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Abstract

The chaotic nature of the atmosphere makes weather prediction a fundamen-
tally difficult task. Incomplete and uncertain knowledge of the current state
of the atmosphere makes a prediction quickly diverge from the actual evolu-
tion of the atmosphere. For that reason, weather prediction centres perform
ensembles of forecasts, all with different initial conditions, to estimate the un-
certainty of their prediction. Various methods are used to perturb the initial
conditions, the choice of which influences the uncertainty estimate. In this
work we investigate seven different perturbation methods including the breed-
ing vector (BV) method, the orthogonal breeding vector (BV-EOF) method,
the Lyapunov vector (LLV) method, the singular vector (SV) method, and
the random field (RF) method. We compare the methods theoretically and
through numerical simulations with two low-dimensional non-linear models;
the Lorentz-63 model and the Sabra shell model of turbulence. In evaluating
the methods, we focus on the spatial/spectral distribution of the perturba-
tions and the ability of the methods to produce large error growth relative
to a reference. With the Lorentz-63 model, we find the largest exponen-
tial growth rates of the error with the SV method. In general, we observe
good agreement with similar studies for all methods except the BV and RF
method. The BV method produces larger growth rates than expected, which
we attribute to differences in the method parameters. The RF method con-
structs perturbations based on historical states of the model but showed too
small error growth rates. We attribute this to a difference in the procedure
for sampling the historical states. For the Sabra shell model, we find the
largest exponential growth rates of the error with the BV-EOF and the LLV
method. Compared to those methods, we find low growth rates with the
SV method. We argue that the reason lies in the sensitivity to numerical
errors of the Lanczos algorithm, which we use in the SV calculation. Further
work is needed to account properly for this sensitivity and to examine the
performance of other algorithms.
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1
∣∣ Introduction

To introduce this thesis, we start out with a short outline of the history of
weather forecasting. This will make the origin and relevance of ensemble
forecasting clear. The question of how to start a weather forecast is then
introduced along with the purpose of the thesis. In the end of the chapter
the structure of the thesis is presented together with a short description of
the code that has been developed.

1.1 Predicting the weather – from human- to

supercomputers

The problem of predicting the future state of the atmosphere was first rec-
ognized and defined by Bjerknes, 1904 [2009] to be that of integrating a set
of equations describing the evolution of the atmosphere from a set of initial
and boundary conditions (Kalnay, 2002). The equations were the Newtons
equations of motion, the equation of state, the continuity equation and the
thermodynamic energy equation. Although the problem was now defined, a
practical way of solving it did not materialize until 1910, where Richardson
proposed solving the equations numerically (Richardson, 1922). By divid-
ing the atmosphere into a grid Richardson made the first numerical 6-hour
forecast of the atmosphere above central Germany the 20th of May 1910 1.
The forecast utterly failed though2, primarily because the initial conditions
included fast moving gravity waves, which completely dominated the under-
lying meteorological signal (Kalnay, 2002). Despite the failure, the forecast

1Richardson, 1922 imagined gathering 64,000 people in a large hall to produce weather
forecasts for the whole world - a kind of human weather forecast factory. Each human
computer should solve the equations at their respective grid point and in the middle
a director should orchestrate the factory. This fantasy bears remarkable similarities to
the concept of a real computer although devised decades before the first research into
computers.

2The forecast predicted a change in surface pressure of 146hPa in six hours, whereas
the actual surface pressure did almost not change.

1
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and Richardsons work laid the foundation for modern days numerical weather
prediction (NWP).

Charney, 1949 and Eliassen, 1949 solved the problem with fast mov-
ing gravity waves by filtering the equations of motions using the quasi-
geostrophic approximation. This led to the first successful one-day weather
forecast performed on an electronic computer (Charney et al., 1950); success-
ful because the forecast produced meteorological realistic results and corre-
lated to some degree with observations. The filtering, however, permitted
only the large scale atmospheric waves to evolve, which was a significant
constraint. By lowering the duration of the time step in the numerical in-
tegration3 J. G. Charney and J. C. Freeman (unpublished study; (Kalnay,
2002)) later performed a successful integration of the unfiltered equations,
where the gravity waves died out through geostrophic adjustment4. This
was an important discovery, because it showed that it was possible to pre-
dict the atmosphere with the more elaborate equations that permitted some
small-scale meteorological phenomena.

Although J. G. Charney recognized that a limit to the predictability
of the atmosphere existed, he attributed this to model deficiencies such as
parametrization of processes happening on scales smaller than the grid size
(e.g. turbulence; see sec. 2.3). By studying a simple three-dimensional deter-
ministic model, Lorenz, 1963, however, discovered that small perturbations
of the initial conditions could lead to diverging solutions to the model, which
after some time were as different as random states of the model. In (Lorenz,
1965) Lorenz quantified the limit of predictability of the atmosphere to be
about two weeks with a 28-variable atmospheric model. This showed that
such a limit exists even for a perfect model and arise due to the model ex-
hibiting chaos (ch. 2). Through this work, Lorenz also remarked that not
only does such a limit exists, the predictability depend on the evolution of
the atmosphere; some days the forecasts can predict accurately a week ahead,
some days only a couple of days (Kalnay, 2002).

The value of the deterministic forecast was now questioned, and Epstein,
1969 recognized that a probabilistic approach could be fruitful. Instead of
integrating the dynamical equations of motions from a set of observations, the
observations should be used to define a probability density function (PDF) for
the atmosphere. Integration of this PDF through the deterministic equations

3The Courant-Friedricks-Lewy (CFL) condition puts a requirement on the duration of
the time step depending on the numerical scheme used (only for explicit schemes). If this
requirement is not met, the solution will blow up (Kalnay, 2002).

4The process where a geostrophically unbalanced atmosphere is modified until in bal-
ance by radiation of gravity waves, which lead to adjustments of the wind and pressure
fields (Geostrophic adjustment 2012; Holton et al., 2013).
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of motions, would then give the evolution of the atmospheric PDF. The
moments of this PDF would give estimates of the average evolution of the
atmospheric state and the reliability of the forecast (from the variance). In
that way the forecasters would not be forced to count on a single deterministic
forecast, but get an indication of how probable different scenarios are.

The practical way of accomplishing this is by ensemble forecasting, which
was first introduced operationally in (Molteni et al., 1996; Toth et al., 1993).
Instead of integrating the atmospheric PDF into the future, which for a non-
linear model can be cumbersome if even possible, the future PDF is sampled
by running a finite number of deterministic forecasts all with different initial
conditions, model configurations and/or boundary conditions (Molteni et al.,
1996). How to perturb those conditions and configurations in order to sample
the PDF properly is an art, and it influences the quality of the ensemble
forecast.

No matter how it is done, ensemble forecasting has been and is a discipline
for supercomputers due to the spatial resolution and the complexity of the
atmospheric models. In that way, Richardson’s fantasy of a human weather
forecast factory has been fulfilled.

As we have seen, the discipline of predicting the weather has changed
dramatically throughout the 20th century; from the first ideas by Bjerknes
and Richardson to supercomputers running ensembles of forecasts. One of
the main questions to address in relation to ensemble forecasting is:

1.2 How to start an ensemble weather fore-

cast?

The quality of an ensemble forecast can be measured by comparing the av-
erage forecast (the ensemble mean) with the actual state of the atmosphere,
e.g. as the root-mean-square-error (RMSE). The ensemble mean tend to
improve the skill of the forecast compared to the individual forecasts (the
ensemble members), since the uncertainty in periods where the individual
forecasts disagree are averaged out5 (Kalnay, 2002).

5Another way to understand the improved skill of the ensemble mean is by considering
the properties of N dimensional phase spaces for large N . As described in (Christiansen,
2021), randomly drawn samples from an N -dimensional cube will tend to be located near
the edges. The average of those samples (i.e. the ensemble mean), however, will be located
in the centre of the cube. The distance between the average and a random sample will then
be a factor

√
2 less than the distance between two random samples. For ensembles, this

means e.g. lower RMSE of the ensemble mean relative to observations than any individual
member.



1.2. HOW TO START AN ENSEMBLE WEATHER FORECAST? 4

The standard deviation of the ensemble members relative to the ensem-
ble mean (the ensemble spread) gives a different indication of the ensemble
quality. Since one seeks to sample the atmospheric PDF properly, the en-
semble spread may indicate to what degree this is achieved as a function of
forecast length. Since, however, a small/large spread may also reflect that
the state of the atmosphere is predictive to a high/low degree, one often
compare the RMSE and the ensemble spread vs forecast length. In general
the ratio spread/RMSE should be ∼ 1; if not, the ensemble is said to be
under- (spread/RMSE < 1) or overdispersive (spread/RMSE > 1) (Fortin
et al., 2014; Frogner et al., 2019).

An example of an ensemble forecast for the wind speed in Stockholm at
the 925 hPa level in the atmosphere is shown in fig. 1.1. In the top panel
the ensemble members (blue), ensemble mean (red), unperturbed forecast
(green, dashed) and artificial observations6 (cyan) are plotted. The RMSE
and the ensemble spread is highlighted by the author (orange vertical lines).
Note how the ensemble members and the unperturbed forecast agree well in
the beginning 1-2 days after which the members spread more and more. The
observations are drawn to show that an ensemble generally predicts well for
a couple of days after which the prediction becomes less and less accurate.
The PDF for the wind speed at day 4 calculated from the ensemble is shown
in the middle panel. The cumulative PDF is shown in the bottom panel.
From such a distribution one can get e.g. the probability for wind speeds
larger than 15 m/s.

In addition to ensure a proper ensemble spread, the perturbation method
used to perturb the initial conditions have to ensure that the ensemble sam-
ples the most unstable dynamics. This is because the unstable dynamics
evolves fast and has a large impact on the evolution of the atmosphere
(Molteni et al., 1996).

While Toth et al., 1993 initiated the ensemble by the so-called breeding
method, which makes use of the full non-linear model, Molteni et al., 1996
used the singular vectors calculated from a linear approximation of the non-
linear model (introduced in a meteorological context by Lorenz, 1965). As
will be seen in ch. 4 there exists theoretical reasons for the latter method to
be superior.

In a modern context, the advent of elaborate data assimilation methods7

have introduced the ensemble of data assimilations, which is both used to
estimate an uncertainty on the data assimilation and for generating initial

6Added to the figure by the author for the sake of example, i.e. not real observations
7The method of determining the (unperturbed) initial conditions of a forecast model

from a limited number of typically non-uniformly distributed observations (Kalnay, 2002).
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perturbations (Roberto Buizza et al., 2010; Isaksen et al., 2010). In terms
of regional models, the COMEPS model, a regional variant of the HAR-
MONIE Ensemble Prediction System (HarmonEPS; (Frogner et al., 2019))
used by the Danish Meteorological Institute (DMI), includes among others
the possibility of calculating the perturbations from the difference between
the members of a nested global ensemble model (the PertAna method). An-
other method available is the random field method originally introduced for
ensemble forecasting in (Magnusson et al., 2009) (sec. 4.5).

Spread

RMSE

Figure 1.1: An example of an ensemble forecast for the wind speed in Stockholm
at the 925hPa level in the atmosphere (top panel). Ensemble members (blue),
ensemble mean (red) and unperturbed forecast (green, dashed). The PDF for the
wind speed calculated from the ensemble at day 4 (middle panel). The cumulative
PDF (bottom panel). From (L. Magnusson, 2009). The cyan line in the top panel
represents artificial observations, while the spread and RMSE are highlighted with
orange vertical lines. Those objects are added to the figure by the author for the
sake of example (i.e. not real observations).



1.3. STRUCTURE OF THE THESIS 6

In this thesis, we investigate the question of starting an ensemble weather
forecast by focusing on the process of perturbing the initial conditions. Thus,
we will not deal with perturbations of the model configurations and boundary
conditions. We study the original breeding and singular vector (BV, SV)
methods as well as the orthogonal BV method (BV-EOF) and the newer
random field (RF) method. We compare those methods with perturbations
generated at random (RD), from an eigenvector analysis (normal mode (NM)
method) and from the leading local Lyapunov vectors (LLV). The purpose is
to present a detailed review of the methods and their behaviour when applied
to two low-dimensional non-linear chaotic models; the famous Lorentz-63
model and the Sabra shell model of turbulence.

1.3 Structure of the thesis

This thesis is divided into eight chapters including the introduction. As
a reference for all chapters specific mathematical definitions are listed in
Definitions.

In ch. 2 fundamental concepts of chaos is introduced including a thorough
outline of the theory of Lyapunov exponents and vectors. This serves as the
basic theory needed in order to understand the behaviour of the two chaotic
and non-linear models studied. The last section of the chapter presents the
theory of turbulence upon which the Sabra shell model is introduced; ch. 3.

In ch. 3 the Lorentz-63 model is introduced as well, and for both models
an analysis of the most relevant characteristics of the models is given. In ch. 4
six different methods for perturbing the initial conditions are presented. Since
many of the methods are related to each other, the last section is devoted
to an outline of the relationship between the singular vector method and the
normal mode, breeding vector and Lyapunov vector method.

Ch. 5 presents the numerical method for solving both the non-linear mod-
els and the tangent linear models and their adjoints. The latter two are pre-
sented in chs. 2 and 4 and used in some of the perturbation methods (e.g.
the singular vector method). The last two sections of the chapter presents
the configuration details of the models and perturbation methods; e.g. model
parameters, time step etc.

The results of the investigations with the different perturbation methods
are presented in ch. 6 and discussed in ch. 7. In those chapters as well as
others, we present the results, discussion etc. related to the models separately
to improve clarity for the reader. Finally, we sum up the thesis with the main
conclusions in ch. 8 together with an outline of possible future work.
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1.4 Software

All computational analyses are implemented in Python 3.9.7 with the fol-
lowing list of third-party packages: black, matplotlib, numba, numpy

pip, pyinstrument, colorama, scipy, seaborn, pyperclip. Crucial for
the optimization of the numerical integration is numba, which compiles python
code to optimized machine code at runtime. This can give computation times
that approach C or FORTRAN, and in the case of especially the Sabra shell
model the integration time was lowered by a factor 40.

The main code is available in the GitHub repository PertMethInEnsWeath
Forecasts_src at https://github.com/mlf93-physics/PertMethInEns
WeathForecasts src. The repository is structured into three main folders
lorentz63_experiments, shell_model_experiments and general. While
the first two folders contain the model specific algorithms, the latter con-
tains all parts common to the models. E.g. the general/runners folder
contains the scripts that run the perturbation methods individually, while
the comparison_runners runs a collection of perturbation methods.

Another GitHub repository, PertMethInEnsWeathForecasts_libutils,
is used for very general utility functions and can be accessed at https:

//github.com/mlf93-physics/PertMethInEnsWeathForecasts libutils

https://github.com/mlf93-physics/PertMethInEnsWeathForecasts_src
https://github.com/mlf93-physics/PertMethInEnsWeathForecasts_src
https://github.com/mlf93-physics/PertMethInEnsWeathForecasts_libutils
https://github.com/mlf93-physics/PertMethInEnsWeathForecasts_libutils


2
∣∣ Chaotic Dynamics and Tur-

bulence

To understand what Lorentz discovered in 1963 and the consequences for
predicting the weather, we will in this chapter start out by reviewing funda-
mental concepts of chaos. To support this an outline of the linear stability
analysis of a non-linear model is presented together with a thorough intro-
duction to the Lyapunov vectors and exponents. The stability analysis also
forms the basis for the normal mode (sec. 4.1) and singular vector method
(sec. 4.2). The Lyapunov vectors are studied as a perturbation method on
its own as well as a reference for comparing methods (sec. 4.6). In the last
section of this chapter, the theory of turbulence is presented which forms the
theoretical basis for introducing the Sabra shell model (sec. 3.2).

If we consider a dynamical system which solutions exist in anM -dimensional
phase space, the system is said to be chaotic if the solutions depend sensi-
tively on the initial conditions; that is, if infinitesimal perturbations lead to
diverging solutions with time. This is shown schematically in fig. 2.1. As
will be described in sec. 2.2, this is the case if the system has at least one
positive Lyapunov exponent. In relation to fig. 2.1, the Lyapunov exponent
is given by the average exponential growth rate of the distances between the
reference and the perturbed trajectories.

Although embedded in an M -dimensional space, the solutions may be
confined to only a subspace due to the attraction from a so-called attractor.
An attractor is a globally bounded attracting set of points, which can consist
of fixpoints, limit cycles and strange attractors. A strange attractor is a
special kind of attractor, which is characterized by the sensitive dependence
on the initial conditions of trajectories starting on the attractor (Kalnay,
2002; Strogatz, 2000).

To characterize the system at a given instant in time, we now study the
linearization of a non-linear model.

8
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Figure 2.1: Conceptual visualization of a flow in phase space that sensitively de-
pends on the initial conditions. A reference trajectory (thick curve) is perturbed
at various positions and the perturbed trajectories (thin curves) diverge exponen-
tially. From (Ditlevsen, 2011).

2.1 Linear Stability Analysis

A system of m first order non-linear differential equation can be written on
the form

ẋ(t) = f(x(t)) (2.1)

from which a trajectory x(t) can be obtained given an initial condition
x(t0) = x0. If perturbing this initial condition, i.e. x(t0) = x0 + x′(t0),
a different trajectory x(t) + x′(t) is obtained that satisfy

ẋ(t) + ẋ′(t) = f(x(t) + x′(t)) (2.2)

Now we assume that ||x′(t0)|| ≪ ||x0|| and that t is close to t0. This enables
us to linearize the system around the unperturbed initial point:

ẋi(t) + ẋ′
i(t) ≈ fi(x(t)) + ∂jfi

∣∣
x0
x′
j(t), (2.3)

Here we use the tensor notation ∂i = ∂/∂xi, ∂ij = ∂2/(∂xi∂xj) and the
Einstein notation where repeated indices imply summation, i.e. ∂iui = ∂1u1+
∂2u2 + ∂3u3 (Ditlevsen, 2011). We will use this notation in the rest of the
thesis. Exceptions to this are marked with a ⋆ when needed.

By subtracting eq. (2.1) from eq. (2.3), we get

ẋ′
i(t) = ∂jfi

∣∣
x0
x′
j(t) = Jijx

′
j(t), (2.4)
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where

Jij ≡ ∂jfi
∣∣
x0

(2.5)

is the Jacobian of eq. (2.1) at t = t0. The complete set of equations in eq. (2.4)
is called the tangent linear model (TLM) on differential form (Kalnay, 2002).
For later reference, we will also state the TLM on integral form:

x′(t) = L(x(t0),x(t))x
′(t0), (2.6)

where L(x(t0),x(t)) is the forward propagator of the linearized model; it
propagates the initial perturbation from time t0 to time t with the Jacobian
evaluated on the non-linear trajectory. For simplicity, we will from now on
refer to it as L(t0, t), although the time dependence comes through x.

The Jacobian is a square matrix and can be diagonalized to get the eigen-
values and -vectors:

J = ΞMΞ−1, (2.7)

where M is a diagonal matrix with eigenvalues µ1, µ2, ..., µm on the diagonal
sorted in descending order, and the columns of Ξ are the corresponding
eigenvectors ξ1, ξ2, ..., ξm.

Following (Ditlevsen, 2011) eq. (2.4) can be solved from time t0 to t:

x′(t) = eJ tx′(t0), (2.8)

Determining the exponential operators in terms of its Taylor series and sub-
stituting J with eq. (2.7) yields

x′(t) =
∞∑

n=0

(J t)n

n!
x′(t0) (2.9a)

= Ξ
∞∑

n=0

[µn
1 , µ

n
2 , . . . , µ

n
m]t

n

n!
Ξ−1 (2.9b)

= Ξ[eµ1t, eµ2t, . . . , eµmt]Ξ−1x′(t0), (2.9c)

where [, , , ] denotes a diagonal matrix. This can be simplified by introducing
the variable z(t) = Ξ−1x′(t):

z(t) = [eµ1t, eµ2t, . . . , eµmt]z(t0) (2.10)

This shows that the evolution of an initial perturbation is given by a set of
eigenmodes zi(t) = eµitzi(t0) ⋆, where the value of ℜ[µi] determines whether
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the initial perturbation grows (positive), decays (negative) or stays constant
(zero) along the corresponding eigenvector. If the eigenvalue has an imagi-
nary part, the perturbation will experience rotation in phase space in a plane
spanned by the corresponding complex-conjugate pair of eigenvectors. This
analysis can be used to evaluate the stability of fixpoints (points for which
ẋ = 0) as will be done with the Lorentz-63 model in sec. 3.1. In that case the
sign of ℜ[µi] indicates if a fixpoint is stable (positive), unstable (negative) or
neutral (zero) in the direction of the corresponding eigenvector.

2.2 Lyapunov exponents and vectors

While the above analysis gives knowledge about the instantaneous stability
of the flow around a point x(t0), the Lyapunov exponents and vectors de-
scribe the stability of a larger portion of the flow. One distinguish between
the global Lyapunov exponents (often simply referred to as the Lyapunov ex-
ponents), which are independent of time, and the local Lyapunov exponents
(LLE; also known as finite time Lyapunov exponents (FTLE)), which are
defined for a finite period of time. The Lyapunov vectors are more precisely
referred to as local Lyapunov vectors (LLV) since they depend on an initial
point, which will be clear in a moment (Kalnay, 2002; Legras et al., 1995).

The global Lyapunov exponents, {λi}, describe the average exponential
growth or decay rate of the size of a perturbation independently of the posi-
tion on the attractor. In that way, they are useful to characterize the overall
stability of a flow. As described in ch. 1, though, the predictability of the
atmosphere is not constant in time. Hence, it is relevant to work with local
measures of error growth of perturbations, which the LLEs and LLVs are
useful for.

The definition of the global Lyapunov exponents and the LLVs is founded
in Oseledec’s theorem from which the first two statements will be outlined
following Legras et al., 1995. The theorem states that for almost any solution
x(t) to eq. (2.1) and for almost any inner product on ℜm

1. a finite exponent

λ(r) = lim
t1→∞

( 1

t1 − t0
ln
[ ||L(t0, t1)r||

||r||
])

, (2.11)

exists, for any vector r in ℜm, and is independent of t0. The exponent
can take maximal m values λ1, λ2, . . . , λm, which generally are different
from each other.
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2. the operator

S∞(t0) = lim
t1→∞

[L(t0, t1)
∗L(t0, t1)]

1
2(t1−t0) (2.12)

exists, where L∗ is the adjoint of L (defined below). The direction of
the eigenvectors of S∞(t0) depend on the initial point x(t0), while the
corresponding eigenvalues e2λi do not.

The adjoint (conjugate transpose) of the forward propagator (in short; the
adjoint), L∗, is defined by

⟨x;Ly⟩ = ⟨L∗x;y⟩. (2.13)

From this we have that the global Lyapunov exponents are the {λi} and
the LLVs {ζi} are the eigenvectors of S∞(t0). Put into words, the global
Lyapunov exponents are given by the growth rate of any initial perturbation
evolved through an infinitely long integration of the TLM. There exists as
many global Lyapunov exponents as the dimension of the system, and if at
least one λi is positive the system is chaotic (Kalnay, 2002).

The LLV ζ1 is called the dominant or leading LLV and dictates the direc-
tion of maximum sustainable growth1 of an initial perturbation. This holds
in general no matter which initial perturbation method is used, given that
t1 → ∞, and is visualized in fig. 2.2 (Kalnay, 2002).

Figure 2.2: Visualization of a random initial perturbation evolving into the direc-
tion of the dominant LLV. The expansion rate of the sphere into an ellipsoid is
given by the dominant Lyapunov exponent, λ1. From (Kalnay, 2002).

Having obtained the LLVs, one can estimate the LLEs {πi} for some
finite time period ∆t by evolving the LLVs with the forward propagator into

1If λ1 < 0 it dictates the direction of minimum sustainable decay.
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ζi(t0 +∆t), i.e.

πi ≈
1

∆t
ln
[ ||ζi(t0 +∆t)||

||ζi(t0)||
]
, (2.14)

which are indeed dependent on t0 (Kalnay, 2002). The largest LLE, π1, is
called the leading local Lyapunov exponent, and determines the local degree
of predictability through the time TLLE = 1/π1 after which predictability is
lost (Ditlevsen, 2011).

To align the above definitions with Legras et al. and prepare for the
comparison with singular vectors in sec. 4.6.2, a subdivision of the LLVs is
needed. If the solution x(t) to eq. (2.1) lies on the attractor of the system,
then it is invariant under the transformation t → −t. In turn, the Oseledec
theorem is also valid for such a transformation in which we let t0 → −∞ and
t1 be fixed. The global Lyapunov exponents will remain unchanged, but in
order to calculate the LLVs we need to find the eigenvectors of

S−∞(t1) = lim
t0→−∞

[L(t0, t1)L(t0, t1)
∗]

1
2(t1−t0) . (2.15)

Because we then have two different definitions of the LLVs, we will define
{ζ∞

i } as the LLVs that correspond to the eigenvectors of eq. (2.12) (referred
to as the LLVs)2 and {ζ−∞

i } as the LLVs that correspond to the eigenvectors
of eq. (2.15) (referred to as the adjoint LLVs)3.

In practice eq. (2.11) works well to get the dominant Lyapunov expo-
nent, but fails if more than one is needed. Furthermore, it is not possible
to calculate and diagonalize the operators in eqs. (2.12) and (2.15) due to
numerical under- and overflow. According to Legras et al., 1995, one can
overcome those problems by the following: it can be shown that it suffices
to integrate an initial random perturbation for a time t1 − t0 → ∞ with the
L(t0, t1), L(t0, t1)

∗ operator to get the dominant LLV and the adjoint LLV,
respectively. To get multiple orthogonal LLVs and adjoint LLVs an itera-
tive Gram-Schmidt orthonormalization of the evolved perturbations is made
(Legras et al., 1995). The procedure for calculating multiple LLVs {ζ∞

i } can
be outlined as follows.

To get k orthonormal LLVs

1. define an (m × k) matrix E(t0), where the column vectors, {ei}, are
random perturbation vectors.

2Referred to as the backward Lyapunov vectors by Legras et al., 1995
3The term adjoint is used, since, as we will see shortly, they are in practice calculated

by integrating L∗. Referred to as the forward Lyapunov vectors by Legras et al., 1995
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2. Evolve this matrix column by column with the forward propagator:

ei(t1) = L(t0, t1)ei(t0) (2.16)

3. Perform a Gram-Schmidt orthonormalization of E(t1), which decom-
poses the matrix into two matrices Q and T:

E(t1) = Q(t1)T(t1). (2.17)

The matrixQ has size (m×k), and its columns are orthonormal vectors
called Schmidt vectors. The matrix T has size (k × k) and is upper
triangular with positive diagonal entries.

For t1 − t0 → ∞ the Schmidt vectors will converge to the LLVs {ζ∞
i },

and from the diagonal entries Ti,i one can calculate the global Lyapunov
exponents (λi). This is done by substituting Ti,i for ||L(t0, t1)r|| in eq. (2.11).

To avoid numerical overflow problems, the orthonormalization is in prac-
tice performed at regular intervals, i.e. the items 1 to 3 are repeated. After
each iteration, the random perturbations {ei} in eq. (2.16) are replaced by
the Schmidt vectors from the last iteration (Legras et al., 1995). The cal-
culated Lyapunov exponents for each iteration are averaged to get a final
estimate of the exponents.

Having introduced the Lyapunov exponents and vectors, we will now
continue with the theory of Turbulence.

2.3 Introduction to Turbulence

Fully developed turbulence is a phenomenon that is observed in as diverse
physical situations and spatial scales as to pour out a glass of wine, atmo-
spheric cyclones or the breaking of a wave on a coast. In that way it is a
phenomenon we can observe directly in our daily life, and have an intuitive
understanding of, despite its complex nature and unsolved mysteries. More
specifically fully developed turbulence can be thought of as the behaviour of
any fluid brought into vigorous motion (Ditlevsen, 2011).

It is believed that this motion, no matter what fluid, can be described by
the Navier-Stokes equation (NSE) provided a set of initial and/or boundary
conditions. Following this path, however, involves heavy numerical simula-
tions since no general analytical solution exists. With considerable advan-
tages, one can instead take another more phenomenological path to establish
an understanding of turbulence. This path follows in the footsteps of L. F.
Richardson and A. Kolmogorov.

In the proceeding subsections those two paths will be presented starting
out with the Navier-Stokes equation.
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2.3.1 The Navier-Stokes equation

We will work with a fluid under the continuous approximation (Lautrup,
2011). This approximation holds when the smallest spatial scale

• is large compared to the mean free path of the molecules that constitute
the fluid. This ensures that the granularity of the fluid on the molecular
level can be ignored.

• is small enough such that variation of a quantity describing the fluid
on this scale is small relative to a desired precision.

In that way, the state of the fluid can be completely described by continuous
fields of the velocity ui(x, t), the temperature T (x, t), the pressure p(x, t) and
the density ρ(x, t), where i stands for the ith spatial direction. The evolution
of those fields are governed by equations derived from momentum, mass, and
energy conservation together with the equation of state. We will assume that
the fluid is incompressible and that the buoyancy force can be neglected. The
first assumption means that the density of the fluid is constant, while the
second assumption makes the evolution of the temperature field independent
of the velocity and the pressure fields. We can then focus on the evolution
of the velocity and the pressure fields, which is described by the NSE

∂tui + uj∂jui = −∂ip+ ν∂jjui + fi, (2.18)

where all terms are per unit mass, and the continuity equation

∂iui = 0 (2.19)

The NSE describes how the velocity of a fluid parcel changes due to the
pressure gradient force, −∂ip

4, the viscous force, ν∂jjui, where ν is the
kinematic viscosity, and all other forces fi. This can be viewed from a fixed
reference frame, where the second term on the left-hand side (LHS) is then
the advection of the velocity field (Eulerian view), or from a reference frame
moving with the flow, where the complete LHS is then the material derivative
(Lagrangian view). The continuity equation states that there can be no net
divergence/convergence in the fluid; in other words the mass of the fluid is
conserved.

We can eliminate pressure in eq. (2.18) to get a set of equations in ui

only by assuming that the force term fi is rotational, ∂ifi = 0, i.e. with no
divergence/convergence. By applying ∂i on both sides and using eq. (2.19)
we get (Ditlevsen, 2011)

4The density is normally written in the denominator of the pressure gradient force term,
but it is here absorbed into the unit of pressure since the density is assumed constant.
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∂t∂iui + ∂iuj∂jui + uj∂j∂iui = −∂iip+ ν∂jj∂iui (2.20a)

∂iip = −∂iuj∂jui (2.20b)

p = −∂−1
kk (∂iuj∂jui). (2.20c)

We will use this equation to derive the spectral form of the NSE in ap-
pendix A.1.

The influence of the viscosity on the flow can be seen as to smooth out
variations, since it depends on the second derivative of the velocity. On
the contrary the non-linear terms (the advection and the pressure gradient
force5) will make the flow irregular and asymmetric if dominating. What
terms dominate in the NSE therefore depicts how regular/irregular the flow
will be and is characterized by the Reynolds number

Re ≡ UL

ν
∼

(advection term

viscosity term

)
, (2.21)

where U is the characteristic velocity at scale L, and L is the length scale
of the largest variations of the flow (Ditlevsen, 2011)6. In the following we
will see visually what happens with the flow of a fluid when increasing the
Reynolds number (see fig. 2.3 and refer to (Frisch, 1995; Van Dyke, 1982))

For a small Reynolds number the flow is dominated by the viscous force
and appears smooth as seen in fig. 2.3a where the flow of a fluid around
a cylindrical obstacle is shown. The flow is symmetric across a horizontal
axis and almost symmetric across a vertical axis. As the Reynolds number
is increased the latter symmetry breaks, and two eddies start to develop on
the right side of the obstacle (fig. 2.3b). A further increase in the Reynolds
number yields the Kármán vortex street, where also the symmetry across
the horizontal axis is partly broken7 (fig. 2.3c). The flow shows a periodic
pattern in time and can still be said to possess a temporal symmetry. For
an even larger Reynolds number the flow is completely dominated by the
non-linear forces and appears irregular, asymmetric and chaotic (fig. 2.3d).
This behaviour is denoted fully developed turbulence, and it generally occurs
in the limit of very high Reynolds numbers (Ditlevsen, 2011). The fluid no
longer shows temporal and spatial symmetries in their traditional sense, but
if one looks at the fluid in a statistical sense symmetries in e.g. time-averaged

5The pressure gradient force is non-linear since from eq. (2.20c) it can be seen that it
depends on the velocity squared

6One can derive this quantity by putting the NSE on non-dimensional form as done in
appendix A.2

7As noted by Frisch, 1995 the symmetry is preserved but offset in time by half a period.
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(a) Re = 0.16 (b) Re = 24.3

(c) Re = 140 (d) Re = 1770

(e) Re = 1500

Figure 2.3: The flow of a fluid around a cylindrical obstacle (a-d) and through a
grid (e) for an increasing Reynolds number. The Reynolds numbers are estimated
from the diameter of the cylindrical obstacle and the distance between grid lines,
respectively. Spatial and temporal symmetries are successively broken, but in
(e) (in the rightmost part) they are restored in a statistical sense, e.g. averaged
quantities appear to be invariant under translation and rotation. The state of
the flow in this limit of a very high Reynolds number is called fully developed
turbulence. Reference for images: (Van Dyke, 1982).
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quantities reappear8. This is very clear in the right most part of fig. 2.3e,
where the obstacle is replaced by a grid, if imagining taking a time-average
of e.g. the velocity of the fluid in a specific point (Frisch, 1995).

To describe fully developed turbulence more quantitatively, one should in
principle start from the NSE. However, no such theory exists (yet), and even
numerical experiments can be cumbersome and computationally expensive
as we will see in sec. 3.2 (Ditlevsen, 2011; Frisch, 1995). Instead, one can
follow a statistical and phenomenological path, which is exactly what Kol-
mogorov did in his theory from 1941. The theory builds upon Richardson’s
phenomenological picture of turbulence, which we will start out revisiting
(Richardson, 1922).

2.3.2 Richardson’s picture and Kolmogorov’s 1941
theory (K41)

Consider a flow that is stirred at large spatial scales for some time and then
let alone. Richardson imagined this flow to initially consist of large eddies
that gradually break up into smaller and smaller eddies until dissipated by
viscosity as visualized in fig. 2.4. In terms of energy the energy added to the
flow at large scales cascades to smaller and smaller scales until it turns into
heat by viscosity.

AA

B

C

L

l

η

Figure 2.4: Richardson’s picture of the energy cascade from large to small scales;
from large eddies to small eddies. Three eddies to the left are labelled for later
reference. (Frisch, 1995).

8If one can assume that the flow is homogeneous and isotropic, which will be explained
in sec. 2.3.2, the time-average can equally well be a spatial average or an ensemble average
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Kolmogorov developed a scaling theory (the K41 theory) based on this
picture ((Kolmogorov, 1941) as cited in (Ditlevsen, 2011)), which has been
verified by experiments and observations and still holds today to a large
extent (Ditlevsen, 2011). We will derive the essential parts of this theory
from a physical perspective by imagining the flow as in Richardson’s picture.
The forcing is set to continuously act on large scales such that the flow is in
statistical equilibrium; i.e. the mean energy dissipation due to viscosity, ϵ, is
balanced by this forcing. We look at some length scale l for which η ≪ l ≪ L,
where η is the scale at which viscosity starts to dominate also known as the
Kolmogorov scale. L is also known as the integral scale, while l belongs to
the inertial range, i.e. the range between L and η where inertia dominates.
We assume that the flow is homogeneous and isotropic. To be homogeneous
means that the average of some quantity, e.g. the velocity, is invariant under
a spatial translation, i.e. there are no gradients of the mean velocity in the
flow. Isotropic on the other hand means that there is no preferred direction
for averaged quantities, i.e. they are invariant under a rotation (Ditlevsen,
2011).

Now we look at the typical velocity difference between two points sepa-
rated a distance l:

δu(l) ≡ |u(r + l)− u(r)|, (2.22)

where r is the position of one of the points. We have omitted the vector
indices, since it holds for any index and makes the notation simpler. So
we can now ask if there is anything special to this scale l? The eddy that
corresponds to this scale (eddy B in fig. 2.4) is embedded within a much
larger eddy (eddy A), which more or less just moves eddy B around as a
rigid body. At the same time an even smaller eddy (eddy C) is embedded
within eddy B, which similarly moves eddy C around. This indicates that the
answer to the question is no and that the flow can be considered self-similar
(Ditlevsen, 2011).

With self-similar we mean that for two scales l1, l2 for which η ≪ l1 <
l2 ≪ L the velocity difference at the two scales are related through some
function f by

δu(l2) = f
( l1
l2

)
δu(l1). (2.23)

We can determine f from dimensional counting and by the assumption that
δu(l) only depends on l and ϵ, which is also known as Kolmogorov’s second
universality assumption (as stated in (Frisch, 1995)). The validity of this
assumption follows from the above described effect of the larger eddies on
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the smaller, which is sometimes called the sweeping argument. Due to the
large difference in scale between the eddies, no deformation of the smaller
eddy by the larger eddy occurs, and they can be considered independent.
Furthermore, ϵ characterizes the state of the fluid, since it is a measure of
the energy input/output.

The units of l and ϵ are [l] = m and [ϵ] = m2/s3. For the velocity difference
to have correct units ([δu] = m/s) they can only be combined in one way9

which is

δu(l) ∼ (ϵl)1/3. (2.24)

This is the essential relation in the K41 theory. It can be used to derive other
important relations e.g. and expression for η:

We look at the scale l = η and the point where the non-linear terms and
the viscous term in eq. (2.18) will balance10:

uj∂jui ∼ ν∂jjui (2.25a)

δu(η)2

η
∼ ν

δu(η)

η2
(2.25b)

(ϵη)2/3

η
∼ ν

(ϵη)1/3

η2
(2.25c)

(ϵη)1/3η ∼ ν (2.25d)

η ∼
(ν3

ϵ

)1/4

, (2.25e)

where we have used eq. (2.24) in eq. (2.25c). η can be related to the Re
by keeping the integral quantities U,L and the mean energy dissipation ϵ
constant. From eqs. (2.21) and (2.25e) we have

ν ∼ 1/Re (2.26a)

η ∼ ν3/4 ∼ Re−3/4. (2.26b)

Thus, the higher the Reynolds number, the smaller the Kolmogorov scale and
consequently the broader an inertial range. Fully developed turbulence have
for that reason a very broad inertial range, in which the effect of dissipation
is negligible.

9From m
s = [δu(l)] = [ϵ]α[l]β =

(
m2

s3

)α

mβ then α = β = 1/3.
10As noted earlier, the pressure gradient force is non-linear as can be seen from

eq. (2.20c). From this equation it is also seen that it is of the same order of magni-
tude as the advection term in eq. (2.18). For that reason we simply compare the advection
term with the viscous term.
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Another famous relation that can be derived using eq. (2.24) is the scal-
ing relation of the spectral energy density (E(k), where k ∼ 1/l is the wave
vector at scale l) of the inertial range of a turbulent flow. Here, we derive
the relation from dimensional counting. From the Kolmogorov’s second uni-
versality assumption we have that E(k) can only depend on k and ϵ. The
relevant units are [k] = m−1 and [E(k)] = m3/s2. We then have

m3

s2
= [E(k)] = [ϵ]α[k]β =

(m2

s3

)α( 1

m

)β

⇒ (2.27)

α = 2/3, β = −5

3
(2.28)

which gives

E(k) ∼ ϵ2/3k−5/3. (2.29)

This spectrum has been confirmed both by experiments and observations of
the atmospheric boundary layer (Ditlevsen, 2011).



3
∣∣ Models

The methods for perturbing the initial conditions of an ensemble forecast
is studied with two low-dimensional models; the well known Lorentz-63
model introduced by Lorenz, 1963 and the Sabra shell model of turbulence
(Ditlevsen, 2000; L’vov et al., 1998). In this chapter we present the mod-
els and their main characteristics. The structure of the dynamics in phase
space is studied through a linear stability analysis as described in sec. 2.1,
which serves as a reference for a later comparison of the different perturba-
tion methods (ch. 6). Before moving on, we will justify the choice of the
models.

The Lorentz-63 model is chosen for two reasons: 1) it is a well known and
thoroughly studied model, which enables comparison with other studies; 2) it
shows qualitative similarities to the large-scale atmospheric flow. Those sim-
ilarities count e.g. the existence of regimes, multiple timescales and varying
local predictability (Palmer, 1993).

In contrast to the Lorentz-63 model, the theory of turbulence deals with
all relevant scales of e.g. the atmospheric flow as described in the preceding
chapter. Although theoretically interesting, it is computational difficult to
handle without applying truncations of some kind. The shell models do
exactly that, such that all relevant scales can be contained within at most 30
variables. This makes it possible to study turbulence in a computationally
efficient way.

This is the first reason why a shell model is chosen to complement the
analyses made with the Lorentz-63 model; to see the difference to the case
with all relevant atmospheric scales. The second reason is that to the author’s
knowledge perturbation methods have never been studied in the context of
a shell model and specifically the Sabra shell model.

22
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3.1 Lorentz-63 model

The Lorentz-63 model is a simplified atmospheric model based on convective
dynamics (Lorenz, 1963; L. Magnusson et al., 2008). It has been studied
extensively in relation to weather prediction (Palmer, 1993; Smith et al.,
1999), due to its simplicity and yet non-trivial dynamics.

The model constitutes a three-dimensional system of non-linear first order
differential equations given by

ẋ = σ(y − x)

ẏ = rx− y − xz

ż = xy − bz, (3.1)

where σ, r, b are time-independent parameters of the system (Lorenz, 1963).
Written in matrix form the model reads

ẋ = Mx, (3.2)

where

M =



−σ σ 0
r −1 −x
y 0 −b


 ,x =



x
y
z


 (3.3)

The model is dissipative since the divergence of eq. (3.1) is negative if
σ + b > −1 (Palmer, 1993):

∂ẋ

∂x
+

∂ẏ

∂y
+

∂ż

∂z
= −(σ + b+ 1) (3.4)

This means in turn that the model has an attractor (Kalnay, 2002). For
certain parameter values, the attractor is a strange attractor that takes the
form of the famous ”butterfly-wings” shape (see fig. 3.1) and has a fractal
dimension of ∼ 2.05. In this case the model shows chaotic behaviour as
evident from the definition of a strange attractor (ch. 2) (L. Magnusson et
al., 2008; Palmer, 1993). The most commonly used values that give rise to
this attractor are

σ = 10; r = 28; b = 8/3. (3.5)

In this thesis, we will use exactly those parameter values because we are
interested in studying the predictability in a chaotic system.
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Figure 3.1: The well known attractor of the Lorentz-63 model for σ = 10, r = 28
and b = 8/3. The wings are denoted as left (L; around x−) and right (R; around
x+) wing.

The model has three fixpoints for r > 1, which can be located at x± =
[±

√
b(r − 1),±

√
b(r − 1), r − 1] and x0 = [0, 0, 0] by solving ẋ = 0. For

r < 1 only the last fixpoint is present. This indicates that for r = 1 the
qualitative structure of the solution of the model changes, which is denoted
a bifurcation with r = 1 being the bifurcation point (Strogatz, 2000).

The stability of the fixpoints is crucially determined by the value of the
parameters. To analyse the stability lets look at the Jacobian of the system
which is derived from eq. (2.4) and eq. (3.2):

J =




−σ σ 0
r − z −1 −x
y x −b


 (3.6)

To evaluate the stability of the point x0 one can compute the eigenvalues of

the Jacobian at that point. By solving det(J − λI)
∣∣∣
x=x0

= 0 we get

λ =
{
−b,

−(σ + 1)±
√
(σ + 1)2 + 4σ(r − 1)

2

}
(3.7)

For r < 1 the first term in the nominator of the ± eigenvalue pair is always
greater than the last term in absolute sense, meaning that all three eigenval-
ues are negative and the point x0 is a stable fixpoint (refer to sec. 2.1). For
r > 1 one eigenvalue becomes positive making the fixpoint unstable in the
direction of the corresponding eigenvector. The same analysis can be made
for the other two fixpoints for which the reader is referred to (Kalnay, 2002).
For the parameter values that are used in this thesis (eq. (3.5)), all three
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fixpoints are unstable. The x± fixpoints are positioned in the centre of the
left/right wing as shown with the L/R marks in fig. 3.1. More precisely the
x0 fixpoint is a saddle point with an unstable direction parallel to the at-
tractor, while the x± fixpoints are weakly unstable spirals in the plane of the
attractor and with a stable direction orthogonal to it (L. Magnusson et al.,
2008).

To get an intuition on the flow around those fixpoints, the eigenvectors
that correspond to the largest (real part) eigenvalues are plotted on top of the
attractor for 5000 randomly chosen locations on the attractor (fig. 3.2). The
colouring in (a) is determined by the real part and in (b) by the imaginary
part of the eigenvalues. From this we can see that the flow is very divergent
around x0 with no rotation, while in the top right (left) part of the left (right)
wing the flow is contracting. We also see that the rotation around the x±
fixpoints is strongest in the top part of the wings.
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Figure 3.2: The distribution of eigenvectors (arrows) corresponding to the largest
(real part) eigenvalue (plotted as the colour of the arrows) of the Lorentz-63 model
plotted on top of the attractor. (a) real part of the eigenvalues; the largest real
eigenvalues are located nearby the x0 fixpoint. (b) imaginary part of the eigenval-
ues; the imaginary part of the eigenvalues is zero at x0 and otherwise negative.

Despite that the attractor at first glance looks very regular, a trajectory
of the system is very irregular and aperiodic (Strogatz, 2000). This is clearly
seen when looking at the x component on its own (fig. 3.3) by the irregular
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intervals at which the trajectory shifts between the left (x < 0) and right (x >
0) wing also denoted regime shifts. From this figure, it is also apparent that
the system has two different timescales; a short timescale that corresponds to
the rotation around the x± fixpoints, and a long timescale that corresponds to
the residence time in one wing. The short timescale can be estimated from a
power spectrum analysis of the z component to be 0.76tu (see appendix B.1),
where tu is an arbitrary time unit. The long timescale can be estimated by
measuring the residence time and plotting the distribution (appendix B.1).
As seen in fig. B.2, the distribution follows an exponential distribution. A
characteristic timescale of such a distribution is the e-folding time, which for
the residence time distribution is estimated to 1.35tu. The estimate of the
short timescale agree well with (L. Magnusson et al., 2008), while the long
timescale do not (L. Magnusson et al. finds 1.8tu). But since the method
used by L. Magnusson et al. to estimate the latter is unknown to the author,
it is difficult to compare and explain the discrepancy.

0 10 20 30 40

Time [tu]

−20

0

20

x

Figure 3.3: The x component of a solution to the Lorentz-63 model. The irreg-
ularity of the solution is apparent from aperiodic shifts between left (x < 0) and
right (x > 0) wing.

3.2 Sabra shell model

As described in the introduction to this chapter, it is necessary to truncate
the number of wave numbers included in a simulation of (high Reynolds
number) turbulence in order to make it computational possible (Ditlevsen,
2011). This can be seen by considering the number of waves or degrees
of freedom NDOF needed to resolve the scales larger than the Kolmogorov
scale η (eq. (2.25e)). With three spatial dimensions NDOF ∼ η−3 ∼ Re9/4

which for an atmospheric Reynolds number of ∼ 105 gives NDOF ∼ 1011, i.e.
way beyond the number of degrees of freedom of modern days NWP models
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(∼ 107) 1.
Many methods exist to reduce the number of degrees of freedom. For the

case of shell models, the spectral space is divided into N concentric spheres
with the radii or equivalently the magnitude of the wave vectors distributed
like

kn = k0λ
n (3.8)

for λ > 1 and n being the shell number. In that way the shell models only
retain wave vectors of specific sizes. For n ∈ [1; 30], and by considering the
circumference of the earth as the upper limit, this resolves spatial scales all
the way down to 7cm 2, i.e. almost the entire range from small scale eddies
produced by the surface drag on the atmosphere up to the largest planetary
waves.

The shell models are not derived as approximations to the NSE, but are
clever postulates that try to mimic its characteristics by having a similar
structure. This holds for the Sabra model in particular. The model is given
by the following set of coupled non-linear first order differential equations

u̇n = ιkn
(
u∗
n+1un+2 −

ϵ

λ
u∗
n−1un+1 −

ϵ− 1

λ2
un−2un−1

)
− νk2

nun + fn, ⋆ (3.9)

where un is the complex shell velocity of shell n, ϵ is a constant, ν the
kinematic viscosity, and fn a forcing applied at shell n. More specifically the
Sabra shell model mimics the spectral NSE given in appendix A.1, which is
clearly seen by comparing the equations term by term (see eq. (A.9b)). The
first term on the right-hand side (RHS) of eq. (3.9) approximates the integral
in the spectral NSE, since it contains interactions between shells, but only
those between nearest and next nearest neighbouring shells. This is the non-
linear part of the shell model and in relation to the original NSE (eq. (2.18))
it models the advection and the pressure gradient terms. The last two terms
in eq. (3.9) directly correspond to the ones in the spectral NSE.

The Sabra shell model is constructed to have similar inviscid invariants
as the NSE by the choice of coefficients in front of the three shell interaction

terms
{
1,− ϵ

λ
,− ϵ−1

λ2

}
and by the position of the complex conjugations of the

shell velocities (Ditlevsen, 2011).

1For ECMWFs HRES model with a horizontal resolution of 0.1 deg and 137 vertical
layers NDOF ∼ 6.3 · 107 for each variable (About our forecasts 2022).

2The spatial scales are given by the wavelengths l = 2π/kn. After having normalized
to the largest wavelength, lnorm = l/max(l), the wavelengths relative to the circumference
of the earth, dearth, is given by learth = lnormdearth
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One such inviscid invariant is the total energy

Ė =
d

dt

N∑

n=1

1

2
unu

∗
n (3.10a)

=
1

2

N∑

n=1

(u̇nu
∗
n + unu̇∗

n) (3.10b)

...

=
1

2

N∑

n′=n

ι(kn′ − ϵ

λ
kn′+1 +

ϵ− 1

λ2
kn′+2)u

∗
n′u∗

n′+1un′+2 (3.10c)

=
1

2

N∑

n′=n

ιkn′(1− ϵ

λ
λ+

ϵ− 1

λ2
λ2)u∗

n′u∗
n′+1un′+2 = 0, (3.10d)

where we used eq. (3.8) in the second to last equal sign. The full derivation
is given in appendix C. This result, however, not only shows that the Sabra
shell model conserves total energy. It also shows that the local energy in each
triad of shells (kn, kn+1, kn+2) is conserved, since the terms in the parenthesis
in eq. (3.10c) cancel. This is a unique property of the Sabra shell model
compared to other shell models, e.g. the GOY shell model, and reflects
the detailed balance of triads of wave vectors (k,k′,k′′) in the NSE, where
k+ k′ + k′′ = 0 (Ditlevsen, 2011).

In fig. 3.4 a solution to the Sabra shell model is shown in three different
ways, from which some main characteristics of a turbulent flow can be ob-
served. The detailed model configuration is stated in sec. 5.4.2. First, the
average spectral energy density shown in fig. 3.4a follows the Kolmogorov
spectrum in eq. (2.29) in the inertial region (approx. shells 3-18). We see
the Kolmogorov scale around shell 19 by the drop in energy density at that
shell number and above. In fig. 3.4b we see the total energy vs time, which
shows energy build-up and dissipation at irregular intervals. This is a very
characteristic property of turbulent fluids and is also known as intermittency
(Ditlevsen, 2011). In fig. 3.4c the build-up and dissipation is seen across the
shells in the form of a Hovmöller diagram3 of the shell energy anomaly. We
can see how the energy builds up at large scales (small shell numbers) over
long periods of time, and how it gradually is transferred to neighbouring
shells. The larger the shell number the shorter the eddy turnover time (i.e.
the characteristic timescale of shell n, see appendix B.2), and the transfer

3A type of diagram that is suited for showing the temporal evolution of some variable.
Invented by Ernest Hovmöller (Liberto, n.d.)
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accelerates. The energy ends up being dissipated by the shells around the
Kolmogorov scale.

2 4 6 8 10 12 14 16 18 20

n

10−10

10−6

10−2

102

S
p

ec
tr

al
en

er
gy

d
en

si
ty

,
E

(n
)

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time [tu]

2.5

5.0

7.5

T
ot

al
en

er
gy

1 2
u
n
u
∗ n

(b)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time [tu]

1

10

20

n

(c)

−1.5 0.0 1.5 3.0

|un|2 − 〈|un|2〉t

Figure 3.4: The solution to the Sabra shell model presented in three different ways.
(a) The average spectral energy density (solid) and the Kolmogorov spectrum
(dashed; eq. (2.29)). The average is made over 100tu. (b) The total energy vs
time showing the intermittent nature of the flow. (c) Hovmöller diagram for the
shell energy anomaly. The energy cascade from large to small scales is evident.

As we will see later, this build-up and dissipation of energy influences the
perturbation methods and calls for a separate investigation of the methods
in regions dominated by the small and large scales. We define those regions
as Rsmall and Rlarge, respectively, and describe in detail an algorithm for
separating those regions in appendix D.
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As with the Lorentz-63 model, we perform a linear stability analysis of the
Sabra shell model to get an intuition on the structure of the flow around the
Kolmogorov fixpoint of the model. This fixpoint follows the scaling relation
∼ k−1/3, i.e. equivalent to the Kolmogorov scaling of the velocity (eq. (2.24)).
Following sec. 2.1, the (n,m)th component of the Jacobian of eq. (3.9) is given
by

Jn,m = ∂mu̇n = ιkn

(
u∗
n+1δm,n+2 + un+2δm,n+1

− ϵ

λ

(
u∗
n−1δm,n+1 + un+1δm,n−1

)

− ϵ− 1

λ2

(
un−2δm,n−1 + un−1δm,n−2

))
− νk2

n, ⋆ (3.11)

which is a five-diagonal matrix. Evaluated for 1000 randomly selected veloc-
ity profiles un of a reference run with the same model configuration as above,
we get the eigenvalue spectrum (real part) and eigenvector distribution pre-
sented in fig. 3.5. From this figure it is seen that the model has 4 positive
eigenvalues that correspond to eigenvectors located in the inertial range; this
indicates divergence of the phase space in this range. A correspondence be-
tween shell number, n, and eigenvector index, m is seen. The eigenvector
with the largest eigenvalue (m = 1) is located mainly around the 13th-15th
shell. This makes sense because the eddy turnover times of those shells are
short, and at the same time the diffusion is negligible; i.e. the fast non-linear
dynamics give rise to large eigenvalues.

The eigenvalues for m ∈ [5; 12] are approximately zero indicating no
expansion/contraction in phase space. The corresponding eigenvectors are
concentrated at the integral scale and the dynamics thus take place at a long
timescale (large eddy turnover time). Thus, the vanished eigenvalues are a
natural consequence of the very slowly evolving dynamics.

For m > 12 the eigenvalues turn negative which indicates contraction in
phase space. This makes sense because the corresponding eigenvectors are
located around the Kolmogorov scale. A clear correspondence between n and
m is again seen, which becomes very strong for m ≥ 17 due to the dominance
of the diffusion.

The (slightly skewed) symmetry of the eigenvectors around m ≈ 9 is
noteworthy (denoted the V-shape for later reference). Looking specifically
at the inertial range and the corresponding eigenvalues, this indicates that
the phase space, locally, is characterized by both expansion and contraction
for a given shell number. To investigate this further, the projectibility (real
part) of pairs of vectors symmetrically located around m = 9 is plotted in
fig. 3.6. We see that on average, the vectors are approximately orthogonal
to each other.
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Figure 3.5: The average spectrum of eigenvalues (real part) and distribution of
eigenvectors of the Sabra shell model calculated from 1000 randomly chosen po-
sitions in time. Sorted in descending order according to the eigenvalues (a) The
cumulative eigenvalue spectrum normalized with the Kolmogorov-Sinai entropy
H =

∑
ℜ(µm)>0ℜ(µm) (Ditlevsen, 2011). Only eigenvalues up to m = 16 are

shown to avoid the most negative eigenvalues to dominate the plot completely.
The sign of ℜ(µm) is shown with +, · and −, where · means approximately zero.
(b) The squared absolute vector components of the eigenvectors. Values below
0.02 is not plotted in order to highlight the relevant components of the vectors.

This behaviour can be understood from Liouville’s theorem which says
that for a dynamical system governed by Hamiltonian equations, the phase
space is incompressible, i.e. eq. (2.19) holds with ∂i = ∂/∂ui being the deriva-
tive of the phase space coordinates (Ditlevsen, 2011). In the inertial range,
the diffusion term of the Sabra shell model is negligible and the forcing term
is zero. For that reason the model approximately fulfils the theorem since
the non-linear terms on the RHS of eq. (3.9) are independent of un. So the
local contraction and expansion of phase space for shells in the inertial range
can be seen as a natural consequence of the phase space being incompressible
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in this range.
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Figure 3.6: The projectibility (real part) of eigenvectors symmetrically located
around m = 9.



4
∣∣ Perturbation Methods

In this chapter, we will present all perturbation methods studied except the
Lyapunov vector method the theory of which has been presented in sec. 2.2.
In the last section, we outline the theoretical relationship between the singu-
lar vectors and the normal modes, breeding vectors and Lyapunov vectors.

As described in the introduction (ch. 1), the perturbations of the initial
conditions should be made in order to 1) obtain an ensemble spread compa-
rable to the RMSE and 2) to sample the subspace of the phase space that
spans the directions associated with dynamical instabilities. Since the num-
ber of degrees of freedom of typical NWP models is very large (see sec. 3.2),
it is very ineffective to sample this subspace without doing some pre-analysis
of the phase space1 (Molteni et al., 1996).

Methods that identify the subspace are defined as constrained methods in
contrary to unconstrained methods such as random sampling (RD method)
of the complete phase space (L. Magnusson et al., 2008). In addition to
sampling the subspace ineffectively, unconstrained methods produce vectors
that most likely will not be in line with the underlying dynamics; in other
words, the vector points away from the attractor of the dynamical system.
A perturbation initiated along such a vector will die out rapidly, which in
the Lorentz-63 model is related to the strong attraction towards the strange
attractor, while in real NWP models it can be explained by the generation
of gravity waves (Magnusson et al., 2009, 2008).

We now continue with the presentation of the methods. While the normal
mode method uses the eigenvectors of the Jacobian of the model, the singular
vector method integrates the tangent linear model and its adjoint. In con-
trast, the breeding vector method performs several cycles of integrations of
the full non-linear model followed by rescaling in order to breed the optimal
perturbation vectors. Finally, the random field method takes a very simple
approach and defines perturbations according to scaled differences between

1In other words the probability of sampling a direction associated with a dynamical
instability is low

33
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historical state vectors.

4.1 Normal mode method (NMmth)

The normal mode method determines the directions of the fastest error
growth by performing an eigenvalue and -vector analysis at the initial time
of an ensemble run (see sec. 2.1). The eigenvector with the largest eigenvalue
(real part) is used to initiate a perturbation, since by construction the normal
mode that corresponds to this eigenvector, -value pair dominates the error
growth (see eq. (2.10)). If the eigenvalue is complex, the complex-conjugate
eigenvector pair spans a plane in which the fastest growing error will lie. In
that case multiple perturbations are initiated at random in this plane (L.
Magnusson et al., 2008).

For the Lorentz-63 model the state vector x is real, and for that reason
the perturbations need also to be real even though the eigenvalue and -vector
are complex. We can ensure this by exploiting that for any real matrix,
complex eigenvalues arise in conjugate pairs together with a conjugate pair
of eigenvectors, i.e.

µ1 = µ∗
2, ξ1 = ξ∗2. (4.1)

Writing out the contribution from those two eigenmodes to eq. (2.9) reads

α1ξ1e
µ1t + α2ξ2e

µ2t = α1ξ1e
µ1t + α2ξ

∗
1e

µ∗
1t. (4.2)

Define ξ1 ≡ u+ ιw, µ1 ≡ ρ+ ισ. By letting α1 = α∗
2 ≡ β+ ιγ, it is seen that

the contribution from the eigenmodes is ensured to be real:

α1ξ1e
µ1t + α2ξ

∗
1e

µ∗
1t = (β + ιγ)(u+ ιw)e(ρ+ισ)t + (β − ιγ)(u− ιw)e(ρ−ισ)t

(4.3a)

=
[
(β + ιγ)(u+ ιw)(cos(σt) + ιsin(σt))

+(β − ιγ)(u− ιw)(cos(σt)− ιsin(σt))
]
eρt (4.3b)

= 2eρt(βcos(σt)− γsin(σt))u

−2eρt(βsin(σt) + γcos(σt))w (4.3c)

Since the Jacobian of the Lorentz-63 model is real, we initiate a perturbation
in the plane of a pair of complex-conjugate eigenvectors by choosing the pair
of coefficients αi to also be complex-conjugate. Beside this constraint the αi

are chosen at random.
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4.2 Singular vector method (SVmth)

We present the formalism behind the singular vector method by following
R. Buizza et al., 1995 and start off from eq. (2.6).

The forward propagator can be split up into successive integrations of
smaller time steps:

L(t0, tn) = L(tn−1, tn) · · ·L(t1, t2)L(t0, t1). (4.4)

In simple cases L will take the form of an m × m matrix, while for more
complicated cases it comprises an algorithm as part of e.g. a NWP system
(Kalnay, 2002).

We now look at the perturbation norm2 at time t of the perturbation
vector x′(t):

||x′(t)||2 ≡ ⟨x′(t);x′(t)⟩ = ⟨Lx′(t0);Lx
′(t0)⟩ = ⟨x′(t0);L

∗Lx′(t0)⟩, (4.5)

where L∗ is the adjoint of the forward propagator (see eq. (2.13)). The adjoint
propagates a perturbation backwards in time, which can best be understood
by taking the adjoint of eq. (4.4) and using the property of the adjoint of a
product:

L∗(t0, tn) = L∗(t0, t1) · · ·L∗(tn−2, tn−1)L
∗(tn−1, tn) (4.6)

Acted on from the right to left, a perturbation is integrated from tn to tn−1,
tn−1 to tn−2 etc., i.e. backwards in time.

Using eq. (4.5) the error growth of the perturbation from t0 to t can be
measured by the amplification factor (Diaconescu et al., 2012)

σ2 =
||x′(t)||2
||x′(t0)||2

=
⟨x′(t0);L∗Lx′(t0)⟩

||x′(t0)||2
. (4.7)

Thus, to maximize the error growth one needs to maximize this quantity.
Since the operator L∗L is normal, that is (L∗L)∗L∗L = L∗L(L∗L)∗, while

L and L∗ on their own are not, the quotient in eq. (4.7) takes the form
of a Rayleigh quotient3 for L∗L. The maximum of such a quotient is the

2The choice of norm influences the resulting SVs and makes the vectors orthogonal
under this norm. R. Buizza et al., 1995 uses the energy norm defined with the vorticity
and divergence components of the vector being normed as well as the temperature field.
In this thesis, we follow (L. Magnusson et al., 2008) and use a simple L2 norm to be able
to compare.

3A quotient on the form x∗Mx
x∗x , where M is a complex Hermitian matrix and x is a

non-zero vector
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maximum eigenvalue of L∗L (Ghojogh et al., 2019), which is found by solving
the eigenvalue problem

(L∗L)vi(t0) = σ2
i vi(t0). ⋆ (4.8)

Here vi is the set of orthonormal eigenvectors with real eigenvalues σ2
i ≥ 0

(R. Buizza et al., 1995; Diaconescu et al., 2012). The eigenvectors at time t0
evolve into

vi(t) = Lvi(t0) (4.9)

at the future time t, which satisfy the eigenvalue problem

(LL∗)vi(t) = σ2
i vi(t). ⋆ (4.10)

The σi are the singular values of the operator L, while the vectors vi(t0),
vi(t) are the singular vectors of L at initial and final (or optimization) time,
respectively. If sorting the singular values in descending order, both the ini-
tial and final singular vector v1(t0), v1(t) that correspond to σ1 are associated
with the maximum perturbation growth over the interval t−t0. Both vectors
are also referred to as leading singular vectors (R. Buizza et al., 1995).

In fig. 4.1 this is visualized by applying the propagators to a unit sphere
initially spanned by the first two normalized singular vectors. Applying L to

(a) (b)

Figure 4.1: The figure visualizes the effect of applying the (a) L∗L and (b) LL∗

operators on a unit sphere initially spanned by the first two normalized (a) initial
and (b) final singular vectors. From (Kalnay, 2002), in which only the case of real
L is considered. The transpose, T , shown in the figure generalizes to the conjugate
transpose for complex L. Also, v corresponds to v(t0) and u to v(t).

the sphere in fig. 4.1a spanned by the initial singular vectors stretches and
rotates it into a tilted ellipsoid with semi-major axis σ1. Applying L∗ to this
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ellipsoid further stretches the semi-major axis to σ2
1 and rewind the rotation.

Similarly, the effect of L∗ followed by L applied on a sphere initially spanned
by the final singular vectors is shown in fig. 4.1b, which stretches the sphere
by σ2

1 as well.

4.3 Breeding vector method (BVmth)

The breeding method is a simple method to generate perturbation vectors
that lead to large error growth, since it doesn’t imply any analysis of the tan-
gent linear model or its adjoint. Instead, it works by performing a sequence
of integrations of the full non-linear weather prediction model (see fig. 4.2)
(R. Buizza et al., 1995; Toth et al., 1993).

In each integration cycle (also called breeding cycle), an unperturbed con-
trol forecast is made together with one or more forecasts with perturbed ini-
tial conditions. For the first cycle a random perturbation is used, e.g. at t−n

in fig. 4.2. After each cycle, the difference between the perturbed and the
control forecast is rescaled to have the same norm as the initial perturba-
tion. The rescaled difference is then used as the perturbation of the initial
conditions of the control forecast for the next integration cycle starting at
t−n+1 (R. Buizza et al., 1995). After n cycles, the final rescaled perturbation
vectors are the breed vectors valid at t0.

t−n t−n+1 t−n+2 · · · t−1 t0

Time

E
rr

or

Figure 4.2: Conceptual visualization of the breeding method. An initial random
perturbation (vertical dotted line at t−n) is integrated by the non-linear model
(dashed line). At regular intervals (crosses), the integrated perturbation is rescaled
and added to an unperturbed control forecast (solid line) visualized by the vertical
dotted lines at t−n+1, t−n+2, . . . , t−1. Each integration and subsequent rescaling
is a breeding cycle. The final evolved and rescaled perturbation is the breeding
vector valid at time t0.

As will be explained in sec. 4.6.3, the breed vectors converge to the leading
LLV for sufficiently many breeding cycles. This implies that all the breed
vectors that are optimized for the same time t0 to some extent will be linearly
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dependent (L. Magnusson et al., 2008). As we will see through numerical
simulations (ch. 6), this has consequences for the method’s ability to produce
large ensemble spreads.

4.4 Orthogonal breeding vector method (BV-EOFmth)

One can overcome the problem with linear dependency by calculating an
orthogonal complement to the breed vectors (L. Magnusson et al., 2008).
Following L. Magnusson et al., this is done by calculating the empirical or-
thogonal functions (EOF) of the breed vectors.

The EOF analysis is a principal component analysis that works by identi-
fying the (orthogonal) directions accounting for the largest variances in some
dataset. It is commonly used to reduce the dimensionality of e.g. a high
dimensional atmospheric phase space, which makes it possible to visualize
structures in the phase space, to validate the performance of an ensemble
forecast (Franco Molteni et al., 1999) or in this context to calculate an or-
thogonal complement to a set of vectors. In the following, the mathematical
framework for calculating the BV-EOFs is outlined.

The EOF analysis constitutes a singular value decomposition of the space-
covariance matrix of the (n×m) matrix B, where the columns of B in this
context are taken as the n-dimensional breed vectors, i.e.

B = [x1 − xc,x2 − xc, . . . ,xm − xc], (4.11)

where xi is the state vector of the ith perturbed member of an ensemble
with size m, and xc is the state vector of the control member (L. Magnusson
et al., 2008). The singular value decomposition can be written as

B = ESPT, (4.12)

where the columns of the (n×m) matrix E are the BV-EOFs ei; the columns
of the (m×m) matrix P are the principal components (PCs), which describe
how much the individual BV-EOFs project onto the breed vectors; and the
(m×m) diagonal matrix S contains the standard deviations si explained by
the ei. We normalize the ei and pi in the following way

⟨ei, ej⟩ = δij (4.13a)

⟨pi,pj⟩ = mδij, (4.13b)

We can now turn eq. (4.12) into an eigenvalue problem for the PCs by mul-
tiplying with BT from the left on both sides:

BTB = (ESPT )TESPT (4.14a)
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= (SPT )T (ETE)SPT (4.14b)

= PST (ETE)SPT (4.14c)

= PST ISPT , (4.14d)

where I is the identity matrix and eq. (4.13a) is used from third to fourth
equal sign. The eigenvalue problem is now obtained by multiplying each side
with pi and by using eq. (4.13b):

BTBpi = PSTSPTpi (4.15a)

= ms2ipi ⋆ (4.15b)

From the pi we can get the ei from the expression

ei = (msi)
−1Bpi, ⋆ (4.16)

which is obtained from eq. (4.12) by multiplying with P from the right and
using eq. (4.13b):

BP = ESPTP (4.17a)

BPST = ESSTm (4.17b)

(mSST )−1BPST = E, (4.17c)

When perturbing a new forecast based on the BV-EOFs, they are first sorted
in descending order according to the variance s2i , such that e1 is the BV-EOF
that corresponds to the direction of the largest variance in the BV subspace.

4.5 Random field method (RFmth)

As mentioned in the beginning of this chapter, unconstrained perturbation
methods, such as random sampling of the phase space, are typically not in
line with the underlying dynamics and fail to sample the directions of unsta-
ble dynamics effectively. In (Magnusson et al., 2009) the authors introduce
the random field method to produce random perturbations of NWP models
that have realistic constraints. It constructs a perturbation by rescaling the
difference between two randomly chosen historical state vectors of the system
to an appropriate amplitude. I.e. a perturbation vector x′(t) is calculated as

x′(t) =
st1 − st2
|st1 + st2|

, (4.18)
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where st1 , st2 are the state vectors of the system at times t1, t2, respectively
4.

Magnusson et al. constraints the choice of state vectors in the context of
NWP models by requiring that they belong to the same season but different
years. In that way they are ensured to be uncorrelated, while still preserving
some characteristics of the atmospheric variability for that season.

In the context of the Lorentz-63 model, L. Magnusson, 2009 defines the
constraint such that the state vectors belong to the same wing of the attractor
of the system as the initial point. To ensure that they are also uncorrelated,
we impose that they should be separated at least 13 times the average res-
idence time within one wing (see sec. 3.1). The wings of the attractor are
separated by a simple split at x = 0 as seen in fig. 4.3.
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Figure 4.3: The split of the attractor of the Lorentz-63 model at x = 0 seen in (a)
the x-y plane and (b) the y-z plane.

For the Sabra shell model we use the region analysis presented in ap-
pendix D to define the constraints: the chosen state vectors have to belong
to the same type of region as the initial point. First, two specific regions
to sample from are chosen at random. Then, the state vectors are chosen
at random within those regions. Since the minimum duration of a region

4In (Magnusson et al., 2009) a tuning parameter α is multiplied on the RHS in order
to tune the amplitude of the perturbations such that the ensemble spread is comparable
for the different perturbation methods studied. In that way Magnusson et al. avoids
differences in various performance scores of the ensembles due to differences in ensemble
spread. We do not analyse the ensemble spread and ensemble performance scores in this
thesis and thus do not work with this parameter.
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(0.05tu) is an order of magnitude larger than the valid time of the TLM (see
sec. 5.2.1), we put no effort into ensuring the state vectors to be uncorrelated
to each other and the initial point, because the non-linear dynamics makes
the chance of choosing correlated state vectors very low.

Since the difference between the state vectors on average will follow the
Kolmogorov spectrum, x′(t) will be dominated by the large scales (i.e. slowly
evolving dynamics) and obtain very small error growth. To prevent this, we
normalize x′(t) to the Kolmogorov scaling of the velocity (eq. (2.24)).

4.6 Relationship between methods

To understand how the above methods relate and why some methods (theo-
retically) lead to larger error growth of an initial perturbation than others,
the relationship between singular vectors and normal modes, local Lyapunov
vectors and breeding vectors is outlined in this section. Based on the math-
ematical formalism of the singular vectors, we will see how the use of the
adjoint of the forward propagator (eq. (4.6)) makes the singular vector calcu-
lation more optimal than the breeding method, and how the singular vectors,
optimized for a sufficiently long time, converge to the local Lyapunov vectors.
To begin with, we will explore how the initial and final singular vectors can
be related to the normal and adjoint modes.

4.6.1 Singular vectors vs normal and adjoint modes

The relation between singular vectors and normal modes can be understood
by performing the linearization in eq. (2.3) about a stationary trajectory
x(t) = x0. This results in a time independent Jacobian (eq. (2.7)) with
normalized time independent eigenvectors ξi and -values µi, and the solution
of eq. (2.4) is given by the normal modes (eq. (2.10)).

We can now relate eq. (2.6) to eq. (2.8) by writing

L(tn, t0) = eJ (tn−t0) (4.19)

and noting that the requirement that the time tn should be close to t0 is no
longer necessary. As noted by R. Buizza et al. J is in general not normal for
realistic stationary atmospheric flows meaning that the eigenvectors ξi will
in general not be orthogonal. The eigenvectors, however, still exist and are
also eigenvectors of L due to eq. (2.9). The corresponding eigenvalues of L
are given by eµi(tn−t0).

Now define the adjoint operator L∗ of eq. (4.19) to have (possibly non-
orthogonal) normalized eigenvectors ηi and -values θi. Using eq. (2.13) we
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can derive the following: Let x = ηi, y = ξj, then

⟨ηi;L(tn, t0)ξj⟩ = ⟨L∗(tn, t0)ηi; ξj⟩ (4.20a)

⟨ηi;µjξj⟩ = ⟨θiηi; ξj⟩ ⋆ (4.20b)

(µj − θi)⟨ηi; ξj⟩ = 0 (4.20c)

where the complex conjugation on θi arises due to the definition of the inner
product (see Definitions). For i = j eq. (4.20c) is called the biorthogonality
condition of the eigenvector/adjoint eigenvector pair {ηi, ξi}. It holds, how-
ever, for i ̸= j too and tells that if the pair of eigenvectors are not orthogonal,
the corresponding eigenvalues form a complex conjugate pair, i.e. µj = θi.
The projection of ξi onto ηi is given by cos(αi), where αi is the angle between
the vectors in phase space.

Even though the eigenvectors ξi may be non-orthogonal, we follow R.
Buizza et al. and assumes that the set of normal modes (eq. (2.9)) can be
considered complete in a finite dimensional system. We also rewrite eq. (2.9)
as a sum of normal mode contributions to the evolution of an initial pertur-
bation:

x′(tn) =
∑

i

ciξie
µi(tn−t0), (4.21)

where the coefficients {ci} are given as Ξ−1x′(t0) (refer to eq. (2.9)). We can,
however, obtain another expression for {ci} from eq. (4.20c) and eq. (4.21).
By projecting ηi onto x′ at time tn = t0 and assuming that µj ̸= θi for i ̸= j
we get:

⟨ηi;x
′(t0)⟩ = ⟨ηi;

∑

j

cjξj⟩ = ci⟨ηi; ξi⟩ (4.22a)

ci =
⟨ηi;x

′(t0)⟩
⟨ηi; ξi⟩

(4.22b)

From the sum in eq. (4.21) it is seen, that the evolution of the initial per-
turbation will be dominated by the normal mode with the largest (real part)
eigenvalue as tn → ∞. This means also that the dominating singular vector
optimized for a very long time will correspond to this normal mode.

The coefficient ci that corresponds to the dominating normal mode at
optimization time can be maximized through maximizing eq. (4.22b). Note-
worthy, this is not achieved by letting x(t0) = ξ1, i.e. the eigenvector cor-
responding to the largest (real part) eigenvalue, for which c1 = 1. Instead,
if x(t0) = η1 then c1 = 1/cos(α1), which is called the projectibility factor of
the normal mode ξ1 and can be much larger than one5. This means that

5As noted in (R. Buizza et al., 1995), Zhang, 1988 shows that it can take a value of 20
for time averaged wintertime barotropic flows.
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the dominating singular vector at initial time will correspond to the adjoint
eigenvector with the largest eigenvalue.

The difference between the growth of an initial perturbation, when it
is aligned along the dominating normal or adjoint mode at initial time, is
illustrated in fig. 4.4. A pair of non-orthogonal normal (ξ1, ξ2) and adjoint
(η1,η2) modes are drawn to the right in the figure. The normal modes are
decaying, i.e. they have negative eigenvalues, with ξ2 decaying the fastest.
Furthermore, they are orthogonal to the adjoint modes for i ̸= j by the
assumption µj ̸= θi and eq. (4.20c).

Figure 4.4: Diagram that shows the difference between growth of an initial pertur-
bation along the dominating normal mode and the dominating singular vector (R.
Buizza et al., 1995). © American Meteorological Society. Used with permission.

To represent an initial perturbation, the vectors ν0 and µ0 are drawn
parallel to the adjoint and normal mode, respectively. As time passes by,
the vector ν0 evolve into νn for n = 1, 2, . . . , N , for some finite N . Despite
ν0 being parallel to the adjoint mode, the time evolution is governed by
eq. (4.21), which is shown in the figure by evolving the tip and tail of the
vector along ξ1 and ξ2, respectively. In the same way, the vector µ0 is
evolved. It is clear to see how the amplitude of ν increases while that of µ
decreases, and that the projection of νn onto ξ1 is much larger than that of
µn. This reflects how a perturbation aligned with the initial singular vector
evolve from initial to final time and produce maximal error growth.

The corresponding singular value will in this example depend on the eigen-
value and the projectibility factor of the dominating normal mode. The latter
can be understood visually by imagining ξ1 being rotated to project more
onto η1. The triangle with sides equal to ν0 and the two dashed lines will
then become smaller. This means that the growth of the amplitude of ν will
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be smaller; that is smaller error growth along the dominating singular vector
meaning a smaller singular value.

As a final remark, if returning to the case of finite optimization times, the
dominating singular vector will not only project onto the dominating normal
and adjoint mode at final and initial time, respectively. Instead, it will
project onto multiple modes. Likewise, the singular value that corresponds
to the dominating singular vector will not be bounded by the projectibility
of the dominating normal mode alone (R. Buizza et al., 1995).

4.6.2 Singular vectors vs local Lyapunov vectors

The correspondence between the local Lyapunov vectors and the singular
vectors is rather clear, since they both are defined through the L∗L or LL∗

operator. The initial SVs thus converge to the adjoint LLVs (ζ−∞
i ) in the

limit of tn → ∞ and fixed t0 in eq. (4.8) (see also sec. 2.2); the final SVs
converge to the LLVs (ζ∞

i ) in the limit of t0 → −∞ and fixed tn in eq. (4.10).
This behaviour is observed in simulations of the Lorentz-63 model (see

fig. 4.5), the details of which will be outlined in ch. 5. The dominant initial
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Figure 4.5: The average projection of the dominant initial (blue) and final (or-
ange) singular vector onto the dominant LLV (solid) and adjoint LLV (dashed) as
function of the optimization time. The optimization time for the LLV and adjoint
LLV is kept constant (see sec. 5.5) The projection is calculated as the inner prod-
uct defined in Definitions. The average is made from 5000 ensemble runs for each
optimization time.
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and final SV is calculated for varying optimization time, tOPT , and projected
onto the dominant LLV and adjoint LLV (tOPT is kept constant for the LLV
and adjoint LLV (see sec. 5.5)).

As we see from the figure the projection of the initial SV onto the LLV
decreases with tOPT , whereas the projection onto the adjoint LLV increases.
The opposite is seen for the dominant final SV, where the projection onto the
LLV increases with tOPT , while the projection onto the adjoint LLV decreases.

4.6.3 Singular vectors vs breeding vectors

To relate the singular vectors to the breeding vectors, we will note that the
effect of the rescaling after each breeding cycle is to linearize the perturbation
growth. This can be explained by the fact that the non-linear model can be
approximated by the forward propagator of the linearized model (eq. (4.4))
for a small enough integration time of one breeding cycle.

For that reason, we can think of each breeding cycle as applying a pseudo-
linear propagator LBV (tm, tm−1) to the difference between the perturbed and
the control forecast, where δt = tm − tm−1 (for n ≥ m ≥ 1) is the length of
one cycle. For n cycles the sequence can be written as

LBV (tn, tn−1)L
BV (tn−1, tn−2) . . . L

BV (t1, t0) (4.23)

Acted upon an initial random perturbation (as explained in sec. 4.3), the
resulting breed vector will converge to the dominant LLV for a sufficiently
large number of breeding cycles (R. Buizza et al., 1995). This is due to the
approximate similarity between LBV (tm, tm−1) and the forward propagator
of the linearized model6.

For any finite time interval δt, however, the growth rate of a breed vector
evolved until a given time tn−1 will be smaller than or equal to the growth
rate of the dominant initial singular vector optimized for the same time. This
is seen through the following:

||L(tn, tn−1)x
′BV (tn−1)||

||x′BV (tn−1)||
≤ maxx′(tn−1 )̸=0

( ||L(tn, tn−1)x
′(tn−1)||

||x′(tn−1)||
)
, (4.24)

where

x′BV (tn−1) = LBV (tn−1, tn−2) . . . L
BV (t1, t0)x

′BV (t0). (4.25)

6As explained in sec. 2.2 the forward propagator of the linearized model propagates an
initial random perturbation into the dominant LLV ζ∞

1 for sufficiently long integration
time.
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Here x′BV (t0) is the initial perturbation before starting the first breed cycle,
i.e. a random perturbation; x′BV (tn−1) is the breed vector that has converged
to the LLV; x′(tn−1) is the optimized initial singular vector.

To understand why eq. (4.24) is true lets look at the stationary case as in
sec. 4.6.1. For a sufficiently long sequence in eq. (4.25) x′BV (tn−1) will con-
verge to the dominant normal mode, since the LLV for a time-independent
Jacobian reduces to the dominant eigenvector of J . This is seen from the
forward propagator (eq. (2.12)), which becomes time independent and con-
sequently S∞(t0) reduces to the Jacobian. On the contrary x′(tn−1) will con-
verge to the dominant adjoint mode for sufficiently long optimization time
as explained in sec. 4.6.1. In that way the LHS and RHS in eq. (4.24) differ
by the projectibility factor of the normal mode.

Summing up, eq. (4.24) means that the breeding method produces vectors
that are less optimal for perturbing the initial conditions than the singular
vectors, optimized for the same period of time, in terms of exponential growth
rate. The main reason for this is that the breeding method does not make
use of the adjoint equations, which on the contrary improve its simplicity.

The convergence of the BVs to the dominant LLV is observed in simula-
tions of the Lorentz-63 model (see fig. 4.6). By varying the length of
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Figure 4.6: As in fig. 4.5 but for breed vectors. The colours denote the projection of
the BVs onto the first (blue), second (orange) and third (green) LLV. The number
of breeding cycles is kept constant at a value of 4.

the breeding cycle and keeping the number of cycles fixed at a value of 4 we
see how the average projection of the BVs onto the dominant LLV converges
towards a value close to one. At the same time the projection onto the second
and third LLV decreases.



5
∣∣ Numerical Setup

In this chapter, we first present the numerical setup for solving the two non-
linear models as well as the TLM and its adjoint. Then the Lanczos algorithm
is introduced, which is used to find the singular vectors and values. In the
last two sections, we outline the configuration details of the numerical setup
relevant for all models and perturbation methods.

5.1 Non-linear models

In order to solve the Lorentz-63 model (eq. (3.1)) and the Sabra shell model
(eq. (3.9)) numerically, we use the fourth order explicit Runge-Kutta (RK4)
scheme. We use the same numerical scheme for the two models, despite
that such a sophisticated scheme is not necessary for the Lorentz-63 model.
Lower order schemes will suffice, provided the time step is small enough to
ensure stability. For the Sabra shell model, however, a high order scheme is
required in order for the solution to be stable without being forced to use an
impractically short time step. This choice enables faster development and
debugging of the code, since it can first be tested on the Lorentz-63 model,
which is computationally inexpensive to run, and hereafter applied to the
Sabra shell model.

The RK4 scheme evaluates the n+1 time step of a first order differential
equation (eq. (2.1)) as

xn+1 = xn +
1

6
dt(k1 + 2k2 + 2k3 + k4) (5.1a)

tn+1 = tn + dt (5.1b)

where

k1 = f(tn,xn) (5.1c)

k2 = f(tn +
1

2
dt,xn +

1

2
dtk1) (5.1d)

47
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k3 = f(tn +
1

2
dt,xn +

1

2
dtk2) (5.1e)

k4 = f(tn + dt,xn + dtk3) (5.1f)

are the slopes of the solution evaluated at the start-, mid- and endpoint of
the time interval [tn; tn+dt] (Sandu et al., 2010)1. Applied to the two models,
we note that f do not explicitly depend on time.

In practice the RK4 scheme requires a time step of order ∼ 10−7 for the
numerical solution to the Sabra shell model to remain stable. This is because
the Sabra shell model can be characterized as being a set of stiff equations.
Although the stiffness property do not have any precise definition, it generally
means that the equations have some terms that give rise to rapid variations
in the solution and consequently that some numerical methods require a
very short time step. For the Sabra shell model this is attributed to the
smallest eddy turnover times found for shells 17-18 (see eq. (B.1b)) and to
the quadratic factor in the diffusion term.

We can partly counteract this requirement by using the explicit analytical
solution to the diffusion term2. Ignore for a moment the non-linear terms in
eq. (3.9). Then

u̇n = −νkα
nun ⇒ (5.2a)

un(t) = Ae−νkαn t, (5.2b)

where A is an arbitrary constant. Now we define UNL
n (t) to be the solution

to the non-linear and forcing terms using RK4. The complete numerical
solution is then given by

un(t+ dt) = UNL
n (t+ dt)e−νk2n(t+dt) (5.3)

Since the quadratic term now appears in the exponential, it does not influence
the stability of the numerical solution anymore. So now only the shortest
eddy turnover time limits the choice of the time step.

5.2 Tangent linear model and its adjoint

Integration of the TLM on differential from (eq. (2.4)) into integral form
(eq. (2.6)) is done using the RK4 scheme. In that way, L(t0, tn) really com-
prises all steps of the RK4 scheme applied successively from time t0 to time
tn.

1Sandu et al. present the implicit Runge-Kutta method, which differs from the explicit
Runge-Kutta method by including dependence of ki on kj for all j and not only j < i.
This leads to improved stability, but also to a more complex scheme to implement.

2Reference: supervision meeting 12.10.2021 with Peter D. Ditlevsen
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The scheme works on the Jacobian of the model (eq. (2.5)) evaluated
at the non-linear trajectory. This means that the non-linear model needs
to be integrated concurrently with the TLM. Written explicitly the scheme
approximates the next time step as (Sandu et al., 2010)

x′
n+1 = x′

n +
1

6
dt(l1 + 2l2 + 2l3 + l4) (5.4a)

tn+1 = tn + dt, (5.4b)

where

l1 = J |X1 · (x′
n) (5.4c)

l2 = J |X2 · (x′
n +

1

2
dtl1) (5.4d)

l3 = J |X3 · (x′
n +

1

2
dtl2) (5.4e)

l4 = J |X4 · (x′
n + dtl3), (5.4f)

The Xi are state vectors of the integrated non-linear model, evaluated at the
sub grid points of the RK4 method, and are given by

X1 = xn (5.5a)

X2 = xn +
1

2
hk1 (5.5b)

X3 = xn +
1

2
hk2 (5.5c)

X4 = xn + hk3, (5.5d)

where the ki’s are defined in eqs. (5.1c) to (5.1f)

Loosely speaking, to integrate the adjoint of the TLM on differential form
into eq. (4.6) we have to reverse time in eq. (5.4) and use the adjoint Jacobian,
J ∗. For that reason the intermediate slopes are calculated in reverse order.
Following Sandu et al., 2010, the adjoint of the RK4 scheme for the TLM
approximates the adjoint variables x′∗

n by

x′∗
n = x′∗

n+1 +
1

6
dt(j1 + 2j2 + 2j3 + j4) (5.6a)

tn = tn+1 − dt, (5.6b)
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where

j4 = J ∗|X4 · (x′∗
n+1), (5.6c)

j3 = J ∗|X3 · (x′∗
n+1 +

1

2
dtl4) (5.6d)

j2 = J ∗|X2 · (x′∗
n+1 +

1

2
dtl3) (5.6e)

j1 = J ∗|X1 · (x′∗
n+1 + dtl2) (5.6f)

and theXi is given by eq. (5.5). As for the integration of the TLM, this means
that the non-linear model is integrated concurrently with the integration of
the adjoint of the TLM.

5.2.1 Verification of the TLM and its adjoint

The calculation of e.g. the local Lyapunov vectors or the singular vectors
crucially depends on the implementation of the above numerical schemes to
be correct. For that reason a verification is needed.

To verify the integration of the TLM one can assess the error made relative
to an integration of the non-linear model. We consider a small initial per-
turbation at time t0, x

′(t0), and integrate it with the TLM. A perturbed and
unperturbed reference state vector, x(t0), is integrated with the non-linear
model. The linear model should then reproduce the difference between the
integrations of the non-linear model with error O(||x′||2), i.e.

x′(t) = L(t0, t)x
′(t0) = M(x(t0) + x′(t0))−M(x(t0)) +O(||x′||2) (5.7a)

E(t) ≡ L(t0, t)x
′(t0)−

(
M(x(t0) + x′(t0))−M(x(t0))

)
= O(||x′||2) (5.7b)

To verify the integration of the adjoint of the TLM the identity

(L(t0, t)x
′(t0))

∗(L(t0, t)x
′(t0)) = x′(t0)

∗L∗(t0, t)(L(t0, t)x
′(t0)), (5.8)

is tested ((Navon et al., 1992) as cited in (Kalnay, 2002))3. While the LHS
only involves integration of the TLM, the RHS involves both integration of
the TLM and its adjoint. According to Kalnay, the integration of the adjoint
will be correct if this identity holds up to machine precision. It is unclear
what Kalnay means precisely with machine precision, and it will probably be
different from today’s machine precision. We will just take it as a quantity
≪ 1 and present the numerical results.

3In (Kalnay, 2002) the identity is stated for real matrices/operators only with the
transpose instead of the conjugate transpose
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Since calculations of the LHS and RHS for both models turned out to be
very small, we used the difference relative to the mean of the LHS and RHS
as the verification measure, i.e.

VATLM =
|(Lx′(t0))∗(Lx′(t0))− x′(t0)∗L∗(Lx′(t0))|

|1
2

(
(Lx′(t0))∗(Lx′(t0)) + x′(t0)∗L∗(Lx′(t0))

)
|
. (5.9)

The results of the verification of the linear models through eqs. (5.7b)
and (5.9) is presented in the following. Refer to secs. 5.4 and 5.5 for the
parameters used.

Lorentz-63 model

For the Lorentz-63 model the average E(t) (eq. (5.7b)) is shown in fig. 5.1a
for a random initial perturbation. The average is based on 1000 independent
integrations. For comparison a logarithmic and a linear function is fitted
to the error data in two different time ranges (see figure caption for the
functional form of the fits). For the logarithmic fit ]0; 0.5]tu is used, while
for the linear fit [1.0; 3.0]tu is used. The parameter a of the logarithmic
fit is estimated to 1.4. Although other functions could fit the ]0; 0.5]tu as
well as the logarithmic, a transition from this range, possibly governed by
polynomial error growth, to the [1.0; 3.0]tu range, governed by exponential
error growth, is clearly seen. The point where the logarithmic fit and the
error diverges gives an estimate of ∼ 0.3tu for the time up until which the
TLM is valid.

Concerning the adjoint of the TLM, the implementation seems to be
correct, since an integration interval t − t0 > 1tu of the forward/backward
propagators is needed in order to even observe a finite value for eq. (5.9).
The average of 1000 independent estimates of the logarithm of VATLM with
t− t0 = 5tu gives ln(VATLM) ≈ −29.

Sabra shell model

The results of similar calculations with the TLM of the Sabra shell model are
shown in figs. 5.1b and 5.1c calculated in Rlarge and Rsmall, respectively. The
time ranges for the logarithmic fits are ]0; 0.004]tu and ]0; 6 · 10−4]tu, respec-
tively, while those for the linear fit are [0.008; 0.02]tu and [0.002; 0.02]tu. The
parameter a of the logarithmic fits are estimated to 0.7 and 1.3, respectively.
Again we see a clear transition to an exponential error growth, and thus get
an estimate of ∼ 0.005tu and ∼ 0.002tu, respectively, for the time up until
which the TLM is valid.



5.3. LANCZOS ALGORITHM 52

The verification of the adjoint of the TLM yields an average value of
ln(VATLM) ≈ −7 based on 1000 independent estimates and t − t0 = dt (see
sec. 5.4). Although not as obvious as for the Lorentz-63 model, the adjoint
code is still considered to be implemented correct based on this verification.
The difference in integration length and value for VATLM between the models
is probably due to the larger dimension and number of distinct timescales of
the Sabra shell model compared to the Lorentz-63 model.

(a) Lorentz-63 model

[tu]

(b) Sabra shell model; Rlarge

[tu]

(c) Sabra shell model; Rsmall

[tu]

Figure 5.1: The average error vs time of the TLM integration of a small perturba-
tion compared to the difference between a perturbed and unperturbed integration
of the non-linear model (black) as stated in eq. (5.7b). Lines in blue represent fits
to a logarithmic (dashed, f(x) = aln(x) + b) and linear (dotted, f(x) = ax + b)
function in specific time ranges. (a) Lorentz-63 model; logarithmic fit in ]0; 0.5]tu
with a = 1.1, b = −10.4; linear fit in [1.0; 3.0]tu with a = 1.7tu−1, b = −11.2. (b)
Sabra shell model in Rlarge; logarithmic fit in ]0; 0.004]tu with a = 0.7, b = −28.4;
linear fit in [0.008; 0.02]tu with a = 122.9tu−1, b = −32.6. (c) as in (b) but
in Rsmall; logarithmic fit in ]0; 6 · 10−4]tu with a = 1.2, b = −24; linear fit in
[0.002; 0.02]tu with a = 671.7tu−1, b = −32.2.

5.3 Lanczos algorithm

As noted in sec. 4.2 L can for simple models be written as a matrix, and the
eigenvalue problem in eq. (4.8) can be solved by diagonalizing L∗L. In more
complex problems, where this is not possible or where the number of degrees
of freedom is too large for standard matrix algorithms to work, an iterative
procedure can be followed to calculate the most dominant singular values
and vectors (R. Buizza et al., 1995). One such procedure is the Lanczos
algorithm, for which the detailed procedure is outlined in appendix E.

Overall, the algorithm works by constructing an orthonormal basis {pi}
(called the Lanczos vectors) of anN -dimensional subspace of theM -dimensional



5.4. MODEL CONFIGURATIONS 53

model space from N ≪ M iterations of L∗L acting on a random initial vec-
tor. From this basis a tridiagonal matrix is then constructed and diagonal-
ized using standard diagonalization libraries. The resulting eigenvectors are
the approximate dominant singular vectors of L and the square root of the
corresponding eigenvalues are the approximate singular values (R. Buizza
et al., 1995). In that way, the algorithm turns the problem of finding the
eigenvalues and -vectors of an (M × M) matrix/operator into the problem
of diagonalizing an (N ×N) tridiagonal matrix.

Unfortunately, the Lanczos algorithm is sensitive to numerical errors due
to finite precision arithmetic and does not necessarily preserve the orthogo-
nality between the Lanczos vectors. This means that the tridiagonal matrix
is not a proper projection of L∗L onto the {pi} basis (see eq. (E.1)), and con-
sequently the estimated eigenvalues and -vectors of L∗L will not be accurate.
Some eigenvalues may also become very similar, and it is hard to determine
if it reflects actually similar eigenvalues of L∗L or if it is a consequence of
the finite precision (Meurant et al., 2006)4.

To suppress the loss of orthogonality various methods have been proposed
to re-orthogonalize the Lanczos vectors periodically (Demmel, 1997; Meurant
et al., 2006). The simplest but also computationally most expensive way is
to do a full re-orthogonalisation of the new pi+1

5 with respect to all existing
pi’s. We will follow this approach, since the computational expense is small
for the low-dimensional models in use. The re-orthogonalisation is performed
in item 3f in appendix E.

5.4 Model configurations

We present in this section the configurations of the numerical setup for the
two models and how the models are equilibrated before saving a reference
run. The reference run functions as the true state of the model from which
perturbations are made as will be described in ch. 6.

5.4.1 Lorentz-63 model

Model parameters:

σ = 10, r = 28, b = 8/3 (5.10)

4R. Buizza et al. does not mention explicitly that the finite precision arithmetic is the
reason, but they consider only the N/3 most dominant singular vectors to be estimated
accurately.

5In practice, it is actually done on the intermediate Lanczos vectors (the wj ’s), which
differ from the pi+1’s only by a normalization
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Time step:

dt = 0.01 (5.11)

The time step is chosen to properly resolve the characteristic timescales of
the system (see sec. 3.1).

Model equilibration and reference run
The model is run for 103tu starting from x = [1, 1, 1] after which data for
105tu is saved as the reference run. This ensures that the reference run is
completely independent of the initial state and that the reference trajectory
lies on the attractor of the system.

5.4.2 Sabra shell model

Model parameters:

ϵ = 1/2, k0 = 1, λ = 2, N = 20, fn = δn,0 (5.12)

Time step:

dt = 10−5 (5.13)

The time step is chosen to properly resolve the smallest timescales of the
system and thus ensure the RK4 scheme to be stable (see sec. 5.1).

Model equilibration and reference run
The model is run for 103tu starting from un = k

−1/3
n , i.e. the Kolmogorov fix-

point. This corresponds to ∼ 425 eddy turnovers of the largest eddy (n = 0)
(see appendix B.2). This ensures that the model has equilibrated, such that
statistical measures can be made without influence from the initial state and
the transient period. After this the model is run for 3 · 103tu which is saved
with a sampling rate of 1/10 as the reference run.

Kinematic Viscosity
The kinematic viscosity is determined by f0 and by requiring the time average
energy content to be constant. The energy input per time is f0u0 while
the energy output per time is νk2

Ku
2
K , where K is the shell number that

corresponds to the Kolmogorov scale in equilibrium. These two quantities
will equal the mean energy flux across scales, which can be quantified by ϵ,
i.e.

νk2
Ku

2
K ∼ ϵ ∼ f0u0, (5.14)
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Using eq. (2.24), this can be manipulated as follows:

νk2
Kϵ

2/3k
−2/3
K ∼ ϵ ∼ f0ϵ

1/3k
−1/3
0 (5.15a)

νk
4/3
K ϵ1/3 ∼ ϵ2/3 ∼ f0k

−1/3
0 (5.15b)

Inserting eq. (2.25e) into the first and the last term we get a relation between
ν, f0 and K:

νk
4/3
K ∼ f0k

−1/3
0 k

−4/3
K ν−1 (5.16a)

ν2k
8/3
K ∼ f0k

−1/3
0 (5.16b)

ν ∼
√

f0

k
1/3
0 k

8/3
K

=

√
f0

k3
0λ

8K/3
, (5.16c)

where in the last step we have used eq. (3.8). The model is configured to
have

K = 19 (5.17a)

ν ≈ 2.37 · 10−8m2/s (5.17b)

5.5 Method configuration

In this section we present the numerical configuration of the different per-
turbation methods. In this and future chapters, we will refer to the cycle
length in the BV method, the integration time in the LLV calculation, and
the optimization time in the SV method collectively as the optimization time,
tOPT .

The choice of tOPT in the BV method has a large impact on what dynam-
ical structures that are bred upon; a short tOPT will not breed on dynamical
instabilities that evolve on long time scales and vice versa. The tOPT influ-
ences the resulting singular vectors in the SV method similarly, despite the
optimization is made with the TLM and its adjoint.

For the SV method, the choice of tOPT is made on the basis of the verifica-
tion of the TLM presented in sec. 5.2.1 to ensure that the optimization time
is within the linear range. To be able to compare the BV method with the
SV method the same tOPT is used. The tOPT in the LLV method is chosen
to be considerably larger than a characteristic timescale of the models while
still within a computational practical range.
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5.5.1 Lorentz-63 model

The tOPT in the LLV method is chosen based on the mean residence time in
a wing (see sec. 3.1); for tOPT = 20tu this corresponds to ∼ 15 regime shifts.
The norm of the perturbations is set to ||x′|| = 0.01 as in (L. Magnusson
et al., 2008), which is small compared to the norm of a state vector on the
attractor.

For the RF method, we choose historical states from the first 104tu of
the reference run. For that reason, all investigations with the perturbation
methods are started after this time.

Table 5.1: Parameters for the configuration of the BVmth, LLVmth and SVmth in
the Lorentz-63 model

BVmth LLVmth SVmth

Number of cycles 4 Integration time 20.0tu Optimization time 0.1tu
Cycle length 0.1tu Rescale interval 4.0tu
Number of vectors 8

5.5.2 Sabra shell model

We investigate the perturbation methods separately in regions dominated by
the small and large scales, and use for that reason two different optimization
times in the BV and SV methods.

The relevant timescale to choose tOPT for the LLV method upon is con-
sidered to be the smallest eddy turnover time before viscosity sets in. This
corresponds to the shell range in which the most unstable dynamic take
place; for tOPT = 0.1tu this corresponds to ∼ 17 eddy turnovers of shell 17
(see appendix B.2).

The norm of the perturbations is set to ||x′|| = 10−14, which is small
compared to the norm of the average velocity state vector (||⟨u⟩t|| ∼ 1m/s),
and also small compared to the smallest individual components of this vector
(∼ 10−6m/s). The latter is needed in order for the perturbations not to dom-
inate completely the smaller scales compared to the underlying dynamics.

Table 5.2: Parameters for the configuration of the BVmth, LLVmth and SVmth in
the Sabra shell model

Rsmall Rlarge

BVmth LLVmth

Number of cycles 10 Integration time 0.1tu
Cycle length 5 · 10−5tu 0.004tu Rescale interval 0.01tu
SVmth

Optimization time 5 · 10−5tu 0.004tu



6
∣∣ Results

In this chapter we present the results of the investigations with the different
perturbation methods. We start out with some preliminary remarks about
the investigations together with the definition of a terminology used when
describing the results.

6.1 Preliminary remarks

In outline, we examine the perturbations on their own e.g. their spatial/spectral
distributions, and through ensemble forecasts started from those perturba-
tions. In the latter case we are interested in the ability of the methods to
produce large error growth relative to a reference. The investigations made
are greatly inspired by L. Magnusson et al., 2008, and this study will work
as a reference for comparison of the results for the Lorentz-63 model.

We will consider the reference run as the ”true” solution of the model, and
perform perturbations and ensemble forecasts of this solution. In relation to a
true ensemble system, this compares to perform perturbations and forecasts
from the current best estimate for the state of the atmosphere obtained
through data assimilation. The main difference is that such an analysis
comes with an error, while in this study we have no such error due to perfect
knowledge of the models. We do not attempt to simulate this error, since it
would simply add an offset to the initial perturbations, which is irrelevant
for the comparison of the perturbation methods.

The initial conditions of the members of an ensemble are perturbed ac-
cording to the various perturbation methods presented in ch. 4 and by the
LLVs presented in sec. 2.2. We therefore denote an ensemble by the per-
turbation method used e.g. the SV ensemble (in short: SVens) is perturbed
by the SV method. When a perturbation method produces perturbations
with a specific order (e.g. the first, second, etc. SV in the SV method), the
ensemble members are perturbed in that order e.g. the first SV ensemble
member (in short: SV1

mbr) is perturbed by the first SV (in short: SV1) etc.

57
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We follow the structure in the rest of the thesis and present the results for
the two models separately. Throughout the chapter the following colour-code
is used for the different perturbation methods: RD, NM, BV, BV-EOF,
SV, LLV, RF. Concerning the SV method, only the initial SVs (from now
on simply the singular vectors, SV) are investigated to limit the number of
methods to compare.

6.2 Lorentz-63 model

In fig. 6.1 the various perturbations are shown on top of the reference run as
vectors. The norm of the vectors are scaled up for visualization. From this
figure we can see many of the characteristics of the different methods.

The RD method results in perturbations uniformly distributed around the
perturbed reference point. This means that the majority of perturbations
point off the attractor and are not in-line with the underlying dynamics.
Contrarily, the NMs lie completely in the plane of the attractor, as well as
most RF perturbations and BVs. The distribution of RF perturbations are
tilted slightly compared to the NMs. This is because they are constructed
from reference states positioned all over the given attractor wing, which is
not a perfect plane. The BVs concentrate in the direction parallel to the
LLV1. The LLV method gives by construction two perturbations (first and
second) which lie in the attractor plane, while the third perturbation then is
orthogonal to the attractor plane. This is also seen to some degree for the
BV-EOF and SV method, but in general the first member perturbations of
those methods point slightly off the plane. To see this, the supplementary
figs. F.1 and F.2 show the perturbations along a trajectory in phase space for
the three methods. Note the difference between the index one vectors: while
the LLV1s systematically lie approximately tangential to the trajectory, the
BV-EOF1s, and SV1s lie more perpendicular to the trajectory.
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Figure 6.1: An example of the perturbations optimized for a specific point in time
(black cross) shown as vectors from two different views; (a) in the plane of the
left wing, (b) orthogonal to the plane of the left wing. The colouring follows the
convention RD, NM, BV, BV-EOF, SV, LLV, RF. The first, second and third
vector of the BV-EOF, LLV and SV method are plotted with solid, dashed and
dash-dotted vectors, respectively. For the RD, NM and RF methods the vectors
are shown as dots; i.e. the perturbation vectors start at the black cross and points
towards the dots. The black curve highlights the optimization time of the SVs.

In fig. 6.2 the error growth relative to the reference run of ensemble fore-
casts started using the various perturbation methods are shown. The chosen
region of the reference run shows a regime shift from right to left wing.
Starting with fig. 6.2b we can see how the RDens has a larger spread than the
NMens and RFens and that the spread of the latter two mainly covers the top
part of the RDens spread. The third and fourth NMens from the left shows no
spread at all, which is because the reference trajectory is in the region where
the eigenvalues are real (see fig. 3.2b and sec. 4.1). Note how the maximal
error growth of the ensembles increases around the regime transition.

Comparing with fig. 6.2a the BV-EOFens, SVens and LLVens spread ap-
proximately as much as the RDens, but with only three members. On the
contrary the BVens most often ”group together”; sometimes in the direction
of large error growth (e.g. fifth ensemble from right), sometimes not (e.g.



6.2. LORENTZ-63 MODEL 60

fourth ensemble from right). The SV1 generally finds the direction of maxi-
mum error growth, while the BV-EOF1 less often do. In e.g. the first three
ensembles the BV finds either a direction of suboptimal error growth (the
first two) or results in a large spread of the ensemble (third), which makes
the BV-EOF1 fail to find the optimal direction. Comparing with the LLVens,
the BVens generally evolve similarly to the LLV1

mbr, while the BV-EOF2
mbr

and BV-EOF3
mbr evolve similarly to the LLV2

mbr and LLV3
mbr, respectively.

[tu]

Figure 6.2: An example of ensemble forecasts perturbed by the various perturba-
tion methods shown as the error growth relative to the reference run (left ordinate).
The colouring follows the convention RD, NM, BV, BV-EOF, SV, LLV, RF.
The first, second and third member of the BV-EOF, LLV and SV ensembles are
plotted with solid, dashed and dash-dotted lines, respectively. The forecasts are
started sequentially each 0.1tu. In the background the x component of the ref-
erence run is shown (black curve, right ordinate), which indicates that a regime
shift occurs. For the RD, NM and RF ensembles they consist of 50 members, for
the BV ensemble 8 members, and for the rest 3 members. Compare with fig. 1 in
(L. Magnusson et al., 2008) included in fig. H.1.

To assess the performance of the various methods in terms of error growth,
we investigate the exponential growth rate of the ensemble forecasts defined
as

κ(t) =
1

dt
ln
( ||x′(t+ dt)||

||x′(t)||
)
, (6.1)

where x′(t) is the error of an ensemble forecast relative to the reference (L.
Magnusson et al., 2008). More precisely we denote eq. (6.1) the instantaneous
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exponential growth rate at time t when dt → 0. The mean exponential
growth rate κmean(t0) is given by eq. (6.1) with a finite dt = ∆t and constant
t = t0.

In fig. 6.3 the average instantaneous exponential growth rates are plotted
for the various methods with dt taken as the time step of the model inte-
gration (sec. 5.4). The average is made from 5000 ensemble runs for each
method, which are initiated sequentially with 1tu separation. Each ensemble
consists of three members.

[tu]

Figure 6.3: The instantaneous exponential growth rate, κ(t), for the various meth-
ods. The colouring follows the convention RD, NM, BV, BV-EOF, SV, LLV,
RF. The growth rates that correspond to the first, second and third member of
the BV-EOF, LLV and SV ensembles are plotted with solid, dashed and dash-
dotted lines, respectively. The growth rates are averaged over 5000 ensemble runs
for each method, which are initiated sequentially with 1tu separation. Each en-
semble consists of three members and all forecasts are run for 1tu. To the right
the black horizontal line shows the dominant global Lyapunov exponent given by
λ1 = 0.9tu−1. Compare the performance of the RD, NM, BV, BV-EOF and SV
methods with fig. 3 in (L. Magnusson et al., 2008) and the RF method with fig.
5.2 in (L. Magnusson, 2009). The figures are included in appendix H.

During the first ∼ 0.4tu, the methods differ significantly, while they all
tend to converge to the dominant global Lyapunov exponent for t → 1tu
shown as the black line (λ1 = 0.9tu−1). Focusing on the first ∼ 0.4tu,
the RDens, BV-EOF3

mbr, SV
2
mbr, SV

3
mbr and LLV3

mbr show the most negative
growth rates, while the SV1

mbr shows the most positive. The BVens and
BV-EOF1

mbr perform very similarly as well as the LLV2
mbr, BV-EOF2

mbr and
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LLV3
mbr, BV-EOF3

mbr respectively. Note that the LLV2
mbr and BV-EOF2

mbr

actually shows larger growth rates than the LLV1
mbr and BV-EOF1

mbr respec-
tively for t > 0.05tu. Compared with the RDens, the RFens shows positive
growth rates at all times and converges to the RDens at t ∼ 0.1tu. The NMens

also converges to RDens but at t ∼ 0.2tu and the growth rates start off larger
than the BVens and BV-EOFens.

The distribution of κmean(t0) in phase space is shown in fig. 6.4 based
on 1000 ensembles started sequentially in time with 1tu separation. Each
ensemble consists of three members.
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Figure 6.4: The phase space distribution of mean exponential growth rates,
κmean(t0), of the various ensembles. Plotted in the z-x plane as dots positioned on
the reference trajectory at t = t0. The dots represent ensemble averages except for
the BV-EOFens, SVens and LLVens which are split into separate member plots. For
each method 1000 ensemble runs are made positioned sequentially in time with
1tu separation. Each ensemble consists of three members. The forecast time and
dt = ∆t in eq. (6.1) is 0.1tu.
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An immediate similarity between the NMens, BVens and LLV1
mbr is observed,

although the region with large positive growth rates nearby the x0 fixpoint
seem more narrow for the NMens. The SV1

mbr also appear similar to those
three ensembles, but with this region being more broad. The top of the wings
show also larger growth rates than the before mentioned ensembles.

Comparing the BVens with the BV-EOFens we see how the κmean(t0) distri-
bution of the former is split into three different distribution; the BV-EOF1

mbr

covers the region nearby the x0 fixpoint, the BV-EOF2
mbr the regions around

the x± fixpoints, and the BV-EOF3
mbr the region near the edge of the attrac-

tor. Those distributions compare well with the ones for LLVens especially
LLV3

mbr. The LLV1
mbr shows less negative growth rates around the top of

the wings, while the LLV2
mbr shows larger growth rates in the central part of

the attractor. Similar clear patterns are not seen in SV2
mbr and SV3

mbr, which
merely shows almost uniformly distributed growth rates, which resembles the
RDens. Comparing the RFens with RDens we observe that the former results
in larger growth rates nearby the x0 fixpoint than the latter, but to a lesser
extent than any other method.

6.3 Sabra shell model

In fig. 6.5 the equivalent to fig. 6.2 is shown for the Sabra shell model. The
ensembles are started sequentially separated by 0.01tu. The chosen section
of the reference run shows both regions dominated by the smaller scales (e.g.
fourth and sixth ensemble from the left) and by the larger scales (e.g. first
three ensembles from the left). Despite this, the tOPT valid for Rsmall is used
for all ensembles. Notice the different behaviour of the error growth in the
two different regions; the error growth in regions dominated by the small
scales is much faster than in regions dominated by the large scales, but the
influence from viscosity, observed as dampening of the error growth, is also
much more apparent. The forecast length of 0.01tu is chosen to show the
behaviour of the forecasts outside the linear range, where the influence from
the non-linear dynamics is particularly clear in regions dominated by the
small scales.

In fig. 6.5b we see that the members of the NMens on average give slightly
larger error growth than the RDens, since the members are confined to the
part of the RDens with the largest error growths (e.g. the first two ensembles
from the left). In contrary, the RFens shows a large spread of the members
and especially a large portion of members with negative error growth (e.g.
the first three ensembles from the left). As with the Lorentz-63 model we
also see how the members of the BVens evolve very alike (e.g. first, second
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and sixth ensemble from the left), whereas the BV-EOFens, SVens and LLVens

are capable of spreading more (fig. 6.5a).

[tu]

Figure 6.5: An example of ensemble forecasts perturbed by the various perturba-
tion methods shown as the error growth relative to the reference run (left ordinate).
The colouring follows the convention RD, NM, BV, BV-EOF, SV, LLV, RF.
The forecasts are started sequentially each 0.01tu. In the background the total
energy of the reference run is shown (black curve, right ordinate), which indicates
periods dominated by the small scales (e.g. fourth and sixth ensemble from the
left) and the large scales (e.g. first three ensembles from the left). Despite this,
the tOPT is set to the one valid for Rsmall for all ensembles. All ensembles con-
sist of 20 members, but only 3 members are shown for BVens (randomly chosen),
BV-EOFens (mbr. 1, 10, 18), LLVens (mbr. 2, 10, 18) and SVens (mbr. 1, 10, 18).
For the latter three ensembles the error growth of the specific members is plotted
as solid, dashed and dash-dotted lines, respectively.

In fig. 6.6, the average instantaneous exponential growth rates given by
eq. (6.1) are plotted. The average is made from 1000 ensemble runs for each
method in (a) Rsmall and (b) Rlarge. Since some methods perform very alike,
supplementary plots of the results for the individual methods are given in
figs. G.1 to G.3 and the results for all members of the SVens is given in
fig. G.4.

Starting with fig. 6.6a we see that the SV, RD and RF methods, together
with BV-EOF18

mbr and LLV18
mbr, start off with negative growth rates. After the

first 0.002tu a clear convergence of the methods is seen. Since the growth
rates are evaluated in distinct regions, the convergence cannot be directly
compared to the dominant global Lyapunov exponent as with the Lorentz-63
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model. Instead, the convergence is compared to the dominant LLE (π2 =
206tu−1 and π2 = 64tu−1 for Rsmall and Rlarge, respectively)

1 shown as the
black line to the right in the plot.

The BV-EOF1
mbr shows the largest growth rates followed by the BVens

and LLV2
mbr in the first 5 · 10−4tu. The latter two show almost identical

growth rates for all t, and also the members of the BV-EOFens and LLVens

show very similar behaviour. The BVens, BV-EOF1
mbr and LLV2

mbr show a
characteristic drop to negative growth rates in [5 · 10−4; 1.5 · 10−3]tu, which
is due to the viscosity that dampens the error growth as noted in relation to
fig. 6.5. The same is seen for all other ensembles, but less pronounced. In

[tu]

[tu]

Figure 6.6: The instantaneous exponential growth rate, κ(t), for the various meth-
ods. The growth rates are averaged over 1000 ensembles for each method, which
are initiated in (a) Rsmall and (b) Rlarge. All ensembles consist of 20 members,
but for the BV-EOFens, LLVens and SVens the growth rates are shown for the indi-
vidual members [1, 10, 18], [2, 10, 18] and [1, 10, 18], respectively. To distinguish
the growth rates of the individual members they are plotted with solid, dashed
and dash-dotted lines, respectively. For comparison, the second LLE is plotted
to the right (black line; π2 = 206tu−1 and π2 = 64tu−1 for Rsmall and Rlarge,
respectively) averaged over 1000 LLVens. All forecasts are run for 0.01tu, which
is also the ∆t used in the LLE calculation (eq. (2.14)). Notice the different time
range on the abscissas.

the beginning 5 ·10−4tu we also see that the NMens shows larger growth rates
than the SVens and the RFens, although the RFens reaches the same growth

1As described later, the first LLV shows very different behaviour than the rest of the
LLVs and is treated specially. For that reason, the second LLE is used as the dominant
LLE.
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rates in the end of this interval.
In fig. 6.6b we see that the methods show both similar and different

behaviour compared to fig. 6.6a. The time before the methods converge is
longer, ∼ 0.006tu. A characteristic drop in growth rates for all methods is
seen again, but this time around ∼ 0.005tu and much less pronounced. In
the beginning ∼ 0.001tu all methods show to some degree negative growth
rates; a clear difference to fig. 6.6a being the very negative growth rates of the
BV method and BV-EOF1

mbr. The maximum growth rate is seen in LLV2
mbr

closely followed by the RF method and the NM method.
In fig. 6.7 we present the average spectral distribution of the perturbation

vectors for the BV, BV-EOF, SV, LLV and RF methods calculated in Rsmall.
Similar figures for Rlarge is given in appendix G.4. All vectors are normalized
to have norm one before averaging.

As seen in fig. 6.7d, both the BV and RF vectors mainly occupy the
shells in the range n ∈ [14; 18]. While the BV vectors in the lower part
of the spectrum show equal component amplitudes of ∼ 0.1, the RF vector
components decrease in amplitude for n → 1. The orthogonalisation of
the breed vectors through EOF analysis gives the BV-EOF distribution in
fig. 6.7c (bottom panel). In the top panel the variance explained by the ith
BV-EOF normalized to the total variance is shown; the plot is truncated at
10−4 for better visualization of the largest variances. The orthogonalisation
clearly pulls out information from the linearly dependent BVs and gives a
spectral structure for i < 5 and i > 15 with resemblance to the LLV spectral
distribution in fig. 6.7b (bottom panel). For i ∈ [5; 15] on the contrary, the
spectrum shows little to no structure.

The LLV distribution shows a clear resemblance to the eigenvector dis-
tribution in fig. 3.5 with the characteristic V-shape. A distinct difference is
seen for i = 1 for which reason the average LLV1

mbr is plotted in fig. 6.7d
(red curve). For comparison the Kolmogorov scaling of the velocity is plot-
ted (eq. (2.24), black dashed line). The Lyapunov exponents are shown in
fig. 6.7b (top panel) except λ1, which is a factor 10 larger than the next largest
exponent and would dominate the plot. Furthermore, the plot is truncated
at −200tu−1 for similar reasons concerning the most negative exponents.

The distribution of SVs is shown in fig. 6.7a (bottom panel) together
with the exponential growth rates calculated from the singular values as

1
tOPT

ln(σi) (top panel). Despite being relatively blurred out, the distribution
show some spectral structure with the first five singular vectors concentrated
around n ∈ [15; 18]. The first eight singular values give positive growth rates,
while the rest give negative. For i > 15 some singular values turned out to
be negative contrary to what is expected from theory (sec. 4.2), for which
reason the growth rates are undefined and not shown.
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Figure 6.7: (a-c) The average spectral distribution of perturbations for three dif-
ferent methods (bottom panels) together with the mean exponential growth rates
calculated from the singular values, the global Lyapunov exponents and the BV-
EOF variances normalized to the total variance, respectively (top panels). The
average is made over 1000 ensembles initiated in Rsmall. (d) The mean spectrum
of the RF and BV perturbations together with the mean LLV1

mbr. The Kolmogorov
scaling of the velocity eq. (2.24) is shown for comparison (black dashed). In (a;
top) the sign of the growth rates is shown with +, −. The singular values for i > 15
turned out negative and the growth rates are not shown. In (b; top) the sign of
λi is shown with +, · and −, where · means approximately zero. The exponent
corresponding to LLV1 is not shown since it is a factor 10 larger than the next
largest exponent and would dominate the plot. Furthermore, the plot is truncated
at −200tu−1 for similar reasons concerning the most negative exponents. In (c;
top) the size of the relative variance is shown with +, · and − signifying above 0.1,
between 0.01 and 0.1, and below 0.01. The plot is truncated at 10−4 for better
visualization of the largest variances.



7
∣∣ Discussion

In this thesis we have studied various methods to produce perturbations of
the initial conditions of an ensemble system using two low dimensional non-
linear models. This section is devoted to a discussion of the results.

7.1 Lorentz-63 model

Concerning the results of the RD, NM, BV, BV-EOF and SV methods for the
Lorentz-63 model we generally see a good agreement of figs. 6.2 and 6.3 with
figs. 1 and 3 in (L. Magnusson et al., 2008) (shown in figs. H.1 and H.2),
with some deviations. For an example, L. Magnusson et al. found a bit
larger values for the maximal instant exponential growth rate of SV1

mbr and
BV-EOF1

mbr, and a bit smaller values for the initial growth rates of the BVens.
The BV-EOF1

mbr and BVens are thus reported by L. Magnusson et al. to
perform differently contrary to what is observed in fig. 6.3. This discrepancy
may be due to the number of breeding cycles and breed vectors used1, which
affects the co-variance in the EOF analysis and the resulting BV-EOFs.

The superiority of the BV-EOF2
mbr to the BV-EOF1

mbr after ∼ 0.05tu
(also observed by L. Magnusson et al.) is surprising, since the first BV-EOF
reflects the largest portion of the variance of the BVs, which one could expect
to contain the direction of the largest error growth rate. L. Magnusson et al.
proposes that it can be a result of the underlying eigenvector structure being
non-orthogonal, as investigated by Smith et al., 1999, which is the case for the
Lorentz-63 model since the Jacobian is asymmetric (eq. (3.6)). The average
angles between the eigenvectors evaluated at 5000 randomly chosen points
on the attractor are 68.3 deg (arccos(⟨ξ1; ξ2⟩)), 78.5 deg (arccos(⟨ξ1; ξ3⟩)),
79.6 deg (arccos(⟨ξ2; ξ3⟩)).

Smith et al. calculates the instantaneous exponential growth rates in a

1The values are not stated in (L. Magnusson et al., 2008) and could for that reason not
be reproduced.

68
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two-dimensional linear system with a constant Jacobian constructed to have
eigenvectors separated by an angle δ. By varying δ Smith et al. observes
how the growth rates of an initial error exceeds the maximum eigenvalue in
the transient period for δ ̸= ±90 deg; the less orthogonal, the larger growth
rates (refer to fig. 3 in (Smith et al., 1999)). The direction that corresponds
to the largest growth rate is off by −1/2arctan(cotan(δ)) relative to the
first eigenvector (Smith et al., 1999), which corresponds to −10.9 deg for the
Lorentz-63 model. This reasoning thus suggests, that the BV-EOF2 should
project on the first eigenvector to a high degree (cos(−10.9 deg) ≈ 0.98).
The average projection is however 0.5 (⟨BV-EOF2; ξ1⟩ averaged over 5000
ensembles) and not even significantly different from the same calculation for
⟨BV-EOF1; ξ1⟩.

The application of this reasoning to the non-linear Lorentz-63 model with
non-constant Jacobian can be questioned, but may have some relevance for
the understanding of the observed behaviour of the BV-EOFens, as long as
the breed vectors are optimized for a time within the validity of the linear
approximation. The calculated average projections, however, do not seem to
support it.

Concerning the RF method, we can compare with (L. Magnusson, 2009;
included in fig. H.3) which reveals a large disagreement in the beginning
0.2tu. While L. Magnusson find growth rates starting out at ∼ 2tu−1 and
increasing to a maximum of ∼ 3tu−1, we find growth rates starting slightly
above zero and peaking around ∼ 2tu−1.

As described in sec. 4.5, L. Magnusson defines as a constraint on the
sampling of historical states, that the states shall belong to the same wing
as the initial point of an ensemble. No further information is given on how
the wings are separated. The crude split at x = 0 used in this thesis may be
different from that used by L. Magnusson. No matter what, it is certainly
not the most accurate split, since as seen in fig. 4.3 portions of the wings
are faulty classified near the transition between the wings. Even with more
elaborate splitting techniques, however, the classification will still have some
error since the transition occurs gradually. The error made will produce some
RF perturbations that are not in line with the underlying dynamics and thus
contribute with negative growth rates to the mean.

Another difference to (L. Magnusson, 2009) is that we use a minimum
separation time between the randomly chosen historical states, while L. Mag-
nusson does not. Since, however, the chance of choosing correlated states in
the 104tu long period used in the RF method (sec. 5.5.1) is very small, the
effect of not having this minimum separation time is negligible.
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7.2 Sabra shell model

The results for the Sabra shell model raises several questions to be discussed.
Comparing the performance of the SV method with all other methods, it is
surprising that both the BV, BV-EOF, LLV, NM, and to some degree the
RF method produce larger exponential growth rates as opposed to what is
expected from theory (sec. 4.6) and what is seen with the Lorentz-63 model.
The reason may be related to the performance of the Lanczos algorithm,
which, as noted in sec. 5.3, suffers from being sensitive to numerical errors.
Those errors may develop more/faster in the Sabra shell model than in the
Lorentz-63 model due to the larger number of (especially short) timescales
and lead to suboptimal SV estimation.

Focusing on the SV method, it is also surprising that the SV that gives
rise to the maximal error growth rate within the optimization interval is
not SV1. From fig. G.4 it is seen that this is obtained for SV2

mbr, SV
4
mbr in

Rsmall, Rlarge, respectively. The difference is, however, small and may be an
effect of the influence of the non-linear dynamics on the SV perturbations,
which are optimized with the linear models.

Another reason may be related to the orthogonality of the SVs. From
theory, it is expected that the SVs are completely orthogonal (sec. 4.2), but
in practice the average ⟨vi;vj⟩ for j ̸= i is ∼ 0.26. In that way, the direction
of the largest error growth depicted by SV1 is partly contained in other SVs,
which then may produce large growth rates.

The non-orthogonality of the SVs could be a result of the sensitivity to
numerical errors of the Lanczos algorithm as noted above. Although the
re-orthogonalisation of the Lanczos vectors solved the problem of loss of or-
thogonality between those vectors, it cannot be ruled out that such numerical
errors have had an impact on the orthogonality of the SVs.

This moderate non-orthogonality is also reflected by the distribution
shown in fig. 6.7a. Since the SVs converge towards the adjoint LLVs as
tOPT → ∞ (sec. 4.6.2), which shows a spectrum similar to the LLVs (fig. G.5),
we expect to see a somewhat similar spectrum for the SVs. The finite value
for tOPT of course has a large impact on the observed discrepancies, but we
also believe that the non-orthogonality of the SVs plays a role. The impact
from the tOPT was investigated by running the SV method for tOPT = 0.001tu
and tOPT = 0.005tu too. The corresponding distributions are shown in ap-
pendices G.5 and G.6. Compared to fig. 6.7a we see that the range of vectors,
that concentrate around n ∈ [15; 18] and correspond to positive growth rates,
is extended from i ∈ [1; 5] to i ∈ [1; 7] when tOPT is increased by a factor
10; i.e. more vectors are concentrated in the same shell range. From this
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investigation, the similarity to the distribution of the adjoint LLV is not seen
to improve.

In regard to the distribution of the BV-EOFs and the corresponding vari-
ances, the clear spectral structure for i < 5 is expected because of the unsta-
ble dynamics around n ∈ [15; 18]; this results in a large variance of the BVs,
which is captured in the EOF analysis. More surprising is the clear structure
for i > 15. Since this range is dominated by contraction of the phase space
due to diffusion, the variance of the BV components is very low. One could
expect this to make the EOF algorithm struggle to pull out enough infor-
mation to recover the spectral structure. However, the distinct orthogonal
structure of the phase space in this range, as observed in fig. 3.5, may be
the explanation; it simply forces the BVs and consequently the BV-EOFs to
reflect this structure.

Another way to understand these observations, is through the theoretical
knowledge that the BVs converge towards the leading LLV for topt → ∞ as
described in sec. 4.6.3. Since a Gram-Schmidt orthogonalisation procedure
is used both to obtain multiple LLVs and to orthogonalize the BVs into
BV-EOFs, it seems natural that the distribution of BV-EOFs looks like the
distribution of LLV (fig. 6.7b). The blurry spectrum for 5 < i < 15 is
an exception to this. Since this range corresponds to the shells n ∈ [1; 9]
with eddy turnover times between 2.07tu and 0.1tu, the optimization time of
5 ·10−4tu is too short to properly breed on the dynamics of those shells. This
is also reflected in the flat spectrum of the average BVs seen in fig. 6.7d.

The distribution of LLVs resembles very much the eigenvector spectrum
in fig. 3.5 except for LLV1. Although the LLVs depend on the Jacobian eval-
uated along a trajectory and the eigenvectors only depend on the Jacobian
evaluated at a specific point in time, the LLVs reduces to the eigenvectors if
the flow is stationary as noted in sec. 4.6.3. The averaging of the eigenvec-
tors and LLVs imitates this, since the local characteristics of the eigenvectors
valid at different times, and likewise for Lyapunov vectors, are averaged out.
In that way, the very alike distributions of LLVs and eigenvectors is to be
expected. It is noted that the LLV spectrum except LLV1 corresponds well
with the results of Yamada et al., 1988, which studied the LLV spectrum of
the very similar GOY shell model.

Regarding the RF method, the highly negative growth rates during the
transient period in fig. 6.6, and the fact that the RDmth initially performs
better, indicates that the configuration and/or implementation of the method
is not optimal.

One explanation lies in the normalization of eq. (4.18) with the Kol-
mogorov spectrum of the shell velocities. Despite that it leads to perturba-
tions dominated by the small scales, the spectrum of the mean perturbation
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appears relative ”bumpy”, and continues farther into the dissipative range
than e.g. the spectrum of the BVs (see fig. 6.7d). Better ways to manipulate
eq. (4.18) to give large growth rates may exist.

Another explanation lies in the constraints on how to choose the state vec-
tors. This is done on the basis of the region analysis presented in appendix D.
The random choice of a state vector within a given region, however, is not
ensured to be a state vector that reflects the overall trend of the region (i.e. if
the small or large scales dominate). This is due the size of the kernel, which
makes the regions a coarse-grained characteristic of the actual dynamics. In
that way, the choice of state vectors may produce perturbation vectors that
do not reflect the dynamics of the perturbation point and consequently result
in suboptimal error growth of the ensemble.



8
∣∣ Conclusion and Outlook

In this final chapter, we present a short sum up of the thesis together with
the main conclusions. As a final remark we describe the next steps to be
made and possible future work in an outlook section.

8.1 Conclusion

Predicting the weather has been and is of great importance, both in an
academic and a practical context, and is a fundamentally difficult task due
to the chaotic nature of the atmosphere. Focusing on ensemble weather
forecasts, this work set out to investigate and review the crucial choice of
method used to perturb the initial conditions of a forecast model. Seven
different perturbation methods were studied with two low dimensional non-
linear and chaotic models; the Lorentz-63 model and the Sabra shell model.

Through a theoretical outline of the methods, we saw how the normal
mode, breeding vector and Lyapunov vector methods were related to the
singular vector method. This was confirmed by numerical investigations.

The perturbation methods were investigated to obtain knowledge of the
spatial/spectral distribution of the resulting perturbations, and the ability
of the methods to produce large error growth relative to a reference.

In the investigations with the Lorentz-63 model, we first saw how the
perturbations were distributed in phase space. While the RD method pro-
duced perturbations uniformly distributed around an initial point, all other
methods produced perturbations that were more in-line with the underlying
dynamics. The first SV of the SV method produced perturbations that led to
the largest error growth compared to all other methods. This was expected
from theory, and it also confirmed the findings of L. Magnusson et al., 2008.
In general, the methods performed very alike to what was reported in this
article, despite some deviations in the BV and BV-EOF methods, which we
attributed to a difference in method parameters. The RF method was com-
pared to (Magnusson et al., 2009) and did not produce as large exponential
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growth rates as reported by Magnusson et al. The discrepancy was ascribed
to a possible difference in the way the attractor of the Lorentz-63 model was
split in order to sample historical states of the same wing as the initial point.

Concerning the investigations with the Sabra shell model, we evaluated
the perturbation methods separately in two different regions; one region dom-
inated by the large scales and one dominated by the small scales. This was
done because the model showed very different behaviour in those regions
which led to significantly different behaviour of the perturbation methods.

Surprisingly, the SV method did not produce the largest error growth
rates; this was instead observed in the first (second) member of the BV-EOF
(LLV) method in Rsmall (Rlarge). Also, the SVs were not observed to be
completely orthogonal as opposed to theory. This unexpected behaviour was
attributed to the Lanczos algorithm, which was used to find the singular vec-
tors. The algorithm is known to be sensitive to numerical errors the effect of
which was sought diminished by re-orthogonalizing the Lanczos vectors. The
number of (especially short) timescales of the Sabra shell model, however,
probably led to fast growth of the numerical errors and thus suboptimal SV
estimation.

Regarding the RF method, we observed very suboptimal error growth
rates especially in Rlarge. Even the RD method produced larger growth
rates in the transient period. This behaviour was attributed partly to the
normalization of the RF vectors relative to the Kolmogorov spectrum of shell
velocities and partly to the constraints put on the choice of historical samples.

8.2 Outlook

In relation to the conclusions about the SV method and the Lanczos algo-
rithm, an apparent next step would be to investigate ways to further coun-
teract its sensitivity to numerical errors and search for alternative algorithms.

Another path to follow would be to investigate alternative perturbation
methods to the ones presented in this thesis. We have mainly focused on the
more traditional methods, while research into e.g. non-linear LLVs (Feng
et al., 2014) and non-linear SVs (Winkler et al., 2020) shows interesting gen-
eralizations of the linear methods that could be worth examining.

Although suitable for reviewing fundamental concepts of the perturba-
tion methods, the Lorentz-63 model and Sabra shell model are after all low-
dimensional and more of theoretical relevance. Therefore, another very inter-
esting research topic would be to apply the analyses to a real NWP model.
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This has been done for global models in e.g. (L. Magnusson, 2009; Molteni
et al., 1996; Toth et al., 1993), but similar studies for regional models do, to
the author’s impression, not exist to the same extend. At least conversations
with Henrik Feddersen, PhD at DMI have revealed that some need and in-
terest exists for investigating the perturbation methods in the context of the
COMEPS model.
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A
∣∣ Alternative forms of the NSE

In this appendix we derive the NSE on spectral and non-dimensional
form, respectively. The derivations follow Ditlevsen, 2011. The spectral
form is very useful in many theoretical calculations, and it makes the struc-
tural resemblance of the Sabra shell model to the NSE very clear. The
non-dimensional form is used to define the Reynolds number.

A.1 Spectral form

We start by presenting the Fourier transform of the velocity field ui(x):

F− : ui(k) =
1

(2π)3

∫
eιkxui(x)dx (A.1)

F+ : ui(x) =

∫
eιkxui(k)dk, (A.2)

where k is the wave vector corresponding to x. We calculate the Fourier
transform of each term in eq. (2.18) by using those transformations:

F−[uj∂jui] =
1

(2π)3

∫
uj(x)∂jui(x)e

−ιkxdx (A.3a)

=
1

(2π)3

∫∫∫
uj(k

′)ιk′′
j ui(k

′′)eι(k
′+k′′−k)xdk′dk′′dx (A.3b)

=

∫∫
ιk′′

j uj(k
′)ui(k

′′)δ(k′ + k′′ − k)dk′dk′′ (A.3c)

=

∫
ι(kj − k′

j)uj(k
′)ui(k− k′)dk′ (A.3d)

=

∫
ιkjuj(k

′)ui(k− k′)dk′ (A.3e)

where in the last equation we have used the spectral incompressibility con-
dition k′

juj(k
′) = 0 (the Fourier transform of eq. (2.19)). Using the same

procedure we get

F−[∂jjui] =
1

(2π)3

∫
∂jjui(x)e

−ιkxdx (A.4a)

= − 1

(2π)3

∫∫
k′
jk

′
jui(k

′)eι(k
′−k)xdk′dx (A.4b)

= −k2

∫
ui(k

′)δ(k′ − k)dk′ (A.4c)
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= −k2ui(k) (A.4d)

and

F−[∂ip] =
1

(2π)3

∫
∂ip(x)e

−ιkxdx (A.5a)

=
1

(2π)3

∫∫
ιk′

ip(k
′)eι(k

′−k)xdk′dx (A.5b)

=

∫
ιk′

ip(k
′)δ(k′ − k)dk′ (A.5c)

= ιkip(k), (A.5d)

where a transform of p(x) similar to eq. (A.2) has been used. p(k) can
be calculated from the Fourier transform of eq. (2.20b). From a similar
calculation as in eq. (A.4) we first have

F−[∂iip] = −k2p(k) (A.6)

while

F−[−∂iuj∂jui] = − 1

(2π)3

∫
∂iuj(x)∂jui(x)e

−ιkxdx (A.7a)

= − 1

(2π)3

∫∫
ιk′

iuj(k
′)eιk

′xdk′
∫

ιk′′
j ui(k

′′)eιk
′′xdk′′e−ιkxdx

(A.7b)

=
1

(2π)3

∫∫∫
k′
ik

′′
j uj(k

′)ui(k
′′)eι(k

′+k′′−k)xdk′dk′′dx (A.7c)

=

∫∫
k′
ik

′′
j uj(k

′)ui(k
′′)δ(k′ + k′′ − k)dk′dk′′ (A.7d)

=

∫
k′
i(kj − k′

j)uj(k
′)ui(k− k′)dk′ (A.7e)

=

∫
k′
ikjuj(k

′)ui(k− k′)dk′, (A.7f)

Combining eqs. (A.6) and (A.7f) gives

p(k) = −
∫

k′
ikj
k2

uj(k
′)ui(k− k′)dk′. (A.8)

The spectral transform of the first and last term of eq. (2.18) are simply
∂tui(k) and fi(k). We can now combine all terms through a couple of index
redefinitions to get the spectral form of the NSE (eq. (A.9b)):

∂tui(k) = −
∫

ιkjuj(k
′)ui(k− k′)dk′
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+ιki

∫
k′
lkj
k2

uj(k
′)ul(k− k′)dk′

−νk2ui(k) + fi(k) (A.9a)

= −ιkj

∫ (
δil −

k′
lki
k2

)
uj(k

′)ul(k− k′)dk′

−νk2ui(k) + fi(k) (A.9b)

A.2 Non-dimensional form

We define non-dimensional variables from the length scale, L, of the largest
variations of the flow described by the NSE equation; L is normally defined
from the size of the container holding the fluid or an obstacle embedded in
the flow. The typical velocity of the flow at this scale we define as U , and
the typical timescale at that scale is then T = L/U ; that is, the typical
time it takes for the fluid to travel the distance L (Ditlevsen, 2011). The
non-dimensional variables (written with tildes) are then

x = Lx̃; u = Uũ; t = (L/U)t̃. (A.10)

Inserting into eq. (2.18) we get

U2

L
∂̃tũi +

U2

L
ũj ∂̃jũi = −U2

L
∂̃ip̃+

νU

L2
∂̃jjũi + f̃i, (A.11)

where we have used eq. (2.20c) to make the pressure gradient non-dimensional.
Dividing through by U2/L and dropping the tildes for convenience we get
the non-dimensional NSE:

∂tui + uj∂jui = −∂ip+ Re−1∂jjui + fi, (A.12)

where a factor U2/L has been absorbed into the forcing term. Re is the
Reynolds number defined in eq. (2.21).



B
∣∣ Timescale analyses

B.1 Lorentz-63 model

In this section, the two characteristic timescales of the Lorentz-63 model are
estimated.

The short timescale, that corresponds to the average rotation period
around the centre of a wing of the attractor, is estimated from a power
spectrum analysis of the z -component of the full reference trajectory (see
sec. 5.4). The spectrum is shown in fig. B.1. Using the Python package
scipy.signal to find the period that corresponds to the peak with the largest
amplitude, we get 0.76tu. This value corresponds well with L. Magnusson
et al., 2008 that reported 0.75tu.
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10−13
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P
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Figure B.1: Power spectrum of the z component of the Lorentz-63 model.

The long timescale, that corresponds to the average residence time in a
wing of the attractor, is estimated from the distribution of residence times
shown in fig. B.2. The residence times are calculated as the time between
crossings of x = 0 of the full reference trajectory. As seen in the figure, the
distribution follows an exponential distribution, which has a characteristic
timescale known as the e-folding time. By fitting a linear function (f(x) =
ax) to the logged distribution, we estimate the long timescale as −1/a =
1.35tu. L. Magnusson et al., 2008 finds a value of 1.8tu by using a (to the
author) unknown statistical method, which makes it difficult to compare and
explain the discrepancy.
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Figure B.2: The PDF of the residence time in a wing of the attractor. Distribution
is made from the full reference run (see sec. 5.4). A linear fit is made (f(x) = ax
with a = −0.74tu−1) to the logged histogram to get the residence time.

B.2 Sabra shell model

The characteristic time scales of the Sabra shell model, also called the eddy
turnover times, can be estimated from the wave vectors and the shell veloc-
ities. Using dimensional arguments we have from eq. (3.9) that

u̇n ∼ un

tn
∼ knu

2
n (B.1a)

tn ∼ 2π

kn|un|
, (B.1b)

where the factor 2π appears due to the conversion from wave vectors defined
by eq. (3.8) and the constants defined in sec. 5.4 to wave vectors on the form
kn = 2πn/L. The absolute value of un is needed to get a real valued time
estimate. The eddy turnover times are then calculated from a 1000tu average
of the reference un (see sec. 5.4.2) and eq. (3.8):
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Table B.1: The average eddy turnover times calculated from 1000tu of the reference
run.

n 1 2 3 4 5 6 7 8 9
tn [tu] 2.07 2.27 1.09 0.84 0.50 0.35 0.22 0.15 0.10

n 11 12 13 14 15 16 17 18 19
tn [tu] 0.043 0.028 0.019 0.013 0.0082 0.0058 0.0040 0.0033 0.0042

1 3 5 7 9 11 13 15 17 19

n

10−2

100

t n
[t

u
]

Figure B.3: The average eddy turnover times calculated from 1000tu of the refer-
ence run (dots). The scaling follows k−2/3 (dashed line) given from eq. (2.24) and
eq. (B.1b).

Notice how the eddy turnover times deviates from the k−2/3 scaling at high
shell numbers, which is due to the effect of viscosity on the shell velocities
as seen in fig. 3.4a; the scaling relation is only valid in the inertial range
n ∼ [3; 18] as assumed in the derivation of the K41 theory (sec. 2.3.2).



C
∣∣ Conservation of energy; Sabra

shell model

In this appendix, we show the derivations of the conservation of energy
for the Sabra shell model.

Ė =
d

dt

N∑

n=1

1

2
unu

∗
n (C.1a)

=
1

2

N∑

n=1

(u̇nu
∗
n + unu̇∗

n) (C.1b)

We focus on the first term of the sum in the following, but a similar calcula-
tion can be done for the second term. In the second equal sign we interchange
the last term in the sum with its complex conjugate, which appears in the
before mentioned calculation.

1

2

N∑

n=1

u̇nu
∗
n =

1

2

N∑

n=1

ιkn(au
∗
nu

∗
n+1un+2 + bu∗

n−1u
∗
nun+1 + cun−2un−1u

∗
n)

(C.2a)

=
1

2

N∑

n=1

ιkn(au
∗
nu

∗
n+1un+2 + bu∗

n−1u
∗
nun+1 − cu∗

n−2u
∗
n−1un)

(C.2b)

=
1

2

[ N∑

n

ιknau
∗
nu

∗
n+1un+2 +

N+1∑

n=−1

ιkn+1bu
∗
nu

∗
n+1un+2

−
N+2∑

n=−2

ιkn+2cu
∗
nu

∗
n+1un+2

]
(C.2c)

=
1

2

N∑

n=1

ι(akn + bkn+1 − ckn+2)u
∗
nu

∗
n+1un+2 + boundary terms

(C.2d)

Inserting a =1, b = − ϵ

λ
, c = −ϵ− 1

λ2
and using that all boundary terms are

zero, we get

=
1

2

N∑

n=1

ι(kn −
ϵ

λ
kn+1 +

ϵ− 1

λ2
kn+2)u

∗
nu

∗
n+1un+2 (C.2e)
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=
1

2

N∑

n=1

ιkn(1−
ϵ

λ
λ+

ϵ− 1

λ2
λ2)u∗

nu
∗
n+1un+2 = 0, (C.2f)

where we used eq. (3.8) in the second to last equal sign.



D
∣∣ Time region analysis; Sabra

shell model

In this appendix we present how we distinguish between time regions
dominated by the small and large scales in the Sabra shell model. An al-
gorithm has been developed for this purpose, such that the perturbation
methods can be studied separately in those regions.

When the small scales dominate, i.e. a positive energy anomaly is present
at large shell numbers (see fig. 3.4c), the dynamics happen mainly close to
the Kolmogorov scale. This means that the viscosity has a significant impact
on the dynamics, and energy is dissipated. Contrarily, when the large scales
dominate, i.e. a positive energy anomaly is present at small shell numbers,
the effect from viscosity is negligible and the energy content of the flow
increases due to the forcing. For that reason, one way to distinguish between
when the small or large scales dominate is to look at the slope of the total
energy; negative slope means dissipation and the flow is dominated by the
small scales, positive slope means increase in energy and the flow is dominated
by the large scales.

After having calculated the derivative of the total energy and evaluated
the sign of the slope as function of time (negative = False; positive = True),
this boolean data is filtered through a so-called erosion and dilation algo-
rithm in order to set a minimum duration of the time regions. While erosion
removes entries in a data series by setting them to zero/False, dilation adds
entries by setting them to one/True. The removal/adding of entries depends
on the size of a kernel of the algorithm. The kernel determines the region
around a data point that is used to evaluate if the data point should be re-
moved/added or not. In fig. D.1 we see the effect of erosion and dilation on
a one dimensional boolean array with a kernel of size 3.

To determine the distinct time regions in the Sabra shell model we use a
kernel with size equal to 0.05tu and apply the sequence of operations: erosion
→ dilation → dilation → erosion. An example of the resulting regions is
shown in fig. D.2c, while the effect of the erosion and dilation algorithm can
be seen by comparing figs. D.2b and D.2c.
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Original 1 1 1 1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 0

Erosion 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

Dilation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Figure D.1: Visualization of erosion and dilation with a kernel of size 3. To evaluate
the result of these operations for a given entry in the original array, the kernel is
imagined to be positioned to have its centre at this entry (visualized as the red
rectangle). The algorithm evaluates if any value within the kernel is zero/False
(erosion) or one/True (dilation). If yes, the value is changed; if not, it continues.
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Figure D.2: An example of the effect of the erosion and dilation for determining
the regions dominated by the small and large scales. (a) The total energy vs time.
(b) The sign of the slope of the total energy curve. The vertical lines are drawn
to show that the sign changes (c) The result of applying the erosion and dilation
algorithm on the data from (b), after being converted to a boolean array. Regions
dominated by the small/large scales are marked by the horizontal segments.



E
∣∣ Lanczos algorithm

In this appendix the detailed procedure of the Lanczos algorithm is out-
lined. The algorithm is used to find the eigenvectors and -values of a hermi-
tian propagator or matrix (Demmel, 1997; Meurant et al., 2006).

Input: A hermitian propagator or matrix A of dimension M × M that
maps a vector v 7→ Av.

Output: The matrices P (M × N), T (M × M), where T is tridiagonal
and the columns of P are given by the orthonormal basis {pi}.

Steps:

1. Choose a random vector p1 ∈ Cm with norm 1.

2. First iteration

(a) w′
1 = Ap1

(b) α1 = ⟨w′∗
1 ;p1⟩

(c) w1 = w′
1 − α1p1

3. For M ≥ j ≥ 2

(a) βj = ||wj−1||
(b) If βj ̸= 0 then pj =

1
βj
wj−1,

else Pick a random normalized vector orthogonal to all {p1, ...,pj−1}
(c) w′

j = Apj

(d) αj = ⟨w′∗
j ;pj⟩

(e) wj = w′
j − αjpj − βjpj−1 ⋆

Re-orthogonalize

(f) for i < j do:

wj = wj − ⟨wj;pi⟩pi

end

4. Construct the matrices P and T, where Tij = αiδi,j +βiδi,j+1+βjδi+1,j

or

T = P∗AP (E.1)
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5. Diagonalise T to get the eigenvalues, λi, and -vectors, ṽi, i.e. solve the
eigenvalue problem

Tṽi = λiṽi ⋆ (E.2)

6. Project the ṽi onto P to get the eigenvectors, vi, of A with correspond-
ing eigenvalue λi, i.e.

vi = Pṽi (E.3)

7. If A = L∗L, the singular vectors of L is given by vi, and the singular
values by σi =

√
λi

One can show the validity of item 6 by the following:

Avi = APṽi = PTP∗Pṽi = PTṽi = Pλiṽi = λiPṽi = λivi, ⋆ (E.4)

where we in the second equal sign from left used eq. (E.1); in the third equal
sign from left used that the columns of P form an orthonormal basis such
that P is unitary, i.e. P∗P = I; in the third equal sign from the right used
eq. (E.2).



F
∣∣ Supplementary plots; Lorentz-

63 model

F.1 Perturbations along a trajectory
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Figure F.1: The perturbations plotted as vectors for the BV-EOFens, LLVens and
SVens along a trajectory (black line) starting at the black cross. The trajectory
starts at t = 10007.8tu and ends at t = 10009.2tu (approximately the same time
span as that shown in fig. 6.2). 140 ensembles of initial perturbations are calculated
sequentially in time separated by 0.01tu. Note the very regular perturbations
produced by the LLV method in contrary to those of the SV method.
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Figure F.2: As in fig. F.1, but with a different view angle (parallel to the attractor
plane). Note how the third member perturbations clearly lie orthogonal to the
attractor plane.



G
∣∣ Supplementary plots; Sabra

shell model

G.1 Exponential growth rates

In this section we show the same curves as in fig. 6.6 but split up into three
figures to be able to better distinguish them.

[tu]

[tu]

Figure G.1: Same as in fig. 6.6 but only for BV and BV-EOF methods.
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[tu]

[tu]

Figure G.2: Same as in fig. 6.6 but only for SV and LLV methods.

[tu]

[tu]

Figure G.3: Same as in fig. 6.6 but only for RD, NM and RF methods.

G.2 Exponential growth rates; SVens

In this section we present the exponential growth rates for all SVs in Rsmall.



G.3. DISTRIBUTION OF ADJOINT LLVS 98

[tu]
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Figure G.4: Same as in fig. 6.6 but for all SVs. The curve that corresponds to
the SV1

mbr is highlighted in black, while the curve that corresponds to the member
experiencing the maximal growth rate is highlighted in red (in (a) SV2

mbr and (b)
SV4

mbr). For all other curves, the lighter the colour the higher the member index.

G.3 Distribution of adjoint LLVs

In this section we present the distribution of adjoint LLVs in Rsmall.
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Figure G.5: The distribution of adjoint LLVs. Otherwise, as in fig. 6.7.
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G.4 Distributions of perturbation vectors, Rlarge

In this section we present the average spectral distributions of perturbation
vectors for the BV, BV-EOF, SV, LV and RF methods calculated in Rlarge.
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Figure G.6: As in fig. 6.7 but in Rlarge.
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G.5 Results for tOPT = 0.001tu in Rsmall

To investigate the influence
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Figure G.7: The mean spectrum of SVs and corresponding exponential growth
rates calculated from the singular values. As in fig. 6.7a
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Figure G.8: The instantaneous exponential growth rate, κ(t), for the BV, BV-EOF
and SV method as in fig. 6.6a.
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G.6 Results for tOPT = 0.005tu in Rsmall
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Figure G.9: The mean spectrum of SVs and corresponding exponential growth
rates calculated from the singular values. As in fig. 6.7a
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Figure G.10: The instantaneous exponential growth rate, κ(t), for the BV, BV-
EOF and SV method as in fig. 6.6a.



H
∣∣ Figures from (Magnusson

et al., 2009, 2008)

In this chapter, we show figures from (Magnusson et al., 2009, 2008) for
comparison of the results for the Lorentz-63 model.

Figure H.1: Figure 1 from (L. Magnusson et al., 2008)
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Figure H.2: Figure 3 from (L. Magnusson et al., 2008)

Figure H.3: Figure 5.2 from (L. Magnusson, 2009). The black + symbols (RF) lie
on top of the black circles (NM).
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