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Abstract

The technique of neutron scattering is highly intensity limited, and much work
has gone towards optimising the two competing and complementary techniques,
the Triple Axis Spectrometer (TAS) and the Time Of Flight (TOF) spectrom-
eter. Each technique has its advantages and drawbacks, but some types of
experiments, especially parametric mapping, are not favourable for either of
them.

In this thesis, we describe a multiplexing back-end for the FLEXX TAS that
is currently under construction at HZB, to be known as the MultiFLEXX. This
design aims to combine the advantages from the TAS and the TOF by measuring
five different final energies, 2.5 meV, 3.0 meV, 3.5 meV, 4.0 meV, and 4.5 meV
at 31 different angles simultaneously. This is done by vertically scattering the
neutrons, such that the horisontal size of the analyser and detector can be min-
imised, allowing for a close spacing of the 31 angles. To measure several energies
simultaneously, we use PG analyser crystals that are practically transparent to
neutrons when they are not satisfying the Bragg condition, such that they can
be placed one after the other.

We employed McStas simulations to determine the performance of the Mul-
tiFLEXX, and found that a design error in the analyser geometry was resulting
in the analyser crystals having regions of overlap, effectively reducing the anal-
yser area. It was found that the focusing Rowland geometry could not be used
for the analysers due to the proportions of the MultiFLEXX. Instead, a simpler
curved geometry was introduced.

The new analyser geometry was optimised for the each of the five energies
that the MultiFLEXX will detect, both for elastically incoherently scattered
neutrons by scanning the incoming energy using the monochromator, and for an
inelastic situation where a dispersionless virtual sample removed energy from the
neutrons coming at a constant Ei = 5.0 meV and scattered them incoherently,
to bring their energies within what we can detect using our analysers. McStas
simulations showed that the optimal curvature found would give an improvement
in peak intensity of between 7 % and 15 % for the elastic case, and between 8 %
and 16 % for the inelastic case. The improvements in intensity came without
significantly worsening the resolution.

As a result of the simulations, it was decided to aquire new analyser holders
to take advantage of the predicted increase in intensity.

Using the PANDA TAS front-end, we performed prototype tests on the Mul-
tiFLEXX. Two q-channels, one using each type of analyser, were set up for the
tests. With an incoherently scattering V sample, we measured the elastic peaks
in the same way as for the simulations. Comparing the two geometries, we found
an improvement for the three analyser energies that we deemed to be function-
ing correctly of between 9 % and 20 %. The resolution from the experiments
matched the simulated resolution well for the two lowest energies measured, but
showed a significant broadening, between 25 % and 56 %, for the highest energies
measured.

We also attempted to measure the inelastic energy and q widths, using a
phonon in a Pb sample at room temperature. We found the experimental energy
widths to be 200 % to 350 % wider than the simulated ones, showing that there
are effects that we cannot model in our simulations with our dispersionless
virtual sample.
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Resumé

Teknikken neutronspredning er meget begrænset af intensiteten fra kilden, og
meget arbejde er lagt i at udvikle de to konkurrerende og komplementære
metoder kendt som Triple Axis Spectrometry (TAS) og Time Of Flight (TOF)
spektrometri. Hver metode har sine fordele og ulemper, men der findes eksperi-
menter, s̊asom parametrisk kortlægning, der ikke kan udføres effektivt af nogen
af de to metoder.

I denne opgave beskriver vi en back-end med multi-analysatorer til FLEXX
TAS, der i øjeblikket bygges p̊a HZB, og vil g̊a under navnet MultiFLEXX.
Med denne back-end sigtes efter at kombinere fordelene fra TAS og TOF ved
at m̊ale ved fem forskellige energier, 2.5 meV, 3.0 meV, 3.5 meV, 4.0 meV og
4.5 meV ved 31 vinkler samtidigt. For at m̊ale flere energier samtidig udnyttes
det, at PG-krystaller er praktisk talt gennemsigtige for neutroner, n̊ar de ikke
tilfredsstiller Braggs lov, og de kan derfor placeres efter hinanden.

Vi brugte McStas-simuleringer til at bestemme ydeevnen af MultiFLEXX og
fandt en fejl i designet af analysator-geometrien, der betød at analysatorkrys-
taller skyggede for hinanden. Dette reducerede det effektive analysator-areal.
Ydermere fandt vi, at den fokuserende Rowland-geometri ikke kunne bruges til
vores analysatorer p̊a grund af MultiFLEXX proportioner. I stedet introduc-
erede vi en simplere, kurvet geometri.

Vi optimerede den nye analysator-geometri for hver af de fem energier som
MultiFLEXX vil detektere. Den elastiske spredning blev simuleret ved at ændre
den indkommende energi p̊a en prøve ved hjælp af en monochromator. Den
inelastiske spredning blev simuleret ved hjælp af en dispersions-løs virtuel prøve,
der fjernede energi fra indkommende neutroner ved Ei = 5 meV og spredte dem
inkohærent, s̊a deres energi kom inden for det vindue, vi kan detektere med
vores analysatorer. McStas-simulationerne viste, at den optimale kurvatur, vi
fandt, ville give en forbedring i intensitets-maksimum p̊a mellem 7 % og 15 %
for elastisk spredning, og 8 % and 16 % for inelastisk spredning. Forbedringerne
i intensitet havde ingen betydelig indflydelse p̊a instrumentets opløsning.

P̊a baggrund af simuleringernes resultat blev det besluttet at anskaffe nye
analysator-holdere for at opn̊a den forudsagte forøgelse af intensitet.

Ved hjælp af PANDA front-end’en foretog vi prototypem̊alinger med Mul-
tiFLEXX. To q-kanaler, en med hver type analysator, blev forberedt til testen.
Med en inkohærent spredende V-prøve m̊alte vi elastisk spredning ved at ændre
monochromator-energien. Vi vurederede, at data fra tre ud af de fem energier-
gav mulighed for at sammenligne de to geometrier. For de tre energier fandt vi
forbedringer i intensitet p̊a mellem 9 % og 20 %. Opløsningen fra eksperimentet
l̊a tæt p̊a den forudsagte værdi for de to lavest m̊alte energier, mens de højere
energier havde en signifikant forbredring p̊a mellem 25 % og 56 %.

Vi forsøgte ogs̊a at m̊ale den inelastiske energi- og q-bredde ved hjælp af en
fonon i Pb ved stuetemperatur. De eksperimentelle energi-bredder fandt vi til
at være 200 % til 350 % bredere end de simulerede bredder, hvilket viser at der
effekter som vores dispersionsløse virtuelle prøve ikke kan modellere.
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1 Introduction

The technique of neutron scattering is highly important in solid state physics,
due to the special properties of the neutron, such as the fact that a neutron
with the wavelength of the inter-atomic spacing has an energy range similar to
that of elementary excitations in solid systems.

However, neutron scattering has long been limited by the amount of neutrons
that the sources providing them can output, and the current record holder for
continuous neutron output is the high-flux reactor at Institut Laue-Langevin
(ILL) which began operation in 1971[1]. The reactor here sits at the upper
envelope of neutron production, and the newer neutron production technique of
spallation will only surpass the ILL in amount of neutrons produced when the
European Spallation Source (ESS) comes online in 2019.

Since increasing neutron output is not a viable option, emphasis has been on
improving the efficiency of the neutron scattering instruments used, thus getting
more out of each neutron. There are many ways in which the classic Triple Axis
Spectrometer (TAS) can be improved, including transporting a greater amount
of neutrons from the moderators to the instrument itself using better guides,
focusing the neutrons onto a sample to increase the number of interactions
between the neutron and the sample, and focusing the neutrons scattered from
the sample onto the detector.

Yet another method of using more of the available neutrons is to increase
the amount of points where we measure scattered neutrons. This can be done
by using the Time Of Flight (TOF) technique which, for other reasons, suffers
from a low amount of neutrons delivered unto the sample.

Instead of using TOF, instruments can be made that are multiplexing. The
concept has been known for some 25 years and is used for a select few instru-
ments, but the concept has gained a large following as of lately, spurred by
the ambitious Continuous Angle Multi Energy Analyser (CAMEA) project pro-
posed for the ESS. This has led to several neutron facilities investigating similar
concepts.

One such concept is the MultiFLEXX presented in section 4, a new back-end
for the FLEXX TAS situated at Helmholtz-Zentrum Berlin. Measuring at 31
different angles rather than one single angle, and performing simultaneous mea-
surements at five different neutron energies, it will enable neutron experiments
to be performed in a more effective way for certain types of measurements.

Before neutron instruments are constructed, their performance are tested
in simulations using Monte Carlo ray tracing methods, such as those the pro-
gramme McStas provides. Simulations allows for optimisation of various parts
of the instrument, and due to the sparsity of neutrons coming from the sources,
even small improvements are welcome.

In this thesis I present my work on the MultiFLEXX design and prototype,
where I have been working on McStas simulations in order to optimise the design
and participated in the first prototype tests, where it was tested whether the
optimisation was also reproducible in an experimental situation.
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2 Neutron basics

In this section, we will first list the properties of neutrons that make them highly
useful as probes in solid state physics, before we present the most important
equations governing scattering physics.

2.1 The neutron as a probe

There is a saying amongst scientists who are working in scattering physics: “If
an experiment can be done with X-rays, use X-rays”. But some experiments are
just not fit for X-ray experiments and the properties of neutrons complement
many of the shortcomings that X-rays have[2], as described below:

1. Since the neutron has a magnetic moment, it will scatter from magnetic
field gradients and structures, providing an important tool for deriving
the periodicity and magnitude of magnetic order.

2. The neutrons whose wavelength is of the same size as inter-atomic dis-
tances in solids are also, due to the high mass of the neutron, those with
an energy that matches the elementary excitations in solids. This means
that experiments can be performed where the structure and dynamics are
probed simultaneously, and it is possible to measure dispersion relations
in solids.

3. The way that neutrons interact with matter gives us the possibility to
distinguish isotopes from each other. This means that, by exchanging
hydrogen (1H) for deuterium (2D), one can obtain a high contrast between
for example a sample and a solution in which it is kept. It is also the case
that the interaction strength can be large for smaller atoms, meaning
that atoms that would otherwise be invisible to X-rays (where the inter-
action strength goes as Z4) can give a very large signal when investigated
with neutrons.

4. The neutron has very weak interactions with the (most) materials, which
means that the bulk of a solid can be probed, instead of just the surface.
Furthermore, the weak interactions means that second order effects
are negligble which makes comparisons between theoretical models and
experimental data viable.

5. There is also the possibility that a normally dense material can be al-
most invisible to neutrons. This gives the possibility to create sample
environments, such as pressure cells, magnets, and cryostats from these
materials, while enabling measurement on a sample contained within.

In short, if any of the above properties are of interest to us for a given
material, we will have to resort to neutron scattering techniques.

2.2 Neutron properties

The neutron itself is a sub-atomic particle that consists of one up-quark and
two down-quarks, with a mass of

mn = 1.675× 10−27 kg (1)
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and a spin of s = 1/2. It was theoretized in 1920 by Ernest Rutherford due to
the disparity between the mass of the proton itself and the mass of elements
known to consist of specific number of protons. In 1932, it was experimentally
shown to exist by James Chadwick, giving him the Nobel Prize in 1935[3]. As
the name implies, the neutron has no charge which means that it is not repelled
by the positive protons, but, through the strong (but short-range) nuclear force,
acts to keep the protons from repelling each other inside the nucleus of an atom.
Outside of the nucleus, the free neutron will β-decay with a mean lifetime of
τ = 887.7(22) s[4], with decay products a proton, an electron and an anti-
neutrino. The neutrons substructure of quarks described above give rise to a
magnetic moment, which is of the size

µ = γµN (2)

with µN = e~/(2mn) = 5.051× 10−27 J/T the nuclear magneton and γ = −1.913
the neutron gyromagnetic ratio.

Since the neutron is a quantum mechanical particle, it can be described
both as a particle and as a wave. This particle-wave-duality is something that
confounds physicists and philosophers alike, so we will not go further into details
about it; instead, we simply state that under certain conditions it is possible to
describe the neutron as a wave, in which case it will have a wavelength λ, as
de Broglie suggested, of

λ =
2π~
mnv

(3)

with v the speed of the neutron.
This wave-nature of the neutron means that, in cases where the neutrons

scatter, it can be described by a plane wave when the neutron wavelength is
much smaller than the scatterer.

ψi(r) =
1√
Y
eiki·r (4)

where k is the wave vector and r the point at which we measure the wave. A
normalisation factor Y comes from box normalisation, a quantum mechanical
trick where we choose an arbitrary box in which the wave resides. The size of
the box is completely arbitrary, as it will cancel out later and therefore it is
dropped from the calculations from here on. The wave vector in (4) is defined
as

k =
mnv

~
k =

2π

λ
(5)

with k obviously pointing in the same direction as v, the speed of the neutron.
We have already come across the velocity, the wavelength, and the wave

vector of the neutron. These are linked to the energy of the free neutron as

E =
~2 |k|2
2mn

=
h2

2mnλ2
=
mnv

2

2
= kBT (6)

and we find that all neutrons can also be described as having an equivalent
temperature T . We are left with a whole lot of different ways of expressing the

3



neutron characteristics, but most commonly used are energy in meV, and wave-

lengths and wavenumbers in Å and Å
−1

, respectively. Å is short for Angstrom,
a non-SI unit corresponding to 10−10 m that is used in spectroscopy on grounds
of tradition. Informally, ranges of neutron energies are also referred to as being
”cold”, ”thermal”, or ”hot”, each representing a certain range of neutron energies
as created by different moderators (which will be described closer in section 3.2).
Table 1 summarizes the neutron energies most often used for experiments and
the corresponding wavelengths and temperature ranges[2].

Energy interval Wavelength interval Temperature range

less than 0.05 meV > 40 Å Ultra cold ≈ 4 K

0.05 meV - 14 meV 2.4 Å - 40 Å Cold ≈ 25 K

14 meV - 200 meV 0.6 Å - 2.4 Å Thermal ≈ 300 K

200 meV - 1 eV 0.3 Å - 0.6 Å Hot ≈ 2000 K

1 eV - 10 keV < 0.3 Å Epithermal (Background)

Table 1: Neutron energies and their corresponding wavelengths and temperature
ranges.

2.3 The neutron cross section

When performing neutron experiments on a material, we shine a beam of neu-
trons onto it and monitor where these neutrons are scattered to. We express
this actual quantity measured as the cross section. The cross section represents
the number of neutrons scattered per second, normalised by the incoming flux
Ψi of neutrons. The flux is defined as the number of neutrons impinging per-
pendicular on a surface divided by the area of that surface. In terms of the
plane wave in equation (4), it can be written as

Ψi = |ψi|2 vi =
1

Y

~ki
mn

(7)

where the i denotes incoming neutrons, and from this we define the cross section
as

σtot =
(Neutrons scattered per second)

Ψi
(8)

Since the dimensions of flux are [n cm−2 s−1], we have that the cross section
have dimension [m2] as the name itself hints at. Traditionally, cross sections are
measured in barns, where 1 barn = 10−28 m2.

In an experiment, the distribution of scattered neutrons is equally important
to the amount of neutrons scattered. Thus, we define the differential cross
section

dσ

dΩ
=

1

Ψ

(Neutrons scattered per second into solid angle dΩ)

dΩ
(9)

where the amount of neutrons scattered into a specific solid angle dΩ is mea-
sured. This cross section is used in elastic neutron scattering where the neutrons
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lose no energy in their interaction with the sample, but are scattered into a di-
rection different from their incoming path.

Another cross section is used in inelastic neutron scattering where the ener-
gies of the outgoing neutrons are different from that of the incoming neutrons.
This gives another property of the scattered neutrons, their final energies Ef .
This is taken into account by the partial differential cross section

dσ2

dΩdE
=

1

Ψ

(
Neutrons scattered per second into solid angle dΩ

with energies [Ef + dEf ]

)
dΩdEf

(10)

a measure of the amount of neutrons scattered into a specific solid angle with
an energy in the range Ef and Ef + dEf .

The energy difference between the incoming and the outgoing neutrons are
caused by the neutron adding energy to or removing energy from the sample.
This changes the length of k, and with the formulae in equation (6) allows us
to calculate this energy difference as

Ei − Ef = ∆E = ~ω =
~2(ki − kf )2

2mn
(11)

Some neutron instruments can resolve these energy differences (the methods
used are presented in detail in section 3); this provides a lot of extra information
that would otherwise be lost if only the directions (i.e. the differential cross
section) of the scattered neutrons were recorded.

It is of course possible to link equations (8), (9), and (10) through integra-
tions. First, we can integrate the partial differential cross section (10) over all
energies, yielding ∫ ∞

0

(
dσ2

dΩdEf

)
dE =

dσ

dΩ
(12)

which in turn can be integrated over all solid angles (i.e. a unit sphere) to give∫
all directions

(
dσ

dΩ

)
dΩ = σtot, (13)

the total cross section.

2.4 Basic elastic scattering

We will here show some basic results from a quantum mechanical treatment of
a neutron scattering off of nuclei that are fixed in space. Some results are taken
from [2], which also features a quick semi-classical treatment that may give a
better physical intuition.

An incoming neutron has the quantum mechanical state |ψi〉, the plane wave
presented in (4). After the interaction with the sample, the neutron can now be
described as a superposition of plane waves of the same form as the incoming
wave

|ψf 〉 =
1√
Y

exp(ikf · r), (14)

5



the only change occurring is to the direction of the wave vector k. The equation
that governs scattering is known as Fermi’s Golden Rule

Wi→f =
2π

~
dn

dEf

∣∣∣〈ψi ∣∣∣ V̂ ∣∣∣ψf〉∣∣∣2 (15)

that describes the rate of change (number of transitions per second) between the
incoming neutrons and a particular state |ψf 〉 within a continuum of outgoing
neutrons. The term dn/dEf is the density of states for neutrons of the energy
Ef . The operator V̂j in the case of neutron scattering is modeled by the Fermi
pseudopotential, defined as

V̂j =
2π~2

mn
bjδ(r−Rj) (16)

where bj is a constant that defines the strength of the interaction and Rj is the
position of the j’th nucleus. The δ-function means that we model the interaction
as a point-like one, i.e. only effective when the neutron hits exactly a nucleus.
Since the interaction between the neutron and the nucleus is mediated by the
strong force, the range of which is much smaller than the wavelength of the
neutron or the distance between nuclei, the δ-function is a good approximation
that also simplifies calculations considerably. The Fermi pseudopotential only
describes the scattering from the nucleus j, so for the full picture, a sum over
all nuclei in the sample must be performed. The density of neutron states in a
box of volume Y is

dn

dEf
=
Y kfmn

2π2~2
(17)

Evaluating the matrix elements of equation (15) with the Fermi pseudopo-
tential gives〈

ψf

∣∣∣ V̂j ∣∣∣ψi〉 =
1

Y

2π~2

mn
bj

∫
exp(−ikf · r)δ(r−Rj) exp(iki · r) d3r (18)

=
1

Y

2π~2

mn
bj exp(iq ·Rj) (19)

where we define the scattering vector

q = ki − kf (20)

which, as we shall see, is one of the most important concepts in neutron scat-
tering.

We now have the matrix elements (18) and the density of states (17) to com-
bine into equation (15). Since this represents the number of neutrons scattered
per second, dividing by the neutron flux (7) will yield the total scattering cross
section as per (8)

σtot =
Wi→f

Ψ
(21)

=

(
1

Y

~ki
mn

)−1
Y kfmn

2π2~2

(
1

Y

2π~2

mn
bj

)2

(22)

= 4πb2j , (23)
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valid for elastic scattering where ki = kf such that they cancel each other out.
Also note that the normalisation constant Y cancels out as expected.

We find that the total neutron cross section described in section 2.3 is linked
to a value we defined to be the strength of the scattering, bj . This value is known
as the scattering length; we will elaborate on this shortly. Given equation (13),
we find that the differential cross section must be b2j , as integrating the constant

b2j over all solid angles is equivalent to multiplying by 4π.
The importance of the scattering vector q comes about when we consider

the scattering from two nuclei given by the sum of two Fermi pseudopotentials
V̂ = V̂j + V̂j′ . This will give two terms when calculating the matrix elements,
and we know from (21) that the scattering cross section is proportional to the
square of the matrix elements

σ ∝ b2j
∣∣exp(iq ·Rj) + exp(iq ·Rj′)

∣∣2 (24)

∝ 2b2j (1 + cos[q · (Rj −Rj′)]) (25)

The result is that for some values of q the total cross section will be zero and
no neutrons will be scattered, while for other values it will be up to four times
higher than for scattering from a single nucleus. This is an effect of interference,
a well-known phenomena in the study of waves in physics.

If we can construct our neutron scattering instruments to measure the q-
value, we can potentially find the Rj and Rj′ , the positions of the nuclei that
are responsible for the scattering.

2.4.1 Coherent and incoherent scattering

The scattering lengths are intrinsic properties of the nuclei. As the name implies,
it has the unit of length and is usually of the order fm but with varying signs.
The scattering lengths are taken to be experimentally defined values since, as
of yet, no theory is present to calculate them. However, it is found that the
scattering cross sections for different nuclei are neither proportional to their Z
(element) nor their N (isotope) value, but rather varies in an unpredictable
manner. This is in contrast to the case of X-ray scattering experiments where
the scattering cross section is proportional to Z4 due to the fact that the X-rays
are scattered by the electrons rather than the nucleus.

The variations in scattering lengths and the low absorption coefficient that
many materials have with neutrons are the direct reasons for entries 3-5 in the
above list of the neutrons advantages as a probe. We are lucky that it is possible
to find hard materials, such as aluminium, that still have a low absorption
cross section from which we can make furnaces, cryostats, and the like in which
the sample can be kept. These will be almost invisible to neutrons . This is
known as the sample environment, and enables us to study phase transitions as
temperature or pressure is changed. The differences in scattering length between
different isotopes allows us to differentiate between them in experiments.

Variations in the scattering length for a single type of nucleus can arise from
changing nuclear spin directions with time, or there can be different isotopes
with different scattering lengths. These two contributions can be treated on
equal footing, as a macroscopic sample is so large that it represents an ensemble
average and the times in which it is observed are larger than nuclear fluctuation
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times, which again yields an ensemble average. We assume that the scattering
length at site j has the stochastic value

bj = 〈bj〉+ δbj (26)

where 〈bj〉 is the average of bj and δbj is the local deviation from bj , with
〈δbj〉 = 0. Furthermore, the deviations are assumed to be independent between
sites such that 〈δbjδbj′〉 = 0. Using equation (24) with this stochastic value for
bj , we find that cross-terms arise, such that over a time and ensemble average
the differential cross section becomes

〈σ〉 = σinc,j + σinc,j′ +
∣∣〈bj〉 eiq·Rj + 〈bj′〉 eiq·Rj′

∣∣2 (27)

Here, we have bundled the square of the local deviations
〈
(δbj)

2
〉

into the in-
coherent cross section σinc,j , while the second term naturally yields the same
result as we found in equation (24), i.e. a cross section proportional to 〈bj〉.

The difference between the two is that the coherent cross section is depen-
dent on the interference terms, which we earlier postulated was the key to the
use of neutrons in experiments. On the other hand, the incoherent cross sec-
tion is complety independent of the interference terms, and as such scatters
neutrons isotropically, i.e. in all directions, without us having the possibility to
calculate back as we could from the interference terms. Thus, incoherent scat-
tering is generally unwanted, since the incoherently scattered neutrons are in
most experiments a source of noise.

2.4.2 Absorption

It is not all neutrons interacting with a nuclei that are scattered. There is a
probability for the neutron to be absorped by a nucleus which subsequently
releases α, β, or γ radiation. The amount of absorption is measured by the
absorption cross section σa which is normally proportional to the neutron wave-
length, σa ∝ λ. In the case of absorption cross section for isotope i, the tabulated
number is for the ”standard” thermal wavelength of 1.798 Å σa,i,th, which means
that the actual absorpion cross section is

σa,i = σa,i,th
λ

λth
(28)

for use in experiments. The absorption gives rise to an exponential attenuation
of the flux inside the sample, with an attenuation constant defined by

µa =
∑
i

Niσa,i
V

=
∑
i

niσa,i (29)

where Ni is the number of nuclei of isotope i and ni = Ni/V . Nuclei with large
absorption cross sections are used to shield against neutron radiation that is
otherwise highly penetratable. The most commonly used neutron absorbers are
gadolinium Gd, cadmium Cd, and boron 10B. Both Gd and Cd emit high-energy
γ-radiation which is in turn different to shield against, with Gd furthermore
being expensive and Cd toxic. B, on the other hand, has the advantage that
it emits lower energy γ and can be embedded in plastic and molded to shape.
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Other uses for nuclei with high absorption cross section are as neutron detectors,
as described later in section 9.1.2.

Experimenters have compiled lists of scattering cross sections σtot and scat-
tering lengths bj for both coherent and incoherent scattering, and the absorption
cross sections σa,th that can be found in sources such as the ILL Neutron Data
Booklet [5] or the National Institute of Standards and Technology website [6].

2.4.3 The crystal lattice

When we increase our scattering system from two nuclei as above to real crys-
tals, we must resort to crystallography to track the positions of the nuclei. In
crystallography, we construct a unit cell which describes the simplest possible
way to place the nuclei that make up the crystal. The unit cell is then repeated,
yielding a periodic crystal lattice that makes up the crystal. As crystals are
three-dimensional structures, so are the unit cells and crystal lattices, but fig-
ure 1 shows a two-dimensional example for ease of understanding. To the left,
we see a so-called Bravais lattice which has only one atom per unit cell, while
to the right we have a basis, used when a unit cell contains more nuclei per cell.

Figure 1: Simple two-dimensional lattices, made by translations of a similarly
two-dimensional unit cell. (Left) A Bravais lattice, containing one nucleus per
cell (Right) A basis, containing more nuclei in the same cell.

The labels a and b in figure 1 are representing the lattice vectors which
together with a vector c linearly independent of a and b constitute the natural
basis with which to describe the position of a unit cell. This is done through
the integers na, nb, and nc as

l = naa + nbb + ncc (30)

where the c vector represents the third dimension omitted in the figure. As can
also be seen from figure 1, the unit cells need not be cubic or cuboid, but are
generally parallelepipeds or hexagonal prisms. The angle between the lattice
vectors is α between b and c, β between a and c, and γ between a and b. In
a Bravais lattice the nuclei are placed at the lattice points, while for the basis
the position of the different nuclei is defined with respect to the lattice points.
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The volume of a unit cell is determined by the volume product

V0 = a · b× c (31)

Another useful construct is the reciprocal lattice, where the basis vectors are
defined by

a∗ =
2π

V0
b× c, b∗ =

2π

V0
a× c, c∗ =

2π

V0
a× b (32)

From the reciprocal lattice basis we can construct the reciprocal lattice vectors.
Instead of pointing to a point in real space, these vectors are perpendicular to
planes in the real lattice. Again, a set of integers known as the Miller indices
h, k, and l defines the reciprocal lattice vectors

τhkl = ha∗ + kb∗ + lc∗ (33)

and can be used to calculate the lattice spacing dhkl, which describes the distance
between lattice planes perpendicular to τhkl as

dhkl =
2π

τhkl
(34)

2.4.4 Bragg’s Law

From equation (24) we found that, for two nuclei in the scattering system, there
were interference effects as cos(q · r). Expanding this sum to include all the
nuclei in a crystal is done by performing the lattice sum as described in [2].
Here, it is found that∣∣∣∣∣∣

∑
j

exp
(
iq ·Rj

)∣∣∣∣∣∣
2

∝ N
∑
τ

δ (q− τ ) (35)

such that only when the Laue condition q = τ is upheld is scattering possible. It
is possible to express this condition graphically, using the so-called Ewald sphere.
In figure 2 a two-dimensional example is given where the Ewald sphere becomes
the Ewald circle. This simplification is justifiable, since many experimental
setups are designed to have the scattering vectors spanning the horizontal plane,
eliminating the vertical dimension.

The Laue condition can be rewritten into Bragg’s Law, one that is widely
used in scattering physics. Remembering that q = ki − kf we rewrite the Laue
condition to ki = kf + τ and square each side. Since we have that ki = kf , this
yields

(kf + τ )
2

= k2
i = k2

f

2k · τ + τ2 + k2
f = k2

f

2k · τ + τ2 = 0

2k · τ = τ2 (36)

where the last line is possible due to the fact that if τ is a reciprocal lattice
vector, then so is −τ . Equation (36) is known as the diffraction condition. If
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ki

kf q2θ

θ

Figure 2: The Ewald circle for an elastic scattering scenario. The blue dots
are reciprocal lattice points of the crystal. Whenever the circle (of radius k)
intersects a reciprocal lattice point, the Laue condition is upheld and scattering
occurs. In this case, q coincides with a reciprocal vector τ connecting origo to
reciprocal lattice points.
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λ

θ 2θ

dhkl

Figure 3: Sketch of a neutron wave of wavelength λn impinging on a crystal
surface where the crystal has lattice spacing dhkl at an angle θ.

we evaluate the dot product and introduce the lattice spacing instead of the
reciprocal lattice vector, we get

2k · τ = τ2

2kτ cos(90− θ) = τ
2π

dhkl

2
2π

λ
sin(θ) =

2π

dhkl
2dhkl sin(θ) = nλ (37)

which is known as Bragg’s Law. The n is needed, since the reciprocal lattice
vector can have a common factor divided out amongst the h, k, l factors.

The physical interpretation of the Bragg equation is the effect of constructive
and destructive interference when neutrons are reflected from different crystal
planes. The path length difference between neutron waves (as those defined
in equation (4)) that are reflected by different crystal planes gives a phase dif-
ference. The path length difference changes with the angle of incidence of the
neutron upon the crystal planes and the distance between the lattice planes,
giving rise to the θ and dhkl dependences. If the path length difference matches
a single wavelength, the phase difference is zero and there is constructive in-
terference which gives a λ dependence, and finally there is the possibility that
the path length difference matches two or more wavelengths, giving an n depen-
dence. The situation is sketched in figure 3.

The Bragg Law can be used to investigate the lattice spacing of a crystal,
as a rocking scan where the orientation of the crystal is changed with respect
to an incoming, monochromatic beam of neutrons will show a peak of scattered
neutrons for lattice spacings that satisfies equation (37). In terms of figure 2,
this amounts to rotating the reciprocal points slowly and recording any spikes
in scattered intensity. However, the way experimenters find lattice spacings in
practice is by grinding the crystal to a powder; this powder then has Bragg
scattering surfaces in all directions. A specific lattice spacing will therefore
yield a cone of scattered neutrons, called a Debye-Scherrer cone. In the figure,
this amounts to overlaying many collections of reciprocal lattice points, rotated
in tiny increments, such that different reciprocal lattice points are invariably
intersecting the circle.
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Expanding upon this technique is Laue diffraction, in which a polychromatic
neutron beam is directed at a crystal in a fixed orientation, corresponding to
having a range of k-values and hence radii of the circles in the figure, some of
which intersect a reciprocal lattice point.

2.5 Basic inelastic scattering

Ordered systems have excitations, and these are quantum mechanical in nature.
These excitations can be excited by a neutron, such that the ordered system as
a whole is raised in energy. Since we are reluctant to break energy conservation,
the energy to excite the system is taken from the neutron. This means that the
framework derived in section 2.4 must be revisited, as we here assumed that the
interaction between the neutron and the scattering system was elastic, whereas
energy exchange between the system and the neutron is per definition inelastic.

One example of an ordered system is a Bravais crystal, where nuclei of the
same type are placed at the lattice points. These nuclei can be displaced from
their equilibrium points, and as physicists we like to model the movement as
that of a harmonic oscillator, such that a nucleus is connected with its nearest
neighbour with a spring that obeys Hook’s Law and has no influence on the
movement of nuclei beyond its nearest neighbours. It is shown in every stan-
dard textbook on solid state physics [7] that a disturbance in the lattice (e.i. a
displacement of a nuclei away from its lattice point) will propagate as waves
with a wave vector Q and a frequency ω, the relationship between which deter-
mines the dispersion relation. The wave vectors are quantised, such that modes
exists with indices s = Q, i, and the Hamiltonian for this simple crystal is just
the sum over all modes of Hamiltonians for a harmonic oscillator

Ĥ =
∑
s

~ωs
(
a†sas +

1

2

)
(38)

where the as and a†s are the annihilation and creation operators for mode s. If
we write the instantaneous position of a nucleus Rl as

Rl = l + ul (39)

where l is some lattice vector and u is some displacement away from this, then
the time dependence of the motion is in the displacement alone, Rl(t) = l+ul(t).
This ul(t) we can rewrite in terms of the annihilation and creation operators,
which gives

ul =

√
~

2mnN

∑
s

es
ωs

[
as exp(iQ · l) + a†s exp(−iQ · l)

]
(40)

With these equations in place, we are ready to tackle the problem of inelastic
scattering again, starting over from equation (15). An excitation in the crystal
changes the state |λ〉 of the system, and thus it is necessary to take this into
account by making the substitution |ψi,f 〉 → |λi,fψi,f 〉 such that we are keeping
track of both the crystal and neutron state.

d2σ

dΩdE

∣∣∣∣
λi→λf

=
kf
ki

( mn

2π~2

)2 ∣∣∣〈λiψi| V̂ |λfψf 〉∣∣∣2 δ(Eλi
− Eλf

+ ~ω) (41)
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As was the case in equation (15), the V is the Fermi potential of equation (16)
which models the short-range interaction between the nucleus and the neutron,
and we have again defined q = ki − kf .

We would like to re-cast the above expression into something that resembles
the measurements that we perform, since it currently sums a lot of processes
where a specific state |λi〉 goes into another state, neither of which we have any
knowledge about. This can be done by summing over all final crystal states
|λf 〉 and making a thermal average over all initial states |λi〉, since we assume
the sample is in thermal equilibrium, i.e follows a Boltzmann distribution. The
steps taken to reach the observable neutron partial differential cross section are
a bit involved, but can be found in both [8] and [2], and the final result is

d2σ

dΩdE
=
kf
ki

∑
j,j′

bjbj′

2π~

∫ ∞
−∞
〈exp (−iq ·Rj′(0)) exp (iq ·Rj(t))〉 exp (−iωt) dt

(42)

The evaluation of the above expression is no simple matter for but the simplest
scattering systems.

In the derivation of equation (42), the time-dependent nuclei position oper-
ator was defined as

Rj(t) = exp

(
iHt

~

)
Rj exp

(−iHt

~

)
(43)

and we find that we are still at the mercy of the complexity of the Hamiltonian
H. This does however also means that a measurement of the partial differential
cross scattering holds information about the dynamics of the crystal through its
Hamiltonian.

Inserting the expression for the displacement (39) into equation (42), the
time dependence on R can be moved to the ul term alone, since l is constant and
subsequently we can take exp(q · l) out of the integral. This factor corresponds
to the lattice sum that we calculated earlier.

The time development of ul can be be easily found, as we have expressed it
in terms of the annihilation and creation operators for the harmonic oscillator
which has time development

as(t) = exp(iHt/~)as exp(−iHt/~) = as exp(−iωst) (44)

a†s(t) = exp(iHt/~)a†s exp(−iHt/~) = a†s exp(iωst) (45)

Since ul corresponds to vibrations in the lattice, the annihilation and cre-
ation operators works on phonons which are quantised lattice vibrations.

Equation (42) can be divided into a coherent and an incoherent part, much
as we saw in section 2.4.1. Focusing on the coherent part, the expression for the
partial differential cross section can be evaluated to(

d2σ

dΩdE

)
coh

=
σcoh
4π

kf
ki

N

2π~
∑
l

exp〈U2〉 exp(iq · l)
∫ ∞
−∞

exp〈UV 〉 exp (−iωt) dt

(46)

where 〈UV 〉 means the thermal average of U = −iq · u0(0) and V = iq · ul(t),
and the coefficient exp〈U2〉 is known as the Debye-Waller factor.
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We expand the exponential function into

exp(〈UV 〉) = 1 + 〈UV 〉+
1

2!
〈UV 〉2 + . . .+

1

p!
〈UV 〉p + . . . (47)

The first term in the expansion corresponds to elastic scattering, and we can
reproduce our results from section 2.4 if we integrate over exp(−iωt), yielding
2π~δ(~ω), perform the lattice sum, and integrate over all energies and angles to
get the scattering cross section.

If we instead focus on the first 〈UV 〉 term, we can calculate the thermal
average of the harmonic modes and see how the partial differential cross section
changes. The result is

〈λ|UV |λ〉 =
∑
s

gsh
∗
s(ns + 1) + gshsns (48)

where we see that we have two terms, one of type 〈ns+1〉, the second of the type
〈ns〉. These two terms means that the partial differential cross section consists
of two terms. The integration now includes an extra exponential exp(−iωst),
the combination yielding a δ-function at (ω±ωs), valid for the 〈ns〉 and 〈ns+1〉
terms respectively.

Now, the lattice sum that we performed before also contains an extra term of
exp(±iQ · l). This means that we, instead of the Laue condition, get a δ-function
at (q±Q− τ ), again for the 〈ns〉 and 〈ns + 1〉 terms respectively.

These two δ-functions are equivalent to the two conditions

ω = ±ωs q = τ ±Q (49)

The first set of conditions are linked to the 〈ns+ 1〉 and means that the amount
of phonons in a particular mode s is increased by 1, at the same time reducing
the kinetic energy of the neutron by the amount Ei −Ef = ~ωs, i.e. the energy
of a phonon in the same mode s. The neutron creates a phonon in an event
known as phonon emission. Furthermore, the creation of a phonon means that
a change in momentum is experienced by the crystal, by the amount ~(ki−kf ).
The phonon wavevector Q should correct for this, such that ~τ + ~Q combines
to ensure conservation of momentum.

The second set of conditions are linked to the 〈ns〉 and conversely corresponds
to the neutron annihilating a phonon in the mode s, gaining energy Ef −Ei =
~ωs, naturally known as phonon absorption.

Going to higher order in the expansion (47), we will get interactions with
more phonon processes, such that the 〈UV 〉2 corresponds to a two-phonon pro-
cess, 〈UV 〉3 is a three-phonon process and so on.

2.6 The scattering triangle

We have encountered the q = ki − kf vector in both the expression (24) for
elastic scattering and in the expression (41) for inelastic scattering, and we found
from the Laue condition (35) that elastic scattering is only possible when q = τ ,
and from equation (49) that inelastic scattering will occur only for q = τ ±Q.
It seems to be prudent to develop an understanding for these vectors if we are
to use them as tools for our scattering experiments. To this end, we construct a
triangle from the ki, kf , and q vectors in reciprocal space, an example is shown
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Figure 4: The scattering triangle with ki, kf and q.

in figure (4). Two angles are defined in this scattering triangle, one between
the sample and ki which we shall name A3 and another between the extension
of ki and kf named A4. These angles are important, as we can decide q by
measuring the lengths ki and kf and their mutual angles.

Naturally, for elastic scattering we will have |ki| = |kf | and hence the triangle
will be isosceles, having two sides of the same length. For inelastic scattering,
|ki| 6= |kf | and the triangle is not in general isosceles.
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Name Location Type

ILL Grenoble, France R
ORPHEE, LLB Paris, France R
BER-II, HZB Berlin, Germany R
FRM-2, TUM München, Germany R
IBR-2 Dubna, Russia PR
SINQ, PSI Villigen, Switzerland CS
ISIS, RAL Oxfordshire, UK S
ESS (from ≈ 2019) Lund, Sweden S
NCNR, NIST Gaithersburg, MD, USA R
HFIR Oak Ridge, TN, USA R
NRU Chalk River, Canada R
LANSCE Los Alamos, NM, USA S
SNS Oak Ridge, TN, USA S
OPAL, ANSTO Sydney, Australia R
JRR-3M, JAERI Tokai, Japan R
CARR, CIAE China R
J-PARC Tokai, Japan S

Table 2: A list of the names, institutes, locations and types of the major neutron
sources world wide. Here, R represents a reactor while S is a spallation source.
The special cases CS is a continuous spallation source and PR is a pulsed reactor.

3 Inelastic neutron instruments

The first use of neutrons as a source for spectroscopy is normally attributed to
Bertram Brockhouse at Chalk River Labs in Canada in the period between 1950
and 1962, which led to the invention of the Triple Axis Spectrometer (TAS).
This achievement ultimately gave him the 1994 Nobel Prize[9], which was shared
with Clifford Shull. In this section, we will focus on the techniques currently
employed at neutron scattering facilities to create and move neutrons around,
and describe the principles behind the TAS that Brockhouse helped develop and
compare this to the competing and complementary technology of the Time Of
Flight spectroscopy (TOF), the two methods currently used in inelastic neutron
scattering.

3.1 Neutron sources

Neutron experiments are performed at large-scale facilities, since the neutron
flux required for experiments in solid state physics is so immense. These large-
scale facilities fall into two different categories, based on the method by which
they produce neutrons: research reactors and spallation sources. A list of current
neutron sources compiled from [10] is shown in table 2.

In research reactors, a fissile material such as a nucleus of the uranium-235
isotope is hit by a neutron, which normally splits the nucleus into two fissile
products along with 2 to 3 neutrons. These neutrons can then hit another
nucleus, splitting it, and giving off more neutrons. This starts a chain reaction
that produces more neutrons than it needs to sustain itself; it is these surplus
neutrons that can be used for experiments. The nuclear process is given by
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235U + n = D1 + D2 + (2-3)n+Q (50)

where the D1,2 is the fission products. Although this is the same nuclear
process as in (many) nuclear power reactors, the research reactors are optimised
for neutron production and are not used for producing electricity.

A more recent alternative to the research reactors are spallation sources,
developed in the mid-seventies with the first prototype, ZING-P, operating at
the Argonne National Laboratory in the USA[11]. Spallation sources have a
fundamentally different approach in obtaining free neutrons. First, protons
which are easily accelerated due to their electric charge is fired into a heavy
target at an energy of 1-3 GeV. The target chosen is a neutron-rich element, for
example tungsten (W), and the result of the collision is that neutrons are peeled
off of the target nuclei. Since the protons hitting the target usually comes in
pulses, the neutron beam that the collision creates is also pulsed, and spallation
sources are often referred to as pulsed sources. This is in contrast to the research
reactors, where the neutrons are coming in a continuous beam.

Currently, the trend for neutron scattering facilities seems to be a move to-
wards spallation sources, as evidenced by the large facilities J-PARC[12] and
SNS[13] opened in opened in 2008 and 2007, respectively, and the planned
ESS[14]. Reactors face cooling and control problems when the neutron flux is
increased beyond current state-of-the-art reactors, most notably the ILL. Com-
paring ILL with the next major player in neutron science, the ESS, one sees that
the time-integrated neutron flux is approximately the same for the two facilities.
In the narrow time of a pulse from a spallation source the flux is much higher
than for the reactor source, and neutron instruments designed for spallation
sources can be optimized to use a larger amount of neutrons in the pulse by
time-of-flight techniques. This increases the efficiency of spallation sources.

As a final remark, spallation sources are to a lesser degree the political hot
potatoes that reactor sources are.

3.2 Moderators and guides

Since the MultiFLEXX will be used as a part of the FLEXX Triple Axis Spec-
trometer, the principles of neutron moderators and guides will take as its basis
this instrument.

Neutrons produced by neutron sources are way too energetic to be used for
probing solid state systems. This means that the neutrons will need to be mod-
erated to have a lower energy, through repeated collisions with some moderator
material. Hydrogen atoms are very useful for this, due to their similar size to
the neutrons, meaning that they can absorb a large part of the energy from
the energetic neutrons. The moderated neutrons will have a Maxwellian energy
distribution, with the temperature T that of the moderator temperature. Often,
the moderator will be water (H2O) at 300 K, as this temperature gives neutrons
with the desired energies. The neutrons are emitted through the moderator sur-
face, making it an effusion process. Transforming to a wavelength distibution,
the neutrons will be distributed according to

I(λ) = I0λ
−5 exp

(
− 2π2~2

λ2mnkBT

)
(51)
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where T is the temperature of the moderator as decribed in table 1, and I0
is a constant determined by the neutron source, while λ is the wavelength of
the emitted neutron. We will henceforth refer to the neutrons that have passed
through the moderator and into the TAS instrument itself as the beam, and say
that this beam is white, i.e. has many different wavelengths. The nature of the
Maxwellian distribution means that the tail will contain ”hot” neutrons, even if
the moderator was ”cold”.

In order to improve the neutron transmission, the moderator will often not
be thick enough to moderate all neutrons, which affects the distribution in (51),
such that it may be comprimised of the sum of several Maxwellians, or have a
tail towards higher energies. An example of the wavelength distribution from
FLEXX can be seen in figure 5

Figure 5: (Left) is the the count rate (green triangles)for neutrons of different
wavelengths at the sample position as a function of wavelength. The black line
shows a simulation in McStas. The insert shows the same spectrum, but taken
immediately after the moderator instead of at the sample position. (Right)
we see the transmission of the velocity selector, whose function is described in
section 3.4, when it is set to transmit at one particular wavelength. The trans-
mission is shown for three different wavelengths. The maximum transmission
of the velocity selector compared to the right spectrum is 70 % at low energies.
Figure taken from [15]

To make it possible to have a larger number of instruments at each neutron
source and to reduce background counts of high-energy neutrons, a long, curved
neutron guide is employed. These guides use the principles also found in optical
fibers where neutrons will undergo total reflection if they hit the guide at an
angle smaller than the critical angle θc(λ). This angle can be found from the
critical scattering vector Qc, and the two are related as

Qc = 2k sin(θc(λ)) ≈ 4π
θc(λ)

λ
(52)

Due to modern advances in layered neutrons guide, a non-zero reflectivity is
possible up to a higher critical scattering vector than that for single-layer ma-
terial. This critical scattering vector is characterised relative to the standard
material nickel (Ni), by the number m, such that Qc = mQc,Ni. The majority
of FLEXX’s guides have m = 3, making their effective Qc three times larger
than for an all-Ni guide.

19



The reason for the curvature is to reduce background from the energetic
tail of neutrons that has not been wholly moderated by removing line-of-sight
through the guide[16]. The overall shape of the guide can also be modified
to focus the neutrons, such that a tapered, parabolic, or elliptical guide will
yield a better performance in transporting the neutrons from the source to the
instrument[17].

A neutron is said to be having a divergence, which is a measure of how much
a single neutrons deviates from the general beam direction. The divergence of
the beam is then the largest angle that any neutron in the beam makes with
the beam direction, and is measured transversely and horisontally. At different
points in the neutron beam path, the beam divergence can be changed by the use
of collimators. A collimator can be as simple as two slits of a neutron-absorbing
material, where the width (height) of the slits and the distance between them
can limit the horizontal (vertical) divergence of the beam by removing neutrons
that are not moving parallel to the direction of the collimator. More advanced
collimators consisting of a box open in both ends and lamellae of neutron ab-
sorbing materials along its length are known as Soller type collimators. For these
collimators, the transmission function can be be very close to the idealised case
of a triangular transmission function.

3.3 The Triple Axis Spectrometer

As the name suggests, the operation of a TAS hinges on the use of three different
axis to monochromatise an incoming beam, select an angle, and analyse the
scattered neutron energies.

The first and the third of the axes in a TAS are constructions known as
monochromators and analysers, respectively. The names cover different uses for
the same effect, namely to use Braggs law to pick a specific energy of neutrons
out from the continuum of energies that are created by neutron moderators and
the sample, respectively.

From equation (37) it can be seen that it is only when the combination of
neutron wavelength, lattice spacing, and angle satisfy Bragg’s Law that neutrons
can be reflected from a crystal. By using a crystal with a known lattice spacing,
any change in the neutrons incident angle upon the crystal will result in a
different wavelength being reflected. Thus, simply by rotating a crystal, we can
choose a specific wavelength from a continuum of energies. There is a caveat,
in the form of the n in equation (37). Any multiplum of shorter wavelength
neutrons that add up to the wavelength we want to pick out will also be scattered
from the crystal, and further measures are needed to ensure that the sample is
not hit by these neutrons.

For TAS, there is a naming convention for angles and distances that we will
use when describing neutron instruments. Here, distances are denoted LX and
angles are denoted AX, with X starting from 1 and increasing in the order with
which a neutron beam reaches them.

After having traversed the length of the guide, the neutrons reach a mono-
chromator after L1 that will reflect only a specified wavelength λi of neutrons
due to it being in the Bragg scattering condition, controlled by the experi-
menter through the angle between the incoming beam and the monochromator,
A1. The monochromator scatters the neutrons into an angle A2. Since we wish
to be able to change λi, the rest of the experimental setup must therefore be
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movable such that the sample can be placed at an arbitrary A2 when A1 is
changed. In practice, this is done by lifting the instrument slightly from the
floor using compressed air and moving it along with electrical motors. It is the
angle A2 between the monochromator and sample that is the first of the three
axes in a TAS. This part is also referred to as the primary spectrometer, or the
instrument front-end.

The beam next hits the sample after a distance L2, which is placed on a sam-
ple table that generally moves and rotates in several dimensions for alignment.
More often than not, the sample is in some kind of sample environment, e.g.
a magnet, a cryostat or something similar. A rotation of the sample, which is
denoted A3, allows the experimenter to reach different q-values, as described in
section 2.6. Neutrons are scattered according to the q-value defined by ki, kf ,
A3, and A4, the angle that the neutrons are scattered in from the sample. Due
to this second axis, we now have a whole range of neutrons that leave the sample
at a specific scattering angle, but with a host of different neutron energies, since
we are doing inelastic neutron scattering and the neutrons gain or loose energy
from the sample. This means that we have to determine the amount of neutrons
of a specific energy. The angle between sample and analyser is the second angle
of the TAS.

To determine the final energy of the neutrons, they are reflected by an anal-
yser at L3 which functions in exactly the same way as the monochromator, i.e. by
having the experimenter change the angle between the incoming neutrons and
the analyser to select a specific wavelength λf . The angle of the analyser crystal
with respect to the beam is denoted A5, and correspondingly, the detector that
is a distance L4 away must be placed at an angle A6 for the neutrons to hit
it. The angle between the analyser and the detector is the third axis, and final,
axis of a TAS. This is usually referred to as the secondary spectrometer, or the
instrument back-end.

3.3.1 A typical TAS experiment

Obtaining (Q, ~ω) graphs is generally done in two different ways, both of which
we can relate to the scattering triangle of figure 4.

In the first of these, the TAS is set to measure at a specific point in Q space
and scans over the energies, i.e. keeping either the initial energy Ei or the final
energy Ef constant while varying the other, known as an E-scan or a constant
Q-scan. If Ei > Ef we are downscattering, otherwise we will be upscattering,
depending on whether the sample adds or subtracts energy from the neutron.
Changing either ki or kf means that the angles in the scattering triangle should
be changed as well to keep the position in Q-space.

In the second method, the TAS scans through reciprocal space at a fixed
energy transfer, known as a Q-scan or a constant E-scan. The direction taken
in Q can be chosen by the experimenter by choosing the angles of the scattering
triangle appropiately, although straight lines through Q in some direction is
preferred. For example, a scan where the q-vector is pointing in the same direc-
tion but changes length is known as a Q‖-scan, while measuring perpendicular
to the initial q-vector is a Q⊥-scan. The latter is achievable by performing a
sample rotation for small sample angles.

The method chosen for a particular experiment depends primarily on the
type of dispersion that one wish to measure. For example, a very flat dispersion
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is best measured by an E-scan for reasons that will be explained in section 6.
Both of these methods gives results that are easy to interpret, however.

The first step is normally to determine the orientation of the sample by
finding a Bragg peak, after which the surrounding Q-space can be investigated.

The operation of a TAS focuses on just a few points in (Q, ω) space like we
see in the scattering triangle of figure 4. Changing the settings require several
electrical motors to turn large parts of the instrument using compressed air. As
a consequence of the focus on a few points, it is important that the experimenter
knows where the physical properties of interest in an experiment is found, and
going to larger areas of (Q, ω) space is usually unfeasible. However, the data
aquisition for each point is quick due to the relatively high flux of the reactors
where TAS are often found.

3.4 The FLEXX spectrometer

The FLEXX TAS is far removed from the simple TAS described above, utilising
several improvements to increase neutron flux on the sample and improving
resolution and background. In this section, we shall delve into some of the
details of a modern TAS.

3.4.1 Monochromator resolution

If we use for our monochromators and analysers a single perfect crystal, we can
calculate how large an uncertainty in λi,f we can expect from the scattered beam
given the divergence of the incoming beam. If we assume the lattice spacing
d to have negligble uncertainty, we can calculate this by differentiating Braggs
Law (37) with respect to the angle of the incoming beam, yielding

dλ = 2d sin θdθ (53)

If we divide this expression with Braggs Law to obtain the relative uncer-
tainty on λ, we get

δλ

λ
= cot θδθ (54)

which, for an angle θ = 45◦ and typical divergence δθ = 0.5◦, yields a relative
uncertainty of ≈ 1%, and we see that this method gives us a quite well-defined
wavelength for the beam. However, we see from the cot θ that our relative un-
certainty is increasing rapidly as scattering angles are decreasing. This means
that a monochromator or analyser that is set to scatter short-wavelength neu-
trons are reflecting a broader range of neutrons than those that are set to scatter
long-wavelength neutrons. This effect is used in the ultra-precise backscattering
instruments, where θ is fixed at a value close to 180°.

3.4.2 Mosaicity

If a larger amount of reflected neutrons is needed to sacrifice resolution for higher
flux onto the sample, as is often the case in neutron scattering, the width of the
reflected beam can also be increased by using analyser and monochromator
crystals that have a mosaic width or mosaicity.
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Crystals with a mosaic width do not have their lattice planes completely
aligned, rather they are made up of several microscopic crystals that are perfect,
but with lattice planes pointing in slightly different directions around some
average value[18]. The closer these microscopic crystals are to having all of
their lattice planes aligned in the same direction, the lower their mosaic width
is. Instead of seeing the sharp peak in reflectivity at the wavelength satisfying
Braggs Law, we see a Gaussian peak around it which width is defined as the
mosaic width. This broadening is often measured in degrees or Minutes Of Arc
(MOA), with 1° = 60 MOA.

Allowing for this increase in relative uncertainty of wavelength naturally af-
fects the resolution with which the instrument can measure. Therefore, choosing
the mosaicity of the analyser crystals is a balancing act between the precision of
the instrument and the amount of neutrons that will hit the sample in a given
time, and through that the time in which an experiment can be performed.

The mosaic crystals used for the FLEXX monochromator and analyser are
made from Highly Oriented Pyrolythic Graphite (PG). This material, that is
really a powder in two directions and crystallic in the third, has many properties
that make them ideally suited for this use, including a high reflectivity and a
behaviour close to that of an idealised mosaic crystal[19].

As described in section 3.3, measures should be taken to prevent neutrons
that might undergo second or higher order scattering from reaching the mono-
chromator at all. For FLEXX, a velocity selector is installed along the length of
the guide. In the velocity selector, the neutrons pass through a cylinder contain-
ing a rotating fan of blades that are tilted with respect to the main beam path.
The blades are clad with neutron-absorbing material, and the tilt in combina-
tion with the rotational speed of the velocity selector means that only neutrons
moving at a specific speed will pass through the velocity selector without hitting
a blade and being absorbed. Velocity selectors like this can be used to choose
exactly the incoming wavelength, but this comes at a great cost in intensity. For
the FLEXX spectrometer, the velocity selector chooses a broad range of neu-
trons, that is however narrow enough to ensure that there are no neutrons to
undergo higher-order scattering from the monochromator, leaving out a source
of noise. Furthermore, a lot of neutrons are removed from the beam far away
from the detector, leaving them no chance of being accidentally scattered and
detected. An example spectrum from the velocity selector can be seen along
with the neutron spectrum in figure 5.

For FLEXX, the detector is a so-called 0D-detector, meaning that the de-
tector does not track where the neutron hits, just that a neutron hits the area
of the detector. This is in contrast to Position Sensitive Detectors (PSD) that
can be obtained in one- or two-dimensional versions that has neutron-sensitive
pixels that detects approximately where on a line or a plate, respectively, a
neutron hits.

3.5 The Time Of Flight Spectrometer

A very different technique for neutron spectroscopy is the Time Of Flight (TOF)
method. This optimises the efficiency of pulsed spallation sources, and as such
are often used there.

The major difference is in the measurement of the energy of the neutrons; in
a TOF it is done by measuring a delay ∆t between some event and the neutron
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reaching a detector placed a certain distance L away. The time it takes a neutron
to traverse the distance L is dependent on its speed v, which we can convert to
the neutron wavelength λ. Rewritten, the delay is given by the equation

∆t =
L

v
=
mN

2π~
Lλ = αLλ (55)

where α = 0.2528ms/̊Am (the units being milliseconds and Ångstrøm times
meters). The relative uncertainty is here determined from

αLdλ ≈ dt = τ (56)

with τ being the length of the pulse leading to

dλ

λ
=

τ

αLλ
(57)

and we see that long distances, long wavelengths, and short pulses led to
better relative uncertainty[20].

The event that starts the timing is dependent on the type of experiment and
source, but is is usually the impact of the pulse that creates the neutrons. For the
long-pulsed ESS, the event will be one or more Pulse Shaping (PS) choppers that
define the pulse time τ which we saw in (57) to determine the relative uncertainty
and, through that, the resolution. Another chopper that is set to barely hit the
beam after the PS chopper is the Frame Overlap (FO) chopper that removes
the so-called frame overlap where fast neutrons from one pulse overtakes the
slow neutrons from another, making it impossible to distinguish which pulse
to measure delays from and making wavelength determination impossible. At
continuous sources, choppers can also be utilised to give a pulsed signal at the
cost of losing many neutrons.

With the TOF method, it is only possible to determine either Ei, known as
direct TOF or Ef , known as indirect TOF. This means that for inelastic scat-
tering, we need to monochromatise the incoming beam (direct) or analyse the
outgoing beam (indirect) to calculate the energy change. Monochromatisation
can be done by Bragg scattering as for a TAS, but normally long guides are
employed, such that different neutron wavelengths arrive at a monochromati-
sation chopper at different times. The synchronisation between pulse start and
chopper then selects the incoming energy.

Since the TOF measures delays ∆t and converts them to energies, this means
that a TOF can measure a large (limited by the pulse details only) range of neu-
tron energies more or less smoothly, without changing any settings. No setting
are required to change for measurements of different q’s either, as the measure-
ment of the individual neutrons are performed by a detector bank, placed in a
semicircle with its centre at the sample, such that a large range of q-values can
be measured at the same time. When comparing to the scattering triangle of
figure 4 that the TAS can measure, the ToF measures as shown in figure 6.
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Figure 6: The part of Q that a TOF can measure at a time. The colour is
proportional to the neutron energy we measure at a point. Note that the range
in kf length (the radius of the circular slice) is determined by the time between
pulses, and that the angular coverage is usually much larger than the 100° shown
in this sketch.
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3.6 Advantages and drawbacks

With the TAS and the TOF methods, we have two quite different types of instru-
ments, each with their own advantages and drawbacks that mostly complement
each other.

The first comparison to be made is one of measurement area in (Q, ω) space.
Here, the TAS measures just one point after which the instrument will need to
change settings to prepare for the next point to measure, while the TOF can
measure a large range of both energies and q-values simultaneously. The TOF
can thus be used for mapping, where the overall structure of the sample is visible.
Although this would seem to favor the TOF instruments, comparison number
two largely negates this advantage.

While the pulsed neutron sources can be very intense, a lot of that intensity is
removed first at the PS chopper, and later at the monochromatisation chopper.
This is especially so for a monochromatisation chopper, where the pulse window
has to be very small to have good resolution. This is because the distance L
to the detectors can not be increased while maintaining the same solid angle
covered for the same amount of (expensive) detector area. The result is that
the integrated intensity hitting the sample is much lower than in a comparable
experiment using a TAS, thus making a TOF measurement a time-consuming
ordeal.

The slow data aquisition also means that parametric measurements where
the temperature, pressure or other sample environment parameters are changed
often are not feasible. This is a major drawback, as experiments showing how
the sample behaves in or near phase transitions are one of the staples of neutron
scattering. With a TAS, it is possible to focus on the interesting region around
the phase transition, yielding higher statistics in the area of interest.

For both methods, the resolution primarily depends on the wavelength as
equations (54) and (57) show, with both instruments performing better at long
wavelengths, corresponding to a low k. For the TOF, a low ki gives a good
resolution in the entire energy range, which on the other hand is limited exactly
by the low ki, while as we shall see in section 6, the TAS resolution suffers
equally if the energy range is large.

Upon comparison of the strengths of both types of spectrometers, we find
that there are experiments that are not immediately feasible using either a TAS
or a TOF; namely mappings with parametrisation.
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4 The MultiFLEXX design - combining advan-
tages

With neither the TAS method nor the TOF method perfect, the prospect of
combining the advantages and ignoring the disadvantages of the two have led
to new developments in neutron spectroscopy, such as the emergence of multi-
plexing neutron instruments. There is no fixed definition of multiplexing, but
in this thesis we will define it as using several analysers to measure multiple
energies and/or angles at the same time.

One of the first instruments to utilize multiplexing was the two so-called
Re-Invented Triple Axis spectrometers (RITA and RITA-II) [21] which was de-
veloped at Risø in Denmark. RITA-II, which later moved to PSI in Switzerland,
has an analyser that consists of nine individual blades that can be rotated inde-
pendently, such that each blade can scatter a distinct energy. The nine blades
share one common position sensitive detector; determining which analyser scat-
tered the neutron is done by recording the position of the detection. RITA-II can
also use the blades as a normally focusing analyser in an ordinary TAS setup,
or position the blades such that RITA-II can be used for neutron imaging [22].

Many of the multiplexing setups in operation today has vertically scattering
analysers, a necessity if several scattering angles are to be measured simul-
taneously due to the spatial requirements of an analyser-detector pair. This
technique was first utilized in inelastic scattering for a rebuild flatcone instru-
ment at HZB [23], measuring at several points in Q-space but at a single energy
at a time.

Also using vertical scattering, the FlatCone [24] at ILL utilizes banks of
identical analyser setups, each containing two distinct analysers that are fixed in
energy, with both analysers scattering to the same detector. This gives access to
a wide range of scattering angles simultaneously, but to determine the incoming
energy, one of the two analysers has to be shuttered. The FlatCone is designed
to be rotated out of the scattering plane to measure out-of-plane scattering.

The multiplexing trend is also spreading to the ESS, still in the construction
phase[14], where the Continuous Angle Multi-Energy Analyser (CAMEA) will
employ the multiple analyser setup of the FlatCone, while using a PSD detector
to detect differences in scattering angle from the sample and variations of energy,
all from a single analyser[25, 26]. The real breakthrough is in the fact that all
analysers can be used simultaneously. This is made possible by using PG crystals
that are very nearly transparent to neutrons at low energies [27] except of course
for energies satisfying Braggs Law. This means that it is possible to place
succesive analyser crystals in the scattered beam direction, with each analyser
scattering the neutrons almost vertically to a dedicated detector. Neutrons
of other energies than the one specified for the analyser will instead continue
towards the next analyser in the beam direction. These novel features, coupled
with the very bright neutron beam of the ESS should yield an increase in gain
over a TAS of between 400 and 3700[28] in conservative estimates.

A somewhat different approach is taken at NIST, where the MACS[29] spec-
trometer is placed. Here, vertical scattering and 20 scattering angles is paired
with a double crystal analyser for each scattering angle. The double crystal
analysers are arranged to move in coordination with each other, such that neu-
trons are Bragg scattered to a single detector at a fixed position, with possible
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energies between 2.1 meV and 20 meV. This allows for smooth measurement of
Ef ’s in this range.

Not to be outperformed, the neutron research facilities PSI, MLZ, and HZB
are currently planning new multiplexing instruments, taking in design ideas
from the extremely ambitious CAMEA. The HZB design, which is to be known
as the MultiFLEXX[30], is at the most advanced stage of the three, currently
undergoing the final assembly.

4.1 The MultiFLEXX design

The MultiFLEXX will be an optional multiplexing back-end for the FLEXX
TAS, to be used at user request. It is a vertically scattering instrument using
the CAMEA-type multiple analysers of PG that can be placed in succesion of
each other, each scattering a single fixed energy. The vertical scattering allows
us to have multiple sets of analysers, covering a broad range in scattering angles.

4.1.1 Analyser channels

For the MultiFLEXX, we have opted for 5 analysers in the scattered beam,
with an energy range of 2 meV at the fixed energies Ef = 2.5, 3.0, 3.5, 4.0, and
4.5 meV, with the lowest energy analyser closest to the sample. Each analyser-
detector pair constitues an energy channel, and the combination of the 5 above-
mentioned energy channels are built together into a casette. These casettes are
identical, and the geometry and set-up of one can be seen in figure 7. Notable
from this figure is the shielding made from borated polyethylene (shown in light
blue) to prevent crosstalk where a strong signal in one channel is leaking into
another channel, and also to reduce background from the experimental area.
The casette has side-walls of aluminum lined with Cd for further shielding, such
that the areas of free air propagation within each casette is fully enclosed. On
the end of the MultiFLEXX facing the beam, a thin strip of lead is added under
the borated plastic. This acts to shield the detectors against γ radiation created
when the borated plastic absorbs neutrons.

The energy channel closest to the sample has the centre of its analyser
L3 = 1.050 m from the sample, with the following energy channels having
L3 = 1.220 m, 1.387 m, 1.552 m, and 1.732 m.

For each energy channel, a focusing (to be explained in section 5), vertically
scattering analyser made from 3 HOPG plate-like crystals of size 20×20×2 mm
will scatter neutrons onto a cylindrical He-3 tube detector of radius 25 mm and
active length 50 mm. To obtain the correct geometry for the focusing analysers,
they are placed in a holder constructed from aluminium. The analyser crystals
have their crystal planes aligned with the large surface of the crystal[31], such
that the crystal planes are easily aligned from the analyser crystal shape alone.

The analyser crystals were ordered to have a mosaicity of 40 MOA, the
actual values were measured at the E2 diffractometer at HZB[32] to ensure that
the crystals were within specifications. Those that had mosaicities outside the
specified range were sent back for replacement.

The detector is placed a distance of L4 = 0.4 m from the centre of the anal-
ysers. There are no movable parts in the analyser-detector setup. Calibrations,
alignments and service of the amount of motors needed to move all analysers
would be an insurmountable task, as would be the task of making software to
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Shielding

2.5 meV 3.0 meV 3.5 meV 4.0 meV 4.5 meV

L = 0.682m

Figure 7: A sketch of the setup showing the 5 energy channels that constitute
a single casette. The analyser crystals are on top of the analyser holders, the
triangle structures near the bottom. The detectors are the green rectangles near
the top, light blue represents shielding and white is free air propagation. The
analysers are curved, the curvature is exaggerated by a factor of 10 for visual
clarity.

control it in a sensible manner. Instead, the ability to have a plug-and play
alternative set-up and ease of operation for external users have been prioritised.
Alignment is done manually and is fixed after the instrument is assembled.

Even though the Ef ’s are fixed one can still measure energy transfers rela-
tively smoothly by changing Ei in steps approximately the size of the width of
the analyser resolutions, which can be done using the monochromator. An ordi-
nary TAS measuring an energy transfer in steps of e.g 0.15 meV takes 13 steps
in Ei to cover energy transfers in a 2 meV range, whereas the MultiFLEXX can
cover the same range just as smoothly with 3 steps in Ei.

The setup of a casette can be made very narrow, which means it is possible
to place them just 2.545◦ apart in a semicircle around the sample. A total of 31
casettes will cover an angular range of 77◦, each measuring a different q-value.
In this setup, each casette represents a q-channel. This is the closest we come
to the large semicircle of position sensitive detectors of the TOF described in
section 3.5. The MultiFLEXX cannot measure above or below the scattering
plane as TOF’s can, but will often be used with sample-environment that limits
the neutrons scattered out-of-plane.

Compared to the ordinary analyser from FLEXX which uses a much larger
focusing analyser, the solid angle coverage is 10 times larger, effectively multi-
plying the amount of data to be taken by the same amount.

In correspondence to the scattering triangle shown for an ordinary TAS in
figure 4 and the continuum of scattering ”triangles” for a TOF shown in figure 6,
the MultiFLEXX has a host of different scattering triangles, as shown in figure
8 for 2 of the 31 channels, corresponding to the MultiFLEXX prototype that
is tested in section 9. It is still possible to change the scattering angle, i.e. the
angle between the central MultiFLEXX q-channel and the incoming beam. The
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size of the MultiFLEXX back-end might limit this motion compared to the
movement that the ordinary FLEXX back-end has.
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Figure 8: The scattering triangles for an experiment with 2 of the 31 channels of
the MultiFLEXX back-end. The colours correspond to the energy of neutrons
measured at the Q-point, with darker colours meaning higher energy.

The MultiFLEXX gives an opportunity for doing neutron experiments where
mapping of novel samples can be done quickly, and gives the researchers the
possibility to identify regions of interest for further study. For specialised tasks,
such as parametric studies of particular regions in (Q, ω)-space, the standard
FLEXX back-end is still a better option, and the instrument user can choose
which of the two back-ends to use for the task at hand.

4.1.2 Beryllium filter

The FLEXX spectrometer has a velocity selector to remove second order scat-
tering from the monochromator, but this is not always sufficient. For example,
downscattering from Ei ≈ 10 meV will see the 2.5 meV analyser second order
scatter the elastically incoherent signal of the sample and background, and for
higher incoming energies this will be a problem for the other energy channels
as well. Thus, a filter might be required to discriminate against high-energy
incoherently scattered neutrons. In our case, the ideal filter would be opaque
to neutrons with an energy higher than around 9 meV to avoid second order
scattering from the 2.5 meV analyser, or preferrably down to 5 meV to cut off
all the neutrons that will never be detected anyways, reducing the amount of
background neutrons near the detectors.

Therefore, it has been suggested that the MultiFLEXX should have a filter
to be situated immediately in front of the entrance to the q-channels. A filter can

30



be made that exploits that there is a maximum wavelength at which a neutron
can be scattered by Bragg scattering of

λcutoff = 2dmax (58)

and a suitable material might be found which is transparent to all wavelengths
λ > λcutoff, but will scatter shorter wavelengths. This is the concept behind
a Bragg-scattering filter. A candidate for our filter is a Beryllium (Be) crystal

which has λcutoff = 3.9 Å such that energies larger than Ecutoff = 5.2 meV are
filtered.

The filter is made from poly-crystalline Be, since we want as many orien-
tations as possible of the crystal planes to scatter the neutrons to be filtered,
while the neutrons that we want to detect are unaffected by the orientation of the
scattering planes anyway. The result is that almost all high-energy neutrons are
filtered out of the neutron beam, and according to [33] a 15 cm polycrystalline
filter has a transmission of just 2.6× 10−5 at 36 meV.

To suppress inelastic scattering by phonons which decreases the transmission
for E < Ecutoff, one will typically cool the Be filter with liquid nitrogen. This
more than doubles the transmission of neutrons in the desired range[33].

4.2 Experiments with the MultiFLEXX

In a single setting, the MultiFLEXX will cover 31 q-channels × 5 energy chan-
nels, meaning it will measure 155 points in (Q, ω) simultaneously. This is natu-
rally more than the one point measured by a TAS, but far from the continuous
coverage of a TOF.

To access 155 other points in (Q, ω) the sample can be rotated. This corre-
sponds to rotating the coordinate system in figure 8 without moving the scat-
tering triangle, and is also the way in which a TOF changes where in Q it
measures. This draws out arcs in Q-space, one for each of the 155 channels, and
due to the different energies of the analysers, each arc will be measured at one
particular energy.

Another possibilty for MultiFLEXX operation is the so-called A3-A4-scans.
Here, the detector array (A4) moves with the same angle as the sample (A3),
changing both the direction and length of q’s and the sample rotation. This will
cover an area in Q such that it is measured thoroughly at different energies as
well, making it a mapping scan over a specific area of Q, giving the instrument
a flexibility that a TOF does not possess.

The complex measurements means that an experiment on the MultiFLEXX
demands some planning. As a help, software has been created that will show
the effect of the different scans.
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5 Analyser geometries in neutron scattering

Inelastic neutron scattering as a technique has always been severely limited by
the feeble amount of neutrons that our current sources can supply. Therefore,
it is in the instrument scientist’s interest to make the best use of every neutron
that is emitted from the sources, i.e. having them interact with the sample and
counted in the detector.

In section 3.4, it was discussed how the use of mosaic crystals could increase
the amount of neutrons scattered off monochromators and analysers in a TAS,
at the cost of a substantial decrease in energy and Q resolution.

Another way to increase the flux is to focus the neutrons by abandoning
flat monochromators and analysers and instead curving them, in the same way
that radio telescopes focus their faint signal onto a single point. The curved
surface that we employ should ideally spatially focus a neutron beam onto a
single point, or at least to a small area, increasing the flux in that area all the
while maintaining monochromatisation. Depending on the situation at hand,
focusing can increase the flux and perhaps even improve the energy resolution.

The amount of neutrons delivered to an experiment can be increased by
increasing the cross section of the guide. This approach is problematic, as
larger guides leads to larger possible divergences at the sample and hence poor
resolution. Therefore, the first attempts at utilizing focusing was the use of taller
guides and vertically focusing monochromators that would focus the neutrons
down in the scattering plane at the sample position[33]. This severely reduces
the resolution out of the scattering plane, which is normally not a problem, as
the scattering plane is often the symmetry plane of the crystal.

For a further increase in flux, instrument designers next began using horison-
tal focusing. This situation demands more care, as we use the incident angle on
the monochromators in the scattering plane to monochromatise the incoming
beam. Simply curving the monochromator in the horisontal direction as we did
in the vertical direction will result in loss of E-resolution.

In the following, we shall investigate the two limiting cases of incoming
neutrons, the parallel-to-parallel case and the point-to-point case. In the first
case, neutrons are incoming with zero divergence and are exiting again with zero
divergence. It is clear that for a flat monochromator, the width of the beam is
the same before and after reflection and that the beam (if we neglect mosaicity
and variations in lattice spacing) is fully monochromatised. The case is sketched
in figure 9.

The second case is more difficult, as the divergence of the neutron beam from
a point source does not produce a monochromatic beam on a flat monochroma-
tor due to the changing incidence angles. Changing the monochromator angle
gradually, such that at each point the monochromator is in the Bragg-condition
for the required monochromatisation is possible. The change φ in monochro-
mator angle θM needed to bring a point on the monochromator back into the
Bragg condition is simply

φ = tan−1

(
h

L0

)
. (59)

where L0 is the horizontal distance from the source to the reflection point, and
h is the vertical ditto. If we have a range of smaller monochromator crystals
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Figure 9: The parallel-to-parallel situation where a flat monochromator gives
perfect monochromatisation. Note that in the example the sample is smaller
than the beam width, limiting the flux on the sample.

instead of a larger, bent one, we can place them at arbitrary positions in space
and adjust φ accordingly.

Laying monochromator crystals out end-to-end and applying the above method
will give the resultant array of monochromator crystals a curvature that should
provide monochromatic focusing, however, we cannot be sure where the neu-
trons are reflected to.

5.1 The Rowland geometry

A solution exists that will give both spatial focusing and monochromatisation.
Known as the Rowland geometry, it is derived in [34] where its use in neutron
scattering is also discussed. Here, a source point A and an image point B are
defined, from which we can geometrically calculate that a neutron emerging
from A with some divergence must be reflected in B if it is to be reflected to
the image points C at a scattering angle 2θ. All three point are lying on the
Rowland circle as can be seen in figure 10. The Rowland circle has radius RG,
defined as

RG =

√
L2

1 + L2
2 + 2 cos(2θ)L1L2

2 sin(2θ)
(60)

where L1 is again the distance between source point A and reflection point B
and L2 is the distance between reflection point B and image point C, while θ is,
as ever, the Bragg angle for a specific neutron wavelength that we want to reflect.
In a coordinate system where a non-divergent neutron hits the monochromator
in origo, the centre of this circle is defined as

xG =
L1 + L2

4 sin θ
, yG = −L1 − L2

4 cos θ
(61)

By placing the monochromator on this circle we will get point-to-point fo-
cusing. But we have not yet ensured monochromaticity. To do this, we need to
tilt the monochromator at point B by the same angle as the divergence of the
neutrons that reach the reflection point to keep the Bragg scattering condition
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fulfilled as discussed above. This leads us to the monochromaticity circle of ra-
dius RM , where the crystal planes should lie parallel to the circumference. RM
is calculated from

RM =
L1 + L2

2 sin(θ)
(62)

and the centre, in the same coordinate system as above, at

xM = RM , yM = 0 (63)

such that the normals to the crystal planes are converging on the point where the
Rowland circle crosses the x-axis. The Rowland geometry has been shown [35]
to better monochromatise a Bragg-reflected peak while increasing flux compared
to a flat monochromator.

The Rowland circle RG and the monochromatising circle RM can be seen in
figure 10, for distances L1 = 2.0 m and L2 = 1.0 m. Since the lengths are not
equal, we say that this is an asymmetric Rowland geometry. The asymmetric
Rowland has an angle δθ between the normals to the two circles at the point
B. This angle goes to zero as the Rowland geometry approaches the symmetric
case, i.e. L1 = L2.

Figure 10: The Rowland geometry drawn for L1 = 2.0 m and L2 = 1.0 m. The
green dashed circle shows the geometrical circle where A, B, and C should be
placed for spatial focusing, while the blue circle is the direction that the reflecting
lattice plane should follow. Red lines are incident and scattered neutrons. Figure
taken from [35].
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5.2 The situation for FLEXX and MultiFLEXX

5.2.1 Rowland in the FLEXX monochromator

If we examine the situation where L1 = L2 (symmetric Rowland), we find that
RM = 2RG, while δθ = 0. This means that the two circles are each others
tangents at origo, and even though their radia are different by a factor of two,
they follow each other closely near origo.

This result is an uplifting one, as we see that for the two lengths equal, we
get near point-to-point focusing over a range of divergences as a bonus when we
curve our monochromators to obtain perfect monochromization. With modern
guides, such as the one at FLEXX after its upgrade[15], it is possible to focus
the neutrons at the end of the guide into a virtual source, which can be made
almost point-like by using slits. In many experiments, the sample will also
be approximately point-like, due to its small size compared to the distance
to the monochromator. Therefore, the distances from the virtual source to the
monochromator and from the monochromator to the sample position are chosen
to be equal such that the symmetric Rowland geometry can be employed. This
makes it possible to focus for a range of different Ei’s by simply turning arrays of
monochromator crystals around their own axis, instead of shifting them around
in space to follow the Rowland circle.

If the distances are unequal, and hence the monochromating circle and the
focusing circle not approximately equal at the monochromator position, main-
taining focusing and monochromatisation will become dependent on a lot of
motors moving and rotating the individual crystals. This adds complexity, and
should be avoided.

5.2.2 Rowland in the MultiFLEXX

For our MultiFLEXX setup, the distances L1 and L2, which are here L3 and
L4 due to the naming conventions discussed in section 3.3, as well as the angle
θA = A5 are fixed. This means that the holder for the analyser crystals is fixed
and there are no mechanical reasons not to investigate an asymmetrical Rowland
geometry. The small width necessary for an analyser to fit in a MultiFLEXX
casette means that only vertical focusing can be used.

However, the analyser height compared to the sample is not very large in the
MultiFLEXX, so we can hardly approximate the setup to a point-to-point case.
Generally, the complexity of situations like this means that what is optimal
for limiting cases might be far from the optimal in a real experimental setup.
Therefore, numerical calculations such as McStas simulations are important to
verify that the theoretical findings will also work when they are employed in the
MultiFLEXX back-end.

Inspecting the analyser geometry for the initial choices of lengths, where
L3 = 1.05 m or larger and L4 = 0.4 m, we find that the three analyser crystals
should be placed as seen in figure 11(Top left). This will pose a problem, as a
neutron hitting the two lower analyser crystals are shaded by the crystal imme-
diately above it. The shading occurs because the difference in angle between
the upper and lower analyser crystals with respect to the central Bragg angle is
smaller than the mosaicity of the crystals, so we cannot benefit from the trans-
parency of the PG crystals that enables us to put several analysers along the
same line. The result is that a neutron scattered by the lower analyser crystals
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Figure 11: The positions and angles of the three analyser crystals for the Row-
land geometry in the 2.5 meV energy channel for different lengths L4. (Top
left) is the Rowland geometry for L4 = 0.4 m, corresponding to the distance
in our setup. (Top right) has L4 = 0.6 m, (Bottom left) has L4 = 0.8 m and
(Bottom right) has L4 = 1.0 m. The shading problem disappears gradually as
L4 approaches L3.

will still be within the scattering condition for the upper ones and be reflected
further back along the q-channel. Since we have chosen the mosaicity to be at
approximately 40 MOA for our trade-off between intensity and resolution, we
must change the geometry to ensure that the neutrons from the lower analyser
crystals are not shaded, or that the angular difference between the individual
analyser crystals should be larger than the mosaicity.

The effects of changing the geometry, i.e. the ratio between L3 and L4, can
also be seen in figure 11. Here, we see how edging the ratio closer to 1 and
hence approaching the symmetrical Rowland geometry will remove the shading
problem.

Changing the ratio is, however, not a possibility. The distance L3 cannot
be made smaller, as the wide range of sample-environment possibilities that
will be one of MultiFLEXXs virtues needs space, as does a beryllium filter and
the motors for turning the MultiFLEXX rack. Also, placing the analyser too
close to the sample will harm the Q resolution. This is, however, yet another
balancing act, as large distances between sample and analyser means that the
analyser covers a smaller solid angle, making it less effective.
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Figure 12: The positions and angles of the three analyser crystals for the Row-
land geometry in the 2.5 meV energy channel with the analyser crystals verti-
cally spaced to change their relative angles beyond their mosaicity. This simul-
taneously solves the problem of the shaded analyser crystals.

Another strategy could be to elongate the distance L4 to better match L3.
This, however, poses another problem, namely materials. In its current config-
uration, the MultiFLEXX rack weighs in at about one tonne. By more than
doubling the distance to the detector, a lot of shielding has to be added which
increases the weight of the system, meaning that the motors that power the
ordinary FLEXX back-end would also need to be upgraded. This time the
detectors will also suffer from the smaller solid angle that the analysers will rep-
resent, leading to poor intensity. The initial choice for L4 was 0.2 m distance for
this reason, and the doubling to the current value was due to fears of too high
background from neutrons air scattering their way up through the E-channels.
Now, the narrow channel in which the neutron can propagate acts essentially as
a collimator.

Instead of removing the shading, spacing the analyser crystals further apart
vertically will tilt the analyser crystals more with respect to each other. Thus,
the upper analyser crystals become transparent to the neutrons scattered from
the lower analyser crystals. To tilt the analyser crystals to an angular difference
of approximately 1°, we use 3 cm of vertical spacing between the centres of the
analysers for the 2.5 meV channel. This is plotted in figure 12, and we see that
moving the crystals so far that they become transparent again also removes some
of the initial problem of shading. It does, however, create large gaps between
the analysers such that the increase in energy resolution is outweighed by the
loss in intensity.

In the end, although the Rowland geometry would in principle be the better
option for our analysers, the exact parameters for L3 and L4 for the Multi-
FLEXX means that we are experiencing shading problems. Therefore, we must
find other ways of focusing our analysers.

5.3 The curved analyser

An alternative to the Rowland geometry is a simple curved analyser, i.e an
analyser surface that follows a cylinder that has a centre and a radius which we
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Figure 13: The positions and angles of the three analyser crystals for the cylin-
drical geometry in the 2.5 meV energy channel. The Rc is the optimal for the
situation as calculated in equation (64), with the angular difference between the
central and the lower and upper analyser exaggerated by a factor of 10. The
grey dashed line shows that the analyser crystals are all in the same plane.

shall name the radius of curvature, Rc. From [35] we have that the theoretical
optimal value for the horisontal Rc is

1

L1
+

1

L2
=

2

Rc sin θM
(64)

Since the standard is to have adjustable Rc’s to accomodate different analyser
energies, we will normally place the analyser crystals such that they lie on the
plane of the central analyser, instead of being placed end-to-end. For the same
parameters as the analyser in figure 11, i.e. a 2.5 meV channel, figure 13 shows
the geometry of an optimally curved cylindrical analyser. Since the Rc’s are
usually large compared to the size of an analyser, the angular difference between
the middle and upper/lower analyser crystal are exaggerated by a factor of 10.

This curved analyser should theoretically be inferior to the Rowland geom-
etry, but can be made to fit the specifications of our instrument design. The
performance of the curved analyser geometry will be evaluated in McStas in
section 8.1.
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6 Resolution of neutron instruments

As noted in the introduction to this thesis, section 1, due to the limited neu-
tron flux and the small scattering cross section, we are forced to increase the
amount of neutrons that are accepted into the experiment, at the cost of the
precision with which our samples can be measured. This is done by allowing
some neutrons with a non-zero divergence to be scattered off analysers and
monochromators. Thereby, the information on the scattering angle is blurred,
either through the mosaicity described in 3.4.2 or through curved analysers as
described in 5.

Furthermore, we do not control the neutrons perfectly, such that the idealised
case we model is never attainable. For example, even perfect crystals that have
no mosaicity will still possess an intrinsic linewidth due to other effects.

When the above effects are combined, they will manifest themselves in one
of the most important parameters of neutron instrumentation: the resolution of
the instrument. This describes the size of the features that can be investigated
using the instrument; a coarse resolution instrument looking at a narrow feature
will likely miss a lot of information, or maybe even the entire feature.

6.1 The resolution function

The actual neutron energy and momentum transfer will be distributed in some
small region around the average values (Q0, ω0), rather than at exactly one
point. Their distributionis described by a function peaked at (Q0, ω0) and
decreasing for deviations away from this value, known as the resolution function
R(Q−Q0, ω − ω0).

Instead of measuring the true scattering signal S(q, ω) directly, the measured
signal is actually a convolution between the resolution function and S(q, ω),
which means that the resolution function is critical to good measurements. A
convolution will combine two functions into one that describes the amount of
overlap as one function is shifted over the other, and is calculated as

(f ∗ g)(x)
def
=

∫ ∞
∞

f(y)g(y − x) dy (65)

Covering the resolution function in depth is beyond the scope of this thesis.
We shall simply state that it can be approximated analytically to be a 4-D
gaussian ellipsoid[36]:

R(X) = R0 exp
(
−1/2XTMX

)
(66)

where R0 is the optimum value of the resolution function, i.e. at R(Q, ω),
X = (Q−Q0, ω − ω0) and M is the 4-dimensional covariance matrix that is
determined from the collimation and mosaicity values of the instrument. Fur-
thermore, the covariance matrix can be extended[37] to include spatial effects,
that is monochromator and analyser curvatures, and vertical scattering as in
the case for the MultiFLEXX[23].

Setting XTMX equal to p = 1.386 will yield the 50% (of R0) probability
resolution ellipsoid, a 4-dimensional ellipsoid where each dimension defines the

39



resolution in ω,Q‖, Q⊥, Qz. In many cases, Qz is ignored and the resolution
ellipsoid is depicted as a flattened cigar.

The convolution between the scattering function and the resolution function
means that, for a δ scattering function such as a perfect Bragg crystal, we can
directly measure the resolution function at the point (Q = 2πτ , ω = 0) by tak-
ing the width of the broadened peak that we measure when we scan over the
incident angle of the crystal. Furthermore, the convolution between two Gaus-
sian functions is yet another Gaussian, with their widths added in quadrature.
The Gaussian is important since we primarily have Gaussian resolutions, and
scanning over e.g. a mosaic crystal, we find that the experimentally determined
width is comprised by the resolution and the mosaicity combined. Of course,
scattering functions can be found in many shapes, and δ and Gaussian functions
are just the simplest examples.

6.1.1 Focusing measurements

The resolution ellipsoid has a volume, shape, and orientation that depends on
(Q0, ω0), parameters that can be chosen to some extent by the experimenter by
picking the setup of the instrument. As mentioned earlier, this will affect the
way measurements are performed.

If we measure dispersions instead of Bragg peaks, we scan our resolution
ellipsoids over surfaces instead of points in (Q, ω). This means that the shape
of the ellipsoid can have an effect on the intensity, as we move the ellipsoid in
(Q, ω) when we perform Q or E scans. This is why, for flat dispersions, it makes
no sense to scan the ellipsoid parallel to the dispersion in a Q-scan, as we will
either have continuous overlap or no overlap, i.e. signal for all scan values or for
none. One example of a flat dispersion is for incoherent elastic scattering. This
can be used to measure the energy part of the resolution, where an E-scan will
reveal the width of the ellipsoid in that direction.

The different orientations of the resolution ellipsoid means that measure-
ments can be optimized for a specific situation. When measuring a dispersion,
it will be favorable to have the two long axes of the ellipsoid parallel to the
dispersion surface to minimize the overlap (i.e. convolution) outside of the ac-
tual point of measurement. The situation is shown graphically in figure 14 in
two dimensions, and as it can be seen, the correctly aligned ellipsis will overlap
the dispersion surface for a smaller amount of steps at a higher intensity. This
usage of the resolution function is known as focusing [38], and although one can-
not always choose the optimal focusing, there is usually a choice between more
focused and less focused setups.

6.2 Resolution matching

When designing a neutron scattering instrument, there is always a trade-off
between signal and resolution. It is, however, important that all the elements of
an instrument has approximately the same trade-off for optimal performance.
For example, if we mindlessly improve resolution only on the front-end or on
the back-end, we will be limited by the resolution of the other.

The amount of signal reaching the detector can be modelled as

C = Aσ1σ2 (67)
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Figure 14: Two examples of an ω-scan over the same dispersion. (Left) A close-
to-optimally focused resolution ellipsoid where it can be seen that the overlap
region between resolution ellipsoid and the dispersion is minimised. (Right) A
non-focused resolution ellipsoid where the overlap region between the resolution
ellipsoid and the dispersion is present for many of the measurement points. The
inserts approximate the measured data based on the amount of dispersion within
the resolution ellipsis area, as does the color of the resolution ellipsoids.

where C is the count rate and A is some constant that links the acceptances
σ1 and σ2 to the count rate. The acceptances are essentially the ”resolutions”
of each of the spectrometer parts. Trying to find their combined resolution,
assuming they are Gaussian, we find

σ =
√
σ2

1 + σ2
2 (68)

and we can find the best relationship between the two resolutions σ1 and σ2.
For a constant count rate C, we can minimise σ in equation (68) by first re-
arranging equation (67) into σ2 = C/Aσ1 and inserting this back into equation
(68). This yields

σ =

√
σ2

1 +

(
C

Aσ1

)2

(69)

which we differentiate with respect to σ1 and set equal to 0

δσ

δσ1
= 0 =

2σ1 − 2C
2

A2 σ
−3√

σ2
1 +

(
C
Aσ1

)2
(70)

σ1 =
C2

A2
σ−3 (71)

σ4
1 =

C2

A2
(72)

σ1 =

√
C

A
(73)
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which, when inserted into equation (67) leads to σ2 =
√
C/A = σ1. This is

known as resolution matching and shows that, for the same count rate, the
most narrow overall resolution is obtained when the front-end and back-end of
the instrument have the same resolution. One might have come close to this
result by simply reasoning that, due to adding the resolutions in quadrature,
the broader resolutions will dominate in the combined resolution.

42



7 Neutron simulation

Instead of the approximate analytical calculations on neutron instrument design
that was mentioned in section 6, simulations of planned neutron instruments are
becoming increasingly important. Since the work on analytical calculations were
done, neutron instruments have greatly increased in complexity and a series of
simulations can be used to test novel ideas before expensive prototypes are built
or to give an impression of the performance of a newly designed instrument.
The increase in computing power also means that optimisations can be done
automatically, with algorithms searching for the optimal instrument parameters
as in [39] or finding the best possible guide as with [40].

For the MultiFLEXX upgrade, we have constructed the instrument in the
Monte Carlo (MC) neutron ray-tracing package McStas (Monte Carlo Simulation
of triple axis spectrometers)[41, 42, 43].

McStas is a tool for simulating neutron instruments which has been in ongo-
ing development since its first release in October 1998, where it was first used
at the Danish research centre Risø for their neutron source DR3. The Tech-
nical University of Denmark, the University of Copenhagen, the Paul Scherrer
Institute (PSI), and the Laue-Langevin Institute (ILL) are the driving forces in
the development and maintenance of McStas, which had its latest version 2.1
released in September 2014. McStas is one of several such tools, notable others
still being developed are VITESS [44] and RESTRAX [45].

7.1 The Monte Carlo method

The MC method of simulation was developed by Stanislaw Ulam, at a time
where he was working at the Los Alamos National Laboratory during the nuclear
weapon projects in the 1940’ies[46].

The MC method uses repeated random sampling in order to get numerical
results. Normally, one defines a domain of possible inputs and generate a lot of
random numbers in the same domain drawn from a specified distribution. After-
wards, each random number in the domain is tested against some deterministic
algorithm, and the statistics are gathered. A classic example of the use of the
MC method is the computation of π from the ratio of the area of a square and
the inscribed circle. This experiment can be performed with grains of sand or
arrows, but it can also be simulated using computer-generated random numbers.

In principle, the behaviour of scattering neutrons can be calculated if the
initial conditions are known. This, however, requires solving complicated inte-
grals over all relevant parameters which cannot necessarily be done analytically,
but using MC we can make an estimate for these integrals that converge to the
right answer when we use sufficiently many random numbers.

7.2 The McStas system

McStas contains a so-called ”meta-language” in which pre-made components are
assembled into a virtual neutron instrument by the user. The instrument is
then compiled into the programming language C, which in turn performs the
simulation using MC calculations and writes data files that can be visualized or
further processed.
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To simulate an instrument in McStas, one must first list the various com-
ponents that mirror the effect of experimental equipment on the neutron path.
There are components for sources, monochromators, samples, and detectors in
different shapes and forms, and furthermore different types of neutron optics
that will affect the neutron beam. McStas comes with a large library of com-
ponents, most of which are coded by the developers. Others are contributed by
users, to solve more specialized problems.

The components are given a position and rotation in a right-hand coordinate
system where they can be placed at absolute positions with respect to Origo
(x, y, z) = (0, 0, 0), a spot usually reserved for the source, or at positions relative
to each other. In McStas, it is the convention that the z-direction is the direction
of neutron propagation, while the x-direction represents right-left and the y-
direction up-down.

Other than the position and rotation, many components require additional
parameters. The parameters vary with each component; for example, the simple
monochromator_flat-component requires a width and a length of the mono-
chromator crystal, a mosaicity in both the horizontal and vertical directions, a
peak reflectivity r0, and the d-spacing or q-value of the crystal. More advanced
components will often require more parameters, and the parameter settings can
be changed to mimic the physical instrument. Changing the parameters can
also be used for optimization, and McStas allows us to define parameters that
can be changed upon the simulation start (setting parameters), thus making it
possible to test many settings without changing the virtual instrument file[47].

For moving entire parts of an instrument, a component that does not affect
the neutron known as Arm is used to define a new coordinate system. This is
especially useful when several components need to move together, such as in the
case of a TAS.

7.3 Ray-tracing and Monte Carlo in McStas

When performing a McStas simulation, N neutron rays are created one by
one and propagated through the component list described above, this is known
as ray-tracing. The more rays that are propagating to the final detector of
the virtual instrument, the better the statistics. To improve the amount of
rays that does that, each neutron ray is created with an unphysical parameter
known as the weight factor p, plus nine parameters that corresponds to physical
properties: position (x, y, z), velocity (vx, vy, vz), and spin (sx, sy, sz).

For a simple simulated neutron source that emits neutrons uniformly in all
directions, an enormous number of neutrons that are created fails to hit the
small solid angle that defines the entry to the guide system. If we require a
certain amount of neutrons to enter the guide, we must create a large number of
additionel but useless rays, at the cost of a lot of computational power. Another
possibility is to make all the neutrons enter the guide, instead imposing a penalty
upon them by decreasing their weight factor. If the entrance to the guide system
takes up e.g. one tenth of the total solid angle, then all neutrons will hit this
area but only count as one tenth of a neutron when reaching the detector.

This is one example of an analytical component, where the neutron parame-
ters can be calculated determinalistically and there is a certain probability of the
ray continuing towards the detector. The weight factor πj for such a component
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should follow the weight transformation master equation[48]

P = fMCπj (74)

where P is the probability of a real neutron being transmitted towards the
detector in a given component, fMC is a Monte Carlo choice value of how many
simulated neutrons we allow to continue, and πj is the weight factor of the
component.

By setting fMC = 1, all neutrons are allowed to continue towards the detec-
tor, and we multiply the original weight factor with the πj in accordance with
equation (74). This drastically decreases the number of neutron rays that needs
to be simulated. This is so because all analytical components in the instrument
get to reflect neutron rays that would otherwise have been killed off earlier in
the instrument. These analytical components does not mean, however, that a
neutron ray cannot be removed. If a neutron ray is propagating in a direction
where it will not meet any components, it is killed and the total number of rays
decreases, as we assume that it has hit the shielding.

The weight factor is updated for each neutron ray as it propagates through
the instrument. For the final value, the weight factor is thus given as

p = pn = p0

N∏
j=1

πj (75)

with p0 the initial weight factor.
It is however not all components that can work purely in a deterministic

fashion, and these are the Monte Carlo choice components. An example is a
monochromator with a mosaicity. Here, the in-plane reflectivity is given deter-
ministically, while the out-of-plane reflectivity is found by making an MC choice.
After this, the neutron ray is propagated forwards with a correspondingly lower
weight factor as we saw above.

When reading the results at the final detector one should keep in mind that
the value of N has absolutely no physical meaning, but is just the number of
neutron rays that the simulation got through the instrument. It is instead the
average weight factors that gives us the performance of a real experiment we
are trying to simulate as an intensity (neutrons hitting the detector per second).
This is calculated as

I =

N∑
i

pi = Np̄ (76)

Comparing this situation to a real experiment, we would have the weight factor
of each neutron hitting the detector of p = 1, and we get the correct result at
fewer computations. The experimental variance is derived in the McStas manual
as

σ2(I) =
N

N − 1

(∑
i

p2
i − p̄2

)
≈

N∑
i

p2
i (77)

which for pi = 1 would be N , giving an uncertainty of
√
N as expected.

A way of improving statistics is by using the SPLIT property in McStas. After
an instrument section, such as the guide, where a lot of deterministic choices are
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made, we can copy the neutrons and re-use them before they propagate into an
MC choice component, since the many random choices within that component
completely washes out the re-using of a few rays. This is saving computer
power, since we can save ourselves many deterministic calculations. To get the
correct result, we must of course demand that sufficiently many neutron rays
have reached the SPLIT that they are properly randomized there.

7.4 Building the MultiFLEXX back-end

As a starting point, a McStas instrument describing the entire FLEXX instru-
ment was used as a template. This McStas instrument was made in conjunction
with the upgrade of the FLEXX physical instrument and was tested against
the physical instrument in [15], where it was found that the McStas simulations
were in very good agreement with the results of the actual experiments carried
out to characterize the instrument after the upgrade. The McStas instrument
was updated to work with McStas 2.0, in which several parameter names were
streamlined at the cost of backwards compatability.

The FLEXX front-end instrument was kept and everything after the mo-
nochromator-to-sample arm was removed. For transparency, the code for the
MultiFLEXX back-end was written separately and later included at the end of
the FLEXX McStas instrument using %include "back-end".

It was decided only to make one set only of analyser and detector for sim-
plicity, and changing the parameters of this setup to match the different energy
channels. A sketch of analyser/detector setup can be seen in figure 15, along
with the parameters that needs to be changed for the different energy channels.
This does introduce an error source, as we don’t simulate the 1 to 4 analyser
crystals that might absorb neutrons before they hit energy channels 2 to 5. Re-
search does show, however, that the absorption should be very low[27], and we
ignore the contribution.

The first component in the back-end is a modified Incoherent-sample. This
will work as the ordinary component, but with the added possibility of removing
a specified amount of energy from every neutron that hits the sample. This is
done to facilitate simulations of the inelastic resolution of the instrument, where
we want to match a fixed Ei from the monochromator settings to the fixed Ef
of the MultiFLEXX back-end. In terms of (Q, ω) space, this amounts to moving
the resolution function through a straight line at the removed energy, essentially
making the sample dispersionless.

Next in figure 15, a distance L3 from the sample, we find the analyser. L3

varies from energy channel to energy channel as described in section 4, and is
therefore a setting parameter that can be changed to represent any of the energy
channels. The analysers were written in separate files, as several types were used
and this allowed for a clearer picture, and they are rotated by A5 with respect to
the incoming beam. Different analyser geometries were considered for each en-
ergy channel, one consisting of the monochromator_curved-component, others
of three monochomator_simple-components placed individually. The analyser is
moved by an arbitrary angle with respect to the beam impinging on the sample,
in order only to measure the scattered neutrons and not the direct beam. In
the real experiment, there will be 31 q-channels covering a range of 77° instead
of only the one we use for testing here.

To conclude this McStas instrument, at an angle of A6 with respect to the
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Figure 15: A graphic showing the MultiFLEXX back-end as McStas draws it.
The annotations show the setting parameters needed to change from one energy
channel into another.

incoming neutron beam a 2.50 × 5 cm2 0D detector was placed, a distance of
L4 = 40 cm from the middle analyser crystal. Finally, a PSD monitor was placed
immediately behind the analyser for beam shape analysis.
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8 Simulation results

The simulations in this section were primarily performed on a 16-core cluster
kindly made available by Peter Willendrup at DTU Risø. On this cluster, a
single simulation that was to provide the final data with N = 3·108 neutron rays
took approximately 2 minutes. Many of the initial simulations were, however,
done with a factor of 10 fewer neutrons when testing different setups and for
preliminary results.

8.1 Simulating analyser curvature

The initial plan was for the MultiFLEXX was to employ a point-to-point focus-
ing Rowland geometry as described in section 5.1 for the analysers. This should
lead to a better resolution for the individual energy channels and a higher flux
on the detector. Holders for analyser crystals, as described in section 4.1, had
been designed early in the project and were already constructed to specifications
given by the instrument designers.

Upon writing the instrument file to perform simulations, one of the first tasks
was to model the Rowland geometry in McStas using the theoretical framework
from [34] described in section 5.1. An algorithm that automatically calculated
offsets and angles for the three analyser COMPONENTs used for each analyser was
implemented in McStas, and the resulting output was compared to the specifi-
cations for the analyser holders, which were found to be significantly different.
This discrepancy meant that old calculations were re-visited, and an unfortunate
mis-calculation was found in the initial design plans.

A coordinate system error in the initial design of the analyser holders meant
that the overlapping analyser crystals described in section 5.1 were overlapping
in the direction of the incoming beam, rather than the scattered beam. This
meant that the problem of having the upper analyser crystals shading the de-
tector from the lower analyser crystals were not an issue as for the correctly
designed Rowland geometry. Conversely, a large area of analyser crystal was
now being shaded from the incoming beam, meaning that the effective area of
the analysers were diminshed, as can be seen in figure 16.

The decrease in effective area of the analyser was estimated from the effective
height of the individual slabs of PG crystal summed versus the effective height
of the actual analyser assembly. It was found that the effective analyser area
was reduced by between 7% and 28%, a considerable amount.

Since the Rowland design was found to be problematic for the MultiFLEXX
setup as explained in 5.2.2, and the design that was thought to be of the Row-
land type was found not to be Rowland after all, it was decided to investigate
the properties of the already-built analyser holders, the ”anti-Rowland” (AR)
design. The AR design was simulated by hardcoding the individual analyser
crystal positions and tilt angles as found in figure 16 into McStas. To test if the
curvature of the analyser was also affected by the calculation error, the AR anal-
yser was modified to have the upper and lower analyser adjustable by adding
and subtracting, respectively, small values to their initial angle, thus changing
the curvature slightly.

To compare with the AR analyser, simulations were also performed with
an ordinarily curved analyser geometry, as described in section 5.3, this being
somewhat of a benchmark for neutron analysers. Here, the McStas component
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Figure 16: Positioning of the AR analyser crystals: (top left) 2.5 meV, (top
right) 3.0 meV, (middle left) 3.5 meV, (middle right) 4.0 meV, and (bottom)
4.5 meV. Each analyser is plotted in its own coordinate system, i.e. the centrum
of the middle analyser is (0, 0) but corresponds to the values for distances to
sample given in section 4.1. The beam comes from the −x direction. The
shading of the analyser crystals is particularly noticable for the high-energy
analyser.

‘
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monochromator_curved was used, which has as a parameter the Rc of equation
(64). Since we will be working with two types of analyser geometries at five
different energies, we shall adopt the following convention for the remainder of
this thesis.

• Data from the curved analysers is designated with a filled circle , lines
relating to the curved analysers are designated by a solid line

• Data from the AR analysers is designated with an open circle , lines
relating to the curved analysers are designated by a dashed line

• The energy channel that we measure is coloured corresponding to its en-
ergy. = 2.5 meV, = 3.0 meV, = 3.5 meV, = 4.0 meV, and

= 4.5 meV.

8.1.1 Elastic resolution simulations

To evaluate the elastic resolution of the analysers, scans over the monochromator
angle, and hence the incoming energy, was performed, with the modified sample
component working as an ordinary incoherent-sample. The resultant intensity
profile on the detector-sized monitor in McStas was recorded, and the width
(FWHM) and integrated intensity (sum of intensities) were calculated. The
width was found both from the variance and from a Gaussian fit to the data
points.

An example for a single elastic scan for the 2.5 meV energy channel is shown
in figure 17 where we use the AR geometry of the designed analyser holders,
along with a Gaussian fit to the data.

Instead of testing the AR analyser design against a curved analyser with the
theoretical value of curvature found from equation (64), we opted to find the
optimum curvature from our simulation results alone. It was deemed that the
complexity of the problem was not described by the model in section 5.3. The
optimisation was done by performing elastic scans like the one shown in figure 17
for the curved analyser design at different curvatures ρ = 1

Rc
. The optimisation

was done for a sample in the shape of a rod of dimensions h = 1 cm× r = 1 cm,
and we shall see later that the sample height has an effect on the resolution.

In figure 18, the peak height (maximum detector value), integrated intensity
(sum of detector values), and FWHM (from variance) can be seen for curvatures
between ρ = 0.25 m−1 and ρ = 5 m−1 for the 2.5 meV energy channel. As in
figure 17 we have also performed a Gaussian fit for each of these elastic scans, but
we have chosen to plot the numerical results due to code robustness, as Gaussian
fits to the data give erroneous results at extreme curvatures. Here, the elastic
scan no longer has the characteristic bell shape of a Gaussian, but rather turns
to three distinct peaks. The non-equal spacing between the different curvatures
simulated have two causes: Curvatures further from the expected optimum were
sampled coarser, and McStas takes as input Rc = 1/ρ for curvatures, such that
the spacing is equi-distant for the x-axis transformed to Rc.

As can be seen from figure 18, the peak in detector intensity coincides with
the dip in width, while the integrated intensity has a sharp rise and a subsequent
plateau as the width broadens and the peak height diminishes, the two effects
cancelling each other out. We see that we lose no integrated intensity in choosing
the curvature for which there is a peak in intensity and a dip in width, which
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Figure 17: A single elastic scan over incoming energies close to the channel en-
ergy for a 2.5 meV energy channel in the anti-Rowland geometry of the designed
holders. A Gaussian fit to the data is shown in red.

will however yield the best resolution. Picking the curvature value that gives
us the largest peak is important, as a higher peak is easier to spot through the
noise, the so-called signal-to-noise ratio. That the largest peak coincides with
the smallest width is the optimal situation for us, and we will consequently use
this curvature.

Comparing the elastic scan in 17 for the AR geometry analysers to the
optimum found from scans over curvatures as in figure 18, we find that the
curved analyser has a significant improvement, approximately 12%, over the
AR analyser, as shown in figure 19.

By performing the simulations for different curvatures for all five energy
channels, it was found that the curved analyser outperformed the AR analyser
for them all. In table 3, the increase in peak intensity is listed for both the
fit and the max value from the detector, along with the widths for the AR
and curved analyser. As can be seen, the fitted peak intensity is higher in the
curved analysers by 7.4 % to 14.8 %, with the increase being more prevalent for
the higher energy channels. For the highest energy channels, we also see that the
peak width increases, something we expected from the uncertainty on Bragg’s
Law in equation (54).

The widths are approximately the same for the two analyser types, with
the curved analyser being slightly broader for some channels. The maximum
increase in width for the curved analyser over the AR analyser is approximately
4%.

Also provided in the table is an estimate on the increase of effective analyser

51



0 1 2 3 4 5 6
0

0.2

0.4

ρ [1/m]

In
te
g
ra
te
d
in
te
n
si
ty

[a
.u
.]

0

0.1

0.2

F
W

H
M

[m
eV

]
M
ax

im
u
m

[a
.u
.]

Integrated intensity
Width from variance
Peak height

Figure 18: A range of simulations of the type in figure 17 that shows the effect
of changing the curvature for the curved 2.5 meV energy channel. The peak
intensity ( green plus) normalised to the right axis has a peak at approximately
ρ = 0.75 m−1. The width (FWHM) (red asterisks) has a dip at the same, while
the integrated intensity (blue circles) rises before flattening out as the peak
intensity decreases and the width increases. The similar scans for the remaining
four energies can be found in appendix A.
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Figure 19: Comparison between elastic scans over a 2.5 meV energy channel with
the two different analyser geometries. The curved (filled circles) analyser shows
an approximately 12 % increase in peak intensity over the AR (open circles)
one, with a peak width of 53.0(2) µeV versus 52.6(2) µeV, i.e. no discernible
peak broadening. The similar scans for the remaining four energies can be
found in appendix B.
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area in going from the AR geometry to the curved geometry, calculated from the
effective height of the analyser. It is clear that we do not see an increase in peak
intensity proportional to the increase in analyser area. The 2.5 meV analyser
sees an increase in intensity by more than the increase in area size. However, the
overall trend for increase in peak intensity and increase in analyser area agrees,
with the highest energy channels seeing the largest improvement.

Energy channel 2.5 meV 3.0 meV 3.5 meV 4.0 meV 4.5 meV

Increase (fit) [%] 11.8(8) 7.4(6) 7.6(5) 11.9(4) 14.8(4)
Increase (max.) [%] 12.1(18) 11.6(16) 8.6(14) 14.5(14) 16.2(14)
Width (cur.) [µeV] 53.0(2) 78.6(2) 103.1(2) 128.3(3) 158.3(3)
Width (AR) [µeV] 52.6(2) 74.9(2) 99.8(3) 128.4(3) 160.3(3)
Increase (area) [%] 7.6 16.1 23.8 31.5 39.0

Table 3: Intensity improvement from the optimally curved analyser over the AR
analyser measured by both fitting a Gaussian peak to the data and by directly
comparing the maximum detector value, where it is found that the increase lies
in the range 7.4 % to 14.8 % for the fitted peak heights. The widths of the fits to
the two types of analyser is also compared. The last column shows the estimated
increase in analyser area for the curved over the AR analyser.

8.1.2 Inelastic resolution simulations

In its day-to-day operation, the MultiFLEXX will only be performing inelastic
measurements. The broadened resolution from the FLEXX front-end at higher
Ei’s will affect the final resolution as described in 6.1, and we have therefore
repeated the optimisation from section 8.1.1 in an inelastic setting.

To evaluate the inelastic resolution of the analysers, the monochromator
angle was kept fixed at an incoming energy of 5.0 meV. The modified sample
component was set to downscatter the neutrons, i.e. remove a fixed amount of
energy from each incoming neutron. As an example, the 2.5 meV energy channel
was tested at Ei = 5.0 meV by changing the downscattering energy from 2.3 meV
to 2.7 meV. Since our sample is dispersionless, there are no resolution ellipsoids
as described in 6.1.1 that will have better or worse focusing. An example for
the 2.5 meV channel is shown in figure 20 where we, as in the previous section,
show the result of the AR geometry of the designed analyser holders along with
a Gaussian fit to the data. The scans over different curvatures for the different
energies can be found in appendix C.

For the curved analyser, it was found that an optimum curvature existed
where the peak intensity was at its highest and the width was at its lowest, and
that this optimum curvature performed better than the AR analyser. Compar-
isons between the optimally curved and the AR analyser in the inelastic case
can be found in appendix D. We have compiled our results into table 4. Here,
we find that the inelastic resolutions show similar improvements as the ones we
found from the elastic resolutions with an increase in the range 8.0% to 15.7%,
and that there is a broadening in the low-energy channels due to the broader
resolution from the FLEXX front-end at this higher energy. The lack of broad-
ening for the high-energy channels can be attributed to the fact that Ei and
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Figure 20: A single inelastic scan where the sample removes between 2.3 meV
and 2.7 meV from the incoming neutrons of energy 5.0 meV such that the
2.5 meV energy channel can be investigated. This scan is for an AR analyser,
i.e. in the geometry of the designed holders. A Gaussian fit to the data are
shown in red.
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Ef are almost equal here, such that the analyser and monochromator has sim-
ilar broadenings from equation (54). For an experiment at Ei = 10 meV, the
monochromator energy width will again dominate.

Energy channel 2.5 meV 3.0 meV 3.5 meV 4.0 meV 4.5 meV

Increase (fit) [%] 12.7(6) 8.0(5) 8.9(4) 11.4(4) 15.7(4)
Increase (max.) [%] 10.2(19) 8.9(16) 6.4(14) 11.3(14) 15.8(14)
Width (cur.) [µeV] 89.4(2) 105.3(2) 122.4(3) 141.3(3) 163.8(3)
Width (AR) [µeV] 88.6(2) 103.0(3) 120.1(3) 141.2(3) 166.1(3)

Table 4: Intensity improvement from the optimally curved analyser over the AR
analyser measured by both fitting a Gaussian peak to the data and by directly
comparing the maximum detector value, where it is found that the increase lies
in the range 8.0 % to 15.7 % for the fitted peak heights. The widths of the fits
to the two types of analyser is also compared.

8.1.3 Designing new analysers

Due to the sub-optimal performance of the analysers it was decided to construct
new analyser holders of the curved analyser kind, as an increase in peak intensity
of between 7.4% and 15.7% is worth going for in the intensity-limited field of
neutron scattering.

In choosing the final curvature for the new analysers, the optimal curva-
tures for both elastic simulations as performed in section 8.1.1 and inelastic
simulations as performed in section 8.1.2 were taken into account, with a slight
preference towards the optimal inelastic curvature, seeing as this is the mode in
which the MultiFLEXX will be employed. The optimal curvatures found from
simulations and the chosen curvatures for the new analysers are listed in table
5. Although the difference between the optima for the elastic and the inelastic
resolutions might seem large, there is little difference in peak intensities and
FWHM over these values.

Energy channel 2.5 meV 3.0 meV 3.5 meV 4.0 meV 4.5 meV

Elas. optimum [m−1] 0.741 0.667 0.476 0.417 0.303
Inelas. optimum [m−1] 0.769 0.513 0.476 0.408 0.385
Chosen [m−1] 0.755 0.600 0.500 0.410 0.370

Table 5: The optimal curvatures as found from the scans in sections 8.1.1 and
8.1.2, along the curvature chosen for the new analysers.

To create the blueprints for the new curved analysers, the code defining the
individual analyser crystal positions and angles from McStas was recreated in
Matlab, allowing for plotting. Sketches of the new curved analysers are seen
in figure 21, along with their individual positions and angles. As can be seen,
the shading is now gone, increasing the effective analyser area.

To see the combined energies covered by our array of analysers, we have
combined five high-statistics simulations, one for each energy channel, with the
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Figure 21: The analyser crystal geometries settled upon after simulations were
done: (top left) 2.5 meV, (top right) 3.0 meV, (middle left) 3.5 meV, (middle
right) 4.0 meV, and (bottom) 4.5 meV. Each analyser is plotted in its own
coordinate system, i.e. the centrum of the middle analyser is (0, 0). The shading
is now gone.

56



analyser curvatures as those chosen in table 5. The result can be seen in fig-
ure 22, and the simulations are inelastic as described in section 8.1.2 with an
incoming energy of Ei = 5.0 meV. This means that the peak furthest to the
left at an energy transfer of 0.5 meV corresponds to the 4.5 meV channel. A
similar plot, but for Ei = 10 meV, is shown in figure 23. Here, the broadening
from the monochromator becomes so large that we see the spectrums from each
individual energy channel can overlap. This is not a large problem in terms of
the analysers, as they will still accept approximately the same range of energies
as we saw before. We have, however, a large uncertainty on Ei.
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Figure 22: A plot combining the simulated resolutions in the inelastic setting
at Ei = 5.0 meV. The lowest energy channels have the highest peak intensity
and the lowest FWHM, as expected. Data from the curved (AR) analysers are
labeled by solid (open) symbols and connected by solid (dashed) lines. The
2.5, 3.0, 3.5, 4.0, 4.5 meV channels are colour coded by , , , , and ,
respectively.

8.2 Simulating sample size

As discussed in section 5, the analytical methods for treating a point source and
a parallel source of neutron radiation are different. We have so far approximated
the sample, which is the source of neutrons hitting the analyser, to a point source
due to its small vertical size (typical samples are approximately 1 cm in height)
compared to the distance to the analyser of at least 1.05 m. We are, however,
still interested in the effect of the sample height on the resolution. We have
therefore simulated this, starting from a rod of radius 0.5 cm and height 0.5 cm,
going up to a height of 8 cm. The results in the elastic case can be seen for the
2.5 meV energy channel with the curved analyser in figure 24. They clearly show
that while the peak intensity increases with sample height due to the greater
amount of sample to be hit by – and hence scatter – neutrons, the increase
levels out at a height of 4 cm. This can be explained by the beam profile at the
sample position, where the beam is approximately 8 cm tall, with the lower half
hitting below the sample which has its bottom fixed in the middle of the beam.
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Figure 23: A plot combining the simulated resolutions in the inelastic setting
at Ei = 5.0 meV. The lowest energy channels have the highest peak intensity
and the lowest FWHM, as expected. Data from the curved (AR) analysers are
labeled by solid (open) symbols and connected by solid (dashed) lines. The
2.5, 3.0, 3.5, 4.0, 4.5 meV channels are colour coded by , , , , and ,
respectively.
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From symmetry considerations, the results for this simulation corresponds to
the results for a sample of double height, but centered in the beam.

While the peak intensity increases, so does the width of the peak, showing
that an increase in sample height leads to poorer energy resolution, with the
width approximately doubling as the sample goes from 0.5 cm to 5 cm. Had the
typical sample size been larger, the final curvatures for the analysers might have
been different to accomodate this effect. The broader peaks can be attributed
to the fact that the taller samples increases the divergence of neutrons hitting
the analyser. This introduces a larger uncertainty in the determination of 2θA,
the analyser scattering angle.
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Figure 24: A range of simulations showing the effect of increasing the height
of the sample on the resolution for the curved 2.5 meV channel. The peak
intensity ( green plus) normalised to the right axis increases as a larger volume
of sample is hit by neutrons, until the sample height exceeds the beam size at
sample position. The width (red asterisks) increases with sample height due to
the increased uncertainty in determining 2θA. The integrated intensity (blue
circles) increases continually, as both width and peak intensity increases.

The effect of the sample height is a broadening and for large sample sizes,
this will mean an overlap for some energy transfers. In this case, the broadening
is due to the sample and analysers in conjunction, and not just monochromator
broadening. This means that we should try to avoid it.

In plotting the individual elastic scans next to each other, we see that the
overlapping begins at a sample height of approximately 3 cm. Correcting for
the centering described above, it is estimated that for elastic scattering, samples
with heights up to 6 cm can be measured in the MultiFLEXX without problems.

8.3 Lessons from simulations

By performing our simulations, we learned that the AR analyser geometry was
inferior to the simpler curved analyser geometry. Since an improvement in the
8 % to 15 % range as we saw from simulations can significantly improve the
usability of the MultiFLEXX, it was decided to exchange the analyser holders.

59



The new curved analyser holders will be designed with a curve that has been
found through McStas optimisations for elastically and inelastically scattering
neutrons.

Furthermore, we simulated a change of sample size, where we found that an
increase in sample size would result in poorer resolution.
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9 Prototype setup

To evaluate the performance of the MultiFLEXX, a protoype test was per-
formed. Due to the neutron source BER-II at HZB being out of operation the
entire year prior to the commisioning of the MultiFLEXX, this prototype test
was performed at the Forschungs-Neutronquelle München II (FRM-II) at the
Technische Universität München, where the PANDA[49] TAS front-end served
as a stand-in for the FLEXX TAS front-end. The test was performed at PANDA
since an optional multiplexing back-end that shares the idea behind the Multi-
FLEXX (named BAMBUS) is in the development phase there. Also PANDA,
as FLEXX, features a doubly focusing monochromator.

The aims of the test are to determine what the instrument resolution will be,
and to investigate the influence of the front-end and sample parameters on the
measured data. Furthermore, the tests may provide a head start to the post-
commisioning search for background reduction. Due to the rather late time in
the construction that this experiment is being performed at, any larger changes
to the design are unlikely to be implemented, as parts for the MultiFLEXX
are already delivered and ready for final assembly at HZB. However, lessons
learned from the design of the MultiFLEXX may be used for optimisation of the
proposed BAMBUS, such that any inherent design flaws or minor inconveniences
can be corrected early in the process.

For the test, a frame that emulates the final assembly of the MultiFLEXX
with two neighbouring q-channels is used. The frame consists of an aluminium
top and bottom and borated plastic sides. The two q-channels are separated by
a wedge of borated plastic to create the correct angling between two q-channels
and add further shielding. One side wall consists of another such wedge, while
the other side wall is just a thick slab of borated plastic. This means that one
q-channel is better shielded than the other as the low energy channels are only
covered by the thin edge of the wedge.

Using two channels, it will be possible to test if there is any crosstalk where
a strong signal in one q-channel leaks into the neighbouring q-channels. Further-
more, the two channels allows us to compare the performance of the AR and the
curved analysers that has been built for the MultiFLEXX to test if the signal
improvements shown in McStas simulations are experimentally reproducible.

We used two standard samples in neutron scattering for our experiments

• A vanadium (V) rod of d = 0.6 cm which had its length controlled by a
covering piece of Cd, limiting its height to h = 1 cm. Vanadium is a strong
incoherent elastic scatterer and emits most of the neutrons scattered from
it isotropically in 4π, which means that it creates a lot of background,
especially on the parts of the instrument facing the sample.

• A lead (Pb) single crystal of size 1 cm × 1 cm × 1 cm. Lead is used as a
standard sample in neutron scattering, due to its simple cubic crystallo-
graphic structure. The heavy atoms of lead means that the phonons have
low energies, and can be measured at room temperature.

9.1 Experimental setup

Before the prototype was transported to FRM-II, an initial setup was performed
at HZB. Here, the analyser crystal holders were correctly aligned such that
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the middle analyser crystal was exactly in the Bragg condition for the energy
channel in question. Furthermore, experiments were performed to establish
which detector threshold values should be used. In this section, we shall briefly
discuss this setup process. Since the MultiFLEXX is designed to be an option
for users of the ordinary FLEXX, the process of exchanging an ordinary TAS
back-end for the MultiFLEXX is also described here.

9.1.1 Aligning analyser holders

The analyser holders are designed to place the analyser crystals at the positions
and relative angles shown in figures 21 and 16 for the curved and AR geometry,
respectively, but the absolute angle with respect to the incoming beam is not
fixed. To ensure that the central analyser crystal is exactly in the Bragg angle for
the relevant energy channel, the entire analyser mount can be rotated around its
centre where it is connected to the cassettes. A picture of four analyser holders
mounted with analyser crystals are seen in figure 25.

Figure 25: Four analyser holders in the AR geometry, with analyser crystals
inserted for testing. The brown bushing in the side is the fastening point and
the axis around which we rotate to align.

For the alignment of the analyser holders relative to the neutron beam, a
laser beam was used. This was set up to be completely level and in the same
height as a divergence-free neutron, such that the laser beam hits exactly in
the middle of the central analyser crystal. The PG crystals have a protective
reflecting aluminium coating that the laser beam will be reflected by, and since
both the laser beam scattering from the coating and the neutron being Bragg
scattered inside the crystal have identical incidence and reflective angles, an
analyser crystal aligned with a laser beam is also aligned for neutrons.

The correct alignment of the analyser crystal with the laser light was done by
removing the detector tubes and top shielding from the casette, leaving the laser
beam to shine through the top of the casette. An aluminium rail was inserted at
the top of the casette, in which five oblong holes were cut. In the middle of the
oblong holes, a groove marked the centrum where a correctly aligned analyser
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holder would reflect the laser beam to. Alignment was then a matter of turning
adjustment screws to rotate the holder, until the beam was aligned with the
groove in the rail. We estimate that this method gave us the possibility to align
the central analyser crystal to within 0.1◦ of the desired angle.

Due to the overlapping analyser crystals on the AR analyser, as described
in section 8.1, the laser beam hit the edge of the lower analyser, producing a
diffuse beam that made alignment impossible. To compensate for this, the laser
was shifted 3 mm upwards to clear the lower analyser. This also meant that the
grooves in the rail were not at the correct position. Marks where made on the
rail, shifted by the same 3 mm, to which the AR analyser could be aligned to.
This alignment problem was only present for the AR analysers, and did not affect
the curved analyser holders that will be used for the finished MultiFLEXX.

Since we would like compare the curved and the AR analysers, one casette
was prepared with each of the analyser types.

9.1.2 Detector setup

As described in section 2.4.2, nuclei with a high absorption cross section are
used to detect neutrons. The most commonly used detector materials is 3He,
which undergoes the nuclear reaction

n+ 3He→ 1H + 3H +Q, (78)

i.e. produces tritium 3H and proton 1H along with a release of energy Q when
hit by a neutron. By mixing 3He gas with argon (Ar) gas, the ions released upon
neutron absorption are accelerated by an applied high voltage along the length
of the detector. The accelerated ions produce more ions from collisions with the
Ar gas in a cascade, increasing the signal that will be detected by the anode as
a current. Background ionisation events may also occur, such that α, β, and γ
radiation may be detected as well, but these events will make a different type
of cascade, and their signals should be distinguishable. γ radiation is the most
likely source of background, as its penetrative power is much higher than for
α and β radiation and it is produced in many places around the instrument
as a by-product of the neutron absorbing shielding used to reduce background
neutrons.

The amount of 3He in the detector tube determines the efficiency of the
detector, but lower energy neutrons are more readily absorbed as evident from
equation (28) for the absorption cross section. To even out the efficiencies of
the detectors over the 2 meV range that we measure over, the detectors for each
detected energy has a different amount of 3He in them such that there are five
types of detectors. Thus, we should be able to save expensive 3He.

Since both neutrons and γ radiation will be detected by the detector, it
is important to discriminate between the two. Therefore, an experiment was
performed at HZB to determine the threshold values for detecting a neutron.

A radium-beryllium (Ra-Be) source[2] was used to generate neutrons leaving
the source isotropically in 4π, with an activity in the GBq range. Since the 3He
detectors are more effective at detecting thermalized neutrons, the source was
placed in the middle of a circular block of plastic to thermally moderate the
neutrons, with ten neutron detectors, two of each type, placed in holes along
the perimeter of the plastic block. The spectrum for the Ra-Be source was then
measured by the ten detectors for a fixed time.
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To determine the signal from γ radiation, a metal sheet of neutron-absorbing
Cd was wrapped around the Be source. The sheet of Cd produced additional
γ radiation due to its absorption of neutrons, and upon comparison between
the normalized spectra from the measurement with and without the Cd sheet
in place, it was possible to attribute a part of the detector spectrum to the γ
radiation. The comparison between the two measurements for a single detector
tube can be seen in figure 26.
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Figure 26: Comparison of spectra coming from a moderated Be source as mea-
sured by a single detector. In red the un-shielded source, in blue the Cd shielded
source, and in green the difference between the two signals. The difference is
primarily seen for events below 75, although the two spectra are not equal until
events above 150, which on the other hand will mean that a lot of neutron signal
will be lost.

The figure shows that the two contributions from γ radiation and neutrons
are very close, and in order to completely discriminate against γ radiation, the
threshold needs to be set relatively high. Normally the two spectra should
be better separated, but a technical detail in the ways the detectors and their
electronics are configured means that the signal is compressed, making it difficult
to set a threshold that does not sacrifice too many neutrons in an attempt to
keep the γ background counts low. In section 10.1, we will show the effect of
changing the threshold in a realistic experimental setup, performed during the
PANDA prototype experiments.
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9.1.3 Ra-Be source experiments

Preliminary experiments with the thermal Ra-Be neutron source from above
placed in front of the prototype, with analysers and detectors fitted, showed a
significant amount of counts in the 2.5 meV channel with this number decreasing
to approximately a third as the energy for the analysers increased. Since we are
trying to detect cold neutrons from the tail of a Maxwellian spectrum moderated
at room temperature, there will be very few neutrons at the lowest energies,
which goes against what we measured. Therefore, we must assume that the
Ra-Be source was undermoderated and much of the signal that we see comes
from fast neutrons not being stopped by the shielding facing the source, or are
converted to γ radiation which penetrates the borated plastic easily.

There was, compared to its neighbours, a very low count rate for the 3.0 meV
AR channel, leaving us to suspect that an analyser crystal may have fallen out
of the holder, giving a smaller analyser area and hence fewer counts.

The background count rates in the test described above were quite high,
which meant that additional blocks of borated plastic shielding were prepared
to increase shielding of the prototype if the experiments at PANDA revealed
that the background was high. Furthermore, a Be filter was also requested for.

Since the MultiFLEXX will be operating with cold neutrons, which according
to equation 28 are easier absorbed by the borated plastic shielding, this test with
thermal neutrons cannot stand alone as a measurement of background from the
finished instrument. This is why a prototype experiment in an environment
similar to the one under which it will operate, such as we have on PANDA, is
important to perform.

9.1.4 Setting up for PANDA

Before dismounting the ordinary PANDA back-end, we aligned the instrument
to a Bragg peak of a lead sample at an energy of Ei = 4.5 meV. Keeping this
sample in place allows us to set the absolute value for the scattering angle after
we have exchanged the PANDA back-end for the MultiFLEXX prototype.

Since the finished MultiFLEXX will employ the curved geometry analysers,
the q-channel with this type of analyser was placed in the better shielded of the
two positions in the frame, while the AR geometry analysers were placed in the
poorer shielded position. The complete prototype was then hoisted onto a table
made from aluminium profiles. The table could be lifted using air pads, such
that the motors controlling the instrument A4 angle had the possibility to move
the table across the Tanzboden. The experiment table was slid onto an arm of
the PANDA instrument normally holding the anlyser and detector and fastened
with clamps and wedges, such that the distance from the sample position to the
analysers emulated that of the MultiFLEXX when finished. For the finished
MultiFLEXX detector, a similar arrangment will move the finished instrument
instead of just 2 out of the 31 q-channels.

The necessary electronics for detector control was pre-assembled at HZB and
were stowed on a shelf under the experiment table, such that unneccesarily long
cables to the detectors could be avoided and only a power cable and ethernet
cable for transmission of data were following the table around.

With the MultiFLEXX prototype mounted as seen in figure 27, it became
apparent that the ordinary PANDA back-end that had been moved to the side
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constricted the movement of the setup, since cables prevented it from being
moved further away. This meant that the monochromator angle A2 for PANDA
could not be turned further down than to the value corresponding to 2.5 meV,
limiting our possibilities for Ei’s.

Figure 27: The MultiFLEXX prototype (grey rectangle upper right), mounted
in the back-end position of the PANDA TAS via an aluminium tube (bottom
center). Behind the metal plate (lower right) is the detector electronics. Left, we
have the sample position and translation tables/tilt stages for the sample, along
with the beam stop. The large green/blue/green cylinder in the background
houses the monochromator.

After the mounting of the prototype to the PANDA analyser arm, we did
an A4 scan with the lead sample, in the range were we knew the Bragg peak to
be. One peak from each of the 4.5 meV channels were detected, at the expected
separation of 2.5°, but with a highly different count rate (2800 to 800) in favor
of the AR analysers. A second scan of A4, but in the opposite direction, was
performed to test for consistency in the A4 angle. The two scans are seen in
figure 28, where we find that the two Bragg peaks have a reproduceable center,
indicating that the clamps and wedges were holding the arm tightly.

The large difference between the two channels was found to be an effect of the
prototype not being correctly centered on the experiment table, such that the
line of sight between the sample and analysers was broken. The prototype was
centered on the table, after which both channels yielded approximately similar
count rates, as the similar scan in figure 33 shows.

The software controlling PANDA had been modified to accomodate the 10
(instead of 1) detector counts that the prototype produces. The detectors counts
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Figure 28: Data from the two 4.5 meV channels during two A4 scans, one in
each direction. There are two peaks at 95.8° and two peaks at 98.4°, they are
almost indistinguihsable, as are the Gaussian fits (black) to the peaks. The
large difference in count rate of the peak at 95.8° and the peak at 98.4° suggest
that the prototype is misaligned on the table.

were plotted against a scan value as soon as a measuring point was completed,
allowing the instrument users to follow the progress of the experiment in real-
time. The detectors were numbered 1 to 10, with the even numbers representing
the curved type analyser, and the odd numbers representing the AR type anal-
ysers. Low numbers have lower energy, such that the detectors 1 and 2 are
representing the pair of 2.5 meV energy channels with the AR and curved anal-
ysers, respectively. A sketch showing the individual detector numbers is shown
in figure 29.
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Figure 29: Sketch showing the conversion from detector number to detector
energy and analyser type, as photographed from the whiteboard of the experi-
mental hut. Black crosses indicate channels that we suspect are malfunctioning,
as described in 9.1.3 and 10.2.

10 Prototype experiments

10.1 Threshold tests

To measure the effect of changing the threshold as described in section 9.1.2,
we performed a count of events in the 4.5 meV channel at different threshold
settings and compared them to the background. The incoherent scattering of
the V sample was counted for 2 min with Ei = 4.5 meV at each threshold value
in the range 60-120. To compare to background, we changed to Ei = 3.5 meV
and repeated the count. At Ei = 3.5 meV, the primary source of background
should be γ radiation that penetrates the borated plastic of the MultiFLEXX.
Due to the expected lack of intensity in the 4.5 meV channel at Ei = 3.5 meV,
we raised the count time to 10 min per threshold setting to obtain adequate data
for statistics. The results of this measurement can be seen in table 6.

There are several interesting things to notice from table 6. Firstly, the
difference in intensity we expect to find due to the curved analyser performing
better than the AR one disappears when increasing the threshold, such that for
the threshold set at 90 and above, the two q-channels have approximately the
same intensity.

From the numbers presented in the table, we can calculate the Signal-to-
Noise Ratio (SNR) at each threshold setting. This is done in figure 30 where
one can see how the SNR increases as the threshold increases. This seems to
suggest that we get a signal from γ radition even at the higher threshold settings
and since the curve does not seem to break, we might even get a further decrease
in background upon further increasing the threshold. We are, however, already
losing 80% of the signal between the highest and the lowest tested threshold
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Signal / 2 min Background / 10 min
Threshold anti-Rowland Curved anti-Rowland Curved

60 1350 1510 127 111
75 980 1130 76 73
90 765 785 58 38
105 480 520 41 (34*) 23 (28*)
120 290 300 13* 12*

Table 6: The detector counts per 2 minutes for signal and per 10 minutes
for background, with respect to detector threshold. Threshold values can be
compared to figure 26. Starred numbers (*) are counted after the addition of
more shielding on the poorly shielded side of the prototype.

setting, so any further increases will severely limit the usability of the finished
instrument.

A better solution will be to fix the issues with the detector electronics as
mentioned in 9.1.2, such that the γ radiation and neutron radiation becomes
less overlapping, and the detector responsible personnel at HZB is hard at work
in this task.

10.2 Elastic resolution and intensity improvements

After performance analysis of the analyser geometry in McStas, we conducted
a range of experiments to see if the simulated improvements in intensity were
also experimentally reproducible.

To measure the elastic resolution, we will use the incoherent V sample. The
incoherent nature of V means that we can simultaneously measure the resolution
of the two q-channels in our prototype. This also means that the A4 setting of
the instrument is unimportant as long as we are not measuring the direct beam.
For the elastic tests, we set A4 = 90°.

To measure the elastic energy resolution, a scan was performed over the
incoming energy by changing the monochromator angles A1 and A2, scanning
slightly to each side of the energies that our energy channels are constructed
for. We used the doubly focusing monochromator of PANDA, since this is the
mode in which the MultiFLEXX will be used at FLEXX. Due to the geometri-
cal constraints described in section 9.1.4, the 2.5 meV channels have only been
scanned to one side.

The resulting counts per monitor versus Ei plot can be seen in figure 31,
where the energies over which we scanned has been laid out end-to-end, although
the scans were performed as 10 points to either side of one of the analyser
energies.

The resulting energy widths and intensity improvements, as found by per-
forming Gaussian fits to the peaks shown in figure 31, are tabulated in table 7
alongside the simulated energy widths and intensity improvements found in table
3. We cannot compare absolute intensities from McStas and the experiments,
but we can still compare the relative improvements from the AR analysers to
the curved analysers.

As already noted in 9.1.3, the AR 3.0 meV channel severely underperforms.
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Figure 30: The SNR in the 4.5 meV channels as a function of detector threshold
values. Red is the curved analysers and blue the anti-Rowland analysers. The
starred numbers in table 6 are represented by stars (*) instead of circles in the
figure. At threshold 105 where we have measured both with and without extra
shielding, the data points have been moved slightly apart to avoid clutter.
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Figure 31: Elastic energy resolutions. Detector counts for the curved and the
AR geometry analyser holders as a function of Ei, and Gaussian fits to the
data (black). The scans were made seperately and are plotted together for
comparison, and some scan points between the peaks are hence counted several
times. Data from the curved (AR) analysers are labeled by solid (open) symbols
and connected by solid (dashed) lines. The 2.5, 3.0, 3.5, 4.0, 4.5 meV channels
are colour coded by , , , , and , respectively.
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We suspect that one of the three analyser crystals in this holder has fallen
out, since the intensity in this channel is much lower than in the neighbouring
channels, both when considering the curved geometry that was supposed to be
a slight improvement and when considering the 2.5 meV and 3.5 meV channels
immediately before and after it in the neutron beam. However, missing just one
analyser crystal does not explain why the intensity drops by more than half,
rather than just a third. When the prototype is eventually disassembled, there
might be clues to the poor performance.

We also see that the there is slight misalignment for the 3.5 meV curved
analyser where the fitted Gaussian has its centre at 3.46 meV rather than at
3.50 meV.

Channel 2.5 meV 3.0 meV 3.5 meV 4.0 meV 4.5 meV

Experimental values

Increase [%] 9(3) 134(5) −10(2) 20(3) 14(4)
Cur. width [µeV] 57(2) 79.2(12) 129(2) 182(4) 209(5)
AR width [µeV] 52(2) 82.4(19) 142(2) 200(4) 209(5)

Simulated values

Increase [%] 11.8(8) 7.4(6) 7.6(5) 11.9(4) 14.8(4)
Cur.width [µeV] 53.0(2) 78.6(2) 103.1(2) 128.3(3) 158.3(3)
AR width [µeV] 52.6(2) 74.9(2) 99.8(3) 128.4(3) 160.3(3)

Comb. error [%] 3.2 5.4 2.3 3.4 3.5

Channel 2.5 meV 5.0 meV

FLEXX widths [µeV] 70 170

Table 7: The experimental increase in % using the curved over the AR analyser
geometry in the elastic setting, and the experimental and simulated values for
the energy widths for each of the five energy channels. The combined error
(added in quadrature) of the experimental and simulated improvements. For
comparison, the energy widths for the ordinary FLEXX back-end is given at
2.5 meV and 5.0 meV.

The experimental values for peak intensity and width are given in table 7,
along with the simulated values from section 8.1.1. Due to the problems with
some of the analysers, we only have meaningful measurements of the energy
width for both curved and AR for the 4.0 meV 4.5 meV analysers, and measured
half the energy width for the 2.5 meV channels. These three channels all see an
increase in intensity for the curved analyser over the AR analyser. Calculating
the combined error from experiment and simulation, we find that for the 2.5 meV
and 4.5 meV, the difference between experiment and simulation is within one
standard deviation. For the 4.0 meV channel, the increase from curved over AR
in the experiment is beyond two standard deviations from the simulated value.
Another scan over Ei in the range around 4.0 meV than the one included in
table 7 showed similar improvements beyond what the simulations suggested
would be attainable. In [50], it is stated that McStas is valid to within 10 % of
experiments due to systematical errors in the instrument code, and predicting
a 12 % increase and measuring one of 20 % is well within expectations.
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The intensity for the misaligned channel is 10% lower than for the AR chan-
nel, as opposed to the expected 8% increase. The decrease in intensity is not
surprising, as the analyser scatters the neutrons into a different direction than
that of the detector. Instead, some of the neutrons will be hitting the shielding
around the detector.

For the energy widths, we find that the the two 2.5 meV channels and the
curved 3.0 meV channel match the simulated values reasonably well, i.e. within
two standard deviations. The AR 3.0 meV channel that we suspect are missing
its middle analyser crystal seems to have a slightly larger energy width than
both the simulations and the curved 3.0 meV channel. There are no intuitive
explanation for an energy broadening due to a missing analyser crystal, so the
measured energy width might be representative of the result had the analyser
not been faulty.

For the rest of the channels, the measured energy widths are much larger
than the simulated ones, but are still consistent between the curved and AR
analysers. Disregarding the misaligned curved 3.5 meVchannel, we find energy
width broadenings of approximately 40% for the AR 3.5 meV, 64% and 70% for
the 4.0 meV curved and AR, respectively, and approximately 75% for both the
curved and the AR 4.5 meV channels.

When comparing to the values for the ordinary FLEXX TAS back-end, we
find that for the 2.5 meV channel the resolution is slightly lower for the Multi-
FLEXX. For the similar energies 4.5 meV and 5.0 meV, the MultiFLEXX has
slightly higher resolution.

The reason for the broadenings could be sample size, we saw in section 8.2
that there is a significant broadening from sample size increases. However, for
the 2.5 meV channel the simulations in figure 24 show that the effect of increasing
the sample size from 0.5 cm to 5.0 cm should be a doubling in energy width, and
we are by no means close to that sample size here.

It is interesting that there seems to a good correspondence between the ex-
perimental results and the simulations for the two lowest energy channels and
then a sudden jump to the rather poor correspondence for the three highest
energy channels. It should, however, be noted that the experimental results
agree amongst themselves, and that we still see an increase in intensity for the
three channels we can perform meaningful experiments on, without a signifi-
cant increase or a small decrease in energy width. These differences might be
explained by the differences between the simulated FLEXX front-end and the
PANDA front-end that we perform experiments at.

The results do, however, suggest that the estimate for maximum sample
height given in 8.2 is not valid. Since, for a sample height of 1 cm, we already
see some peaks in figure 31 that have overlapping regions, a further increase in
sample height as simulated in figure 24 would only worsen this problem.

To assess the precision of the alignment method described in section 9.1.1,
we have tabulated the center of the Gaussian fits from figure 31 in table 8. We
have confirmed that the misalignment of the curved 3.5 meV analyser is due
to the two sets of marks, one for curved and one for AR alignment, where an
experimenter mistakenly used the wrong mark in the laser setup described in
section 9.1.1. The alignment of the remaining 9 channels is accepted, and we can
conclude that the method of laser alignment and the setup bench we constructed
works as expected.
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Channel 2.5 meV 3.0 meV 3.5 meV 4.0 meV 4.5 meV

Curved centre [meV] 2.512(1) 3.013(1) 3.459(1) 3.992(2) 4.501(2)
AR centre (fit)[meV] 2.511(1) 3.017(1) 3.510(1) 4.006(2) 4.520(2)

Table 8: The mean analyser value, as found from the fits to the peaks in figure
31. All peaks are very close to their nominal value, with the exception of the
curved 3.5 meV channel that is slightly off. For this channel, we also found
poorer performance in intensity than expected.

10.3 Phonon experiments and inelastic widths

The MultiFLEXX will, when finished, be used to map phonon and magnon
dispersion relations in a wide range of samples. To give an impression of the
instrument performance under such an experiment, we exchanged the V sample
for a crystal of Pb to attempt to measure a phonon line. Pb is a standard test
sample, and its phonon dispersion has been well-known for many years[51, 52].
We measured at room temperature, e.g. 300 K.

Figure 32: The phonon dispersion in the (111) direction for lead at 300 K (open
circles) and at 80 K (filled circles). Figure taken from [52]

We aligned the Pb sample to have the (110) and (001) axes in the scattering
plane, allowing us to reach the (111) Bragg peak that has the lowest allowed q,
such that we can use low neutron energies for the experiment.

With the Pb sample, we also want to investigate the resolution of the instru-
ment for inelastic scattering, since a sample that is inelastic and dispersionless,
as we simulated in 8.1.2, is not readily available. Here, we will find both the
energy and the Q⊥ width, roughly corresponding to the width of the resolution
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ellipsoid described in section 6.1 in the energy and in the Q⊥ direction. In
our elastic scans above, there is no way to measure the Q-resolution, since the
incoherent scattering is the same for all values of Q.

The MultiFLEXX, due to its multiplexing abilities, poses a challenge when
paired with an ordinary TAS such as PANDA, since the software can only com-
prehend a single Ef and A4 angle. Therefore, we decided upon choosing the
q-channel containing the curved analysers to be the one we aligned to. For scans
in Ei, where the PANDA software required as input a ∆E value, we established
that ∆E should be calculated with respect to the Ef = 4 meV energy channel.

10.3.1 Bragg peak resolution

With the sample rotated into the Bragg condition for Ei = 4.5 meV in a Pb
sample, scanning over A4 in the range around 2A3 we should see two peaks in
the energy channels corresponding to Ei = 4.5 meV, spaced in A4 by the angular
spacing between two q-channels. Such a scan is shown in figure 33, where fits to
the two peaks show that they have centres that are spaced 2.51° apart, close to
the 2.545° of the instrument specifications. Both peaks have a FWHM of 0.64°,
while the 2 cm wide analyser crystal for the 4.5 meV analyser placed a distance
L3 = 173.2 cm from the sample has an angular width of 1.3°. This corresponds
closely to the difference between start and end point of the two peaks.

From Braggs Law (37) for Ei = 4.5 meV, we calculate that we should see a
Bragg peak at 2θA = 97.8°. During set-up, we zeroed the rotation of A4 to the
curved energy channel, and we now find that the centre for the curved energy
channel peak is at A4 = 97.4°. This small discrepancy is accepted, due to the
quick set-up of the instrument.

For the measurements, we performed both energy and Q-scans, as described
in section 3.3.1.

For both types of measurements, the initial alignment of the sample is im-
portant. The A3 value that the instrument outputs has some offset, which we
need to calculate in order to construct a correct scattering triangle. This was
done by first constructing the scattering triangle for the channel that we aligned
to, the curved 4.0 meV channel, in an instrument frame of reference where ki
is pointing along the x-axis. Since the PANDA instrument control was set to
measure at a particular point qmeas., we can find the angle between qmeas. and
qlab. Now, we can construct the q-vectors for the nine channels we did not align
to in the instrument frame of reference and rotate them with the angle found for
the alignment channel, which should yield 10 qmeas.-vectors that are positioned
close to the alignment channel in Q-space. It is these measurement points that
are shown in figures 34 and 36.

10.3.2 Incoming energy scan

We performed a single E-scan, where we moved the instrument in position to
measure at Q = (0.9 0.9 1.2) with the curved 4.0 meV channel, while scanning
the incoming energy from Ei = 4.49 meV to Ei = 6.14 meV. As for normal TAS
operation, a combination of changes to A3 and A4 can be calculated that does
not change the point chosen in Q even though ki changes in length. This is
however only the case for the channel that we aligned to initially, such that the
changes in scattering geomemtry affects the remaining 9 measurement points.
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Figure 33: A scan over A4 in a range around 2A3 with the sample in the Bragg
condition. Peaks are observed at approximately 97.8° for the curved (filled
circles, solid lines) 4.5 meV channel and at 95.3° for the AR (open circles, dashed
lines) 4.5 meV channel. A Gaussian is fitted to each peak (black). The two peaks
are offset with an angle corresponding to the angular distance between two q-
channels, and the width of the peak matches the angular width of an analyser
crystal at L3.
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These channels move in the (hh0) − (00l) plane as we change Ei, with the
points in Q measured by the two 2.5 meV energy channels points moving the
most. Mapping the measurement points in Q will therefore look as shown in
figure 34.
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Figure 34: Measurement points in Q for an E-scan, curved analyser chan-
nels are (filled circles) and AR analyser channels are (open circles). The mea-
surements from the curved 4.0 meV energy channel does not move away from
Q = (0.9 0.9 1.2), while the one for the AR 4.0 meV analyser is smeared around
the initial point. Other energy channels describe lines in Q-space. Data from
the curved (AR) analysers are labeled by solid (open) symbols. The 2.5, 3.0,
3.5, 4.0, 4.5 meV channels are colour coded by , , , , and , respectively.

The E-scan can be used to measure the energy width of the resolution, as
described in section 6. When the energy and measurement point in q coincides
with a phonon dispersion in lead, we will see a peak in intensity for that channel.
Since we measure at many points close to each other, there will likely be more
peaks over a single E-scan. The raw data from the E-scan, with Gaussian fits
used to estimate the energy widths, can be seen in figure 35. Since not all energy
channels were close to the dispersion in lead, we have not been able to estimate
the energy width for all channels. For those energy channels that we have been
able to measure, the results are shown in table 9

The inelastic energy widths in table 9 are following the trend from the elastic
energy widths in section 10.2, where they are roughly consistent for the lower
energy channels and quite inconsistent for the high energy channels. For the
AR 4.0 meV channel, the energy width from experiment is almost 3.5 times the
width we simulated it to be. It should be noted that we are using a different
type of sample in the experiment compared to the very simple, dispersionless
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Figure 35: The raw data from an E-scan from Ei = 4.49 meV to Ei = 6.14 meV.
Five peaks are identified, and a Gaussian fit (black) are made to these peaks,
from which we can determine the energy width. Due to their slightly different
positions in Q-space, the curved and AR analysers are not measuring at the same
energy transfer due to the phonon dispersion that we are measuring. Data from
the curved (AR) analysers are labeled by solid (open) symbols and connected
by solid (dashed) lines. The 2.5, 3.0, 3.5, 4.0, 4.5 meV channels are colour coded
by , , , , and , respectively.

Channel 3.0 meV 3.5 meV 4.0 meV

Cur. ~ω [meV] 1.6 1.4 1.6
Exp. curved width [µeV] 210(15) 379(15) 357(19)
Sim. curved width [µeV] 105.3(2) 122.4(3) 141.3(3)
AR ~ω [meV] 1.1 1.3
Exp. AR width [µeV] 340(17) 481(22)
Sim. AR width [µeV] 103.0(3) 120.1(3) 141.2(3)

Table 9: The inelastic energy widths as found from the Gaussian fits to the peaks
in figure 35, compared with the results from the inelastic resolution simulations.
The crossed spaces means that no energy widths were measured for this energy
channel.
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incoherently scattering sample that we used for simulations. This sample did
not take into effect focusing and de-focusing effects as those described in section
6.1.1, which is what we might see from the broadenings in table 9.

The energy widths should generally become broader as we increase the energy
transfer and as we increase the Ef we measure at. Both of these effects can be
attributed to the increase in uncertainty for larger energies from Braggs Law as
described in section 3.4.1, and for larger energy transfers the monochromator
is set for high-energy neutrons with less well-defined energies. In our case, the
energy transfer for the different energy channels are quite similar, which means
that the primary effect causing broadening should be the Ef we measure at.
However, there is not a large variation on Ef in our case as well.

It is hard to make conclusions from the limited number of energy widths
we have measured, but the difference between the AR and the curved 4.0 meV
channels, where the AR has a much wider energy resolution even for slightly
lower energy transfer goes against our predictions. Ideally, we should have
performed two E-scans, one for each q-channel in the same A4, instead of one
E-scan which compared energy widths at different Q-points.

10.3.3 Q scan

To change the point we measure at in Q for all 10 energy channels, we can rotate
the sample angle A3 while keeping Ei = 4.62 meV and A4 fixed. In terms of the
scattering triangle figure 4, this corresponds to keeping q fixed and rotating the
coordinate system and we expect to measure along 10 paths through q. In figure
36, we have performed A3 scans at three different A4 angles with 1° difference
between them, changing q and with them where we measure. The result for
these three scans are hence measurement points along 30 different paths. The
scans were performed such that one endpoint of the curved 4.0 meV channel
path hit the Q = (0.9 0.9 1.2) point for the initial A4 angle, before performing
the same scan at two other A4 angles.

For one of the three q-scans, the raw data can be seen in figure 37 along with
the Gaussian fits that we use to determine the q-width. Since we are interested
in the q-widths in [r.l.u.], we need to convert the width of the Gaussians in
terms of angle to the distance covered in q due to this change in angle. To do
this, we can correlate the distance between two measurement points in figure
36 taken by the same energy channel to the change in angle from the first to
the second setting. A different conversion rate is needed for all 30 measurement
paths shown.

The measured Q-widths are shown in table 10. For the three different scans,
we observed peaks in the same energy channels as we did for our energy scan.
However, the 4.0 meV channels have peaks as can be seen in figure 37 that are
visible but not entirely within the scan range. Since we cannot see the centre of
the peaks, fits to these are very inaccurate, and we have omitted them.

It is only the 3.5 meV energy channel that has usable peaks to determine
the Q-widths for both the AR and the curved analyser. For these energy chan-
nels, we find that the Q-widths are roughly consistent amongst the three scans,
with the curved analyser having a slightly smaller width. The curved 3.0 meV
channel in turn has a slightly smaller width than was the case for the curved
3.5 meV channel. This could be because the kf length is smaller, and an energy
uncertainty is hence translated to a smaller Q-width, or it could be differences
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Figure 36: Measurement points in Q for an A3 scan. Each energy channel
measures along its own line in the (hh0)-(00l) plane. Data from the curved
(AR) analysers are labeled by solid (open) symbols. The 2.5, 3.0, 3.5, 4.0, 4.5
meV channels are colour coded by , , , , and , respectively.
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Figure 37: The raw data from the Q-scan at A4 = 102.0°. Although there is
evidence of five peaks, only three are fully included in the scan and can have
a Gaussian fits (black) made to them. Data from the curved (AR) analysers
are labeled by solid (open) symbols and connected by solid (dashed) lines. The
2.5, 3.0, 3.5, 4.0, 4.5 meV channels are colour coded by , , , , and ,
respectively.
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in the resolution function, as discussed in section 6.1.1.

Channel 3.0 meV 3.5 meV

A4 = 101.0°

~ω [meV] 1.62 1.12
Curved width [r.l.u.] 0.037(3) 0.040(2)
AR width [r.l.u.] 0.043(2)

A4 = 102.0°

Curved width [r.l.u.] 0.034(3) 0.040(2)
AR width [r.l.u.] 0.048(2)

A4 = 103.0°

Curved width [r.l.u.] 0.030(5) 0.043(2)
AR width [r.l.u.] 0.045(2)

Table 10: The Q-widths as found from the Gaussian fits to the peaks in figure
35. The crossed spaces means that no Q-widths were succesfully measured for
this energy channel.

10.3.4 Phonon mapping

Mapping experiments will be the primary task for MultiFLEXX, so we have
attempted to put the limited amount of data we gathered in the inelastic setting
together to create the mapping plots. For this, we have calculated the distance
from the measuring points shown in figures 34 and 36 to the (1 1 1) Bragg point.
Data points are given by circles coloured according to the detector intensity at
this measurement point. Since we have different performances for the different
energy channels, the data points have all been normalised to the curved 2.5 meV
by their peak height × peak width. The mapping data for the E-scan is given
in figure 38. Here, we find that there is an increase in intensity around ~ω =
1.5 meV, sloping slightly downwards to the right. We can also see that the two
2.5 meV energy channels are measuring at a high intensity for all ~ω. This can
be attributed to the high levels of background that was continually seen in these
channels. Meanwhile, the AR 3.0 meV meV channel also shows a high intensity
at all ~ω, which is the effect of this analyser having a poor performance, and
hence the few counts it sees are boosted in the normalisation process.

For the Q-scan, we find the phonon mapping result looking as in 39 for the
measurement at A4 = 102°. Here, we again find a feature of high intensity
going downwards to the right. The difference in slope can be attributed to the
different x-axis scalings, but this has not been investigated further. There are
still very high intensities in the 2.5 meV energy channels and in the 3.0 meV,
which do not seem to match the feature, and can probably be attributed to
background.

There seems to be a problem with the phonon mapping, since we expect the
dispersion relation that we measure to slope towards the Bragg point, as seen
in figure 32. The fact that we are sloping in the opposite direction suggests
that there is an error in the data treatment, as the feature is definately not a
statistical error. It has been suggested that the PANDA definition of positive
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Figure 38: Distance from Bragg point (1 1 1) to Q vs. energy for the E-scan.
The logarithm of the detector intensity is given by the color of the data points,
and all intensities are normalised to the curved 2.5 meV channel. A feature is
seen going from top left to bottom right.

83



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

1.5

2

2.5

C. 4.5meV
AR 4.5meV

C. 4.0meV
AR 4.0meV

C. 3.5meV
AR 3.5meV

C. 3.0meV
AR 3.0meV

AR 2.5meV
C. 2.5meV

‖Q− (111)‖

~ω

−12

−11

−10

−9

−8

Figure 39: Distance from Bragg point (1 1 1) to Q vs. energy for the A3-scan at
A4 = 102°. The logarithm of the detector intensity is given by the color of the
data points, and all intensities are normalised to the curved 2.5 meV channel.
A feature is seen going from top left to bottom right.
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rotation for A3 and A4, respectively, could be reversed with respect to the data
treatment. If there is an error in the data treatment, figures 34 and 36 are also
affected.

Given more time, the rotations would have been investigated further, and
the data from the E-scan and the three Q-scans would have been collected in
order to establish the slope of the feature seen in the data, for comparison with
the known phonon dispersion in Pb.

10.4 Background measurements

Even the best neutron instruments in the world are useless, if their signals are
drowned out in background from different sources. In fact, the best instruments
are often characterised by their low and uniform background. To estimate what
amount of background we can expect in the finished experiment, many experi-
ments were performed with the vanadium sample and varying degrees of shield-
ing and blocking, as well as measurements where crosstalk between different
energy channels and q-channels were measured.

10.4.1 Crosstalk and shielding

To measure the crosstalk, we scanned the prototype A4 with the Pb sample
aligned to a Bragg peak at energies Ei = 4.5 meV and Ei = 5.2 meV. The first
of these scans was also shown in figure 33, but it is repeated in figure 40, this
time with the detector count in a logarithmic scale, where it is easier to see the
fainter signals from the crosstalk.
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Figure 40: Logarithmic detector counts vs. A4 in a range around 2A3 with
the sample in the Bragg condition for Ei = 4.5 meV. When the Bragg peak
is detected for either the curved or the AR 4.5 meV energy channels, all other
energy channels of the same type sees a peak as well. Data from the curved (AR)
analysers are labeled by solid (open) symbols and connected by solid (dashed)
lines. The 2.5, 3.0, 3.5, 4.0, 4.5 meV channels are colour coded by , , , ,
and , respectively.
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From figure 40, we see that a Bragg peak in the 4.5 meV energy channel in
one q-channel gives a signal for all energy channels along that q-channel. Giving
the Bragg peak an intensity of 10 on an arbitrary scale, we have the 3.0 meV
energy channel at 2, followed by the 3.5 meV energy channel at 2.5, the 4.0 meV
energy channel at 5 and finally the 2.5 meV energy channel at 6. Thus, the
closer spatially the energy channel is to the Bragg energy channel, the higher
the intensity in this channel, a result that is hardly surprising. The odd one out
is the 2.5 meV energy channel, where the intensity is the highest, even though
this energy channel is spatially the farthest removed from the Bragg energy
channel. This can probably be attributed to the fact that, as we see from figure
7, the detector for this channel has the least amount of shielding on the front,
towards the outside environment. However, since there is a peak in intensity at
the Bragg angle, this peak is not attributable to general background radiation
in the experimental area, but must come from Bragg scattered neutrons out of
the plane.

The hopes before the prototype tests were that a Bragg peak in one q-
channel would only affect the energy channels in that q-channel, such that this
single q-channel could simply be excluded from the data. However, we find
that the Bragg peak in the curved 4.5 meV energy channel creates a peak in
the AR 4.5 meV energy channel, but not the other way around. This goes
against intuition, as the shielding between the the two channel should be equally
permeable from both sides.

Another strange feature from this scan is the signal from the 4.0 meV energy
channel for both analyser types. Here, we have a background similar to that of
the other energy channels on one side of the crosstalk peak for their channel, but
a significantly higher background on the other side. The scan was performed
from small to large A4, meaning that the higher background came after the
q-channel had been exposed to the Bragg peak.

A similar scan is performed for Ei = 5.2 meV in figure 41. Assigning an
intensity of 10 on an arbitrary scale to the 4.5 meV energy channel, we have
approximately 10 in the 2.5 meV channel as well, while the 3.0 meV energy
channel that had the least amount of crosstalk before now has approximately
8. This might be an effect of the neutrons that gave the peak in the 2.5 meV
energy channel now penetrating through the thicker shielding to the 3.0 meV
energy channel. The 3.5 meV channel and the 4.0 meV have approximately the
same signal at 6-7.

Concerning the strange tails on the right side of the peaks in figure 40, we
find them here for both the 4.0 meV and the 4.5 meV energy channels. The
right-most scan points are added at a later time to resolve when and if the AR
4.5 meV energy channel tail disappears, and the signal in this channel finally
begins to decrease at approximately A4 = 90°, some 3° after the constant signal
began. Interestingly, the tail from the 4.0 meV channel does not disappear
within our scan. The fact that the right-most points are scanned at a later time
rules out that anything in the MultiFLEXX could have been activated by the
neutrons.

It is also worth considering higher order scattering, since the PANDA TAS
front-end is not equipped with a velocity selector as the one described in 3.4.2.
2nd or higher order scattered neutrons from the monochromator can also be
higher-order scattered from the analysers. A short table on these critical values
is given in 11. Here, we see that the combination of 2nd order scattering from
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the monochromator and 3rd order scattering from the analyser has an energy
close to the 2.5 meV channel. There is also a combination of 3rd and 4th order
scattering that may give problems in the 3.0 meV channel. This is, however,
less likely as there are much fewer neutrons incoming at this energy. Comparing
figures 40 and 41, we see that there is actually a decrease in counts in the
2.5 meV channel, so this seems to be less of a problem.

Scattered from monochromator
Ei 5.2 meV 20.8 meV 46.8 meV 83.2 meV

Will N order scatter from analyser
2nd 1.3 meV 5.2 meV 11.7 meV 20.8 meV
3rd 0.6 meV 2.3 meV 5.2 meV 9.2 meV
4th 0.3 meV 1.3 meV 2.9 meV 5.2 meV

Table 11: A diagram showing where we can expect higher background due to
higher order scattering from both monochromator and analyser.
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Figure 41: Logarithmic detector counts vs. A4 in a range around 2A3 with the
sample in the Bragg condition for Ei = 5.2 meV. Data from the curved (AR)
analysers are labeled by solid (open) symbols and connected by solid (dashed)
lines. The 2.5, 3.0, 3.5, 4.0, 4.5 meV channels are colour coded by , , , ,
and , respectively.

The results in figure 40 and 41 seems to suggest that crosstalk will be a
problem, since we found that a Bragg peak in one q-channel will give a signal in
all energy channels for that q-channel. There is some ambiguity as to whether
a Bragg peak in a single energy channel will leak into the same energy channels
for neighbouring q-channels, since the experiment seems to suggest that the
crosstalk is not symmetric, as we expect it to be. The Ei = 5.2 meV Bragg
peak does not seem to leak from one q-channel to the next, bar the strange tails
observed for the 4.0 meV and the 4.5 meV energy channels.

Further experiments should be made where the A4 is scanned in the opposite
direction to se the effect on these tails. Furthermore, experiments at higher Ei’s
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might provide an argument for the Be-filter suggested in section 4.1.2 if they
show more crosstalk from a Bragg peak than we have seen at Ei = 4.5 meV and
Ei = 5.2 meV.
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11 Conclusion

In this masters thesis, I have given a short introduction to inelastic neutron scat-
tering and the two kinds of spectrometer, the TAS and the ToF, that are cur-
rently being used to perform inelastic neutron scattering. I have then presented
the MultiFLEXX, a new back-end option for the FLEXX TAS, and described
how this multiplexing back-end can make it possible to perform measurements,
namely mapping with parameterisation, that are impractical with the current
spectrometer technology.

Below, I conclude on the two parts of the MultiFLEXX work where I have
participated: Monte Carlo simulations and prototype experiments.

11.1 Simulations

We found that the analyser holders that had been designed and built for the
MultiFLEXX were not of the Rowland geometry that they were supposed to be,
due to a coordinate transformation error, but were rather anti-Rowland. The
resulting analyser had a smaller than possible effective area, due to the individ-
ual analyser crystals it was made from having a region of overlap. Also, due to
the proportions of the MultiFLEXX setup, it was not possible to use the Row-
land geometry for the analysers. To test the effect of the overlapping analyser
crystals, I created the MultiFLEXX in McStas and simulated the performance
of the analyser by measuring the height and width of the peak on the detector
when changing the incoming energy of neutrons onto an incoherent elastically
scattering sample.

For comparison, I also simulated a simpler curved analyser geometry and
optimised the curvature ρ for the MultiFLEXX. For the optimally curved anal-
yser, I found that an improvement of between 7 % and 15 % for the fitted peak
height was possible, depending on the final energy that the analysers should
detect. The increase in peak height came with little to no effect on the width
of the peak, thus keeping the resolution.

To investigate the situation in inelastic scattering, I simulated energy trans-
fers from the neutron to the sample and measured the peak height and width for
a fixed incoming neutron energy instead of a varying incoming energy. I found
that the optimal curvature in this situation was close to that found for elastic
scattering, and that using the optimally curved analyser geometries would result
in an improvement of between 8 % and 16 % for the fitted peak height.

Since neutron scattering is limited by the amount of neutrons that we can
measure, based on my simulations it was decided to change the analyser holders
to the curved geomtry, using the optimal curvature that I found.

11.2 Experiments

We performed a prototype test with the MultiFLEXX using the PANDA TAS
front-end in order to test if the simulated improvements could be recreated in
an experimental setting. To do this, we took two out of 31 q-channels of the
finished MultiFLEXX and fitted one with the curved geometry analysers and
the other with the AR geometry analysers. We measured in an elastic setup by
using an incoherent elastically scattering V sample and changing the incoming
energy. Due to misalignments and other experimental errors, only three out of
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the five final detection energies could be directly compared, but they showed
improvements between 9 % and 20 % for the peak height of a Gaussian fit to
the data. The peak widths measured were similar to the simulated values for
the 2.5 meV and the 3.0 meV channels, while the higher energy channels saw
broadenings of between 25 % and 56 % compared to the simulations. For the
two different analyser geometries, the widths were comparable, as we also saw
from the simulations.

We also attempted to measure the a signal in an inelastic setting by measur-
ing a phonon dispersion in a Pb sample. Here, we have not made comparisons
between the peak heights of the two different analyser geometries, but we have
measured the widths. These are found to be broadened by a large amount com-
pared to what we found in the simulations, but in line with the result we got
from the elastic measurements.

Furthermore, we performed different tests on background and crosstalk. In
this thesis, we have given examples of the crosstalk we measure when a Bragg
peak is directed into one of the two q-channels. We find that the Bragg peak
will give a signal at all detector energies in the q-channel, and that a Bragg peak
of the same energy as a detector energy can be detected at the corresponding
detector energy in the other q-channel. We also report on an unexplained tail
occurring only on the right side of several peaks.

The result of our mapping experiment is as of yet unresolved, since the
phonon dispersion we measure seems to slope away from the Bragg point, rather
than towards it. More work will be put into this problem to verify that we have
indeed measured a phonon dispersion in Pb.

11.3 Outlook

The MultiFLEXX will be assembled in December 2014 and January 2015 and
should be ready for tests with all 31 q-channels in early 2015. After that, it
will be possible for users at the FLEXX instrument to opt for the MultiFLEXX
back-end over the ordinary FLEXX back-end, which will add to the tool-box of
the neutron scattering society and hopefully lead to exciting new findings.
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A Elastic scans over curvature
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Figure 42: A range of simulations of the type in figure 17 that shows the effect
of changing the curvature for the curved 3.0 meV energy channel. Peak intensity
( green plus) normalised to the right axis, width (FWHM) (red asterisks), and
integrated intensity (blue circles).
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Figure 43: A range of simulations of the type in figure 17 that shows the effect
of changing the curvature for the curved 3.5 meV energy channel. Peak intensity
( green plus) normalised to the right axis, width (FWHM) (red asterisks), and
integrated intensity (blue circles).
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Figure 44: A range of simulations of the type in figure 17 that shows the effect
of changing the curvature for the curved 4.0 meV energy channel. Peak intensity
( green plus) normalised to the right axis, width (FWHM) (red asterisks), and
integrated intensity (blue circles).
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Figure 45: A range of simulations of the type in figure 17 that shows the effect
of changing the curvature for the curved 4.5 meV energy channel. Peak intensity
( green plus) normalised to the right axis, width (FWHM) (red asterisks), and
integrated intensity (blue circles).

B Elastic comparisons between curved and AR
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Figure 46: Simulations in the elastic setting comparing the curved (filled circles,
solid lines) with the AR (open circles, dashed lines) for Ei = 3.0 meV
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Figure 47: Simulations in the elastic setting comparing the curved (filled circles,
solid lines) with the AR (open circles, dashed lines) for Ei = 3.5 meV
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Figure 48: Simulations in the elastic setting comparing the curved (filled circles,
solid lines) with the AR (open circles, dashed lines) for Ei = 4.0 meV
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Figure 49: Simulations in the elastic setting comparing the curved (filled circles,
solid lines) with the AR (open circles, dashed lines) for Ei = 4.5 meV

C Inelastic scans over curvature
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Figure 50: A range of simulations of the type in figure 20 that shows the effect
of changing the curvature for the curved 2.5 meV energy channel in the inelas-
tic setting. Peak intensity ( green plus) normalised to the right axis, width
(FWHM) (red asterisks), and integrated intensity (blue circles).
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Figure 51: A range of simulations of the type in figure 20 that shows the effect
of changing the curvature for the curved 3.0 meV energy channel in the inelas-
tic setting. Peak intensity ( green plus) normalised to the right axis, width
(FWHM) (red asterisks), and integrated intensity (blue circles).
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Figure 52: A range of simulations of the type in figure 20 that shows the effect
of changing the curvature for the curved 3.5 meV energy channel in the inelas-
tic setting. Peak intensity ( green plus) normalised to the right axis, width
(FWHM) (red asterisks), and integrated intensity (blue circles).
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Figure 53: A range of simulations of the type in figure 20 that shows the effect
of changing the curvature for the curved 4.0 meV energy channel in the inelas-
tic setting. Peak intensity ( green plus) normalised to the right axis, width
(FWHM) (red asterisks), and integrated intensity (blue circles).
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Figure 54: A range of simulations of the type in figure 20 that shows the effect
of changing the curvature for the curved 4.5 meV energy channel in the inelas-
tic setting. Peak intensity ( green plus) normalised to the right axis, width
(FWHM) (red asterisks), and integrated intensity (blue circles).
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D Inelastic comparisons between curved and AR
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Figure 55: Simulations in the elastic setting comparing the curved (filled circles,
solid lines) with the AR (open circles, dashed lines) for Ei = 2.5 meV
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Figure 56: Simulations in the elastic setting comparing the curved (filled circles,
solid lines) with the AR (open circles, dashed lines) for Ei = 3.0 meV
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Figure 57: Simulations in the elastic setting comparing the curved (filled circles,
solid lines) with the AR (open circles, dashed lines) for Ei = 3.5 meV
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Figure 58: Simulations in the elastic setting comparing the curved (filled circles,
solid lines) with the AR (open circles, dashed lines) for Ei = 4.0 meV
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Figure 59: Simulations in the elastic setting comparing the curved (filled circles,
solid lines) with the AR (open circles, dashed lines) for Ei = 4.5 meV
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