust vrms and the experiment/sub box/sub-sub
box size. These results are shown in table 3.

Looking at table 3 we see that the mean dust vrms power law made using the mean over 729
sub-sub boxes has the same power law exponent as the mean gas vrms, for all of the different
dust particle sizes except 500µm. Since the sub-sub box power laws, as previously mentioned,
are made using only three normalized mean dust vrms, each with a large standard deviation, it
is appropriate to ignore these power law fits, and instead focus on the power law fits made using
the mean over the entire experiment and over the 27 sub boxes. We see that for all different dust
particle sizes the mean dust vrms will increase with an increasing MC/GMC size. This tendency
is the same for the mean gas vrms, which follows the first Larson relation. Another general
trend we see in the power laws for the mean over the entire experiment and over the sub boxes
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Dust particle size Full experiment/sub
box/sub-sub box

Mean dust vrms as a function of
experiment size power law fit

500µm

Full experiment 0.154± 0.003 · L0.52±0.01

Sub box 0.220± 0.003 · L0.54±0.02

Sub-sub box 0.250± 0.005 · L0.54±0.02

200µm
Full experiment 0.269± 0.006 · L0.50±0.01

Sub box 0.377± 0.005 · L0.51±0.02

Sub-sub box 0.422± 0.006 · L0.50±0.01

100µm
Full experiment 0.38± 0.01 · L0.49±0.01

Sub box 0.53± 0.01 · L0.50±0.02

Sub-sub box 0.57± 0.02 · L0.50±0.03

10µm
Full experiment 0.75± 0.02 · L0.47±0.01

Sub box 1.02± 0.01 · L0.48±0.01

Sub-sub box 1.08± 0.02 · L0.50±0.01

1µm
Full experiment 0.92± 0.02 · L0.47±0.01

Sub box 1.24± 0.01 · L0.48±0.01

Sub-sub box 1.28± 0.02 · L0.50±0.01

0.1µm
Full experiment 0.98± 0.02 · L0.47±0.01

Sub box 1.32± 0.01 · L0.48±0.01

Sub-sub box 1.34± 0.02 · L0.50±0.01

0.01µm
Full experiment 1.00± 0.02 · L0.48±0.01

Sub box 1.35± 0.01 · L0.49±0.01

Sub-sub box 1.36± 0.02 · L0.50±0.01

0.001µm
Full experiment 1.00± 0.02 · L0.48±0.01

Sub box 1.36± 0.01 · L0.49±0.01

Sub-sub box 1.37± 0.02 · L0.50±0.01

Gas
Full experiment 1.00± 0.02 · L0.48±0.01

Sub box 1.36± 0.01 · L0.49±0.01

Sub-sub box 1.37± 0.02 · L0.50±0.01

Table 3: Table showing the power law fit for the mean dust vrms as a function of the experiment/sub box/sub-sub
box size, for individual dust particle sizes, as illustrated in figure 19 to 21, as well as the power law fits made for
the mean gas vrms as a function of the experiment/sub box/sub-sub box size (figure 15).
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is the exponents that L is in the power of, takes on a larger value than in the gas power laws,
for an experiment containing dust particles of size 100 − 500µm. Inside the uncertainties the
exponent coefficient becomes equivalent to that of the gas around 100µm. Another trend shared
by the power laws over the entire experiment and the mean over the 27 sub boxes is that the
coefficient that we multiply L with has a small value for dust particles of size 500µm. From there
the coefficient increases for smaller and smaller dust particles, and reach the coefficient value
of the gas, for dust particles of size 0.01µm and smaller, where the dust and gas are coupled,
and therefore moves with the same vrms. What we can gain from this is that the dust particles
larger than 100µm has a mean vrms that are more affected by the size of the MC/GMC we are
looking at than the mean gas vrms is, but the mean dust vrms is smaller the larger the dust
particle we observe, due to the coefficient we multiply L with. The reason why dust particles
larger than 100µm mean vrms are more affected by the size of the experiments than smaller
dust particles and the gas, is due to the larger dust particles stopping length being larger than
the length of the experiment L they are moving around in. This is in accordance with the dust
particle size previously found, for the input values in this thesis, for which larger particle sizes
will not be stopped inside the experiment they travel in, to be approximately 50µm. This effect
for large dust particles is due to the mean gas density decreasing with an increase in the size
of the experiment, since ρgL = constant, and thus the dust particles will have a less dense gas
cylinder working against their movement through friction, the larger the MC/GMC we observe
is. The 100µm experiment has an exponent with uncertainties so large, that it is not possible,
from these power law fits, to tell if the 100µm particle also has a stopping length larger than the
length of the experiment, which we would assume it to have from the calculations in equation
16. For smaller dust particles (below 100µm), the exponents of the fits is the same as for the
fit of the mean gas vrms, inside the uncertainties, due to these particles having a stopping time
smaller than that of the length of the experiment, and will therefore always be stopped inside
the experiment, no matter the size, which makes the effect on the mean vrms of an increase in
experiment the same for these sized dust particles as for the gas. The coefficient multiplied by L
in the power law of particles of size 0.1µm - 10µm is larger than for dust particles of size 100µm
and larger, but still smaller than the coefficient in the gas power law fits. This means that for
dust particles of size 0.1µm to 10µm the mean dust vrms is larger than dust particles of a size
larger than 100µm, but lower than the mean gas vrms. This is caused by the dust particles still
having a different movement through the MC/GMC than the gas, even though these particles
are largely coupled to the gas. For dust particles of size 0.01µm and smaller the power law fits
are the same as for the gas, inside the uncertainties, since dust particles of these small sizes, are
completely coupled to the gas.

I also chose to look at the relative difference in the reference frame between the dust veloc-
ity and the gas velocity of a given experiment. I did this by taking the absolute value of the
velocity of the dust subtracted by the velocity of the gas in the x, y, and z-direction indepen-
dently. Then I squared the values found in the three directions, added them together, and took
the mean of these values. Next, I took the absolute values of the gas velocity and took the
mean of all these values inside the experiments. Then I divided the mean of the dust velocity
subtracted by the gas velocity with the mean gas velocity and took the square root of this value.
I did this for 40 different time steps and then found the mean over those 40 time frames, between
the times of 2.4 turn over times to 10 turn over times. The calculation can be seen in equation
72.

Relative Difference =

〈
〈|vd − vg|〉
〈|vg|〉

〉
time

(72)

I did this calculation both for the entire experiments of size 0.333pc3, 13pc3, 33pc3, 93pc3, and
273pc3 seen in figure 22, as well as for the mean over the 27 sub boxes of size 0.333pc3 using
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the 13pc3 sized experiment, 13pc3 using the 33pc3 sized experiment, 33pc3 using the 93pc3 sized
experiment, and 93pc3 using the 273pc3 sized experiment seen in figure 23. I also did the same
calculation for the mean over the 729 sub-sub boxes of size 0.333pc3 using the experiment of size
33pc3, 13pc3 using the experiment of size 93pc3, and 33pc3 using the experiment of size 273pc3

seen in figure 24.

Figure 22: The average relative difference in the reference frame between the dust and gas velocity in the same
experiment, as a function of the particle size, averaged over 40 time snapshots from t = 2.4 tturn to t = 10 tturn,
for 5 different experiment sizes namely 0.333pc3, 13pc3, 33pc3, 93pc3, and 273pc3, with corresponding errorbars.

Figure 23: The average relative difference in the reference frame between the dust and gas velocity in the same
experiment, as a function of the particle size, averaged over 40 time snapshots from t = 2.4 tturn to t = 10 tturn,
made from the mean over the 27 sub boxes of the different experiments of sub box size 0.333pc3 made from an
experiment with size 13pc3, sub box size 13pc3 made from an experiment with size 33pc3, sub box size 33pc3

made from an experiment with size 93pc3, and sub box size 93pc3 made from an experiment with size 273pc3,
with corresponding errorbars.
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Figure 24: The average relative difference in the reference frame between the dust and gas velocity in the same
experiment, as a function of the particle size, averaged over 40 time snapshots from t = 2.4 tturn to t = 10 tturn,
made from the mean over the 729 sub-sub boxes of the different experiments of sub-sub box size 0.333pc3 made
from an experiment with size 33pc3, sub-sub box size 13pc3 made from an experiment with size 93pc3, and sub-sub
box size 33pc3 made from an experiment with size 273pc3, with corresponding errorbars.

The average relative difference in the reference frame between the dust and gas velocity can
tell us something about the coupling between the gas and the dust. If the stopping length is
longer than the length of the experiment, sub box, or the sub-sub box (Lstop > Lbox) the dust
will not be stopped inside the experiment/sub box/sub-sub box, and the value of the relative
difference will be close to 1. Here the dust is mostly decoupled from the gas and has its own
motion insignificantly affected by the motion of the gas. If the value is close to 0, the dust
will be stopped inside the experiment and will be coupled to the gas, and its movement will
predominantly follow the gas movement inside the MC/GMC.

From the experiments with the average relative difference in the reference frame between the
dust and gas velocity seen in figure 22 to 24, we see that the experiments with dust particles
of size 100µm, 200µm, and 500µm will not be stopped inside the experiment/sub box/sub-sub
box that they move inside, since their average relative difference in the reference frame between
the dust and gas velocity is close to 1. The 10µm experiment has an average relative difference
between dust and gas velocity that, compared to the larger dust particle experiments, is signifi-
cantly below 1, and thus there is a larger probability of dust of 10µm to be stopped inside the
experiment/sub box/sub-sub box. This shows that the dust is more and more coupled to the
gas when going from larger dust particles to smaller. Continuing going from large dust parti-
cles towards smaller dust particles we see the average relative difference in the reference frame
between the dust and gas velocity decreasing until it is almost 0 for dust particles of size 0.01
and 0.001µm. The average relative difference in the reference frame between the dust and gas
velocity is the mean difference in the dust and gas velocity (∆v) normalized to the gas velocity,
and looking at equation 23, we know that the average relative difference in the reference frame
between the dust and gas velocity, for small particles, will be proportional to the size of the dust
particle and to the experiment/sub box/ sub-sub box size. Large dust particles will be so de-
coupled from the gas that they will have a constant value of almost one for any experiment/sub
box/sub-sub box size and are therefore not dependent on the experiment/sub box/sub-sub box
size. We see the dependence from equation 23 in the three figures, from the average relative
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Figure 25: The average relative difference in the reference frame between the dust and gas velocity in experiments
with the same sized dust particles, as a function of the experiment size in pc, averaged over 40 time snapshots
from t = 2.4 tturn to t = 10 tturn, with corresponding errorbars and power law fits. In the top left figure, we have
the average relative difference in the reference frame between the dust and gas velocity for a 0.333pc3 experiment,
a 13pc3 experiment, a 33pc3 experiment, a 93pc3 experiment, and a 273pc3 experiment (from left to right in the
figure), for experiments containing dust particles of size 500µm. The upper left figure also has a dashed line
corresponding to the power law fit made over the average relative difference in the reference frame between the
dust and gas velocity as a function of the experiment sizes for the 500µm experiment. The power law is shown in
the legend box. Going from the top left to the top right and then from the bottom left to the bottom right, we see
figures similar to the one just described for experiments containing dust particles of size 200µm, 100µm, 10µm,
1µm, 0.1µm, 0.01µm, and 0.001µm. The green dashed line present, in the figure for experiments containing dust
particles of size 0.1µm, and 1µm, is a fit made over the experiment sizes corresponding to a supersonic relative
difference in the reference frame between the dust and gas velocity, and a single experiment size corresponding to
a relative difference in the reference frame between the dust and gas velocity just below the supersonic regime.

difference in the reference frame between the dust and gas velocity increasing as a function of
the dust size and the experiment/sub box/ sub-sub box size, looking at dust particles of size
1µm and smaller. If we look at a single experiment/sub box/ sub-sub box size we see an almost
linear relationship in loglog space, between the average relative difference in the reference frame
between the dust and gas velocity and the dust size, for the different dust particle sizes between
1µm and 0.001µm. If we look at a single dust particle size between the dust particle sizes of
0.001µm to 10µm and look at the average relative difference in the reference frame between the
dust and gas velocity over the different experiment/sub box/sub-sub box sizes we also see an
almost linear relationship in loglog space.

A linear relationship in loglog space is equivalent to a power law, which means that there
must exist a power law relationship between the bulk velocity of the dust particles and the size
of the dust particles and another power law relationship between the bulk velocity of the dust
particles and the size of the MC/GMC observed. The fits of the average relative difference in the
reference frame between the dust and gas velocity as a function of the size of the experiment can
be seen in figure 25. The fits for the average relative difference in the reference frame between
the dust and gas velocity averaged over 27 sub boxes as a function of the size of the experiment,
can be seen in figure 26. And the fits for the average relative difference in the reference frame
between the dust and gas velocity averaged over 729 sub-sub boxes as a function of the size of
the experiment, can be seen in figure 27. For the fits of the average relative difference in the
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Figure 26: The average relative difference in the reference frame between the dust and gas velocity in experiments
with the same sized dust particles, as a function of the sub box size in pc, averaged over 27 sub boxes and averaged
over 40 time snapshots from t = 2.4 tturn to t = 10 tturn, with corresponding errorbars and power law fits. In the
top left figure, we have the average relative difference in the reference frame between the dust and gas velocity
for the mean over 27 0.333pc3 sub boxes, over 13pc3 sub boxes, over 33pc3 sub boxes, and over 93pc3 sub boxes
(from left to right in the figure), for experiments containing dust particles of size 500µm. The upper left figure
also has a dashed line corresponding to the power law fit made over the average relative difference in the reference
frame between the dust and gas velocity as a function of the sub experiment sizes for the 500µm experiment.
The power law fitted is shown in the legend box. Going from the top left to the top right and then from the
bottom left to the bottom right, we see figures similar to the one just described for experiments containing dust
particles of size 200µm, 100µm, 10µm, 1µm, 0.1µm, 0.01µm, and 0.001µm. The green dashed line present in
the figure representing experiments containing dust particles of size 1µm, is a fit made over the experiment sizes
corresponding to a supersonic relative difference in the reference frame between the dust and gas velocity, and
a single experiment size corresponding to a relative difference in the reference frame between the dust and gas
velocity just below the supersonic regime.

reference frame between the dust and gas velocity as a function of the dust particle size, the fits
for the average over the entire experiment can be seen in figure 28, the fits for the average over
27 sub boxes, can be seen in figure 29, and the fits averaged over 729 sub-sub boxes, can be seen
in figure 30. Doing the same procedure as with the normalized mean dust vrms, using the mean
gas vrms fits found in figure 15, we can find the un-normalized average relative difference in the
reference frame between the dust and gas velocity, which can be seen in table 4, and the true
relation between the average relative difference in the reference frame between the dust and gas
velocity and the dust particle size, can be seen in table 5.

If we look at the 0.333pc3 experiment in figure 22, the linear decrease in average relative differ-
ence in the reference frame between the dust and gas velocity as we go from larger dust particle
sizes towards smaller dust particle sizes, between 0.1µm and 1µm, starts to flatten. The same
tendency, of a flattening of the linear decrease in average relative difference in the reference
frame between the dust and gas velocity, is present for the 13pc experiment between a dust
particle size of 0.001µm and 0.01µm. The flattening is due to a transition from the supersonic
to the subsonic regime. This transition happens when the Mach number changes from being
above 1 to below one from equation 4. The speed of sound used in the experiments is set to
cs = 0.18km/s, and if we now observe the average relative difference in the reference frame
between the dust and gas velocity when considering the mean over the entire experiment of
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Figure 27: The average relative difference in the reference frame between the dust and gas velocity in experiments
with the same sized dust particles, as a function of the sub-sub box size in pc, averaged over 729 sub-sub boxes
and averaged over 40 time snapshots from t = 2.4 tturn to t = 10 tturn, with corresponding errorbars and power
law fits. In the top left figure, we have the average relative difference in the reference frame between the dust
and gas velocity for the mean over 729 0.333pc3 sub-sub boxes, over 13pc3 sub-sub boxes, and over 33pc3 sub-sub
boxes (from left to right in the figure), for experiments containing dust particles of size 500µm. The upper left
figure also has a dashed line corresponding to the power law fit made over the average relative difference in the
reference frame between the dust and gas velocity as a function of the sub-sub experiment sizes for the 500µm
experiment. The power law fitted is shown in the legend box. Going from the top left to the top right and
then from the bottom left to the bottom right, we see figures similar to the one just described for experiments
containing dust particles of size 200µm, 100µm, 10µm, 1µm, 0.1µm, 0.01µm, and 0.001µm.

size 0.333pc3, the mean gas vrms should be 1 · 0.3348 = 0.59km/s. This gives a Mach number
of Mg = 0.59km/s

0.18km/s = 3.3, which is supersonic. The average relative difference in the reference
frame between the dust and gas velocity for a 0.333pc3 experiment with 1µm dust particles are
approximately 0.2, and the Mach number for the dust particles are therefore 0.2 times the Mach
number of the gas mean: Md−0.33−1 = 0.2 · 3.3 = 0.7 which is subsonic. If we look at the same
experiment size but with 10µm dust particles the Mach number is Md−0.33−10 = 0.5 · 3.3 = 1.6
and thus supersonic. This shows that for experiments of size 0.333pc3 and dust particle size
less than 1µm, the dust particles will move with a bulk velocity compared to the gas that is
less than the speed of sound and the thermal velocity will therefore be significant causing the
Larson relations to become an oversimplification, and the relations can not be used. The same
is true for the definition of the stopping time used, which can not be used in the subsonic regime
due to oversimplification when the thermal velocity becomes significant. This explains why the
average relative difference in the reference frame between the dust and gas velocity stops being
linear in loglog space as a function of the dust particle size, when looking at dust particle sizes
of 1µm and below for a 0.333pc3 experiment. If we now look at the Mach number for an exper-
iment of size 13pc3 we see that for an experiment containing 1µm particles the Mach number
is Md−1−1 = 0.25 · 1·1

0.48km/s
0.18km/s = 1.4, which is supersonic. Continuing like this, we find the dust

particle size, where the average relative difference in the reference frame between the dust and
gas velocity starts to flatten and deviate from being linear, to be particles of size 0.1µm and
below for a 13pc3 sized experiment. Performing the same analysis for an experiment of size
33pc3 we find the transition from supersonic to subsonic happening between 0.01 and 0.1µm.
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For an experiment of size 93pc3 the transition happens between 0.001 and 0.01µm. And for
an experiment of size 273pc3 the transition happens below 0.001µm. This limits the results we
can use to develop a power law between the bulk velocity of the dust particles and the size of
the dust particles in the experiments as well as the power law relationship between the bulk
dust velocity and the size of the experiment we look at. If we now look at the average relative
difference in the reference frame between the dust and gas velocity averaged over 27 sub boxes
and over 729 sub-sub boxes, we see the transitions from supersonic to subsonic is the same as
for the mean over the entire experiments for all different experiments, except for experiments of
size 93pc3, where the transition for the mean over the sub boxes happens for particles smaller
than 0.001µm.

Figure 28: The average relative difference in the reference frame between the dust and gas velocity in experiments
with the same experiment size, as a function of the size of the dust particles (0.001 to 10µm) in the experiment,
averaged over 40 time snapshots from t = 2.4 tturn to t = 10 tturn, with corresponding errorbars and power law
fits. In the top left figure, we have the average relative difference in the reference frame between the dust and
gas velocity for an experiment containing dust particles of size 0.001µm, 0.01µm, 0.1µm, 1µm, and 10µm (from
left to right in the figure), for experiments of experiment size 0.333pc3. The upper left figure also has a dashed
line corresponding to the power law fit made over the average relative difference in the reference frame between
the dust and gas velocity as a function of the size of the dust particles in the experiment for the 0.333pc3 sized
experiments. The power law is shown in the legend box. Going from the top left to the top right and then from
the bottom left to the bottom right, we see figures similar to the one just described for experiments of size 13pc3,
33pc3, 93pc3, and 273pc3. The green dashed line present in the figure representing experiments of size 0.333pc3,
and 13pc3 is a fit made over the dust particle sizes moving with a supersonic relative difference in the reference
frame between the dust and gas velocity, and a single dust particle size that corresponds to a relative difference
in the reference frame between the dust and gas velocity just below the supersonic regime.

In figure 28 to 30, I have used dust particle sizes 0.001µm, 0.01µm, 0.1µm, 1µm and 10µm. The
reason for using the average relative difference in the reference frame between the dust and gas
velocity for the experiment containing 10µm in the fits, is to have enough data points to make
proper fits, even though the 10µm value deviate a bit from the linearity observed in figure 22
to 24. Looking at figure 25 to 30, the green extra fits I have chosen to do for some of the fits,
have been made using the supersonic average relative difference in the reference frame between
the dust and gas velocity, and the first average relative difference in the reference frame between
the dust and gas velocity below a supersonic velocity. My reason to chose one average relative
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Dust particle size Full experiment/sub
box/sub-sub box

Average difference in the reference
frame between the dust and gas
velocity as a function of dust
particle size power law fit

500µm
Full experiment 0.96± 0.02 · L0.47±0.01

Sub box 1.31± 0.02 · L0.48±0.01

Sub-sub box 1.30± 0.02 · L0.48±0.02

200µm
Full experiment 0.92± 0.03 · L0.47±0.01

Sub box 1.25± 0.02 · L0.48±0.02

Sub-sub box 1.26± 0.02 · L0.48±0.01

100µm
Full experiment 0.87± 0.02 · L0.47±0.01

Sub box 1.18± 0.02 · L0.47±0.02

Sub-sub box 1.19± 0.02 · L0.48±0.01

10µm
Full experiment 0.54± 0.01 · L0.50±0.01

Sub box 0.76± 0.02 · L0.50±0.02

Sub-sub box 0.79± 0.01 · L0.50±0.01

1µm
Full experiment 0.24± 0.01 · L0.58±0.02

Sub box 0.37± 0.01 · L0.57±0.02

Sub-sub box 0.42± 0.01 · L0.58±0.02

0.1µm
Full experiment 0.087± 0.002 · L0.73±0.03

Sub box 0.151± 0.004 · L0.77±0.03

Sub-sub box 0.20± 0.01 · L0.74±0.03

0.01µm
Full experiment 0.027± 0.002 · L0.87±0.03

Sub box 0.053± 0.002 · L0.89±0.04

Sub-sub box 0.081± 0.004 · L0.86±0.05

0.001µm
Full experiment 0.017± 0.001 · L0.72±0.04

Sub box 0.029± 0.002 · L0.81±0.05

Sub-sub box 0.038± 0.002 · L0.86±0.04

Gas
Full experiment 1.00± 0.02 · L0.48±0.01

Sub box 1.36± 0.01 · L0.49±0.01

Sub-sub box 1.37± 0.02 · L0.50±0.01

Table 4: Table showing the power law fits for the average difference in the reference frame between the dust and
gas velocity as a function of the experiment/sub box/sub-sub box size, as well as the power law fits made for the
mean gas vrms as a function of the experiment/sub box/sub-sub box size (figure 15), for individual dust particle
sizes, illustrated in figure 25 to 27.
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Figure 29: The average relative difference in the reference frame between the dust and gas velocity in experiments
with the same sub box size, as a function of the size of the dust particles (0.001 to 10µm) in the experiment,
averaged over 27 sub boxes and averaged over 40 time snapshots from t = 2.4 tturn to t = 10 tturn, with
corresponding errorbars and power law fits. In the top left figure, we have the average relative difference in the
reference frame between the dust and gas velocity for the mean over 27 0.333pc3 sub boxes, for an experiment
containing dust particles of size 0.001µm, 0.01µm, 0.1µm, 1µm, and 10µm (from left to right in the figure).
The upper left figure also has a dashed line corresponding to the power law fit made over the average relative
difference in the reference frame between the dust and gas velocity as a function of the size of the dust particles
in the experiment for the experiments of sub box size 0.333pc3. The power law fitted is shown in the legend box.
Going from the top left to the top right and then from the bottom left to the bottom right, we see figures similar
to the one just described for experiments of sub box size 13pc3, 33pc3, and 93pc3. The green dashed line present
in the figure representing experiments of size 0.333pc3, and 13pc3 is a fit made over the dust particle sizes moving
with a supersonic relative difference in the reference frame between the dust and gas velocity, and a single dust
particle size that corresponds to a relative difference in the reference frame between the dust and gas velocity
just below the supersonic regime.

difference in the reference frame between the dust and gas velocity below the supersonic velocity
is to obtain a more accurate fit than by using all the average relative difference in the reference
frame between the dust and gas velocity values, but without using too few values for the fit
(below three values). All fits have a p value, when performing a Pearson’s Chi squared test,
of 0.99, except for the L = 0.33pc and L = 1pc fits in figure 28 to 30, which have p values of
0.70− 0.96 when using all of the dust particle sizes, but p values of 0.99, when using the green
fits. One fit did not have a p value of 0.99 for either the fit using all the dust particle sizes and
the fit only using one average difference between the dust velocity and the gas velocity above
a supersonic velocity and one of subsonic velocity, namely the sub box fit for experiment size
L = 1pc in figure 29. The fit using all the dust particle sizes has a p value of 0.94, whereas the
fit only using three average difference between the dust velocity and the gas velocity above a
supersonic velocity, and one subsonic velocity, has a p value of 0.81. Looking at figure 29 we
see that for a L = 1pc sub box experiment the average relative difference in the reference frame
between the dust and gas velocity has an odd value for the 0.1µm experiment, and the green fit
using only one subsonic average relative difference in the reference frame between the dust and
gas velocity, gives a worse fit than if we use all of the average relative difference in the reference
frame between the dust and gas velocity values. Therefore I here chose to use all the values
instead of the green fit when calculating the un-normalized average difference in the reference
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Figure 30: The average relative difference in the reference frame between the dust and gas velocity in experiments
with the same sub-sub box size, as a function of the size of the dust particles (0.001 to 10µm) in the experiment,
averaged over 729 sub-sub boxes and averaged over 40 time snapshots from t = 2.4 tturn to t = 10 tturn, with
corresponding errorbars and power law fits. In the top left figure, we have the average relative difference in
the reference frame between the dust and gas velocity for the mean over 729 0.333pc3 sub-sub boxes, for an
experiment containing dust particles of size 0.001µm, 0.01µm, 0.1µm, 1µm, and 10µm (from left to right in the
figure). The upper left figure also has a dashed line corresponding to the power law fit made over the average
relative difference in the reference frame between the dust and gas velocity as a function of the size of the dust
particles in the experiment for the experiments of sub-sub box size 0.333pc3. The power law fitted is shown in the
legend box. Going from the top left to the top right and then from the bottom left to the bottom right, we see
figures similar to the one just described for experiments of size 13pc3, and 33pc3. The green dashed line present
in the figure representing experiments of size 0.333pc3, and 13pc3 is a fit made over the dust particle sizes moving
with a supersonic relative difference in the reference frame between the dust and gas velocity, and a single dust
particle size that corresponds to a relative difference in the reference frame between the dust and gas velocity
just below the supersonic regime.

frame between the dust and gas velocity fit in table 5. For all other fits where it was possible to
get enough values for a proper fit (for the 0.01µm and smaller fits between the average relative
difference in the reference frame between the dust and gas velocity and the size of the experiment
I would only have two values to make the reduced fit which would be too little), I used the fits
containing one subsonic value, when calculating the un-normalized power laws in table 4 and
table 5. We once again see very large uncertainties on the fits made from the mean over the 729
sub-sub boxes, due to the limited number of average relative difference in the reference frame
between the dust and gas velocity values. Thus these should also here be seen as a supplement
to the fits made using the entire experiment and the mean over the sub boxes.

Looking at the fits In table 4, we see a general trend of a larger average difference in the
reference frame between the dust and gas velocity for larger MCs/GMCs. This means that the
larger the MC/GMC we observe the larger mean vrms the gas will have in the reference frame of
the dust particles. Another trend to notice is the coefficient we multiply L by is larger for larger
dust particles in the power law relation and falls as we look at smaller and smaller sized dust
particles. The opposite is true if we look at the coefficient that L is in the power of, which goes
from a value almost the same as for the mean gas vrms power law relation, and then increases
until it reaches a maximum value for 0.01µm-sized dust particles, and then the coefficient falls in
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Experiment size Full experi-
ment/

sub box/
sub-sub box

Average difference in the reference
frame between the dust and gas

velocity as a function of experiment
size power law fit

L = 0.33pc
Full experiment 0.19± 0.02 · a0.98±0.05

Sub box 0.30± 0.02 · a0.92±0.04
Sub-sub box 0.36± 0.02 · a0.87±0.03

L = 1pc
Full experiment 0.22± 0.04 · a0.95±0.03

Sub box 0.16± 0.08 · a0.51±0.02
Sub-sub box 0.41± 0.03 · a0.84±0.03

L = 3pc
Full experiment 0.23± 0.03 · a0.83±0.03

Sub box 0.42± 0.03 · a0.84±0.02
Sub-sub box 0.45± 0.03 · a0.80±0.02

L = 9pc
Full experiment 0.32± 0.03 · a0.82±0.02

Sub box 0.45± 0.02 · a0.77±0.02
L = 27pc Box 0.32± 0.02 · a0.75±0.02

Gas
Full experiment 1.00± 0.02 · L0.48±0.01

Sub box 1.36± 0.01 · L0.49±0.01

Sub-sub box 1.37± 0.02 · L0.50±0.01

Table 5: Table showing the power law fits for the average difference in the reference frame between the dust and
gas velocity as a function of the experiment/sub box/sub-sub box size, for individual experiment sizes, as well as
the power law fits made for the mean gas vrms as a function of the experiment/sub box/sub-sub box size (figure
15), illustrated in figure 28 to 30.

value again for the 0.001µm-sized dust particles. This results in the larger dust particles having
a larger average relative difference in the reference frame between the dust and gas velocity
and is the least affected by the size of the experiment we are looking at, and the smaller dust
particles having a lower average relative difference in the reference frame between the dust and
gas velocity, but are more affected by the size of the experiment size, with dust particles of size
0.001µm being a bit less affected by the size of the experiment than the dust particles of size
0.01µm. The average difference in the reference frame between the dust and gas velocity is the
mean vrms that the gas moves towards a dust particle by, in the reference frame of the dust
particle. With this in mind, what the power law fit for the large dust particles (100 − 500µm)
shows us is that in the reference frame of these particles the dust will move towards them as they
travel through the MC/GMC with the same mean vrms as the mean gas vrms within the cloud,
no matter how large a MC/GMC the large dust particles move around in. This is due to the
large particles and the gas almost having no vrms in common, and large dust particles (100µm
and larger) and gas inside a MC/GMC will therefore move around completely differently inside
a MC/GMC. The reason for the average difference in the reference frame between the dust and
gas velocity for dust particles of size 0.01 to 10µm, to become smaller and smaller is that the
smaller the dust grain the more it will move around the MC/GMC with the gas. This results in
the mean gas vrms seen from the dust particles perspective are small since the frame of reference
is mostly moving around with the gas. The reason for the size of the MC/GMC having a larger
and larger effect on the average difference in the reference frame between the dust and gas veloc-
ity comes from the dust particles stopping time being longer than that of the gas, so when the
gas change direction the dust particles will take longer to change direction than the gas does.
This effect will be pronounced in larger MCs/GMCs, where the gas has a larger volume to move
around in, from equation 22. For dust particles of size 0.001µm, the average difference in the
reference frame between the dust and gas velocity will be even smaller than for the 0.01µm, but
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the effect of the size of the MC/GMC will be less for the 0.01µm sized dust particle than for
the 0.001µm sized particle. This slight deviation in the increase in dependence to the size of the
MC/GMC, is due to the size of the dust particle here only having a supersonic average difference
in the reference frame between the dust and gas velocity for a 273pc3 sized experiment. All the
other sized experiments for the 0.001µm experiment has a average difference in the reference
frame between the dust and gas velocity that lies below the speed of sound, deviating from the
linear trend in loglog space. Therefore the 0.001µm fit between the average difference in the
reference frame between the dust and gas velocity and the size of the experiment is best to ignore.

If we now instead look at table 5, we need to remember that these relations are only true
for dust particles below 10µm. A general trend here for the different experiment sizes is that we
have an increasing average difference in the reference frame between the dust and gas velocity
with increasing dust particle size. This means that if we are in the reference frame of the dust
particle, the gas will have a larger mean vrms for larger dust particles. This suggests that larger
dust particles will have a mean vrms that is very different from the mean gas vrms. Looking at
the power laws we see the average difference in the reference frame between the dust and gas
velocity increases for larger MCs/GMCs, as the coefficient, we multiply the dust particle size
a within the power law relations, takes on a larger and larger value. The effect of the size of
the dust particle becomes less and less important as we go from small MCs/GMCs to larger
MCs/GMCs, as the coefficient we take L to the power of, decreases. The reason for the average
difference in the reference frame between the dust and gas velocity to increase with increasing
experiment size is (as previously discussed), due to the stopping time for particles becoming
larger and larger with an increasing experiment size, and thus the time it takes for the dust
particles to change directions will be increasing with an increasing experiment size. The reason
for the smaller experiment sizes to have a larger dependency on the size of the dust particle
sizes is due to the stopping time also being dependent on the size of the dust particle, seen in
equation 5. Looking at equation 23, we see that the average difference in the reference frame
between the dust and gas velocity is proportional to the size of the dust particle and the size
of the MC/GMC observed ∆v ∝ aL. For small MCs/GMCs L will be small and the effect of
a change in dust particle size will be greater, whereas for a large MC/GMC, the size of the
MC/GMC will dominate the value of the average difference in the reference frame between the
dust and gas velocity, and the size of the dust particle will be less significant.

Now I wanted to explore the probabilities of having dust at different dust densities and thereby
exploring what would be the most probable dust density we would see in the different experi-
ments. I explored 5 different experiment sizes each for 6 different dust sizes, and made histograms
of the different densities and their probability, both for dust and gas. The histograms can be
seen in figure 31 for gas densities and figure 32 for dust densities. The histograms were made
from averaging over 24 time-steps between the times 3.2 and 5.6 in code units. These times were
chosen in order for the experiments to have enough time to have reached the physical equilib-
rium in velocity where the gas and dust in the experiment moves like in a physical MC/GMC,
and runs for a bit more than 3 turn over times, to have time to average the density distribu-
tions over. The densities got 1.1 ·10−10 added to the values, in order to get them above the noise.

I made the two histograms using pythons hist function inside the python library matplotlib.
Here I flattened the data into a 1-dimensional array of the dust and gas densities, and took
the 10-logarithm of the values. I used 200 bins, in order to get a proper resolution without
overexposing the data. In order to get the averaged PDF over the 24 time-steps, I added up
the values of the histogram bins (hist(...)[0]) of the 24 histograms and then divided the
summed bin values by the number of time steps (24). The gas PDFs (figure 31), has the form
of a log-normal plot, with some perturbations for the lower densities, due to the lower densities
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Figure 31: The probability density functions (PDF) of 30 experiments of size 0.333pc3, 13pc3, 33pc3, 93pc3, and
273pc3, and 6 different dust sizes (namely 0.001µm, 0.01µm, 0.1µm, 1µm, 10µm, and 100µm), and averaged over
the time 3.2−5.6 in code units. On the x-axis, we have the 10-logarithm of the gas density and on the y-axis, we
have the probability of finding a gas particle inside a region of that gas density. The different experiment sizes
are seen from the top to the bottom with the 0.333pc3 experiment being in the top 6 subplots, and the 273pc3

being at the bottom. The different dust particle sizes used in the experiments are seen from left to right, the
furthest to the left being 0.001µm and the one furthest to the right being the 100µm experiment.

representing voids. Voids take up a large volume, and therefore there exist very few of them
inside an experiment. Since there are only a few voids we get a small sample size of low densities
and thus a large noise in the voids. This noise is what we see as fluctuations in the left side
of the gas density PDFs. The log-normal form shows that the gas is evenly distributed in the
different experiments for the different dust sizes used in the experiment, having most of the den-
sity in the bulk with a small amount in high density regions and a small amount in low density
regions. One feature we can notice is the width of the PDFs changing with different experiment
size, meaning that the variance of the dust motion is larger for larger experiment sizes, and the
probability of finding gas in lower- and higher gas density regions are higher for the experiments
with large experiment sizes than the experiments with a small experiment size. This is due to
the volume that the gas can move around in, has become larger in the larger experiments, so
that the gas is spread out in a larger volume and is therefore present in a broader variety of
densities.
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Figure 32: The probability density functions (PDF) of 30 different experiments of size 0.333pc3, 13pc3, 33pc3,
93pc3, and 273pc3, and 6 different dust sizes (namely 0.001µm, 0.01µm, 0.1µm, 1µm, 10µm, and 100µm), and
averaged over the time 3.2 − 5.6 in code units. On the x-axis, we have the 10-logarithm of the dust density and
on the y-axis, we have the probability of finding a dust particle in a region of that dust density. The different
experiment sizes are seen from the top to the bottom with the 0.333pc3 experiment being in the top 6 subplots,
and the 273pc3 being at the bottom. The different dust particle sizes used in the experiments are seen from left
to right, the furthest to the left being 0.001µm experiment and the one furthest to the right being the 100µm
experiment.

Now looking at the dust particle PDFs in figure 32, we see that they have a log-normal right
side, and an exponential left side (since it is linear in a loglog plot). The lognormal distribution
on the right side means that at larger dust densities the dust is evenly distributed with most of
the dust being in the bulk with a certain dust density and a small amount at high dust densities.
The left sides exponential curve, means that at lower densities we see an expansion. We see an
expansion, since an even distribution would have been log normal, with a step fall in the proba-
bility of having dust at low densities, and what we instead see is a slower decrease in probability
towards lower densities through a linear trend. This gives a higher probability of dust being at
lower densities than if we have had a log normal curve. Thus we see dust moving away from the
high dust density regions towards lower dust density regions, as a function of time. Having this
in mind we would expect dust to move from high-density regions and in half a dynamic time,
move to a lower dust density region. This means that the dynamical dust timescale is longer
than the dynamical gas time scale. The large regions of a medium dust density in figure 5 is
due to the dust being on its way inside another region. Meaning that the only way to uphold
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a region of high dust density is to have a large convergence in the velocity field, otherwise the
dust will move from high dust density fields to low dust density fields.

4.2 Discussion

The power law fits in table 3, helps us to get an understanding of how fast dust particles of dif-
ferent size move around inside different sized MCs/GMCs, and the power law fits in table 4 and
5, helps us to get an understanding of how dust particles move compared to the gas for different
dust particle sizes, in different sized MCs/GMCs. Why it is so important to understand the
dust dynamics is the fact that stars are created when a large overdensity of gas develops inside
a MC/GMC, and if enough dust is present inside the protoplanetary disc in the protostellar
environment, planets can be formed. A way to get enough dust inside these discs is if dust is
carried with the gas through the ISM into the discs. In order for the dust to become concen-
trated inside these overdense protoplanetary disc, the dust particles’ stopping length needs to
be short enough to be stopped inside the disc. As we have seen, larger dust particles of a sizes
above approximately 50µm, are mostly decoupled from the gas, having a stopping time longer
than the size of the MC/GMC, and the likelihood of these dust particles to contribute to the
formation of protoplanetary discs are low. We have also seen that the increase in decoupling
already starts to be significant for 1µm particles, which means that dust of size 1µm and 10µm,
will still move around with the gas predominantly, but not all of the dust will concentrate in the
same regions as the gas. For dust particles below 50µm, we have seen that the average relative
difference in the reference frame, will be close enough to 0 for all different MC/GMC sizes, for
dust particles to move predominantly with the gas, thereby being caught in gas overdensities,
and contribute to the creation of protoplanetary discs. For the smaller dust particles below a
size of 10µm, the larger the MC/GMC we look at, the more the size of the dust particle becomes
irrelevant for the difference in mean vrms between dust and gas. This suggests that if we observe
large MCs/GMCs, we will see a wider range in the size of dust particles being transported by the
gas from the ISM to presellar systems, which means that larger MCs/GMCs will have a larger
dust particle transport from the ISM to prestellar systems due to coupling with the gas than
smaller MCs/GMCs, and there could be a larger probability of dust enriched protoplanetary disc
formation in larger MC/GMC than in smaller. The only way for larger dust particles above a
size of 100µm to contribute to protoplanetary disc formation is if they break apart, and thereby
reduce in size, or if they move directly into an overdensity and thereby accumulating enough
mass in front of them to be stopped.

From figure 6, 5, 9, 10, and 11, it seems probable that the way dust travels inside MCs/GMCs
is collectively in coherent groups that form overdensities when two groups crosses paths. If
these regions where the two groups of coherent dust meet, are where protoplanetary discs are,
it will contribute to the conditions needed inside them for planet formation. For dust particles
of sizes smaller than about 56µm, we see that the overdensities in dust will mostly be where
overdensities of gas is also present. For larger dust particles, the overdensities will mostly be
outside of overdense gas regions. From the probability density functions in figure 31 and 32, we
see an expansion of dust particles away from overdense dust regions, towards underdense dust
regions. One condition that can work against this accumulation of dust from low density regions
to higher dust density regions being a large velocity divergence in the velocity field.

Looking at (Liubin Pan, Paolo Padoan 2018) [45], Pan and Padoan found a connection be-
tween the vrms of a turbulent flow and the vrms of a particle traveling in that turbulent flow,
given by
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v′ = u′

(
TL

TL + τp

)1/2

. (73)

Here, v′ is the vrms of the particle, u′ is the vrms of the turbulent flow, TL is the turn over time
for the turbulent flow, and τp is the stopping time of the particle. From equation 73, we see that
if the stopping time of the particle τs is small the turbulent flow and the particle will have the
same velocity. This is also what we have found in my thesis, with dust particles with a small
stopping time, i.e. a small size, having the same vrms as the gas. The larger the stopping time
of the particle becomes, the smaller the particles vrms becomes, which is also what we see in the
results of this thesis. When we looked at the power law relations between the mean dust vrms,
we saw that for larger particles (with a higher stopping time), they will have lower vrms than
particles of a smaller size. If we want to see what equation 73 predicts for the difference in the
reference frame between the dust and gas velocity, we can subtract u′ from v′ as

v′ − u′ = u′

( TL
TL + τp

)1/2

− 1

 . (74)

In equation 74, we see that when τp → 0 the difference in the reference frame between the dust
and gas velocity goes towards 0, which is also what we see in the results of this thesis. If we
instead look at τp →∞, the difference in the reference frame goes towards u′, which is also what
we see in the results of this thesis. Thus, the results from this thesis, is in accordance with the
results of Pan and Padoan (2018).

4.3 Reevaluating results

Now it seems appropriate to look at how accurate the power laws, just found, really are, and
thereby explore some of the limitations of the results found. In order to do this, we can look at
how big an impact the resolution has on the results. Since my results have been limited to a
resolution of 360× 360× 360 cells, it is interesting to see how big (if any) difference there would
have been in my results, had I only had resources to obtain a third of that resolution, namely
120× 120× 120 cells, which can illustrate the importance of resolution. I have therefore looked
at the relationship between the normalized mean dust vrms for an experiment with a resolution
of 360 × 360 × 360 cells and an experiment of resolution 120 × 120 × 120 cells, with different
dust particle sizes of 0.001µm, 0.01µm, 0.1µm, 1µm, 10µm, and 100µm, both over the entire
experiment, the mean over 27 sub boxes, and the mean over 729 sub-sub boxes. The result is
shown in figure 33.

In figure 33 we see that comparing the normalized mean dust vrms for a 0.333pc3 and 13pc3

experiment with the two different resolutions, the values are similar when looking at the entire
experiment and the mean over the sub boxes, with a slight difference between the normalized
mean dust vrms between the two resolutions for dust particles of size 100µm and larger. If
we compare the normalized mean dust vrms for a 0.333pc3 and 13pc3 experiment with the two
different resolutions, the values are similar when looking at the mean over the sub-sub boxes for
small dust particle sizes. This similarity continues until a dust particle size of 1µm, where the
normalized mean dust vrms starts to be significantly different between the two resolutions, with
a difference of approximately 3%. This shows that there only is a small error due to resolution
for the two different resolutions when looking at the normalized mean dust vrms over the entire
experiment and the mean over the 27 sub boxes. But when we look at the normalized mean
dust vrms over the sub-sub boxes, we see a considerable difference between the two resolutions.
We can also look at the average relative difference in the reference frame plot with the same two
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Figure 33: The normalized mean dust vrms as a function of the dust particle size for experiments with resolution
360 × 360 × 360 cells, and 120 × 120 × 120 cells and experiment sizes of 0.333pc3 and 13pc3, created by taking
the mean over the entire experiment, over 27 sub boxes, and 729 sub-sub boxes. The normalized mean dust vrms

is made from 40 snapshots between the times t = 2.4 tturn to t = 10 tturn and divided with the mean gas vrms

made from an average over the same 40 time snapshots.

different resolutions, seen in figure 34.

Figure 34: The average relative difference in the reference frame between the dust and gas velocity as a function
of the dust particle size for experiments with a resolution of 360 × 360 × 360 cells, and 120 × 120 × 120 cells
and experiment sizes of 0.333pc3 and 13pc3, created by taking the mean over the entire experiment, over 27 sub
boxes, and 729 sub-sub boxes. The average relative difference in the reference frame between the dust and gas
velocity is made from 40 snapshots between the times t = 2.4 tturn to t = 10 tturn.

In figure 34, we see the same small effect of the resolution on the results as in figure 33 for the
normalized mean dust vrms over the entire experiment and the mean over 27 sub boxes, and we
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can thus conclude that there is a small effect on the results due to the resolution when looking
at the entire experiment and the mean over the sub boxes. We also see a larger effect of the
resolution on the normalized mean dust vrms when looking at the mean over 729 sub-sub boxes.
We can thereby conclude that the sub-sub box results are considerably affected by the resolution.

Another limit on our results we can look at is the limit due to the vrms that is possible to
reach in the confinements of the different sized experiments. To explain further what is meant
here, we know that looking at an experiment of size 0.333pc3 where we look at the mean dust
vrms of the entire experiment, there is a maximum velocity that the dust will be able to reach
since the dust only has the 0.333pc3 volume to move around in. If we instead look at the mean
vrms of a sub box with size 0.333pc3 of an experiment of size 13pc3, the dust will be able to move
around in a volume of size 13pc3, and therefore these dust particles will have had the possibility
of having a larger vrms since they have a larger volume of building up a larger velocity inside.
In order to explore this effect, we can compare the normalized mean dust vrms as a function of
dust particle size when looking at the mean over the entire experiment, to the mean over the
27 sub boxes of a larger experiment, and to the mean over the 729 sub-sub boxes of an even
larger experiment. This comparison can be seen in figure 35. We can also compare the average
relative difference in the reference frame between the dust and gas velocity when looking at the
entire experiment, to the 27 sub boxes of a larger experiment, and to the 729 sub-sub boxes of
an even larger experiment, which is done in figure 36.

Figure 35: The normalized mean dust vrms as a function of the dust particle size when looking at the entire
experiments of size 0.333pc3, 13pc3, 33pc3, 93pc3, and 273pc3, as well as the normalized mean dust vrms over
the 27 sub boxes of sub box size 0.333pc3, 13pc3, 33pc3, 93pc3, and the normalized mean dust vrms over the
729 sub-sub boxes of sub-sub box size 0.333pc3, 13pc3, 33pc3. The normalized mean dust vrms is made from 40
snapshots between the times t = 2.4 tturn to t = 10 tturn.

If we start by looking at figure 35, we see that the normalized mean dust vrms has the same value
of around 1 for the smaller dust particles, independent of whether we are looking at the mean
over the entire experiment, the mean over the 27 sub boxes or the mean over the 729 sub-sub
boxes. Starting at around a dust particle size of 1µm we see the sub-sub box value start to have
a larger normalized mean dust vrms than the mean over the entire experiment and the mean
over the sub boxes. This trend continues until the 100µm-sized particles, where the sub-sub box
has a 10% − 12% larger normalized mean dust vrms than the results from the mean over the



Future work | 59

Figure 36: The average relative difference in the reference frame between the dust and gas velocity as a function
of the dust particle size, when looking at the entire experiments of size 0.333pc3, 13pc3, 33pc3, 93pc3, and 273pc3,
as well as the normalized mean dust vrms over the 27 sub boxes of sub box size 0.333pc3, 13pc3, 33pc3, 93pc3,
and the normalized mean dust vrms over the 729 sub-sub boxes of sub-sub box size 0.333pc3, 13pc3, 33pc3. The
average relative difference in the reference frame between the dust and gas velocity is made from 40 snapshots
between the times t = 2.4 tturn to t = 10 tturn.

sub boxes and the entire experiment. We see that the mean over the sub boxes also has a larger
normalized mean dust vrms when compared to the mean over the whole experiment, but this is
a lot less significant (around 3%). Thus, the effect from the size of the volume that the dust
particles can build up a velocity inside has a large effect when looking at the mean of the dust
vrms over the sub-sub boxes compared to when we are looking at the normalized mean dust vrms
over the entire experiment, and over the sub boxes. This makes sense when we think about a
500µm dust particle traveling inside an experiment with a size of 33pc3, which has a vrms that
is almost completely independent of the dust velocity. This dust particle will have the ability to
build up a large velocity and if we then look inside a section of this experiment with a size of
33pc the mean vrms we will observe will be significantly larger than if a dust particle of the same
size only had a 0.333pc volume to move around in. For the average relative difference in the
reference frame between the dust and gas velocity in figure 35, we see for experiments containing
dust particles of size 0.1µm and 1µm the sub-sub boxes having a significantly different value
than the sub boxes, which again has a significantly different value than for the entire experiment.
The difference between the average relative difference in the reference frame between the dust
and gas velocity for the sub-sub boxes and the entire experiment is 37% − 48%, and between
the sub boxes and the entire experiment, the difference in average relative difference in the
reference frame between the dust and gas velocity is between 24% − 29%. We, therefore, have
significantly different results depending on whether we observe the results from an entire (but
smaller) experiment, compared to if we take the mean over the sub boxes or sub-sub boxes of
larger experiments.

5 Future work

Since most GMCs have sizes of between 20 − 200pc it would be appropriate to analyze an ex-
periment of a larger GMC. An interesting GMC to simulate would be one of size 1003pc3, since
an experiment of that size would replicate a slice of the Milkyway and would give a good un-
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derstanding of several different GMC in a larger context. The most accurate result would be
found by taking the mean of the sub-sub boxes of the experiments. This could roughly simulate
taking the mean over different GMCs of the same size. Another reason to look at the mean over
sub-sub boxes of size 1003pc3 instead of the whole experiment is the effects of the artificial driv-
ing in the experiment, which will not be as profound, and will therefore replicate the turbulent
cascade inside a real GMC more accurately. We see in the analysis made in the "Reevaluating
Results" section, that a higher resolution is important if we wish to look at sub and sub-sub
sections of GMCs, so we would need a much higher resolution than used in my experiments in
order to get a accurate result from such a large experiment. Since the computer memory of a
single computational node needed for this kind of experiment was not available during my thesis,
it would be something that could be further explored. A higher resolution and more memory
available would also allow experiments where we look at a wider range of GMCs, and thereby
have more data for the analysis of the power law relationships between the dust vrms and the
size of the dust particle and the size of the GMC.

In my experiments, I had no gravitation and magnetic fields, which is a big part of the dy-
namics of GMCs, and including these would thus contribute to a more precise experiment of
the actual processes happening inside GMCs. Having overdensities in the experiment simulating
prestellar cores would be an interesting parameter to add to the experiments, exploring the effect
of their gravitational pull on dust particles. Additionally, another interesting property to add
to the experiments would be sandblasting by small dust particles on larger dust particles, which
would also give a more realistic representation of molecular clouds, as well as adding sources
of dust particles in the ISM like asymptotic giant branch (AGB) stars adding diffuse dust or
supernovas adding high velocity dust to the experiment. The tools needed to make experiments
including these properties were not available during my thesis work. Adding these to the exper-
iments run for this project was outside the scope of this thesis. Another effect present in real
GMCs but absent in my thesis is the coagulation of particles, and collisions of particles. These
effects are also crucial for the dynamics of dust particles within real GMCs and are obvious
points of interest when revisiting the dynamics of dust particles within the ISM.

Running a simulation applying the above suggestions would give a more realistic GMC to study,
giving a more accurate understanding of the relationship between the mean dust vrms and the
size of the GMC we observe. Examining the more realistic mean dust vrms in different sized
GMCs would give an indication of the accuracy of the relations found in this thesis. The Larson
relations have been found to differ greatly in the universe depending on the GMCs observed, and
thus this might also be true for the mean dust vrms. An understanding of the other parameters
that might also go into the determination of the mean vrms of dust and the average difference
in the reference frame between the dust and gas velocity inside GMCs, would also help us to
understand the dynamics of dust even further. These parameters could also be found using
more realistic GMCs. Investigating fragmentation from dust particles would be a great way to
further explore how the dynamics of dust particles in the ISM can create initial conditions for
protoplanetary disc formation, and thereby find the dynamical distribution of dust particle sizes
in GMCs. This knowledge of how dust particles fragment, would also give us a better indication
of whether a 500µm particle has a probability of contributing to the formation of protoplanetary
discs due to its probability of fragmenting being very high, and it is likely that such particles will
fragment and their dust mass will follow the gas more closely, in the form of smaller particles.

6 Conclusions

In this thesis, the DISPATCH framework has been used with the HLLC hydrodynamical solver
RAMSES, to perform experiments simulating MCs/GMCs of different sizes. The experiments
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replicated dust and gas movement and the influence of gas on dust through friction inside
MCs/GMCs of sizes 0.333pc3, 13pc3, 33pc3, 93pc3 and 273pc3, looking at dust particles of sizes
from 0.001µm to 500µm.

1. The experiments show an expected correlation between the size of dust particles and the
amount of coupling to the gas flow, where smaller dust particles are more coupled to
the gas flow than larger dust particles. The size of dust uncoupled from the gas, was
calculated to be approximately 50µm. This is in agreement with the experiments where
dust stops being completely coupled to the gas once it has a size between 1µm and 100µm
in diameter. This suggests that particles of size ≥ 100µm will on average not be stopped
inside the confinements of the MC/GMC observed, for the experimental setup in this
thesis. This is due to their stopping length being larger than the experiment length, and
a transition from being completely coupled to the gas, to becoming mostly decoupled
starting to happen for dust particles of size 1µm. A latency on the dust’s reaction to a
change in the gas movement can also be seen when looking at the vrms of dust and gas
inside the experiments. Here the dynamical time of the dust is larger than that of the gas,
and it, therefore, takes longer for dust, compared to the gas, to change directions due to
its correlation with the gas. This latency increases with dust size. It is found that even
though larger dust particles are mostly decoupled from the gas, the gas still has an effect
on the large dust particles through friction, which over a couple of turn over times gives
rise to overdense dust regions to form, mostly outside the regions of overdense gas.

2. The simulation of a 13pc3 MC/GMC also showed that the velocity dispersion is largest
where the dust density is the largest no matter what dust particle size is being observed.
The observation of dust accumulating in filaments even for large dust particle sizes over
time, suggests that dust moves in coherent groups, even for particle sizes where friction
relative to the gas is small. The regions of overdensities in dust will then be present where
two or more coherent groups of dust cross paths.

3. The relation between the mean dust vrms and the size of the MC/GMC looked at is found
to follow a power law trend, such as the relationship between the mean gas vrms and
the MC/GMC size found in the first Larson relation. A different power law relation is
found for different dust particle sizes. The power law relationship between the mean dust
vrms and the size of the MC/GMC observed shows an increasing mean dust vrms with an
increasing MC/GMC size, like the first Larson relation. As a result of dust particles being
coupled to the gas, dust particles ≤ 0.01µm have the same relation between the mean dust
vrms and the size of the MC/GMC as the first Larson relation. For dust particles of size
≥ 200µm, the power law between the mean dust vrms and the size of the MC/GMC is
found, inside the uncertainties, to have a larger exponent than the exponent in the first
Larson relation inside the MCs/GMCs. The dust of size ≥ 200µm is, therefore, more
affected by the size of the MC/GMC than the gas. Looking at particles of size ≤ 100µm
we see that the exponent of the mean dust vrms power law fit is, inside the uncertainties,
the same as for the mean dust vrms. Large dust particles are more affected by a change in
the size of the MC/GMC observed due to large dust particles having a stopping length that
is longer than the length of the MC/GMC observed. They will therefore not be stopped
inside the cloud due to the friction caused by the gas in the MC/GMC. A larger MC/GMC
size will mean a smaller mean gas density and the larger particles will be less affected by
the friction due to interactions with the gas. Smaller particles of sizes < 100µm have a
stopping length less than that of the experiment size and will therefore be stopped inside
the experiment, making the size of the experiment have the same effect on them as the gas.
The coefficient multiplied by the size of the cloud L in the power law has a decreasing value
for an increasing dust particle size, until 0.01µm where the coefficient is the same as for
the mean gas vrms power law fit. This causes the mean dust vrms for particles > 0.01µm
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to be less than the mean gas vrms, due to the particles effectively speaking being "more
massive" than the gas.

4. Looking at the average difference between the dust velocity and the gas velocity in the ref-
erence frame of the dust particle, a power law relation is found to exist between the average
difference between the dust velocity and the gas velocity and the size of the MC/GMC ob-
served. This relation also extends between the average difference between the dust velocity
and the gas velocity as well as the size of the dust particle observed, when looking at dust
particles of size ≤ 1µm. With a fixed dust particle size the power law relation between
the average difference between the dust and gas velocity and the size of the MC/GMC is
found to increase in the average difference between the dust velocity and the gas velocity
for an increasing MC/GMC size. It is found that the average difference between the dust
velocity and the gas velocity is almost equivalent to the mean gas vrms for particles of size
≥ 100µm. This is expected since dust particles of these sizes are mostly decoupled from
the gas and thus have a completely different mean vrms. For dust particles of size ≤ 10µm,
the average difference between the dust velocity and the gas velocity is found to have a
decreasing value going towards smaller dust particles, where dust particles will be more
coupled to the gas and therefore the mean gas vrms seen from the dust particles frame of
reference will be less. The average difference between the dust velocity and the gas ve-
locities dependency on the size of the MC/GMC increases towards smaller dust particles.
This can be explained by the smaller dust particles almost having the same mean vrms
as the gas, and thus the average difference between the dust velocity and the gas velocity
will be small for small dust particles and as the size of the MC/GMC increases so does the
mean vrms of the gas as well as the stopping time of the dust particles. This increase in
stopping time delays the dust particles when changing directions with the gas. They will
therefore change directions with an increasing delay as the size of the MC/GMC chosen
to be observed increases.

5. For the power law relationship between the average difference between the dust velocity
and the gas velocity as well as the size of the dust particles for dust particles of size
≤ 1µm, and having a fixed MC/GMC size, it is found that the average difference between
the dust velocity and the gas velocity is decreasing with increasing MC/GMC size. It
is also found that the average difference between the dust velocity and the gas velocity
became more dependent on the size of the dust particle for smaller MCs/GMCs. This is
due to the stopping time also being dependent on the size of the dust particle observed,
and an increase in stopping time will result in the mean dust vrms deviating further from
the mean gas vrms, and thereby resulting in a larger average difference between the dust
velocity and the gas velocity. Since the stopping time is also affected by the size of the
MC/GMC observed, the smaller MC/GMC will be more affected by a change in the size
of the dust particle observed, whereas for large MCs/GMCs, the size of the MC/GMC will
dominate the value of the stopping time, and a change in the dust particle size will be less
significant.

6. Looking at 5 different experiment sizes between 0.333pc3 and 273pc3, and 6 different dust
particle sizes between 0.001µm and 100µm, the probability density function of the dust
density as compared to the gas probability density function, shows the gas has an even
distribution in the experiments. Most of the gas has a density near the average density
and a small fraction of gas in higher and lower density regions. The distribution of dust
in the experiments is mostly in the bulk, with a small fraction of the dust being in high
density regions and with an expansion-like behavior for the dust in low density regions.
This suggests that dust inside high dust density regions tends to expand into regions of
lower dust density unless there is a large velocity convergence in the velocity field, working
against the expansion.
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