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Abstract

This thesis explores the transmission of light through a nanophotonic waveguide with
an embedded single solid state quantum dot. The coupling between the quantum
dot and the waveguide gives rise to giant nonlinerarites at the single photon or weak
coherent limit of the transmitted light. Focus is here put on the phase shift that light
obtains after transmission of the quantum dot and waveguide system. The theory of
transmission is explored for both for an istotropic and chiral coupling of the quantum
dot to the waveguide. These configurations give rise to respectively a π/2 and π
phase shift. Theory shows that especially chiral coupling is shown to be more robust
to physical dependent factors and supplies even larger nonlinearity than isotropic
coupling. For the measurement of this phase shift, a Mach-Zehnder interferomter
was constructed as a new tool for the lab. Methods have been developed to stabilize
the interferometer, in order to compensate for large mechanical fluctuations in the
interferometric signal. Using this interferometer, the spectral response of the phase
shift induced by an isotropic coupled quantum dot is measured. For this first direct
measurement of the phase shift, a maximum phase shift of 58.5o± 0.3o is measured.
The spectral response showed good agreement with theory. Finally, a measurement
of the power dependence of the phase shift is performed, and show nonlinear behavior
as predicted in the theory.
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Chapter 1

Introduction

one of the current challenges in quantum optics is building circuits of light and quan-
tum emitters,in order to utilize the quantum nature of particles for both quantum
computational-and communication applications. The complete advancement would
potentially allow, quantum cryptation for communication that would disallow eaves-
dropping of shared information or. With regards to computing, the complexity of
some classical algorithms can be lowered, thereby shortening computational dura-
tion from even longer than a human life span to a reasonable amount of time [31]. In
addition, it could also be used for simulations of the quantum dynamics of systems
that are otherwise too complex to be simulated on a classical computer, such as
chemical reactions, and thus gain information that could potentially help in other
fields of science[10]. These circuits could either be realized in large freespace optical
setup or in smaller integrated photonic circuits Photonic circuits have in the recent
years shown promise for the scaleability of quantum computing due to well-developed
fabrication methods. Circuits on either Silicon or Semiconductor chips[30], consist
of many sub elements such as input/output gratings that allow the coupling to free
space laboratory light. These gratings couple to waveguides that can be used to for
example to route photons on the chip, and perform either linear operation, but also
nonlinear for example through the interactions with embedded quantum emitters.
The focus in this thesis is to work with on semiconductor quantum dots consisting
of InAs that are situated in a waveguide made of GaAs. Recognized for their ability
to produce single photons[33], another important feature is how the quantum dot
emitter can interact with light that is propagating in the waveguide.

Upon interaction with an emitter, not only the intensity of transmission is al-
tered, but a phase shift will also be gained. Such a phase shift is a nonlinear
operation that is sensitive to single photons, enable moreover the QD as a new tool
in quantum circuitry.

Depending on the type of waveguide, the emission of the quantum dot can be
tailored. This will effect the QD interaction and can then enhance the phaseshift
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up to a maximum phase shift of π, without any photon lost in the process[25].

Additionally the phase shift will depend on a range of physical parameters de-
scribing the QD and waveguide field system. Measuring the phase shift will then
not only give proof its existence but could also be used for characterization of the
emitter waveguide system. Here we set out to do a first direct measurement of the
phase shift on light transmitted through a nanophotonic waveguide with an embed-
ded quantum dot.

In Chapter 2 the phase shift operation will be introduced, as well as the QD-
waveguide system on which we will be working.

In Chapter 3 We will derive the theory of light transmitted through a waveguide
with a coupled single emitter. Especially, we will explore two different waveguide
configurations with either isotropic or chiral emission. With focus on the depen-
dency of physical parameters.

In Chapter 4 The experimental set for measuring the phase shift with a Mach-
Zehnder interferometer is presented. Due to large fluctuations in the interferometer
signal, methods is here developed to stabilize the interferometer for phaseshift mea-
surements.

Finally in chapter 5, a first direct measurement of a quantum dot induced phase-
shift will be presented and compared to theory. We will also present its nonlinear
dependence with power.
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Chapter 2

Phase shifts induced by wave
guide embedded quantum dots

2.1 Few photon dependent phase shift

2.1.1 Overview

For the application of using light in communications systems the ideal case is to
use light on the few photon level. At the few photon level we can also get into
the space of quantum mechanical effects. This might be used to realize quantum
computation-and communications tasks. In this sense one might think of photons
as flying qubits to which we are able to encode and read information[20]. However
to do that, interactions on the few photon scale needs to employed. This renders the
need for a substitute for linear optical media and high power nonlinear media. The
solution is giant nonlinearities i.e. nonlinearities sensitive to the single photon level.
To obtain these giant non linearity quantum emitters can be used. The quantum
emitters could for example be atoms, ions, molecules or quantum dots[8][23].
So far most experiments have concentrated on measuring the nonlinear behavior by
observing the transmission through the system for increasing power[5][47]. However,
the interaction also induces a phase shift on the transmitted light. The phase shift
might be system dependent and thus utilized in different ways.

2.1.2 Application in quantum computing and communica-
tion

Setting up the interaction between light and matter in structured manners in so
called circuits, allows for different types of quantum operations to be applied. These
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complete operations constitutes of a set of subsequent quantum gate operations [31].
The over arching goal is thus to realize this entire set of operations for general use.
Quantum operations have been implemented in a variety of different systems. In
atomic ensembles, entanglement for teleportation have been presented [36]. In a
photonical setting a controlled phase shift gate has been introduced using cross
phase modulation with nonlinear Kerr material [9].

Circuits that are realized in using freespace optics will take an increasingly bigger
size for larger circuits and will end up taking too much space with high instability
and fluctuations. In contrast, the photonic setting allows small and complex inte-
grated circuits to be fabricated directly on sample. Waveguides guiding light can
be fabricated like wires directly on sample. This allows for the propagation of light
in between on sample structures such as resonators and beamsplitters[30][22]. For
instance a circuit in silicon photoic have shown the realization of a CNOT gate and
quantum entanglement[35][22]. Introducing nonlinear behavior into such photonic
circuits allows for the introduction of additional interactions at the single photon
level[34][23]

Here we shall consider the nonlinearity in terms of a single quantum dot emitter.
This QD coupled to a nanophotonic crystal waveguide[24]. Depending on the wave
guide type and quantum dot coupling, the light transmitted through the waveguide
will either perfectly reflected or transmitted. In addition, a phase of respectively
π/2 and π is obtained. The latter case is of chiral behavior. These situations are
true at the single photon level, but for higher the effect might only be partial or
completely gone for strong ligth[25][47].

Combining multiple waveguides could make up circuits of light and emitters.
Arranging circuits in specific ways could shape the photon state and mediate dis-
tanced interactions with quantum dots for using in networks[6][23]. Especially the
chiral transmission is of high interest due to the obtainable phase shift of π. We
could here imagine the use of the chiral interaction situated in one arm of a Mach-
Zehnder interferometer. This configuration could be used as single photon diode and
with the control of the quantum dot transition as a CNOT gate. The realization
of these elements could provide great use future circuits for quantum computing
and information in quantum networks[28] [44]. Measuring the phase shift through
such a waveguide system might help characterization and further give proof of its
existence.
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2.1. FEW PHOTON DEPENDENT PHASE SHIFT

2.1.3 Current status on measuring few photon phase shift

Measuring the phase shift induced by a single emitter is an experiment of fundamen-
tal interaction between light an matter. Thus previous measurements of the phase
shift have been of interest in a range of fields.

Some phase shift measurement have been carried out with ions and ensembles
of atoms. By measuring with a trapped RB87 ion in one arm of a Mach-Zehnder
interferometer a phase shift up to 1o[1]. Another experiment [40] measured on RB85

strongly coupled to a cavity an emitter induced phased shift of 140o using homodyne
detection. A similar experiment but on caesium vapor have shown up to around 30o

phase shift including the cavity system [46].

Another experiment on trapped Ytterbium ions have shown up to 2o phase
shift[12].

An atomic ensemble of rubidium atoms were found to enhance the index of refrac-
tion on resonance, thus inducing a phase shift up 7π for the transmitted light.[51].
Conditional non-linear phase shift have been observed on the single photon level due
to electromagnetic induced trasparency [11].

In addition to measurement on ensembles and single atoms experiments have
been made on organic molecules. Here a maximum phase shift up to 6o is measured
using homodyne detection [37].

Here we shall focus on the interaction with semi conductor quantum dots. Though
consisting of many atoms they can behave like single emitters[24]. Enabling the mea-
surement of the phase shift of light interacting with these quantum emitters, will
both be able to help tell whether the phase shift is possible and in what regime of
environment depending parameters is limiting.

Some phase shift induced by quantum dot have already been experimentally
measured for quantum dots in cavitys. In micropillar cavities, phase shift of around
2.8o [50] and 80o [49] have been observed.

In another cavity system, consisting of a photonic crystal defect cavity. Phase
shift have been measured up to π/4 [14].

In this thesis we shall consider QD embedded in nanopohtonic wave guides.
With interest on the phase shift obtained for ligth transmitted through such a wave
guide. One such measurement have been done and inferred a 40o from correlation
measurent on the transmitted light.[21]. Here we shall examine the possibility of
measuring the phase shift in a direct manner using an interferometric method.
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2.2 Quantum dots in nanophotonic wave guides

2.2.1 Quantum dots

The quantum dots considered in this thesis is small semiconductor crystals made
of InAs. They consist approximately 105 atoms and have a size of tens of nanome-
ters[24]. They are situated in a much bigger millimeter scaled crystal of GaAs which
is also a semiconductor, as sketched on Fig.2.1. The electron movement in such a
crystal follow the typical band structure for periodical arranged atoms in condensed
matter[42]. Such semi conductor materials can undergo excitation through optical
light between the valence and conduction band, at the direct bandgap. Upon exci-
tation an electron can move to the conduction band while leaving a hole behind in
the valence band. Such electron hole pair is also called an exciton. The electron will
seek to be positioned at the lowest energy in conduction band, and the same is true
for the hole in the valence band. Compared to GaAs, the direct bandgap energy of
InAs is respectively higher and lower for the valence and conduction band (Fig.2.1).
Thus forming a energy well that confine the exciton to the InAs quantum dot, in all
spatial dimensions[24].

InAs

GaAs

z

E

z

v

v c

a) b)

Figure 2.1: a) A schematic type picture of how the InAs QD is embedded inside a
bigger GaAs diode. b) The corresponding simplified bandgap energy corresponding
to the z-cut axis on the schematic

Due to the strong confinement, a simplified two band picure has shown suffi-
cient for describing the physics of the exciton in the QD. This ultimately renders
the comparable to a TLS. The quantum state of the electron or hole is spatially
confined to the QD potential by an envelope function. This envelope for the con-
duction and valence has also been been drawn onto the schematic in Fig.2.1 as blue
and red areas. Referencing respectively to the conduction(c) and valence band(v).
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2.2. QUANTUM DOTS IN NANOPHOTONIC WAVE GUIDES

The difference between the average electron/hole position in the conduction/valence
band effectively make up the emitter with a dipole d.

The quantum dot might then be modeled like a single emitter two level sys-
tem(TLS). With ground state|g〉 and excited state |e〉, as also sketched on Fig. 2.2

E=ℏ

|e〉

|g〉

Figure 2.2: The schematic of a free emitting two level system with ground-and ex-
cited state |g〉 and |e〉. Excited by the incoming light of frequency ω, here comparable
to the emitter energy E.

The TLS have the ability to be excited by light at resonance with the TLS transi-
tion. At relaxation the TLS reemit to the environment with a certain emission rate.
Since the quantum dot is situated inside a crystal it is therefore in close connection
to its environment. This leads to different environmental impacts on the QD, and
thus how it interacts and emit light.

2.2.2 Environmental factors

Both the electron and hole will due to their charge be subject to a force from exter-
nal fields. Thereby a field would effectively change both the energy potential of the
exciton and the dipole vector. Thus free charges in the environment is a source of
noise on the exciton. This noise effectively does a smearing of the TLS that result in
spectral diffusion. This a type of spectral diffusion might be modelled as a spectral
Gaussian noise [21].
Furthermore, this also renders the quantum dot tune able by applying an external
constant electric field. That is why the sample in this case has been made as diode
by with a positive(p-GaAs)-and negative(n-GaAs) doped GaAs around the intrinsic
crystal where the quantum dot is situated, as indicated on Fig.2.1. The ability to
tune the quantum dot will be used later experimentally by tuning in and out of
resonance with a light field. The diode also reduce influence from free charge noise
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on the sample by allowing a current to run[33].

In crystals temperature is manifested as vibrations called phonons dispersing
through the material. This also apply for the sample crystal in this experiment.
Elastic interactions between the emitter and the present phonon bath, introduces
a broadening of the quantum dot emission rate. The interaction is much faster
than the emitter decay rate and thus constitute a pure dephasing. Effectively it
corresponds to a smearing of the energy levels in the TLS (Fig. 2.3).

E=ℏ�

|e〉

|g〉

Elastic scattering

Ph
on

on
 b
at

h

E=ℏ�

Γdeph|e〉

|g〉

Figure 2.3: Smearing of the energy states of TLS due to elastic scattering with a
phonon bath.

To reduce the broadening from phonons, the sample is situated in a cryostat
where it is cooled to approximately 4 Kelvin. Using that the quantum dots is em-
bedded in a in a larger crystal photonic structures can be used to guide the light
field for interaction.

2.2.3 Guiding light

Photonic structures can be used to shape the light field and thus the QD emission
and interaction. Here the ability to fabricate photonic structures on the sample
using lithographic methods and etching of material[30] is used. With these photonic
structures we can shape the local electric fields at the quantum dot position, which
ultimately will change how its emitting into to the environment. This has been
shown for quantum dots in both photonic crystals [26] and cavities[16]. In general
the physics of how a dipole emitter radiate into the environment can be describe
by the Greens tensor G, which is an environmental dependent tool that can that
can describe what the electric field E(r) at position r emitted from a point dipole
P (r0) at position r0. According to the relation

E(r) = ω2µµ0G(r, r0)P (r0) (2.1)

Where ω is the radial frequency of the electric field and µ0 and µ are the vacuum-
and relative material permeability[32]. To shape the emission we thus need to change
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2.2. QUANTUM DOTS IN NANOPHOTONIC WAVE GUIDES

the emitter environment. This will take effect through the Greens tensor G. Here
we shall examine the case of nanophotonic crystal waveguides.

2.2.4 Nanophotonic crystal waveguides

Nanophotonic wave guides have the ability to confine and direct light, to increase
interaction with embedded an embedded quantum dot.

Figure 2.4: Schematic of a photonic crystal waveguide (PCW) to a correspond-
ing area shown by red lines on a picture of a PCW made by a scanning electron
microscope.

The nanophotonic waveguides we consider here are mad with nanophotonic crys-
tals. The photonic crystal consist of regular triangular lattice structure, that has a
crystal constant a that is around 250nm. The crystal is constructed by periodical
removal of material on the sample in the shape of circular holes. This makes it a
crystal consisting of the sample material(GaAs) and the surrounding environment
(air/vacuum) that fills the holes. The holes have a radii of approximately 70nm. The
wave guide is created by removing one row of holes from this entire crystal, as also
shown in Fig.2.4. The waveguide is coupled to free space modes via input/output
grating couplers situated in boths ends of the PCW.
Such a photonic crystal waveguide (PCW) can confine the light to the size of the gap,
and thus interact well with Quantum dot emitter. The PCW limits the light modes
to certain bands. On the edge of these bands, the local density of optical states
is greatly enhanced[26]. The QD emission can then be highly edited in contrast to
emission in bulk/free space.

2.2.5 QD coupling to wave guide modes

In bulk the, emitter may emit into all spatial modes with out any strong preference.
However, wave guides encourages light to emit into modes that goes along with the
wave guide direction. The effective emission from a quantum dot into wave guide
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is defined from as a ratio between the total rate of emission and the portion that is
emitted to wave guide modes.

Figure 2.5: a) Free TLS emitting to all modes with rate Γ. b) Waeguide embedded
TLS emitting into the waveguide with rate ΓWG and out with loss rate Γloss.

This ratio is called the beta factor and is defined as

β =
ΓWG

ΓWG + ΓLoss
(2.2)

Where the total emission rate(denominator) consist of the emission rate to the
waveguide ΓWG and the rate of emission into non waveguide modes i.e. loss. These
type of nanophotonic waveguides have shown high β-factors of close to 90%[21] up to
98% [2]. As considered earlier the dephasing has an broadening effect on the quan-
tum dot. It is therefore preferable to have quantum freqeuncy be close to that of the
PCW. Here the rate emission is enhanced and thereby the dephasing is minimized
compared to the natural linewidth. In the group, similar QD waveguide systems have
shown that the dephasing rate is of no major effect to the quantumdot broadening
and the spectral linewidth and is thus limited to spontaneous emission[45][33][21],
typical dephasing rates is found to be in a typical range of 0% to 2% of the natural
emitter linewidth[21][13].

Quantum dots positioned in such wave guides have shown a good configuration
for the production of single photons by resonantly exciting the quantum dot and
letting it re-emit. The single photons from this have shown indistinguishabilty
above 95% [48]. Rendering the setup a good candidate as a single photon generator
in photonic circuits aswell.

2.2.6 QD interaction with the wave guide field

The interaction between a dipole emitter and optical electric field can in quantum
mechanics be described via the Jaynes-Cummings model. The interacting Hamil-
tonian term between field and emitter provides Ĥint = −d̂ · Ê. It is here evident
that the interaction must be highly dependent on the polarization of the dipole and
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2.2. QUANTUM DOTS IN NANOPHOTONIC WAVE GUIDES

electric field. In the case of the PCW the light polarization within the waveguide
is mostly linear and thus only interact with linear dipole transitions. However a
waveguide with circular polarized light can be made. It is similar to the one con-
sidered in Fig. 2.4, but the an asymmetry constant as shown in Fig.2.6 has been
applied. The asymmetry is made by displacing the crystal by half a crystal period,
thus called a glide plane waveguide (GPW).

GPW

Figure 2.6: The schematic of the crystal structure in a glide plane waveguide

In the GPW structure the light is circular polarized and thus couple to circular
dipole transitions in the QD. This is sketched for both wave guide configurations
in Fig.2.7. The maximum obtainable phaseshift in these waveguide configurations
are π/2 and π, for the PCW and GPW respectively. This is a case of respectively
a isotropic(PCW) and chiral(GPW) wave guide coupling. Due to the π phaseshift
only being obtainable in one transmission direction.
The circular polarization is what gives rise to the case of chiral interaction, due the
difference in overlap between the dipole and light field in the different direction of
propagation[44][25].

π/2

π/2

π

a) b)

σ
+

Figure 2.7: a) Transmission at linear dipole coupling in a PCW is isotropic b)
Transmission for circular dipole coupling in a GPW is chiral.

2.2.7 Phase shift on light transmitted through a waveguide

Here we set out to measure the phase shift for light that is transmitted through a
nanophotonic wave guide with an embedded quantum dot. The phase Will be mea-

17



sured through the interferometric difference between transmitted and freely propa-
gating light, as schematized in Fig.2.8.

Phase shiftWave guide

QD

Figure 2.8: Schematic comparison between freely propagating light and QD wave
guide system. Wave guide is the grey scale inset SEM picture with QD shown as
red dot

Fig.2.8. [25]
However in order to know what to expect in the experiment, a theory has to be

developed. Both for the case of isotropic coupling but also for chiral transmission.

18



Chapter 3

Theoretical description the
emitter interaction in a wave
guide.

In this section we will look at the mathematical modelling of a quantum dot em-
bedded in a one dimensional waveguide. The theory is in large part inspired by
reference [47] and [43]. We will here focus on the transmission of the light field, and
its dependency on: the coupling β, the light intensity and dephasing rate of the QD.

3.1 Definition of the transmission

Eloss

Ein,R

Eout,L

Eout,R

Ein,L

Figure 3.1: Simplified picture of a 1D waveguide containing an embedded TLS with
an excited state |e〉 and a ground state |g〉 separated by the energy difference h̄ω.
The arrows indicate the direction of propagation left(L) and right(R). The fields are
defined before (in) and after (out) scattering. The loss is defined as non waveguide
propagating modes

We define a transmission coefficient t that characterize the effect of the system
on an input field. We can write the equation
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Eout,(L,R) = t(L,R)Ein,(L,R) −→ t(L,R) =
Eout,(L,R)

Ein,(L,R)

By differing between the direction of propagation left(L) and right(R), the direc-
tionality of the transmission may be taken into account. This will allow to account
for the chiral coupling where the transmission is directional dependent.

Our goal is now to find the expectation values of the electric field operators, by
modelling the interaction between the emitter and the light field.

3.1.1 Quantization of the electric field

To describe the electric field operators we first quantize the electromagnetic field by
defining the creation f̂ † and annihilation f̂ operators of the bosonic photon field.
They can be described by the Fock states |n〉, where n is the photon number:

f̂ =
∑
n

√
n |n− 1〉 〈n|

f̂ † =
∑
n

√
n+ 1 |n− 1〉 〈n|

The operators follow the commutation relations, which can be written:.

[f̂k(r, ω), f̂ †k′(r
′, ω′)] = δ(r − r′)δ(ω − ω′)δk,k′

[f̂k(r, ω), f̂k′(r
′, ω′)] = 0

when taking into account the spatial position r, frequency ω and the momentum k
of the field excitation.
This can be used to define the known expression for the electric field operator in
media[7].

Ê+(r, ω) = iµ0ω
2

√
h̄ε0
π

∫
dr′
√
εI(r′, ω)G(r, r′, ω)

∑
k

f̂k(r
′, ω) (3.1)

G is the Green tensor as described in Eq.2.1 in previous chapter. ε0 is the
vacuum permitivity and εI is the imaginary part of the material permitivity. The
total electric field operator is Ê = Ê+ + Ê−, where Ê− is the hermitian conjugate
of Ê+.
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3.1. DEFINITION OF THE TRANSMISSION

3.1.2 Electric field dynamics

The environment geometry and material is assumed overtime constant ie. Ġ = 0 and
ε̇I = 0. Thereby only the evolution of the bosonic operator have to be considered.
The evolution of the electric field is found using the Heisenberg equation:

˙̂
fk(r, ω) =

i

h̄
[Ĥs, f̂k(r, ω)]

Ĥs is the system Hamiltonian, which takes into account the field energy, the
emitter energy and their interaction. The emitter is modeled by a excited state
|e〉 and ground state |g〉 of energy Ee and Eg. We define using this, the atomic
transition operators:

σ̂eg = |e〉 〈g| σ̂ge = |g〉 〈e|

The Hamiltonian describing coupling between a two level system and light field
can be described by the Jaynes-Cumming model [15]:

Ĥs = h̄ω0σ̂egσ̂ge +
∑
k

∫
dr

∫
dω h̄ω

(
f̂ †k(r, ω)f̂k(r, ω)

)
− d̂ · Ê (3.2)

That in the first term contains the energy of the emitter. The second is the
total photon energy and the last term is the interaction term between the emitter
and electric field. Where d̂ is the dipole operator, defined in the case of a TLS as
d̂ = dσ̂ge + d∗σ̂eg. By inserting the electric field operator and the dipole operator
into the interaction term, we obtain the last term to be:

Ĥint = (dσ̂ge + d∗σ̂eg)(Ê
+ + Ê−)

The evolution of the electric field and atomic operators can be written as respec-
tively:

Ê
+

(t) = Ê
+

(0)eiωpt

σ̂eg(t) = σ̂eg(0)e−iωat

After substituting this into Ĥint we can apply the rotating wave approximation.
Which allows the simplification:

Ĥint = dσ̂geÊ
+

+ d∗σ̂egÊ
−

Using this in the total system Hamiltonian we can now find the dynamics of the
bosonic operator. Expanding the commutator in the Heisenberg equation we can
write:
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˙̂
fk(r, ω) =

i

h̄
(Ĥsf̂k(r, ω)− f̂k(r, ω)Hs)

By using the commutation relation of the bosonic operators, and the fact that
the bosonic operators commute with the atomic operators, we obtain the equation
of motion:

˙̂
fk(r, ω) = −iωf̂k(r, ω) + d∗σ̂geiµ0ω

2

√
ε0
h̄π

∫
dr′
√
εI(r′, ω)G∗(r, r′, ω)

This differential equation is solved by formal integration from an initial time t′

to t. I addition we assume the emitter to be a point dipole at position ra. Using
this we can write:

f̂k(r, ω, t) = f̂k(r, ω, t
′)e−iω(t−t

′)+µ0ω

√
ε0
h̄π

√
εI(r, ω)G∗(ra, r, ω)d∗(ra)

∫ t

t′
dt′σ̂eg(t

′)e−iω(t−t
′)

Using this in the electric field operator Eq.3.1, we obtain a total operator with
two terms: one corresponding to the freely propagating electric field and the other
to the scattered field of the quantum dot.

Ê
+

= Ê
+

free + Ê
+

scat

The last scattering term can be written as:

Ê
+

scat = iµ2
0ω

4 ε0
π

∫
dr′εI(r

′)G(r, r′, ω)G∗(r′, ra, ω)d∗(ra)

∫ t

t′
dt′σ̂eg(t

′)e−iω(t−t
′)

By using Greens tensor identity:

µ0ε0ω
2

∫
dr′′εI(r

′′)G(r, r′′, ω)G∗(r′′, r′, ω) = Im[G∗(r, r′, ω)]

we get

Ê
+

scat = iµ0ω
2 1

π
Im[G∗(r, ra, ω)]d∗(ra)

∫ t

t′
dt′σ̂eg(t

′)e−iω(t−t
′)

We take here all the frequency components into account by integration, and inset
the slowly varying atomic operator σ̂(t) = σ̃(t)eiωat. This leads to:

Ê
+

scat = iµ0
1

π

∫ ∞
0

dωω2Im[G(r, ra, ω)]d∗(ra)

∫ t

t′
dt′σ̂eg(t

′)e−i(ω−ωa)(t−t′)

22



3.1. DEFINITION OF THE TRANSMISSION

Finally by using the Markoff approximation. This assumes that the atomic op-
erator doesn’t evolve during the interaction ie. σ̂(t) = σ̂(t′). The integral evaluates
to

Ê
+

scat(r, t) = iµ0
1

π
ω2
aG(r, ra, ωa)d

∗(ra)σ̂eg(t)

We can express this in terms of the freely propagating field Ê
+

free(r, t)

Ê
+

scat(r, t) = iµ0ω
2
a

Ê
+

free(r, t)dG(r, ra, ωa)d
∗(ra)σ̂eg(t)

h̄Ω̂
(3.3)

Where the Rabi frequency Ω̂ = Ê
+

free(r, t)d/h̄ is introduced. We furthermore
define the dipole projected Greens tensor

gij(ri, rj) =
iµ0ω

2
a

h̄
dG(ri, rj, ωa)d

∗(ra)

It describes the field propagation between point ri and ri. The dipole projected
Greens tensor for a simple 1D waveguide return a function and can be expressed as
[4].

gij(ri, rj) = i
Γβ

2
eik|ri−rj |

Here Γwg is the total emission rate of the emitter to waveguide modes and β is
the coupling efficiency defined as β = Γwg/(Γwg + Γloss). Γloss is the emission rate
into other modes than the waveguide and is thus lost, see Fig.3.2. This equation
assumes a isotropic system and thus an equal rate emission into both directions left
and right of the waveguide, hence the division of the factor 2. To expand this to
the case of chiral coupling where we have need to differ between the direction of
propagation. We define the chiral dipole projected Green function:

Figure 3.2: QD emitter embedded in a waveguide. a) Chiral coupling with direc-
tional emission rates ΓL and ΓR. b) Isotropic coupling with emission Γ/2. In both
cases Γloss is the emission rate into non guided modes.
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gij(ri, rj) = Θ(ri − rj)iΓβLe
ik|ri−rj | + Θ(ri − rj)iΓβRe

ik|ri−rj | (3.4)

Where L,R is the direction of propagation of the light and thus the chiral coupled
emission rate ΓL,R into said directions, as on Fig.3.2. Left and right propagation
is defined with regards the position ri as L when ri < rj, and R for the opposite
sign. The Heaviside function Θ is introduced to select the correctly coupled term
depending on the propagation direction.
The chiral coupling can defined as βL,R = ΓL,R/(ΓL + ΓR + Γloss), where we can see
that we come back to the isotropic case if emission rate ΓL 6= ΓR = Γ/2 as also
shown on Fig. 3.2.

With these results, we are finally able to calculate the transmission parameter
as sought for in the beginning. We note that a freely propagating field will just be
equal to that of the input field ie. Efree = Ein. Using this we obtain the equation
for the transmission coefficient.

tL,R =
〈Ê

+

in,(L,R)〉+ 〈Ê
+

Scat〉

〈Ê
+

in,(L,R)〉
Using the result for the scattered field Eq. 3.3. The coefficient equation reduces

to.

tL,R = 1 +
gij(ri, rj)

Ω
〈σ̂ge(t)〉 (3.5)

The term eik|ri−rj | has been removed since it is an overall propagating phase that
both the scattered and freely propagating light obtains in the waveguide.

We can see that all the input field terms cancel and we are left with to find an
expression for the expectation value of the atomic transition operator. To find this,
we must consider the dynamics of the emitter.

3.2 The emitter dynamics

The emitter system can be described by the density matrix defined as:

ρ̂ =
∑
i,j

ρij |i〉 〈j|

Where the elements ρi,j for i, j ∈ {e, g} describes the emitter population for i = j
and the system coherence for i. We can write the density matrix explicitly as:

ρ̂ =

(
ρgg ρge
ρeg ρee

)
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3.2. THE EMITTER DYNAMICS

From this we can obtain the expectation value of the atomic operator, needed
to calculate the transmission coefficient in Eq. 3.5: It is obtained by:

〈σ̂i,j〉 = Tr[ρ̂σ̂ij] = ρji

Since our emitter system is not isolated from a nearby environment it will suffer
from decoherence, due to the elastic scattering of phonons in the environment, as
mentioned in the previous chapter with relation to the puredephasing rate. This is
modeled as a coupling to a reservoir. The reservoir is said to be big ie. unchanged
and untangled with the emitter. Furthermore, it is assumed to be of much faster
dynamics. The equation of motion for an emitter system coupled to this reservoir
can be modeled by the Lindblad master equation [29]:

˙̂ρ =
−i
h̄

[Ĥs, ρ̂] +
∑
i,j

Γij
2

(2σ̂jiρ̂σ̂ij − σ̂iiρ̂− ρ̂σ̂ii) (3.6)

Terms where i 6= j corresponds to atomic transitions and thus the rate of light
emission. The rate is hereafter defined as Γeg = Γ. Terms for i = j corresponds to
transitions for state back to itself again. This effect introduces the loss of coherence
for the emitter without an atomic transition, and correspond to the pure dephasing
rate Γee = Γgg = Γdeph.
Since we are interested in the dynamics of the emitter we turn to consider the sys-
tem in a rotating frame with the frequency ωp of the photon field, which we consider
constant. Since we assumed a constant driving we can turn to a semiclassical ex-
pression and remove the electric field operators, by introducing the Rabi frequency
scalar Ω = d ·E+/h̄. We obtain the Hamiltonian in photon frame as:

Ĥ ′s = −h̄∆σ̂egσ̂ge + h̄ωp
∑
k

∫
dr
(
f̂ †k(r, ωp)f̂k(r, ωp)

)
− h̄Ω(σ̂ge + σ̂eg)

(3.7)

∆ is the detuning between the optical field and the emitter resonance and is
defined as ∆ = ωp − ωa. Using this along with the Lindblad equation Eq.3.6, we
obtain the equation of motion:

ρ̇ge = −(Γ2 + i∆)ρge + iΩ(ρee − ρgg)

ρ̇ee = iΩ(ρeg − ρge) + Γρee
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Here we have defined Γ2 = Γ/2 + Γdeph. As we will be working under continuous
wave excitation in the experiment, we can assume the operators in steady state ie.
ρ̇ge = ρ̇ee = 0. Finally we obtain the elements of the density matrix as:

ρge = − Ω(Γ2 + ∆)

Γ2
2 + ∆2 + 4(Γ2/Γ)Ω2

(3.8a)

ρee = − 2Γ2Ω
2

Γ(Γ2
2 + ∆2 + 4(Γ2/Γ)Ω2)

(3.8b)

The other matrix elements can be obtained through ρeg = ρ∗eg and ρgg = ρ∗ee.
Using this in the next section we can obtain an expression for the coefficient of
transmission in Eq.3.5.

3.3 Evaluating the transmission coefficent

Using the result for the density matrix elements Eq.3.8 and the expression for Eq.3.4
Along with 〈σ̂ge〉 = Tr[ρσ̂ge] = ρeg. We calculate the transmission coefficient Eq.3.5.
For respectively the chiral and isotropic case we obtain:

t = 1 + iΓ
β

2

iΓ2 + ∆

Γ2
2 + ∆2 + 4(Γ2/Γ)Ω2

(3.9)

tL,R = 1 + iΓβL,R
iΓ2 + ∆

Γ2
2 + ∆2 + 4(Γ2/Γ)Ω2

(3.10)

From theses final expressions we can calculate the expected phase shift of the
transmitted light as the argument of the transmission coefficient. With this we can
evaluate the phase shift dependence on dephasing Γdeph , the coupling β and the
power through the Rabi frequency Ω.

3.3.1 Intensity of transmission

Other than the transmission coefficient we also want to consider the intensity of the
transmitted field as this is what, that is actually measured on the detector. The
Transmission intensity can be written as

T =
〈Ê−Ê+〉
〈Ê−inÊ+

in〉
Following the same procedure as for the transmission coefficient we obtain the

transmission intensities for respectively the isotropic and chiral case.
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3.3. EVALUATING THE TRANSMISSION COEFFICENT

T = 1− βΓ2Γ(2− β)

2(Γ2
2 + ∆2 + 4(Γ2/Γ)Ω2)

(3.11)

TL,R = 1 +
2Γ2ΓβL,R(βL,R − 1)

Γ2
2 + ∆2 + 4(Γ2/Γ)Ω2

(3.12)

We now have the expressions to compare the spectral response of the transmission
intensity and phase shift of the chiral and isotropic coupling. Displayed in Fig. 3.3
we consider the spectral response to the phase shift and transmission intensity for:
zero dephasing, low power and ideal coupling of β = 1 and βL,R = 1.
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Figure 3.3: The phaseshift and transmission at Γdeph = 0 and Ω = 0 for a) isotropic
coupling at β = 1. b) chiral coupling at βL,R = 1

The isotropic coupling shows a lorentzians shaped response that goes to zero at
resonance. Whereas the chiral coupling introduces unit transmission at all detuning.
This would ultimately mean that in the full chiral case we would not measure any
response on the intensity and all the effect would be in the phase shift. This argues
for the experimental availability of being able to measure phase shifts, as a tool of
characterization. We observe the expected maximum phase shift of 90o for isotropic
coupling and 180o in the chiral case.
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3.3.2 Saturation of Phase shift

Here we shall examine the power dependency of the phase shift. This is done through
the Rabi frequency which is proportional to the electric field and thus proportional to
the square root of the power. With regards to expression of transmission coefficient
in Eq.3.9 and 3.10 the dependency is expected to be non linear. In Fig. 3.4 the
spectral response of the phase shift for a range of powers in both the isotropic and
chiral case is plotted.
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Figure 3.4: The spectral response of the phase shift for different Rabi frequencies,
as indicated on the colorbar. For the isotropic (a)) and the chiral (b)) case.

The chiral case seems to be more robust for increasing power. To investigate
further, the maximum phase is plotted as a function of the Rabi frequency for a
range in Fig. 3.5.
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Figure 3.5: The maximum phase shift as a function of the Rabi frequency, for the
isotropic (blue) and the chiral (orange) case.

The power dependence is highly non-linear for both cases. However, especially
for the chiral case that seem to have a stable plateau of 180o phase shift until a
sharp point at Ω ∼ 0.35Γ where the maximum phase shift drops from 180o to 90o.
After this point it follows a similar behaviour to the isotropic case. This plateu gives
some rest that the chiral π phase shift is robust.

3.3.3 Effect of the coupling

It is use full to see how the robustness as found in Fig: 3.5 depends of the coupling.
As we in a real setup, wont have unit coupling. In Fig. 3.6 a) and b) the maxi-
mum phase shift has been plotted for the isotropic and chiral coupling case. When
decreasing the isotropic coupling the maximum obtainable phase seems to directly
decrease for decreasing β factor. While we in the chiral, the robustness plateau
continues to exist until βL,R goes towards 0.5 where it reduces to the result of unit
isotropic coupling. To observe the evolution of the sharp transition from the plateau,
we define the point χ at which the largest absolute gradient of the maximum phase
shift as function of power.
In Fig. 3.6.c) the χ point is plotted as a function of the coupling βL,R. We observe
here an almost linear correlation for high coupling and then a gradual increasing
change when going towards βL,R = 0.5. The measurement of this χ point might
then be a direct method to obtain the coupling for chiral systems.

3.3.4 Effect of the dephasing

In a similar as when considering the power dependency, the effect that dephasing
has on the phase shift is considered in Fig. 3.7
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Figure 3.6: The maximum phase shift power dependence for a range of coupling
factors (legends) for the isotropic a) and chiral case b). At Γdeph. c) The sharp
phase shift change point χ as function of βL,R
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Figure 3.7: The spectral response of the phase shift for different pure dephasing
rates, as indicated on the colorbar. For the isotropic (left) and the chiral (right)
case.
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3.3. EVALUATING THE TRANSMISSION COEFFICENT

The story seems here to be quite different between the coupling cases. Where
the isotropic quickly gets a lower maximum achieveable phaseshift, the chiral stays
undifferent. Here we have evaluated the phase shift up to Γdeph = 20%Γ which is
alot, when comparing to measured values of dephasing in litterature

3.3.5 The instantaneous phase shift switch in chiral coupling

Ω=0Γ

Ω=0.1Γ

Ω=0.3Γ

Ω
=
0
.5
Γ

Ω
=
0
.7
Γ

Figure 3.8: Complex space plot of tL,R as function of detuning(colorbar) for range
of Rabi frequencies at Γdeph = 0

Due to the transmission coefficient being a complex number it might be interesting
to plot it in the complex space. In Fig. 3.8 the chiral transmission coeffiecient tL,R is
plotted in the complex space as a function of detuning for different Rabi frequencies.
It is here visible that tL,R draws out a circle in the complex space for low power and
collapses that collapses to smaller ellipses for increasing power. Using this visual-
ization one can directly interpolate the behavior of the transmission coefficient for
a certain detuning as power is increased.

When evaluating the transmission coefficient at zero detuning the transmission
coefficient purely takes on real values. When considering this for increasing power
we can see that the transmission coefficient must cross origo in the complex plane
coordinate system. This must ultimately mean that the phase shift will experience
an instantaneous switch from 180o to 0o. To visualize it more literally we plot in
Fig.3.9 the decomposed complex value of the complex transmission coefficient at
zero detuning for a range of powers.
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|t|arg(t)

180

Figure 3.9: The phase(blue) and modulus(orange) of the complex transmission co-
efficient as function of power.

Here we observe that when the modulus |t| = 0 the phase shift experiences an
instantaneous switch from 180o to 0o.

For this to be measurable we need a non zero intensity of the transmitted light.
We saw earlier in Fig. 3.3 that at perfect coupling the chiral case yields unit trans-
mission. We shall therefore try and compare the transmission intensity for several
cases coupling strength to give an indication whether this phase shift is observable.
In Fig. 3.10 we compare the transmission intensity to tL,R at zero detuning for
a range a of βL,R factors and for a realistic Γdeph = 0.05Γ, in order to see if the
instantaneous phase shift is measureable.
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Figure 3.10: Transmission intensity(full line) compared their respective transmission
coefficient (dashed lines)at different βL,R factors as indicated in the legends. For
Γdeph = 5%Γ

We observe here multiple cases for βL,R > 0.5 where the coefficient t crosses the
zero line, thus indicating the phase shift switch from 1800 to 0o. While this is true
the transmission intensity is still larger than 0. Ultimately indicating that this phase
shift switch behavior would be possible to observe for chiral systems.

3.3.6 Realistic case for a PCW

In the real world setting in the lab we typically measure on QD in PCW waveguide
with coupling to the range β > 0.9 and with dephasing in the range Γdeph = [0; 0.1]Γ.
In reference [21] they find β > 0.87 and Γdeph = [0; 0.12]Γ for a QD in a PCW.
Conisdering these values we obtain the transmission intentsity and phase shift for
low power as shown in Fig. 3.11.
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Figure 3.11: The spectral response for the phase shift and transmission, for β = 0.87
and Γdeph = 0.1Γ

From this theoretical prediction we expect to have a maximum measureable
phase shift of around 35o with a on resonance transmission extinction at around 0.9.
In accordance to this we should experimentally be able resolve such a phase shift.
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Chapter 4

Experimental setup

4.1 Using a Mach-Zender interferometer to mea-

sure phase shift

The phase shift induced on the transmitted light is measured using a Mach-Zehnder
type interferometer. The Mach-Zehnder interfeormeter consist intially of a BS that
splits the input light into to different paths. After propagation the two paths is
overlapped at a final beam splitter, as shown in the schematic on Fig.4.1. The
output light from this beamsplitter then shows the interference signal. The intensity
of this signal depends of the phase difference between the light obtained in one path
compared to the other. The phase shift arise from either the path length difference,
experimental equipment or interaction with the quantum dot. The intensity of the
output is measured by photo detectors, call them here A and B. The normalized
intensity on the outputs follow the relations below:

IA = sin((ϕE + ϕQD)/2)2 IB = 1− IA

The intensity depends on the total phase difference ϕE+ϕQD between the two paths.
ϕE relates to that induced by the environment and the path length difference. ϕQD
is the phase shift induce by interaction with the quantum dot. As explored in the-
ory ϕQD were calculated from the complex transmission coefficient as ϕQD = arg(t).
Thus it depends on detuning between the QD resonance and light field. This phase
is then measured from the interference signal on one of the outputs, while scanning
the light across resonance of the QD. However, output signal will also depend on
the environmental phaseshift ϕE. To distinguish between the two, it is used that
the QD resonance can be tuned electrically using the stark effect. Using this, ϕQD is
then extracted as the difference between two subsequent measurements: One where
the QD is tuned far off resonance and one where it is fixed to a certain frequency
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close to resonance of the light.

Figure 4.1: Principle of the Mach-Zehnder interferometer with a relative phase ϕE
and ϕQD for QD resonant light. Detector A and B on the interferometer is filtered
frequency wise by frequency filters (CF).

An experiment with the same methodology have been conducted where light
interacting on a single trapped Rb87 ion [1]. A maximum phase shift of 1o is observed.

The environmental induced phase shift is a source of large fluctuations in inter-
ferometeric signal. The main source of fluctuations comes path length fluctuations
larger than than the wavelength of the light. These fluctuations has root in the
vibration of the optical equipment. This were especially present since, the interfer-
ometer had an optical path length of approximately 3m, and were mounted on top of
a cryostat with no measure of vibration dampening. Thus the interferometer had to
be stabilized over the cause of a measurement. The stabilization is realized through
mounting one of the interferometer mirrors on a piezo electric transducer(PZT),
which enable linear displacement of the mirror and thus to change the path length
difference. Fluctuations in the path length were thereby stabilized actively in a
feedback loop that stabilize the output signal of the interferometer. However, if the
stabilization were to be done on the light interacting with the quantum dot, the
sought for phase obtained from to the interaction, would simply be compensated in
the stabilization loop and the phase shift would not be measurable. To circumvent
this, a second far off-resonant laser for stabilization is sent through the interferom-
eter. The two colors are depicted on Fig. 4.1 with their respective obtained phase.
By filtering the two colors at the outputs, they respectively be used for stabilizing
of the interferometer and measurement of the quantum dot induced phase shift.
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4.2. EXPERIMENT CONTROL AND OPTICAL SETUP

4.2 Experiment control and optical setup

Here we shall consider the optical setup used for experiment in the lab and later
how the the surrounding equipment were controlled and used.

4.2.1 Optical setup

The setup consist of 3 free space optical setups connected by fiber. They will be
presented as follows. 1) The Mach-Zehnder interferometer setup for measuring the
phase shift. 2) Laser overlapping setup for introducing two different wavelengths in
the interferometer. 3) A color filter setup using a grating to filter strong stabilization
before a single photon detector.

1) Interferometer
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PBS�/2 �/2

PB

�/

Figure 4.2: a) Optical setup of the interferometer. b) SEM picture of an example
PCW

At the input (In A) of the overlapped laser light, a beam splitter redirect a part
of the input to a power meter, for stabilization of the power in a feedback loop with
PID 2 as shown later on Fig. 4.4. Here both laser inputs is directed to the power
meter, however stabilization laser has much higher intensity, such the power from
the measurement laser can be neglected. Then a polarizing beam splitter (PBS)
is placed the first beam ”splitting” of the interferometer. Before this PBS, a half
waveplate (λ/2) is used to adjust the polarization, and thus able to control the in-
tensity of the light being led into both interferometer arms. The intensity would
have to be controlled since the loss might be unequal in the two interferometer arms.
Therefore, it is adjustable for setting the intensity equal at the interference in the

37



end.

The reflected beam is sent to the sample containing the PCW with an embedded
quantum dot and the other is reflected of the PZT mounted mirror. The sample with
the PCW is positioned in a cryostat and is cooled to 4K, in a low pressured (mbar)
helium atmosphere. The sample is mounted on a PZT positioning stage at the end
of an approximately 1 meter long cage, directly below the interferometer. In order
to guide the light to the sample, in reality a beamsplitter would rotate the optical
propagation from horizontal to vertical. Above the sample a microscope objective is
used to focus and thereby couple light into the Input output gratings of the PCW,
as seen on Fig.4.2.b). To match the optimal input polarization of the grating a λ/2
waveplate is installed. As indicated by the arrows on the gratings in Fig.4.2.b). In
a similar manner the light from the output grating is also collected and collimated
back into the interferometer arm using the microscope objective. Before interfering
the two paths at the 50:50 beamsplitter, a λ/2 wave plate is installed to match the
polarization, for maximum fringe visibility. Since the light loss is greater for the
PCW transmitted path an additional power control is added on the PZT reflected
path, using an additional λ/2 filter and a PBS .

Finally the two path is interfered on 50:50 beamsplitter. The outputs of the
interferometer respectively have an avalanche photo detector(APD) and fiber cou-
pling output(OUT B) installed. The APD is used to record the interference signal
for the stabilization feedback loop. Both overlapped colors is measured on the APD,
but due to the high intensity of stabilization laser light the other can be neglected.
The fiber output is lead through a grating filter setup for filtering of the strong
stabilization light, thereby allowing single photon measurement of the quantum dot
interacting light.

Finally, in addition to the interferometer setup, a small camera is also installed
to image of the sample. Here a beam splitter is positioned such that the light from
a light emitting diode (LED) is directed towards the sample, and the camera can
image the LED light reflection from the sample. This produces an image of the
PCW as shown in the grey marked area on Fig.4.2.a).

2) Color overlap

Before the interferometer a free space optical setup were build to overlap the light
from two lasers. The overlapping setup consist of two laser inputs of different wave-
length that is overlapped into the same spatial mode and coupled into the same
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ND Filter
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b) 

Figure 4.3: a) The laser overlapping setup. b) The grating filter before acquisition
at the SPAPD

fiber. See Fig. 4.3.a). The QD resonant laser input (laser 1 ) is first partially re-
flected with a beamsplitter onto a power meter. The measured power is used for
power stabilization, using pid 1 as later shown on Fig. 4.4. Afterwards this light is
spatially overlapped with off-resonant quantum dot laser light (Laser 2 ), and cou-
pled into a fiber. This fiber is then routed to the interferometer setup.

3) Filtering of the strong stabilization light

The grating filter start by an input fiber (In B) that contains the interference signal
from the interferometer output (Out B). This signal is then split according to its fre-
quency into different spatial modes by using a diffraction grating. To filter away the
stabilization light, a fiber output coupler is then aligned to the QD resonant (laser
1). This enabled the measurement of the QD resonant light without the strong stabi-
lization light. This output is then measured using a single photon avalanche photon
detector (SPAPD), that enables for the measurement of photons. The SPAPD is
connected to a FPGA which count the number of events within a certain integration
time. Hereafter, the integrated counts is sent by serial communication to be saved
on the computer. the grating filter were measured to have transmission range of
roughly 0.5nm around peak transmission. Thus the wavelength of the stabilization
laser 2 had to be chosen outside of this range. Initially band pass filters were used.
However they were found inadequate for filtering, as the photon measurement were
completely drowned in light from the stabilization laser.
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Along with the optics, the setup consist of many sub elements, that is controllable
through a serial connection to a computer.

4.2.2 Experiment control

Fig. 4.4 show a detailed overview schematic of the entire experimental setup and
the connection between sub elements. Here everything from the initial control of the
laser sources to the end measurements were controlled and logged by communication
to a computer.

Figure 4.4: A layout of the interconnections between devices used in the setup.
Black arrows indicate electrical connections and colored (Blue/Red) indicate laser
lines for Laser 1 and Laser 2.

The schematic is drawn in a chronological ordered manner from left to right,
corresponding to the experimental procedure. First the two lasers are initialized.
Here laser 2 is set off-resonant to the QD transition and is used for stabilization.
Laser 1 is used for measuring the of the phase shift. First, the laser wavelengths
are stabilized to a specified wavelength, using a feedback loop with a wave meter
(WLM ). Laser 2 wavelength had to stabilized through an intermediate digital to
analog current(DAC ) device between the computer and laser controller.
Then the light output from the two lasers are connected with fibers into two sepa-
rate power controlling-and stabilizing voltage controlled attenuators, controlled with
PID loop(PID 1,2 ). The powers are stabilized to the power measured on two power
meters. The are located in different free space optical setup, respectively the Laser
overlap and Interferometer. After power stabilization, the two separate lasers are
overlapped and combined into one fiber in the Laser overlapping setup. This fiber
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4.3. STABILIZATION OF THE INTERFEROMETER

routes the overlapped laser light to the cryostat and interferometer setup.
In the Mach-Zehnder interferometer setup, one path is coupled through a photonic
wave guide with an embedded quantum dot. The resonance of the quantum dot can
be controlled by the Stark effect via the voltage source that applies a voltage across
the the sample diode.

After transmission through the wave guide, the light is overlapped back with the
refference beam, using a mirror mounted on a PZT, used in the interference signal
can be stabilized on an avalanche photo detector by a feed back loop. The feed back
loop response is controlled using an Arduino Due microcontroller or a Red Pitaya
(See next section).
The other output of the interferometer that is not used for, the stabilization feedback
loop, is sent through a wavelength filtering grating system. This enables the filtering
of the strong stabilization light from laser 2. This allows the measurement of single
photons experiencing a phase induced by the QD on a single photon APD (SPAPD).

Controlling the setup like this, enables the the measurement of data and change
of many device parameters on a short time scale.

4.3 Stabilization of the interferometer

Mechanical fluctuations on the order of the laser wavelength will be imprinted as
huge fluctuations on the interferometer output signal. As previously described one
of the mirrors in the interferometer arm is mounted on a PZT. By applying a voltage
across the PZT it will expand and linearly displace the mirror. Thereby allowing to
adjust the path length of the interferometer arm for compensation of the fluctua-
tions. The PZT used in this case have a range of 5µm/1000V. In order to stabilize
the interferometer, this voltage is controlled by a feedback loop with the interfer-
ometer output.

Initially an Arduino[3] was used to stabilize the interferometer using an home
written algorithm inspired by reference [17]. This method was later replaced by the
use of Red Pitaya[39] with a processor and field programmable gate array (FPGA)
was used to implement a lock-in amplifier and PID loop. A closer look on these
methods will be taken in the following sections.
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4.3.1 Stabilization with a Arduino micro controller

Arduino provides a range of different micro controllers. The micro controllers sup-
plies a controllable interface between a series of inputs and outputs. The one used
here is the Arduino Due, because of its digital to analog current(DAC) output. The
voltage produced by the APD mesuring the stabilization light output is measured by
the Arduino’s analog to digital (ADC) input. Initially to test the response, a ADC
voltage output was used to control the PZT while the corresponding interferometric
signal was recorded on the DAC input. In Fig. 4.5 shows the result of sweep of the
fringes by modulating the ADC voltage with triangular signal.
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Figure 4.5:

Here we observe that the interferometer response is just a bit more than a period
for each modulation. Meaning that we in this case is able to resolve an entire fringe
period of the interferometer. The ability to interfere can be defined by interferomet-
ric visibility v defined as:

v =
fmax − fmin

fmax + fmin − 2B

Where fmax and fmin is the maximum and minimum fringe value and B is the back-
ground signal. The result sweep in Fig.4.5 corresponds to a visibility v ∼ 0.2349.
Obtaining a high visibility is experimentally hard as the interferometer consist of
many optical elements and hos to be reflected directly of the GaAs sample. This
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4.3. STABILIZATION OF THE INTERFEROMETER

alternates the light mode and ultimately the visibility of the interference.

Knowing that the interferometer can be controlled with the PZT a program can
then be written for stabilization, by controlling the DAC output depending on the
ADC input, on the idea from reference [17]. The general working of the program,
is to keep increasing or decreasing the DAC voltage such that a newly measured
ADC value from the APD is higher than the last, and if not then the direction of
change in the DAC voltage is reassigned. This will stabilize the interferometer at
a maximum output intensity output on the APD. Around which it will make some
small oscillations.

In this project the the stabilization method slightly is expanded, for the sta-
bilization at any output intensity i.e. phase. Instead of searching for maximum
intensity on the output, the same algorithm principle is used to minimize an error
between the currently measured output and wanted output. The error is defined as
the difference between a goal value defined on the entire output fringe range and a
currently measured value (y). These point is also defined in Fig, 4.6, that visualize
one fringe period.
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Figure 4.6: An interferometric fringe labeled with Min and Max used to define the
fringe range, and Error1 defined as the difference between y and goal.

In order to set a goal value on the fringe range it first has to be mapped. To
map the fringe output range, a scan is performed by sweeping the PZT with a tri-
angle signal that displaces the PZT by more than a wavelength of the interference
light. Therefrom the minimum(Min) and maximum(Max) ADC values of the can
be collected to infer the fringe range of the interferometer. From this range, the
wanted goal can be defined, and allow the interferometer to be stabilized at any
phase defined in the fringe range. However, as the focus here was to do a first mea-
surement of the phase shift, the stabilization goal is kept constant at maximum of
the interferometer signal, for measurements presented here.

The entire program running on the Arduino it consist of a loop of two major
algorithms, as shown on the flowchart in Fig.4.7. For every 1 in 10000 loop iteration,
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Figure 4.7: Flowchart of the program running on the Arduino. Top block indicates
computer serial communication for 1 in 10000 program iteration. left : Flowchart of
the fringe sweeping algorithm. right : Flowchart of the stabilization algorithm.

the Arduino reads a serial message from the computer. The message contains four
variables. The variable ”Algorithm” decide which algorithm to be run ie. sweeping of
the fringe range or interferometer stabilization. The rest three variables n,Delay,gain
are used in the interferometer stabilization algorithm. The algorithms are described
as follows

• Sweeping of the fringe range: The DAC output of the Arduino is driven
in its entire digital 12bit (0 to 4095) to produce the sweeping signal. When it
reaches either the bound 0 or 4095, the step gradient change sign. The DAC
step is calculated by step = dt · slope. Where the slope is predefined for a
certain modulation frequency and dt is the time difference since last iteration.
For each iteration the maximum and minimum ADC value is logged and saved
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4.3. STABILIZATION OF THE INTERFEROMETER

to variables Max and Min respectively, if its bigger or smaller than previ-
ous values (Dashed line box), thereby retrieving the fringe range, to set the
stabilization goal.

• Stabilization: Initially an average input value y from the APD is calculated
for n subsequent measurements of the ADC. Then the current error value
Error1 is calculated as the difference between y and the goal. With Error1
the next step value to be added to the DAC value is calculated as step =
Error1 · gain. The direction of the step is then decided: if currentError1 is
bigger than the old error Error2 from the previous iteration, then the step
direction is reversed by changing sign on the gradient parameter grad, which
can take the values 1 or −1. At last, the current Error1 is redefined to Error2
for comparison in the next loop iteration. Before looping back a Delay in units
of microseconds is added to before starting over. The Delay is introduced to
avoid over driving of the system, which would destabilize the interferometer, as
the PZT response time is slower than the update rate of the Arduino output.

An example of the application of these algorithms are showed in Fig. 4.8
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Figure 4.8: Example of the stabilization (black) overlapped to the corresponding
sweep of the fringes(blue). a) shows for 60 second acquisition. b) A zoom corre-
sponding to the data on dashed red line in a).

It is evident that the staiblization signal is mostly located at the top of the
fringe, and thus seem to work. Since we are at a maximum of the fringe function
it is not possible to apply the central limit theorem method for estimating the
phase uncertainty of the stabilization. However we can define a figure of merit that
estimates the fluctuation of the stabilization phase to maximum fringe phase ie.π. By
fitting a straight line to the lower and upper 5% points of the entire fringe range, the
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entire fringe range Rfringe can be inferred. Using this range along with the standard
deviation of the stabilization signal σstab. we can write the phase fluctuation δf as:

δf = π − 2 ∗ sin−1
(√

1− σstab/Rfringe

)
(4.1)

Applying this method method to the data displayed in Fig. 4.8,a phase fluctua-
tion of δf = 25.4o is obtained.

By being able to changing the stabilization parameter with the serial message
we can adjust the parameter values for best stabilization. In Fig. 4.9 The phase
fluctuations is displayed for a sweep of the delay and gain parameters.
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Figure 4.9: Phase fluctuation scale on the colorbar for n=50 the delay time and gain
is swept.

Though the results seem to be really diverse, there seem to be some slight trend
of lowest phase fluctuation along the diagonal, from low gain and short delay to high
gain and long delay. This makes sense as longer delay times leads to bigger drift
and thus need higher gain to compensate. The best area seems to at both high gain
and delay time.

While Fig.4.9 doesn’t cover the entire parameter space, it was observed exper-
imentally that setting the gain higher wouldn’t decrease phase fluctuation indefi-
nitely.
A similar scan presented in Appendix A.1, was done in the 3D parameter space
that included the averaging number n as well. This measurement indicated that in
general a averaging number below 100 showed less fluctuations at a wider range of
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delay times.

Jumps in the fluctuations, to adjacent parameter points can be present for both
measurements. Since large temporary and occasional fluctuations were observed.
These fluctuation were induced due to fluctuations in the power or wavelength of the
laser. They could also arise on smaller time scales, if somebody were to mechanically
disturb the interferometer. Nonetheless, we could infer from general tendencies, a
good set of that parameters for interferometer stabilization.

4.3.2 Minimizing mechanical induced fluctuations

Initially a smaller interferometer was build on an optical table, to test the stabiliza-
tion . The interferometer used in the final experiment, were constructed directly
on a breadboard(smaller metal plate for mounting optics on) mounted directly on
to the casing of the cryostat by six metal rods. This installation introduced much
more noise on the interferometer than while installed on the optical table, which is
dampened for mechanical vibrations and fluctuations. Fig. 4.10 show an initial test
of the stabilized compared to a non-stabilized interferometer, on both the optical
table and cryostat.
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Figure 4.10: Comparison between the initial test between stabilization of an inter-
ferometer on the optical table(top row) and stabilization on the cryostat (bottom
row)
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the challenge of compensating for these fluctuation can directly be seen the Non-
stabilized signal from the cryostat breadboard to the optical table. Non-stabilized
cases is of a higher fluctuation amplitude and frequency, for the cryostat compared
to the optical table. This of course translates directly to fluctuations when stabiliz-
ing the interferometers. Calculating the phase fluctuation of the stabilization, yields
δftable = 8.2o and δfcryo = 23.9o, respectively for the optical table and cryostat in-
stalled interferometer. For further investigation, the data in Fig.4.10 is considered
in frequency space in Fig. Fig.4.11.
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Figure 4.11: Comparison between the initial test between stabilization of an inter-
ferometer on the optical table(top row) and stabilization on the cryostat (bottom
row)

From this it is again clear that the interferometer mounted on the optical table
is subject to much less prominent fluctuations in most of the spectrum. From the
comparing the fluctuation spectrum between the stabilized and non-stabilized, can
see that the stabilization dampens the fluctuations spikes that are visible through-
out the non-stabilized spectrum, Indicating we are able to stabilize fluctuations up
to a 1000 Hz. However, only on bigger and prominent fluctuations. This can be
seen on the spectrum for the optical table data. Here we observe in the non sta-
bilized case a smooth linear range is highly affected when the stabilization is applied.
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In an attempt to reduce the mechanical noise, rubber spacers were installed in
between the metal poles and the breadboard. This were done in the beliefe that
the cryostat casing which is much bigger than the optical equipment, would induce
mechanical noise collected from the environment as well as shaky compressor lines
connected to the cryostat. Afterwards a prominent noise on around 50 Hz was in-
troduced on the output signal of the interferometer. Initially one would think that
this would correspond to electrical noise from the 50 Hz noise from power supplies of
the equipment. However, it turned out to be a resonance frequency of breadboard
combined with the optics. Instead of allowing this noise to be drained through
the cryostat casing, the rubber had isolated breadboard and optics system. Re-
sults regarding this has been supplied in appendix A.2.1. The noise induced by the
compressor was seen to be small, when comparing the noise spectrum for when the
compressor was on to when it was switched off, see appendix A.2.2.

Other than mechanical fluctuation noise, a big source of noise is from the electric
noise on the APD. The APD introduces quite high electric noise comparable to the
mechanical fluctuations, due to the fact that the intensity of the transmitted light
through the wave guide is highly attenuated, and thus the internal gain of the APD
has to be increased. Increasing the APD gain furthermore increases the electric
noise on the output signal. A measurement of the background signal noise induced
by APD indicated that it correspond to a fake phase fluctuation of δfAPD = 13.4o.
of the case shown in Fig. 4.10.

Power fluctuations of the laser light will also directly influence the amplitude
of the fringes on the interferometer output. This will render previously set sta-
bilizaton goal from the fringe sweeping, to be false according to the stabilization
wanted. Therefore the power has to be stable throughout the measurement. For
longer measurements the fringe might have to be swept repeatedly to reassure the
correct stabilization.

4.3.3 Change of stabilization method

When preparing for the phase shift measurement. It turned out that even while
the stabilization light is far off resonant to the to QD transition it still had an
effect. This is displayed through a scan of the transmission across the QD resonance
while also having the off-resonant stabilization light on. Fig. 4.12 shows a series of
measurements of the transmission dip for a series of different powers for stabilization
light.
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Figure 4.12: Normalized transmission spectre of resonant light while increasing
power of the off-resonant stabilization light as indicated.

The data shows that the QD is affected while increasing the power of the stabi-
lization light The transmission dip seems to decrease its amplitude while tuning the
resonance to higher frequency. For Higher powers the most prominent dip seems to
split into two. The underlying physics of this effect.

The stabilization, using the Arduino would need stabilization powers well into
tens of µW in order for the APD output to cover enough of ADC range for stabi-
lization. However, this power is enough to reduce the transmission dip significantly
and introduce a second transition, as observed on Fig. 4.12.
Thus another method of stabilization, with the ability to stabilize at low power were
needed.

Stabilization using an lock-in amplifier and PID loop

To realize stabilization at lower power, the commercially available Red Pitaya[39]
as used. Red Pitaya supplies a programmable system with a 14 bit input/output
at an working rate of 125M samples/s. Thereby enabling measurement of smaller
output fluctuations at a higher rate than the Arduino Due. This system was first
introduced late in the project when this tuning of the power became apparent.
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4.3. STABILIZATION OF THE INTERFEROMETER

For the stabilization with the Red Pitaya a combined lock-in amplifier along with
a PID loop was used. Using an open source pre written program from reference [27].
This program allowed both the implementation of the lock-in amplifier and the PID
loop using only the Red Pitaya.
By using a lock-in amplifier low amplitude signals can be extracted from the APD.
Thereby allowing a low stabilization laser power. The output value from the lock-
in Amplifier is then used as an error signal in a PID feed back loop. The lock-in
amplifier error signal is proportional to the time derivative of the interferometer
output, and by stabilizing to zero of the lock-in amplifier output the stabilization
is effectively at the maximum or minimum of the interferometer fringe. Results are
displayed in Fig. 4.13.

a) b)

d)c)

Figure 4.13: For all plots: Black is the input from the APD and red is the lock-in
amplifier output. a) Sweeping of the fringes at 1µW . b) Sweeping of the fringes at
20µW . c) Stabilization at 1µW . d) Stabilization at 20µW .

The same pair of measurement were here performed for two powers, 1µW and
20µW , of the stabilization laser. In order to resolve the signal measured from the
APD, for qualitative analysis. We observe here for the fringe sweeping at 20µW
(Fig.4.13.b) that the lock-in output indeed produce a signal proportional to the
APD signal.This is seen to be reproducible even at the low power of 1µW , where
the lock-in amplifier still outputs a prominent signal, usable for stabilization. In
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the situation of stabilization as shown in Fig.4.13. c) and d). The lock-in signal
is well centered around 0, thus indicating the stabilization of the interferomter. To
evaluate the method, a time trace of the PID stabilization at 20µW is compared-and
normalized to the fringe range is shown in. Fig.4.14. This corresponds to a phase
fluctuation of δf = 28.1o
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Figure 4.14: The Stabilization signal(black) normalized and overlapped to the fringe
signal(blue) at 20 /muW locking light

This result shows that introducing the lock-in amplifier and PID loop using
the Red Pitaya enables stabilization of the interferometer with a phase fluctuation
comparable to that realize with the arduino. In contrast to the Arduino method, this
enables the stabilization at low power of the stabilization light. Thereby allowing
stabilization without affecting the QD transition.

4.3.4 Improving stabilization with an amplifier

The best phase resolution per digital value in the Arduino or the Red Pitaya, is ob-
tained when the fringe output from the APD covers the entire ADC dynamic range.
Thereby increasing the sensitivity of phase fluctuations and eventually enabling a
finer compensation to phase fluctuations.
The voltage output of the APD is proportional to the the power emitted on the
sensor and the adjustable internal gain. In order to match the APD output to the
dynamic range of the ADC input, increasing the power isn’t a possibility as it would
worsen the QD transition as seen in Fig. 4.12. Thereby only allowing the output
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4.3. STABILIZATION OF THE INTERFEROMETER

to be matched via the gain. However, increasing the gain will also increase a DC
voltage, ultimately rendering the bottom of the ADC range useless, since both the
Arduino and Red Pitaya ADC starts at 0 voltage. The dynamic range of the Red
Pitaya is

The Arduino has dynamic range from 0V to 3V mapped over 12 bit ADC range,
corresponding to a resolution of 4096. While the Red Pitaya input is between 0V
to 1V mapped over an 14 bit ADC range, corresponding to 16384 values.

In order to match the ADC ranges to the APD output, an amplifier was designed
for use in this specific case. The designed amplifier has the function of being able
to substract an offset to the APD output such the minimum fringe intensity value
would go towards zero and afterwards amplify to match the given dynamic range.
The amplifier circuit as presented in Fig.4.15 is based on operational amplifiers(OP-
amp).
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Figure 4.15: Circuit of the designes amplifier. Dashed lines divide the circuit into
subsections as indicated by the headlines. The input signal is indicated by the red
box. The adjustable potentiometers for the offset and gain are indicated by blue
rings.

This circuit is build around 3 OP-amps, each with their respective function in
different stages: Offset, Input and Amplifier as labeled on the schematic in Fig.4.15.
In the offset an OP-amp is used to output a constant negative voltage. This neg-
ative voltage is later used to offset the input signal from the interferometer by a
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summation operation. Then the signal is amplified before the output. The outputs
is here simulated as the 50kΩ resistor. Both the offset and the Amplification gain
can be adjusted by the user via implemented potentiometers.

Initial test while building the amplifier (Fig.A.7.) showed to be able to reproduce
the oscillatory signal without any significant phase delay up to 500KHz.
This circuit be used in future experiments to enhance the phase stabilization. And
perhaps allow the re-implementation of the Arduino. A future implementation to
the circuit could be to control the gain and offset in a feed bacnk loop, to allow the
full mapping of the fringes on the ADC at all times

Using the ability to stabilize the interferometer while maintaining a QD transi-
tion, we now turn to the experimental effort at measuring the QD induced phase
shift.
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Chapter 5

Experimental realisation of the
phase shift measurement

5.1 Overview of the system

5.1.1 Search for a highly coupled QD

To attempt the phase shift measurement, a QD transition in first have to be found.
The QDs are fabricated using self-assembling methods. This result in the QDs
being positioned in random positions throughout the sample[38], while also being
randomly distributed in terms of resonance frequency around 930nm. Thus when
fabricating the PCW onto the sample, the QD will also be randomly positioned in
these. Since the QD coupling to the waveguide highly depends on the position of the
QD within PCW, it alters the response of the QD equally random. Therefore, a big
part of the experimental process is to first scan the structures to find a suitable QD.
The method used here is to do a wide scan of the spectral response of the transmis-
sion through the PCW. After finding the general photonic response of the waveguide
a scan of finer resolution is done across the bandedge spectrum. Specifically a QD
close to the bandedge is of interest due to Purcell enhancement of the QD. This leads
to a faster decay rate into waveguide modes comparable non-emitting decoherence
ie. dephasing or transitions other QD resonant states [33]. Here measurements is
done for a QD embedded in a PCW, which we in the theory of chapter 3 saw to
give rise to a large extinction at good coupling and low dephasings. Therefore the
QD can be recognized as highly extincting dip in the transmission. We search for
a QD with a spectral width on the GHz scale. However this method would not be
optimal for the chiral coupled case of a GPW, as the transmission will go towards
unity for high coupling an low dephasing.
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This procedure had to be repeated for a range of different waveguides before
identifying a suitable QD. Here the results of the identification, for the quantum dot
used in the final measurements is presented.

Transmission scan of the waveguide

The spectral scan of the transmission were simply done by blocking one path of
the interferometer, and record the light being transmitted through the waveguide.
The laser 2 used for the stabilization is turned off during this measurement. The
transmission scan for the PCW used here is displayed in Fig. 5.1.

318 319 320 321 322 323 324

Frquency [THz]

0

1

2

3

4

5

6

7

C
o

u
n

ts
 [

K
H

z
] 

Figure 5.1: Transmission(black) measured as photon counts in KHz. Red dashed
line shows QD resonance and blue is the frequency of the stabilization laser.

We can observe a range below approximately 318.3 THz where the data show a
constant and low rate. This area corresponds to the photonic bandgap of the PCW,
that allow no propagating waveguide modes. The 1 KHz counts corresponds mostly
to stray light from the laboratory background. At higher frequencies the bandedge
is visible as a quick rise in the transmitted counts. There is a variety of features
in the transmission other than the bandgap. The most prominent is the regular
oscillatory behavior. This is due to cavity-like features in the waveguide that reflect
light. The reflection could arise from fabrication defects or transition areas, such as
between grating inputs and waveguide. Multiple cavity behaviors must here be at
work here, due to both slow and fast periods, as can be seen in Fig. 5.1.
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5.1. OVERVIEW OF THE SYSTEM

High extinction of a QD in a waveguide

In order to locate a quantum dot spectrally, a similar scan at higher frequency
resolution is done of the transmission across the bandedge. Here, a promising trans-
mission extinction was found, as shown in Fig. 5.2. The QD resonance was found at
around 318.66THz and is indicated by the red line in Fig. 5.1. It can be seen that it
is indeed situated close to the bandedge. This dip has an extinction of around 80%
at resonance and is the largest transmission extinction found during this project.

The frequency of stabilization laser 2 is well distanced from QD resonance, in
an area of higher transmission, as indicated by the blue dashed line in Fig.5.1. This
is chosen for increasing the signal for stabilization while maintaining low power as
possible.
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Figure 5.2: The transmission measurement normalized to background counts for the
QD transition.

As also observed on Fig. 5.2 the QD showed an additional less extinctive transi-
tion at slightly lower frequency. This could be due to the fact that the light couple
to two different dipoles of different polarization in the QD. In order to confirm that
these transmission extinctions were indeed corresponding to a quantum dot, a scan
is done to see the tuning of the QD resonance as function of the voltage applied
across the diode (See chapter 3.). By tuning the voltage for a series of fixed frequen-
cies we obtain the 2D results shown in Fig. 5.3. For more information, the data
taken in Fig.5.2 was taken at a constant voltage of 1.24V.
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Figure 5.3: 2D intensity plot of the transmission normalized to maximum count rate
for each voltage sweep.

This shows that the QD resonance indeed tune as a function of voltage. Thereby,
showing its sensitivity to the Stark shift effect. Furthermore, both transmission
extinctions seems to follow the same gradient of tuning, indicating that they indeed
correspond to the same quantum dot. Using a peak-finding algorithm the resonance
frequency of the large transmission extinction can be found at different voltages. By
fitting a linear line to this, we find that the quantum dot tunes with a slopeof(0.72±
0.01)THz/V. This tuneable feature of the quantum dot will be used to tune the QD
far away from resonance and to a fixed voltage corresponding to a frequency close
to resonance with the light. Effectively turning the QD ”on” and ”off” for different
measurements.

5.2 Measuring the phaseshift

With this QD candidate, we can now aim to measure the spectral response of the
phase shift induced by the QD. To do this, the frequency of laser 1 is tuned across
QD resonance while stabilizing the interferometer with laser 2. We know from
theory that the transmission coefficient in Eq. 3.9 and 3.10 evolves as function of
the detuning ∆. An thus the phase shift on the laser 1 light will also be subject to
a detuning dependent phase shift. using the same denotations as in section 4.1 we
can write:

ϕQD(∆) = arg(t(∆))

Furthermore, scanning the frequency of laser 1 gives rise to an additional frequency
dependent phase due to the path length difference δL. We set this to be the envi-
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5.2. MEASURING THE PHASESHIFT

ronmental dependent phase shift:

ϕE = δL
2π

λ

This equation assumes freespace propagation, which of course is not true as the
interferometer path consist of optical elements and the sample. However, we can
use this equation to see that scanning laser 1 must give rise to an additional phase
modulation in the interferometer output. This phase also gives rise to the phase
fluctuations from mechanical noise, due to fluctuations altering the path length
difference. It is here assumed that it is well stabilized.
To distinguish between the phase shift induced by the envirionment from the QD.
We use the fact that the quantum dot can be turned ”on” or ”off” using the voltage
tuning as in Fig. 5.3. The total phase obtained in the interferometer ϕ is then given
by:

ϕ =

{
ϕE + ϕQD = δL2π

λ
+ arg(t(∆)) QD on

ϕE = δL2π
λ

QD off

ϕQD can be found by measuring two subsequent measurements, one with the QD
”on” and another with the QD ”off”. Taking the difference between these two
measurements allows then to omit ϕE and retrieve ϕQD.
Scanning the frequency across resonance gives rise to the expected interferometer
output shown in Fig. 5.4.

The interferometric curve is here plotted for a short path length of 15 cm for
better visualization, and with β = 0.9. Corresponding to a maximum phaseshift
of 560. We observe that the signal with the QD tuned on(blue), is offset compared
to the environmental signal(orange) for the QD tuned off. From these two signals
the phase shift can be found as the phase difference between the corresponding
signal peak or valley of the fringe signal. Using this method the phase shift of the
experimental results can be obtained.

5.2.1 Experimental results

A small part of the fringes experimentally measured is shown in Fig.5.5.a). The fact
that we are indeed able to resolve the fringes is a testimony to the stabilization of the
interferometer. The most obvious feature is the difference in the amplitude between
the two measurements, which stems from the transmission intensity response to
detuning. One has to look a bit more careful for observing the phaseshift directly,
but it can be seen towards a detuning of 1 GHz. It is here visible that there is a
slight offset between the signla when the QD is tuned on(blue) and off(organge).
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Figure 5.4: Interferometric signal across resonance for QD tuned on(Blue) and
off(Orange).
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Figure 5.5: a) The interferometric fringe signal for on and off QD measurements
across resonance frequency. Red points is peak an valley found from the peak
algorithm. b) Normalization of the fringe signal in a)

From this data we can infer the phase shift induced by the QD. The phase shift
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5.2. MEASURING THE PHASESHIFT

is calculated as the phase offset between each peak and valley in the fringes data.
First an peak finding algorithm is used to find all peaks and valleys in the two data
sets, shown as red points in Fig.5.5.a). Then the data is normalized in between the
forund peak and valley, see Fig. Fig.5.5.b). The normalized interferometer intensity
function I = sin(ϕ/2)2 is fitted to all points in between peak to peak, and valley
to valley. Thereby the phase shift induced by the quantum dot is calculated as the
phase difference between the fits with the QD tuned on and off. An example of two
fits are shown in Fig.5.6.a) for the phase shift far off-resonant and close to resonance
of the most prominent QD extinction.

61



-20

0

20

40

60

P
h
a
s
e
 s

h
if
t 
[o

]

Data

Fit

318.55 318.555 318.56 318.565 318.57 318.575 318.58

Frequency [THZ]

0

0.5

1

T
ra

n
s
m

is
s
io

n

318.5691
THZ

QD on
Fit

Fit
QD offa)

b)

c)

-13.17 -13.11 -13.05
[GHz]

0

0.5

1

N
o

rm
a

liz
e

d
 f

ri
n

g
e 0.91 0.97 1.02

[GHz]

0

0.5

1

Figure 5.6: a) Example plots of the fit to the fringe signals for the quantum dot
tuned on(blue) and off(orange). Corresponding to high and low phaseshift areas
indicated by dashed line on b). b) Phase shift measurement result as function
of laser frequency along with fit(red) of the theoretical curve. c) Corresponding
normalized transmission intensity.

Performing these fits throughout the entire data set we reconstruct the phase
shift as function the laser detuning, see Fig. 5.6.b). We observe here a phaseshift at
both QD transitions. For the phase shift corresponding to largest transmission dip,
we observe from mininmum to maximum a phase range of 58.5[o]±0.3[o]. And if we
go off resonance to higher frequencies it a constant offset around 19o±1o is observed.
While at lower frequencies the phase shift goes toward 0o. It is clear that we have
an asymmetry in the phase shift when going across resonance. This might be due
to the cavity like behavior as observed in Fig. 5.1, is inducing a Fano resonance like
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5.2. MEASURING THE PHASESHIFT

feature in the signal[21].

5.2.2 Fitting to the theory

Since the transmission intensity and the phaseshift depends on many parameters it
can be suitable to fix some parameters when fitting if possible. Here the experimental
setup was expanded to measure decay rate of the QD. To do this the QD was excited
via another higher energetic transition with a pulsed 910 nm laser. After excitation
with the pulse, the fluorescence from the QD was collected from the sample output
grating, where fluorescence was measured with a single photon detector. The decay
rate of the QD was then measured by tracking the time between excitation and an
event on the detector, thus directly giving the lifetime of the QD excitation. The
result for this measurement on the given QD is shown in Fig.5.7.

Figure 5.7: Integration of the QD fluorescent(blue) events in time after initial exci-
tation. The double exponential function in black is fitted to obtain the lifetime and
decay rate showed in inset text. Orange data is background light.

The data shows two overlapped decays. To make up for this, a double exponen-
tial function have been fitted to extract both decays. The one corresponding to the
natural linewidth of the QD is Γ0 = Γ1/2π = 2.487GHz. With this result we can go
to fitting the theory for the phase shift and transmission intensity. Since they both
dependent on the same parameters they can be fitted dependently.
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Fitting to the data presented around the large extinction dip in Fig. 5.6, we
obtain the fitting results as shown in Fig. 5.8

-5 0 5

Detuning [GHz]

0

0.5

1

T
ra

n
s
m

is
s
io

n
 I

n
te

n
s
it
y

-5 0 5

Detuning [THz]

-20

0

20

40

60

P
h

a
s
e

 s
h

if
t 

[o
]

-5 0 5

Detuning [GHz]

0

0.5

1

T
ra

n
s
m

is
s
io

n
 I

n
te

n
s
it
y

-5 0 5

Detuning [THz]

-20

0

20

40

60

P
h

a
s
e

 s
h

if
t 

[o
]

a) b)

d)c)

Figure 5.8: a) and b) Shows the dependent fit of the transmission and phase when
constraining the natural linewidth. c) and d) Shows the dependent fit of the trans-
mission and phase when keeping fit parameters free.

For the fits in a) and b) the natural line width is fixed to that obtained from
Fig.5.7. While in c) and d) no constraint was applied to the fit parameters. We can
in both cases see that the fits follows the data quite well. This an indication that
the phase shift measurement is able to reproduce data comparable to that of the
usual transmission measurement. From the fitting we can try to extract the physical
dependent parameters. When fixing the life we obtain:

Fit parameters when fixed to Γ0 = 2.487
β = 0.79± 0.04 νqd = 318.56821THz± 200MHz
Γdeph = 379MHz± 60MHz ϕ0 = 19.79o ± 0.36o

If all the fit parameters instead are kept free, we obtain.
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5.2. MEASURING THE PHASESHIFT

Fit parameters kept free
β = 0.72± 0.06 νqd = 318.56821THz± 200MHz
Γdeph = 310MHz± 93MHz ϕ0 = 19.71o ± 0.36o

Γ0 = 2.682GHz± 120MHz

Where Γ0 is the natural linewidth, Γdeph is the pure dephasing rate. β is the
isotropic coupling value. νQD is the resonance frequency of the quantum dot. Finally
in order to compensate for the phase offset the parameter ϕ0 is defined as a constant
offset.

We can see that both fits agree very well on the resonance frequency and the
constant phase offset. However when it comes to estimating the beta they show a
discrepancy, but within the errors bars of each other. For the linewidth estimate,
we can see that the free fitting estimates a larger linewidth than that found from
the lifetime measurement. This enable the fit in the fixed case to compensate with
a higher dephasing, while still keeping the coupling high. These fits finds a dephas-
ing of approximately Γdeph = 0.11Γ0 and Γdeph = 15Γ0 for the free and fixed case
respectively. This is high compared to previous findings with dephasing shown to
be in the range [0,02]Γ0. similarly with the beta that is typically higher.
The compensation between the β factor and dephasing, for the maximum achievable
phase shift is visualized in Fig; 5.10

Figure 5.9: Heatmap of maximum measurable phase shift (colorbar). Black line
shows 25o. Result from the fits plotted for free parameter fitting(red Asteriks) and
constrained linewidth(red dot).

Here a line of 25o is plotted on a contour plot of the maximum phase shift as
function of β and Γdeph. The 25o degrees were found as the effective phase shift for
the result in Fig 5.6, by comparing peak phase shift to far off resonance. We can see
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that both fit results is close to this line, but has however compensated differently
for coupling and dephasing.

An earlier measurement of the phase shift induced on transmitted light by a
QD, found a maximum phase shift of ∼ 40o with a coupling of β = 0.87[21]. In
comparison to this, we found a maximum phase shift of ∼ 25o. When comparing to
these results,it is reasonable to expect a lower coupling for this experiment. Which
was also found from the fitting. However, the dephasing should not be so significant.

To get a more precise comparison to previous studies additional effects could be
taken into account. From the asymmetry observed in the phaseshift measurement
in Fig.5.6 it is apparent that the Fano effect could play a role. In addition, spectral
diffusion, blinking, and dark transitions.[24][21].

5.2.3 Power dependence of the phase shift

As explored in the theory we saw a high nonlinear dependency on the power. To
observe this experimentally, a series of phase shift measurements were at different
powers were performed. See Fig. 5.10

318.566 318.568 318.57 318.572

THz

-40

-20

0

P
h
a
s
e
 s

h
if
t 
[o

]

10
-6

10
-5

10
-4

Power

0

10

20

27.3

M
a
x
 p

h
a
s
e
 s

h
if
t 
[o

]

a)

b)

Figure 5.10: a) Phase shift measurements at separate Powers color corresponding
to b). b) Maxmimum phase shift from fit in a) as function of power.

We observe here that the data follows the nonlinear behavior of the theory.
Fitting the theory of the maximum achieveable phase shift as predicted in chapter
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5.2. MEASURING THE PHASESHIFT

3. We can again give an estimate of the physical values. Using the lifetime as
measured in Fig. 5.7, We get two predictions for either with and without fixed Γ0.
When fixing the linewidth we obtain:

β = 0.79 Γ0 = 306MHz

And for keeping the fit parameters free

β = 0.75 Γ0 = 2.616GHz Γdeph = 238GHz

First we find that the measured maximum phase shift follow the nonlinear theory
explored in chapter 3. For the fits, find that β is comparable to the earlier found in
the fits of the phase shift.

From these results we find that using the interferometric method developed we
are indeed able to do phase shift measurements that gives comparable results, to
that of the normal transmission intensity scans. Additional modeling parameters
used in the fitting, might give rise to more literature confident results. However,
as we saw in chapter 3 of the theory, chiral coupling is less sensitive to dephasing,
thus chiral systems might be more robust in data analysis. Rendering the method
of direct phase shift measurement developed in this thesis, more useful.
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Chapter 6

Perspective and Conclusion

In this thesis we studied what happens to the phase of light field when coupled to sin-
gle emitter in a waveguide. From the theory derived in chapter 3 where it was shown
that the transmission intensity and coefficient is subject to giant nonlinearities at
the single photon level. In particular, exploring the chiral coupling configuration
showed very characteristic features, such as a sharp drop in the maximum phase
shift when increasing the power, which could be used for direct measurement of the
chiral β. factor. Furthermore, it was explored that chiral coupling could give rise a
seemingly instantaneous switch in the phase shift from 180o to 0o.
To measure such phase shift an inteferometeric setup was build on top of a crysostat
which required it to be stabilized with a PZT mounted mirror and micro controller.
A stabilization method for stabilizing at any phase difference was developed. The
method showed to be able to stabilize the interferometer with a phase fluctuation
down to 23.9o. Due to the effect from the stabilization light on the QD transition,
another method was needed to stabilize the inteferomter, using a lock-in amplifier
with a PID loop at low power.This showed to almost stabilize to a similar degree as
the previous method with a phase fluctuation of 28.1o.
By using such the stabilized inerferometer an interferometric fringe signal was mea-
sured while sweeping the laser frequency. This approved the stabilization of the
interferometer. From this measurement we managed to extract a maximum phase
shift of 58.5o ± 0.3o. when compensating for the constant offset, the fits showed
that this correspond to a phase shift of ∼ 25o induced by the single transition. This
were shown to be less then the ∼ 40o obtained previously[21].However was in agree-
ment with, that the QD considered here was estimated to have worse coupling and
a higher dephasing.

Fitting the obtained phase shift from measurement together with the intensity
showed good agreement with theory. Therefore rendering the interferometer a new
measurement tool in the lab of equal merit. Furthermore, the nonlinear behavior of
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the phase shift, was shown.

The next immediate step with this new tool in the lab, is to achieve a measure-
ment with a cleaner QD transition i.e. without an adjacent QD transition. The
experiment could then be expanded into measurements regarding chiral emission, to
try and measure the expected π phase shift. This can give proof of and characterize
the chiral nature, when the time comes for implementing it in the lab, And finally for
bigger circuits when entering the regime of quantum communication an computing.

Additionally the method developed for stabilization of the interferometer can
potentially allow stabilization at any phase difference. This can enable the interfer-
ometer to be a new measurement tool to perform tomography measurements of the
scattered light[41]. This tomography measurement could also be used to examine
the scattering of light with different modal structure[19] [18].
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Appendix A

Interferometer Stabilization

.

A.1 Parameter Sweep

Figure A.1: 3D scatter plot of the parameter sweep of the algorithm values. The
standard deviation of the voltage is indicated on the color bar and point size is
proportional to it.

A.2 Fluctuations

The mechanical noise was thought to come form a variety of sources. Below we have
supplied some measurements of the case where a 50% Hz mechanical noise from the

70



A.2. FLUCTUATIONS

optical equipment and the effect from the cryostat compressor oscillations.

Fig. A.2 shows a an example of mechanical excitation of the cryostat interfer-
ometer and the oscillatory. dampening afterwards.

Figure A.2: Time trace the interferometer signal while by passing the cryostat.

The noise in the more stable areas is less noisy as otherwise shown, since the
cryostat transmission is bypassed and the inteferometer is kept on the mounting
plate.

A.2.1 50 Hz noise

Fig. A.3 shows a time trace of the non stabilized signal while the the optical mouting
plate is mounted on rubber spaces.

Figure A.3: Time trace of the non-stabilized signal(top) along with the fourier
transform of he signal below(bottom).
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A prominent signal is observable close to the 50 Hz signal. While observing this
spectrum when removing some equipment this peak, was found to tune. Thus indi-
cating that the noise was of mechanical acoustic origin.

As evident from Fig.A.4, running the stabilizing code on the Arduino, did not
seem to be able to remove the 50 HZ noise. Though other frequencies seem to be
dampened, perhaps indicating the that the 50 Hz fluctuations is physically larger
than the expansion range of the PZT.

Figure A.4: Time trace of the stabilized interferometer output (top) compared the
fourier transform(bottom)
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A.2. FLUCTUATIONS

A.2.2 Cyrostat Compressor noise
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Figure A.5: Spectrum of the interferometer while turning the compressor on(red)
and off(black). For the stabilized and non-stabilized signal.

A.2.3 Power Stabilization instabillity

Figure A.6: A scan of the measured counts vs input power.The dip in power made
it look like a QD transition were found.

Fluctuations in the power gave rise to signals that looked like quantum dots.
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A.3 Amplifier

Figure A.7: Picture of the build amplifier circuit in Fig. 4.15

A.4 Power dependency

Figure A.8: Power series of transmission with fit
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A.4. POWER DEPENDENCY

This power series correspond to a saturation of the transmission extinction at zero
detuning. A.9.
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Figure A.9: Saturation curve of transmission at resonance(red) with fitted theory
(black)

Here we see a saturation of the QD interaction, from the increasing transmission
at QD resonance. By fitting the series of transmission measurement at different
power (Appendix). From these fits coupling factor is found to β = 0.72, while
keeping the natural linewidth and dephasing as free parameters. However fixing the
linewidth to that of measured in lifetime measurements, retrieve β ∼ 1. Which is a
huge difference.
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