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Abstract

Tropical cyclones (TCs) are some of the most destructive weather-related atmospheric features,
responsible for significant impacts by way of strong winds, heavy precipitation, storm surges
and flooding to the areas that they impact. This study examines the future trends of TCs in the
Southwest Indian Ocean (SWIO) region under a changing climate and assesses their impacts on
vanilla agriculture in Madagascar in particular. TC tracks calculated with a tracking algorithm
from model simulations and observational data is used to for comparison. Calculated TC
tracks are verified against model output to confirm TC track identification. Statistical analysis
is conducted to evaluate trends in the frequency, intensity, and duration of TCs under a future
climate, as well as mean sea level pressure as an indicator of normalized damage. The study finds
agreement with global trends of increasing TC intensity and duration but with uncertainties due
to methodological limitations and model resolution challenges. The results suggest that higher-
intensity TCs and prolonged exposure to extreme weather pose risks to coastal communities
and agriculture in the SWIO, particularly vanilla production in Madagascar. To improve the
analysis, incorporating more models at higher resolutions, and considering natural variability
factors is recommended.
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1 Introduction

Tropical cyclones (TCs) are some of the most destructive weather-related atmospheric features,
responsible for significant impacts by way of strong winds, heavy precipitation, storm surges
and flooding to the areas that they impact. TCs are weather systems that occur on a synoptic
scale, spanning hundreds of kilometers, and develop over warm tropical oceans near to the
equator (Redmond et al., 2015). In the Southwest Indian Ocean (SWIO), TCs are particularly
significant due to the vulnerability of the coastal populations and the frequency and intensity of
storms in the region, with greater than 5 named storms forming on average each year (Mavume
et al., 2009; Seneviratne et al., 2021). TCs in the SWIO can have a devastating impact on
the lives and livelihoods of the people living in the region, as well as the local economies
and infrastructure. It is therefore important to utilize available data and analysis to better
understand how TCs in SWIO basin are impacting the region, with the purpose of better
understanding future trends to inform environmental, social, and economic adaptation efforts.
This study aims to examine TC features in the SWIO and, in particular, how they might impact
the region’s vanilla agriculture under a changing climate through the use of observations and
global climate model simulations.
Between February and March of 2023, Tropical Cyclone Freddy crossed the Southern Indian
Ocean, persisting for an unprecedented 5 weeks and 2 days and producing the highest accu-
mulated cyclone energy (ACE) of any TC on record (Cappucci, 2023). Initially forming in the
Australian basin in early February, Freddy rapidly intensified into a Category 4 storm before
entering the Southwest Indian Ocean basin, where it continued to strengthen (WMO, 2023).
At its peak, Freddy reached 1 minute maximum sustained winds of 270 km/hr. The TC first
made landfall in Madagascar, causing some weakening, before re-intensifying in the Mozam-
bique Channel. Freddy then made landfall again in the southeast, causing significant damage.
The final death toll attributed to Freddy exceeded 1400 people, making it the third deadliest
TC on record (Reuters, 2023). The impact of recent events such as TC Freddy, highlights the
need for a better understanding of TC trends in the SWIO to inform social, economic, and
agricultural adaptation efforts.
TCs have a significant impact on the SWIO region. In particular, the island of Madagascar
experiences more TCs than any other African country, which brings heavy rain, high winds,
and flooding to the island (E. C. Jones & Murphy, 2009). A unique feature of Madagascar is
that northeastern Madagascar is the global center of vanilla agriculture production, responsible
for 80-85% of the world’s natural vanilla (C.D, 2018; Martin et al., 2021). Weather conditions
from TC activity can be particularly damaging to vanilla crops, which are sensitive to excess
water and wind (Correll, 1953). Correll (1953) further notes that excessive rainfall can cause
vanilla vines to become waterlogged, which can damage the plant and make it more susceptible
to diseases, as well as high winds can also damage the vines, which can reduce yield and quality
of the vanilla beans. Additionally, flooding can wash away soil and nutrients, which can have a
negative impact on the growth of the plants. In some cases, TCs can cause widespread damage
to vanilla farms, leading to significant economic losses for farmers and the industry as a whole
(Correll, 1953). In 2017, for example, TC Enawo caused extensive damage to vanilla crops in
Madagascar, leading to a sharp increase in vanilla prices on the global market (Probst et al.,
2017).
TC genesis and intensification are complex processes that require a combination of favorable
atmospheric and oceanic conditions. One of the primary factors that contributes to TC forma-
tion and intensification is warm sea surface temperatures (SSTs) of a minimum of 26◦C (Singh
& Koll, 2022). This warm water provides the energy necessary for the storm to intensify, as
it evaporates and rises, creating a low-pressure system that draws in more warm and moist
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air from the surrounding area (Laing & Evans, 2011). A high mid-level tropospheric humidity
allows for the formation of deep convection and cloud development, and when there is such
abundant moisture in the mid-troposphere, it can also fuel the storm’s growth and intensifi-
cation as moist air rises and cools, releasing latent heat and further fueling the storm (Laing
& Evans, 2011). A low vertical wind shear is also critical for TC genesis and to maintain
intensification without disrupting the storm’s structure (Gray, 1998).
The SWIO is a unique body of water due in part to its wide range of interactions between the
ocean and atmosphere, which can be responsible for both encouraging and/or inhibiting TC
genesis in this basin (Fitchett, 2018). During the austral summer, SSTs tend to range from
28◦C to 30◦C, which meets the threshold for temperatures warm enough to provide the energy
needed for TCs to form and intensify (Skirving et al., 2020). High atmospheric moisture near
the equator in this region can additionally contribute to the formation of deep convection and
cloud development, further fueling a storm’s growth.
The SWIO region extends from the southern tip of the African continent, near the Cape of Good
Hope, to the equator, and includes the island nations of Madagascar, Mauritius, Seychelles, and
Comoros, as well as smaller islands including the French overseas territories of Réunion and
Mayotte, as shown in Figure 1.

Figure 1: Southwest Indian Ocean Region Country boarders and labels included for reference.

TCs and other extreme weather events are naturally highly variable, making the detection and
attribution more uncertain than the detection and attribution of the elements by which such
events occur, such as large-scale precipitation and temperature trends (Seneviratne et al., 2021).
Local physical processes and mechanisms are often the driving force of TC events, which makes
projections challenging due to global climate models (GCMs) ability to accurately capture
these contributing factors. Despite these challenges, GCMs generally tend to estimate TCs to
be intensifying as the Earth warms due to climate change impacts (Grinsted et al., 2019).
When investigating the impacts that TCs have on the region as well as the projected changes in
the TCs themselves due to the impacts of climate change, low resolution GCMs (with horizontal
resolution >100 km) do not adequately capture the observed TCs, and it is widely recognized
that TC intensity and structure improve with increased GCM resolution(Redmond et al., 2015)
(Strachan et al., 2013).
As previously mentioned, this study aims to evaluate the future trends of TCs under a changing
climate in the SWIO, and assess how these future trends will impact the region and in par-
ticular its vanilla agriculture. To this end, storm tracks derived from EC-Earth3P-HR model
simulations control-1950 and highres-future conducted using the Coupled Model Intercompar-
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ison Project Phase 6 (CMIP6) High Resolution Model Intercomparison Project (HighResMIP)
protocol, by the PRIMAVERA project group, have been used. This study uses only data from
the SWIO basin and only storms from the period beginning on the 1st of October 1980 through
the 30th of May 2015 were considered (more details in Section 3.1). A TC tracking algorithm
(TRACK ) is used to calculate storm tracks from the model simulation output. Further cross
checks between the model output and the calculated storm tracks are made to verify the algo-
rithm output. To this end, distribution and regression analysis is conducted to derive future
trends from modeled simulations incorporating a high emissions climate change scenario, and
then compared to a control model as well as observational trends for the SWIO basin. Future
damages are estimated using MSLP as predictor.
This study is carried out for the purpose of addressing several questions. First, how well does
the tracking algorithm method applied to model data represent observed tropical cyclones from
best track data? Second, what do future tropical cyclone seasons look like in the SWIO basin
under a high emissions changing climate scenario? Third, how will future tropical cyclones
impact vanilla agriculture in the SWIO, specifically on the island of Madagascar?

3



2 Background

Increases in both frequency and intensity of extreme weather events such as TCs are often cited
as some of the most dangerous projected impacts under anthropogenic climate change conditions
(Fitchett, 2018).The extreme weather events referred to in this study as tropical cylones (TCs)
have varying naming conventions depending on the region in which they occur. The Atlantic
Ocean and Northeastern Pacific Ocean (including the Gulf of Mexico and the Caribbean Sea)
refer to storms with sustained winds of at least 119 km/h (74 mph) as hurricanes, while in
the Northwestern Pacific Ocean (including the South China Sea and the Philippine Sea) these
same types of storms are referred to as typhoons (WMO, 2016). In the Indian Ocean and
the Southwestern Pacific Ocean (including the seas around Australia and Indonesia) they are
referred to as tropical cyclones. In the South Pacific Ocean, east of the International Date Line,
they are referred to as cyclones. This study focuses on the SWIO region, and therefore the
nomenclature of storms in this region is tropical cyclones (TCs).
Despite varying names, TCs all share similar characteristics, as they have a well defined life
cycle, which can be delimited into classifications. The first stage of a TC is known as a
disturbance, where a low pressure area forms over the ocean with a high SST, potentially with
converging wind patterns (Laing & Evans, 2011). If conditions are favorable, the disturbance
will intensify into a tropical depression, which is characterized by maximum sustained winds
speeds of 60 km/h (about 38 mph), with a closed circulation of winds and a defined center
of low pressure. As the storm further intensifies, the next classification is a tropical storm,
characterized by maximum sustained wind speeds between 62 and 117 km/h (39 and 73 mph).
When storms reach this intensity, the storm will be named to avoid confusion amongst, as there
can be more than one TC occurring at the same point in time (WMO, 2016). As a classified
tropical storm, the storm will cause significant impacts such as heavy rainfall, strong winds,
and storm surge in coastal areas. If the storm continues to intensify, it can reach Category 1
TC status on the Saffir-Simpson Hurricane Wind Scale. The Saffir-Simpson Hurricane Wind
Scale is a 1-5 rating based on the storm’s maximum sustained wind speed, not accounting for
other potential impacts including storm surge, heavy precipitation and flooding (NOAA, n.d.).
See the remaining classifications from the Saffir-Simpson Hurricane Wind Scale in Table 2.1,
with the category number increasing as the intensity increases.

Category
Sustained

Wind Speeds
Type of Damage Due to Winds

1 119-153 km/h Very dangerous winds will produce some damage.
74-95 mph
64-82 kt

2 154-177 km/h Extremely dangerous winds will cause extensive damage.
96-110 mph
83-94 kt

3
(major)

178-208 km/h Devastating damage will occur.

111-129 mph
96-112 kt

4
(major)

209-251 km/h Catastrophic damage will occur.

130-156 mph
113-136 kt

4



Table 2.1 continued from previous page
5

(major)
252 km/h
or higher

Catastrophic damage will occur.

157 mph
or higher
237 kt

or higher

Table 2.1: The Staffir-Simpson Hurricane Wind Scale with associated types of damage due to
sustained wind speeds. Further description of the type of damage with examples can
be found at (NOAA, n.d.).

As the storm encounters less favorable environmental conditions (such as cooler ocean temper-
atures, increased vertical wind shear, land masses, or traveling too close or too far from the
equator), the storm will begin to weaken, transitioning to an extratropical or subtropical storm
before dissipation (S. C. Jones et al., 2003). The transition process involves the formation of a
new frontal boundary, or a transition zone, between the tropical and extratropical air masses
(Merrill, 1993). As the TC moves regions of higher latitudes, it may interact with this new
boundary and begin to lose its warm core structure. This can lead to changes in the storm’s
wind and pressure patterns, and a weakening of the storm’s core.
One of the key differences between tropical and extratropical storms is the distribution of winds
around the storm. TCs have a compact and symmetrical wind field around the eye of the storm,
while extratropical storms have a more asymmetrical and diffused wind field around the eye
(Bowyer, 2000). As a TC transitions to an extratropical storm, the storm’s wind field may
become more spread out and less concentrated around the center of the storm. During this
transition, the storm may also start to produce more frontal precipitation, which is different
from the convective precipitation associated with TCs (Foley & Hanstrum, 1994). This can
lead to increased rainfall over a broader area, as well as a potential for strong winds.
However, TCs are complex weather systems driven by a combination of atmospheric, oceanic
and geographic features. Six main features (see Table 2.2) are necessary for tropical cyclogenesis
to occur. Note, however, that if all six conditions are met, it is still possible that cyclogenesis
will not occur (Gray, 1998).

Tropic Feature
Number

Tropic Feature

1
Sufficient ocean thermal energy:

SST >26◦C for the first 60 meters of depth

2
Enhanced mid-tropospheric relative humidity:

at 700 hPa
3 Enhanced lower troposphere relative vorticity
4 Low vertical shear of horizontal winds
5 Conditional instability

6
Adequate Coriolis Force Effect:

Genesis site location at least 5 degrees latitude
away from the equator

Table 2.2: Tropic features that are necessary for cyclogenesis to occur. Features 1, 2, and 5 are
thermodynamic parameters supporting deep convection, whereas dynamic features
3, 4, and 6 support the likelihood of genesis (McBride & Zehr, 1981).
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Throughout all mature TCs, several key structural elements are present. The (i) boundary
layer inflow, (ii) eyewall, (iii) cirrus cloud shield, (iv) rainbands, and (v) upper tropospheric
outflow (as seen in figure 2a) are found in all tropical depressions and tropical storms. As
storms become more intense, a (vi) clear central eye becomes visible from satellite (as seen in
Figure 2a).

(a)

(b)

Figure 2: Theoretical Model of the Main Tropical Cyclone Structures(a) Specifically highlight-
ing the inflow, eye, eyewall, cirrus shield, rainbands, and upper tropospheric outflow.
(b) Additional view of the boundary layer flow of a TC. Both (a) and (b) can be
found in (Laing & Evans, 2011)

As previously mentioned, TCs are synoptic-scale systems and therefore must spin cyclonically
(Laing & Evans, 2011). In the Northern Hemisphere (NH), TCs spin counter-clockwise (anti-
clockwise) while in the Southern Hemisphere (SH), they spin clockwise. The wind pattern
within a TC is characterized by inward cyclonic flow at lower levels, which spirals upward
within the zones of deep convection, such as the central eyewall or spiral rainbands. At higher
altitudes, just below the tropopause, the wind spirals outward. These dynamics are depicted
in (Figure 2b), which provides an illustration of the fundamental aspects of TC systems and is
an example of a NH cyclone. The clear central eye region is characterized as being relatively
calm with low wind speeds and the lowest surface pressure, with an band of thunderstorms
surrounding the eye known as the eyewall where the highest wind speeds are located.
As a TC passes over water, a ’cold-wake’ is formed, referring to the area of ocean water that
is left cooler than the surrounding water (Chen et al., 2017). This cooling effect is caused by
the mixing of colder water from deeper layers of the ocean with warmer surface water, which
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occurs as strong winds and waves churn up the ocean during the passage of the TC. The size and
intensity of the cold wake depend on various factors, such as the size and intensity of the storm,
the speed of its movement, and the oceanographic conditions in the area (Karnauskas et al.,
2021). In general, larger and more intense storms tend to create larger and more pronounced
cold wakes.
The IPCC AR6 WG1 Chapter 11 report on Weather and Climate Extreme Events in Changing
Climate provides valuable insights into the mechanisms and drivers of TCs, observed trends
in TC activity, model evaluation and projections for the late 21st century (Seneviratne et al.,
2021), noting that there is low confidence in most reported long-term trends in TC frequency
and intensity-based metrics. TCs are complex weather phenomena influenced by various mech-
anisms and drivers. These include large-scale atmospheric circulations, such as the Hadley and
Walker circulations (which will be further discussed later in this chapter), which play a cru-
cial role in the formation and intensification of TCs (Seneviratne et al., 2021). Additionally,
internal variability on different time scales contributes to the behavior and characteristics of
these storms. When assessing trends in TC frequency and intensity metrics, there is limited
confidence due to data limitations in so called ’best-track’ data (as used in this study and
outlined in section 3.1) (Schreck et al., 2014). However, studies including Kang and Elsner
(2012), Kishtawal et al. (2012), Kossin et al. (2013), and Mei and Xie (2016), and Balaguru
et al. (2018) among others conducted during the satellite era have provided some evidence of
positive trends in TC intensity and rapid intensification events. This suggests that TCs are
becoming stronger and more capable of undergoing rapid strengthening over shorter periods of
time. Furthermore, there have been observations of changes in TC characteristics, including
a poleward migration of peak intensity (Kossin et al., 2014) and a global slowdown in trans-
lation speed (Kossin, 2018). These observed shifts in behavior have significant implications
for regions like the SWIO vulnerable to TC impacts. To gain a better understanding of TC
behavior and improve projections, different models have previously been evaluated for perfor-
mance. Higher-resolution models (as used in HighResMIP, further described in Section 3.1)
have shown better performance in capturing TC properties more realistically, including their
size, structure, and track patterns (C. D. Roberts et al., 2018). This suggests that finer-scale
details and interactions between the storm and its environment play a crucial role in accurately
simulating TCs.
Looking ahead to the late 21st century, projections suggest a decrease in the total number of TCs
globally (Knutson et al., 2020). This decrease is expected to be more significant at the weaker
end of the intensity spectrum, indicating a potential shift towards fewer but stronger storms.
Furthermore, the proportion of intense TCs, particularly those classified as Category 4 or 5, is
projected to increase (Knutson et al., 2020; Murakami et al., 2012). This implies that regions
already susceptible to powerful storms may be facing a higher frequency of extremely destructive
TCs in the future. In addition to changes in intensity, other aspects of TC behavior are also
projected to undergo transformations. Precipitation rates associated with TCs are expected to
increase globally, due to increased low-level moisture convergence caused by regional increases
in wind intensities (Seneviratne et al., 2021). This means that when these future TCs do occur,
they will likely exhibit more powerful winds and heavier rainfall, posing greater risks in terms
of infrastructure damage, flooding, and other hazards.
When examining the formation and behavior of TCs in the SWIO basin in particular, there
are several key atmospheric, oceanic, and geographic elements that influence the formation of
TCs, as noted in (Seneviratne et al., 2021). In particular, the presence of Hadley and Walker
cells, the Inter-tropical Convergence Zone (ITCZ), the Madden-Julian Oscillation (MJO), the
Indian Ocean Dipole (IOD), and the El Niño Southern Oscillation (ENSO), as well as the land
masses of this region and ocean currents have been shown to influence this basin.
Hadley cells are large-scale atmospheric circulation patterns that are driven by solar heating
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and play a significant role in the formation of tropical cyclones (Lu et al., 2007). The SWIO
is located in the region of a Hadley cell, where warm, moist air rises at the equator and flows
towards the poles at higher altitudes. This creates a region of low pressure, which can lead
to the formation of disturbances that can develop into TCs. It is relevant to note, however,
that despite the rise in atmospheric and sea surface temperatures (SSTs) over the past century,
studies have shown that there has been no significant increase in the number of tropical cyclones
in various regions of the world (Fitchett & Grab, 2014; Malherbe et al., 2013). In fact, climate
models predict a decrease rather than an increase in the occurrence and landfall of tropical
cyclones in the coming century (Seneviratne et al., 2021). This trend is attributed to the
strengthening of atmospheric factors that hinder TC formation, in part due to an increase in
vertical shear resulting from the expansion of the Hadley cell in this region (Lu et al., 2007).
Ash and Matyas (2012) notes the IOD plays a large role TC track influences, particularly due
to the role of the IOD surface temperature anomaly.
Walker cells are another atmospheric circulation pattern that can influence TC formation in
the SWIO. These cells are driven by temperature differences between the western and eastern
portions of the ocean basin and can create regions of low and high pressure that can impact TC
development (Saji & Yamagata, 2003). For example, during El Niño events, the Walker cell
weakens, leading to warmer SSTs and more favorable conditions for TC formation (M. R. Jury,
1993). Additionally, land masses of the region impact the intensification of TCs as when TCs
make landfall, they can weaken or dissipate due to the friction and disruption caused by the
terrain. In addition, the shape and location of land masses can impact the path and intensity
of TCs as they move across the ocean.
This region also boasts the Inter-Tropical Convergence Zone (ITCZ); a tropical belt of deep
convective clouds that migrates between averate latitudes of 20◦N and 8 ◦S in the boreal summer
and boreal winter respectively, influencing seasonal rainfall variation (Schneider et al., 2014).
During the southward shift in the boreal winter (austral summer), the ITCZ brings with it
the increased moisture and instability, which can contribute to the formation of cyclones. The
SWIO is also impacted by the Madden-Julian Oscillation (MJO); a dominant mode of variability
in the tropical atmosphere (Maloney & Hartmann, 2000). In certain phases of the MJO where
low easterly anomalies of the MJO over the Indian Ocean shift to westerly anomalies, the
number of TCs can increase twofold (Zhang, 2013).
One of the most major land masses in the SWIO is the island country of Madagascar. TCs
cross the island almost every austral summer, causing flooding, landslides, coastal storm surges,
as well as loss of life and property (M. Jury, 2022). As previously mentioned, Madagascar is
the global center for vanilla production, a crop and economy which is often put at risk by TC
activity around the island (Brownell et al., 2009). Madagascar is an impoverished country, with
lacking infrastructure throughout the country, which lends towards considerable vulnerability
(Brown, 2009). Madagascar’s position in the global vanilla economy is based on price and
quality, while TCs, considered by the Malagasy to be unpredictable-short term events which
impact quality and supply, are now being used internationally as a driver on price and demand
on Malagasy vanilla (Brown, 2009). The resulting situation is one where Madagascar focuses
on yields and quality of vanilla, without support systems for vanilla farmers which has in part
prevented the establishment of adequate resources to combat the impact of TCs on the region
(Brown, 2009).
The cultivation of vanilla in Madagascar is mainly carried out by small-scale farmers (Laney,
2004). Growing vanilla is very labor intensive, as pollination is often done by hand, due to
the limited amount of natural pollinators present in Madagascar (Brown, 2009). TC damage
during the early months of the year are a large threat to vanilla production, and since the
plants flower from October-December, the weather conditions play a large role in the size of
the crop (Correll, 1953). With a proper balance of rain and sun, the yield is strong, while too
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much rain (as when a TC occurs) causes the plant to develop more in the vine, rather than
the vanilla bean producing flowers, limiting crop yield. There is a significant concern about
the impact of TCs on the vanilla industry in Madagascar, as it could result in a decline in
the country’s economic growth and the livelihoods of the small-scale farmers who depend on
vanilla cultivation, as well as disrupt the global vanilla supply chain. This concern prompted
this study to examine TC features in the SWIO and how they might impact the region’s vanilla
agriculture under a changing climate.
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3 Data and Methods

3.1 Data

Global climate models (GCMs) are tools that are instrumental for the understanding of climate.
Such models are based on physical laws and allow for numerical simulations, where the climate
system is characterized by a broad range of spatial scales and timescales (Rummukainen, 2010).
As a result, GCMs can capture large-scale climate features including atmospheric and oceanic
circulations, as well as broad patterns (for example) in temperature and precipitation. In the
past, the limited computing resources available for climate models have placed restrictions on
the horizontal resolution of GCMs, which has resulted in a lack of realistic simulation of TCs,
especially in terms of their intensity and structure (Redmond et al., 2015). Likewise, while
horizontal resolution is limited, the effective resolution is often lower due to numerical calcula-
tion within the model, although effective resolution is not considered in this study (Grotch &
MacCracken, 1991). GCMs can have horizontal resolutions of up to hundreds of kilometers and
employ parameterizations to represent the sub grid-scale processes. This level of horizontal res-
olution is generally considered insufficient to simulate TCs, and therefore a tracking algorithm
is used to identify and track TC-like features in GCM output (Strachan et al., 2013).
In order to combat the concerns with the horizontal resolution of GCMs, this study focuses
on model simulations conducted using the Coupled Model Intercomparison Project Phase 6
(CMIP6) High Resolution Model Intercomparison Project (HighResMIP) protocol, by the PRI-
MAVERA project, which aims to assess both standard and enhanced horizontal resolution sim-
ulations of the atmosphere and ocean (PRIMAVERA, n.d.). The experiments are tiered and
include atmosphere only as well as coupled ocean-atmosphere runs for the period of 1950-2050,
although only a portion of this available time is utilized in this study, and will be discussed later
in this section. The HighResMIP protocol is described with further detail in R. J. Haarsma
et al. (2016), and is summarized by the PRIMAVERA project in Figure 3 .
The collection of datasets created by the PRIMEVERA project with tropical storms tracks
derived from the CMIP6 HighResMIP model simulations and calculated by the TRACK al-
gorithm are listed in Table 3.1. The overview presented in Table 3.1 does include multiple
atmosphere and ocean nominal resolutions for each model, due to the fact that each model
has sub-distinctions based on resolution. For example, EC-Earth3P includes both EC-Earth3P
and EC-Earth3P-HR, with EC-Earth3P-HR at a higher resolution. More information on the
models and higher-resolution simulations can be found in (R. J. Haarsma et al., 2016). Note
that due to time and computing restraints, only EC-Earth3P-HR was used for this study.

Model Name
Contact
Institute

Atmosphere
Nominal
Resolution

Ocean
Nominal
Resolution

References

CMCC-CM2 CMCC 100 km 25 km (Cherchi et al., 2019)
25 km 25 km

CNRM-CM6 CERFACS 250 km 100 km (Voldoire et al., 2019)
50 km 25 km

EC-Earth3P
EC-Earth, KNMI,
SHMI, BSC, CNR

100 km 100 km (R. Haarsma et al., 2020)

50 km 25 km
ECMWF-IFS ECMWF 50 km 100 km (C. D. Roberts et al., 2018)
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Table 3.1 continued from previous page
25 km 25 km

HadGEM3 GC3.1
MOHC, UREAD,
NERC

250 km 100 km (Williams et al., 2018)

100 km 25 km (Kuhlbrodt et al., 2018)
50 km (Menary et al., 2018)

(M. J. Roberts et al., 2019)
MPIESM-1-2 MPI-M 100 km 40 km (Gutjahr et al., 2019)

50 km 40 km

Table 3.1: Overview of models used by the PRIMAVERA project as part of the CMIP6
HighResMIP model simulations and additionally have calculated TC tracks by the
TRACK algorithm. This overview includes information on the model name, contact
institute(s) for the respective model, the nominal resolution for both atmosphere and
ocean, as well as further references.

The PRIMEVERA project employs the TRACK algorithm to calculate tropical storm tracks,
which are then made available as Climate Model Output Rewriter (CMOR) formatted NetCDF
files. These files are organized into separate files for each hemisphere and cover all years of the
HighResMIP experiments’ simulated period (M. Roberts, 2019). An overview of the simulations
with tropical cyclone tracks calculated can be seen in Table 3.2.

Simulation Name Simulation Period Run Type

highresSST-present 1950-2014 Atmosphere only
highresSST-future 2015-2050 Atmosphere only
control-1950 1950-2050 Coupled Atmosphere-Ocean
hist-1950 1950-2014 Coupled Atmosphere-Ocean
highres-future 2015-2050 Coupled Atmosphere-Ocean

Table 3.2: Overview of the simulations with TC tracks calculated using the TRACK algorithm
by the PRIMAVERA project.

In this study, the EC-Earth3p-HR model is represented in the analysis by only one model
run: ensemble member r1i1p2f1. Note that an additional ensemble member is examined in
Appendix A The ’ripf’ indicates individual members of an ensemble of simulations by their
characteristics, where r indicates the realization (i.e. initial conditions), i the initialization
method, p differences in model physics and f the forcing data used (Taylor et al., 2018). The
various realizations, indicated by r, correspond to model runs with the same configurations
but initiated from distinct initial conditions, thereby capturing the internal climate variability
of the model. However, due to computational and time limitations, this study does not fully
incorporate multiple realizations of each model, which would enable the consideration of this
variability.
This study makes use of the control-1950 coupled atmosphere-ocean simulation as well as the
highres-future coupled atmosphere-ocean simulation forced using IPCC scenario SSP5-8.5. The
control-1950 and highres-future simulations are part of the second tier of simulations following
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Figure 3: Model Simulations Undertaken by the PRIMAVERA Project PRIMAVERA tiered
simulations following the CMIP6 HighResMIP protocol. This study utilizes the
control-1950 simulation and the highres-future simulation. More information on sim-
ulations can be found in (R. J. Haarsma et al., 2016), diagram retrieved from (PRI-
MAVERA, n.d.).

the HighResMIP protocol. These coupled atmosphere-ocean simulations aim at addressing
questions of model bias in mean state and variability (R. J. Haarsma et al., 2016). Control-
1950 is the HighResMIP answer to pre-industrial control, utilizing 1950s fixed forcing of GHG
for a 1950s (10 year mean) climatology. The highres-future simulation forcing is based on
CMIP6 SSP5.8.5, a very high emissions scenario where global C02 doubles by 2050 (IPCC,
2021). All models shown in table 3.1 have both control-1950 and highres-future simulations
of tropical storm tracks calculated by the TRACK algorithm, although only EC-Earth3p-HR
ensemble member r1i1p2f1 is used in this study. The TRACK algorithm is an object-based
tracking method which detects vorticies in the SH as minima in the 850 hPa relative vorticity
field (at 6 hour time intervals), further details of which are outlined in (Hodges, 1995, 1999).
In addition to the TRACK algorithm, tropical storm tracks are also available as calculated by
the TempestExtremes algorithm, more details of which can be found in (Ullrich & Zarzycki,
2017) and (Zarzycki & Ullrich, 2017). Although both tracking algorithms employ the use of
a feature tracking variable (vorticity for TRACK and MSLP for TempestExtremes) and have
similar functionality, TRACK was selected for the inclusion of a greater variety of models with
calculated tropical storm tracks, which allows for an expansion of the model and ensemble usage
in future analysis past the scope of this study.
In order to evaluate the algorithm with respect to the model, model output from CMIP6 exper-
iments using EC-Earth3p-HR was used, with the same ensemble member r1i1p2f1. From the
control-1950 experiment, daily mean near surface wind speed values (sfcWind), daily maximum
near surface wind speed values (sfcWindmax ) as well as mean atmospheric relative vorticity
taken over 850, 700 and 600 hPa on a T63 spectrally truncated grid (vortmean) on a 6 hour
time scale (Consortium (EC-Earth), 2018).
In order to evaluate the algorithm plus the model with respect to their variability under cur-
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rent climate conditions, observational data is also taken into consideration. Observed tropical
cyclone data from the International Best Track Archive for Climate Stewardship (IBTrACS) is
used (Knapp et al., 2010). This study uses only data from the SWIO basin, and only storms
from the period beginning on the 1st of October 1980 through the 30th of May 2015 were
considered, to prevent issues of data heterogeneity from earlier storms occurring prior to the
satellite era (Fitchett, 2018). Further details on the IBTrACS project methods and statistics
related to the Indian Ocean data can be found in (Levinson et al., 2010).
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3.2 Methods

The following steps of the analysis are conducted using Python, for which the code has been
made available online1.

3.2.1 Identification of Storm Tracks

The initial TC track identification and tracking methodology follows a similar method to that
in Bengtsson et al. (2007) and Manganello et al. (2012), and is based on the TRACK algorithm
(henceforth referred to as TRACK ), a full explanation of which can be found in (Hodges, 1995,
1999). In this study, TRACK was utilized to detect vorticies in the SH as maximum in the
850-hPa relative vorticity field, available every 6 hours, with values greater than 5x10−6s−1 at a
spectral resolution of T63. Relative vorticity is used as a feature tracking variable, as it focuses
on a smaller spatial scale than other fields and therefore thought to be a better indicator of
tropical vorticies (Bengtsson et al., 2007). At this point, no differentiation is made between TCs
and other synoptic systems, as every system that satisfies the tracking criteria are obtained.
All calculated tracks at this point are filtered to ensure cyclogenesis occurs from October 1st
- May 31st (the austral summer). Additionally, tracks not having a maximum sustained wind
speed (peak intensity) occuring within the SWIO basin are filtered as out of scope to this study.
It is important to note that in order to separate TCs from other synoptic systems captured
by TRACK, a number of criteria (or filters) can be applied. The following criteria have been
considered in this study, focusing on TC surface conditions:

1. Lifetime of ≥ 2 days.

2. Cyclogenesis occurring over ocean.

3. Difference in vorticity between 850 hPa and 250 hPa > 0, indicating
a warm core condition.

Additional criteria such as vorticity max at each level between 850 and 250 hPa have not
been included due to time and computing constraints, although this criteria would be useful in
indicating a coherent vertical structure condition of the TCs.

3.2.2 Confirmation of TC Conditions in Model Output

To confirm that the aforementioned method of TC track identification is agreeing with the
null hypothesis that TRACK is calculating TC-like systems (after filtering for TC criteria
is applied), several checks were utilized to verify example TCs against model output from
CMIP6 experiments using EC-Earth3p-HR. An example calculated storm from the control-
1950 simulation was selected at random to compare to model output. The TC track, along
with wind speeds were visualized for the track (see Figures 6 and 7). From the model output
of the control-1950 experiment, daily mean near surface wind speed values (sfcWind), daily
maximum near surface wind speed values (sfcWindmax ) as well as mean atmospheric relative
vorticity (vortmean) data was taken for the same time period as the duration of the calculated
storm and animated on a daily time scale in order to visualize these conditions over the same
area as the calculated storm track. An assumption is made that visual correlation between (in
particular) high vorticity in the vortmean variable following a similar path to the calculated

1Code used in this study is available at https://github.com/MateaMarinkovic/Master-Thesis-Marinkovic.git
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storm track (figure 6), represents confirmation of the method used in section 3.2.1. This was
then repeated for an additional calculated storm in the control-1950 experiment, as well as a
calculated storm in the highres-future experiment.

3.2.3 All-Basin Analysis

Data frames are created for the observational, control and future simulations containing infor-
mation on the TC season in which the TC occurs, the start and end date of each TC, as well
as the duration (in days) of the storm and the maximum sustained wind speed for each storm
in m/s. The TCs in these data frames include storms that occur throughout the entire basin,
both that do and do not make landfall. As TCs in the SH occur over the austral summer (in
this study, October - May) the ’season’ of each storm is notated by a single year, based on the
year of the first portion of the season (October-December). For example, a TC occurring in
the 1980-1981 season would be notated with the season of 1980, regardless if the TC actually
occurred in (for example) February of 1981. The data frames are then verified to ensure that
TCs within the proper time frame are included. TCs are additionally grouped by season to
calculate the number of TCs occurring in each season.

Linear Regression Analysis

Linear regression analysis is performed for observational, control-1950, and highres-future TC
tracks. This regression analysis is performed in order to determine the correlations between the
season in which the TC(s) occur and the number of TCs per season, as well as for the duration
of the TCs and the sustained wind (Uyanık & Güler, 2013). This rests on the assumption that
as the TC seasons progress (time progresses), this progression captures the impact of a changing
climate and therefore, as time increases, the relationship between changing climate conditions
and different aspects of TCs would be captured. In this study, the linear regression analysis
is conducted with the Python library statsmodels, specifically through the implementation of
Ordinary Least Squares (OLS) regression (Seabold & Perktold, 2010).
OLS regression assumes a linear relationship between the variables and aims to find the best
fit line that minimizes the sum of the squared differences between the observed values of the
dependent variable and the predicted values generated by the model (Weaver & Wuensch,
2013). This approach was selected due to its allowance for understanding of the relationships
between the variables, as well as the ability to make predictions on the relationships between
the variables. OLS regression additionally lends itself well to statistical measures that assess
how well the fit of the model is. By assessing the fit, it is possible to determine the degree to
which the model captures underlying patterns and variability.
In this study, the correlation between variables is calculated as the Pearson correlation coef-
ficient (r). The Pearson correlation coefficient is calculated using the Python library scipy,
specifically the pearson r function, which is represented by Equation 3.1, where mz is the mean
of vector x and my is the mean of vector y (Scipy, n.d.). The Pearson correlation coefficient
(or Pearson’s r) is used to assess the linear association between time and various dependent
variables (Taylor, 2001). The dependent variables tested include the frequency of TCs per TC
season, the duration of each TC, and the intensity of each TC measured by the maximum
sustained wind speed.

r =

∑
(x−mx)(y −my)∑

(x−mx)2
∑
(y −my)2

(3.1)
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Additionally, the study calculates p-values (the probability of the coefficient values being 0)
for each OLS regression to assess the statistical significance of the coefficients with Equation
3.2 where xbar is the mean coefficients of the sample and the SE represents the coefficients
standard error. The test statistic is translated to p-value with a t-value table. These p-values
play a crucial role in determining whether the coefficients differ significantly from zero. In this
study, specifically, the objective is to assess whether the season has a significant impact on
any of the dependent variables under investigation. If the corresponding p-value is less than
0.05, the null hypothesis stating that the season does not have a significant impact on any
of the dependent variables is rejected. This statistical significance assessment allows for more
informed interpretations of the regression results.

teststatistic =
(x− 0)

SE
(3.2)

Percentile Analysis

The linear regression analysis was further broken down by percentiles; the 25th, 50th (median)
and 75th percentile. Percentiles were calculated with the Python library Numpy percentile
function (NumPy, n.d.). By analyzing the running means within these percentile ranges, it
allows the examination of how the dependent variables behave in different ranges of their
distribution. 5-year running means are utilized, and compared across datasets to observe how
the dependent variable trends differ.

Distribution Analysis

Distributions analysis using histograms of the frequency of TCs per TC season, the duration of
each TC and the intensity of each TC were also taken. The histogram is a graphical representa-
tion that organizes the data into bins, displaying the count of data falling into each bin. In this
study, this allows for an understanding of the underling shape of the data to be considered. For
distributions of frequency and duration, a bin width of 1 TC season and 1 day (respectively)
was utilized, while for the distribution of sustained wind speeds, a bin width of 5 meters per
second is used.
To accompany the distribution analyses, a Kruskal-Wallis p-value is calculated across the three
distributions being compared for each variable; distribution of the observational data, distribu-
tion of the control-1950 simulated TCs, and distribution of the highres-future simulated TCs.
The Kruskal-Wallis test is a non-parametric statistical test used to compare the distributions
of three or more independent groups, as present in the distribution analysis of this study, with
three distributions of the same variable from different datasets (Theodorsson-Norheim, 1986),
(Kruskal & Wallis, 2012). The Kruskal-Wallis test can aid in the determination of statistically
significant differences in the distributions. The null hypothesis states that there are no signifi-
cant differences between the distributions of the three datasets. Data from all datasets is then
ranked in ascending order, irregardless of dataset origin. A test statistic is then calculated,
measuring the overall difference between the ranked data of the three datasets, as shown in
Equation 3.3:

H = (N − 1)

∑g
i=1 ni(ri − r)2∑g

i=1

∑ni
j=1(rij − r)2

(3.3)
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Where N is the total number of data points across all datasets, g is the number of datasets,
ni is the number of data points in each dataset, rij is the rank of each data point (j) amongst
all data points in dataset (i), ri is the average rank of all data points in dataset (i) and r is
the average of all rij. Once the test statistic is computed, it is compared to the critical value
from the distribution with degrees of freedom equal to the number of datasets less one. The
Kruskal-Wallis p-value represents the probability of observing a test statistic as extreme as the
one calculated, assuming the null hypothesis is true. If the p-value is below a predetermined
significance level (0.05), we reject the null hypothesis and conclude that there are significant
differences between the distributions. If the p-value is above the significance level, we fail to
reject the null hypothesis. If the p-value is statistically significant (less than 0.05), it suggests
that the distributions represented by the three histograms are significantly different. Alterna-
tively, if the p-value is not significant, it indicates that there is insufficient evidence to conclude
that the distributions differ significantly.

3.2.4 Landfall and Near-Land TC Analysis

The TCs present in the SWIO basin are further identified as TCs that do or do not make
landfall within the region. For the purposes of this study, landfall storms are defined as storms
that at some point in their path leave the ocean and cross land. It is important to note that
no distinction was made between TCs that move at some angle to the coastline rather than
perpendicular to the coast at landfall (Kaplan & DeMaria, 1995). Likewise, no distinction was
made for TCs that make landfall more than once, returning to the ocean several times.
For this analysis, the TC tracks are identified with the same methodology as described in section
3.2.1. Both landfall and near-land TC identification methods are separated into two sections,
observational data and modelled data. For the observational data, landfall values are given
in the IBTrACS dataset, and defined as the nearest location to land within the upcoming 6
hours of a storm (Knapp et al., 2010). This can be interpreted as a landfall flag, with a value
of 0 meaning landfall within the next 6 hours and >0 meaning no landfall within the next 6
hours. Landfall forcasts are based on the storm center, and values less than or equal to 100 km
indicate that land was likely impacted by the system even though the center was not directly
over land, as well as the opposite that the system was impacted by land formation at this
distance (Barbary et al., 2019). For the purposes of this study, a distance (from land) of 1 km
or less as a landfall value is considered to be equivalent to landfall for both the observational
data and the modelled data, while a distance of 100 km or less is considered to be near-land.
The number of landfall TCs per season is then calculated for TCs in the observational dataset.
For modelled data in the control-1950 calculated TCs and the highres-future calculated TCs,
TCs that have been previously filtered to have a maximum intensity within the SWIO basin are
considered. The longitude values for points along each TC track are normalized to be within
-180 and 180 degrees, then a global land mask is applied to identify if each point in the TC
tack is on land or over ocean. For TCs without points on land, the point that is closest to land
then has a distance from land calculated utilizing the Haversine formula, which determines the
great-circle distance between two points given their longitudes and latitudes (Prasetya et al.,
2020). TCs are then filtered by the landfall value to signify if they are either landfall, near-land
or other TCs. TCs that are considered landfall and near-land are then used for analysis.
Linear regression analysis as well as percentile analysis and distribution analysis with the cor-
responding statistical analysis as described in Section 3.2.3 are also applied to the landfall TC
subset.
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3.2.5 Damage Estimation

While there is no singular geophysical quantity that perfectly encapsulates the damage that TCs
will cause, Bakkensen and Mendelsohn (2016) and Klotzbach et al. (2020) have identified mean
sea level pressure (MSLP) as a skillful predictor of normalized damage. Normalization provides
an estimate of how much damage a TC would hypothetical cause if it were to make landfall
given identified levels of exposure and wealth where it made land. While normalized damage
can be calculated (for example) by damage in terms of equivalent area of total destruction as in
Grinsted et al. (2019), or as an adjustment of population, inflation, and wealth per-capita as in
Weinkle et al. (2018), direct economic damage data and insured losses data amongst other social
and economic data used in these methods is largely unavailable as a robust resource for the
SWIO region. Therefore, this study utilized mean sea level pressure (MSLP) as a an indicator
of damage, as a part of an proposed extended Saffir-Simpson Scale as shown in Table 3.3. With
MSLP as a more skillful predictor of TC normalized damage, as well as with the assumption
that the Saffir-Simpson scale was developed to characterize the risk of TCs to society, the
proposed scale from Klotzbach et al. (2020) is used as a future damage estimate in this study
(Klotzbach et al., 2020). For damage estimation analysis, the TC tracks are identified with the
same methodology as described in section 3.2.1. Linear regression analysis, percentile analysis
and distribution analysis as well as the the corresponding statistical analysis as described in
section 3.2.3 are also applied to for damage estimation.

Category
Max-Sustained

Wind (kt)
Min Sea Level
Pressure (hPa)

1 64 - 82 976 - 990
2 83 - 95 961 - 975
3 96 - 112 946 - 960
4 113 - 136 926 - 945
5 >136 <926

Table 3.3: Extended Saffir-Simpson Scale with minimum sea level pressure included as proposed
by Klotzbach et al. (2020).
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4 Results

This chapter first presents the results from the identification of tropical storm tracks by the
TRACK algorithm and subsequent confirmation of TC-like conditions in GCM output, followed
by analysis of observational data, as well as the control-1950 calculated TCs and the highres-
future calculated TCs (henceforth referred to as the control and future simulations) at the
basin, near-land and landfall TC perspective in Section 4.2. Section 4.3 then examines how
normalized damage might be predicted via the Staffir - Simpson scale though the inclusion of
MSLP.

4.1 Identification and Confirmation of Tropical Cyclone Tracks

4.1.1 Identification

Figure 5 shows three maps of the SWIO basin with spatial distributions of TC track frequency.
Observations show the narrowest spatial distribution of all all three, with most TCs passing
around 15◦S, and few TC tracks traveling north of 10◦S or south of 30◦S. The control simulation
with 1950s RF shows a greater density of TC tracks, as well as more tracks making landfall.
There are higher numbers of tracks passing just northeast of Madagascar, as well as in the
Mozambique Channel as compared to observed TC tracks. Notable from the control simulation
is the high amount of tracks passing within 5◦of the equator, as well as south of 30◦S. The future
simulation with SSP5-8.5 forcing shows the fewest highly dense areas, and is more closely
representative of the observed TC tracks in that regard. However, similarly to the control
simulation, the future simulation has a large number of tracks that pass within 5◦of the equator
as well as south of 30◦S.

Figure 4: Spatial Distribution of TC Frequency Track density (frequency of track occurrence
at each latitude and longitude) represented in (left) observational best-track data,
(center) the control simulation and (right) the future simulation. Red areas indicate
regions with a high frequency of TC tracks passing though. Note additional few
occurrences of TC tracks passing onto land, both in Madagascar and on continental
Africa.

Figure 5 shows an example of calculated tropical storms for the calendar year of 1953 from the
control simulation. Note that this Figure represents storms from a calendar year, not a TC
season, therefore storms from the end of the 1952 season and the beginning of the 1953 season
are included. Also note that storms in this Figure can be described as TC-like but not as TCs,
as they have not been confirmed as TCs with the methodology outlined in Sections 3.2.1 and
3.2.2, and will be referred to as tropical storms. A calendar year is plotted for the purpose of
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more easily identifying an example tropical storm as storms from the same season often have
overlapping tracks.

Figure 5: Tropical Storms in the 1953 Calendar Year from Control Model Output Tropical
storm tracks as calculated from EC-Earth3P-HR ensemble member r1i1p2f1, show-
ing storms from January 1953-December 1953 in the control simulation with 1950s
radiative forcing. Each track is denoted with a different color and note that although
some tracks extend beyond the mapped area, their peak sustained wind speeds occur
within the shown area.

Figure 6 shows a singular TC track for the same 1953 year in the control simulation, along with
wind speed labels for every fourth point of the track. This particular storm begins just northeast
of Madagascar, travels southwest throughout its lifetime and makes landfall in Mozambique
before traveling again over ocean in the Mozambique Channel before making landfall again
several times and eventually dissipating over land. This modeled tropical storm begins on the
24th of November and ends on the 18th of December, in the 1953 radiative forcing year of the
model simulation. Clustered track points in this storm track indicate a slow moving storm, as
track points are identified on 6 hour intervals. Wind speeds for this storm can be seen in Figure
7.
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Figure 6: Example Tropical Storm Tropical storm track in the 1953 calendar radiative forcing
year from control simulation output. Red points indicate observations at 6 hour
intervals (one point for every 6 hours). Wind speeds in m/s are included at every 4th
time step. Track can be seen from a broader perspective in green in Figure 5

.

Figure 7: Example Tropical Storm Track Wind Speeds Tropical storm track in the 1953 cal-
endar radiative forcing year from control simulation output. Wind speeds plotted in
m/s.
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4.1.2 Confirmation

Figure 8 is an animation that shows the daily mean wind field in which the example storm
from Section 4.1.1 is occurring. Note that for all animations to be viewed, the document must
be opened with Adobe Acrobat Reader. As this animation loops, a small area of high wind
speeds relative to the displayed scale is visible following a similar path to the calculated tropical
storm track. There is, however, many other areas of high wind speeds, making a distinct storm
difficult to identify.

Figure 8: Mean Wind Field of Example Storm Mean wind speed values displayed as an anima-
tion for the SWIO wind field. Time steps are set as the same time as the calculated
example storm in Figure 5 and wind speeds are shown in m/s. Note that in print
form, animation will display only the first day.

Figure 9 shows the max wind field near surface winds, considering only the maximum daily
value in each frame, as opposed to the mean wind field in Figure 8. With this animation, a high
wind speed center is more easily identifiable following a similar track to the calculated storm
track. However, high wind speeds at the southern end of the basin add a lot of noise to both
this animation as well as the animation in Figure 8. Also note that when similar animations
are created for storm tracks with faster moving storms (storms that cross a greater distance
throughout their lifetime, as opposed to the example storm here), a center of high wind speeds
is far less clear as the storm passes through the basin at daily resolution and blurs the high
wind speed centers.
Relative vorticity is used as a feature tracking variable by TRACK, as it focuses on a smaller
spatial scale than other fields and is therefore thought to be a better indicator of tropical
vorticies. As an additional verification of the algorithm, Figure 10 shows the mean vorticity
averaged over 850, 700, and 600 hPa. In the early frames of the animation, it is possible to see
an area of low pressure forming at the beginning of the area where the tropical storm track was
calculated, rotating, and following the same storm track path with much greater clarity than
as shown by near surface wind speeds in Figure 8 and 9. This indicates visual confirmaton that
TC-like conditions can be found in model output for the same (similar) areas where tropical
storm tracks have been calculated.
As a result of the confirmation of TC-like conditions in near-surface winds and mean vorticity
for the same time periods as the TRACK algorithm calculated tropical storms, this study then
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Figure 9: Wind Field of Example Storm - Max Daily Values Max daily wind speed values
displayed as an animation for the SWIO wind field. Time steps are set as the same
time as the calculated example storm in Figure 5 and wind speeds are shown in m/s.
Note that in print form, animation will display only the first day. Additional note,
Figure should read ’Max Wind Field and Max Wind Speed” instead of mean.

Figure 10: Mean Vorticity Field of Example Storm Mean vorticity over 850, 700, and 600 hPa
displayed as an animation for the SWIO. Time steps are set as the same time as
the calculated example storm in Figure 5 and vorticity is measured in rotations per
second. Note that in print form, animation will display only the first day.
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assumes that methods for identification of TCs in model output (as outlined in Section 3.2.1)
are robust enough for analysis.

4.2 Tropical Cyclone Track Analysis

The following section presents the results of applying the linear regression, percentile and
distribution analysis to the calculated TCs for the entire SWIO region for both the control
and future simulations compared to the same analysis performed on the observed TCs. Note
that for all subsequent sections, distribution analysis plots include observational TC data, as
well as results from the control and future simulations, with kernel density estimate (KDE)
smoothing. Note that for linear regression and percentile analysis, the control and future
simulations are plotted on the same axes and delimited with a vertical dashed line to indicate
the continuation of time between the two simulations, as the control simulation includes the
1980/1981 TC season through the 2014/2015 TC season, while the future simulation includes
the 2015/2016 season through the 2049/2050 season. Shaded areas around the linear fits in the
linear regression analysis represent the a 95% confidence interval of the regression fit calculated
as the mean coefficients of the sample plus or minus the t-score multiplied by standard error
multiplied by the mean coefficients of the sample. Table 4.1 outlines the number of TCs utilized
in this study for the different analysis and across observations, as well as model simulations.

Observations
Control-1950
Simulation

Highres-Future
Simulation

All TCs in the SWIO 359 397 292
Near Land TCs 140 115 68
Landfall TCs 94 169 122

Table 4.1: The resulting count of TCs in observation, as well as the two model simulations for
all basin, TCs near land, and TCs that make landfall.
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4.2.1 All Basin

The analysis in this subsection includes all TCs that have the maximum sustained wind speeds
present within the previously defined boundaries of the SWIO basin, irregardless of where the
TC track begins or ends.
Figure 11 shows the distribution of the frequency TCs occur over time (in each TC season).
The observed TCs show a normal distribution, with a peak between 10 and 12 TCs per season.
The control simulation shows a much flatter curve, with a slight peak around 13 TCs per TCs
season. This peak at a slightly greater frequency can be indicative of either more TC-like
conditions being produced in the model simulations compared to observations, or that what
has been identified as a TC following the methods in Section 3.2.1 might not have been a TC
if the same conditions were to have occurred in observation. Both interpretations are likely in
this instance. The future simulation has a higher peak than both the observations and control
simulation, between 8 and 10 TCs per TC season. This can be interpreted as an indication
that in a warmer climate, there will be fewer TCs occurring in each season than are currently
observed. The statistical significance of these three distributions as described in Section 3.2.3
confirms with a p-value of 2.6606e-05 that the distributions represented by the three histograms
are significantly different across all TCs in the SWIO basin.
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Figure 11: Distribution of TC Frequency in the SWIO Basin (Left) Frequency of TCs observed
TCs. (Center) Frequency of TCs in the control simulation with 1950s radiative
forcing. (Right) Frequency of TCs in the future simulation forced with SSP5-8.5.
Kruskal-Wallis p-value of 2.6606e-05.

Figure 12 shows the distribution of intensity (measured in maximum sustained wind speeds;
m/s) for each TC. Here it can be noted that the observed intensities have a somewhat flat
distribution, with a slight plateau at lower intensities between 20 and 30 m/s. The observed
intensities have tails extending well in both directions, representing the full range of very weak
TCs to TCs with the highest intensities. In the control and future simulations, a high peak at
between 20 and 30 m/s and a lack of intensity greater than around 50 m/s is shown. The lack of
tails extending to intensities greater than 50 m/s in both the control and future simulations is
attributed to the limit given by the model resolution. With a horizontal resolution of 50 km, the
GCM used in this study does not have a high enough resolution to detect more intense storms
than what is shown. The statistical significance of these intensity distributions confirms with
a p-value of 2.6579e-22 that the intensities greatly vary between observations and the control
and future scenarios.
Figure 13 shows the distribution of the duration (in days) of each TC. The observed duration of
TCs show a high peak of TCs that last around 10 days, with very few TCs surviving for longer
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Figure 12: Distribution of TCs Intensity (Left) Intensity (max sustained wind in m/s) of ob-
served TCs. (Center) Intensity of TCs in the control simulation with 1950s radia-
tive forcing. (Right) Intensity of TCs in the future simulation forced with SSP5-8.5.
Kruskal-Wallis p-value of 2.6579e-22.

than 20 days. The control and future simulations, however, show a much flatter distribution
than observations. The control simulation has a slight peak from 15-25 days, with a much longer
tail extending past 40 days. The peak in the future simulation is flatter still, with a similar
extended tail. The control and future simulation distributions indicate that there is perhaps
not a great enough weight on factors that would cause a TC in observation to dissipate, such
as traveling too close or too far from the equator and transitioning into an extratropical or
subtropical storm. This distinction between TC dissipation and extratropical and subtropical
transition was not made by the identification method as outlined in Section 3.2.1, and therefore
could account for the extended duration shown in the simulations. The statistical significance
confirms with a p-value of 8.9581e-84 that these distributions are indeed significantly different.
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Figure 13: Distribution of the Duration of TCs (Left) Duration of observed TCs. (Center)
Duration of TCs in the control simulation with 1950s radiative forcing. (Right)
Duration of TCs in the future simulation forced with SSP5-8.5. Kruskal-Wallis p-
value of 8.9581e-84.

The question of if the more intense TCs have a greater duration can also be asked, and Figure
14 shows the distribution of duration of TCs greater than 35 m/s. The observations show a
high peak of TCs surviving less than 15 days and not exceeding 25 days, while both the control
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and future simulations show a similar, flattened curve with a slight peak around the tail of the
observations. The control and future simulations indicate that (similarly to Figure 13 in the
model scenarios the accounting for transition to an extratropical or subtropical and subsequent
definition of a TC and a beginning of either of these types of storms is necessary to more
accurately reflect observations.

10 20 30 40 50
Duration (days)

0

20

40

60

80

Co
un

t

Observations 
 1980-2014

10 20 30 40 50
Duration (days)

0

20

40

60

80

Co
un

t

Control - 1950s RF 
 1980-2014

10 20 30 40 50
Duration (days)

0

20

40

60

80

Co
un

t

Future - SSP5-8.5  RF 
 2015-2050

Figure 14: Distribution of the Duration of TCs with Sustained Wind Speeds > 35 m/s (Left)
Duration of observed TCs. (Center) Duration of TCs in the control simulation with
1950s radiative forcing. (Right) Duration of TCs in the future simulation forced
with SSP5-8.5. Kruskal-Wallis p-value 7.5912e-31.

Figure 15 shows a linear regression fit of the observed frequency of TCs per TC season. The
observational data shows a very weak positive if not negligible relationship between time and the
number of storms, suggesting that the a warming climate over time does not have a significant
impact on how frequently TCs occur. The control simulation regression fit is very similar to the
observations, with a very weak negative (if not negligible) relationship, suggesting time does
not have any significant impact on the number of storms in a TC season. Under a warmer
climate in the future simulation, the regression fit shows a weak negative linear relationship
between time and the number of TCs in a TC season. Figure 15 can be interpreted to represent
very low if not negligible changes in the number of TCs occurring in the SWIO, rather even a
slight decrease in the future number of storms in each season under a warmer climate.
Figure 16 shows a linear regression fit of duration of each TC per TC season. The observational
data shows a weak positive linear relationship between time and the duration of individual TCs,
indicating that as the climate warms the duration of TCs have been slightly increasing. The p-
value of 0.0002 indicates that this is statistically significant, and supports the presence of some
correlation between a warmer climate and an increased duration of TCs. The control and future
simulations, however, show weaker positive (if not negligible) relationships with low statistical
significance. This indicates that although there is some observational evidence to suggest an
increase in duration with a warmer climate, this is not reflected in the model simulations.
It can therefore be asked if broader duration categories (short-lasting storms and long-lasting
storms) show any differences than the regression in Figure 16. Figure 17 shows 5-year running
mean of the 25th, 50th (median) and 75th percentiles of the duration values. The observational
percentiles closely follow the shape of the regression in Figure 16, and do not show a great
difference between the upper (75th) and lower (25th) percentiles to indicate there is a difference
between the longer lasting and shorter lasting TCs as the climate warms. The control and future
simulation percentiles show greater variation from one another, similarly to observations do not
show enough of a spread to indicate that there is a difference between longer lasting and shorter
lasting TCs as the climate warms.
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Figure 15: Regression of the Frequency of TCs per TC Season (Left) Linear regression of
observed frequency of TCs in each TC season across the SWIO basin, each point
representing an individual season. (Right) Linear regression of TCs in each TC sea-
son in the control simulation with 1950s radiative forcing and the future simulation
forced with SSP5-8.5.

1980 1990 2000 2010
Time

0

10

20

30

40

50

60

Du
ra

tio
n 

(d
ay

s)

Pearson r: 0.1905

Observations 
 1980-2014

1980 1990 2000 2010 2020 2030 2040 2050
Time

0

10

20

30

40

50

60

Du
ra

tio
n 

(d
ay

s)

Pearson r: 0.0629 Pearson r: 0.0725

Control - 1950s RF           Future - SSP5-8.5 RF 
 1980 - 2014                      2015 - 2050

Figure 16: Regression of the Duration of TCs (Left) Linear regression of observed duration of
TCs in each TC season across the SWIO basin, each point representing an individual
TC. (Right) Linear regression of TC duration in each TC season in the control
simulation with 1950s radiative forcing and the future simulation forced with SSP5-
8.5.
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Figure 17: Percentile 5-Year Running Mean of TC Duration (Left) 5-year running mean of the
25th, 50th and 75th percentile of the duration of observed TCs in the SWIO. (Right)
5-year running mean of the 25th, 50th and 75th percentile of the control simulation
with 1950s radiative forcing and the future simulation forced by SSP5-8.5. Control
and future simulations are delimited with a vertical dashed line.

Figure 18 shows a linear regression fit of intensity of each TC per season measured in sustained
wind speeds (m/s). The observed TCs show a weak positive linear relationship between the
season and the intensity of individual TCs , indicating that as time passes and therefore the
climate warms, the intensity of TCs have been slightly increasing. The p-value of 0.0002 indi-
cates that this is statistically significant, and supports the presence of some correlation between
a warming climate and an increased intensity of TCs. Both the control and future simulations
show a negligible relationship between intensity and time, with low statistical significance, indi-
cating almost no relationship between the season and the intensity of the TCs. The discrepancy
between the observations and the control and future simulations could be in part due to the
model’s limited horizontal resolution, which prohibits the model from identifying the most in-
tense TCs as the would be in observation. With the inclusion of higher intensity TCs in the
control and future simulations, this might result in trends more similar to the observed TC
intensities.
Similarly to the duration results, it can also therefore be asked if the broader intensity categories
(low intensity and high intensity TCs) show any differences than the regression in Figure 18.
Figure 19 shows 5-year running mean of the 25th, 50th (median) and 75th percentiles of the
duration values. The observational percentile running means reflect the shift in maximum wind
speeds seen in Figure 18, with gradual increases in all three percentiles. The control and future
simulations do not display any noticeable shifts in the the percentiles as the climate warms,
therefore indicating that there is no considerable difference in the relationship between a warmer
climate and the intensity of storms as shown in the model.
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Figure 18: Regression of the Intensity of TCs (Left) Linear regression of observed maximum
intensity (measured in max sustained wind speeds in m/s) of TCs in each TC season
across the SWIO basin, each point representing an individual TC. (Right) Linear
regression of TC intensity in each TC season in the control simulation with 1950s
radiative forcing and the future simulation forced with SSP5-8.5.
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Figure 19: Percentile 5-Year Running Mean of TC Intensity (Left) 5-year running mean of the
25th, 50th and 75th percentile of the max intensity of observed TCs in the SWIO.
(Right) 5-year running mean of the 25th, 50th and 75th percentile of the control
simulation with 1950s radiative forcing and the future simulation forced by SSP5-
8.5. Control and future simulations are delimited with a vertical dashed line.
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4.2.2 Near-Land

The analysis in this subsection includes all TCs that have the maximum sustained wind speeds
present within the previously defined boundaries of the SWIO basin, irregardless of where the
TC track begins or ends, as well as an additional criteria that the TC track must pass near
land, as defined in Section 3.2.4. From the values shown in Table 4.1 alone, it seems that
the control simulation identifies more TCs passing near land than observations would indicate,
with a greater proportion of them passing near land than both the observed TCs and the
future simulation TCs. The future simulation has a comparable number of identified TCs to
the observed TCs, but still with a higher proportion of those TCs passing near land than is
observed.
Figure 20 shows the distribution of the frequency of TCs in each TC season that pass near
land. The observational TCs show first a slight plateau around 2 TCs per season, with a peak
between 4 and 6 TCs per season. It is also notable that there is no season with greater than
10 TCs passing near land. The control simulation shows a peak around 2 TCs per season,
with a plateau around 5 TCs per season. The future simulation shows one distinct peak at 2
TCs per season, with no frequency extending past 4 TCs per TC season. These distributions
can be indicative of more TCs being identified as passing near land in the model simulations
(particularly in the control simulation) compared to observations. Additionally, similarly to
Section 4.2.1 what has been identified as a TC following the methods in Section 3.2.1 might not
have been a TC if the same conditions were to have occurred in observation, and therefore too
many TCs might be considered. Both interpretations are likely in this instance. The statistical
significance of these three distributions as described in 3.2.3 confirms with a p-value of 1.2799e-
05 that the distributions represented by the three histograms are significantly different across
the TCs that pass near land in the SWIO basin.
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Figure 20: Distribution of the Frequency of TCs per TC Season Passing Near Land (Left)
Frequency of observed TCs. (Center) Frequency of TCs in the control simulation
with 1950s radiative forcing. (Right) Frequency of TCs in the future simulation
forced with SSP5-8.5. Kruskal-Wallis p-value of 1.2799e-05.

Figure 21 shows the distribution of intensity (max sustained wind speeds, m/s) for each TC
passing near land. Here it can be noted that the observed intensities have a somewhat flat
distribution, with a small peak at lower intensities between 20 and 30 m/s. The observed
intensities have tails extending well in both directions, representing the full range of very weak
TCs to TCs with the highest intensities. In the control and future simulations, a peak between
20 and 30 m/s and a lack of intensity greater than around 55 m/s is shown. The lack of
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tails extending to intensities greater than 45 m/s in both the control and future simulations is
attributed to the limit given by the model resolution. With a horizontal resolution of 50 km, the
GCM used in this study does not have a high enough resolution to detect more intense storms
than what is shown. The statistical significance of these intensity distributions confirms with
a p-value of 2.6413e-13 that the intensities of storms that pass near land greatly vary between
observations and the control and future scenarios.
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Figure 21: Distribution of Intensity (max sustained wind) for TCs Passing Near Land (Left)
Intensity (max sustained wind in m/s) of observed TCs. (Center) Intensity of TCs
in the control simulation with 1950s radiative forcing. (Right) Intensity of TCs in
the future simulation forced with SSP5-8.5. Kruskal-Wallis p-value of 2.6413e-13.

Figure 22 shows the distribution of the duration (in days) of each TC observed passing near
land. The observed duration of TCs show a distinct peak of TCs that last around 10 days,
with very few TCs surviving for longer than 20 days. The control and future simulations,
however, show a much broader distribution than observations. The control simulation has a
slight plateau from 15-25 days, with a much longer tail extending past 50 days. The the future
simulation is flatter than the control simulation, with no discernible peak but with a similar
extended tail. The control and future simulation distributions indicate that there is perhaps
not a great enough weight on factors that would cause a TC passing near land in observation
to dissipate, such as traveling too close or too far from the equator and transitioning into an
extratropical or subtropical storm. This distinction between TC dissipation and extratropical
and subtropical transition was not made by the identification method as outlined in Section
3.2.1, and therefore could account for the extended duration shown in the simulations. The
statistical significance confirms with a p-value of 6.1057e-30 that these distributions are indeed
significantly different.
The question of if the more intense TCs passing near land have a greater duration can also
be asked, and Figure 23 shows the distribution of duration of TCs greater than 35 m/s that
pass near land. The observations show a high peak of TCs surviving less than 15 days and
not exceeding 30 days, while both the control and future simulations show a almost no curve.
The control and future simulations indicate that there are very few TCs that pass within
100km of land and also have wind speeds (at some point) of > 35 m/s at all, and therefore
no relationship can be discerned. A p-value of 8.3908e-08 confirms that these distributions are
significantly different from one another.
Figure 24 shows a linear regression fit of the observed frequency of TCs per TC season that pass
near land. The observational data shows a weak negative relationship between time and the
number of TCs that come near land, with low statistical significance suggesting that a warming
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Figure 22: Distribution of the Duration of TCs Passing Near Land (Left) Duration of observed
TCs. (Center) Duration of TCs in the control simulation with 1950s radiative forcing.
(Right) Duration of TCs in the future simulation forced with SSP5-8.5. Kruskal-
Wallis p-value of 6.1057e-30.
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Figure 23: Distribution of the Duration of TCs with Sustained Wind Speeds > 35 m/s (Left)
Duration of observed TCs. (Center) Duration of TCs in the control simulation with
1950s radiative forcing. (Right) Duration of TCs in the future simulation forced
with SSP5-8.5. Kruskal-Wallis p-value of 8.3908e-08.
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climate does not have a significant impact on how frequently TCs occur. The control simulation
regression fit is similar to the observations, with a very weak negative (if not negligible) rela-
tionship and low statistical significance suggesting time and a warming climate does not have
any significant impact on the number of TCs that occur and pass near land. Under a warmer
climate in the future simulation, the regression fit shows a stronger negative linear relationship
between time and the number of TCs, with a high statistical significance represented by a p-
value of 0.0136. Figure 24 can be interpreted to represent very low if not negligible changes in
the number of TCs occurring and passing near land in the SWIO in observation, even a slight
decrease in the the observed numbers, with some indication that under a warmer climate (such
as that of SSP5-8.5), there will be fewer TCs passing near land.
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Figure 24: Regression of the Frequency of TCs per TC Season Passing Near Land (Left)
Linear regression of observed frequency of TCs in each TC season that pass near
land. Each point represents an individual TC season. (Right) Linear regression of
the frequency of TCs in each TC season that pass near land in the control simulation
with 1950s radiative forcing and the future simulation forced with SSP5-8.5.

Figure 25 shows a linear regression fit of duration of each TC per season. The observational data
shows a weak positive linear relationship with high confidence between time and the duration of
individual TCs, indicating that as time passes (and therefore the climate warms) the duration of
TCs passing near land have been gradually increasing. The p-value of 0.0018 indicates that this
correlation coefficient is statistically significant, and supports the presence of some correlation
between a warmer climate and an increased duration of the TCs passing near land. The control
and future simulations, however, show weaker positive relationships and with a low statistical
significance. This indicates that although there is some observational evidence to suggest an
increase in duration with a warmer climate, this is not reflected in the model simulations.
It can therefore be asked if the broader duration categories (short-lasting storms and long-
lasting storms) show any differences compared to the regression in Figure 25. Figure 26 shows
5-year running mean of the 25th, 50th (median) and 75th percentiles of the duration values of
each TC. The observational percentiles closely follow the shape of the regression in Figure 16,
with the 25th percentile consistently low while the 50th and 75th percentiles fluctuate slightly
more, indicating that the longer lasting storms passing near land could be lasting slightly longer
as the climate warms. The control and future simulation percentiles show greater variation from
one another, but do not show consistent deviation to indicate a difference between the upper
(75th) and lower (25th) percentiles to indicate that there is a difference between longer lasting
and shorter lasting TCs that pass near land as the climate warms.
Figure 27 shows a linear regression fit of intensity of each TC per TC season that passes near
land. The observed TCs shows a weak positive linear relationship between the season and the
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Figure 25: Regression of the Duration of TCs Passing Near Land (Left) Linear regression of
observed duration of TCs passing near land in each TC season. Each point represents
an individual TC. (Right) Linear regression of TC duration in each TC season in
the control simulation with 1950s radiative forcing and the future simulation forced
with SSP5-8.5.
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Figure 26: Percentile 5-Year Running Mean of TC Duration - Near Land (Left) 5-year running
mean of the 25th, 50th, and 75th percentile of the duration of observed TCs passing
near land. (Right) 5-year runing mean of the 25th, 50th, and 75th percentile of the
control simulation with 1950s radiative forcing and the future simulation forced by
SSP5-8.5. Control and future simulations are delimited with a vertical dashed line.
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intensity of individual TCs, indicating that as time passes (and therefore the climate warms)
the intensity of TCs have been slightly increasing. The p-value of 0.0085 indicates that this
correlation coefficient is statistically significant, and supports the presence of some correlation
between a warmer climate and an increased intensity of TCs. The control simulation shows a
negligible trend, with a low statistical significance, indicating almost no relationship between
the season and the intensity of the TCs. The future simulation shows a negligible relationship
between time and the intensity of TCs passing near land, with low statistical significance. The
discrepancy between the observations and the control and future simulations could be in part
due to the model’s limited horizontal resolution, which prohibits the model from identifying
the most intense TCs. With the inclusion of higher intensity TCs in the control and future
simulations, this might result in trends more similar to the observed TC intensities.
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Figure 27: Regression of the Intensity of TCs Passing Near Land (Left) Linear regression
of observed maximum intensity (measured in max sustained wind speeds in m/s) of
TCs in each TC season that pass near land. Each point represents an individual TC.
(Right) Linear regression of TC maximum intensity in each TC season for storms
passing near land in the control simulation with 1950s radiative forcing and the
future simulation forced with SSP5-8.5.

Similarly to the duration results, it can also therefore be asked if the broader intensity categories
(low intensity and high intensity TCs) show any differences than the regression in Figure 27.
Figure 28 shows 5-year running mean of the 25th, 50th (median) and 75th percentiles of the
intensity values of each TC. The observational percentiles vary greatly with the shape of the
data shown Figure 16, particularly with the 75th percentile (more intense TCs) while the 50th
and 75th percentiles fluctuate slightly less, indicating that the more intense TCs passing near
land could be becoming more intense as the climate warms. The control and future simulation
percentiles show less variation from one another and do not show great deviation to indicate
a difference between the upper (75th) and lower (25th) percentiles to indicate that there is a
difference between more and less intense TCs that pass near land as the climate warms.
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Figure 28: Percentile 5-Year Running Mean of TC Intensity Near Land (Left) 5-year run-
ning means of the 25th, 50th and 75th percentile of the max intensity of observed
TCs passing near land. (Right) 5-year running means of the 25th, 50th, and 75th
percentiles of the control simulation with 1950s radiative forcing and the future sim-
ulation forced by SSP5-8.5. Control and future simulations are delimited with a
vertical dashed line.

4.2.3 Landfall

The analysis in this subsection includes all TCs that have the maximum sustained wind speeds
present within the previously defined boundaries of the SWIO basin, irregardless of where the
TC track begins or ends, as well as an additional criteria that the TC track must make landfall,
as defined in Section 3.2.4. From the values as presented in Table 4.1 alone, it seems that the
control simulation identifies significantly more TCs than observations would indicate as making
landfall, with a greater proportion of them passing making landfall than both the observed TCs
and the future simulation TCs. The future simulation has a comparable number of identified
TCs to the observed TCs, but still notably higher.
Figure 29 shows the distribution of the frequency of TCs in each TC season that make landfall.
The observational TCs show first a slight plateau at fewer than 2 TCs per season making
landfall, with peak around 4 TCs per TC season making landfall. It is also notable that
observations show no greater than 6 TCs making landfall in a TC season. The control simulation
shows a flattened and curve with a high plateau between 3 and 6 TCs making landfall in each
season. The future simulation shows a peak between 3 and 4 TCs making landfall per season.
These distributions can be indicative of either more TCs being identified as making landfall
in the model simulations (particularly in the control simulation) compared to observations.
Additionally, similarly to Section 4.2.1 what has been identified as a TC following the methods
in Section 3.2.1 might not have been a TC if the same conditions were to have occurred in
observation, and therefore too many TCs might be considered in the model simulations. Both
interpretations are likely in this instance. The statistical significance of these three distributions
as described in Section 3.2.3 confirms with a p-value of 0.0005 that the distributions represented
by the three histograms are significantly different across the TCs that make landfall in the SWIO
basin. Although it is worth noting, that these distributions are the most statistically significant
of all distributions presented in this section.
Figure 30 shows the distribution of intensity (maximum sustained wind speeds in m/s) for each
TC that makes landfall. Here it can be noted that the observed intensities have a somewhat
flat distribution, with no discernible peak. The observed intensities have tails extending well
in both directions, representing the full range of very weak TCs to TCs with the highest
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Figure 29: Distribution of the Frequency of Landfall TCs per TC Season in the SWIO (Left)
Frequency of observed landfall TCs. (Center) Frequency of TCs in the control sim-
ulation with 1950s radiative forcing. (Right) Frequency of TCs in the future simu-
lation forced with SSP5-8.5. Kruskal-Wallis p-value of 0.0005.

intensities. In the control and future simulations, a high peak between 20 and 30 m/s and a
lack of intensity greater than around 55 m/s is shown. The lack of tails extending to intensities
greater than 55 m/s in both the control and future simulations is attributed to the limit given
by the model resolution. With a horizontal resolution of 50 km, the GCM used in this study
does not have a high enough resolution to detect more intense TCs than what is shown. The
statistical significance of these intensity distributions confirms with a p-value of 1.2178e-12 that
the intensities of TCs that make landfall greatly vary between observations and the control and
future scenarios.
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Figure 30: Distribution of Intensity for TCs Making Landfall (Left) Intensity (max sustained
wind in m/s) of observed TCs. (Center) Intensity of TCs in the control simulation
with 1950s radiative forcing. (Right) Intensity of TCs in the future simulation forced
with SSP5-8.5. Kruskal-Wallis p-value of 1.2178e-12.

Figure 31 shows the distribution of the duration (in days) of each TC making landfall. The
observed duration of TCs show a distinct peak of TCs lasting between around 10 days, with
very few TCs surviving for longer than 20 days. The control and future simulations, however,
show a much broader distribution than observations. The control simulation has a peak from
15-25 days, with a much longer tail extending past 50 days. The peak in the future simulation
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is flatter than the control simulation, extending from 15-30 days with a similar extended but
slightly shorter (not exceeding 50 days) tail. The control and future simulation distributions
indicate that there is perhaps not a great enough weight on factors that would cause a TC
passing near land in observation to dissipate, such as traveling too close or too far from the
equator and transitioning into an extratropical or subtropical storm. This distinction between
TC dissipation and extratropical and subtropical transition was not made by the identification
method as outlined in Section 3.2.1, and therefore could account for the extended duration
shown in the simulations. The statistical significance confirms with a p-value of 2.6023e-30
that these distributions are indeed significantly different.
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Figure 31: Distribution of the Duration of TCs Making Landfall (Left) Duration of observed
TCs making landfall. (Center) Duration of TCs in the control simulation with 1950s
radiative forcing. (Right) Duration of TCs in the future simulation forced with
SSP5-8.5. Kruskal-Wallis p-value of 2.6023e-30.

The question of if the more intense TCs passing near land have a greater duration can also
be asked, and Figure 32 shows the distribution of duration of TCs greater than 35 m/s that
make landfall. The observations show a high peak of TCs surviving less than 12 days and
not exceeding 30 days, while both the control and future simulations show a flattened curve
with no discernible peak. The control and future simulations indicate that (similarly to Figure
31) the model scenarios the accounting for transition to an extratropical or subtropical and
subsequent difference in definition of a TC and a beginning of either of these types of storms
is necessary to more accurately reflect observations. A p-value of 1.4461e-10 confirms the that
these distributions are significantly different from one another.
Figure 33 shows a linear regression fit of the frequency of TCs per TC season that make landfall.
The observational data shows a weak negative relationship between time and the number of TCs
that make landfall, with low statistical significance suggesting that the season does not have a
significant impact on how frequently landfall TCs occur. The control simulation regression fit is
slightly different to the observations, with a very weak (if not negligible) positive relationship,
although with low statistical significance suggesting that time does not have any significant
impact on the number of TCs that occur and make landfall. Under a warmer climate in the
future simulation, the regression fit shows a weak negative linear relationship between the
season and the number of TCs, but also with a low significance. Figure 33 can be interpreted
to represent very low if not negligible changes in the number of TCs occurring and make landfall
in the SWIO, even a slight decrease in the the observed numbers, although the relationships
for observed TCs and both simulations is not significant.
Figure 34 shows a linear regression fit of duration of each TC per season making landfall.
The observational data shows a weak positive linear relationship with statistical significance
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Figure 32: Distribution of the Duration of TCs Making Landfall with Sustained Wind Speeds
> 35 m/s (Left) Duration of observed TCs making landfall, which at some point in
the lifetime had a max sustained wind speed > 35 m/s. (Center) Duration of TCs
in the control simulation with 1950s radiative forcing. (Right) Duration of TCs in
the future simulation forced with SSP5-8.5. Kruskal-Wallis p-value is 1.4461e-10.
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Figure 33: Regression of the Frequency of TCs per TC Season Making Landfall (Left) Linear
regression of observed frequency of TCs in each TC season that make landfall. Each
point represents an individual TC season. (Right) Linear regression of TCs in each
TC season that make landfall in the control simulation with 1950s radiative forcing
and the future simulation forced with SSP5-8.5.
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between time and the duration of individual TCs with a p-value of 0.0105, indicating that
as time passes (and therefore the climate warms) the duration of TCs making landfall have
been slightly increasing. The control and future simulations, however, show a weaker positive
relationships without statistical significance. This indicates that the model simulations do not
reflect the same weak positive relationship in duration increasing over time that the observations
show.
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Figure 34: Regression of the Duration of TCs Making Landfall (Left) Linear regression of
observed duration (days) of TCs that make landfall. Each point represents an in-
dividual TC. (Right) Linear regression of TCs that make landfall in the control
simulation with 1950s radiative forcing and the future simulation forced with SSP5-
8.5.

It can therefore be asked if the broader duration categories (short-lasting storms and long-
lasting storms) show any differences than the regressions in Figure 34. Figure 35 shows 5-year
running mean of the 25th, 50th (median) and 75th percentiles of the duration values of each
landfall TC. The observational percentiles closely follow the shape of the regression in Figure 34,
with the 25th percentile consistently low while the 50th and 75th percentiles fluctuate slightly
more, indicating that the longer lasting storms making landfall could be lasting slightly longer
as the climate warms. The control and future simulation percentiles show greater variation
from one another, but do not show consistent deviation to indicate a difference between the
upper (75th) and lower (25th) percentiles to indicate that there is a difference between longer
lasting and shorter lasting TCs that make landfall as the climate warms.
Figure 36 shows a linear regression fit of intensity of each TC per season that makes landfall. The
observed TCs shows a weak positive linear relationship between the season and the intensity of
individual TCs, indicating that as time passes (and therefore the climate warms) the intensity
of TCs have been slightly increasing. The p-value of 0.0105 indicates that this correlation
coefficient is statistically significant, and supports the presence of some correlation between
a warmer climate and an increased intensity of TCs. The control simulation also shows a
weak positive relationship, with low statistical significance, indicating almost no relationship
between the season and the intensity of the TCs. The future simulation also shows a weak
positive trend, although also with low statistical significance. The discrepancy between the
observations and the control and future simulations could be in part due to the model’s limited
horizontal resolution, which prohibits the model from identifying the most intense TCs. With
the inclusion of higher intensity TCs in the control and future simulations, this might result in
trends more similar to the observed TC intensities.
Similarly to the duration results, it can also therefore be asked if the broader intensity categories
(low intensity and high intensity TCs) show any differences than the regression in Figure 36.
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Figure 35: Percentile 5-Year Running Mean of Landfall TC Duration (Left) 5-year running
mean of the 25th, 50th and 75th percentile of the duration of observed TCs making
landfall. (Right) 5-year running mean of the 25th, 50th, and 75th percentile of the
control simulation with 1950s radiative forcing and the future simulation forced by
SSP5-8.5. Control and future simulations are deliminated with a vertical dashed
line.
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Figure 36: Regression of the Intensity of TCs Making Landfall (Left) Linear regression of ob-
served max intensity of TCs that make landfall. Each point represents an individual
TC. (Right) Linear regression of the max intensity of TCs that make landfall in the
control simulation with 1950s radiative forcing and the future simulation forced with
SSP5-8.5.
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Figure 37 shows 5-year running mean of the 25th, 50th (median) and 75th percentiles of the
duration values of each TC making landfall. The observational percentiles vary greatly with the
shape of the data shown Figure 36, particularly with the 75th percentile (more intense TCs)
while the 50th percentile fluctuates slightly less, and the 25th even less, indicating that the
longer lasting storms passing near land could be lasting slightly longer as the climate warms.
The control and future simulation percentiles show less variation from one another and do
not show great deviation to indicate a difference between the upper (75th) and lower (25th)
percentiles to indicate that there is a difference between longer lasting and shorter lasting TCs
that pass near land as the climate warms.
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Figure 37: Percentile 5-Year Running Mean of Landfall TC Intensity (Left) 5-year running
means of the 25th, 50th, and 75th percentile of the max intensity of observed TCs
passing near land. (Right) 5-year running means of the 25th, 50th, and 75th per-
centiles of the control simulation with 1950s radiative forcing and the future simula-
tion forced by SSP5-8.5. Control and future simulations are delimited with a vertical
dashed line.
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4.3 Damage Estimation

The following section presents the results of the damage estimation via mean sea level pressure
(MSLP) as an indicator as outlined by the methods in Section 3.2.5.
Figure 38 shows the distribution of the MSLP (in hPa) of each TC for the entire SWIO basin.
The observed MSLP shows a slight peak of TCs with MSLP between 980 and 990 hPa, indicating
that the majority of observed TCs in the SWIO basin reach a Category 1 classification on
the adjusted Saffir-Simpson scale as shown in Table 3.3. The control and future simulations,
however, show a much more distinct peak at higher MSLPs, with few TCs reaching Category
1 status. The control simulation has a high peak around 1000 hPa, with a shorter tail going
no lower than 955 hPa (Category 3). The peak in the future simulation is slightly lower than
the control simulation, but peaking also around 1000 hPa with a short tail not extending past
960 hPa. The control and future simulation distributions indicate that the model is limited
by its horizontal resolution in identifying TCs that would cause greater amounts of damage.
The statistical significance confirms with a p-value of 5.8427e-103 that these distributions are
indeed significantly different.
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Figure 38: Distribution of MSLP (Left) MSLP of all observed TCs in the SWIO basin. (Center)
MSLP of of TCs in the control simulation with 1950s radiative forcing. (Right)
MSLP of TCs in the future simulation forced with SSP5-8.5. Kruskal-Wallis p-value
of 5.8427e-103.

Figure 39 shows a linear regression fit of MSLP of each TC per season in the SWIO basin. The
observed MSLP shows a weak (if not negligible) negative linear relationship between time and
the MSLP of individual TCs with low significance, indicating almost no relationship between
the MSLP of TCs and a warming climate. Likewise, both the control and future simulations
show negligible relationships between time and MSLP, with low statistical significance. The
regression analysis shows almost no discernible relationship between MSLP and a warming
climate.
To further analyze the relationship that MSLP has with a warming climate, figure 40 shows
shows 5-year running mean of the 25th, 50th (median) and 75th percentiles of the duration
values of each TC. The observations show a slight variation of the 25th percentile lower than
the 50th and 75th, while the control and future simulations show very little distinction between
the 25th, 50th and 75th percentiles. This indicates that in observations, MSLP (and therefore
damage done by the TCs) is increasing as the more intense storms increase with time under a
warming climate.
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Figure 39: Linear Regression of MSLP of all TCs in the SWIO Linear regression of MSLP of
observed TCs. Each point represents an individual TC. (Right) Linear regression
of the MSLP of TCs in the control simulation with 1950s radiative forcing and the
future simulation forced with SSP5-8.5.
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Figure 40: Percentiles of MSLP versus Season (Left) 5-year running means of the 25th, 50th
and 75th percentiles of the MSLP of observed TCs in the SWIO basin. (Right) 5-
year running means of the 25th, 50th, and 75th percentiles of the control simulation
with 1950s radiative forcing and the future simulation forced by SSP5-8.5. Control
and future simulations are delimited with a vertical dashed line.
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4.4 Results Summary

Tables 4.2 and 4.3 provide an overview of the results of the statistical tests done for the analysis
in Section 4.2. All distribution analysis showed statistical evidence that the distributions of
observations, control and future simulations were very different from one another across the
variables tested. Results of the linear regression analysis showed most notably, statistically
significant relationships between increases in intensity and duration of TCs in observations.
These relationships were not well reflected in the model simulations. Another notable result
was the statistical significance of a decrease in the frequency of TCs passing near land in the
future simulation, although this was not reflected in observations or in the control simulation.

Kruskal-Wallis p-value

All TCs
in the SWIO

Frequency 2.6606e-05

Intensity 2.6579e-22
Duration 8.9581e-84
Duration of TCs
with wind speeds
>35 m/s

7.5912e-31

MSLP 5.8427e-103
Near Land TCs Frequency 1.2799e-05

Intensity 2.6413e-13
Duration 6.1057e-30
Duration of TCs
with wind speeds
>35 m/s

8.3908e-08

Landfall TCs Frequency 0.0005
Intensity 1.2178e-12
Duration 2.6023e-30
Duration of TCs
with wind speeds
>35 m/s

1.4461e-10

Table 4.2: Overview of all the Kruskal-Wallis p-values calculated for the distributions presented
in this section.
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Observations
Control-1950
Simulation

Highres-Future
Simulation

Pearson r p-value Pearson r p-value Pearson r p-value
All TCs

in the SWIO
Frequency 0.0342 0.8453 -0.0133 0.9394 -0.0262 0.8812

Intensity 0.1935 0.0002 0.0063 0.9901 0.0809 0.1675
Duration 0.1905 0.0002 0.0629 0.2110 0.0725 0.2169
MSLP -0.0700 0.1862 0.0096 0.8491 -0.0746 0.2035

Near Land TCs Frequency -0.1119 0.5286 -0.1356 0.4318 -0.4318 0.0136
Intensity 0.2215 0.0085 -0.1330 0.1564 -0.0242 0.8445
Duration 0.2614 0.0018 0.0660 0.4831 0.0782 0.5263

Landfall TCs Frequency -0.2613 0.1485 0.0501 0.7752 -0.1482 0.4104
Intensity 0.2628 0.0105 -0.1461 0.0580 0.1105 0.2257
Duration 0.2534 0.0137 0.0680 0.3798 0.0798 0.3825

Table 4.3: Overview of all Pearson r (correlation coefficients) and p-values calculated for the
linear regressions presented in this section.
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5 Discussion

In this chapter the results of the analysis will be discussed. First, the tracking algorithm
method is assessed for how well it represented observed TCs in the SWIO in Section 5.1. Then,
the future TC season characteristics in the SWIO under a warming climate are discussed in
Section 5.2. Finally, impacts to the region in the form of TC impact on vanilla agriculture in
Madagascar will be discussed in Section 5.3.

5.1 Discussion of Methods: How well does the tracking algorithm method
represent observed tropical cyclones?

The methodology as presented in Section 3.2 and subsequently examined presents several ad-
vantages within the context of this study. The basis of core elements of the methodology on
previous studies using a well defined TC tracking algorithm provides an established framework
for the detection of TCs in the SWIO. Likewise, specific criteria and filters for identifying TCs
and distinguishing them from other synoptic systems aid in the clarity of ’what a TC is’ as
defined in this study, and therefore which systems were relevant to include in the analysis.
The use of checks against model output for confirmation also aids in the validation process
outlined in Section 3.2 Section, as well as the use of relevant statistical analysis to investigate
the relevant variables presented throughout the study in a comprehensive way.
Alternatively, there are areas of limitation and potential sources of error present in the method-
ology of this study. Due to limitations in time and computing resources, certain criteria and
filters (such as an assessment of the coherent vertical structure condition of TCs and the tran-
sitions to extratropical and subtropical storms) for more in-depth TC identification were not
included. These omissions may impact the resulting data upon which the analysis was con-
ducted, and therefore the conclusions drawn and presented. Likewise, the assumptions that
visual correlation between surface wind speeds and vorticity in model output to the calculated
TC tracks as a confirmation method may introduce subjectivity and potential bias. An addi-
tional or alternative method for verifying model output could strengthen the overall analysis.
Additionally, the use of EC-Earth3p-HR exclusively in this study may introduce biases based
on the specific characteristics of this model. Given further time, the model simulations from
all models described in Table 3.1 remain relevant to this study and if included, would provide
a more comprehensive view on TCs in the SWIO.
Given these methodological considerations, some general characteristics of the EC-Earth3p-HR
model play a role in the findings of this study. The future projections of both the frequency and
characteristics of TCs have rooted dependence in the forcing environment and how those ele-
ments will change under a warmer climate (Murakami et al., 2012; Zhao & Held, 2012). Higher
model resolutions with small ensembles ((M. J. Roberts et al., 2015; Zhao et al., 2009)) and
large ensembles with a singular resolution (Mei et al., 2019; Yoshida et al., 2017) are necessary
to adequately represent the inter-annual variability of TCs that is seen in observations. EC-
Earth3P-HR and the other models listed in Table ?? have the ability to form a comprehensive
small ensemble with high resolutions, which (given the inclusion of additional models), gives
credibility to the model results of this study. More specifically, M. J. Roberts et al. (2020) finds
that there is a distinct increase in the TC frequency with resolution (compared to observations)
in several models including EC-Earth3p-HR, while many models have a shifted ratio of NH to
SH TCs than is seen in observations, skewed towards an overproduction in the SH. Features of
the model such as the hemispheric asymmetry can indicate that the model simulations result
in too many SH TCs, while additional limitations in observational best track data specifically
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in the SH (due to a lack of tropical depressions and subtropical cyclones represented in best
track data) further enhance this asymmetry and influence the analysis (Strachan et al., 2013).
The behavior of TCs in the SWIO is influenced by a variety of factors described in Section
2. Key tropic features for cyclogenesis occurrence (overview in Table ??) may play a role in
understanding the TC conditions found in this study. Key atmospheric and oceanic conditions
such as SSTs, wind shear and moisture availability play crucial roles in TC development. The
impact of these atmospheric and oceanic conditions on TCs is not explicitly addressed in this
study, but can be important factors to consider in future analysis of TCs in the SWIO.
It is noTable that in addition to climate drivers and atmospheric conditions, other influences
can also affect TC behavior in the SWIO. For instance, regional oceanic and atmospheric circu-
lations, such as the Hadley and Walker Cells, Inter-tropical Convergence Zone (ITCZ), Indian
Ocean Dipole (IOD), the El Nino-Southern Oscillation (ENSO) and the Madden-Julian Os-
cillation (MJO), can modulate the frequency, intensity, and tracks of TCs (Seneviratne et al.,
2021). These regional oceanic and atmospheric circulations are discussed further in Section 2.
Within the context of EC-Earth3P-HR in particular, the ENSO amplitude in the beginning of
austral summer (corresponding with the TC season) is noted to have an systematic underes-
timation, which could influence ENSO events which bring warm SSTs into the SWIO via the
Walker cell (outlined in Section 2). However, Ash and Matyas (2012) finds that ENSO alone
is not enough to account for all variability of the TC tracks, duration and intensity and that
the IOD SST anomaly also plays a large role. The broad range of natural variability present
in the SWIO makes trend detection and attribution to climate change impacts difficult, as the
uncertainties in these modes of variability lead to further uncertainties in the projected changes
in TC activity.
Additional evaluation elements could be included in this study for more robust findings. In
particular, the inclusion of multiple ensemble members for the EC-Earth3p-HR model, as well
as inclusions of other models and respective ensemble members would have added to the ro-
bustness of the findings. In light of this, the all-basin analysis and damage estimation analysis
as outlined in Sections 3.2.3 and 3.2.5 were conducted for a second EC-Earth3P-HR model
ensemble member (member r2i1p2f1 ), an overview of which can be found in Appendix A. This
further analysis into the addition of an ensemble member did not show a great difference in
any distributions of any of the variables (frequency, intensity, duration, MSLP), but rather re-
flected the results of the single member analysis quite closely. Regression analysis also showed
similar (or negligibly different) relationship between frequency, intensity, duration and MSLP,
likewise for the percentile analysis. While the addition of the second model ensemble member
did not influence the results found in Section 4.2 A comprehensive evaluation of the abilities
of EC-Earth3p-HR and the TRACK algorithm (in particular) to accurately capture the essen-
tial characteristics of TCs in the SWIO would provide a more solid foundation on which to
base the results of this analysis. The model needs to capture the conditions that facilitate the
genesis of TCs in the SWIO region based on the conditions described in Section 2, as well as
the intensification process and track movement and dissipation. The ability of EC-Earth3p-HR
and the TRACK algorithm to evaluate the dissipation characteristics would be of particular
interest as an additional element of consideration in this study. Comparing TRACK ’s pre-
dicted dissipation rates and the timing of TC decay with the observed best-track would provide
insights into its skill in simulating the dissipation process in the SWIO, and would make a
useful consideration in evaluating in particular the duration element of TCs in the SWIO. By
further comparing the TRACK ’s outputs with observed best-track data, assessments of the
strengths and limitations of TRACK and EC-Earth3p-HR and further areas of improvement
can be made.
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5.2 Discussion of Results: What do future tropical cyclone seasons look like
in the SWIO?

The resulting identification and visual confirmation of TCs as presented in Sections 4.1.1 and
4.1.2 provide a base assumption that the analysis methodology outlined in Section 3.2 is rea-
sonably robust to provide insights into TC trends in the SWIO. Figure 5 showing the spatial
distribution of TC tracks calls to attention the control and future simulations tendency to have
TC tracks which pass both within 5◦of the equator, and also south of 30◦S. These two extremes
are areas where the Coriolis force is no longer adequate for cyclone genesis ((McBride & Zehr,
1981). What is most likely being displayed in Figure 5 is a representation of the model and
tracking algorithm’s lack of ability to discern where a TC transitions to an extratropical storm
or a subtropical storm. Likewise, an under representation of tropical depressions and subtropi-
cal storms in observational data most likely enhances this disparity between the three maps in
Figure 5.
By examining the resulting number of TCs analyzed as shown in Table 4.1, the control simula-
tion in particular shows a higher number of TCs than is observed and in the future simulation,
which is attributed to the characteristics described in Section 5.1, particularly due to the char-
acteristics of TCs worldwide (as discussed in Section 2) showing that as the climate warms,
TC frequency has been slightly decreasing. As the control simulation shows 1950s radiative
forcing conditions, it is likely then that this slightly negative trend with warmer conditions
would not be present, and the control simulation would show more TCs. It is also noTable
that the observations show more TCs coming near land than in the model simulations, which
can be attributed to a lack of resolution in the land coordinates used to calculate the distances
between TC tracks and land. As the SWIO is characterized by having many small islands
throughout the basin, an increased land mask resolution could play a role in this disparity. It is
also noTable that the control and future simulations have a higher proportion of TCs calculated
to make landfall than as seen in observations, and additionally a higher proportion of landfall
TCs to near land TCs than is seen in observations. TC track paths and likewise if a TC does or
does not make landfall is influenced by a variety of factors such as the conditions surrounding
the prevailing modes of variability (as discussed in Section 2 and in Section 5.1). The presence
of high pressure systems can influence the path of TCs, as these systems create areas of sink-
ing air, resulting in sTable atmospheric conditions and a anti-clockwise flow of air in the SH.
TCs tend to move around the periphery of high-pressure systems, following the path of least
resistance. Likewise, the same conditions relevant to TC genesis (as outlined in Table ?? also
contribute to the direction that a TC takes through the basin, where the TC will follow a path
of least resistance into areas (for example) with warmer SSTs and away from areas with colder
SSTs that cause dissipation, where warmer SSTs are available for the TC to travel through.
When it comes to landfall, several additional factors can influence whether a tropical cyclone
makes landfall or remains over the ocean. The topography around the area where the TC is
in influences the TC, and Barbary et al. (2019) finds that within 100 km of land, the land
influences the TC and likewise effects from the TC influence land in terms of experienced
weather conditions related to TCs. Mountains, coastlines, and other geographical features can
disrupt the storm’s circulation and cause it to weaken or change course. However, the size
and intensity of the TC plays a large role, as larger and more intense TCs tend to be able
to overcome the disruption caused by land features in its path, and therefore make landfall
(Wahiduzzaman & Yeasmin, 2019). As the natural variability in the factors that can ’steer’ a
TC is high, there is low confidence in the attribution of TC tracks to climate change influences
and therefore the disparity between the number of near land and landfall TCs shown in Table
4.1 is a reflection of this natural variability in the control and future simulations.
The results of this study most clearly indicate weak positive relationships between time and the
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intensity and duration of observed TCs in the SWIO, as well as for the TCs which pass near land
and make landfall. This relationship is not well reflected the control and future simulations,
which show only one statistically significant relationship between a decrease in the frequency
of near land TCs over time in the future simulation. In particular, the model simulations
showed TCs that had much longer duration, but reached much lower intensities than was
observed. The model simulations showed little agreement throughout all sub-categories of TCs
(all basin, near land and landfall), and in fact highlighted the limitations of EC-Earth3p-HR
as described in Section 5.1. Uncertainties come primarily from the model simulation results
due to the methodological limitations, however there is additional limited confidence due to
data limitations in so called ’best-track’ data (as used in this study and outlined in Section
3.1), particularly due to limited inclusion of sub-tropical storms (Schreck et al., 2014). Model
resolution is a great challenge in this study, which is particularly reflected in the distribution
analysis of all basin, near land and landfall TCs. When examining the percentiles of duration
and intensity, if the percentile analysis indicated that (for example) intense storms were getting
more intense, then there would be greater spreads (as time increased) in the percentile lines.
This was however not seen clearly with the exception of the intensities of observed TCs across
the SWIO basin, as well as TCs that pass near land and make landfall. If the model resolution
greater and more able to fully resolve TC conditions, then it could be expected that the control
and future simulations would show shifted distributions more closely aligning with what was
seen in observations.
Comparing the SWIO basin results to global projections on TC trends described in chapter 2,
there are agreements with the results found in this study. (Seneviratne et al., 2021) notes similar
low confidence in long term trends of TC frequency or intensity based metrics, as is found in this
study. Some evidence of positive trends in TC intensity found in studies (see Section 2) similarly
conducted over the satellite era also demonstrate positive trends in TC intensity. While this
study did not expand on other elements such as rapid intensification events, poleward migration
of peak intensity, and a slowdown in translation speeds, these elements would be relevant to
consider when comparing the TC conditions at present and in the future in the SWIO to global
trends.

5.3 Discussion of Impacts: How will future tropical cyclones impact vanilla
agriculture in the SWIO, particularly in Madagascar?

Understanding the behavior of cyclones in the SWIO is of great importance in global context.
First and foremost, the SWIO is a region that is prone to the occurrence of TCs, and their
impacts can be significant. The ability to accurately predict TC behavior in this region is crucial
to inform future adaptation strategies as the potential impacts of TCs on coastal communities
such as Madagascar and others throughout the SWIO region are varied. TC impacts include
strong winds, storm surges, heavy precipitation and flooding, all of which can lead to property
damage, loss of lives, and disruption of essential services. Coastal communities, particularly
though with limited resources and inadequate infrastructure, are more vulnerable to these
impacts (Mavume et al., 2009; Seneviratne et al., 2021).
While all of the impacts that TCs cause can significantly affect coastal communities and
economies, when discussing in particular the impact that TCs in the SWIO have on vanilla
agriculture in Madagascar, this study finds several attributes to be particularly significant.
Weather conditions from TC activity can be particularly damaging to vanilla crops as discussed
in Sections 1 and 2. Excess wind and water, as well as flooding are particularly damaging to
the vanilla plant, causing a lack of crop yield as well as water logging, vine damage, and soil
erosion.
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The results of this study find that with the increase in intensity and duration of TCs, Mada-
gascar and the vanilla agricultural region will likely not experience an increase in the frequency
of TCs, but the TCs that do occur will have higher wind speeds and lower MSLP, an indication
that damage to the region will gradually increase with TC occurrence as time passes. All of
which poses a higher risk of infrastructure damage, crop destruction, and other socio-economic
impacts to the vanilla agricultural production system in the region. While precipitation was
not directly analyzed in this study, the extended duration of TCs also extend exposure to high
winds and precipitation, as well as flooding which can be detrimental to the vanilla crop and
hinder post-cyclone recovery efforts. These trends highlight the growing vulnerability of vanilla
agriculture in the SWIO region, and adaptation strategies for vulnerable coastal communities
can be based around the anticipation of TCs to be longer lasting and with greater duration,
while not necessarily increasing in frequency.

52



6 Conclusion and Outlook

This study has evaluated the future trends of TCs under a changing climate in the SWIO, and
assessed how these future trends will impact the region and in particular its vanilla agricul-
ture. This was done utilizing storm tracks derived from EC-Earth3P-HR model simulations
conducted under CMIP6 HighResMIP protocol by the PRIMAVERA project group, as well
as observational best track data data from the SWIO basin. Storms from the period begin-
ning on the 1st of October 1980 through the 30th of May 2015 were considered to remove
pre-satellite era uncertainties, and cross checks between model output and the calculated storm
tracks are made to verify the TRACK algorithm output. To this end, a variety of analysis
was conducted to derive future trends from modeled simulations incorporating a high emissions
climate change scenario, and then compared to a control simulation as well as observational
trends for the SWIO basin. Future damages were estimated using MSLP as predictor. As
a result, the questions of how well does the tracking algorithm method applied to model data
represent observed tropical cyclones from best track data, and what do future tropical cyclone
seasons look like in the SWIO basin under a high emissions changing climate scenario as well
as how will future tropical cyclones impact vanilla agriculture in the SWIO, specifically on the
island of Madagascar can be addressed.
Regarding the tracking algorithm method, there are several advantages to the methodology
used in this study. The building upon previous TC identification methods via the use of a
well-defined tracking algorithm provides a solid framework for detection of TCs in the SWIO
region. Additionally, filtering for TC conditions helps to ensure the clarity and relevence of
the analysis. The inclusion of model output checks and statistical analysis further enhances
the validation process. However, there are limitations and potential sources of error in the
methodology. Due to time and computing constraints, certain criteria and filters for more
in-depth TC identification were not included. This omission may affect the resulting data
and conclusions. The subjective nature of visual correlation between surface wind speeds and
vorticity in model output as a confirmation method introduces potential bias. Using additional
and alternative methods for algorithm verification could strengthen the analysis. Additionally,
the exclusive use of EC-Earth3p-HR model simulations may introduce biases based on its
specific characteristics, and including simulations from other models would provide a more
comprehensive view of TCs in the SWIO.
Regarding future TCs and TC seasons under a changing climate, the results of this study in-
dicate agreement with well documented global trends of gradual increases in TC intensity and
duration, with a noted lack in increased frequency. However, these trends were primarily seen
in observations, with discrepancies or no discernible trends in the model simulation output.
Uncertainties arise from methodological and data limitations, as well as model resolution chal-
lenges. Overall, there is low confidence in long-term trends of TC frequency or intensity in
the SWIO, consistent with global projections, in part due to the relevance of climate drivers
and atmospheric conditions in shaping TC characteristics. Factors such as sea surface tem-
peratures, wind shear, and moisture availability play crucial roles in TC development. Other
regional oceanic and atmospheric circulations, such as the Hadley and Walker Cells, ITCZ,
IOD, ENSO, and MJO, also influence TC behavior in the SWIO.
The results of this study find that with the gradual increases in intensity and duration of TCs
in the SWIO basin, the impacts on coastal communities and agriculture (such as the vanilla
production in Madagascar) will likely be experienced as increased damage due to higher wind
speeds and lower pressure TCs, coupled with increased exposure to both precipitation, wind
speeds, and MSLP as TCs have a longer duration in a warming climate. These conditions pose a
higher risk of infrastructure damage, crop destruction and other socio-economic impacts to the
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vanilla agricultural production in Madagascar and in the rest of the SWIO basin, highlighting
growing vulnerabilities under a changing climate.
In light of this, this analysis would benefit primarily from the inclusion of all models and en-
semble members available as described in table 3.1 to help eliminate internal variability within
the models, and provide a more robust foundation for comparison to observations. As models
with higher resolutions are developed, their inclusions will also be critical in future TC anal-
ysis globally, as even the high resolution models present in HighResMIP lack the horizontal
resolution required to produce conditions where TCs can be calculated as intensifying past a
Category 3 classification. The horizontal resolution of the models is a critical limitation to the
accuracy of the analysis of TCs. Additionally, a thorough evaluation of the natural modes of
variability (such as ENSO, IOD, MJO, and ITCZ) present and influencing TCs in the SWIO
basin would provide additional clarity into the inter-seasonal and inter-annual variability of TC
genesis conditions. Further analysis on TC characteristics such as translation speed and pole-
ward peak intensity migration would also be highly relevant for this study, particularly relating
to the impacts on vanilla agriculture in Madagascar and for coastal communities throughout
the SWIO basin under a changing climate.
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Figure 41: Distribution of the Frequency of TCs per TC Season in Two EC-Earth3P-HR
Ensemble Members (Left) Distribution of the frequency of observed TCs per TC
season across the entire SWIO basin. (Upper center) Distribution of the frequency
of TCs in EC-Earth3P-HR model ensemble r1i1p2f1 for the control simulation with
1950s radiative forcing. (Lower center) Distribution of the frequency of of TCs
in EC-Earth3P-HR model ensemble r1i1p2f1 for the control simulation with 1950s
radiative forcing. (Upper right) Distribution of the frequency of TCs in EC-Earth3P-
HR model ensemble r1i1p2f1 for the future simulation forced with SSP5-8.5. (Lower
right) Distribution of the frequency of TCs in EC-Earth3P-HR model ensemble
r2i1p2f1 for the future simulation forced with SSP5-8.5. Kruskal-Wallis p-value of
2.0072e-08.
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Figure 42: Distribution of Intensity of TCs in Two EC-Earth3P-HR Ensemble Members (Left)
Distribution of observed TC intensities in the SWIO. (Center) Distribution of the
intensities of TCs in both ensemble member r1i1p2f1 and r2i1p2f1 for the control
simulation with 1950s radiative forcing. (Right) Distribution of the intensities of TCs
in both ensemble member r1i1p2f1 and r2i1p2f1 for the future simulation forced with
SSP5-8.5. Kruskal-Wallis p-value of 1.3215e-26.
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Figure 43: Distribution of Duration of TCs in Two EC-Earth3P-HR Ensemble Members
(Left) Distribution of the duration of observed TCs in the SWIO. (Center) Dis-
tribution of the duration of TCs in both ensemble member r1i1p2f1 and r2i1p2f1
for the control simulation with 1950s radiative forcing. (Right) Distribution of the
duration of TCs in both ensemble member r1i1p2f1 and r2i1p2f1 for the future sim-
ulation forced with SSP5-8.5. Kruskal-Wallis p-value of 6.065e-99.
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Figure 44: Linear Regression of the Frequency of TCs per TC Season in Two EC-Earth3P-HR
Ensemble Members (Left) Linear regression of the frequency of observed TCs per
TC season. (Upper center) Linear regression of the frequency of TCs in ensemble
member r1i1p2f1 for the control simulation with 1950s radiative forcing. (Lower
center) Linear regression of the frequency of TCs in ensemble member r2i1p2f1 for
the control simulation with 1950s radiative forcing. (Upper right) Linear regression
of the frequency of TCs in ensemble member r1i1p2f1 for the future simulation forced
by SSP5-8.5. (Lower right) Linear regression of the frequency of TCs in ensemble
member r2i1p2f1 for the future simulation forced by SSP5-8.5.

1980 1985 1990 1995 2000 2005 2010 2015
Time

10

20

30

40

50

60

70

In
te

ns
ity

 (m
/s

)

Pearson r: 0.1935

Observations 
 1980-2014

1980 1990 2000 2010 2020 2030 2040 2050
Time

10

20

30

40

50

60

70

In
te

ns
ity

 (m
/s

)

Pearson r: 0.0634 Pearson r: 0.0625

Control - 1950s RF           Future - SSP5-8.5 RF 
 1980 - 2014                      2015 - 2050

Figure 45: Linear Regression of the Intensity of TCs in Two EC-Earth3P-HR Ensemble
Members (Left) Linear regression of the intensity of observed TCs in the SWIO
basin. (Right) Linear regressions of intensity of both ensemble members r1i1p2f1
and r2i1p2f1 combined for the control and future simulations, respectively. Control
and future simulations delimited with a vertical dashed line.
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Figure 46: Percentile 5-Year Running Mean of SWIO TC Intensity for Two EC-Earth3P-HR
Ensemble Members (Left) 5-year running mean of the 25th, 50th and 75th percentile
of the intensity of observed TCs in the SWIO. (Right) 5-year running mean of the
25th, 50th, and 75th percentile of both ensemble members r1i1p2f1 and r2i1p2f1
combined for the control and future simulations, respectively. Control and future
simulations delimited with a vertical dashed line.
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Figure 47: Linear Regression of the Duration of TCs in Two EC-Earth3P-HR Ensemble
Members (Left) Linear regression of the duration of observed TCs in the SWIO
basin. (Right) Linear regressions of intensity of both ensemble members r1i1p2f1
and r2i1p2f1 combined for the control and future simulations, respectively. Control
and future simulations delimited with a vertical dashed line.
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Figure 48: Percentile 5-Year Running Mean of SWIO TC Duration for Two EC-Earth3P-HR
Ensemble Members (Left) 5-year running mean of the 25th, 50th and 75th percentile
of the duration of observed TCs in the SWIO. (Right) 5-year running mean of the
25th, 50th, and 75th percentile of both ensemble members r1i1p2f1 and r2i1p2f1
combined for the control and future simulations, respectively. Control and future
simulations delimited with a vertical dashed line.
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Figure 49: Distribution of MSLP for TCs in Two EC-Earth3P-HR Ensemble Members (Left)
Distribution of the MSLP for observed TCs in the SWIO. (Center) Distribution of
the MSLP of TCs in both ensemble member r1i1p2f1 and r2i1p2f1 for the control
simulation with 1950s radiative forcing. (Right) Distribution of the MSLP of TCs in
both ensemble member r1i1p2f1 and r2i1p2f1 for the future simulation forced with
SSP5-8.5. Kruskal-Wallis p-value of 5.8751e-102.
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Figure 50: Linear Regression of the MSLP of TCs in Two EC-Earth3P-HR Ensemble Mem-
bers (Left) Linear regression of the MSLP of observed TCs in the SWIO basin.
(Right) Linear regressions of MSLP of both ensemble members r1i1p2f1 and r2i1p2f1
combined for the control and future simulations, respectively. Control and future
simulations delimited with a vertical dashed line.
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Figure 51: Percentile 5-Year Running Mean of SWIO TC MSLP for Two EC-Earth3P-HR
Ensemble Members (Left) 5-year running mean of the 25th, 50th and 75th percentile
of the MSLP of observed TCs in the SWIO. (Right) 5-year running mean of the
25th, 50th, and 75th percentile of the MSLP of both ensemble members r1i1p2f1
and r2i1p2f1 combined for the control and future simulations, respectively. Control
and future simulations delimited with a vertical dashed line.
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