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Abstract

Galaxy clusters are the biggest structures in the universe to have reached
equilibrium. Their properties are expected to reflect the properties of the
universe as a whole and, for this reasons, clusters are often used as cosmo-
logical laboratories. Observations tell us that most clusters look elliptical
in the sky but, surprisingly, there is no satisfactory way to know their 3D
structure, that is usually approximated to a simple spherical model. A
better knowledge of the true structure would affect the cluster mass and,
therefore, the determination of the cosmological parameters.

We present here a new method to reconstruct the full 3D shape of a
cluster, using X-rays observations only. This is done following two different
approaches: 1) The first method is an extension of an existing technique,
known as deprojection, which is used to recover the 3D temperature and
density profiles of the intracluster medium. Here we extend the deprojec-
tion to the more general non-spherical case and apply it to a number of
simulated clusters as well as to observations of A2218 and A1689. Simu-
lations prove that the effect is indeed detectable, although it’s difficult to
constrain in the case of a cool-core cluster. 2) In the second part, we start
from a theoretical model of a non-spherical cluster and use a Monte Carlo
method to make a fit to the observations.
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Galaxies are not spread evenly in the universe. Most of them can
be found in large collections called clusters, where hundreds of galax-

ies are held together by gravitational attraction. Clusters can be as massive
as 1015M�, which makes them the largest equilibrated objects in our uni-
verse [8]. A typical cluster size is of the order of several megaparsec.

Clusters of galaxies might have been called something different if they
had first been discovered in a waveband other than optical light, because
the hundreds to thousands of galaxies in a cluster only make up a few
percent of the total cluster mass (5 − 10%). At least the same amount
of matter exists in the form of X-ray luminous hot gas that fills up the
space between galaxies. The remaining 80% of the mass is not directly
detectable, as it does not emit light, and can only be observed through
its gravitational effects. Its properties must be linked to the universe we
observe today: element abundance, structures such as galaxies and clusters,
stellar formation history, energy density, etc. The exact identity of dark
matter particles remains a mystery, although there are several possible
candidates.

1.1 THE FORMATION OF STRUCTURES

Figure 1.1: A slice of the universe as reconstructed from a redshift survey. The survey
maps the distribution of matter within a section of the sky, by combining redshift and
angular position data. The figure shows the large scale structure of the universe, made
up of clusters, filaments and voids [15].

The simplest cosmological model predicts a single species of cold dark
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matter particles (CDM), that clusters at small scales. According to this
model, large scale structures are the result of a bottom up process, with
smaller objects coming first, while the largest objects, such as superclusters,
are still assembling.

The matter that goes on to form a cluster initially begins as a low
amplitude perturbation in the density distribution of the dark matter. Re-
gions whose density slightly exceeds the mean density are gravitationally
bound and decouple from the expansion, collapsing on themselves in a small
clump. Because density perturbations are bigger on small scales, small ob-
ject are the first to collapse. These small objects collect into galaxies, and
galaxies then collect into clusters. Therefore the largest structures, like
clusters, are also the last to approach an equilibrium configuration and
their growth should directly trace the process of structure formation in the
universe.

A cluster in equilibrium is characterized by a virial relation:

Ekinetic = −2Epotential ∝
GM

R
(1.1)

where the mass, M , is the total gravitating mass of the cluster, including
gas, stars and dark matter.

1.2 OBSERVATIONS OF CLUSTERS

Clusters of galaxies were first optically identified by the end of the eigh-
teenth century. Optical discoveries continued to accumulate as the observ-
ing power grew over the next two centuries, culminating with the semi-
definitive catalog of George Abell and collaborators [2], which contains
most of the known nearby galaxy clusters, up to a nominal redshift of
z = 2. Clusters are found by optical or infrared telescopes by searching for
over densities, and then confirmed by finding several galaxies at a similar
redshift. Individual clusters can be studied in detail using a number of
observational techniques:

• X-rays. Since the hot intracluster gas is an incredibly bright X-ray
source, X-ray spectroscopy is the ideal tool to obtain information on
the the intracluster medium and generally on cluster properties [45].
The next few sections contain an overview of the main properties of
X-rays from galaxy clusters (see Section 1.5).
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Tuesday, February 22, 2011

Figure 1.2: The movie stills pictured above illustrate the formation formation of
clusters and large-scale filaments in the cold dark matter model with dark energy. At
early times (top left) distribution of matter appears to be uniform. This is because the
seed fluctuations are still fairly small. As time goes on, the fluctuations grow resulting
in a wealth of structures from the smallest bright clumps which have sizes and masses
similar to those of galaxies to the large filaments (bottom right) [12].

• Microwaves. The hot gas can be observed also through its effect
on the cosmic microwave background (CMB). Compton scattering of
the CMB photons by electrons in the intracluster medium produces
a shadow in the CMB: this effect is known as Sunyaev−Zel’dovich
(SZ) [48].

• Gravitational lensing. The gravitational field of a galaxy cluster
bends the space-time, so that photons approaching the cluster travel
on curved paths. The effect is strong enough that we see a distortion
in the background distribution of galaxies (in this sense, the cluster
is acting like a lens). Observations of this effect provide information
on the distribution of matter in the cluster [8].

Besides, we can successfully extract new information by combining different
methods: for instance, a combination of X-rays and SZ maps yields a direct
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Figure 1.3: The galaxy cluster Abell 1689 at optical wavelengths as seen by Hubble
Space Telescope (NASA, 2007). The long arcs in the image are caused by gravitational
lensing of the background galaxies by matter in the cluster.

Figure 1.4: Another image of A1689 with the X-ray emission shown in purple. Com-
posite of data from the Chandra X-ray Observatory (in purple) and the Hubble Space
Telescope (in yellow). Credit: X-ray: NASA, CXC, MIT, Peng et al. Optical: NASA,
STScI.

measurement of the Hubble constant (see Chapter 1.6). It is also common
to give a joint mass estimate from X-ray and lensing data (Chapter 1.7).
This work, however, is mainly focused on X-ray observations and their
relation to the cluster’s shape. The biggest advantage of using a single
technique is that only one data set is required and it is easier to keep track
of the observational errors.

1.3 CLUSTER COSMOLOGY

There are two features of clusters that make them so useful when it comes
to study cosmic evolution. First, clusters are the biggest objects whose
masses we can reliably measure, because they are the largest structures
who have undergone relaxation and entered into virial equilibrium. Second,
clusters are essentially closed systems, whose composition should be well
representative of the universe as a whole [52]. In particular, the ratio
between baryons and dark matter in massive clusters is expected to be
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constant and closely match the global ratio of the universe.

One should, however, be careful when deriving the cluster mass or other
properties from the observables. At some point, it is required that we make
some assumptions on the three-dimensional shape of the cluster (which is
unknown). For convenience of the calculations, and perhaps lack of a better
model, it’s common to describe clusters as spherical systems.

1.4 WHY NOT SPHERICAL?

Symmetrical structures are not what we usually see in the sky: instead,
clusters surveys tell us that most clusters are not at all spherical, but rather
look like triaxial ellipsoids [40, 44]. Even a cluster that appears circular in
the sky −something astronomers are eager for, as it may indicate an old,
virialized structure− could, in principle, not be spherical at all, but just a
spheroidal structure which we happen to observe under the right angle.

In fact, there are strong suggestions that this might be the case at least
for a famous, circular looking clusters: Abell 1689. This cluster is well
known for its amazing system of gravitational arcs, one of the largest ever
observed (see the bright arcs in Figure 1.3), and its great number of multiple
images. A1689 has a smooth, symmetrical X-rays emission, and for this
reason it has been proposed as a standard example of spherical cluster in
hydrostatic equilibrium [34, 53]. However, later studies have found large
discrepancies in mass estimates obtained from gravitational lensing and X-
rays observations [5,31]. Since the lensing signal probes the integrated mass
along the line of sight, it is sensitive to the elongation of the cluster and
such discrepancies could be interpreted as suggestions that A1689 might
actually have a prolate shape, which is, by coincidence, aligned with the
line of sight [5, 16,22].

In cases like this, we expect the X-ray emission from a prolate gas
distribution to be slightly different from a spherical one. A prolate cluster
tends to give a higher central surface brightness than other distributions
where the same mass is spherical or oblate. In this sense, X-ray observations
could be used to discriminate between different geometries, unvealing the
true shape of the cluster. In this thesis, I will present and discuss a new
method to find the true ellipticity of a cluster that is based on its X-rays
emission only.
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Fig. 2.— The evolution with redshift of the APM cluster ellipticity. For clarity only clusters

with measured redshifts are presented. Filled circles are those APM clusters that are also in

the Abell/ACO sample. The straight line represented the best least-square fit to the data.

Figure 1.5: Evolution of the mean cluster ellipticity with redshift. Open circles
represent clusters from the APM survey, filled circles are Abell clusters. Figure from
Plionis, 2002 [40]. Similar results are found in numerical simulations [23].

1.4.1 ELLIPTICITY AS A COSMOLOGICAL PROBE

The use of ellipticity as a tool to constrain the cosmological parameters has
been investigated using optical and X-rays clusters samples [40], as well
as in large scale cosmological simulations [23]. The results agree that the
mean ellipticity of clusters increases monotonically with redshift, suggesting
that clusters were more elliptical at earlier times. As time goes by, they
relax towards an equilibrated configuration, becoming more and more and
spherical (Fig. 1.5); the dependence is stronger for massive clusters.

The cosmological parameter that shows the biggest dependence on the
ellipticity is the amplitude of the initial fluctuations, σ8 [23]. Higher values
of σ8 (i.e., clusters are forming earlier) lead to lower mean ellipticities at
present time. Results from numerical simulations should be compared with
observations of large samples of clusters, to give new constraints on the
cosmological parameters.

1.5 CLUSTERS IN X-RAYS

X-ray observations reveal that clusters are filled up with hot, dilute gas,
that has been heated up to temperatures of T ≈ 108 K or several keV per
particle [45]. At such temperatures the light elements are completely ion-
ized and the radiation results from collisional interactions between electrons
and ions. This mechanism is discussed in details in Chapter 1.5.1

The gas is so hot because it is compressed within the deep potential well
of the cluster. Similarly to the virial equilibrium of galaxies and dark matter
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particles, the gas thermalizes and heats up to a temperature that reflects
the depth of the surrounding gravitational potential [50]. In a relaxed
cluster, the intracluster medium is close to the hydrostatic equilibrium and
the plasma temperature inferred by X-rays is related to the cluster mass
(see Chapter 1.7).

The rate at which the gas radiates energy in the X-ray, or emissivity (per
unit volume), depends on the electron temperature, T , and is proportional
to the squared electron density n2

e,

εX ∝ n2
e Λ(T ) (1.2)

A detailed description of the emission mechanism is provided in Section
1.5.1.

The density dependence makes it difficult to measure the emission from
the outer part of the cluster, where ne can be as low as 10−5cm−3 and
the X-ray flux becomes extremely faint. X-rays observations are usually
confined well within r500, the radius at which the mean cluster density is
500 times the critical density.

The dependence on the temperature is more complex, but the most
important feature is a sharp cut-off of the spectrum at high energy, due
to an exponential term with argument −E/T . The quantity Λ(T ) is known
as the cooling function, and can only be computed numerically in most
cases. The specific code I have used is the mekal implemented in Xspec (see
Chapter 2.3.1), which requires that the gas is isothermal and the metallicity
is known.

Another useful quantity is EI ≡
∫
n2
edV , known as emission integral,

which gives the normalization of the spectrum1.

A note on the low density

The plasma density is so low that most of the photons don’t experience
further interactions and leave the cluster unchanged. This means that the
spectrum we observe from a galaxy cluster provides an account of the entire
intracluster medium: this is different from, e.g. the spectra of stars, that
merely provide information on a thin skin on their surface. The gas is also
sufficiently transparent that the transfer of radiation can be neglected [37].
This is another reason why cluster X-ray spectra are so straightforward to
interpret.

1This definition is not unique, and the emission integral is sometimes defined as∫
nHnedV , where nH is the number of hydrogen nuclei. Throughout this work I assume

a fully ionized plasma where the relative elemental abundance gives ne = 1.2nH [11].
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1.5.1 EMISSION MECHANISM

With extremely high temperatures and low density, the intracluster medium
can be well described as an ideal gas, making the physics behind the X-ray
emission easy to model.

For typical cluster temperatures (kT > 2keV per particle) the emissivity
of thermal bremsstrahlung dominates that from emission lines. The situ-
ation is reversed at lower temperature (below 2 keV): the heavy elements
are not fully ionized and line emission becomes important [11].

Figure 1.6: Example of X-ray emission from a plasma at 5keV and 0.3 solar abun-
dance. The smooth continuum is the contribution from bremsstrahlung, which is the
dominant process at such temperature. Several transition lines are visible: the bright
group of lines around 7keV is the Iron and Nickel blend.

Bremsstrahlung

The fundamental emission process is bremsstrahlung2, or free−free emis-
sion, which happens when a charged particle, like an electron, is deflected
by the encounter with another charged particle. The spectral energy dis-
tribution for a single temperature plasma of Maxwellian particles is given
by [45]:

e(ν) =
16πe6

3mec3

( 2π

3mek

)1/2

Z2nenHgff (Z, T, ν)T−1/2e
− hν
kTg (1.3)

2From German: braking radiation.
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for collisions with an ion of charge Z. The Gaunt factor gff is a small
quantum mechanical correction that needs to be computed numerically,
but is usually a number close to one [47].

The part of the spectrum due to bremsstrahlung is known as the con-
tinuum. The main feature of the continuum is the exponential tail, whose
intensity goes as e−

E
T [45]. As long as this cut-off is seen in the energy

window of the telescope, one has a good handle on the temperature mea-
surement.

Line features

Abundances of elements are relatively easy to measure from the emission
lines, as long as the temperature of the gas is well defined. The main line
feature is a blend of lines from iron and nickel at energies between 6.5 and 7
keV, usually known to as the ‘7 keV iron line’ (Figure 1.6). If the shape of
the continuum is used to derive a temperature, then the width of the lines
gives a measure of the abundance of iron (and heavy elements) in the gas.
On average, abundances in clusters are 0.3 times the solar abundance [45].

1.6 CLUSTERS IN MICROWAVE

The presence of hot gas can be observed as it induces a slight depression
in the temperature of the cosmic microwave background at the locations of
clusters. This happens when a CMB photon traveling through the cluster
gets Compton scattered off the hot electron gas. As its momentum is
slightly increased, the photon gets shifted to higher energies, and we can
see a distortion on the otherwise uniform microwave background. The
effect appears as a decrement in the Rayleigh-Jeans part of the spectrum
(hν � kT ), and an increment on the Wien side (hν � kT ). These results were
predicted in the 70s by the Russian physicists Sunyaev and Zel’dovich [48].
This intensity change in the CMB radiation is proportional to the integral
of the electron pressure along the line of sight,

y =
kB
mec2

σT

∫
neTedl (1.4)

which is also known as the ‘Comptonization parameter’ [48]. Here, Te and
ne indicate, as usual, electron temperature and density, while σT is the
Thomson scattering cross section. Even for the richest, and most luminous
galaxy clusters the effect is small, with the overall change in brightness of
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Figure 1.7: A drawing of Sunyaev illustrating the eponymous effect [48]. The solid
line is the distortion in the CMB spectrum in the direction of a cluster of galaxies
of kTe = 5.1keV as a function of wavelength. The blackbody spectrum is shown for
comparison on a different scale (broken line).

the CMB being of about 1 part in 104. Detecting such a small change re-
quires very sensitive, low noise observations. Nowadays, there are accurate
measurements of the SZ effect in several clusters [9].

The Sunyaev-Zel’dovich effect does not depend on the redshift, i.e. the
change in brightness of the CMB radiation due to the presence of a cluster
can be seen at all positions on the line of sight. Thus, an accurate SZ
cluster survey can efficiently find objects out to high redshifts, observing
distant clusters of galaxies whose X-ray flux is difficult to detect (if not
impossible).

A comparison of the SZ map and X-ray image of a cluster can be used to
derive interesting information about the structure of the gas, in particular,
it might be used to determine the intrinsic three-dimensional shape of the
cluster.
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1.6.1 THE HUBBLE CONSTANT

The Sunyaev-Zel’dovich effect offers the possibility to measure directly the
distance to a galaxy cluster, bypassing the standard distance ladder. Even
better, it provides us with an independent estimate of the Hubble constant
H0. This method is discussed in detail in Appendix C, but the basic idea
is that the SZ effect and the X-ray emission from the same cluster scale
differently with the gas density and the line-of-sight size of the cluster.

The SZ effect depends on average electron pressure, neTe, integrated
along the line of sight

∆T ∝
∫
neTe dl (1.5)

while the X-ray observable, that is the surface brightness, scales as the
density square,

SX =
dA

4π(1 + z)3

∫
n2
eΛe dl (1.6)

Assuming that clusters are spherical objects with smooth gas distributions,
the dependence on ne can be eliminated by a combination of (1.5) and (1.6),
deriving the line-of-sight thickness of the cluster, l. If the cluster is indeed
spherical (note that this is the crucial assumption), from a comparison with
its apparent angular size, θ, we can directly estimate the cluster angular
diameter distance, dA = l

θ
, which can be used to find the Hubble constant,

once the values of the cosmological parameters are specified (Fig. 1.8a).
This method relies on very simple physics (the properties of a ionized gas

in quasi-equilibrium), but it requires that we know the length of the path
through the gas, in order to evaluate correctly the integrals in (1.5) and
(1.6). A result by Birkinshaw et al. [10] shows that a prolate cluster, with
the line-of-sight dimension being q times longer than the radial dimension,
will affect the measure of dA, and hereby H0, by a factor 1/q:

dA(true) =
dA(estimated)

q
(1.7)

A study of high redshift galaxy cluster CL 0016+16 by Hughes and Birkinshaw
[24] quantifies the uncertainty on H0 from the unknown geometry to be at least
15% (Fig. 1.8b). This makes it clear that, to use this method effectively, it’s
important that we know something about the three-dimensional shape of of the
cluster.
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(a) Fig. 26. The dependence of the Hughes and Birkinshaw’s (1998) estimate of the value of the Hubble constant on
assumptions about the oblateness or prolateness of CL 0016#16 in the extreme case where the cluster symmetry axis lies
in the plane of the sky.

perpendicular to the line of sight. This causes clusters elongated along the line of sight to be easier
to detect in the X-ray or in the Sunyaev—Zel’dovich effect. Such clusters also give biased estimates
of distance, since the true angular diameter distance is

D
!
(true)"D

!
(estimated)

Z
(122)

if the distance is estimated using (117) not knowing that the cluster is elongated on the line
of sight.

An indication of the importance of this effect is shown in Fig. 26, where the estimated value for
the Hubble constant from CL 0016#16 is shown as a function of the intrinsic ellipticity (axial
ratio) of an ellipsoidal model for the gas distribution. An ellipsoidal model is clearly preferred
because of the non-circular X-ray and Sunyaev—Zel’dovich effect isophotes (Figs. 2 and 23). The
value of the Hubble constant derived by fitting the cluster by a spherical isothermal model is
68km s"#Mpc"#: it can be seen from the figure that by allowing ellipsoidal models with axial
ratios as large as 2 : 1, values over the range 40—100km s"#Mpc"# can be obtained.

In order to avoid the selection bias in favor of clusters which are elongated along the line of sight,
and hence of high surface brightness, and for which low estimates of the Hubble constant are
produced, this technique must be applied to a sample of clusters selected without regard to their
central surface brightness — perhaps clusters with total X-ray luminosities or flux densities above
some limiting value. Such a selection is now possible using the high-sensitivity survey data recently
returned by ROSAT (e.g., Ebeling et al., 1996). A corollary is that clusters which are intrinsically
hard to study in the X-ray or the Sunyaev—Zel’dovich effect (and including Sunyaev—Zel’dovich
effect non-detections) must be included in the set used to measure H

$
: the clusters with the weakest

Sunyaev—Zel’dovich effects for their measured X-ray brightnesses are exactly those which imply

178 M. Birkinshaw / Physics Reports 310 (1999) 97—195

(b)

Figure 1.8: (a) A Hubble diagram based on the distance measured for nine Abell
clusters and the distant cluster CL 0016 + 16 (red dot) [9]. The best fit is for a Hubble
constant of about 60 km s−1 Mpc−1; however, the uncertainty deriving from the cluster
shape has not been taken into account. (b) Variation of the value of the Hubble constant
with the axis ratio of the distant galaxy cluster CL 0016+16 for oblate and prolate
geometries, assuming cluster symmetry in the plane of the sky [24]. The error on H0

associated with the unknown geometry is estimated to be around 15%.

1.7 FROM X-RAYS OBSERVATIONS TO MASS

The density and temperature distributions of the X-ray gas within galaxy clusters
can be used to estimate the total mass of the cluster, under the assumption
of hydrostatic equilibrium. This approximation is reasonable as long as the
cluster is stationary (the gravitational potential doesn’t change with time) and
gas motions are subsonic [45, 46]. In this way, the only force acting against the
gravitational pull is thermal pressure.

Assuming the gas is in equilibrium in the cluster potential well, the gas
pressure is related to the potential by [45]

∇P = −ρg∇φ (1.8)

where P is the gas pressure; ρg is the gas density and φ is the gravitational
potential of the cluster. As seen in 1.5, the intracluster medium is an ideal gas.
Its equation of state P = P (ρ) is

P =
ρgT

µmp
(1.9)

where µ ≈ 0.63 is the mean atomic weight of the gas in units of the proton mass,
mp, and is constant throughout the cluster.
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The hydrostatic equilibrium tells us how much gravity is needed to prevent
the gas from blowing away: its pressure must be balanced by an inward pull,
provided by gravity. If the gas distribution is spherical, equation 1.8 reduces to

dP

dr
= −ρ(r)

GMtot(r)

r2
(1.10)

It should be stressed that Mtot(r) is a measure of all the gravitating mass within
a sphere of radius r: stars, gas and dark matter.

Combining eq. 1.9 and eq. 1.10 gives

M(r) = − T

Gµmp
r
[d log ρg
d log r

+
d log T

d log r

]
(1.11)

and the mass density can be determined if we know temperature and density of
the intracluster gas [45]. Note that the mass depends weakly on the gas density
(only through logarithmic derivatives), but strongly on the gas temperature.
Also, the mass determination will only be as precise as the derivatives. A way
to recover the density and temperature profiles is presented in Chapter 3.
There are other methods for measuring cluster masses: from velocity dispersions
of cluster galaxies using the Jeans equation, and from gravitational lensing of
background galaxies. The results from different methods have been found to
be in disagreement for some clusters, which makes us question whether all the
assumptions (hydrostatic equilibrium and spherical symmetry) hold true [5,31].
If the mass distribution was other than spherical, this would directly impact on
the mass estimate in 1.8, by deforming the shape of the gravitational potential,
φ. Two famous controversial clusters are A1689 and A2218, whose case will be
presented in Chapter 3.
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As this work is largely based on the analysis of X-rays observations, I think
it’s worth spending a few words introducing the telescope, the data format

and the basics of spectral fitting in Xspec. I also introduce some technicalities
related to the instrumental response files, that will be useful in Chapter 4.

2.1 X-RAY OBSERVATORIES
1.2 Introduction to CCD detectors 2

Figure 1.1: Schematic view of Chandra Spacecraft. On the left size of the

image we can see the high resolution mirror assembly and the aspect camera,

which is used to aim the telescope at the source of interest. In the optical

bench, along the light path of telescope are positioned the two spectrometers

used in combination with ACIS to produce high resolution spectroscopy). In

the right hand size, on the focal plane of the telescope, we can see the inte-

grated science instrument module which contain ACIS and HRMA).

sis it’s necessary to introduce it’s main features. Furthermore, in order to

understand Chandra particle background model production and characteris-

tics it is crucial to introduce how CCDs work, and in particular how those

detectors are read.

1.2 Introduction to CCD detectors

CCD detectors are devices principally made of semiconductors materials

used in astrophysics to collect photons from sources of interest. A semicon-

ductor material is a material which resistivity value is intermediate between

insulating material and conductors(for further details see Millman textbook

[17]). Semiconductors have the property to generate charge carriers when hit

by photons, according to the photo-ionization phenomenon. In this process

an incident photon is absorbed by electrons in the valence band causing one

Figure 2.1: Schematic view of Chandra X-ray telescope. Image from NASA,
CXC, NGST.

X-ray radiation is absorbed by the earth’s atmosphere and therefore X-ray
observations should be carried out onboard satellites. Chandra X-ray observa-
tory (Fig. 2.1) was launched in 1999 and is the third of Nasa’s great observatories
in space1, the others being Einstein and XMM-Newton. It was designed to pro-
vide high resolution imaging in the X-ray band, with a nominal resolution of
about one arcsecond.

Chandra data are available at the Nasa’s Heasarc archive [1]. The data
files are in the FITS format, or ‘flexible image transport system’, which is the
standard astronomical data format endorsed by Nasa [6]. I had access to two deep
field observations of two galaxy clusters, Abell 1689 and Abell 2218, conducted
with the imaging spectrometer ACIS-I (Table 3.1). The original data files were
processed with Chandra’s observations analysis software (CIAO) for background
subtraction and extraction of the instrumental response files. This work has

1The telescope is named after the Indian physicist Chandrasekhar, who calculated
the maximum mass for a white dwarf star and he did it all using hand-worked mechanical
calculators - the famous Brunsviga machines.
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been done by Signe Riemer-Sørensen, and a detailed description of the exact
procedure can be found in her PhD thesis [43].

The data analysis has been largely done with Xspec, the package for spectral
fitting provided by Nasa [6].

Cluster Observation id. Exposure time Date Detector
A1689 6930 77.15 ks Mar 6, 2006 ACIS-I

A2218 1666 49.24 ks Aug 30, 2001 ACIS-I

Table 2.1: Summary of Chandra observations.

2.2 INSTRUMENTAL RESPONSE

A quick glance at the data it’s enough to realize that they do not quite resemble
the theoretical spectrum (see Figure 2.3a and 2.3c). This is because the energy
distribution of the photons collected by the CCD is not identical to the distribu-
tion of the incoming photons. Al kinds of distortions induced by the detector go
under the name of ‘instrumental response’, that combines a variety of factors,
such as detector efficiency, energy resolution, transmission, vignetting, and more.
In general, the response depends on the exact position relative to the center of
the CCD and it might change with time in an unpredictable way, so that the
exact calibration must be re-evaluated for every observation [42].

From a more abstract point of view, the response maps the spectrum from
the energy space of the source to the detector channel space. Each response
element, R(i, E) is proportional to the probability that an incoming photon of
energy E will be detected by the i-th channel [6]. If we observe a source of
spectrum f(E), the expected photon count within the instrument channel C(i)
will be

C(i) =

∫ ∞

0
f(E)R(i, E) dE (2.1)

Ideally, we could invert equation (2.1) to obtain the actual spectrum of the
source, but unfortunately, this is usually not feasible, as the inversion tends to
be unstable to small changes in the count rate [6]. It is more straightforward
to modify the theoretical predictions, trying to match the model spectrum to
the data obtained by the spectrometer. For each theoretical spectrum f(E), the
predicted count C(i) can be calculated from equation (2.1) and compared to the
observed data.

2.2.1 CHANDRA’S RESPONSE FILES

For Chandra data, the response is stored in two files [6]:
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Figure 2.2: Response function of Chandra ACIS spectrometer. (a) Probability that
a photon of energy 1 keV is detected by any of the CCD energy channels. The FWHM
of the signal is the spectral resolution at the given energy, which is usually smaller at
lower energies. This kind of information is stored in the redistribution matrix (wrmf ).
(b) Effective area, in cm2, vs energy of the ACIS-I spectrometer.

1. A detector redistribution matrix or wrmf describes the line broaden-
ing of spectral lines due to the detector resolution [21]. The wrmf consists
of a compressed two-dimensional matrix, mapping from incident photon
energy to instrument energy channel (Figure 2.3a).

2. An ancillary response file (arf ) which describes the efficiency of the
CCD and can be thought of as the transformation of a flat spectrum
through the detector (Fig 2.3b). The ancillary response accounts for ef-
fective area of the telescope and collimator; vignetting; transmission ef-
fects and detector quantum efficiency. The arf is stored in a single one-
dimensional array

The response matrices are stored in a compressed format where all the zero-
elements have been removed, to minimize their size [21]. More details about
Chandra’s response files follow in Appendix B.
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Figure 2.3: Effect of the detector response on the spectrum.
(a) The X-ray spectrum from the source as seen by a perfect detector (only including
random noise). The exponential continuum and the emission lines are clearly visible.
(b) Detector efficiency (here pictured for Chandra’s ACIS-I spectrometer), in cm2.
(c) The spectrum in (a) after passing through a detector with the efficiency pictured
in (b). The continuum is distorted (the effect is especially visible at low energy), but
the lines are not affected.
(d) The observed spectrum: the continuum is deformed by the imperfect efficiency (arf )
and the lines are smoothed by the limited resolution (wrmf ).
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2.3 THEORETICAL EMISSION MODEL

Figure 2.4: Observed X-ray spectrum of A1689 (top panel) fitted by the thermal
emission model mekal. The fitting residuals are shown in the middle panel. The bot-
tom panel shows the theoretical emission model, mekal, before convolution with the
instrumental response.

X-rays spectra are useful in the sense that they provide us with information
on the properties of the emitting gas. We can find the density and temperature
of the intracluster medium by fitting a model to the X-ray spectrum. In general,
spectral fitting is done in three steps:

1. Calculate a model spectrum, usually by numerical integration on a discrete
grid (Fig. 2.4, bottom panel).

2. Multiply such spectrum by the response matrix of the instrument (a pro-
cedure known as ‘folding’ the spectrum).

3. Vary the model parameters (temperature, density, abundance...) to opti-
mize the fit of the model spectrum to the data (Fig. 2.4, top panel).

2.3.1 MEKAL

The spectrum of a hot, diffuse gas can be described using the mekal emission
code that is implemented in Xspec. The model is named after its creators Mewe,
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Kaastra and Liedahl and has evolved from early work by Mewe and collaborators
[37], starting from 1970 onwards. Today the code is one of the most widely used
in spectral fitting and is a standard model incorporated in Xspec.

The code requires a number of parameter in order to calculate the X-ray
spectrum: the most relevant for this work are the gas temperature and the
normalization factor, that is just the emission integral EI ≡

∫
n2
e dV , scaled by

the distance to the cluster. The full expression of the normalization factor is

norm =
10−14

4π[DA(1 + z)]2

∫
n2
e dV (2.2)

where DA is the angular distance and z the redshift. The factor of 4π in the
normalization arises from the assumption that the emissivity is isotropic. The
model also prompts for redshift and metallicity.

2.3.2 GALACTIC ABSORPTION

The X-ray spectrum from an extragalactic source does not reach our detectors
unchanged. All radiation has to pass through the interstellar medium of our
galaxy, where it is partly absorbed by the interstellar medium. The dominant
mechanism is photoelectric absorption, called wabs in Xspec: when an X-ray
interacts with an atom of the intergalactic medium, the photon completely dis-
appears, transferring its energy to one of the electrons of the atom. The spectrum
is consequently reduced by factor

M(E) = e−NH
∑
aiσi(E) (2.3)

where ai are the elements abundances and σi(E) the absorption cross section of
each element [39]. NH ≡

∫
nH dl is the hydrogen column density along the line

of sight to the cluster. The Xspec implementation (called wabs) uses tabulated
values for the cross section and metallicity [4, 39], and the only free parameter
is the column density. I used the results from the weighted average of the LAB
survey [28], that are accessible via the Nasa’s nH tool.

The resulting values are nA1689
H = 1.83 × 1020cm−2 for A1689 and and

nA2218
H = 2.60× 1020cm−2 for A2218.
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Recovering the 3D structure of an observed quantity is a fundamental
problem in astrophysics. In particular, the shape of galaxy clusters is quite

an interesting property to know, not only because it determines the cluster’s
physics, but it also has an impact on the extraction of cosmological parame-
ters [23], on the derivation of the cluster mass [31], and on the determination
of the Hubble constant from a combination of X-ray and Sunyaev-Zel’dovich
measurements [7].

A common method to say something on the 3D shape of a cluster relies on
a combination of X-ray, strong and weak lensing data [31, 38]. In this thesis, I
present a new method based on X-ray observations only. Using a single dataset
has several advantages, for example, it’s easier to control systematic errors. Ad-
ditional information, or a useful comparison, comes from lensing and SZ data.

3.1 FROM 3D TO 2D...
Most astronomical objects can’t be investigated directly due to their enormous
distance, and the only thing we can see (if the detector resolution is good enough)
is a two-dimensional image. The photon flux I through the detector window is
the emissivity integrated along the line of sight. If Ω is the solid angle subtending
the source,

I =

∫

Ω
dΩ

∫
ε dl (3.1)

and all the depth information has been lost during the projection from 3D to
2D.

Due to their fortunate properties, clusters of galaxies make a special case,
and such information is not gone forever. The intracluster medium is so thin
that all the emitted radiation leaves the cluster, so the observed spectrum is
actually a mix of photons born at different depths. This transparency has a
drawback though, because the signal from different regions mix up along the
same line of sight, until it eventually hits the detector. It’s our task to separate
those photons which were born in the core from those who come from the outer
region: they are still recognizable, in principle, if their temperature is different.
This technique is known as deprojection.

3.2 ...AND BACK TO 3D
A geometrical technique to deproject the spectra was originally introduced by
Gerard Kriss et al. in the early 80s, when the first spatially resolved X-ray data
became available [30]. The method has been subsequently improved by many
groups, including Buote, Ettori and Morandi [13, 19, 38] and, in the spherical
case, has become a standard tool in X-ray cosmology.
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The cluster is modeled as an onion-like structure, made up of concentric
shells centered around the brightest point (Figure 3.1), which makes possible
to find the true density and temperature in each shell by applying an iterative
procedure. The outer shell is observed and analyzed first. Then, the next layer
is analyzed, subtracting the signal from the outer shell, and so one until the
core shell (think of peeling an onion). The deprojection can only be done by
assuming a certain 3D shape of the cluster: the most common assumption, for
simplicity or perhaps in lack of a better model, is spherical symmetry.

If we relax this assumption, the procedure can be extended to the more
general case of a triaxial cluster. Then, assuming that the best shape will give
the best fit to the data, we can use the deprojection algorithm as a tool to
investigate the cluster shape. I will describe this method in details in Section
3.3 and following.
This method has the advantage of being fully non-parametric in the derivation
of the profiles, although it still requires some assumptions on the shape, whether
spherical or not. However, it requires good angular resolution, so we can bin the
data in rings, and good photon statistics, because deprojected spectra are much
more noisy than the observations.

There’s another possible approach to the problem: instead of deprojecting
the observed spectra, we could propose a theoretical model and compare it with
real data. If we create a big sample of clusters with different shapes, we will
eventually find the geometry that gives the best fit to the observations. I will
discuss this approach in Chapter 4.

3.3 THE GEOMETRICAL DEPROJECTION

In this chapter I describe a general method for deprojecting images to reconstruct
the 3D structure of the projected object. The starting point is the state of the
art spherical algorithm, that I will adapt to the more general non-spherical case
in Section ??. The method can be applied to X-ray or Sunyaev-Zel’dovich maps
to determine the physics of the intracluster medium by recovering the 3D profiles
of gas temperature and density [3]. Besides, it can provide a guess about the
elongation of the cluster.

3.3.1 OBSERVING THE CLUSTER

We can think of a cluster as an onion-like structure, made up of thin concentric
shells. Each shell is characterized by its own temperature and density, uniform
within the cell volume, but different from shell to shell. In the non-spherical
case, shells will be ellipsoids of varying axis ratio.

The image of the cluster is split in N two-dimensional rings (or annuli) of
radius r1 < r2 < ... < rN . For each ring, we observe a spectrum, that we indicate
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5.3 Problems encountered
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(a) The overall shape.
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(b) Tube (1,3) marked.
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(c) Block (1,3) marked.

Figure 4 A model of a five ring cluster (we have worked with a 12 ring cluster, but the
idea is the same so the rest of the rings have been omitted for clarity) with the line
of sight in the horizontal plane of the paper. In this figure h is the height of the
semi-minor axis that corresponds to the radius of the ring in Fig. 10. The numbers
(i, j) inside the shells are used to identify different parts of the spheroid. The colours
of the numbers also carry a significance: Yellow and green numbers indicate tubes
while red numbers indicate blocks. The green tubes are the ones we want to find a
clean spectrum for by subtracting the polluting red blocks from the total spectrum of
the ring.
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Figure 3.1: The overall structure. The lines labelled as Ring 1, Ring 2,... are lines
of sight for an observer sitting off the right side of the page.

as Si.

Let us define εj as the unitary signal radiated by the i-th 3D shell, in units
of keV cm−3 s−1. I choose the index convention such that the i = 1 goes to
the innermost shell and N to the outermost. In the same way, the innermost
observational ring has j = 1.

Now we need to project the emission along the line of sight. The contribution
from the i-th shell to the brightness of the j-th ring is

Si,j = εiVi,j (3.2)

where Vi,j is the fraction of the i-th shell that is subtended by the j-th projected
ring. The nature of these volumes is purely geometrical, and their derivation is
outlined in Chapter 3.5. Note that the volume matrix Vi,j is triangular, with
non-zero entries only for i > j.

The observed surface brightness Ij of the ring j is a weighted sum of contri-
butions of all the inner shells:

S1 = ε1 · V1,1 + ε2 · V2,1 + ε3 · V3,1 + · · ·+ εn · Vn,1
S2 = ε2 · V2,2 + ε3 · V3,2 + · · ·+ εn · Vn,2

...

Sn = εn · Vn,n

That generalizes to:

Sj =
n∑

i=j

si,j =

n∑

i=j

εi · Vi,j (3.3)

The deprojection aims at inverting the set of equations above, i.e., recovering
the values of εi from the observed projected signal Sj .
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3.3.2 PEELING THE ONION

Assuming that we have subtracted the background correctly (which is not part
of this thesis), from the spectrum of the n-th annulus we can easily recover the
emissivity εn in the outer shell, as the sum in equation (3.3) consists of only one
term Sn = εnVn,n. Temperature and density at radius rn can be found by fitting
the spectrum.

We can then proceed inwards and use the recovered emissivity εn to solve
the equation for the adjacent ring, having index n− 1. Its brightness takes two
contributions, from the n and the n− 1 shells,

Sn−1 = εn−1 · Vn−1,n−1 + εn · Vn,n−1

which can be solved for εn−1.

This procedure is repeated from ring to ring until to the center of the cluster,
finding the solutions in a recursive way. Finally, we can fit a theoretical model
to each of the εn, to find temperature and density of the shell.
Given the iterative nature of this procedure, the errors associated to different
radial annuli are not independent, because the uncertainty associated to each
ring propagates to all the inner shells. For this reason, it is difficult to have
a rigorous derivation of the uncertainties associated to the deprojected profiles.
As a result, deprojected spectra are extremely noisy.

3.4 PLAYING WITH THE SHAPE

Figure 3.2: Examples of elliptical structures whose profile can be described by equa-
tion (3.5) and (3.6) for different choices of (α,β). The structures are seen along the line
of sight (going from left to right of the page), that is also the axis of symmetry. From
left to right: a spherical cluster (left) followed by a cluster with a prolate core (center)
and a cluster with an oblate core (right). The numbers in the brackets are the specific
values of (α, β) chosen for each structure.
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Let us start by giving a parametrization for a non spherical cluster. I use
the onion-like structure introduced in Chapter 3.3, now allowing the shells to
be ellipsoids. At this stage, I will be assuming axial symmetry, but the cluster
ellipticity can vary as a function of radius. This is of course a simplified approach,
but it seems justifiable as a first approximation. Studies of surface brightness
maps in elliptical clusters confirms that they are well approximated by co-axial
ellipsoids of similar axis ratio [29] and similar results are found in numerical
simulations of cluster-size structures [18,27].

A triaxial ellipsoid has an equation:

x2

a2
+
y2

b2
+
z2

c2
= 1 (3.4)

where a, b and c are the semi axes on the plane of the sky and line of sight,
respectively. Because the clusters that I am going to analyze look circular in the
sky, I assume axial symmetry and set a = b = r, where r is a radial coordinate.

For each shell, the dimensionless axis ratio

ξi =
ci
ai

(3.5)

fully describes the shape of that layer. In general, the ratio will assume a different
value for each layer −hence the indices in equation (3.5). In the simplest case,
it evolves linearly with the radius

ξ(r) = α
r

r0
+ β (3.6)

that inserted in equation (3.6) reads

c =
(
α
r

r0
+ β

)
r (3.7)

where r0 is a scale radius introduced to make the quantity α dimensionless, that
we arbitrarily fix to r0 = 1 Mpc.

The overall shape now depends upon the choice of (α, β). The parameter
β is a dimensionless quantity telling us what the cluster core looks like. If, for
instance, β = 1, we have cluster with a spherical core, while we have a prolate
core if β > 1. The cluster will look less and less spherical moving away from the
central region due to the presence of the linear term αr. A positive choice of
α makes the structure prolate at large radii, while a negative α gives an oblate
structure.

Of course, not every choice of parameters is reasonable. The axis ratio must
be bigger than zero and, although every positive value is ok for the sake of
geometry, we expect real structures to have rather small ellipticities, as there is
strong suggestion that most clusters are roundish or slightly elongated. A study
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by Plionis et al. [41] on a sample of 6000 clusters reports that the observed
projected ellipticity is 〈e2D〉 = 0.6 ± 0.21, which has been converted into an
intrinsic ellipticity of 〈e3D〉 = 0.5 ± 0.2. In a study of 99 Abell clusters, De
Theije et al [17] found that the distribution of ellipticities peaks around e = 0.4
with a maximum at e = 0.8. From their sample it is also shown shown that richer
clusters are intrinsically more nearly spherical than the poorer ones. Rhee et al.
found a [44] an ellipticity of 〈e〉 = 0.2± 0.13. Overall, we can conclude that the
distribution of cluster shapes is found to be more consistent with a population
of prolate clusters than with a purely oblate population [17,29,40].

Negative α of sufficiently large value will lead to the unphysical situation
where outer layers become smaller than the inner layers. We can easily rule out
this possibility by forcing the derivative of (3.14) to be positive for all radii of
interest. For typical cluster scales ∼ 1Mpc the critical value of α is αcrit = −0.5.
I tested a range of ellipticities α ∈ [−0.5, 2], meaning that, for a roughly spherical
core, the major-to-minor axis ratio in equation 3.5 goes from −0.5 : 1 of an oblate
clusters to 3 : 1 of a highly prolate one.

3.5 CELL VOLUMES

To successfully extend the deprojection to non-spherical structures, we need
to calculate the volumes of all the cells. As mentioned in Section 3, we are
interested in structures that are symmetric around the line of sight, which allows
us to restrict to a two dimensional space, where we deal with simple ellipses of
equation:

r2

R2
i

+
z2

c2
i

= 1 (3.8)

where r is a coordinate in the plane of observations, Ri and ci are the semi-axis
and z is the line-of-sight coordinate. The volume of a body of rotation around
the z-axis, whose surface profile is enclosed by f(z), is given by:

V = π

∫ zmax

zmin

(f(z))2dz (3.9)

where f in this specific case is given by fi(z) = Ri
√

1− z2

c2i
, where i is the shell

of interest.
The volume of the full ellipsoid can be found immediately by applying equation
(3.9):

V = 2π

∫ ci

0
R2
i

(
1− z2

c2
i

)
dz = 2πR2

i

[
z − z3

3c2
i

]ci
0

=
4

3
R2
i ci

1The ellipticity is defined as e = 1 − Λ2

λ1
, Λ1 and Λ2 being the major and minor

semi-axis, respectively.
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where the extra factor 2 accounts for the half-ellipsoid in the semi-plane z < 0.
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Figure 3.3: The volume of a single cell can be found integrating around the edge of
the cell projection in the x,z-plane and multiplying by 2π.

Let’s consider now the 2-dimensional cross-section of a single cell (Figure
3.3) The boundaries of the cell are made up by four elements: the outer shell;
the inner shell; and the upper and lower straight lines marking the annuli j and
j − 1. The corner points of of the shell on the outer ellipse will be named fi,j
and fi,j−1, whereas the matching point on the inner ellipse are named fi−1,j and
fi−1,j−1.

We can find the volume of the cell by integrating along the borders of the
cells following the arrows in Figure 3.3, so that the inner part is subtracted from
the outer part

V (i, j)

2π
=

∫ zi,j

zi−1,j

R2
jdz+

∫ zi,j−1

zi,j

(
fi(z)

)2
dz−

∫ zi,j−1

zi−1,j−1

R2
j−1dz−

∫ zi−1,j

zi−1,j−1

(
fi−1(z)

)2
dz

The values of z in the corner points are marked as zi,j . This points lie at the
intersection between the i-th shell and the r = rj line.

{ r2

R2
i

+ z2

c2i
= 1

r = Rj
(3.10)

and their general expression is zi,j = ci

√
1−

(
Rj
Ri

)2

The last thing we need to know before evaluating the integral is how the
ellipse semi-axes ci scale with the radius. It’s reasonable to assume a linear
relation as those described in Chapter ??, so that ci = Ri · (α ·Ri + β).

This expression allows us to integrate numerically around the borders and
evaluate the volumes of all individual cells in the cluster.
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3.6 MODELING THE INTRACLUSTER MEDIUM

The shape of the cluster can be measured only if there is a temperature gradient
between the core of the cluster and its outskirts. If the cluster was isothermal,
the signal from every volume of gas would have the same e−E/T exponential tail.
Integrating along the line of sight would still yield a ∼ e−E/T profile, regardless
of the inner structure.

Fortunately, observations tell us that most clusters are not isothermal, just
like they are not perfectly spherical: at large radii, the temperature falls off
with a power-law profile [45, 49]. Things are more complicated in the center of
the cluster, where the presence of cooling flows might affect the temperature,
producing a cusp or a flat core [49] .

In the next few sections I will gradually construct an analytical expression
for the gas temperature and density, that can adequately describe a wide range
clusters’ profiles. I start from a simple toy model (Section 3.7), that I can use
as testing ground, and then include more complicated features (Section 3.8 and
3.9). I will apply the technique to galaxy clusters A1689 in Section 3.10.

3.6.1 HOW TO FAKE A CLUSTER

Xspec allows the user to simulate observations of an X-ray source through the
fakeit command. These ‘fake’ data can be extremely realistic, as they are tailored
to mimic data from a specific telescope by folding with relevant response files.
Throughout this work, I simulate mock Chandra data.

For each observational ring, the spectrum can be adequately described by a
combination of mekal models weighted according to our results in Chapter 3.3.
In Xspec language, we expect the flux through the ring j to be

Sj = Aj · wabs(NH)

n∑

i=j

mekal(Ti, ne,i) · Vi,j(α, β) (3.11)

where Aj is the area of the ring. Let’s have a closer look at equation (3.11):

1. To begin, a mekal model is used to find the emission from a unitary cell
of plasma. The code estimates the cooling function for a gas of tempera-
ture T , with normalization proportional to the electron density n2

e. Other
required parameters are the cluster’s redshift and abundance.

2. Then I make a weighted sum the shells of interest. The factors Vij simply
scale the emission to the volume of the emitting cell.

3. Finally, the wabs component corrects for galactic absorption. Its strength
depends on the hydrogen column density NH .
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The spectrum is integrated over some exposure time and there’s an option to
add random noise.

For testing purposes, I set all the numbers to their value in galaxy cluster
A1689 (see Chapter 3.10).

3.7 A TOY MODEL

3.7.1 TEMPERATURE PROFILE

Because the projection effect arises from a temperature gradient, I want, as a
first step, to use a simple profile that makes this difference as pronounced as
possible. Observations suggest that the temperature decay in the outer region
follows a power-law (Fig. 3.7),

Figure 3.4: Left: the simplest density profile is a single power law (3.12). On the
x-axis is a radial coordinate for a typical cluster size of 1Mpc. Right: single power law
temperature profile (3.13).

T (r) = T0

( r
r0

)−a
(3.12)

where T0 is a normalization and has units of keV and rT is a characteristic
length [49] . I choose a moderate negative slope (a = 1) and model a cluster
that emits in the soft X-rays range 2. All the parameters are listed in Table 3.4.

2X-rays from 0.12 to 12 keV are conventionally referred to as ‘soft’, while more
energetic X-rays, namely 12 to 120 keV is referred to as ‘hard’. The distinction comes
from their penetrating abilities. Clusters of galaxies are known to emit soft radiation [45].
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3.7.2 DENSITY PROFILE

The electron density determines the normalization of the spectrum, that is pro-
portional to n2

e, but does not affect its shape. If the gas density profile is flat, or
not very steep, each region will contribute more or less with the same amount
of X-rays. In a real cluster, however, the density falls quickly from 10−3 cm−3

in the core to 10−5 cm−3 in the outskirts [45], causing each shell to radiate less
energy than the previous one, until we cannot detect anything at all in the out-
ermost region. This also means that the contribute from the outer shells will be
smaller (a few percent of the total [19]) and difficult to measure. The problem
can be partly mitigated by choosing larger radial bins in the outer region, but it
remains one of the biggest observational limits to this kind of technique.

I start by assuming, for testing purposes only, a power law decay (Fig. 3.4)

ne(r) = n0

( r
r0

)−b
(3.13)

with a moderate slope of b = 0.5, which is less steep than what is found for most
clusters. Again, n0 is the normalization and r0 is a scale radius.

T0 r0 n0 a b αvol βvol
toy model (keV) (Mpc) 10−3cm−3 (Mpc)

10 0.1 10 1 0.5 0.5 1

Table 3.1: Toy model parameters from in section 3.7.

3.7.3 RESULTS

With these profiles, I construct a slightly prolate cluster with a roundish core.
Using the notation introduced in Chapter 3.4, the cluster’s z-axis, which lies
along the line of sight, is parametrized as

z = (α r + β) r (3.14)

with (α,β)=(0.5,1). The structure is about 1Mpc in size.
This model cluster can be used as a testing ground for the shape-finding

algorithm. The final goal is to retrieve the correct value of (α,β), but I also want
to reconstruct the 3D temperature and density profiles.

I divide the structure in n = 10 equally spaced annuli that are 100 kpc wide,
and simulate the emission from each of them by using equation (3.11). Then I
test a range of ellipticities by looping through different values of α. For each
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Figure 3.5: Top panel : model density profile and best-fit deprojected density profile
(left) in units of 10−3cm−3. Right: same for the model temperature profile and depro-
jected temperature. Errorbars are too small to be plotted.
Bottom left : residual plot for density. Right: temperature profile with errorbars from
Xspec. The residuals are close to zero, have small errorbars and generally indicate a
good fit.

step, I calculate a new set of volumes that are used to peel the spectra in the
way outlined in Section 3.3. The deprojection returns n clean spectra, which can
be fitted to a mekal model with density, temperature and normalization as free
parameters. All the mathematical operations between spectra, like subtraction
of the outer layers, are handled via the mathpha software from the Nasa’s Ftool
package [20]. The best fit results, with errorbars, are shown in Figure 3.5. From
Figure 3.6 we can see that the deprojected profiles fall almost exactly on top of
the theoretical model. The errorbars are so small that they can’t be seen in this
plot, but a residuals plot reveals that residuals are regularly arranged around
zero. Inner rings have much bigger errorbars, which does not come unexpected
as the deprojection is an iterative procedure, and therefore we expect the errors
to be correlated.

For each step I also record the χ2 value as function of α, when all the other
variables are maximized over (Fig. 3.6). In this simple model the χ2 distribution
is extremely sensitive to variations in the shape, and a deep minimum can be
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found corresponding to the true value α = 0.5. The value of α minimizing χ2 is
the same that maximizes the likelihood function

Lα = e−
χα
2

2

(3.15)

For a one-dimensional χ2 (like this), a standard error of 1σ corresponds to a
contour of

χ = χ2
min + 1 (3.16)

or lnL = lnLmax − 1/2 (Fig. 3.11a). Thus, the final estimate of the cluster
ellipticity is α = 0.5+0.14

−0.11. The probability curve is not symmetrical, hence the
different upper and lower limits.

Figure 3.6: One dimensional χ2 for different values of α, when the other variables are
maximized over. The sharp minimum around α = 0.5+0.14

−0.11 reveals that we are dealing
with a prolate cluster, as expected.
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3.8 β-MODEL

Figure 3.7: β-model density profile (left) and double power law temperature profile
(right).

Now I want to set up a realistic profile for the cluster density. A simple profile
to describe the distribution of gas in a relaxed cluster in hydrostatic equilibrium
is the β-model [14]:

n(r) = n0

(
1 +

( r
rc

)2)− 3β
2

(3.17)

where, again, n0 is central number density, rc is a core radius, within which the
density is relatively flat. The parameter β is ∼ 2/3.

This model has the big advantage of keeping the number of parameters to a
minimum, while still providing a decent fit, and has been extensively used to fit
X-ray luminosity profile. However, it has some limits, especially in describing the
central region [49]. A more general profile that accurately describes the actual
features of clusters will be introduced in the next section.

T0 rT a b c n0 rn β αvol βvol
β-model (keV) (Mpc) (cm−3) (Mpc) (Mpc−1)

10 0.5 0.2 5 1.5 0.1 0.1 0.6 0.5 1

Table 3.2: Model parameters, section 3.8.

The temperature profile can also be improved. The X-ray brightness profiles
are often found to steepen at large radii [49]. This change in slope can be
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described by a double power law

t(r) = T0
(r/rt)

−a
(

1 +
(
r
rt

)b) cb (3.18)

which has a slope of −a at small radii and slope of −c − a at large radii. The
transition occurs near the radius rt, and has a width controlled by the parameter
b.

The deprojected quantities (Fig. 3.8) correctly reproduce the model profile.
The χ2 still has a deep minimum around αmin = 0.5+0.31

−0.25, that is, however, not
as narrow as the one found in the testing phase (for a comparison, see Fig.3.6).
This seems reasonable, since the density profile is steeper (now spanning two
orders of magnitude), that makes it difficult to correctly weight the emission
from the outer layers.

Figure 3.8: Top panel : model density profile and best-fit deprojected density profile
(left) in units of cm−3. Right : same for the model temperature profile and deprojected
temperature. In this plot, as in Fig. 3.6, the errorbars are too small to be seen.
Bottom: χ2 as a function of the shape parameter α. The trend here is similar to the
one in Figure 3.6 and a minimum can be found for αmin = 0.5+0.33

−0.21.
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3.9 COOL CORE CLUSTERS

Figure 3.9: Left : density profile in a cool core cluster. Right : temperature profile
(black), showing the contribution from cooling flows in the cluster core (red) and the
the broken power-law profile at large radii (green).

There are at least two classes of galaxy clusters. Clusters with a dense core
show a temperature decline in the central region, suggested to be the results of
radiative cooling flows [49, 50]. Around the cooling radius rcool = 0.1 ÷ 0.2 r200

there’s a broad peak, after which the temperature decreases steadily. In clusters
with moderate central densities (typically below 10−2cm−3) the temperature
profile towards the center is flat or slightly increasing. These clusters are known
as non cool-cored.

Vikhlinin et al. [49] suggested that the temperature decline in a cool core
cluster could be empirically described by an additional term,

tcool(r) =
x+ Tmin/T0

x+ 1
(3.19)

with
x =

( r

rcool

)acool
(3.20)

where acool is the temperature slope in the core and Tmin
T0

quantifies the magnitude
of the decrement [49]. Outside the cooling region, the temperature profiles of
most clusters are self-similar (if they are scaled to the same overdensity radius)
and are well described by equation 3.18.

The final model for the three-dimensional temperature profile is the product
of equations (3.19) and (3.18)

T3D(r) = tcool(r) t(r) (3.21)

This model has eight free parameters, and can describe most kinds of smooth
temperature distributions. In the same way, the gas density in the center of
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relaxed clusters can be cusped, too [49]. We can modify the flat core in the
traditional β-model [49]:

n0
(

1 + r2

r2c

) 3β
2

→ n0

(
r
rc

)−γ
(

1 +
(
r
rc

)2) 3β
2
− γ

2

(3.22)

I also bin the observations in a different way, taking smaller annuli that are
∼ 50kpc wide close to the center, and larger bins in the outer part, where the
X-ray luminosity is lower.We would expect the temperature cusp to interfere
with the possibility of detecting the shape thanks to the changes in the X-ray
temperature. If the profile is peaked, indeed, some regions of gas in the inner
part would be at the same temperature as some other region far away in the
outer part. If this is true, the photons coming from different region are no
longer distinguishable.

As shown in figure 3.10, the effect is still detectable, although the χ2 is con-
siderably flattened and the errorbars are much bigger than in the previous case.
The χ2 has a minimum centered around αmin = 0.5+1.23

−0.38 but the uncertainty on
the value is so big that covers most of the allowed parameter space. However,
the results favor prolate structures (α > 0) rather than oblate (α < 0).

A comparison in the determination of α in the three clusters examined so far
is shown in Figure 3.11.

3.9.1 WHAT WE LEARNED FROM THE SIMULATIONS

Overall, during this testing phase all the three-dimensional profiles were recov-
ered with good precision (at worst a few percents) and the residual analysis shows
that the method does not suffer from any intrinsic bias. The shape of the cluster
cannot be constrained with the same precision, especially in the case of more
complicated, cusped profiles; but the effect, albeit small, is always detectable.
The results are good enough to discriminate between prolate and oblate struc-
tures. In the next Chapter, I will try to apply the same procedure to a real
cluster: A1689.
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Figure 3.10: Top left : best-fit deprojected density profile (left) in units of cm−3.
Top right: deprojected temperature profile, in keV . The underlying theoretical model
is plotted in solid black.
Bottom: χ2(α) distribution when all the other parameters have been maximized. Al-
though considerably flatter, a minimum for αmin = 0.5+0.72

−0.29 can still be found.



44 Chapter 3. Onion Peeling

(a) Toy model

(b) β-model

(c) Cool core cluster

Figure 3.11: The likelihood function L (equation (3.15)) for the three structures
analyzed in this chapter. The one-dimensional contour L = lnLmax − 1/2 used to find
the 1σ error is shown as a dotted line. All the curves are peaked around the cluster’s
true value α = 0.5. However, the sharp peak in (a) is progressively broadened when
adding more complicated features to the cluster profile. It’s worth noticing that the
probability curves are not symmetrical, with positive α-values being more likely than
negative α-values. This is a good indicator of a prolate structure.
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T0 a

Toy model (keV)

10 1

Double T0 rT a b c
power-law (keV) (Mpc)

7 0.3 0.2 5 1.5

Cool core T0 rT Tmin rcool a b c acool
Cluster (keV) (Mpc) (keV) (Mpc)

7 0.3 0.05 0.2 4 0.4 2

Table 3.3: Temperature parameters, summary.

n0 b αvol βvol

Toy model (cm−3)

10 1 0.5 1

n0 rc β αvol βvol
β-model (cm−3)

1 0.3 0.6 0.5 1

Cool core n0 rc β γ αvol βvol
cluster (keV) (Mpc)

10 0.3 0.6 0 1 1

Table 3.4: Density and shape parameters, summary.
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3.10 ABELL 1689

(a) (b) (c)

Figure 3.12: (a) Chandra image of Abell 1689 showing the logarithmic number of
counts in the X-ray band. (b) X-ray morphology of the cluster [43]. (c) The radial
binning (in green) that has been used for the deprojection [43].

A1689 is a massive cluster at moderate redshift (z = 0.183) that has been
extensively observed in the X-ray band. The cluster has regular X-rays contours
(Fig. 3.12b), whose projected ellipticity is as small as ε ' 0.08 [53]. This
would be taken as an indicator of a relaxed, nearly spherical structure, if big
discrepancies between strong lensing masses and masses from X-rays didn’t bring
up the idea that A1689 may in fact be an elliptical structure, that is conveniently
aligned with the line of sight [31,38]. Thanks to its properties (symmetry along
the line of sight; suspected non-sphericity), A1689 makes an optimal candidate
to test the deprojection.

I use the full two-dimensional spectrum from a long observation that was
conducted with Chandra’s spectrometer ACIS-I in March 2006. The background
has been subtracted from the data and the point sources removed. The data
are binned in 12 circular annuli centered around the X-ray peak. The size of
the annuli, visible in Fig. 3.12c, was chosen in a way that the number of counts
in each ring was comparable. The metallicity is set to 0.37 and the redshift
to z = 0.183, the values reported in the Heasarc catalog [1]. Using Xspec to
fit the observations confirms a redshift of z = 0.177 ± 0.009 and a metallicity
Z = 0.48± 0.08.

3.10.1 PEELING THE CLUSTER

Just as done in the previous Chapters, I peel the cluster’s layers, starting from
the outer ring and proceeding towards the center. To each deprojected layer
I fit a mekal model to find the temperature and the density of the gas. This
procedure is repeated for different geometries by spanning a range of α and β,
trying to find the shape that gives the best fit. The best-fit results are shown in
Figure 3.14.
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Figure 3.13: Results of the deprojection of A1689. Left : best fit density profile, with
errorbars. Right: best fit temperature profile, with errorbars.

The density is relatively easy to constrain, because it comes from the nor-
malization of the spectrum. The best-fit profile, shown in Figure 3.13, falls in
the correct range 10−3 to 10−5 cm−3 and has errorbars of the order of a only
few percent.

The temperature profile (Fig. 3.13), on the other hand, is irregular and
affected by big uncertainties, but overall suggests a cool core cluster. The depro-
jected temperatures are slightly higher than average cluster temperatures, but
their values seem in agreement with the global temperature of A1689, that is
T = 10.5± 0.1keV (from spectral fitting with Xspec). The temperature spike in
the inner ring seems compatible with the presence of a central black hole [26],
whose gravitational field would compress the inflowing gas, thus causing the tem-
perature peak. In this sense, the peak could be used as a black hole diagnostic.
However, detections of central temperature peaks in galaxies are rare [25] and
this hypothesis has, therefore, yet to be verified observationally. In part this
reflects the difficulty in obtaining precise temperature measurements on scales
of a few hundred parsecs.

Overall, the biggest difficulty is that the deprojected spectra are so noisy
that it’s difficult to have a good handling of the spectrum exponential cut-off,
which is crucial to determine the temperature. The problem is especially visible
for the inner rings, which undergo a higher number of iterations. Figure 3.15
shows the emission of the innermost ring before and after the deprojection: the
number of counts in the final spectrum (Fig. 3.15b) is merely reduced by a factor
two, but the noise has increased so much that most of the features got lost. The
fit χ2 (Fig. 3.14) is almost flat, with a slight preference for prolate geometries.
It was not possible to find any minimum.
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Figure 2.4: (a) The χ2 profile is almost constant and, although it shows a
slight preference for positive high values of α, it is not possible to constrain the
shape. A longer run until α = 10 still was not able to find a minimum. (c)
The χ2 profile is almost constant and, although it shows a slight preference for
positive high values of α, it is not possible to constrain the shape. A longer run
until α = 10 still was not able to find a minimum. (b) χ2 map if both α and β
are allowed to vary.
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(b) After

Figure 2.5: Observed spectrum of the innermost ring n = 1 (a) and the same
spectrum when the outer layers have been peeled off (b).
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Figure 3.14: (a) The χ2 profile is almost constant and, although it shows a slight
preference for positive high values of α, it is not possible to constrain the shape. A
longer run until α = 10 still was not able to find a minimum. (c) The χ2 profile is
almost constant and, although it shows a slight preference for positive high values of α,
it is not possible to constrain the shape. A longer run until α = 10 still was not able
to find a minimum. (b) χ2 map if both α and β are allowed to vary. Light regions are
for low values of χ2, dark regions are for higher χ2. There’s a preference for prolate
geometries (α > 0, β > 1), although the differences are minimal.
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(b) After

Figure 3.15: Observed spectrum of the innermost ring n = 1 (a) and the same
spectrum when the outer layers have been peeled off (b).
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The same procedure has been applied to Abell 2218, obtaining similar re-
sults (see Appendix A). For both clusters, the shape could not be constrained.
Overall, the results suggest that variations in the X-ray spectrum induced by the
cluster shape are extremely small and hard to detect, unless the quality of the
observations is excellent. Deprojecting the cluster can only make the problem
worse, because the signal to noise is further reduced at every iteration. It is
possible that rebinning the spectra might slightly improve the results but, with
the current data, this method is just not sensitive enough.

In the next chapter, I will try to solve the problem from a different perspec-
tive.
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50
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In the previous chapter I used the observations as a starting point, and
tried to work the way back to the theoretical model. Now I’m going to follow

a different approach: starting from a theoretical model, I will adjust the param-
eters to reach the best fit with the observations. Because the model is defined in
a three-dimensional space whereas observations are only two-dimensional, I still
need to make a projection to compare the quantities.

The idea is simple, the only requirement being that we can quickly generate
a large number of clusters with the desired properties. We also need an efficient
tool to explore the parameter space, like a Monte Carlo sampler.

In contrast to the deprojection, which was non-parametric, this method re-
quires that we make some assumptions about the specific structure of the cluster:
in particular, we need to set up an expression for the cluster temperature, den-
sity and geometry. Then we calculate the X-ray emission from a wide range of
clusters with different profiles. We are of course interested in finding the set of
parameters that gives the best resemblance of the theoretical spectrum to the
the observations.

4.1 MONTE CARLO METHODS

The expression Monte Carlo (MC) indicates a family of probabilistic methods
that can be successfully employed to solve complex problems, such as fitting
problems in high-dimensional spaces. The technique makes use of random num-
bers to draw samples from a large system, with the idea that, if the samples
are chosen in a smart way, they will be representative of the system as a whole.
The great advantage of the MC methods is that it is possible to include many
parameters for a relatively small computational time.

The sampler jumps around in the parameter space, taking random steps
governed by a probability function. If the next point has higher probability than
the current position, the step is taken. If the next step is to a point of lower
probability, the step can still be accepted, with probability P (new)/P (old). This
way of jumping around is known as ‘Markov chain’, and describes a random
walk where the probability distribution at each step only depends on the present
position (but not on the specific way you got there1). Since successive steps are
correlated, the Markov chain may need to run for a considerable time to generate
samples that are effectively independent (Fig. 4.4).

4.1.1 METROPOLIS ALGORITHM

This idea expressed above was formalized in the 50s by Metropolis and coworkers
[36], who were trying to describe how a thermodynamic system finds the lowest

1Also known as the drunkard’s walk.
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Figure 4.1: Time evolution of one of the variables (α) during 2000 iterations of the
MCMC. This chain is made by highly correlated samples, and has to be ‘thinned’ by a
factor large enough that the chain has time to move to an independent configuration.

energy state. If the system is in equilibrium at temperature T , each configuration
has a probability proportional to the Boltzmann factor,

p(E) ∼ e−E/kT (4.1)

where k is the Boltzmann constant. The key contribution of the Metropolis
paper was the idea that the system will only change its configuration from a
state of energy Ei to Ei+1 with probability

p(E) =

{
1 if Ei < Ei+1

e−(E2−E1)/kT if Ei > Ei+1
(4.2)

Most of the time, the system will be jumping downhill, towards configurations
of lower energy. Nevertheless, there’s a small chance of the system occasionally
choosing to jump uphill, to ensure that we don’t get trapped in a local minimum.
The lower the temperature, the less likely is any significant uphill excursion.

The Metropolis algorithm can also be used to minimize functions for other
than thermodynamic system: all that is required is a function for calculating
the probability given a set of parameter values. To search for a minimum in the
parameter space, the energy can be replaced by a χ2 estimate.

4.2 COSMOMC
CosmoMC is a Monte Carlo engine for exploring cosmological parameter space.
The code was originally written to do theoretical power spectrum calculations
with CAMB [32], but it can also be compiled as a generic sampler. The package
is available online [33] and contains two programs: the first, cosmomc, does
the actual Monte Carlo, while the second program, getdist, does importance
sampling and statistical analysis of the chain.
In the next paragraphs I will describe some parts of the MC that require special
attention.
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4.2.1 BURN IN

The Markov chain starts from a point that is set by the user, and then the
algorithm runs for several steps until the initial state is forgotten. These samples,
which are discarded, are known as ‘burn-in’. After this transient, the chain
approaches a stationary distribution (Fig. 4.4) where the set of accepted values
represents a sample from the probability distribution p(x).

4.2.2 PROPOSAL DISTRIBUTION

At each step, a new (tentative) state is generated by the proposal density. The
algorithm works better if the proposal density is similar to the target distribution,
p(x), whose shape is unfortunately unknown. This problem can be overcome by
running a test chain with a simple proposal (such as a n-dimensional gaussian)
in order to estimate the covariance matrix. The matrix contains informations
about how the parameters are correlated, and can be used as an input for a more
realistic proposal to be used in the next runs.

4.2.3 STEP SIZE AND ACCEPTANCE RATE

The proposal length scale (which determines the step size) is usually chosen to
be short relatively to the size of the system. The reason for a small length scale is
that, for most high-dimensional problems, a large step from a point is very likely
to end in a state that has very low probability, and such steps are unlikely to
be accepted. The disadvantage of taking small steps, on the other hand, is that
they will result in a random walk through highly correlated samples, which takes
a long time to get anywhere. The fraction of proposed samples that is accepted
is known as ‘acceptance rate’. In the steps are too small, the acceptance rate
will be high, but the chain will mix slowly and take a long time to converge.
The desired acceptance rate depends on the target distribution, but it has been
shown that the ideal acceptance for a single gaussian is 50% [51]. For more
complicated distributions, the step size of each parameter should be tuned by
trials and errors. I found acceptable results with a rate of 60%, although a large
thinning factor was required. An estimate of the acceptance rate is provided by
cosmomc.

4.2.4 THE LIKELIHOOD FUNCTION

The heart of the MC code is the likelihood function, that guides the random walk
towards regions of high probability. The function (see Appendix D for details)
calculates the χ2 between the observed spectrum2 µ and the spectrum at a given

2Because the observations are actually given by a set of n spectra (one for each
radial bin), the final χ2 is taken as the average over the individual χ2

i of the annuli. The
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point in the parameter space f(par1...parn):

χ2 =
∑

i

(fi(par)− µi)2

σ2
i

(4.3)

where the sum is taken over the energy bins and σ2
i is the standard error on

the count rate for the i-th channel. When using simulated observations, the
errors are modeled as Poissonian noise σi ∝

√
Ni, with Ni being the number of

photons detected in the i-th channel. A different choice of σ2 would make the
distribution more (or less) peaked around the central value: this possibility is
explored further in Fig 4.6a.

4.3 CALCULATING THE SPECTRUM

It’s important now that we find an efficient way to calculate a large number
of spectra. As seen in Chapter 2.3.1, Xspec has a built-in code to reproduce
spectra from an X-ray source, but it would be extremely time consuming having
to run Xspec for each Metropolis step. Instead, I want to try to find a fast way
to compute numerically the spectrum, with good approximation, with no need
to call Xspec.

What makes it so hard to find a simple expression for the spectrum, is its
characteristic irregular shape, with spikes and line features that are impossible
to reproduce through simple analytical functions. All these complicated features
are described by the cooling function Λ(T ).

This is the moment to start looking at things from a different angle. Rather
than plotting the spectrum as a function of energy, like we usually do, we can fix
the energy and slowly change the temperature. As it turns out (Figure 4.3), the
signal is a rather regular function of the temperature and these profiles can be
easily fitted by a simple expression. For a given energy E = hν one can write,
to a very good approximation,

f(T, ν) = aν T
3 + bν T

2 + cν T + dν (4.4)

where all terms beyond T 3 are negligible. Equation (4.4) provides a rather good
fit, that can be further improved by fitting separately low- and high-temperature
regions, the border between the two being at 3 keV. In this way, I obtain two
sets of parameters, that are displayed in Figure 4.4.

Then I can reconstruct the cooling function in the range of interest by apply-
ing equation (4.4). For simplicity, the spectrum was given per unitary density:
setting the density back to its correct value would only change the normalization

differences from the χ2 in 4.3 are minimal.
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Figure 4.2: A family of spectra f(T,E) when the temperature of the plasma is allowed
to vary from T = 0.1 to 11 keV, showing that the function is much more regular along a
section of constant energy than along a section of constant temperature. If we take a slice
of constant temperature, let’s say T1, we find a spectrum fT1

, with some complicated
features that are impossible to fit. This is especially visible at low temperature, where
line emission is the dominant process. On the other hand, profiles of constant energy,
fE , are very smooth and can be fitted easily. Examples of two-dimensional slices are
shown in Fig. 4.3. The actual calculations were done with 10 times more points than
shown in this figure.

by a factor n2
e (eq. (1.2)). Of course, the approximation is not perfect and can-

not be extrapolated outside the fitting range3, but, at this stage, speed is more
important than extreme precision. The high energy part of the spectrum (above
8keV) proved to be more difficult to reproduce, and would require a better fit.
For testing purpose, the energy range has been restricted to 0.3 − 7.5 keV. A
comparison between the ‘correct’ spectrum (from Xspec) and the approximate
one is shown in Figure 4.5.

These spectra can be projected along the line of sight to mimic observations
of a cluster. The way of doing so is analogous to what is described in Chapter
3.6: I assume that each shell is isothermal and make a wighted sum over all the

3The fitting range was chosen to match the range where Chandra is operative, namely
0.2÷ 10 keV.
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Figure 4.3: Sections of the function f(T,E) for constant values of E, with a resolution
of ∼ 0.1 keV or 103 points. The values were extracted from Xspec’s mekal model and
interpolated with eq. (4.4).

cells along the line of sight.

4.3.1 THE RESPONSE FUNCTION

To be sure that I’m not introducing any systematics by mixing spectra with
different response, I do not wish to apply the response matrix until the very last
stage (i.e., just before comparison with observations). In this way, the procedure
has the advantage of being detector independent, so that it could potentially be
applied to data other than Chandra’s only by replacing the response files. The
procedure used to extract the files from Xspec is described in Appendix B.
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Figure 4.4: Fit parameters {a, b, c, d} as function of energy. The upper set holds for
temperatures above 3 keV (top), the bottom one for temperatures below 3 keV. At low
temperature the spectra are dominated by line emission, which causes the fit parameters
to be more scattered.
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Figure 4.5: A comparison between a ‘real’ spectrum and its approximation recon-
structed in the way outlined in Chapter 4.3. Top: a model spectrum of a T = 4keV
plasma made with Xspec (in black) together with the same spectrum calculated with
equation (4.4) and (1.2) and convolved with Chandra’s response files (in green). Bottom:
residual plot highlighting the differences between the real spectrum and its approxima-
tion (in linear scale to show the negative values). For the worst points, errors are still
well contained within 1%.
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4.4 TESTING

Again, I want to test the method on a simple model, that keeps the number of
free parameter to a minimum. I start by parametrizing a simple cluster, like the
one used in Section 3.7, with single power-law temperature and density profile:

T (r) = T0

( r
r0

)−a
and ne(r) = n0

( r
r0

)−b
(4.5)

The cluster has a spherical core and is prolate at large radii (α = 1, β = 1).
As a first test, I fix all the parameters but the one defining the shape (α),
which I try to fit. The Monte Carlo quickly converges to the solution, that is
αmin = 1.00±0.49. The shape of the one-dimensional χ2 Figure 4.6a is somewhat
reminiscent of the results obtained with the deprojection in Chapter 3.7 et seq.
(see figure 3.11 for a comparison).

(a) χ2 distribution (b) Likelihood function Lα

Figure 4.6: (a) χ2 distribution for the parameter α from a one-dimensional Monte
Carlo run used as a test. The curve is symmetrical, with a minimum in the χ2 found
for αmin = 1.00± 0.49. (b) Likelihood function (in red) with 1σ contours (dotted line).
In light grey is shown how the probability would change if we reduce the errorbars on
the observations by a factor 10.

The next step is to fit all the parameters in equation 4.5, starting from
the temperature and the density slopes. From the distribution of points after
a long run we can obtain the full probability distribution (Fig. 4.7 ), that
can be marginalized over to find the most-probable parameter estimates. The
parameters mean values after 20 000 Monte Carlo steps are shown in Table 4.1.

Note that most of the expectation values contain the real value, although
the relative errors are as big as 30%. The contour plot, however, reveals a com-
plicated parameter space. The density seems to be especially badly constrained.
Moreover, the results are sensitive to the parameter space volume available.
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parameter mean real value
a 1.22± 0.37 1
b 0.91± 0.25 1.2
α 0.66± 0.15 0.5

Table 4.1: Expectation values (with standard deviation) of the model parameters,
after 20 000 Monte Carlo steps. The real values are shown for comparison.

Unfortunately, these results cannot immediately be extended to more compli-
cated distributions, nor this procedure could be directly applied to the data. At
the moment, fit to complicated models with a larger number of parameters are
difficult to constrain and do not converge to the correct values. This should be
improved by tuning carefully the error in 4.3 and the step size of each parameter.

4.5 WHAT’S NEXT?
In this thesis, I explored the possibility that clusters elongation can be inves-
tigated from the analysis of their spatially resolved X-rays observations. The
effect of different geometries should be primarily seen as a small change in the
exponential cut-off of the spectrum, due to the temperature gradient in the
cluster volume. Throughout the work, I made the assumption, widely used in
literature [3, 19, 30], that clusters can be thought of as an onion-like structures,
made of concentric layers of constant temperature and density. I restricted the
analysis to the special class of spheroidal clusters aligned with the line of sight,
but it would be interesting to extend the description to full triaxial geometries.
For simplicity, I also assumed that the ellipticity of the cluster evolves linearly
with the radius (eq. 3.5), but, in the future, the effect of higher order terms
should be considered.

I attempted to solve the problem in two complementary ways: the first
method was based on a deprojection (or ‘onion peeling’) of the observational
data, while the second method starts by projecting a 3D model of the cluster
and then runs an optimization procedure.

The deprojection, described in Chapter 3, has been applied to Chandra’s
data (observations and simulations), providing a guess for the cluster profile and
ellipticity. However, the effect proved to be so small that, in the case of A2218
and A1689, the ellipticity was impossible to constrain. Nevertheless, working
on simulations, where the signal-to-noise ratio was not an issue, confirmed the
idea that the specific geometry of the cluster does indeed affect the overall X-ray
emission. We also learned that the effect is less pronounced, and therefore more
difficult to detect, in clusters with a flat or peaked temperature profile, as in
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cool-core clusters.
In Chapter 4 I dropped the deprojection algorithm and tried instead to op-

timize a (projected) model until agreement with the data was reached. This
second method is parametric, and it therefore requires that we can make a rea-
sonable guess for the cluster’s profile. At the time being, it has only been applied
to simple clusters with a power-law profile. Before proceeding further, the inter-
polation of the spectra should be refined (Ch. 4.3), especially in the high energy
range.

The plan for the future is to test this procedure extensively against more
complicated gas distributions, including double power law and cored profiles, in
the way done in Chapter 3.7 and following. One could also improve the way
the projections are done, by considering a larger number of shells, or, in the
most correct scenario, integrating the emission along the line of sight, as from
eq. (3.1), rather than summing discrete volume elements. Then, ideally, the
procedure should be applied to observational data. The fact that the response
matrices are treated separately would make the procedure suitable to data other
than Chandra’s. Once we have a reliable estimate of the ellipticity, this could
be used to improve our understanding of clusters cosmology. In particular, if
SZ data for the cluster were available, one could use them to derive the Hubble
constant.
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Figure 4.7: Contour plots for a prolate cluster model with three free parameter, after
a MC run. The color scale is the probability of each point, red being high probability
regions and blue low probability. For each parameter the marginalized distribution is
also shown (solid black profiles).
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Appendix A

Deprojection of Abell 2218

Abell 2218 is a cluster at redshift z = 0.175 that is famous for being a powerful
gravitational lens. Similarly to the case of A1689, masses deduced from X-rays
are bigger by roughly a factor two than masses from X-rays [35]: among possible
explanations to this discrepancy, there would be a possibility that the cluster
is indeed not spherical. Other reasons include non-thermal contributions to the
gas pressure from magnetic fields and bulk motions. Here I want to verify the
hypothesis of non-sphericity using the method described in Chapter 3, the non-
spherical deprojection of the cluster.

I follow the same procedure used in Chapter to analyze A1689 (Chapter
3.10). The deprojected temperature and density profiles are shown below in
Figure A.1a, together with a plot of the χ2 (Fig. A.1b). The results are not
dissimilar from what found for A1689: again, it seems that the deprojected
profiles are too noisy to be fitted with the required accuracy.
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(a)

(b)

Figure A.1: (a) Results of the deprojection of Abell 2218. Left : best fit density
profile, in cm−3. Right: best fit temperature profile, in keV . Fitting the spectrum
with the theoretical mekal model including galactic absorption yields a gas average
temperature of T = 5.7 ± 1.2 keV. (b) The χ2 distribution as a function of the shape
coefficient α. Again, variations in the χ2 are minimal (see Fig. 3.14 for comparison),
with a mild preference cluster for geometries that are rather spherical (if not oblate)
at large radii. There is no minimum on α: beyond the lower bound α = −0.5, the
parametrization becomes unphysical.
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Extracting the response files

As discussed in Chapter 2.2, all the information about the detector response
is stored in two files: a two-dimensional redistribution matrix (wrmf ), contain-
ing the detector gain and energy resolution, and the one-dimensional ancillary
response file (arf ), containing the detector efficiency.

The response depends on the position on the detector and can vary in a non
predictable way with time, therefore it’s important that every data file has its
own response matrix. In my case, each observation was split in 10−−15 rings, so
there were as many response files. To be sure that I’m working under the most
general assumptions and that I’m not introducing any systematics by summing
up spectra with different response files, I do not include the response files until
the very last stage (i.e., just before comparison with observations). In this way,
I also make sure that the procedure is detector independent and thus can be
applied to data from several telescopes.

B.1 THE SPECTRAL RESPONSE

In order to minimize disk-space requirements, these files are in a compressed
format where all matrix elements below a threshold (of 10−6 keV) are considered
zero and are not stored [21]. The compressed file contains long arrays of non-zero
elements, together with informations about their position in the original matrix.
The espression ‘channel subset’ indicates a group of contiguous channels for
which the matrix elements are above the threshold. The organization of the
data within the wrmf file is shown in Figure ??. Each row corresponds to a
single energy range and consists of the following columns:

1. Elow: containing the lower energy bound of the energy bin,

2. Ehigh: the upper energy bound of the energy bin,

3. Ngrp: the number of ‘channel subsets’ for the energy
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Figure B.1: How the response matrix looks like: the FITS format for storing photon
redistribution matrices within a wrmf. From the Calibration requirements for spectral
analysis [21].

4. Fchan: a vector (of integers) telling the channel number of the start of each
channel subset’ for the energy bin,

5. Nchan: another integer vector, containing the number of elements within
each channel subset for the energy bin,

6. Matrix: a real vector, containing the response values for each channel
subset for the energy bin.

Each row is normalized to one detected photon, i.e. each element of the matrix
is the probability of a photon in the energy range (Emin, Emax) giving rise to a
signal in that channel. As they represent probabilities, the matrix elements are
dimensionless.

The content of the response files can be accessed through a visualization
program like fv from the Ftool package. I exported the data from the original
FITS format (the standard format used by Nasa) to an ASCII file. Then, I wrote
a Matlab routine to reconstruct the full matrix including the zero entries. Using
the notation above, a given row in the Matrix array contains elements:

Fchan(1)→ (Fchan(1) +Nchan(1)− 1)
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followed by:

Fchan(2)→ (Fchan(2) +Nchan(2)− 1)

Fchan(3)→ (Fchan(3) +Nchan(3)− 1)

· · ·
Fchan(Ngrp)→ (Fgrp(Ngrp) +Nchan(Ngrp)− 1)

Every other entry is set to zero.

B.2 THE ANCILLARY RESPONSE

The ancillary response arf files are relatively straightforward to treat. They
consist of a simple one-dimensional vector containing the product of all the com-
ponents (effective area, filter transmission, correction factors, etc) as a function
of energy. The data are in units of cm2.

The arf can be visualized using the command plot efficiency in Xspec, and
then printed to an ordinary ASCII file.

Once the spectral and ancillary response have been restored, applying them
to a data file is just a matter of matrix multiplication. If S is the real spectrum
of the source, the detected spectrum S? can be found as

S?(i) =
∑

Ej

R(i, Ej)A(Ej)S(Ej) (B.1)

where R and A are the spectral and ancillary response, respectively. The i’s
indicate the detector energy channels and the Ej ’s are the incoming photon
energies.
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The Hubble constant

A brief description of use of the Sunyaev-Zel’dovich effect as a cosmological probe
was given in Chapter 1.6. The basic idea is that the distance to the cluster de-
pends on a comparison of the X-ray emission and CMBR absorption of radiation
from the gas. The results presented were introduced in a paper by Birkinshaw
and Hughes [10] and later generalized for non-spherical clusters [9].

The emission from the gas in a cluster of galaxies is measured by its X-ray
surface brightness, and is proportional to the line of sight integral of some density
squared,

E ∝
∫
n2
e dl (C.1)

while the absorption of a background source of radiation is measured by the
thermal Sunyaev-Zel’dovich effect, whose intensity is proportional to the optical
depth,

A ∝
∫
ne dl (C.2)

Thus, if both the emission from the gas, E, and its absorption, A, can be mea-
sured, the quantity A2/E is a density weighted measure of the path length
through the gas. If the structure of the gas is known and its angular size, θ,
can be measured, than the angular diameter distance of the gas can be esti-
mated as A2/(Eθ). Here, the density is assumed to be uniform: things get more
complicated if there is clumping1.

Since the technique compares the angular size of the cluster (θ) with a mea-
sure of the line of sight size of the cluster (A2/E), it’s important to have a
realistic model for the inner structure of the gas. It’s convenient to express the

1The ‘clumpiness’ of the gas is measured by the coefficient Cn =
〈
n2
e

〉
/ 〈ne〉2 [9].

Since the X-ray emission depends on the average of n2
e, while the SZ depends on an

average of ne, the overall effect is sensitive to variations in Cn.
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electron density and temperature in terms of a central value and a dimensionless
form factor, describing the angular structure of the gas density and temperature.
The angular variable are the angle from the line of sight, θ; the angle from the
line of sight through the cluster center, ξ = l/dA, and the azimuthal angle about
the line of sight, φ. dA is the angular diameter distance of the cluster. Then the
electron density and temperature at some location, r, are

ne(r) = ne,0 fn(θ, ξ, φ) (C.3)

ne(r) = Te,0 fT (θ, ξ, φ) (C.4)

and we can rewrite the cooling function Λ(T ) in terms of similar form factors,
which depend on fn and fT in a complicated way,

Λ(T ) = Λ0 fΛ(θ, ξ, φ) (C.5)

And the same can be done for the spectrum function,

Ψ(T ) = Ψ0 fΨ(θ, ξ, φ) (C.6)

The X-ray surface brightness and the thermal Sunyaev-Zel’dovich effect can then
be expressed in terms of physical constants and angular structure, as

SX(θ, φ) ≡ NXΘ1(θ, φ) (C.7)

∆I(θ, φ) ≡ NSZΘ2(θ, φ) (C.8)

where NX =
Λ0 n2

e,0dA
4π(1+z)3

and NSZ = Ψ0I0ne,0 σTdA contain all the relevant physical

informations, while all the structural information is contained into the angles

Θ1(θ, φ) =

∫
f2
n fΛ dξ (C.9)

Θ2(θ, φ) =

∫
fn fΨ dξ (C.10)

The absolute distance to the cluster is then found by fitting the X-ray and
Sunyaev-Zel’dovich effect data to models of the form of equation C.7 to deduce
NX and NSZ , and calculating the angular diameter distance using

dA =
(N2

SZ

NX

)( Λe,0
4π(1 + z)3I2

0 Ψ2
0σ

2
T

)
(C.11)

and the value of the Hubble constant can be obtained from the measured redshift
of the cluster and the value of dA.

If the model for fn is modified to make the cluster atmosphere prolate or
oblate, then the apparent X-ray and Sunyaev-Zel’dovich images will be ellip-
soidal, of circular if the symmetry axis lies along the line of sight. In this last
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case the core radius of gas along the line of sight is larger by a factor q = c/a
than the core radii in the other two directions (c and a being, as usual, the
major and minor semiaxis). The expression for Θ1 and Θ2 remains valid, while
the normalization NX and NSZ both increase by a factor q. The result is that a
prolate axis distribution with the symmetry along the line of sight.

Such clusters give biased estimates of the distance, since the true angular
diameter distance is

dA(true) =
dA(estimated)

q
(C.12)

if the distance is estimated using equation C.11 under the assumption of spherical
symmetry.
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My code

In this section I will describe the content of the code I have written to simulate
the model clusters and do the deprojection in Chapter 3 and to do the Monte
Carlo simulation in Chapter 4.

The actual code can by found here: http://bit.ly/code Martina.

D.1 DEPROJECTION

This is a list of the code used to perform a non-spherical deprojection as described
in Chapter 3. The scripts are written in tcl, as they are meant to be run within
Xspec.

common.tcl A short tcl script that extracts fit results, including χ2, from
Xspec and writes them to a tcl variable.

sphvol.tcl An Xspec function to calculate the cell volumes of an ellipsoid, given
the array or radii and the relation between major and minor axis from
equation (3.6).

genspectra.tcl This is the program used to create a 3D model cluster and
project it along the line of sight. First it creates n spectra from hot diffuse
gas using Xspec’s mekal model and some temperature profile, that is also
defined within the script. Then, each shell is weighted according to (3.11),
giving the spectra of the 2D observational annuli.

peelingfake.tcl This is the Fortran program that performs the actual deprojec-
tion. Takes as input a set of observational spectra (like those constructed
in the previous step) and tries to recover density, temperature and ellip-
ticity of each 3D shell. It loops over different values of α, returning for
each step the fit parameters and the χ2. Finally, finds the value of α that
minimize the χ2 and prints the best fit parameters.
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peeling.tcl Is similar to peelingfake.tcl, but meant to be used with real ob-
servations, rather than Xspec fake data. Except for minor details, the
program follows exactly the same path seen before: loops over the values
of α (and eventually β), does the deprojection and returns the best fit 3D
temperature profile and density profile. Also returns the χ2 as a function
of α and estimates the most probable value of α.

D.2 PROJECTIONS AND MONTE CARLO

Here is a list of files used to extract the cooling function from Xspec’s mekal
code and simulate a model cluster. The idea behind this method is explained in
Chapter 4.3.

params.f90 Configuration file. Contains all the numbers relative to the ob-
servation: number of detector channels, energy range, number of annuli,
etc.

fakespec.tcl Xspec command file to produce a large number of spectra (∼ 100)
with constant density and slowly increasing temperature. All spectra have
unitary response.

profile.f90 This is a Fortran program that takes the output from fakespec.tcl
and cuts a slice through each energy channel, in this way obtaining ∼ 1000
profiles as function of the temperature.

fit.C This is a ROOT routine that perform a 3rd degree polynomial fit in equa-
tion (4.4) to the temperature profiles. Fits separately low-temperature
profiles (0.3 − 3 KeV) and high-temperature (3 − 15 KeV). Saves the re-
sults to a Fortran module.

copy to camb.sh Copies all the relevant file to the Cosmomc folder.

fakec.tcl Configuration file, containing the relvant cluster properties (redshift,
abundance) and information about the observation, such as exposure time,
number of channel, number of annuli. . . . Its content can be re-written in
Fortran-friendly format by running write params.tcl .

xspecpro.tcl An Xspec command file to simulate the theoretical X-ray emission
from a cluster. Contains the definition of the density and temperature
profiles. The instrumental response is set to dummy, to simulate a perfect
detector. The resulting spectra are written to an ASCII data file.

xspecpro.f90 Fortran program to project 3D shells into observational annuli,
as described in equation (3.11). The resulting spectra are written to a
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single Fortran module and copied to the cosmomc folder, where they are
used as ‘observations’.

Finally, here is the content of the Monte Carlo code I have used to optimize
the projected spectra, as described in Chapter 4. I only list the programs and
subroutines written by me, while the actual Monte Carlo code can be found
online [33].

xigar.f90 It’s the heart of the MC code as it contains the definition new like-
lihood function (xraylike), that I substituted to the standard one used
by cosmomc. Basically, the function evaluates the spectra at each MC
step using equation (4.4) and (1.2). Then those spectra are compared to
the observations by using equation (4.3). To ensure that the comparison
makes sense, the synthetic spectra are multiplied by the correct response
matrices (contained in response matrix.f90)

sphvol.f90 It’s just the Fortran analog for sphvol.tcl. Using the current value
of α and equation (3.6), calculates the cells volumes to be used in the
projections.

params xray.ini Input file for cosmomc. Contains the number of free param-
eters, with starting point, upper and lower limits, and step size for each
one. Also contains the total number of steps and length of the burn-in
phase.

D.3 RESPONSE MATRICES

response.m A Matlab program that loads the compressed wrmf response file,
together with the vectors containing Ngrp, Fchan, and Nchan and recon-
structs the full matrix. Then, each channel by its efficiency (from the arf
file). The results are printed the to a data file.

apply response.m Applies the response to a real spectrum and compares with
the observations.
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