
Eksamensadmin is t ra torer
Eksamensteam, tel 35 33 64 57
eksamen@science.ku.dk

Bedømmere
Aslak Grinsted
Eksaminator
aslak@nbi.ku.dk

+4535320510

Forside
Eksamensinformat ion
NFYK10020E - Physics Thesis 60 ECTS, Niels Bohr 
Institute - Kontrakt:131696 (Øyvind Andreas Winton)

Besvare lsen af leveres af
Øyvind Andreas Winton
dqc205@alumni.ku.dk

Besvare lses in format ioner

Ti te l : Scientific machine learning for discovering basal dynamics of Greenland outlet glaciers
Ti te l ,  engelsk: Scientific machine learning for discovering basal dynamics of Greenland outlet glaciers
Tro og love-erk lær ing: Ja
Indeholder  besvare lsen for t ro l ig t  mater ia le : Nej



MSc thesis in Computational Physics

Scientific machine learning for
discovering basal dynamics of

Greenland outlet glaciers

Author: Øyvind Andreas Winton (student ID: dcq205)
Supervisors: Aslak Grindsted (NBI, University of Copenhagen), Allan P.
Engsig-Karup (DTU Compute) and Sebastian B. Simonsen (DTU Space)

Submitted on 1 August 2022

Abstract
Basal dynamics of outlet glaciers are essential in predicting the Greenland
ice sheets’ contribution to sea-level rise. Despite this, they are poorly con-
strained by observations and generalizable models. This study combines
physical models and machine learning to discover relations for basal stress
from data through new system identification and parameter estimation tech-
niques under the shallow shelf approximation. The most generalizable model
discovered was τ ∝ u−1/2 + 1.5us, which explains 30% of the variance of a
spatio-temporal extrapolation test data set. The most generalizable ex-
tended power-law formulation was τ ∝ u0.31s0.45 explaining 24% variance.
Fitting parametric models to each glacier individually yielded models that
explain 77% of the variance in temporal extrapolation. The models for in-
dividual glaciers generally have negative exponents for velocity, contrary to
the commonly assumed positive exponent. No relation between basal stress
and meltwater was identified. This study lays the foundation for further
attempts to discover ice-flow dynamics from data.
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1 Introduction

Outlet glaciers play an essential role in the mass loss of the Greenland Ice Sheet,
directly impacting global sea levels (Church and White, 2011). Basal processes mod-
ulate solid ice discharge into the ocean, constituting a large part of ice sheet mass
loss (Mankoff et al., 2021). However, retrieving direct observations of basal regions
is challenging, so our understanding of the processes that modulate glacier sliding
is limited to modelling and surface observations (Jay-Allemand et al., 2011; Stearns
and van der Veen, 2018). Whether or not a predictive model of basal processes exists
is not known (Cuffey and Paterson, 2010). This study aims to discover such a model
through the combination of a physical model and large data sets of observations.

Ice-flow modelling relates various properties and observables of glaciers in time and
space. Various models exist, derived from the Navier-Stokes equations governing
fluid dynamics (Cuffey and Paterson, 2010). Depending on the question, they differ
in their simplifications and assumptions, making them useful in different domains
(Bueler and Brown, 2009). The most complex models are used for contemporary
time scales and individual glaciers or drainage basins. More simplified models are
well-suited for describing the interior of ice sheets or for century-scale evolution
modelling. Particularly simplified are the shallow models, hereunder the Shallow
Shelf Approximation (SSA).

The approach of inferring basal properties through inversion of ice-flow models have
been widely used since introduced by MacAyeal (1989). The idea is to tune parame-
ters related to basal resistance, sliding and deformation in ice-flow models of varying
complexity to match the output of the ice-flow model velocity field to observed ve-
locities. Joughin and Alley (2011) apply this to the Ross Ice Shelf in Antarctica
to learn the spatial distribution of soft- and hard-bedded flow; Jay-Allemand et al.
(2011) apply this to Variegated Glacier in Alaska to understand how the subglacial
drainage systems change during a surge; Winton et al. (2022) apply this to Hagen
Bræ in Greenland, to investigate changes in flow resistance at the base during a surge
period. Common to these methods is the spatio-temporal tuning of a parameter in
the deterministic models to fit observed velocities.

Machine Learning (ML) is a term that covers a large variety of methods, with origins
in applied statistics (Bishop, 2006). The general idea of supervised ML is to learn
patterns from labelled training data and then make predictions for input data not
seen by the model. Typically, the functional form of the models is less restricted
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than in deterministic modelling, which makes it a very flexible framework for many
problems where the underlying dynamics are poorly constrained. Neural Networks
(NNs) are a group of highly non-linear and flexible class models that have been
proven to approximate any function arbitrarily good (Cybenkot, 1989). NNs can
be applied to many problems where the underlying dynamics are not sufficiently
constrained to represent explicitly in equations or algorithms.

Deterministic modelling and machine learning meet in an emerging field coined Sci-
entific Machine Learning (SciML) (Rackauckas et al., 2020). It is a term that covers
methods that utilize the developments in scientific computing, in particular optimiza-
tion and differential equations, along with the more recent developments in machine
learning and automatic differentiation. It is said to illuminate the black-box of ma-
chine learning by combining it with the white-box (deterministic) modelling to enter
the spectrum of grey-box modelling. Rather than a purely deterministic approach or
a purely data-driven approach, these new methodologies allow for solving problems
where, e.g. only parts of the system’s dynamics are known or where data are scarce.

The application of Machine Learning within glaciology is limited, with most papers
published in the last few years. Bolibar et al. (2020) use a Neural Network and
a simple glacier evolution scheme to reconstruct mountain glaciers’ surface mass
balance (SMB) in the French Alps, filling out observational gaps in time and space.
Brinkerhoff et al. (2020); Jouvet et al. (2021) use a Neural Network to learn ice-flow
dynamics from deterministic model outputs for use as a surrogate model to speed up
evaluation. Zhang et al. (2021) use NNs to automatically delineate satellite imagery
to delineate calving-fronts in Greenland. Jenkins et al. (2021) use classification
methods to analyze seismic data from Ross Ice Shelf.

This study aims to combine scientific computing and machine learning methods to
learn about Greenland outlet glaciers’ basal processes. The basal stress is calculated
by applying the SSA to the flowline of 34 outlet glaciers. The goal is to gain insight
into what variables control the basal stress in time and space, using various methods
that combine deterministic modelling and data-driven modelling from least squares
through neural networks.
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Figure 1: Illustration of flowlines on an outline of Greenland, with mean surface
velocity from Joughin et al. (2018). The flowlines used in processing are cut off
up and downstream compared to the ones shown in the figure. The numbering
of glaciers is described in Table A.6. Some glaciers are located too near for the
labels to be easily identifiable. However, the analysis in this study does not
relate to individual glaciers, and the numbering of glaciers is done to give an
overview.
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2 Data and study area

The focus is on Greenland marine-terminating outlet glaciers. The study area com-
prises 34 marine-terminating glaciers in Andersen et al. (2019). The location of the
glaciers can be seen in Figure 1 with the names listed in Table A.6. An overview of
the scaled data is shown in Figure 3.

2.1 Data sources

Data Variable
Exponent
in Eq. (4)

Reference

Velocity u m1 Solgaard and Kusk (2022)

Ice thickness t m2 Morlighem et al. (2017)

Surface topography s m3 Howat et al. (2014)

RACMO runoff ro m4 Noël et al. (2019)

Basal melt from friction fr m5 Karlsson et al. (2021)

Basal melt from ground flux gf m6 Karlsson et al. (2021)

Strain rate ux m7 Derived from velocities

Table 1: Overview of used data, variable name and associated exponent in Eqs.
(4).

Surface topography is obtained from the Greenland Ice Mapping Project (GIMP)
(Howat et al., 2014). The digital elevation model (DEM) approximates the mean
elevation over the years 2003-2009, ignoring temporal changes in elevation, and
is a combination of three different data sets; laser altimetry from ICESat, stereo-
photogrammetry from ASTER and photogrammetry from SPOT-5. The DEM is
provided on a 30 m grid, and the reported RMS error is 8.5 m for the ice-covered
regions.

Bedrock topography is obtained from BedMachine v3 (Morlighem et al., 2017).
The product is a compilation of various radar-derived ice thickness measurements
from 1993 to 2016. Along the coastal margin where radar-derived ice thickness
is either lacking or of low quality, the data set has been extended using a mass
conservation approach (Morlighem et al., 2011) that uses high-resolution surface
velocity data to infer ice thicknesses that are physically consistent with ice flow
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dynamics. The data are provided on a 150 m grid, subsampled from resolutions of
400 m in the coastal regions, with an average reported error of 57 m for used data
points. A histogram of errors for the used data points is shown in Figure 2.

Figure 2: Histogram of reported errors interpolated to grid points used in this
study. Mean reported error is 57 m.

Surface velocity is obtained from the PROMICE velocity products (Solgaard et al.,
2021; Solgaard and Kusk, 2022). The products are processed from single-look com-
plex images (SLC) acquired with synthetic aperture radar (SAR) from Sentinel-
1A/B. The twin satellites are in an identical near-polar orbit with a repeat cycle
of 12 days, phased 6 days apart. Velocity calculations are based on offset tracking,
which requires an image pair, where the displacement of a feature is tracked, yielding
the surface-parallel velocity. Data sets are provided for every 12 days, with data sets
spanning 24 days. The temporal baseline of the data is from September 2016 to
present, with the most recent data set used in this study being from December 2021.
The data are provided on a 500 m grid, with an effective resolution of 800-900 m
caused by the window size in the offset tracking. Comparison to GPS and ground
control points gives a standard deviation of 10 m/y for the velocity magnitude.

Melt and runoff is obtained from regional climate models (RCMs). The used model
is the Regional Atmospheric Climate Model (RACMO) and is an extension of the
data set in Noël et al. (2019). The forcing is based on ERA5 (2015-2021) reanalyses,
and the data is provided upscaled from a 5.5 km resolution to a 1 km grid on a daily
resolution from 2015-2021. A conservative estimate of runoff uncertainty is provided
at 20%, while average runoff biases reach 5% for a validation period spanning 1976-
2016. Runoff represents the combination of surface melt and rain, including losses
from refreezing in the firn.

Basal melt is obtained from Karlsson et al. (2021). Three energy sources for basal
melt are used; geothermal heat flux (assumed constant in time), frictional heat from
sliding at the base (mean of 1995-2015), and heat from surface meltwater (mean
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of 1995-2010). The resulting basal melt is provided for each source. The melt from
surface meltwater has negative values scattered around the outlet glaciers and is thus
left out as most methods require positive input data. The dataset is provided on a
1 km grid. Uncertainties in this data set are plentiful, as the processes and physics
are poorly constrained. The reported total for geothermal flux is 5.3 + 2.8/− 2.2 Gt
per year; the total for friction is 10.9± 3.0 Gt per year; the total for surface water is
5.2± 1.6 Gt per year.

Glaciers and flowlines. A flowline for each glacier was determined based on MEa-
SUREs Multi-year Greenland Ice Sheet Velocity Mosaic (Joughin et al., 2018), with
a temporal span from 1995 to 2015. From a group of starting points upstream, a
flowline was created by taking a small step in the direction of the velocity field,
repeating this until the flowline reached the calving front. A group of flowlines for
each glacier was determined, and for each glacier, a flowline was chosen based on
visual inspection, with the heuristic goal of choosing the most central flowline. The
flowlines were calculated with a step size of 2 m and downsampled to 250 m, yielding
the spatial grid size for discretization ∆x = 250 m.

2.2 Data processing

The data mentioned above are supplied on regular grids in a Polar Stereographic
projection. Each data set is linearly interpolated to all the flowline coordinates (at
each time step, where applicable). Topographic and velocity data are smoothed with
a Gaussian filter with a kernel width of 2 times the average ice thickness of each
glacier, stabilizing the calculation of driving and extensional stresses (McCormack
et al., 2019). The RCM data are summed in time from the previous mean acqui-
sition day for each mean acquisition day of the velocity data. All interpolation is
done in Polar Stereographic projection. Calculations of distances along flowlines are
calculated in corresponding UTM projections.

To avoid the grounding line, the data are cut off 5 km from the PROMICE calving
front line (Andersen et al., 2019).1 Further, the domain of each glacier was cut off
upstream to focus on the downstream and more ice stream-like parts of the glaciers,
based on heuristic visual inspection of where the strain rates start to increase, and the

1It is noted that the length of the ice shelf from the grounding line to the calving front might,
in some cases, be longer than 5 km, which introduces possible grounding line dynamics not taken
into account in the calculation of stresses.
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extensional stresses start to play a role in the stress balance. Regions with negative
driving or basal stresses have been removed from the data set. The extensional stress
diverges for strain rates of 0 s−1, and the time series where this divergence occurs
has been removed from the data set. Velocities have been thresholded such that all
velocities with an uncertainty of more than 25% of the magnitude of the velocity at
that point have been removed.

The RCM data (melt and runoff) have been summed in time and space, assuming
that upstream and previous melt/runoff affect the basal stress. Temporal summing
is performed for each observation, and the sum of the 19 previous observations has
been added to this grid point. Spatial summing is done in a cumulative sense; for
each observation, all upstream observations have been summed and added to this
grid point. This processing was done with a somewhat arbitrary temporal baseline
of 20 observations (approx. 240 days). A more data-driven approach to selecting
this hyperparameter (temporal baseline for summing RCM data) is presented in
Section 3, with a method named prodCNN.

As seen in Figure 3, all the included data sets from RCMs (here features from both
RACMO and HIRHAM have been displayed) are highly correlated, with correla-
tions ranging from 0.73 to 0.97. This correlation proved difficult in optimization,
as the corresponding columns are close to parallel, yielding poor fits to observation
in synthetic testing. Following this, it was chosen to drop all RCM features, except
RACMO runoff summed in time. RACMO was chosen due to the higher temporal
and spatial resolution in the data set available during this study.

The data have been organized in a data matrix, with each row corresponding to a
point in time and space and each column being a feature. Rows containing at least
one non-positive value have been removed. While not necessary for all methods, to
streamline analysis, it was chosen to work with the same data set for all methods,
where applicable.

2.3 Test and training data

For cross-validation, the data have been split into four test data sets and one training
data set, similar to the splitting in Bolibar et al. (2020). The split is illustrated in
Figure 4. Leave-glaciers-out (LGO), leave-years-out (LYO) and leave-glaciers-and-
years-out (LGYO) test the models’ ability to extrapolate in spatial and temporal
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Figure 3: A visualization of the 13 features on the ≈ 260.000 data points in
time and space. Diagonal: Kernel density estimation of the distribution of
each variable. Below diagonal: variables plotted against each other, with
higher density regions in darker colours. Above diagonal: linear correlation
coefficient for each pair of variables, with positive correlations in reds and neg-
ative correlations in blue.

domains not seen by the model in training. LGO tests the models’ performance on
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Leave-glaciers-out (LGO) Leave-glaciers-and-years-
out (LGYO)

Training
Interpolation test Leave-years-out (LYO)

Time

Gl
ac

ie
rs

Time-split

Glacier-split

Figure 4: Schematic of how the data has been split into a training data set
for training and four different test data sets for evaluation of the performance
of estimators. The time-split, glacier-split and training/interpolation-split are
defined to yield 5 data sets of approximately the same size. This splitting of
data allows quantifying a model’s ability to interpolate, as well as temporally
and spatially extrapolate.

glaciers not seen by the models during training but during a period where the model
is trained. LYO tests the models’ performance on the glaciers it has been trained
on, but for times after the training period. LGYO tests the models’ performance
on data from glaciers that the model has not been trained on and observations after
the training data period. Finally, the models’ are also evaluated on an interpolation
test data set, chunks (in space) of data points from the spatio-temporal domain of
the training data, which the model has not seen in training. This division allows
quantifying how generalizable the predictions of the different models are in different
degrees of extrapolation. The time- and glacier splits were defined to yield roughly
similar data set sizes.

2.4 Data terminology and standardization

This study’s overarching goal is to determine the basal stress τ , which will generally
be denoted as the target variable; it is the variable that models are trained to yield a
matching output. The data described earlier in this section will be denoted features.
This is standard terminology used within machine learning, where typically, the
objective is learning a model that maps from features to target variables.
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All data have been re-scaled to dimensionless variables on similar scales2. The target
variable was scaled to have unit variance, common in ML. The scales of the target and
features are summarized in Table 2. Besides improved convergence in optimization,
a benefit is that a baseline MSE is 1.0 if the model is simply by the mean of all
target observations. All features were scaled with the mean of each feature. Scaling
features with variance proved problematic for later applications, where some datasets
had features close to constant over the domain, which yielded numeric instabilities.

For methods requiring positive features and targets, no centring has been performed.
For methods allowing negative features and targets, data have been centred such
that the training data are zero-mean. All standardization was done with means and
standard deviations calculated from the training data set.

Variable Scale Units

τ 212 kPa

u 3.01 m d−1

t 1063 m

s 839 m

ro 3.75 mm w.e. d−1

fr 0.23 m y−1

gf 0.0056 m y−1

ux 0.00016 d−1

Table 2: Overview of scaling of each data variable.

2This has the implication that all figures, except Figures 1 and 2, contain only dimensionless
quantities, without any specification of units.
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3 Methods

The theoretical foundation of the study is presented in this section. The ice-flow
dynamics are introduced. Neural networks are introduced as a concept. Finally,
the different numerical methods to learn from data are presented, along with key
assumptions and important choices of parameters.

3.1 Ice-flow dynamics

Glaciers are assumed to behave like a slow non-Newtonian fluid, their flow proper-
ties governed by Glen’s flow law (Glen, 1958). The Navier-Stokes equations fully
describe the flow (Cuffey and Paterson, 2010), where momentum advection and iner-
tia terms have been neglected to yield the Stokes equations. Solving the full system
of equations requires many boundary conditions and is computationally expensive,
which has led to various simplifications to model the evolution of glaciers and ice
sheets (Bueler, 2021). The shallow shelf approximation (SSA) applied in this study
was developed in Morland et al. (1987); MacAyeal (1989), and has been widely used
in studies (e.g. Schoof, 2007; Sergienko et al., 2008; Habermann et al., 2012; Tsai
et al., 2015; Habermann et al., 2017). The details of the derivation are left out, but
the assumptions are provided here. The first assumption is neglecting vertical nor-
mal stresses under the hydrostatic assumption, which allows for eliminating pressure
from the momentum balance. Further terms are eliminated by neglecting horizon-
tal derivatives of vertical velocity. Assuming that vertical shearing is dominated by
basal sliding for ice streams, vertical shearing is dropped. Vertically integrating the
equations and adding a basal stress term yields the SSA. In one dimension, flowline
stress balance is (Tsai et al., 2015)

2A−1/n
(
t|ux|1/n−1ux

)
x︸ ︷︷ ︸

extensional stress

− τ︸︷︷︸
basal stress

− ρgtsx︸ ︷︷ ︸
driving stress

= 0, (1)

where derivates are notated ux = ∂u(x)
∂x

, A = 9.3 · 10−25 s−1 Pa−3 is the depth-
averaged temperature-dependent rheological coefficient in Glen’s flow law, n = 3 is
the corresponding exponent, t is ice thickness, u is surface velocity, ρ = 900 kg m−3

is the density of ice, g = 9.8 m s−2 is the gravitational acceleration and s is the
surface elevation. The three terms in Eq. (1) are extensional stress held by viscous
deformation, basal shear stress held at the base by till strength, and gravitational
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driving stress (Bueler and Brown, 2009). Under the assumption of negligible vertical
shearing, u will refer to both the velocity in the ice column, and it will be assumed
in the rest of the study that usurface = ubase.

The basal stress term is poorly constrained, with a variety of different suggestions for
its parametrization. Weertman (1957) proposed a power-law relationship between
basal stress and velocity

τ = cu1/m, (2)

where c is the basal stress parameter and m is a constant, commonly assumed m =
3 (e.g Weertman, 1974; Schoof, 2007; Tsai et al., 2015). The value of m can be
interpreted in terms of the hardness of the bed. For n = 3, values of m = 3 are
associated with hard-bed sliding (Cuffey and Paterson, 2010). Higher values of m
are found for deforming beds, as in Gillet-Chaulet et al. (2016).

Coulomb friction relates basal stress to water pressure and is expressed (Tsai et al.,
2015)

τb = f(σ0 − p), (3)

where f is a friction coefficient, σ0 = ρgh is the ice pressure, and p = ρwgb is the
water pressure. The difference is called the effective pressure, N = σ0−p. Tsai et al.
(2015) proposes a sliding law that changes from power-law to Coulomb friction closer
to the grounding line, as one problem with power-law sliding is the discontinuity at
the grounding line, which is not the case for Coulomb friction. Other formulations
relate the basal stress to both effective pressure and velocity, such as in Jay-Allemand
et al. (2011).

In this study, a data-driven approach is taken. By taking in features of the flow
and geometry (velocity, strain rate, thickness, surface height) along with quantities
related to water (surface runoff and basal melt), the idea is to learn how these relate
to basal stress under the assumption of the SSA. An expanded variant of the power-
law (Eq. (2)) is proposed:

τ = m0 · um1 · tm2 · sm3 · rom4 · frm5 · gfm6 · um7
x , (4)

where mi are coefficients to be learned from data, ro is surface runoff, fr is basal
melt due to friction, and gf is basal melt due to geothermal heat flux. Commonly in
inversion studies, the basal stress parameter C in Eq. (2) is fitted as spatio-temporally
variable. This study assumes it as a function with fixed parameters but of spatio-
temporally variable features. The basal stress parameter C is sometimes informally
referred to as a garbage term, collecting everything that does not fit by tuning the
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parameter in time and space. Thus, this approach can be interpreted as an attempt
to open the garbage term, with C = m0 · tm2 · sm3 · rom4 · frm5 · gfm6 · um7

x .

This formulation allows for interpreting the model and learning qualitatively about
how basal stress relates to the various parameters. For positive exponents, there is a
positive correlation between τ and the feature in question, and vice-versa for negative
exponents. For exponents near 1, this relationship is nearly linear. For exponents
near 0, basal stress is nearly invariant to variations in this feature. Further, this
formulation allows scaling the data without consequence for the parameters (except
for m0), allowing for interpreting the models between different scalings.

3.2 Neural networks

Neural networks (NNs) are a branch of machine learning that has been widely applied
to solve various problems. Particular successful applications are within speech and
image recognition, where a specific type of NN involving discrete convolutions has
aided in reaching new levels of accuracy (Schmidhuber, 2014).

At the core, an NN is a function that makes a non-linear mapping from and to
arbitrary (but finite) input and output dimensions. The simplest NN is the feed-
forward neural network (FFNN). Input is transformed with an affine transformation,
and a non-linear function (called activation function) is applied element-wise to the
transformed input:

y = σ (Wx+ b) , (5)

where the output y is a N × 1 vector, the weight matrix W is M × N , the bias b
is a M × 1 vector, the input x is a N × 1 vector, and the non-linear function σ is
performed element-wise, where M is the number of features and N is the dimension of
the output. This represents an FFNN with one input layer, no hidden layers, and one
output layer. The training process is to update the weights and bias to minimize some
loss function, which becomes a high-dimensional non-linear optimization problem.
Extending to multi-layer (deep) NNs is simple, shown here for NN with two hidden
layers

NN(x) = W3σ2 (W2σ1 (W1x+ b1) + b2) + b3. (6)

Usually, no activation function is applied to the final layer for regression problems.
In NN terminology, the layer is the non-linear mapping, with the number of nodes
being the number of elements. The affine transformation is, in this interpretation, a
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transformation between layers. The input is referred to as the input layer, the output
as the output layer and any layers between are called hidden layers. The number of
nodes in the input and output layers determines the input and output dimensions of
the network. By choice of affine transformation, the number of neurons in the hidden
layers is merely restricted to natural numbers, which can vary between hidden layers.

Dropout is a common tactic to prevent overfitting of NNs (Bishop, 2006). It simulates
training multiple NNs with varying architectures in parallel: for each hidden node
and at each iteration, there is a probability p that the node is dropped from the
network. This has the effect that the output does not become overly sensitive to
individual nodes in the network, resembling training an ensemble of networks and
taking the mean of the output. A common value is p = 0.3 (Pedregosa et al., 2012).
A commonly used activation function is the rectified linear unit (ReLU), which passes
positive numbers without modification, and maps negative numbers to zero.

NNs are commonly trained using variations of stochastic gradient descent, an al-
gorithm approximating gradient descent by calculating the gradient for a randomly
selected subset of data. Adam (Kingma and Ba, 2014) is a specific algorithm that
many common machine learning libraries default to for optimization (Pedregosa
et al., 2012), its wide adaptation rooted in it being computationally efficient, having
low memory requirements and being well suited for problems with large amounts of
data and/or parameters. It revolves around stochastic gradient descent but adds the
notion of momentum in its minimization efforts. The idea can be expressed

dt = γdt−1 + η∇̂mtL(mt), (7)

mt+1 = mt − dt, (8)

where dt is the current step, which encodes γ of the previous step dt−1, as well as η
of the stochastic gradient with respect to the current model parameters ∇̂mt of the
loss function at the current parameters L(mt). The idea of momentum is retaining
part of the previous update step direction in the current update step.

Two main characteristics are the foundation for the success of NNs in a wide range
of applications. First, it is generally assumed that NNs are universal function ap-
proximators (Bishop, 2006), with this property only proved for specific cases (e.g.
Cybenkot, 1989). This means that a NN can approximate any continuous function
to arbitrary precision, given enough layers and neurons. Other universal function
approximators exist, such as the Taylor and Fourier series, but are challenging to
work with in higher dimensions, suffering from the curse of dimensionality. NNs
have been shown to overcome this issue (Donoho, 2014).
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A second key to the success of NNS, besides more technical developments in op-
timization techniques, wide implementations of automatic differentiation and par-
allelization of training processes, is the incorporation of inductive biases into NN
architectures (Rackauckas et al., 2020). One example is image segmentation, where
convolutional filters apply the prior domain knowledge that image pixels are closely
spatially correlated with neighbour pixels. Another is using Green’s embedded in
the structure of NNs to learn differential operators (Li et al., 2020).

NNs can be used as function approximators where the functional form is not well-
constrained and have been applied in different contexts in this study.

3.3 From data to model: basal stress estimation

The target variable basal stress τ has been generated from observations and finite
differences

τ = A−1/n
(
t|ux|1/n−1ux

)
x
− ρgtsx, (9)

where a centred difference scheme has been applied to all derivatives, with discretiza-
tion errors O(∆x2) (Bingham et al., 2020). The grid size has been set to ∆x = 250
m and will not be further discussed. Finite difference issues caused by noise are
reduced by the Gaussian filtering introduced in Section 2.

An overview of methods presented in this section is in Table 3.

3.3.1 Linear least-squares (LSQ and NTLSQ)

Taking the logarithm of both sides linearises Eq. (4) in terms of the model parameters

log τ = logm0 +m1 log u+m2 log t+m3 log s+m4 log ro

+m5 log fr +m6 log gf +m7 log ux,
(10)

which requires that all features are positive numbers. A major implication of taking
the logarithm and optimizing in log-space is that the optimization is shifted to focus
on the relative difference between prediction and target rather than the absolute
difference. A benefit to this is that the model is trying to learn dynamics from
all glaciers equally, rather than particularly those with high stresses. On its own,
this might be a desirable feature of a model working with a large range of data.
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Method Abbreviation Model Interpr. Comput.

Linear least squares LSQ Eq. (10) High Low

N-term least squares NTLSQ Eq. (10) High Low

Non-linear least squares NLSQ Eq. (4) High Low

N-term non-linear least squares NTNLSQ Eq. (4) High Low

Individual non-linear least squares INLSQ Eq. (4) High Low

Markov Chain Monte Carlo MCMC Eq. (4) High High

Sparse identification of
non-linear dynamics

SINDy Eq. (18) High Medium

Non-linear least squares with
convolution of runoff

prodCNN Eq. (20) High Medium

Non-linear least squares closed
with neural network

NLSQ+NN Eq. (21) Medium High

Feed Forward Neural Network FFNN Eq. (22) Low High

Table 3: High-level overview of different methods applied to the problem. Inter-
pretability and computational cost are qualitative categories given to provide an
overview. For interpretability, the ratings are loosely defined as follows. High:
the model is fully symbolic. Medium: the model has symbolic and non-symbolic
parts. Low: there are only non-symbolic parts. For the computational cost, the
ratings are loosely defined based on the training time until convergence, run on
a MacBook Pro from 2018. High: runtime on the order of hours. Medium: run-
time on the order of minutes. Low: runtime on the order of seconds. (Runtime
does not include processing and splitting of data.)

However, a downside to this effect is that absolute underestimates for a given datum
are penalized more than absolute overestimates since for the same absolute value
of over- and underestimate, the relative value is higher for underestimates than for
overestimates. This yields an asymmetry in the misfit.

Eq. (10) can be solved by linear least squares (LSQ), where the model parameters are
determined to yield the smallest squared residual between prediction and observation
(Aster et al., 2013). Organizing the logarithm of features as columns in a matrix G,
adding to this a column of exp{1}, Eq. (10) can be expressed

d = Gm, (11)

where d is a vector of the target variable log τ , and m is a vector containing the
model parameters from Eq. (10). with the least-squares estimator
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m = (G>G)−1G>d. (12)

A variant of this is sequentially thresholded least squares (STLSQ) (Brunton et al.,
2016). The idea is to retrieve a sparse solution vector m by removing elements of
m with a magnitude below some given threshold, solving the problem iteratively
until convergence. To illustrate the effect of iteratively removing features from the
solution, a slightly different approach was devised, inspired by STLSQ, which will
be referred to as N-term LSQ (NTLSQ). For a given N , a solution to Eq. (11) is
sought, with only the N features with the highest magnitude exponent being active.
This is done by removing terms one at a time, solving the problem at each iteration
with one coefficient less until a solution with N exponents is reached.

3.3.2 Non-linear least squares (NLSQ, NTNLSQ and INLSQ)

NLSQ is an extension of linear least squares and is a linearization of the problem
in an iterative scheme (Aster et al., 2013). In this study, it is applied to solve the
problem in Eq. (4). The least-squares solution is obtained by iterations of

mk+1 = mk +
(
G(mk)>G(mk)

)−1
G(mk)>(d− τ(mk)), (13)

where k is the current iteration number, τ(mk) is the basal stress as a function of
the model parameters at the current iteration mk, d is the target variable, and the
Jacobian is defined as derivatives of the basal stress wrt model parameters, with
elements defined

Gij(mk) =
∂τi(mk)

∂mj

. (14)

As this is an iterative process, it requires a starting guess, defined as the LSQ solution.
The stopping criterium is defined by the relative change in loss function

|∆MSE| < 10−8MSE. (15)

NLSQ was applied with the features determined by NTLSQ, which will be referred
to as NTNLSQ. NLSQ was also applied to each glacier individually, yielding scale
and exponents varying for each glacier. This is referred to as INLSQ.
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3.3.3 Markov chain Monte Carlo (MCMC)

MCMC is a probabilistic approach to the problem of parameter estimation (Bishop,
2006). The foundation is Bayes’ Theorem, which gives the proportionality between
the posterior distribution and the product of the prior distribution and the likelihood,

p(m|X) ∝ p(m)p(X|m), (16)

where p is the probability distribution, m are the estimated model parameters and X
is the matrix of observations. The posterior distribution over the model parameters
is estimated by sampling the model parameter space and evaluating the product of
prior and likelihood at the sampled set of parameters. The sampling follows the
same general strategy: for a given proposed set of parameters, the parameters are
accepted if they increase the posterior compared to the current parameters but are
only accepted with a certain probability of they decrease the posterior. Following
a choice of forward model and collection of data, this outlines the need for defining
three characteristics of the problem: sampling strategy, prior of parameters and
choice of likelihood function.

The most straightforward sampling strategies resemble a random walk in the param-
eter space, and while simpler to implement, they suffer from slow convergence for
high-dimensional problems. Other more sophisticated methods use multiple previous
steps in determining the distribution of the following sample. Hamiltonian Monte
Carlo (HMC) is such an algorithm, and it draws upon ideas from the physics of
conservation of the Hamiltonian in its search around parameter space (Neal, 2012).
While details of the algorithm will be left out, the method can be conceptualized:
imagining the negative posterior distribution as a surface, the sampler can be imag-
ined as a particle on this surface that will tend to gravitate towards the minima.
Random perturbations to its path help to get out of local minima, and the goal of
this sampling is to sample more often where the posterior has a higher density and
vice versa. In this study, an algorithm called the No-U-Turn Sampler (NUTS) is
applied, an extension of HMC that eliminates hand-tuning of the step size and the
number of steps (Hoffman and Gelman, 2014). Common to all sampling strategies
is a warm-up/burn-in, where the first n samples are discarded, after which sampling
starts.

The prior distribution of parameters was defined as normal distributions with unit
variance, with the scale centred on a mean of 1 and all exponents on a mean of
0. MSE was chosen as the likelihood function. A common strategy in MCMC
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is running multiple independent realizations from different initial conditions. This
leads to a more thorough exploration of parameter space and increases the certainty
of the results. For all chains, a burn-in period of 2000 samples was used, and 10000
samples were subsequently sampled.

A significant advantage of probabilistic inference is that rather than obtaining a
point estimate of the model parameters, a distribution is obtained, allowing putting
confidence intervals on the obtained parameters. Further, it allows calculating the
covariance between different parameters, giving further insight into how the different
model parameters could be related. Finally, a value σ is also learned from data,
representing the noise added to match the forward model to observations. However,
it is not possible to split this noise into model and data uncertainty unless one of
the terms is well-constrained, and the other could be assumed to be the remainder
of the total noise.

MCMC is applied to estimate the parameters in Eq. (4).

3.3.4 Sparse identification of non-linear dynamics (SINDy)

SINDy was introduced by Brunton et al. (2016). It is designed for dynamical sys-
tems with both temporal and spatial dimensions and is motivated by problems in
fluid dynamics. The assumption is that the system’s dynamics can be represented
by a sparse linear combination of library functions of the state space. A sparsity-
promoting optimization algorithm determines the choice of terms on a linear inverse
problem

Ẋ = Θ(X)Ξ, (17)

where Ẋ is a matrix whose columns are time derivatives of the states, Θ is the library
matrix whose columns are each candidate functions of the state space variables X,
and Ξ is a sparse matrix that optimizes some cost function, activating only a few
functions from the library matrix. An important part of the work lies in choosing
an appropriate set of candidate functions, which can be any function of one or more
state-space variables.

The standard SINDy formulation is suitable for problems where the governing equa-
tions are assumed to be expressed in the sparse form shown above, posed as a set
of ODEs. For the problem in this study, the approach was modified to reflect the
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assumed dynamics

τ = Θ(X)ξ, (18)

where τ is a vector containing inferred basal stress from observations, X is a matrix
whose columns are observed features, and ξ is a sparse vector. Due to the number of
features available, even when selecting a small subset (5) and just a few functions of
one and two variables as candidate functions, the number of columns in Θ increases
quickly and finding a sparse solution ξ becomes subject to model and data uncertainty
(Mangan et al., 2017).

Powers and a few cross-terms were chosen as library functions, inspired by the stan-
dard libraries suggested by Brunton et al. (2016). The used library functions are
x, x1/2, x1/3, x1/4, x−1/2, x−1/3, x−1/4, xy, x

y
, xyz, where any feature takes the place of

x, y, z. Due to convergence issues and the results from NLSQ and similar meth-
ods, the set of features used for SINDy was reduced to u, s, t, ux. With the library
described above and the four features, this yields 44 columns in Θ.

An optimization algorithm with regularization and constraints is chosen to regularise
the problem. The problem is constrained by requiring all non-zero elements of ξ to
be positive. This reduces problems with near-parallel columns of Θ appearing with
opposite signs and limits all features to contribute positively to basal stress. The
optimization is carried out with an algorithm called constrained Sparse Relaxed
Regularized Regression (SR3), introduced in Zheng et al. (2019); Champion et al.
(2019), where the objective function for optimization is

1

2
‖τ −Θξ‖22 + λ‖w‖1 +

1

2
‖ξ −w‖22, s.t.w ≥ 0, (19)

where λ ≈ 4 · 104 is the regularization parameter, and w is an auxiliary variable, a
relaxation of ξ. The auxiliary variable is regularized with the sparsity-promoting l1
penalization, which is the convex relaxation of the true sparsity norm l0. The relax-
ation of ξ improves convergence under optimization. The optimization algorithm’s
details and implementation will not be discussed further.

An important parameter to determine is the strength of regularization, λ. This was
determined by calculating test losses for different values of regularization, choosing
the value that yields the lowest test loss (Brunton et al., 2016), with the results shown
in Figure A.27. While the training loss will increase monotonously as regularization
increases, the test loss will typically have a defined minimum, which is not at the
bounds of the domain.
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3.3.5 Non-linear regression with convolution of runoff (prodCNN)

The idea of prodCNN is similar to regular non-linear regression, with the modification
that runoff is convoluted with a learned spatio-temporal filter. For each datum τk,x
the model is given each feature (except runoff) at the same point in time and space.
The model is given a matrix for runoff that includes earlier time steps and upstream
grid points. Before calculating the product in Eq. (4), the runoff matrix is convoluted
with a filter of the same size, yielding a weighted sum of the matrix. The filter
weights, the scale and the exponents are learned through optimization.

τ = m0 · um1 · tm2 · sm3 · conv(ro)m4 · frm5 · gfm6 · um7
x , (20)

where conv is the convolution operation. This method aims to learn how basal stress
is affected by upstream and earlier runoff. It assumes that earlier and upstream runoff
affects the basal stress at a given point and that the spatio-temporal weighting of this
effect is similar across all glaciers at all times. Further, it is assumed that earlier and
upstream runoff can only contribute positively; thus, the weights of the learned filter
are passed through a sigmoid function before convolution. To facilitate comparison
of the runoff exponent with other models, the filter is normalized to sum to 1.

3.3.6 Non-linear regression closed with neural network (NLSQ+NN)

This method is inspired by methods presented in Rackauckas et al. (2020), where dif-
ferential operators are learned as parameter estimation closed with a neural network.
The idea is to fit an NLSQ model with a subset of features plus a neural network of
all features, where the runoff is convoluted similar to in prodCNN

τ = m0 · um1 · sm3 +NN (u, t, s, conv(ro), fr, gf, ux) . (21)

The goal is that part of the relation can be learned by the NLSQ method, with the
NN learning the residual. This has been shown in Rackauckas (2019) to generalize
models by learning non-linear parts of the dynamics not expressed by the functional
form.
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3.3.7 Feed forward neural network (FFNN)

The idea is to learn the parameters of an FFNN such that

τ = NN (u, t, s, ro, fr, gf, ux) , (22)

where the neural network inputs are the input features as described in Eq. (4). This
method has limited interpretability and acts as a test of whether or not a function
can be discovered that maps from the input features to the target.

The objective function was set to the MSE of target and prediction. A relatively
simple network is used, with seven input nodes, six hidden layers with 48 nodes, one
output node, and the ReLU activation function. Dropout was set to p = 0.3. The
optimization was carried out using Adam with a learning rate of 0.005. The number
of input nodes is determined by the number of feature and target variables. The
number of layers and nodes was determined by synthetic testing (see Section 4). The
activation function, dropout rate and learning rate are common choices and will not
be further discussed.

3.4 Coefficient of determination and mean squared loss

The coefficient of determination is defined (Glantz and Slinker, 2000)

R2 = 1−
∑

i(τi − τ̂i)2∑
i(τi − τ̄)

, (23)

where τi are observations, τ̂i are predictions, and τ̄ denotes the mean. It is a measure
of a model’s ability to predict the target variable and can be interpreted as the
explained variance of a given model. While there are limitations in its interpretation
across different model types and degrees of freedom, it does yield an interpretable
measure of fit, which will be used to compare different methods. The highest value
is 1.0 is achieved for a perfect fit to data. A value of 0.0 indicates that the fit is
as good as a baseline model, which is the average of the observations. Values lower
than 0.0 indicate models that fit worse than a baseline model. The R2 score of a
model will be interpreted as the proportion of variance explained by the model.

Mean squared loss is defined

MSE =

∑N
i (τi − τ̂i)
N

, (24)
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where N is the number of data points. It is equal or proportional to the cost functions
that most methods optimize for. A value of 0.0 indicates a perfect fit. A value of
1.0 is the baseline model, which is the average of observations, assuming that the
training data have been scaled to unit variance.

All R2 scores for training data should be above 0.0 and MSE below 1.0, with failures
indicating that there is something in the method that is not working. Test data
can fail to meet these requirements without there necessarily being an error in the
method. Exceptions could occur for heavily regularized or constrained optimization
problems, as seen in Figure A.27 for values of the regularization parameter.

3.5 Uncertainties

A distinction will be made between two fundamentally different types of uncertainty
and noise, based on Hüllermeier and Waegeman (2021). Data uncertainty covers
the systemic and random errors in variables. All observations in this study are,
in principle, a combination of instruments doing measurements of some physical
quantity (e.g. temperature or radio echo delay), with post-processing transforming
it into a higher-level product (e.g. altitude, numerical weather model or surface
velocity). Further processing is then done in filling gaps, interpolation etc.

Model uncertainty covers the systemic errors in the underlying models that generate
data. Presumably, the underlying models governing basal dynamics are more variable
than the parameterizations fitted to in this study, and the dynamics might vary across
time and space. In synthetic testing, this is simulated by having the parameters of
the generating model change for different data points, while the parameterizations
fit to the observations do not allow for such variation.

3.6 Implementation details

The workflow from raw data to results is summarized here. Data are interpolated to
flowlines of glaciers. Basal stress is calculated for each point in space and time. All
features (data) and the target (basal stress) are organized as columns in a matrix,
along with relevant metadata (name of glacier, date). Data are split into the test
and training data sets. All data are scaled with scaled from the training data set.
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A regression model is trained on the training data. Predictions are made on all five
data sets, and the R2 and MSE scores are calculated.

All the methods presented are implemented using Python 3.9 and Python 3.10. LSQ,
NLSQ and related methods are implemented in SciPy (Virtanen et al., 2020) and
NumPy (Harris et al., 2020). MCMC is implemented in NumPyro (Phan et al., 2019).
SINDy is implemented in PySINDy (Kaptanoglu et al., 2021). Neural Networks
are implemented using PyTorch (Paszke et al., 2019). The methods presented in
the discussion are inspired by the DiffEqFlux.jl package for the Julia programming
language (Rackauckas et al., 2020).
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4 Synthetic testing of methods

In this section, the methods introduced in Section 3 are tested against synthetically
generated data. The main objective of the synthetic test is to validate whether or
not the methods can learn the model that generated the data in the presence of both
model and data noise. Experiments 1-3 and 6-7 test the methods under model noise,
with synthetic data generated by different models (varying the exponent for u or the
scale), or by models with non-linear terms not in the assumed functional form. All
experiments test the methods under data uncertainty, with 10% noise added to the
target. Further, the NLSQ methods are tested with 0% and 100% noise added to
the target variable. After adding noise to the target, the absolute value is taken to
ensure that the target is positive.

Two measures of success are provided. The R2 score is provided for test data set
for each method, which measures the fit to data. Further, a score is introduced to
measure the model error. It is defined as the l1-norm of the exponent errors

Model error =
i=7∑
i=1

|mi − m̂i|, (25)

where mi are the synthetic exponents and m̂i are the learned exponents. The error
is only calculated for the seven exponents in Eq. (4). For experiments 1, 2, 6 and 7,
where the exponent for u is variable, the error has been calculated from the mean
exponent of 0.36.

4.1 LSQ and NLSQ

Seven synthetic data experiments have been conducted for the synthetic test of least-
squares methods. The experiments are mainly oriented around model uncertainty;
most experiments are from a generating model that cannot be expressed by the
assumed functional form in the least-squares approaches (Eqs. (4) and (10)). The
details of the experiment are listed in Table 4. Common to all synthetic experiments
is that zero-mean Gaussian noise with variance equal to 10% of each entry is added
to the basal stress (target for inversion), except for the NLSQ experiments with 0%
and 100% noise. Synthetic tests without data and model yield perfect fits, as seen
in Table 4 for experiments 4 and 5 with no noise.

Page 25 of 77



MSc thesis: SciML for discovering basal processes of Greenland outlet glaciers
Author: Øyvind Andreas Winton

Test R2 Model error

Exp. # and main challenge True model LSQ
NLSQ
0%

NLSQ
10%

NLSQ
100%

SINDy LSQ
NLSQ
0%

NLSQ
10%

NLSQ
100%

1. Varying exponent 3.52 · u1/m 0.79 0.90 0.78 0.04 0.20 0.01 0.01 0.01 0.13

2. Varying exponent and scale c · u1/m 0.53 0.58 0.53 0.05 0.47 0.01 0.01 0.01 0.13

3. Varying scale c · u1/3 0.52 0.58 0.52 0.04 0.49 0.00 0.01 0.01 0.11

4. Many active terms 1.26 · u1/3 · t1/7 · ro1/2 0.89 1.00 0.98 0.25 0.59 0.22 0.00 0.01 0.30

5. Many active terms
0.22 · u · t1/4 · ro1/2·
fr1/5 · gf 1/2 0.89 1.00 0.99 0.61 0.29 0.60 0.00 0.00 0.36

6. Includes non-linearity
not in assumption

c · u1/m · tanh t 0.55 0.53 0.49 0.05 0.44 0.04 0.00 0.00 0.12

7. Includes non-linearity
not in assumption

c · u1/m · 1
1+exp(−ro) 0.48 0.69 0.65 0.07 0.50 0.08 0.21 0.22 0.07

Table 4: Overview of synthetic experiments, test R2 and model errors for LSQ,
NLSQ and SINDy. For relevant experiments, m is sampled uniformly from
the integer set {2, 3, 4} and c is sampled uniformly from an interval spanning
approximately [2; 4] (the exact interval is modified to keep the target variable on
unity variance). 10% noise is added to the target variable unless else is noted.
The scales of the true models differ for various amounts of noise added, with
the values shown for a realization of 10% noise added.

The results of the synthetic experiments for NLSQ are presented graphically in Figure
5 with the R2 scores and model errors summarized in Table 4. The results for NLSQ
with 0% and 100% noise are in Figures A.20 and A.21. The results for LSQ are
in Figure A.19. The resulting equations, thresholded for terms with a magnitude
less than 0.01, are printed onto each frame. The x-axis in each frame represents the
synthetic stress, with predictions on the y-axis. A black diagonal line illustrates a
perfect fit of predictions onto the synthetic target.

LSQ and NLSQ yield similar results in terms of error, equations and visual appear-
ance. The three first experiments represent the classic power-law sliding, with the
model uncertainty that the underlying model is not the same - i.e. the parameters
m and c are variable in the spatio-temporal domain. The case is, however, that both
methods recover the mean exponent. For experiments 1 and 2, where the underlying
model has exponents 1/2, 1/3 and 1/4, both methods find ≈ 0.36, which corresponds
to the average of the true exponents.

Experiments 4 and 5 test the methods without model uncertainty but with a complex
synthetic model comprising many active features. For experiments 4 and 5, both
methods find exponents close to the underlying model; however, LSQ yields a poorer
fit than NLSQ for higher stresses - this reflects that with LSQ, it is the relative
residual for each point that is minimized, rather than the absolute as in classical
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Figure 5: Results of synthetic test on seven experiments for NLSQ with 10%
noise added to the target. The experiment numbers are detailed in Table 4,
with a short explanation in the lower right of each panel of this figure. The
resulting equations are in the upper left of each panel.

least squares, caused by the log-transformation to linearize the problem. From an
absolute residual point-of-view, this leads to overfitting the lower stress values at the
cost of the higher stress values, which can be seen in the skewing of the scatter points
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in Figure A.19.

Experiments 6 and 7 represent model uncertainty, displaying how the methods work
in cases where a function of the wrong form is attempted to fit the data. The
functions in use are hyperbolic tangent and the logistic function, both monotonic
and non-linear. In experiment 6, NLSQ recovers the correct exponent for u but does
not recover the dependence on t. In experiment 7, NLSQ finds a higher exponent for
u, and here recovers that the basal stress is also a function of ro, even though the
generating function is different from the function space that NLSQ is fitting in.

In Table 4, a summary of the model errors is shown in LSQ and NLSQ with different
noise levels. LSQ successfully finds the correct models, with a model error below 0.1
for all except for experiments 4 and 5, where many features are activated. NLSQ
perfectly recovers the models with up to 10% noise, with model errors below 0.01,
except for experiment 7. With 100% added noise, NLSQ is still performing relatively
well, with five of the experiments yielding model errors below 0.13, with the highest
errors seen for experiments 4 and 5, where there are many active terms.

The NLSQ models are most successful in learning the correct underlying model, even
with high measurement and model uncertainty. LSQ works well for simpler models
but suffers when many terms are activated.

4.2 MCMC

The method is tested with Experiments 3 and 5. For Experiment 5, where the
challenge is the number of active terms, the method works seamlessly, expressing
with 90% confidence that the parameters are within intervals less than 0.01, for all
but the scale, where the interval is slightly larger. Further, this method can estimate
the amount of noise added to the target variable with equivalent precision. The
results of this more trivial test have been omitted for brevity.

For Experiment 3, where the challenge is that parameters come from distributions,
the results are similar - 90% confidence intervals are very narrow. For all parameters,
the mean of the true underlying value is within the interval, including the two param-
eters that come from distributions. The difference here is that the model recognizes
that the amount of noise needed to model the observations is around 65%, much
larger than the added measurement noise of 10%. An interpretation is that if the
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measurement noise is well-constrained, the remainder of the noise can be attributed
to uncertainty in the underlying model.

Conclusively, MCMC recovers the correct underlying model while being able to model
the amount of combined model and data noise in the system.

4.3 prodCNN

The method is tested with a setup similar to Experiments 4 and 5, where the main
challenge posed by the synthetic setup is the number of active terms, with 10 %
noise added to the target. The exponents are from a uniform distribution, and the
synthetic filter is from a standard normal distribution, passed through a sigmoid
function and normalized to sum to 1, as described in Section 3. The filter is square
with a side length of 5.

The results are shown in Figure 6. It is found that the parameters are retrieved
correctly to approximately two decimals. The learned filter resembles the generating
filter, with maximum deviations of 0.01. These results indicate that the method
could successfully find this relation, should it be in the dynamics of the underlying
physics. One grave assumption of this method is that the filter is the same for all
glaciers, along the whole flowline and at all times.

4.4 SINDy

The synthetic test results for SINDy are shown in Figure 7. By trial and error, the
amount of regularization was determined to yield the simplest model that resembled
the synthetic model. The results for the first three experiments in panels a)-d) are
on par with the results for NLSQ in terms of R2. For all four, the dominant term
in the expression for τ is u1/3. Smaller terms are present in all four, fitting the data
and model noise. All the smaller terms active are positive root exponents of either
u and ux, which are correlated with u1/3.

For experiments 4 and 5, where the synthetic model is a product of many features,
SINDy does not find a model that fits the data well. Due to how SINDy is defined, it
cannot recover large products except if these are given in the dictionary of functions.
While testing the method, it was attempted to increase the number of cross-terms

Page 29 of 77



MSc thesis: SciML for discovering basal processes of Greenland outlet glaciers
Author: Øyvind Andreas Winton

Figure 6: Synthetic test of the prodCNN model, where the functional form
is similar to NLSQ, with the modification that the runoff is spatio-temporally
convoluted at each point in time and space. The idea is to learn from data
how upstream and earlier runoff can be used to predict basal stress. a) plot
of decreasing losses during the training epochs (iterations). c) scatter plot of
prediction and target, where the cloud is centred on the diagonal that represents
a perfect fit. e) absolute error of learned parameter compared to true parameter,
as a function of epochs. b) the synthetic filter used to generate data. All
parameters are exponent on the variable equated to, except for scale. d) the
learned filter from optimization. f) the difference between the synthetic and
learned filter.
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Figure 7: Results of synthetic test on seven experiments SINDy. The experiment
numbers are detailed in Table 4, with a short explanation in the lower right of
each panel of this figure. The resulting equations are in the upper left of each
panel, with the displayed coefficients rounded to one decimal.

with different exponents. Due to the combinatorics and number of features, this
quickly ill-conditioned the problem, and convergence issues emerged.
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Figure 8: Synthetic test of FFNN approach, with synthetic experiment 5 (see
Table 4). a)-e): density plots of target-prediction for training and test data
sets. The diagonal line indicates a perfect fit. R2 for each data set is in the
subplot title. f)-j): error histograms for training and test data sets. MSE and
the number of data points for each data set in the subplot title. LGYO (leave-
glaciers-and-years-out), LGO (leave-glaciers-out) and LYO (leave-years-out) are
three different aspects of extrapolation, which are divided to yield insight into
the generalizability of a given model.

For experiments 6 and 7, where the synthetic model contains non-linearities that are
not in the library, SINDy is somewhat successful in fitting the data trend, although
the suggested model is off. However, for experiment 6, where NLSQ learns an almost
correct model, except for the dependency on t, SINDy discovers that the model is
dependent on u and t and yields a higher R2 score than NLSQ. This indicates that
even if the functional form discovered by SINDy cannot be interpreted by itself, the
functional dependencies could reflect the true model if the model fits well to data.
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4.5 FFNN

The method was tested in Experiment 5, where the main challenge posed by the
synthetic setup is the number of active terms, with 10 % noise added to the target.
The results are shown in Figure 8. The network fits well on training data, with
an R2 of 0.79. Interpolation and temporal extrapolation (LYO) have slightly worse
fits with an R2 of 0.63 and 0.71. Spatial (LGO) and spatio-temporal extrapolation
(LGYO) yield R2 scores of 0.48 and 0.26.

Compared to the parameter estimation methods, where the different test methods
were almost identical (not shown), the FFNN gives very different results for training
and the different test data sets. This indicates that while the FFNN has been tuned
to fit the data, the model it has found is not similar to the synthetic generating
model, underlying a general problem with NNs: their ability to extrapolate (and
thus generalize) is limited.

Synthetic testing was further used to determine the complexity of the NN. The num-
ber of layers and neurons was increased simultaneously to find the hyper-parameters
that yielded the lowest extrapolation losses. The optimum parameters were found
to be 6 hidden layers with 48 neurons.
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5 Results

Method Scale and exponents R2 Figure

scale u t s ro fr gf ux

m0 m1 m2 m3 m4 m5 m6 m7 Train LGYO LGO LYO Interp.

Group A

LSQ 1.66 -0.03 0.01 0.68 0.03 -0.10 0.01 0.28 0.19 0.01 0.01 0.21 0.21 A.22

NTLSQ 1.63 - - 0.64 - - - 0.26 0.14 0.09 0.09 0.14 0.14 A.23

NLSQ 1.92 0.02 0.01 0.58 0.03 -0.08 0.01 0.26 0.25 0.01 0.01 0.25 0.25 9

NTNLSQ 1.89 - - 0.47 - - - 0.27 0.21 0.08 0.08 0.21 0.20 A.25

NLSQ winter 1.90 0.01 0.00 0.63 0.05 -0.09 0.01 0.26 0.28 0.02 0.00 0.31 0.28 A.26

MCMC median 1.92 0.02 0.01 0.58 0.03 -0.08 0.01 0.26 0.25 0.01 0.01 0.25 0.25 -

MCMC 95% 1.93 0.03 0.02 0.59 0.03 -0.08 0.01 0.26 0.25 0.02 0.02 0.25 0.25 -

MCMC 5% 1.91 0.01 -0.01 0.57 0.03 -0.09 0.00 0.25 0.25 -0.01 -0.01 0.25 0.25 -

prodCNN 1.88 -0.08 -0.10 0.44 -0.01 -0.12 0.04 0.32 0.16 -0.12 -0.12 0.18 0.19 A.28

Group B

SINDy - - - - - - - - 0.12 0.30 0.27 0.09 0.08 11

INLSQ median 2.14 -0.65 -0.44 0.01 0.00 -0.05 - 0.16 0.78 - - 0.77 - 13

INLSQ f(u, s) 2.18 -0.76 - -0.20 - - - - 0.66 - - 0.65 - -

FFNN 1000 epochs - - - - - - - - 0.95 -0.86 -0.98 0.95 0.95 A.29

FFNN 5 epochs - - - - - - - - 0.92 -0.66 -0.73 0.90 0.92 12

NLSQ f(u, s) + NN 1.82 0.31 - 0.45 - - - - 0.94 -1.41 -1.54 0.93 0.93 A.31

Group C

NLSQ m = 3 1.92 1/3 -0.17 0.55 0.03 -0.11 -0.02 0.10 0.20 0.06 0.04 0.19 0.18 A.32

NLSQ no strain 1.87 0.31 -0.11 0.55 0.04 -0.07 -0.02 - 0.20 0.12 0.10 0.18 0.17 -

NLSQ f(u, s, fr) 1.79 0.33 - 0.49 - -0.08 - - 0.17 0.16 0.14 0.16 0.15 -

NLSQ f(u, s) 1.82 0.31 - 0.45 - - - - 0.15 0.24 0.22 0.13 0.11 10

NLSQ f(u) 1.74 0.17 - - - - - - 0.03 0.14 0.12 0.04 0.02 -

Table 5: Summary of results basal stress estimation methods. The columns cor-
respond to the scale and exponents of features in the basal stress formulations.
An overview of the methods is shown in Table 3. For MCMC, the 5th, 95th and
50th (median) percentile are shown from 5 independent chains. For INLSQ,
the medians of the retrieved exponent are shown. The results are grouped into
three groups: Group A are methods that fit one model parametric basal stress
model to all glaciers. Group B is SINDy plus methods that fit to individual
glaciers or fit with non-symbolic models. Group C are variations of NLSQ with
fixed parameters or using subsets of features.
The basal stress model is τ = m0 · um1 · tm2 · sm3 · rom4 · frm5 · gfm6 · um7

x .
Key abbreviations are repeated. LSQ: linear least squares. NTLSQ: N-term
linear least squares. NLSQ: non-linear least squares. NTNLSQ: N-term non-
linear least squares. MCMC: Markov chain Monte Carlo. SINDy: Sparse
Identification of Non-linear Dynamics. INLSQ: individual non-linear least
squares. FFNN: feed-forward neural network. LGYO: leave-glaciers-and-
years-out. LGO: leave-glaciers-out. LYO: leave-years-out.

The different basal stress estimation results are summarized in Table 5, where the re-
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Figure 9: Results on training and test data for NLSQ. a)-e): density plots of
target-prediction for training and test data sets. The diagonal line indicates a
perfect fit. R2 for each data set is in the subplot title. f)-j): error histograms for
training and test data sets. MSE and the number of data points for each data set
in the subplot title. LGYO (leave-glaciers-and-years-out), LGO (leave-glaciers-
out) and LYO (leave-years-out) are three different aspects of extrapolation,
which are divided to yield insight into the generalizability of a given model.

trieved coefficients (where applicable) and the training and test R2 scores are shown.
Visualizations of results are shown in the figures referenced in Table 5 (some figures
have been left out for brevity). The figures show a density scatter plot of how pre-
dictions relate to targets and error histograms for all five training and test data sets.
The figure style used for results will be explained in detail in Figure 9 and left out
for the remainder of the figures in the same style.

The retrieved coefficients are similar across the different methods in Group A. For
NTLSQ and NTNLSQ, where only two features are used in inversion yield slightly
different models than the rest. The general picture is that the major active features
are s, fr and ux, with the rest of the exponents fluctuating around 0. The exponent
for s spans 0.45 to 0.63, the exponent for fr spans −0.11 to −0.08, and the exponent
for ux spans 0.26 to 0.31. The R2 vary across the different test data sets. Training
R2 range from 0.16 to 0.28, LGYO R2 range from −0.12 to 0.09, LGO R2 range from
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Figure 10: Results for NLSQ with only u and s as features. Explanation of
figure in caption of Figure 9.

−0.12 to 0.09, LYO R2 range from 0.14 to 0.31 and interpolation R2 range from 0.14
to 0.28.

The MCMC 90% confidence interval spans a narrow for all model parameters, with
deviations from the median of ±0.03 for the scale, and roughly ±0.01 for all ex-
ponents, yielding roughly the same R2 scores. The MCMC samples are illustrated
in Figure 16. Most pairs of parameters are uncorrelated. The exponent for ux is
negatively correlated with the exponent for u with a correlation coefficient of −0.74.
Further, the exponents for gf and fr, and exponents for u and t are negatively corre-
lated. Scale is positively correlated with the exponents for ro and fr. The exponents
for ro and s, as well as the exponents for t and ux are positively correlated. The
estimated noise in MCMC, σ, has a value around 0.86-0.87.

The learned filter from prodCNN is seen in Figure 15. The lower right corner is
the current grid point, with upstream and previous grid points in the rest of the
filter. The filter is used in summing the runoff from previous and upstream points
for inversion in each point. As such, the filter is to be interpreted as giving insight
into which relative points in time and space have an impact on calculating basal
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Figure 11: Results on training and test data for SINDy. Explanation of figure
in caption of Figure 9.

stress at a given point. Clear spatial lines are present at temporal -1, -4, -10, -17
and -20. A cluster of points is seen from spatial -10 and upwards, around -8 to -13
temporal. The learned exponents are close to those of NLSQ, with an ro exponent
of −0.01, putting very little weight on the filtered runoff.

The results from SINDy are shown in Figure 11. Here, the proposed model is a sum
of two terms that are functions of features. The training, LYO and interpolation R2

scores are around 0.10, with LGYO and LYO R2 scores of 0.30 and 0.27.

For INLSQ, the R2 scores are higher than all other parameter estimation methods.
The parameters shown in Table 5 are the median of each parameter from the 34
glaciers, with the distributions and correlations across shown in Figure 17. The losses
are calculated on the predictions with individual parameters for each glacier. Spatial
test losses are unavailable, as each glacier was used in its individual inversion, and
thus the learned models are not meant to extrapolate to other glaciers. Interpolation
losses were left out to maximize the amount of training data available, as certain
glaciers suffer from small amounts of data. The R2 scores are 0.78 for training data
and 0.77 for test data. In Figure 13 it is visually confirmed that this method yields
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Figure 12: Results on training and test data for FFNN with 5 epochs. Expla-
nation of figure in caption of Figure 9.

a better fit to observations than the other parameter estimation methods, where
predictions are highly correlated with targets, and the losses are low compared to
other methods.

For FFNN, the R2 scores for training, LYO and interpolation loss are higher lower
than for parameter estimation methods, at 0.92, 0.90 and 0.92, respectively. LGYO
and LGO R2 scores are among the lowest at -0.66 and -0.73. In Figure 12, it is
clear that the learned model generalizes well to interior test points and temporal
extrapolation, while it does not generalize to other glaciers as tested by LGO and
LGYO. Overfitting is limited by early stopping, with only five training epochs. For
1000 epochs, the training, interpolation, and LYO fits get marginally better, while
the LGYO and LGO fits get worse. Figure A.30 shows the evolution of losses with
epochs. Applying FFNN to the residual when using NLSQ with only features u and
s, the image is similar to other FFNN results. In Figure A.31, it is found that the
training, LYO and interpolation R2 scores are high, while LGYO and LGO are lower
than in all other methods.

For NLSQ+NN, where only features u and s are used in NLSQ, the results are similar
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Figure 13: Results on training and test for INLSQ. a)-b): density plots of
target-prediction for training and test data sets. The diagonal line indicates a
perfect fit. R2 for each data set is in the subplot title. c)-d): error histograms
for training and test data sets. MSE and the number of data points for each
data set in the subplot title. LYO (leave-years-out) is used for test data.

to FFNN, although with even lower R2 scores for extrapolation.

Based on the correlation between observations and exponents of u and ux as seen in
Figures 3, 16 and 17, and the classic power-law suggesting a functional form with
u1/3, a row of different experiments based on NLSQ was carried out. The results are
shown under group C in Table 5. In particular, the results for NLSQ with features
u and s are shown in Figure 10. The exponents for u and s are 0.31 and 0.45, with
extrapolation R2 scores LGYO= 0.24, LGO=0.22 and LYO=0.13.

The optimal basal stress model determined by NLSQ is

τ = 1.92 · u0.02 · t0.01 · s0.58 · ro0.03 · fr−0.08 · gf 0.01 · u0.26x . (26)

Formulating the problem differently in SINDy, yields the basal stress model

τ = 0.60 · u−1/2 + 0.89 · u · s. (27)
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Finally, for the NLSQ method with only u and s as features, the basal stress model
is

τ = 1.82 · u0.31 · s0.45. (28)

Spatiotemporal distribution of errors for NLSQ is shown in Figure 14. The error is
the MSE of all data (training and test) corresponding to the appropriate time and
glacier. The MSE for different time points varies between ∼0.7 and ∼1.5. Generally,
errors are highest in the middle of the year, where velocities are typically highest.
The spatial distribution of errors varies between ∼ 0.2 and ∼ 6.5, with most glaciers
below ∼1.0. The matrix plot of spatio-temporal errors shows for what glaciers and
time points there are no data. Most data are missing during summer, where velocities
are typically highest. There are a few glaciers that have full time-lines and a few
that have a low temporal resolution. With the highest errors in the middle of the
year, the results for NLSQ training without summer data (defined here as 1/5-1/10)
are shown in Figure A.26.

Figure 14: Spatiotemporal distribution of error for NLSQ. a) shows the MSE at
each timestep. b) MSE for each glacier, with the horizontal line at MSE= 1. c)
MSE at different glaciers at different times. The gaps in the dataset are due to
the filtering explained in Section 2. The grey shaded areas in the upper panels
illustrate data for extrapolation test losses.
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Figure 15: Learned filter from prodCNN. The spatial axis refers to grid points.
The temporal axis refers to time points. Negative indices thus refer to upstream
and earlier. The bottom right corner (temporal and spatial = 0) refers to the
current point in time and space. The upper left corner (temporal and spatial
= −20) refers to a point 5 km upstream (spatial grid spacing is 250 m) and 240
days earlier (temporal grid spacing is 12 d).
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Figure 16: Samples of MCMC of the parameters. Aggregation of 5 chains, each
with 2000 burn-in samples and 10000 samples. Diagonal shows distributions as
KDE. Above the diagonal, the correlation between parameters is shown, with
blue colours signifying negative correlation and red colours positive correlation.
Below the diagonal, each pair of parameter samples are plotted against each
other, where darker colours indicate higher densities.
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Figure 17: Distribution of parameters for individual NLSQ, along with the
distributions of training and test loss.
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6 Discussion

6.1 Interpretation of results

This study aims to learn a model for basal stress based on input features. From the
proposed models summarized in Table 5, the significant features relevant are surface
elevation s and strain rate ux, which consistently have the largest magnitudes of
exponents across the different methods in Group A (all features used).

The commonly assumed basal stress power-law (Eq. 2) with m = 3 is not found for
any method with the full set of features. The exponent for u in the basal stress model
ranges from -0.08 to 0.03 in Group A (see Table 5). However, as is seen in Figure 3
and Figure 16, both observations and exponents for u are negatively correlated with
ux. This is clear for NLSQ m = 3, where the exponent for ux drops to 0.10 from
0.26-0.33 in the other methods.

NTLSQ found the optimal parsimonious model with two terms, s and ux, as shown
in Figure A.24, where the LGYO loss is lowest with two active terms. u and ux, as
well as their exponents in MCMC samples, are correlated as seen in Figure 3 and
16. To investigate this effect, an attempt was made with NLSQ with only u and
s as features. The results are shown in Figure 10. The training R2 is on par with
the lowest in the Group A results, while the spatial extrapolation R2 scores (LGO
and LGYO) are the highest across all results in Group A. Further, the exponent of
u is found to be 0.31, which is very close to the commonly assumed 1/m = 1/3 in
Eq. (2).

Test data for the synthetic test of NLSQ with a scale spanning 2-4 and an exponent
spanning 1/4-1/2 yielded an R2 score of 0.53 (see Table 4, experiment 2). In that
case, the method recovered a model that could be interpreted as a mean model of
the generating data. The LGYO test R2 for NLSQ with features u, s was 0.24. The
results from synthetic testing thus indicate that more is missing from the dynamics
learned from NLSQ than just the correct exponents and scales - or that the underlying
values span more extensive ranges than in synthetic testing.

Basal melt from friction is persistent across all models, with a slightly negative
exponent. However, comparing NLSQ f(u, s, fr) and NLSQ f(u, s), it is seen that
including fr in inversion yields a worse extrapolation loss, indicating that the result
is not generalizable to all glaciers. Models are generally not dependent on geothermal
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basal melt and surface runoff; the learned exponents for these quantities are close to
0 for all methods. The conclusion is that no dependency was found between basal
stress and meltwater availability.

INLSQ, where NLSQ is applied individually to each glacier, offers a different look
at how exponents are distributed and related. Where MCMC results fundamentally
give the NLSQ solution, with distributions for each parameter yielding a confidence
interval, INLSQ results give insight into how different parameters relate to each
other across different glaciers. Interestingly, the exponents of u and t are positively
correlated, with a correlation coefficient of 0.56. This is the opposite of the result of
MCMC, where the two parameters are negatively correlated.

A major difference between INLSQ and NLSQ is the exponent for u. Generally,
the exponent in the power-law formulation Eq. (2), is assumed positive and around
1/m = 1/3 (e.g. Cuffey and Paterson, 2010; Schoof, 2007). While the results for
NLSQ with features u or u, s agree with this, the results for INLSQ contradict this,
with the median exponents retrieved being negative and of higher magnitudes, at
−0.66. A negative exponent for u in a power-law rheology implies that higher veloc-
ities are found with lower basal stresses, which counters the general interpretation
that the bed of a glacier provides resistance to flow.

Figure A.36 presents a visualization of how this contradiction occurs. The overall
trend between velocity and basal stress is positive (shown in log-space), while for
most glaciers, the trend is negative. The interpretation of this is that on an ice-sheet
level, the general relationship between velocity and basal stress is positive, while
on an individual glacier level, the general relationship is negative. A histogram of
exponents is shown in Figure A.37.

The results from prodCNN show interesting patterns, seen in the filter in Figure 15.
It seems that a region around 8-20 grid points (corresponding to 2-5 km upstream)
and 8-13 spatial points (corresponding to 96-156 days earlier) is consistently present
in the filter. This is interpreted as runoff at this point in space and time is part
of the basal stress function in this method, in line with general assumptions that
water availability upstream and earlier could impact the basal stress in a given point
(Jay-Allemand et al., 2011). However, it is noted that the exponent for runoff in
this method is small in magnitude at a value of -0.01. This is comparable to other
methods, with the filter designed to sum to 1 to facilitate the comparison of the
exponent. The low value of the exponent makes the filter poorly constrained by
data, as very little weight is given to variations in the filter. However, on different
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runs, the filter would converge to the same features as seen in Figure 15. This
indicates that even if the signal is insignificant, it is persistent and could be used as
a starting point for further studies of the spatio-temporal dependence between basal
stress and runoff.

The fundamental assumption of prodCNN is that the relation between basal stress
to runoff at upstream and earlier times is the same across all glaciers at all time
points. This is highly unlikely, given the different glaciers’ varying topographies and
dynamics. Alternatively, the spatial aspect could be considered by routing the runoff
along topography. One approach is to assume that runoff sinks vertically and is then
routed via the basal topography. A different approach is to assume that water is
routed via the surface topography and then sinks vertically. Either of these two
could be combined with learning a temporal filter, individual for each glacier, that
calculated basal stress based on the temporally filtered data.

A different approach would be to apply prodCNN individually for each glacier, learn-
ing filters that are potentially different for different glaciers. This would allow insight
into the dynamics of specific glaciers, dropping the assumption that the runoff has
the same spatio-temporal pattern of impact on basal stress across all glaciers.

The highest training, LYO and interpolation R2 scores are found for methods with
NNs, while these also yield the lowest LGYO and LGO R2 scores. Even for just
a few training epochs, the spatial extrapolation R2 scores are lower than any other
method. This does not, however, allow denying the fact that there exists a basal
stress model that extrapolates to other glaciers; all basal stress was generated from a
function, as shown in Eq. (9), where the target basal stress is calculated as the sum
of extensional and driving stresses. The fact that the NN methods have not found
this relation could be interpreted as an expression of NNs flexibility - the NNs have
prescribed another function that fits very well within the training glaciers (training,
LYO and interpolation) but does not extrapolate to the test glaciers (LGYO and
LGO). Another interpretation is that the NNs are not flexible enough to represent
the generating basal stress model in Eq. (9). Combining NLSQ and FFNN did
not change results significantly. The interpretability of neural networks limits the
application of FFNNs for discovering dynamics.

The results from SINDy are from the parsimonious model determined by Figure A.27,
where the losses have been plotted as a function of regularization. The suggested
model in Eq. (27) is among the simplest models discovered in this study and has
the highest extrapolation R2 scores of any model in this study. Due to its functional

Page 46 of 77



MSc thesis: SciML for discovering basal processes of Greenland outlet glaciers
Author: Øyvind Andreas Winton

form, a sum of two functions of features, it cannot be directly compared to the
extended power-law formulations; however, its dependencies are similar to that of
the highest scoring NLSQ model, with features u and s. To compare the two models,
an illustration is provided in Figure 18. The two proposed models have a similar
functional form for most observations, as indicated by the histogram. Where NLSQ,
following the power-law model, has a fixed sensitivity to u, the SINDy model implies
that very low velocities yield a high resistance, with the basal stress decreasing
as velocity reaches ∼ 0.3, after which it approaches linearly increasing with u. This
implies a more complex relationship between basal stress and u, and thus hydrological
and bed properties, than typically assumed under the power-law rheologies. However,
it is noted that the majority of observations constraining the functional form are for
velocities above the low velocities, for which this more complex relationship between
u and τ is found. The discovered models are most constrained where the histogram
is dense.

Figure 18: Function illustration of the two best extrapolating models discovered,
using SINDy and NLSQ. The predicted basal stress is plotted for velocities. The
surface topography is provided for corresponding values to velocities, smoothed
with a Gaussian filter. A histogram of observed velocities is provided in grey,
with the density values following the y-axis. Functions for a constant s are
provided as dashed lines.

The amount of regularization determined by Figure A.27 shows that the test loss
is lower than the training loss, where the test loss is at its minimum. The training
loss is comparable to a baseline model with an MSE of around 1.00. It is seen for
other results in Table 5 that the test losses are lower than training losses. This would
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not have been possible if the features and targets came from similar distributions.
However, this further indicates that the dynamics of the glaciers across Greenland
vary and that prescribing a unified basal stress law is difficult without tuning it to
local conditions.

6.2 Spatial and temporal errors

The abilities of the methods to extrapolate spatially, seen in particular in the LGYO
and LGO columns of Table 5, prove against the hypothesis that a single basal stress
function of observations could be learned that generalizes across space and time.
From Figure 14, it is seen that there is a seasonal signal to the error in time, with mid-
year errors higher than the rest of the year. This is likely related to the combination
of higher velocities and thus higher stresses in summer, along with more noise in
data and thus more data gaps in summer, leading to an imbalanced data set where
the non-summer dynamics are overrepresented. A winter analysis was carried out,
using only winter data, with results shown in Figure A.26. The retrieved basal
stress function is close to that of NLSQ, with decreased losses, reflecting that the
under-represented summer data are left out.

From Figure 14, it is further seen that there is a large variety in how the NLSQ
model fits to different glaciers. To get insight into how the loss varies across the
different glaciers, the predictions and targets for the four glaciers with the highest
and lowest MSEs are plotted in Figure A.35. The general picture is that there seems
to be low to no correlation between target and prediction across the glaciers, even
for those that have low MSEs. The seemingly good results seem to be related to
the scale of targets rather than the quality of fits. This was further confirmed when
recreating Figure 14, where the loss was normalized with the standard deviation of
targets, with the result that the bar plot of glacial errors was much more even across
glaciers (not shown).

The spatio-temporal errors of INLSQ are shown in Figure A.33, where almost all
glaciers have MSEs below 0.5. Plotting the four highest and lowest MSE glaciers
in Figure A.34, it is clear that the low MSE glaciers show good fits that are not
just due to small values but with clear correlations between target and prediction.
The variety in the learned functions for basal stress makes it clear that there are
very different dynamics at play for the different glaciers. Distributions of the various
parameters and losses across glaciers are shown in Figure 17.
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6.3 Relation to other results

Maier et al. (2021) use three different complexities of ice-flow models to investigate
the relationship between velocity and basal stress of Greenland glaciers. The models
are run in different catchments, dividing the ice sheet into eight separate regions,
with individual inversions in each region. The results are interpreted in terms of bed
strength, based on the exponent in the power-law relationship that this study is based
upon. Generally, the results are consistent across the different model complexities
(in order of decreasing complexity: Full-Stokes, SSA and shallow ice approximation).

They find that the average value across the eight catchments is 1/m = 0.34 (denoted
1/p in Maier et al. (2021)). For the best extrapolating model in this study (NLSQ
with features u and s), it was found that 1/m = 0.31. However, INLSQ’s median
exponent for u was 1/m = −0.65. Running INLSQ with only features u and s yielded
a median of 1/m = −0.76, with a similar result for running it with just u. Maier
et al. (2021) finds positive exponents in all catchments.

In Maier et al. (2021), the value of 1/m is interpreted in terms of bed strength and
hydrologic properties, with m = 3 for hard-bed sliding and higher values for sliding
over deformable beds. These studies give no analysis of negative exponents for u in
the basal stress law, and more analysis is necessary to understand the implications
of this result.

Winton et al. (2022) use an inverse approach to infer the basal stress coefficient (c
in Eq. (4)), as a spatio-temporal variable, during a surge of Hagen Bræ. While there
are theories that surges of glaciers are related to meltwater (Sevestre and Benn, 2015;
Benn et al., 2019, e.g.), they find no relationship between the basal stress coefficient
and the amount of surface meltwater for Hagen Bræ during the years 2015 to 2019.
This is in line with this study, where none of the methods applied yield a strong
dependency between runoff or basal melt features and basal stress, with the weak
dependency on friction melt yielding poor extrapolation results. Many other studies
(e.g. Jay-Allemand et al., 2011; Stevens et al., 2022), however, do find relations
between basal stress and meltwater. This underlines that more complex ice-flow
models and data methods might be needed to uncover this relation on an ice-sheet
scale.
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6.4 Data quality

Within machine learning, the quality of data is of high importance. In this study,
the goal is to find a constant function that fits to a spatiotemporally varying target,
where the predictive temporal variation comes from temporal variation in the used
features. However, of the data sets used, only the velocity and regional climate
model (RCM) data have a temporal component. With the RCM data reduced to
one variable due to correlation, this leaves two temporally variable data sources,
yielding three features (with strain rates a derived feature from velocity.)

The data used for basal melt from Karlsson et al. (2021) is a first constraint rather
than a finely tuned model. Thus, the data provided are not well-constrained by
observations and are an attempt to quantify magnitudes rather than specific spatially
variable actual melt. Its use in this study has been as the latter, which might be
the reason why minimal dependency was found between basal stress and basal melt,
which is commonly assumed to be related (Cuffey and Paterson, 2010).

6.5 Suggestions for improvements and further work

During this study, many considerations have been made about the limitations and
shortcomings of the applied methods and assumptions. Here, some critical points will
be discussed, along with thoughts about how to develop the results obtained in this
study. Finally, a very different view of the problem is presented, which constitutes
the essence of SciML.

6.5.1 The proposed basal stress model

In this study, the assumed functional form of the basal stress model is similar to the
power-law in Eq. (2) where other features are included in a similar form as u. While
the power law is based on physical considerations and assumptions, the proposed
functional form is not. A more rigorous approach to deriving a physics-based basal
stress law with more observables than u could shed more light on how the observed
features affect the basal stress. Alternatively, a less restricted functional form might
reveal other relationships between variables at the cost of interpretability.
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A further restriction of the assumed basal stress model is that it requires positive
features. This eliminated the feature related to basal melt from surface water per-
colation and refreezing, which has variability in sign across the domain. Further, it
was necessary to remove all points with negative strain rates. Finally, as much of
the runoff is 0 through most of the year, it required the temporal summing of the
feature to have data for a more representative part of the year. Other more flexi-
ble functional forms could come about these issues, allowing for a greater variety in
features.

One approach to extending the functional form could be using other non-linear func-
tions in a similar product-form as in Eq (4), that do not restrict the input to positive
values. One such idea could be learning FFNNs for each variable in a formulation
like

τ = m0 ·NN(u) ·NN(t) ·NN(s) ·NN(ro) ·NN(fr) ·NN(gf) ·NN(ux), (29)

where NNs are feed-forward neural networks that are independent of each other.
Each NN would be more easily interpreted as they are just functions of one variable.
Thus, it would be easier to identify the dependence of specific features than was the
case in the FFNN method presented in this study.

Finally, the proposed functional form could be extended by using more data sets as
features or creating physical features from other observations. As described earlier,
the effective water pressure N is commonly seen in applied basal stress laws. Un-
der assumptions of the bed being hydrostatically connected to the ocean, N could
have been included as a feature. Other features could have been a measure of bed
roughness on different scales, the slope of the bed topography, and a measure of bed
till strength. In particular, more temporally variable features could help uncover the
temporal variation in basal stress.

6.5.2 Ice-flow model

The applied ice-flow model (SSA) could be extended with lateral drag, making the
basal stress more well-constrained (Veen et al., 2011). Further, it could be an idea
to tune the rheological temperature-dependent coefficient A to better approximate
local conditions. This tuning could be done deterministically, with data on surface
temperatures, thicknesses and temperature profiles where available. A was assumed
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constant for all glaciers in this study, which is a grave assumption, given the geo-
graphical and topographical variety of the glaciers.

One way to incorporate the variability of glacier dynamics across Greenland is to
do the analysis done in this study on a catchment scale, as seen in Maier et al.
(2021), or by classification of seasonal velocity patterns as in Vijay et al. (2021).
This would allow discovering different dynamics for different groups of glaciers while
still allowing testing of how well a model generalizes to other glaciers.

6.5.3 Synthetic testing

The synthetic testing of FFNN could be improved by increasing the number of syn-
thetic data to the complete data set size, allowing better comparison between syn-
thetic and data applications. With the current setup, where the size of the data set
is around ten times larger than the synthetic data set, it was found that fewer epochs
were needed to converge for the data application than synthetic application. This is
related to the batch training, where 1024 data points were used in each batch, with a
full epoch being counted when all data has been through training once. Further, the
size of the network, in terms of nodes and layers, was tuned based on the synthetic
data set, which further argues for having similar amounts of data in synthetic and
real data applications.

The synthetic tests of SINDy were carried out to test its ability to discover the
functional form of basal stress in Eq. (4). In order to get a more tailored test of
SINDy and its sensitivities to model and data noise, it would have been beneficial
to create a similar array of experiments as presented in Section 4, but where the
functional form was a linear combination of the library of candidate functions. Thus,
the synthetic testing here does not generalize to other uses of SINDy but was used
merely to test SINDy under the assumed functional form of basal stress used in this
study.

6.5.4 Train and test data

In general, LYO and interpolation R2 scores are on par with training R2. This
indicates that the models do not overfit to the training data but generalize to in-
terpolation and temporal extrapolation. The temporal extrapolation success across
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all methods indicates that the dynamics learned from training are similar in the
extrapolation period, seen in Figure 14 to be roughly the two years 2021-2022.

The results were somewhat sensitive to which glaciers were left out for testing. For
some methods in Table 5, the R2 scores were higher for LGYO and LGO than for
training. In testing the methods, a random split was used in each iteration, with
the consequence that the retrieved models and R2 varied. Subsequently, and for all
results presented in this report, a fixed bias-free split was determined by holding out
the first 14 glaciers (alphabetically) for testing. It could be argued that more data
should be used for training, but due to the variety in dynamics and scales of stresses
across the different glaciers, it was chosen to retain a rather large set of glaciers for
testing in order to test against a variety of glacier dynamics.

Another type of test data set could be temporal and spatial interpolation data sets,
where, e.g. the middle 20% of grid points for each glacier, or the middle 20% of
time points across all glaciers, could be held out for testing. This would further
evaluate the models’ ability to predict on unseen data and might reveal strengths or
shortcomings of the models not discovered so far.

In this study, a relatively simple approach has been taken to split the data, with
one training data set and four test data sets, where the splits have been fixed. A
more comprehensive approach might yield better models and better estimations of
errors. One such approach is k-fold cross-validation, where rather than having static
divisions, different splits are made, training and evaluating the models at the different
splits, and taking the average of training and test errors across the different splits.

Finally, it could be argued that a final test data set should be held out for the final
evaluation, after which no further analysis is done. The different methods applied
have been guided by changes in the test losses, and thus the test losses shown are
not unbiased but have been used for hyperparameter tuning.

6.5.5 Combining deterministic models and neural networks

This study suggested different methods combining deterministic models and neural
networks. While the synthetic tests proved promising, application to real data did
not turn out to generalize. This section presents a different approach to learning
about the underlying model. Previously, the stress balance in Eq. (1) was used to
determine the basal stress term from data using finite differences. The equation is
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now considered a differential equation with dependent and independent variables u
and x.

First, the stress balance is nondimensionalized, almost mirroring that of Tsai et al.
(2015) and Schoof (2007). Assuming positive strain rates, the stress balance is

ε
(
ĥû

1/n
x̂

)
x̂
− τ̂ − ĥ

(
ĥ− b̂

)
x̂

= 0, u(0) = u0, ux(0) = ux,0, (30)

where hats denote scaled variables and the dimensionless parameter ε is defined

ε =
(2[u][x]−1A−1)

1/n

ρg[h]
, (31)

with the scalings [u], [x] and [h] are determined from data. Two further simplifi-
cations are made to make the ODE easier to solve, allowing focus on the model
discovery aspect. First, it is assumed that the relation between the dominant shear
stress and the corresponding shear strain rate is linear by setting the rheological
exponent n = 1. Second, it is assumed that hxux � huxx, allowing (hux)x ' huxx.

εhuxx − τ − h (h− b)x = 0, (32)

where hats denoting scalings have been dropped. Rearranging yields the non-linear
(assuming that τ is a non-linear function of u) ODE in u on a form suitable for
standard ODE solvers

uxx =
τ + h(h− b)x

εh
. (33)

The rhs of this equation can then be learned fully or partially from data in a frame-
work presented by Rackauckas (2019) as Universal Differential Equations (UDE).
The problem of fully learning the operator could be posed as

uxx = NN (u, t, s, ro, fr, gf, ux) , (34)

where the NN attempts to learn the rhs of Eq. (33).

Alternatively, the dynamics can be learned partially from data, where the known
dynamics are kept in the problem, and unknown dynamics are replaced by a NN

uxx = NN (u, t, s, ro, fr, gf, ux) +
h(h− b)x

εh
, (35)
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from which the basal stress dynamics can be found as

τ = NN (u, t, s, ro, fr, gf, ux) εh. (36)

This change in perspective compared to earlier allows for learning the dynamics
of the system differently. Rather than fitting to the basal stress determined by a
model that does not capture all dynamics (SSA), the basal stress and the system’s
unknown dynamics could be learned. Applying embedded NNs within differential
equation solvers could yield insight into ice flow dynamics that have thus far been
undiscovered. Preliminary testing of the method to learn synthetic dynamics in both
formulations shown above showed promising results, as long as the system was noise-
free. Adding noise to the synthetic observations of velocity leads to convergence
issues. Further testing of the method would give insight into its prospects and
possibly its application to the questions and data presented in this study.
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7 Conclusions

A range of methods was applied to discover the relationship between basal stress
and physical features, provided by observational records and models. Topographies,
surface velocity and quantities related to basal melt and surface runoff were used as
features in frameworks inspired by the development of scientific machine learning,
where physical models and data are combined in methods for system identification
and parameter estimation. Models were trained on a subset of data, with four
different test data sets held out for testing various aspects of generalizability.

Synthetic testing of methods showed promising results when subject to model and
data noise. Even under high model and data uncertainty, recovering the correct
functional form and dependency on features was possible.

For the extended power-law formulation, the best results on extrapolation data sets
used only velocity u and surface topography s, with the model τ ∝ u0.31s0.45 ex-
plaining 24% variance as measured by R2. This model is in line with the commonly
assumed hard-bed rheology of the power-law. Improvements were made when fit-
ting models to glaciers individually, where the models yielded an explained variance
of 77% in temporal extrapolation. This indicates that the glaciers have different
dependencies on the features and that a general basal stress law cannot be deter-
mined without spatio-temporal tuning to reflect local dynamics. Other dynamics
were uncovered using SINDy, where the proposed model τ ∝ u−1/2 + 1.5us, yielded
the highest R2 scores for spatio-temporal extrapolation, explaining 30% variance.

No dependency on meltwater was uncovered with any method, as validated by ex-
trapolation fit, and more sophisticated methods might be necessary to uncover the
relationship between basal stress and meltwater. While a feed-forward neural net-
work could learn the dynamics of training glaciers with good results on temporal
extrapolation, it could not extrapolate the learned dynamics to other glaciers in
Greenland.

The applied methods in this study uncovered some of the basal stress dynamics
observed. Further application of scientific machine learning could uncover missing
ice-flow dynamics and allow for further discovery of basal dynamics.
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A Appendices

A.1 Synthetic testing of methods

Figure A.19: Results of synthetic test on 7 experiments LSQ with 10% noise
added to the target. The experiment numbers are detailed in Table 4, with a
short explanation in the lower right of each panel of this figure. The resulting
equations are in the upper left of each panel.
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Figure A.20: Results of synthetic test on 7 experiments for NLSQ with no noise
added to the target. The experiment numbers are detailed in Table 4, with a
short explanation in the lower right of each panel of this figure. The resulting
equations are in the upper left of each panel.
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Figure A.21: Results of synthetic test on 7 experiments for NLSQ with 100%
noise added to the target. The experiment numbers are detailed in Table 4,
with a short explanation in the lower right of each panel of this figure. The
resulting equations are in the upper left of each panel.
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A.2 Results

Figure A.22: Results on training and test data for LSQ. a)-e): density plots of
target-prediction for training and test data sets. The diagonal line indicates a
perfect fit. R2 for each data set is in the subplot title. f)-j): error histograms for
training and test data sets. MSE and the number of data points for each data set
in the subplot title. LGYO (leave-glaciers-and-years-out), LGO (leave-glaciers-
out) and LYO (leave-years-out) are three different aspects of extrapolation,
which are divided to yield insight into the generalizability of a given model.
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Figure A.23: Results on training and test data for NTLSQ. Explanation of
figure is provided in caption of Figure A.22.

Figure A.24: Training and LGYO test loss as a function of active terms for
NTLSQ, used to determine the parsimonious model that best fits the data.
From this figure, the optimal number of active features is 2.
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Figure A.25: Results on training and test data for NTNLSQ. Explanation of
figure is provided in caption of Figure A.22.

Figure A.26: Results on training and test data for NLSQ without summer data
(1/5-1/10). Explanation of figure is provided in caption of Figure A.22.
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Figure A.27: Test and training loss as a function of regularization strength in
the SR3 optimization algorithm used for SINDy, used to determine the regular-
ization parameter in SR3 (Zheng et al., 2019). The x-axis is the regularization
strength on a logarithmic scale, but the labels have been replaced with the
number of active terms at each regularization level. The lowest LGYO value
corresponds to λ = 44.000 in Eq. (19)

Figure A.28: Results on training and test data for prodCNN. Explanation of
figure is provided in caption of Figure A.22.
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Figure A.29: Results on training and test data for FFNN with 1000 epochs.
Explanation of figure is provided in caption of Figure A.22.

Figure A.30: Evolution of losses for FFNN.
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Figure A.31: Results on training and test data for NLSQ+NN. Explanation of
figure is provided in caption of Figure A.22.

Figure A.32: Results on training and test data for NLSQ with the exponent of
u fixed at 1/3. Explanation of figure is provided in caption of Figure A.22.
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Figure A.33: Spatiotemporal error for INLSQ. Explanation of figure in Figure
14.
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Figure A.34: Best and worst fits for INLSQ

Figure A.35: Best and worst fits for NLSQ

Page 75 of 77



MSc thesis: SciML for discovering basal processes of Greenland outlet glaciers
Author: Øyvind Andreas Winton

Figure A.36: Scatter plot of basal stress and velocities on log-scale. Plotted
with results of INLSQ with only feature u. NLSQ with only u shown in black.
Illustrates the effect of how fitting to all data yields a positive exponent, while
fitting individually to glaciers generally yields negative exponents, in the power-
law formulation τ = cum.

Figure A.37: Histogram of exponent for INLSQ with only feature u.
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A.3 Glaciers

Glacier # Glacier name Number of data points

1 79 North Glacier 4682

2 DaugaardJensen 17203

3 Docker Smith 2250

4 Fenris 1128

5 Hayes 7285

6 Helheim 12741

7 Humboldt 7977

8 Ikertivaq A 2548

9 Ikertivaq B 2200

10 Ikertivaq C 2436

11 Ikertivaq D 2352

12 Ingia 4182

13 Jakobshavn 11972

14 KNS 15147

15 Kangerdlugssuaq 23027

16 Kangerdlugssup Sermerssua 5506

17 Kangigdleq 95

18 Kong Oscars 14228

19 Nunatakassaap Sermia 8250

20 Nunatakavsaup Sermia 1648

21 Ostenfeld 3752

22 Petermann 10258

23 Rink 18581

24 Ryder 5083

25 Sermeq Silardleq 4568

26 Steensby 960

27 Steenstrup 7962

28 Store 13782

29 Tingmjarmiut 9536

30 Umiamako 153

31 Upernavik A 7502

32 Upernavik B 7783

33 Upernavik C 10574

34 Zachariae 9735

Table A.6: Overview of the numbering of glaciers along with the total number
of data points (in time and space) for each glacier.

Page 77 of 77


