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ABSTRACT

Nanowire systems have in recent decades become a topic to receive much attention in con-
densed matter physics. Especially so for the possible confirmation of the existence of Majo-
rana zero modes, proposed to be highly useful for future quantum computing.

In this thesis I study the sub-gap states found in superconducting cylinder systems in the
presence of an applied magnetic field, as these systems can approximate the nanowire sys-
tems. A possible example of these sub-gap states is the Caroli-de Gennes-Matricon states,
which are bound vortex states in type-II superconductors. These sub-gap features were
believed to have been observed in a recent nanowire experiment. I examine the states an-
alytically through a detailed derivation of the energy spectrum, followed by a numerical
analysis. I compare the numerical result to another recent experiment and found these to
be commensurate. I present the numerically determined eigenfunctions, resembling Bessel
functions in the radial direction, and show how the higher energy states correspond to larger
angular momentum. The supercurrents corresponding to the occupied states are plotted
and discussed as well. Furthermore, I present the numerical method describing the sub-gap
states of a hollow hexagonal wire system, for which I find the energy spectrum, eigenfunc-
tions and supercurrents.
Magnetic field effects were included in the analytical derivation of the CdGM states, which
resulted in an increase in the energy spacing between the states. This was verified numeri-
cally as well.
I give a thorough account of Andreev reflections and discuss how these can result in bound
states in either vortices or normal metal cores of cylinders encased by a superconducting
shell.
Finally, I determine the force acting on particles undergoing Andreev reflection and hypoth-
esize how this can lead to precession of the bound states in superconducting cylinders.
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FOREWORD

In the original thesis I had a sign error in Fig.(23) which I could not identify. The figure
previously featured both the actual result and the expected result with the correct sign.
Later I discovered the error was simply due to a confusion of convention in the definition of
the electronic charge, when comparing different articles. The error has been corrected and
Fig.(23) now only depicts the expected result. This was implemented on the 13. December
2018.
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1
INTRODUCTION

Since the discovery of superconductivity in condensed matter systems, much research has
been invested to understand the underlying physics. It was first discovered experimentally
by H. K. Onnes in 1911 and later described theoretically with the BCS theory in 1957 [1].
In recent decades there has been a lot of focus on superconductivity and one especially vi-
brant topic is novel phenomena of nanowire systems. As explained for example in an article
by R. M. Lutchyn et al.[2], these nanowire systems are strong contenders for realizing Ma-
jorana zero modes, believed to be crucial for the realization of quantum computing. The
article presents the nanowires as superconducting cylinders in the presence of an axial mag-
netic field, i.e. along the length of the cylinder. The work presented in this thesis revolve
around the possible sub-gap states observed in these superconducting cylinder systems.
The article by S. Vaitiekenas et al.[3] presents an experiment using hexagonal nanowires con-
sisting of an indium arsenide semiconductor core with an aluminium shell wrapped around
the core. They identify (tentatively) the sub-gap features of the cylinder as the Caroli-de
Gennes-Matricon (CdGM) states, which are bound states in Abrikosov vortices in type-II
superconductors. The main topic of this thesis is the understanding of these CdGM states,
through both analytical and numerical work. Interestingly, the existence of these states has
recently (March 2018) been observed experientially by M. Chen et al.[4], further solidifying
the importance of understanding the CdGM states.
Superconducting cylinders in axial magnetic fields also exhibit Little-Parks effect, see again
[3]. A discussion of this effect is therefore included in this work, so that one can investigate
the effect of the magnetic flux through the cylinder. This is done in section (2), where
the physics of the Little-Parks effect in a superconducting cylinder is studied. Section (3)
presents the main topic of the thesis; a thorough study of the sub-gap states in supercon-
ducting cylinder system. This includes both an analytical derivation of the energies of the
CdGM states, followed by a numerical analysis for comparison based on the experiment pre-
sented in [4]. In the numerical work the vortex line is imagined as a solid superconducting
cylinder, of course with the magnetic field along the vortex line. Afterwards, the numerical
method is applied to a hexagonal shell (hollow hexagonal structure), as an example of a
typical nanowire system, in order to find sub-gap states here.
Afterwards, in section (4), the magnetic field effects are included in the analysis, as these
were neglected throughout the previous section. The energies are determined analytically
and the theoretical prediction is verified numerically. Next, in section (5) Andreev reflec-
tion is studied and its relation to the bound states of these cylindrical system is discussed.
Following the work of [5], Andreev reflection is studied for several different cases. Section
(6) presents the forces acting on particles undergoing Andreev reflection and discusses how
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1.1 the abrikosov vortex 2

these affect our bound states.
A few important features and phenomena is presented in the following paragraph, among
these the Abrikosov vortex, to keep in mind throughout the thesis.

1.1 the abrikosov vortex

It is assumed the reader is familiar with the basics of superconductivity, such as how it
emerges, the concept of Cooper-pairs, energy gap, critical temperature, the Meissner effect
and so on. A brief discussion of the two different types of superconductors and afterwards
the Abrikosov vortex is given.
As stated, superconductors can be split into two categories depending on their material
properties. The categories are labelled using the Ginzburg-Landau parameter κ = λ

ξ , where
λ is the magnetic field penetration depth and ξ is the coherence length. λ measures how
far into superconductor the magnetic field penetrates, before it is reduced by a value e−1.
ξ relates to the "size" of the Cooper-pair. As explained in [6] Sec.(1.8), the properties of
a superconductor cannot change substantially on a scale much smaller than ξ. The two
types of superconductors are determined as follows: For values of 0 < κ < 1√

2 , it is a type-I
superconductor, whereas for κ > 1√

2 it is a type-II.
An important difference between the two types is presented in Fig.(1). Type-I supercon-
ductors exhibit the usual Meissner effect, where the magnetic field lines are expelled from
the superconductor for temperatures below TC , until some critical field HC . Type-II super-
conductors on the other hand enters another state between the critical fields HC1 and HC2.
This state is called the Abrikosov vortex state and is characterised by a "reduced" Meissner
effect. For this state the magnetic field penetrates the superconductor in some places in the
form of magnetic field lines. These lines are screened from the rest of the superconductor
by an induced supercurrent circulating the line, and this is the creation of an Abrikosov
vortex. The vortices were presented by A. A. Abrikosov in 1957 [7]. The upper critical field
corresponds to having created so many vortices that these begin to overlap.
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Figure 1: The different types of superconductors. The figure is taken directly
from [8], Fig.(1.9). The regions from 0 to TC and 0 to HC or HC1 represent
the superconducting phase. If either the temperature or the applied magnetic
field increases beyond these values, the system exits the superconducting state.
In type-I metals superconductivity is destroyed as the magnetic field reaches
the critical field. For type-II superconductors however, the system can enter
the Abrikosov vortex phase. Here the system exhibits a reduced Meissner
effect and the creation of vortices around magnetic field lines penetrating the
superconductor in certain places.

These vortices are characterized by having a normal core, i.e the superconducting order
parameter ∆ becomes zero in the center of the vortex. As mentioned earlier, the screening
current circulates this normal region core, decaying on a distance λ away from the center.
The radius of the vortex is approximately equal to the coherence length of the superconductor
[8], Sec.(1.9). Due to the magnetic field, each vortex carries one quantum of magnetic flux,
labelled Φ0. This is a result of the single-valuedness of the superconducting order parameter,
when taking a closed loop around in the superconductor. Essentially, the phase difference
depends on the magnetic flux and the phase can vary only with values 2πn, with n being an
integer, when completing a loop. Thus the flux must be quantized as well. This argument
is displayed nicely in Sec.(17.5) of [9].
These vortices will be of major importance to our work going forward. One main focus is the
Caroli-de Gennes-Matricon states, which are exactly excitations confined in such a vortex.
But first, a study of another novel feature, occurring in a superconductor in a magnetic field,
is presented.



2
L ITTLE -PARKS EFFECT

2.1 oscillation of TC

The first topic will be the examination of the Little-Parks effect, as seen in the article by
S. Vaitiekenas et al. [3], Fig.(1). They present resistance as a function of the temperature
and the magnetic field and present data showing the "destructive regime" of the Little-Parks
effect. This concept is investigated in order to understand the effect of applying a magnetic
field to a superconducting cylinder.
The gap parameter is dependent on the critical temperature (TC) through the BCS-ratio:
∆0 = 1.76kBTC , with kB being the Boltzmann constant, and that the resistance changes
heavily for temperatures near TC . Thus, a closer look into the critical temperature as a
function of the magnetic field is in order.

To understand the physics happening behind the scenes, the concept Little-Parks (LP)
effect is examined, named from W. Little and R. Parks; the first to present an experiment in
which this effect was observed. They present their work in the article [10] from 1962, showing
the periodic oscillation of the critical temperature, through measurements of the resistance
as a function of the magnetic field. This is the heart of the LP effect. This section will
present a detailed description of the effect, the system in which it occurs, and an analytical
derivation of the actual dependence.
Fig.(2) presents the system to keep in mind throughout this section. W. A. Little and
R. D. Parks examined a thin-walled cylinder with thickness d, in the presence of an axial
magnetic field, i.e. along the length of the cylinder. One can derive an expression for the
critical temperature as a function of the magnetic field and subsequently compare with their
experimental findings.

4
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Figure 2: Sketch of a superconducting cylinder in the presence of an axial
magnetic field. The thickness d was small in the experiment of Little and
Parks [10]. The authors examined the oscillation of the critical temperature
as a function of the magnetic flux through the cylinder.

The Ginzburg-Landau theory presents a description of the free energy Ωs of the super-
conducting state as a function of the order parameter. This work will not go into the details
of this theory, but simply use it as a framework for the current topic. Suffice to say that
the theory describes the microscopic behaviour of a superconductor in the presence of a
magnetic field H, for temperatures near TC [11].

Look first at the free energy form as presented in Sec.(17.5) of the book [9] by A. A.
Abrikosov, upon which the following derivation is based. Here the electron mass and charge
have been rewritten as twice the value presented in [11], as the following deals with Cooper-
pairs.
Eq.(17.5) of [9] writes an integral of the free energy (renamed Ωs) expanded in terms of the
order parameter in the presence of the external magnetic field, H:

∫
Ωs dV =

∫
Ω(0)
N dV +

∫ [
α τ |ψ|2 + β

2 |ψ|
4 +

1
4m

∣∣∣∣ (−i}∇− 2e
c

A
)
ψ

∣∣∣∣2 + H2

8π

]
dV ,

(2.1)

where α and β are positive constants, τ = T−TC
TC

, A is the vector potential and ψ is a
complex field, proposed by Ginzburg and Landau in 1950 as the superconducting order
parameter.
The terms involving α and β represent the condensation energy; the amount of energy the
system can save by entering a superconducting phase. The gradient term describes the
kinetic energy of the electrons and finally the last term is simply the energy of the applied
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magnetic field. The assumed superconducting order parameter ψ was later found to be the
gap parameter ∆. Note that everything will be written in SI-units and therefore c = 1 is
used, while the magnetic field is rewritten as B.
Writing out the order parameter as ψ = |ψ|eiχ, one can write the integrand of Eq.(2.1) as

Ωs −Ω(0)
N = α τ |ψ|2 + b

2 |ψ|
4 +

}2

4m |ψ|
2
(

∇χ− 2e
} A

)2
+

B2

8π , (2.2)

The bracketed expression can be written as an average, using the fact that A and ∇χ are
constant around the superconducting cylinder:

∇χ− 2e
} A =

1
2πR

∮ (
∇χ− 2e

} A
)
dl, (2.3)

where R is the radius of the cylinder. Thus the term is now expressed as an integral along a
closed path taking one revolution in the cylinder, divided by the circumference. The integral
of each term is taken separately and for ∇χ one uses now that ψ must remain single-valued.
This is satisfied if the phase varies by 2πn after one complete turn around the cylinder,
where n represents the winding number which is an integer. Therefore∮

∇χ dl = 2πn. (2.4)

The second term of Eq.(2.3) is rewritten using Stokes theorem and the definition of the
vector potential: ∮

A dl =

∫
∇×A ds =

∫
B ds = Φ, (2.5)

where Φ is the flux through the surface area ds. Now Eq.(2.3) can be written as

∇χ− 2e
} A =

1
2πR

(
2πn− 2e

} Φ
)
=

1
R

(
n− Φ

Φ0

)
, (2.6)

where the definition of a flux-quantum, Φ0 = h
2e , was used. Plugging this back into Eq.(2.2)

yields:

Ωs −Ω(0)
N = ατ |ψ|2 + b

2 |ψ|
4 +

}2

4m |ψ|
2
(

1
R

(
n− Φ

Φ0

))2
+

B2

8π . (2.7)

Collecting now the |ψ|2 terms:

Ωs −Ω(0)
N = ατ ′|ψ|2 + b

2 |ψ|
4 +

B2

8π , (2.8)
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where the notation τ ′ = τ + }2

4mR2α

(
n− Φ

Φ0

)2
was introduced. Now, the phase transition

happens as the sign changes on the term with the order parameter squared. Thus one can
set τ ′ = 0:

0 =
T − TC
TC

+
}2

4mR2α

(
n− Φ

Φ0

)2
, (2.9)

and obtain the expression for the critical temperature as a function of the magnetic field:

−T − TC
TC

· 4mR
2α

}2 =

(
n− Φ

Φ0

)2
. (2.10)

Thus the critical temperature depends on the applied magnetic field through the magnetic
flux. This dependence is plotted and discussed later, but first the kinetic term of Eq.(2.1) is
studied. Using the following relation (as for example presented in the book by M. Tinkham
[12], Eq.(4.9), with χ instead of θ):

vs =
}

2m

(
∇χ− 2eA

}

)
, (2.11)

one can write the supercurrent velocity in the cylinder as a function of the applied field as
well. This was expected as the velocity is proportional to the critical temperature, as can
be seen from Eq.(2.2).
Performing once again a contour integral, quite like in Eq.(2.6), one gets

2πRvs =
}

2m

(
2πn− 2e

} Φ
)

(2.12)

which one can rewrite as to have the supercurrent depending on the magnetic field:

vs
2mR
} =

(
n− Φ

Φ0

)
, (2.13)

where again Φ0 = h
2e . One sees that vs depends linearly on Φ, where TC depends on Φ

quadratically. Fig.(3) shows this, in terms of Φ
Φ0

. Note that the integer n changes in the plot.
From Φ

Φ0
between 0 and 1

2 , one has n = 0, from Φ
Φ0

between 1
2 and 3

2 one has n = 1 and
so on. This occurs since it becomes more energetically favourable to increase the winding
instead of increasing the supercurrent in the cylinder. This in turn will flip the direction
of the supercurrent, see Eq.(2.13). Recall that the supercurrent is generated to counter the
applied magnetic field.
Notice further that it is the negative change in critical temperature, so that in the valleys
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where Φ
Φ0

is equal to an integer one has the highest TC possible, as the change is 0. This can
also be seen directly from Eq.(2.10). Oppositely, Φ

Φ0
equal to half odd-integers corresponds

to the lowest TC possible, as the velocity is at its peak. Thus a lot of energy is spent on the
supercurrent, meaning that lower temperatures would be able to destroy superconductivity.
These results agree with the finding of Little and Parks, [10] Fig.(1), as well as Abrikosov
[9], Fig.(112). It is also presented in Tinkham [12], Fig.(4.5), although with a sign difference
on vs.

1 2 3 4

- 0.6

- 0.4

- 0.2

0.0

0.2

0.4

0.6

Φ
Φ0

2mr
h
vs

−T−Tc

Tc

4αmR2

h2

n = 0 n = 1 n = 2 n = 3 n = 4

Figure 3: Supercurrent velocity and change in critical temperature as a func-
tion of Φ

Φ0
. The vertical lines represent change in the integer winding number,

n, which is 0 for Φ
Φ0

between 0 and 1
2 , 1 for Φ

Φ0
between 1

2 and 3
2 , and so on.

When Φ
Φ0

assumes integer values there is no reduction in TC and no current
running in the cylinder, while for Φ

Φ0
equal to half integers there is maximum

current and the corresponding maximum reduction of TC .

This is the essence of the LP effect; a slight suppression of the critical temperature as
a function of the magnetic field. The reasoning set forth by Little and Parks [10] for the
existence of this effect is as follows. Exactly at the transition temperature, the free energy
of normal- and superconducting electrons is exactly the same, as both states are equally
energetically favourable. The free energy of the superconducting electrons depends on the
magnetic flux, while that of the normal electrons does not. The flux induces a current that
counters and cancels the field in the SC, which in turn means the kinetic energy of the elec-
trons can be increased with the magnetic field. Thus, if the energy of the superconducting
electrons depend on the magnetic flux, then so must the transition temperature.

Another interesting point to discuss concerns the thickness of the cylinder, d. Abrikosov
[9] notes that this thickness in the original LP experiment was so small that no quantization
of magnetic flux occurred. Recall that the argument for the quantization demands the phase
to be equal to an integer times 2π upon making a complete closed loop around the cylinder,
as explained in Sec.(1.1). What I failed to note, however, was that this path must be made
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deep in the superconductor, so that no screening currents can interfere. These screening
currents lie exactly within λ, the magnetic field penetration depth, from the surface, so in
the LP experiment where the thickness was actually smaller than λ, this can not be satisfied!
The result is that the flux may assume quanta different from the value Φ0.
Thus, for a superconducting cylinder in an axial magnetic field, an increase in the magnetic
field can increase the winding n through the cylinder. The case of n = −1 is studied in
Sec.(3.2.3).

2.2 destructive regime of little-parks effect

Before concluding this topic, a final note is discussed. Inspired by the "islands" of supercon-
ductivity seen in the article S. Vaitiekenas et al.[3], I look closer into the so-called destructive
regime of LP effect. Their Fig.(1D) is presented in Fig.(4) for easy reference to this neat
example.
The phenomenon is well-studied and the references presented below are only some of many.
A clear and concise explanation is found in the article [13] by Sternfeld et al., describing a
system of a superconducting shell of diameter D which is smaller than the zero-temperature
coherence length ξ(0). At odd half-quanta Φ0 values for the flux, superconductivity will be
completely destroyed. As presented in Fig.(3), it is at these points the reduction of TC is
at its largest, and the "islands" emerge simply because the critical temperature is reduced
to 0. Thus even at T = 0 the kinetic energy of the current exceeds the condensation energy.
Both [13] and for example Schwiete & Oreg [14] report the reduction in TC to depend on
the ratio D

ξ(0) , where for values D
ξ(0) ≤ 1.2 the critical temperature will be reduced to 0 for

flux close to half-integer flux quantum.
This is exactly as seen in Fig.(4). The temperature is very close to 0, and for this very thin
metal one indeed sees these destructive regimes, in which superconductivity is lost. The
mean diameter of the wire used in [3] was presented as D ≈ 160 nm, whereas the coherence
length is found on page 8 as ξS = 180 nm, and thus D

ξ(0) < 1.2 is satisfied. Superconductivity
is regained and lost as the magnetic field increases, meaning one can actually observe a flux-
tuned quantum phase transition [13][14] (phase transition happening at zero temperature).
This holds of course only until the critical field is reached, beyond which superconductivity
remains impossible, which is also the explanation for the decreasing "height" of the islands
in Fig.(4).
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Figure 4: This picture is taken directly from [3], Fig.(1D). Temperature evo-
lution of the resistance as a function of the magnetic field B. The destructive
regime of the LP effect refers to the reduction of TC to 0 at Φ around odd
half-integer Φ0. The system can enter, exit, and re-enter the superconducting
state at T = 0 depending on the magnetic field, and thus the phenomenon is
a quantum phase transition.



3
BOUND EXCITATIONS IN A VORTEX

3.1 the cdgm states

Now for the main topic of this thesis, the states known as Caroli-de Gennes-Matricon
(CdGM) states. Proposed first in the article [15] by C. Caroli, P. G. De Gennes and J.
Matricon in 1964, these states are described as low energy excitations that exist near an
Abrikosov vortex line in a pure type-II superconductor. As mentioned earlier, the sub-gap
features seen in [3] could turn out to be exactly these CdGM states. Furthermore, these
states are believed to have been found experimentally in the work of M. Chen et al. [4].
Therefore I believe that a closer look into the nature of CdGM states could be more than
worthwhile.

This section will deal with the reproduction of the results of [15], i.e. finding the eigen-
values of these low-energy excited vortex states analytically. Afterwards, a method in Math-
ematica is designed in order to find these states numerically and compare these with the
theory. In this case, one imagines a solid superconducting cylinder with a magnetic field
passing through along the length of the magnetic field line. A disk region will be defined
and the CdGM states are found within, and thus these states are energy states of a super-
conducting cylinder, as possibly seen in [3].
Furthermore, in Sec.(4), the magnetic field effects are included in the system, following the
work of [16] and the system is solved analytically, followed again by a numerical procedure.
The sketch of a vortex in which the CdGM states may live is shown in Fig.(5), in Cartesian
coordinates. The gap profile is shown as starting from 0 in the center (thus a normal region),
and growing to its value in the superconductor over a distance equal to the coherence length
of the superconductor. One may assume the gap increases linearly for x, y close to zero.
The supercurrent induced by the magnetic field encircles the vortex line and screens the
magnetic field in the center from the rest of the superconductor.

Determine the energy of the vortex states is done using the Bogoliubov-de-Gennes (BdG)
equation, presented for example in [11], chapter 5. The BdG equation is a two-component
Schrödinger equation that describes electron- and hole-like excitations in a superconducting
system. These excitations are called Bogoliubov quasiparticles; superpositions of both elec-
trons and holes, [6] page 36.

11
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∆

0 ξ

y

x

vs

Figure 5: The spatial dependence of the gap in the vortex. The picture is
taken from [6], Fig.(4.11a). The radius of the vortex is labelled ξ, which was
justified in the Sec.(1.1). The gap is assumed to increase linearly close to the
center. The supercurrent vs is generated to screen the magnetic field from
the rest of the superconductor.

The relevant energies are the low energy excitations, i.e. states with energy much smaller
than the gap, ε < ∆0. Cylindrical coordinates will be used going forward.
A slight rewriting of [15] Eq.(1) yields the starting point with the BdG equation:

− }2

2m

(
∇− ie

} A
)2

u(r, θ, z)−EFu(r, θ, z) +W (r)v(r, θ, z) = ε u(r, θ, z), (3.1a)

}2

2m

(
∇ +

ie

} A
)2

v(r, θ, z) +EF v(r, θ, z) +W ∗(r)u(r, θ, z) = ε v(r, θ, z), (3.1b)

where } is the reduced Planck’s constant, m is the electron mass, e is the electronic charge,
A is the vector potential, EF is the Fermi energy, ε are the eigenenergies and u, v are the
wavefunctions. These are the amplitudes presented earlier, describing the quasiparticles as
superpositions of electrons and holes. Going forward, I write only the radial dependence
explicitly, i.e. u(r), v(r), as this will be the most relevant component. Finally, W (r) =

∆(r)e−inθ is the gap function as presented in [15], with an exception of an added n. This
represents the winding, where for the current case n = 1 is used throughout, as the Abrikosov
vortex has a single flux quantum penetrating the superconductor, corresponding to a winding
number n = 1. This number, n, will become much more relevant in Sec.(3.2.3), where one
can introduce greater (and negative) winding numbers. However, for now n remains 1 and
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is subsequently no longer written out explicitly.
Define first the overall wavefunction:(

u(r)

v(r)

)
= eikF cos(α)zeiµθ

(
e−

1
2 iθf+(r)

e
1
2 iθf−(r)

)
, (3.2)

where α is some arbitrary angle, µ is the azimuthal quantum number and kF is the Fermi
wavevector. The first exponential function represents the infinite longitudinal direction
(parallel to the flux tubes), which is of little importance here, as one simply expects standing
waves. The second exponential function represents the azimuthal direction and finally f±
represent the radial part of the wavefunction. The lecture notes by V. B. Eltsov [6] also
finds these CdGM states analytically (but without much in-depth explanation) and their
expression for Eq.(3.2) can be seen on their page 99. Note that [6] uses a different sign
convention compared to the work of Caroli et al. and therefore also this thesis. However,
where Caroli et al. state that µ in Eq.(3.2) should be an integer, both [6] and another article
[16], which is used later on, introduce µ as a half-integer. The same goes for [4]; even though
they do not write up the wavefunctions, they do write the same equation for the eigenvalues
as Caroli et al., in which µ is presented as a half-integer.
The external non-magnetic potential that is otherwise present in the BdG equations has
been set to 0. In accordance with [15], one can now further neglect all magnetic field effects
and so A is set to 0 as well. In Sec.(4) I reintroduce the magnetic field and investigate its
effect. To begin the search for the energy, one should first write out the Laplace operator
acting on u(r) and v(r) in cylindrical coordinates. Note that the radial dependence of f±W
and u, v will be suppressed for notational convenience going forward. Specifically for ∇2u:

∇2u =
1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2
∂2u

∂θ2 +
∂2u

∂z2

=
∂2u

∂r2 +
1
r

∂u

∂r
+

1
r2
∂2u

∂θ2 +
∂2u

∂z2 . (3.3)

Writing out the above and inserting this into the Eqs.(3.1a) and (3.1b) yields

− }2

2meikF cos(α)zeiµθe−
1
2 iθ

[
∂2f+
∂r2 +

1
r

∂f+
∂r
− 1
r2

(
µ− 1

2

)2
f+ − k2

F cos2(α)f+

]
−EFu+W v = εu, (3.4a)

}2

2meikF cos(α)zeiµθe
1
2 iθ

[
∂2f−
∂r2 +

1
r

∂f−
∂r
− 1
r2

(
µ+

1
2

)2
f− − k2

F cos2(α)f−

]
+EF v+W ∗ u = εv. (3.4b)

µ is discussed in [15], presented as 0 < µ(kF )
−1 � ξ, and this is the range in which I will

solve the Eqs.(3.4a) and (3.4b).



3.1 the cdgm states 14

Dividing out the exponential functions in front of the square brackets in both equations will
result in a phase appearing on both the W terms:

− }2

2m

[
∂2f+
∂r2 +

1
r

∂f+
∂r
− 1
r2

(
µ− 1

2

)2
f+ − k2

F cos2(α)f+

]
−EF f+ +W eiθf− = εf+, (3.5a)

}2

2m

[
∂2f−
∂r2 +

1
r

∂f−
∂r
− 1
r2

(
µ+

1
2

)2
f− − k2

F cos2(α)f−

]
+EF f− +W ∗ e−iθf+ = εf−. (3.5b)

The gap function W is written out as W (r) = ∆(r)e−iθ, meaning the phases will drop out.
Further, using the following relation (having omitted f±)

∓ }2

2m

[
− k2

F cos2(α)

]
∓EF = ∓ }2

2m

[
− k2

F (cos2(α)− 1)
]
= ∓ }2

2m

[
k2
F (sin2(α))

]
, (3.6)

allows one to obtain the following form for the BdG equations:

− }2

2m

[
∂2f+
∂r2 +

1
r

∂f+
∂r
− 1
r2

(
µ− 1

2

)2
f+ + k2

F sin2(α)f+

]
+ ∆(r)f− = εf+, (3.7a)

}2

2m

[
∂2f−
∂r2 +

1
r

∂f−
∂r
− 1
r2

(
µ+

1
2

)2
f− + k2

F sin2(α)f−

]
+ ∆(r)f+ = εf−. (3.7b)

Collecting these into spinor notation (electron-hole space) one obtains

σz
}2

2m

[
−d

2f̂

dr2 −
1
r

df̂

dr
+

(
µ− 1

2σz
)2 f̂

r2 − k
2
F sin2(α)f̂

]
+ σx∆(r)f̂ = εf̂ (3.8)

Thus, an expression for the Bogoliubov-de Gennes equations for the system is achieved,
which one can solve for the energy ε.

In practise one can obtain solutions for the radial part of the wavefunction, f̂ =

(
f+

f−

)
, in

the high-r and low-r limits, and then compare them at some in-between "critical" rc, from
which one can extract an expression for ε. This rc is chosen so that for r < rc the gap
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strength is assumed neglectable, while still satisfying rc < ξ.
First the case r < rc is examined, for which one can set ∆ = 0 in Eq.(3.8):

σz
}2

2m

[
−d

2f̂

dr2 −
1
r

df̂

dr
+

(
µ− 1

2σz
)2 f̂

r2 − k
2
F sin2(α)f̂

]
= εf̂ . (3.9)

Rewriting this to Bessel’s differential equation by first multiplying −r2 on both sides and
collecting everything on the left hand side yields:

σz
}2

2m

[
r2 d

2f̂

dr2 + r
df̂

dr
+

((
k2
F sin2(α) + εσz

2m
}2

)
r2 −

(
µ− 1

2σz
)2
)
f̂

]
= 0. (3.10)

Note the relation σzσz = 1 has been employed. The definition of Bessel’s differential equation
can be found in the book by K. Riley & M. Hobson, Eq.(9.70) [17].
Rescale now Eq.(3.10) by introducing the notation s =

(
k2
F sin2(α) + εσz

2m
}2
)1/2

r so that

df̂

dr
=
df̂

ds

ds

dr
, ds

dr
=

(
k2
F sin2(α) + εσz

2m
}2

)1/2
, (3.11)

allowing one to write:

σz
}2

2m

[
s2 d

2f̂

ds2 + s
df̂

ds
+

(
s2 −

(
µ− 1

2σz
)2
)
f̂

]
= 0. (3.12)

The expression in the square brackets is now on the form of Bessel’ differential equation for
which the solutions f̂ are Bessel functions. Thus one can write

f± ∝ Jµ∓ 1
2
[s] . (3.13)

Note here that the order of the Bessel function indicates that µ most likely is a half-integer,
not an integer as [15] states.
One can further rewrite the expression s as follows:

s = kF sin(α)
√

1 + εσz
2m

}2k2
F sin2(α)

r. (3.14)

Using EF =
k2
F
}2

2m and the fact that the eigenvalues are smaller than the Fermi energy,
ε < EF (since the states in question have energy smaller than the gap), one can make the
approximation

s ≈ kF sin(α)
(

1 + 1
2εσz

2m
}2k2

F sin2(α)

)
r =

(
kF sin(α) + σz

ε ·m
}2kF sin(α)

)
r. (3.15)
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Introduce the notation q = ε
}vF sin(α) , where vF = }kF

m , and write

s ≈ (kF sin(α) + σzq) r. (3.16)

The solutions to Eq.(3.9) become

f± = A±Jµ∓ 1
2
[(kF sin(α)± q) r] , (3.17)

in accordance with Eq.(4) of Caroli et al [15]. Here A± are arbitrary coefficients.
Now, for the case r > rc one cannot neglect the pair potential ∆ in Eq.(3.8), and so one
seeks solutions of the very general form:

f̂ = ĝ(r)Hn [kF sin(α)r] + c.c, (3.18)

where c.c represents the complex conjugate and Hn represents a Hankel function of the first
kind and of the order n =

√
µ2 + 1

4 . Note that the Hankel function of the first kind is given
by Hn(x) = Jn(x) + iYn(x), where Yn represents Bessel functions of the second kind.

The functions ĝ(r) =
(
g+(r)

g−(r)

)
are slowly varying envelope functions and vary at distances

of the order of ξ, as explained in [6], page 100. One can analyze this solution further by
looking into the form of ĝ(r).
One may obtain an equation for ĝ(r) by inserting the above solutions into Eq.(3.8). The
variable dependencies on both ĝ(r) and Hn [kF sin(α)r] in the calculations to follow are
suppressed for notational convenience.

σz
}2

2m

(
−
[
2dĝ
dr

dHn

dr
+ ĝ

d2Hn

dr2 +Hn
d2ĝ

dr2 + 2dĝ
∗

dr

dH∗n
dr

+ ĝ∗
d2H∗n
dr2 +H∗n

d2ĝ∗

dr2

]
− 1
r

[
Hn

dĝ

dr
+ ĝ

dHn

dr
+H∗n

dĝ∗

dr
+ ĝ∗

dH∗n
dr

]
+

[
−(kF sin(α))2 +

1
r2 (µ−

1
2σz)

2
] [
ĝHn + ĝ∗H∗n

])
+ σx∆(r)

[
ĝHn + ĝ∗H∗n

]
= ε

[
ĝHn + ĝ∗H∗n

]
. (3.19)

The complex conjugate of the Hankel function of the first kind is called a Hankel function
of the second kind; H∗n(x) = H

(2)
n (x) = Jn(x)− iYn(x).

Rewriting the term (µ− 1
2σz)

2 yields

(µ− 1
2σz)

2 = µ2 +
1
4 − σzµ. (3.20)
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Move now the σz part of Eq.(3.20) to the right hand side (RHS) of Eq.(3.19) and look only
at the first term of f̂ , meaning one disregards ĝ∗H∗n, allowed because the two terms are
separable. Thus one may write

σz
}2

2m

(
−
[
2dĝ
dr

dHn

dr
+ ĝ

d2Hn

dr2 +Hn
d2ĝ

dr2

]
− 1
r

[
Hn

dĝ

dr
+ ĝ

dHn

dr

]
+

[
−(kF sin(α))2 +

1
r2

(
µ2 +

1
4

)]
ĝHn

)
+ σx∆(r)ĝHn =

(
ε+ σz

}2σzµ

2mr2

)
ĝHn. (3.21)

By reformulating above equation one can show that certain terms make up another Bessel
differential equation:

σz
}2

2m · ĝ
(
−d

2Hn

dr2 −
1
r

dHn

dr
+

[
−(kF sin(α))2 +

1
r2

(
µ2 +

1
4

)]
Hn

)
+ σz

}2

2m

(
−2dĝ

dr

dHn

dr
− 1
r
Hn

dĝ

dr
−Hn

d2ĝ

dr2

)
+ σx∆(r)ĝHn =

(
ε+

}2µ

2mr2

)
ĝHn. (3.22)

Once again σzσz = 1 was used on the RHS. The top line of Eq.(3.22) can be rescaled to be
on the form of Bessel’ differential equation, as in Eq.(3.12), to which the Hankel functions
are solutions. This also determines the order of the Hankel function as n =

√
µ2 + 1

4 . Thus
one can now set the top line of Eq.(3.22) equal to 0, again because Hankel functions are
solution to the differential equation, resulting in the equation

σz
}2

2m

(
−2dĝ

dr

dHn

dr
− 1
r
Hn

dĝ

dr
−Hn

d2ĝ

dr2

)
+ σx∆(r)ĝHn =

(
ε+

}2µ

2mr2

)
ĝHn. (3.23)

One can evaluate the derivative of the Hankel functions using dHn(k·x)
dx = i kHn(k ·x), where

k is a constant and i is of course the imaginary unit. Furthermore, for the current case of
r > rc, the term 1

rHn
dĝ
dr is small and can be neglected:

σz
}2

2m

(
−2dĝ

dr
(ikF sin(α))Hn −Hn

d2ĝ

dr2

)
+ σx∆(r)ĝHn =

(
ε+

}2µ

2mr2

)
ĝHn. (3.24)

Dividing through by Hn yields the following differential equation for ĝ (where the radial
dependence is restored):

−σz
}2

2m
d2ĝ(r)

dr2 − iσz}vF sin(α)dĝ(r)
dr

+ σx∆(r)ĝ(r) =
(
ε+

}2µ

2mr2

)
ĝ(r), (3.25)

where vF = kF }
m was used.

Regarding the second order derivative on ĝ(r), one can reasonably disregard this, as g(r) is
a slowly varying function, allowing for the neglecting of higher order terms. In Appendix
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(A.4) I show and compare the order of the different terms in Eq.(3.23).
Eq.(3.25) will now allow one to find an expression for ĝ(r). Proceeding now with the ansatz
that ĝ(r) can be written as

ĝ(r) =

(
g+(r)

g−(r)

)
= c

(
e
i
2ψ(r)

−ie−
i
2ψ(r)

)
e−K(r)ei

π
4 , (3.26)

leaves one to find expressions for the introduced ψ(r) and K(r). Note that the ansatz here
differs from that of [15], Eq.(7) by the extra term ei

π
4 . The usefulness of this term will

become evident later on.
The c in Eq.(3.26) is a constant and is neglected subsequently, as it can be divided out
in all calculations. The same holds for the extra phase term ei

π
4 . Recall that one seeks a

description for Eq.(3.18) so that Eq.(3.17) and Eq.(3.18) can be compared at the critical
radius rc, which in turn yields an expression for the energy, ε.
One can now insert Eq.(3.26) into Eq.(3.25). I show the derivation for the upper part of
Eq.(3.25), that is, for g+. Neglecting the second order derivative on g+ as explained earlier,
one can get the following differential equation for g+:

− i}vF sin(α) d
dr

(
e
i
2ψ(r)e−K(r)

)
+ ∆(r)

(
−ie

−i
2 ψ(r)e−K(r)

)
=

(
ε+

}2µ

2mr2

)
e
i
2ψ(r)e−K(r). (3.27)

As ei
π
4 is r-independent, it has been divided out from all terms.

Perform the derivatives, divide by e−K(r) and introduce the shorthand notation a = }vF sin(α)
to get:

−ia
(
i

2
dψ(r)

dr
− dK(r)

dr

)
e
i
2ψ(r) − i∆(r)e

−i
2 ψ(r) =

(
ε+

}2µ

2mr2

)
e
i
2ψ(r). (3.28)

Multiplying by e
−i
2 ψ(r) yields

a

2
dψ(r)

dr
+ ia

dK(r)

dr
=

(
ε+

}2µ

2mr2

)
+ i∆(r)e−iψ(r). (3.29)

The exponential function on the RHS is written out in terms of sine and cosine and following
the same procedure for g− one obtains the equations

a

2
dψ(r)

dr
+ ia

dK(r)

dr
=

(
ε+

}2µ

2mr2

)
+ i∆(r) [cos(ψ(r))− i sin(ψ(r))] (3.30a)

&
a

2
dψ(r)

dr
− iadK(r)

dr
=

(
ε+

}2µ

2mr2

)
− i∆(r) [cos(ψ(r)) + i sin(ψ(r))] . (3.30b)
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Subtracting the second from the first yields

2iadK(r)

dr
= 2i∆(r) cos(ψ(r)), (3.31)

while adding the two equations yields

a
dψ(r)

dr
= 2

(
ε+

}2µ

2mr2

)
+ 2∆(r) sin(ψ(r)). (3.32)

Isolate the derivatives and one gets the wanted expressions:

dK(r)

dr
= (a)−1∆(r) cos(ψ(r)) (3.33)

&
dψ(r)

dr
= 2(a)−1

[(
ε+

}2µ

2mr2

)
+ ∆(r) sin(ψ(r))

]
. (3.34)

One may now guess expressions for ψ(r) and K(r) satisfying Eqs.(3.33) and (3.34), allowing
one to formulate ĝ completely. Using now that µ(kF )−1 � ξ, from which one can assume
ψ(r) is small, which I will show later, one may write

K(r) = (a)−1
∫ r

0
∆(r′)dr′, (3.35)

ψ(r) = −
∫ ∞
r

exp{2K(r)− 2K(r′)}
(

2q+ µ

kF sin(α)r′2

)
dr′, (3.36)

where again a = }vF sin(α) and q = ε
a was introduced. Shown in the Appendix (A.1) is

that Eqs.(3.35) and (3.36) indeed satisfy Eqs.(3.33) and (3.34) for small ψ(r).
Also shown, in Appendix (A.2), is that ĝ given in Eq.(3.26), using the expressions (3.35)
and (3.36), is a solution to the differential equation (3.25), given that one can neglect the
second order derivative. This should be the case trivially, as 3.33 and 3.34 were determined
from the equation for ĝ(r), so if Eqs.(3.35) and (3.36) satisfy Eqs.(3.33) and (3.34), then
ĝ(r) with these will be satisfied. Thus it is merely a sanity check to ensure nothing went
wrong under way.
Now, having described ĝ(r), one has obtained an expression for Eq.(3.18), representing the
radial part of our wavefunction in the case r > rc. Finally one can compare the two radial
solutions Eqs.(3.17) and (3.18) in the limit where they "meet", rc!
Evaluating Eq.(3.36) in r = rc by rewriting the integral using the notation Γ(r′) = exp{2K(rc)−
2K(r′)}

(
2q+ µ

kF sin(α)r′2
)
, one finds:

−
∫ ∞
rc

Γ(r′) dr′ = −
∫ ∞

0
Γ(r′) dr′ +

∫ rc

0
Γ(r′) dr′, (3.37)
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where subsequently the integration variable r′ will be renamed back to r. Performing the
last integral on the RHS yields∫ rc

0
exp{2K(rc)− 2K(r)}

(
2q+ µ

kF sin(α)r2

)
dr ≈

∫ rc

0

(
2q+ µ

kF sin(α)r2

)
dr, (3.38)

where it is assumed that eK(rc)−K(r) ≈ 1. This holds as ∆ is neglected for r < rc, resulting
in the integral

∫ rc
0 ∆(r)dr in K(rc) becoming zero, and similarly for K(r). The resulting

integral is evaluated as:∫ rc

0

(
2q+ µ

kF sin(α)r2

)
dr = 2qrc −

[
µ

kF sin(α)r

]rc
0

. (3.39)

The r = 0 term of Eq.(3.39) will be shown to cancel with another term later, so the division
by zero will not ruin the day.
Directing ones attention to the first integral on the RHS of Eq.(3.37), while once again
neglecting eK(rc), one finds:∫ ∞

0
e−2K(r)

(
2q+ µ

kF sin(α)r2

)
dr. (3.40)

Look first at the second term, which one can rewrite using partial integration. Specifically,∫∞
0 jh′ dr =

∫∞
0 (jh)′ dr −

∫∞
0 j′h dr, with the notation j = exp{−2K(r)} and h′ =

µ
kF sin(α)r2 , so that h = −µ

kF sin(α)r . Thus∫ ∞
0

e−2K(r) µ

kF sin(α)r2 dr

=

∫ ∞
0

(
e−2K(r) −µ

kF sin(α)r

)′
dr−

∫ ∞
0

(
−2K ′(r)

)
e−2K(r) −µ

kF sin(α)r dr

=

[
e−2K(r) −µ

kF sin(α)r

]∞
0
−
∫ ∞

0
2
(

∆(r)
}vF sin(α)

)
e−2K(r) µ

kF sin(α)r dr. (3.41)

In the final equality the definition for the derivative of K(r) in Eq.(3.33) with cos(ψ(r)) ≈ 1
was used. The first term in the final equality becomes 0 for the ∞ limit, as both parts tend
to zero, while the 0 limit becomes + µ

kF sin(α)r
∣∣
r=0, which exactly cancels the unwanted term

from Eq.(3.39)! Removing this term, the final equality of Eq.(3.41) becomes∫ ∞
0

e−2K(r) µ

kF sin(α)r2 dr = −
∫ ∞

0
2e−2K(r) µ∆(r)

kF vF} sin2(α)r
dr. (3.42)

Including the first term of Eq.(3.40) and the surviving terms of Eq.(3.39), one finally obtains
the following expression for ψ(r = rc):
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ψ(rc) = 2qrc −
µ

kF sin(α)rc
− 2

∫ ∞
0

e−2K(r)

(
q− µ∆(r)

kF vF} sin2(α)r

)
dr. (3.43)

This is in agreement with the result of [15] Eq.(8), with the exception of a missing 1
r in

their final term (this is later restored in the article).
Finally the solutions for the radial parts of the wavefunction can be matched. Recall that
Eq.(3.17) was the solution for r < rc while Eq.(3.18) held for r > rc. Matching these
at r = rc will yield another expression for ψ(rc), which I stress is not a wavefunction, but
rather a value introduced in Eq.(3.26) and determined in Eq.(3.36). One may obtain another
expression for ψ(rc), shown in the calculations below, which can be compared with Eq.(3.43)
in order to obtain an expression for ε.
Writing Eq.(3.17) equal to Eq.(3.18) at r = rc yields:

A±Jµ∓ 1
2
[kF sin(α)rc ± qrc] = ĝ(rc)Hn [kF sin(α)rc] + c.c, (3.44)

where again n =
√
µ2 + 1

4 and c.c is the complex conjugate. First and foremost one should
introduce the asymptotic forms of the Bessel function of the first kind and the Hankel
functions, viable for the argument z being much larger than the order σ. These are used
in both [15] and in [6] page 101. The following form is adopted, using z to represent the
argument and σ the order:

Jσ [z] =

√
2
π
z−

1
2 cos

[
z +

σ2

2z −
π

2 σ−
π

4

]
, (3.45a)

Hσ [z] =

√
2
π
z−

1
2 exp

[
i

(
z +

σ2

2z −
π

2 σ−
π

4

)]
, (3.45b)

H
(2)
σ [z] =

√
2
π
z−

1
2 exp

[
−i
(
z +

σ2

2z −
π

2 σ−
π

4

)]
. (3.45c)

Shown below are the calculations for g+(rc) while the g−(rc) part can be found in the
Appendix (A.3). Using the asymptotic forms to rewrite Eq.(3.44), while using the shorthand
notation γ = kF sin(α)rc for notational convenience, one finds:

A+

√
2
π

(γ + qrc)
− 1

2 cos
[
γ + qrc +

(
µ− 1

2
)2

2 (γ + qrc)
− π

2

(
µ− 1

2

)
− π

4

]

=

√
2
π
γ−

1
2

(
g+(rc) exp

[
i

(
γ +

n2

2γ −
π

2n−
π

4

)]

+ g∗+(rc) exp
[
−i
(
γ +

n2

2γ −
π

2n−
π

4

)])
. (3.46)
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Recall the definition of ĝ from Eq.(3.26), which one can rewrite as
(
g+(rc)

g−(rc)

)
=

(
e
i
2ψ(rc)+i

π
4

−ie−
i
2ψ(rc)+i

π
4

)
,

where the constant c has been neglected and once more the assumption eK(rc) ≈ 1 was made.
Now one will appreciate the extra term ei

π
4 . Insert g+(rc) in Eq.(3.46), collect the exponen-

tial functions and thus reduce the RHS as follows:

RHS =

√
2
π
γ−

1
2

(
exp

[
i

(
γ +

n2

2γ −
π

2n−
π

4 +
ψ(rc)

2 +
π

4

)]

+ exp
[
−i
(
γ +

n2

2γ −
π

2n−
π

4 +
ψ(rc)

2 +
π

4

)])

= 2
√

2
π
γ−

1
2 cos

[
γ +

n2

2γ −
π

2n−�
�π

4 +
ψ(rc)

2 +
�
�π

4

]
. (3.47)

Eq.(3.46) becomes
(
having cancelled the

√
2
π and the other constants by choosing A+

appropriately
)
:

(γ + qrc)
− 1

2 cos
[
γ + qrc +

(
µ− 1

2
)2

2 (γ + qrc)
− π

2

(
µ− 1

2

)
− π

4

]

= γ−
1
2 cos

(
γ +

n2

2γ −
π

2n+
ψ(rc)

2

)
. (3.48)

Use now γ � qrc, which follows from q
kF sin(α) = ε

}kF vF sin2(α)
= ε

2EF sin2(α)
� 1, since the

eigenenergies should be much lower than the Fermi energy, ε � EF . Therefore q
kF sin(α) �

1 ⇔ q � kF sin(α). One can then approximate (γ + qrc)
− 1

2 ≈ γ−
1
2 and neglect qrc in the

denominator on the LHS:

γ−
1
2 cos

[
γ + qrc +

(
µ− 1

2
)2

2γ − π

2

(
µ− 1

2

)
− π

4

]
= γ−

1
2 cos

[
γ +

n2

2γ −
π

2n+
ψ(rc)

2

]
.

(3.49)

Finally one can match the arguments, write out n =
√
µ2 + 1

4 and reduce

γ + qrc +

(
µ− 1

2
)2

2γ − π

2

(
µ− 1

2

)
− π

4 = γ +
µ2 + 1

4
2γ − π

2

√
µ2 +

1
4 +

ψ(rc)

2
m

qrc −
µ

2γ −
π

2µ = −π2

√
µ2 +

1
4 +

ψ(rc)

2 . (3.50)

Now one can, in the µ� 1 limit, set
√
µ2 + 1

4 ≈ µ and so obtain the following expression
for ψ(rc):
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ψ(rc) = 2qrc −
µ

kF sin(α)rc
. (3.51)

The newly found ψ(rc) is now matched with the previously found expression in Eq.(3.43).
It is seen immediately that the rc dependent terms cancel and one is left with

0 = 2
∫ ∞

0
e−2K(r)

(
q− µ∆(r)

kF vF} sin2(α)r

)
dr, (3.52)

once again recalling the definition q = ε
}vF sin(α) . Thus, the eigenenergy ε can finally be

found as follows

∫ ∞
0

e−2K(r) ε dr =�����}vF sin(α)
∫ ∞

0
e−2K(r) µ∆(r)

kF��vF} sin�2(α)r
dr

m

ε =
µ

kF sin(α) ·
∫∞

0
∆(r)
r e−2K(r)dr∫∞

0 e−2K(r)dr
. (3.53)

Finally the eigenenergies are found! These are indeed in agreement with the result of Caroli
et al. as seen in their Eq.(10) [15]. But the expression Eq.(3.53) can be analysed further by
looking at the fraction with the integrals.
The value of this fraction is not immediately apparent, so further investigation is in order.
One can assume that ∆ is linear for small r, as argued in Fig.(5), leading to the entire fraction
becoming 1. For large r the exponential functions will diverge, and thus one would expect
the value of the fraction to lie somewhere between 0 and 1, depending on the constants and
the exact form of ∆(r).
I present a numerical example of a calculation of this fraction using Mathematica; ∆ is
chosen to have the form ∆0 tanh(r) over the range 0 ≤ r < ∞, which represent starting
from the very centre of the vortex core and moving away radially in an infinitely long
superconductor. The function tanh(r) indeed has an approximately linear form for small r,
so one can approximate

exp(−2K(r)) = exp
(
−c1

∫ r

0
∆(r′)dr′

)
≈ exp

(
−c1

∫ r

0
c2r
′dr′
)
= exp

(
−cr2) , (3.54)
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where c1 and c2 are constants and c = c1c2
2 . The constant c2 depends on the slope of the

gap function ∆(r) for r close to zero.
The quantity ∫∞

η
tanh(r)

r e−cr2
dr∫∞

η e−cr2
dr

, (3.55)

can now be evaluated, where the very small number η is introduced in order to avoid the
divergence due to r−1|r=0. The value ∆0 was also pulled out, as the focus is presently only
on the order of the above expression. Let now η → 0 and evaluate the above for different
values of c, which is some positive value. The result is shown in Fig.(6), indeed revealing
the fraction being between 0 and 1.

0 2 4 6 8 10
c0.0

0.2

0.4

0.6

0.8

1.0
Value

Value of the fraction at different c

Figure 6: Eq.(3.55) is plotted with η = 10−10. The fraction is between 0 and
1 and goes to zero for c→ 0. The constant c depends on material properties
through the dependence of vF .

Thus the fraction present in Eq.(3.53) is always between 0 and 1 and therefore does not
seem to be of any great significance. Consequently one can safely get rid of this rather
unsightly expression in Eq.(3.53).
One can then write ∆(r) = r

d∆(r)
dr

∣∣∣
r=0

, i.e. as approximately linear near r = 0 with the
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slope defined as d∆(r)
dr

∣∣∣
r=0

. The r
r in the upper integral of Eq.(3.53) cancel and one can pull

the "slope" outside the integral, thus also cancelling the integrals at the same time:

ε =
µ

kF sin(α)
d∆(r)
dr

∣∣∣∣∣
r=0

. (3.56)

Since the radius of the vortex is approximately equal to the coherence length ξ and the value
of ∆(r) in r = ∞ is labelled ∆0, one may rewrite the slope as approximately equal to ∆0

ξ .
Furthermore, assuming that α = π

2 allows one to focus on just the order of the eigenvalues.

ε =
µ

kF sin(α)
d∆(r)
dr

∣∣∣∣∣
r=0

≈ µ

kF

∆0
ξ

. (3.57)

Lastly, using ξ ≈ }vF
∆0

and }kF vF = 2EF , one obtains the final result

ε ≈ µ∆2
0

2EF
. (3.58)

This is exactly as found in [15], and thus an approximate energy has been determined
for the CdGM states in the vortex core. Recall that the vortex system represents a super-
conducting cylinder, where the direction along the length of the cylinder is mostly ignored.
In Sec.(3.2.2) I attempt to find these states numerically, comparing with the experimentally
found values in the article [4]. But first I must validate the numerical method. This is done
by solving a very general problem analytically and testing the numerical method on this
problem.

3.2 numerical approach

3.2.1 Laplace on a Unit Disk

The well known problem of solving the Laplace operator on a unit disk is presented in this
section. Just as before, I seek to describe the system and find the eigenvalues analytically.
The main goal of this section is to show that the constructed numerical method in Mathe-
matica can reproduce the eigenvalues obtained analytically, so that one can place confidence
in the method. Thereafter I will apply the method to the original problem of low energy
excited states in the vortex.
The Laplace eigenvalue equation on a 2-dimensional disk of radius unity is most easily han-
dled in plane polar coordinates, (r, θ), and thus one can begin by writing

∇2u(r, θ) = −λ u(r, θ), (3.59)
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where u is the wavefunction and λ is the eigenvalue. The following is inspired by the method
of [17], Sec.(11.3.1), though the procedure proceeds slightly differently.
One can find the eigenvalues using the boundary conditions of the problem; u(1, θ) = 0 and
u(r, θ) = u(r, θ + 2π). These of course represent respectively the wavefunction being zero
everywhere on the boundary and being phase periodic in 2π.
Using separation of variables, the solution may be written as

u(r, θ) = R(r)Θ(θ), (3.60)

so that u(r, θ) is a product of a function depending only on the radius, r, and another
depending only on the angle, θ. The Laplacian is now written in plane polar coordinates, as
found in [17] Eq.(11.23), and using this form for u(r, θ), one finds

Θ(θ)
∂2R(r)

∂r2 +
Θ(θ)

r

∂R(r)

∂r
+
R(r)

r2
∂2Θ(θ)

∂θ2 = −λR(r)Θ(θ)

m
1

R(r)

∂2R(r)

∂r2 +
1

rR(r)

∂R(r)

∂r
+

1
r2Θ(θ)

∂2Θ(θ)

∂θ2 = −λ

m
r2

R(r)

∂2R(r)

∂r2 +
r

R(r)

∂R(r)

∂r
+ λr2 = − 1

Θ(θ)

∂2Θ(θ)

∂θ2 . (3.61)

Having separated the variables, one may conclude that both sides of Eq.(3.61) must equal a
constant, that is

r2

R(r)

∂2R(r)

∂r2 +
r

R(r)

∂R(r)

∂r
+ λr2 = n2 (3.62)

&

− 1
Θ(θ)

∂2Θ(θ)

∂θ2 = n2. (3.63)

The second order differential equation dealing with the angular part has the well known
solution

A cos(nθ) +B sin(nθ), (3.64)

where A and B are constants. Due to the condition of periodicity, the equation above
restricts the values of n to integers only. The remaining equation can be recast on the form

r2 ∂
2R(r)

∂r2 + r
∂R(r)

∂r
+ (λr2 − n2)R(r) = 0. (3.65)
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One should now get rid of the λ in the last term, so one must rescale the variable with
√
λ

and thus introduce a new function P (
√
λr), so that:

R(r) = P (
√
λr), R′(r) =

√
λP ′(

√
λr), R′′(r) = λP ′′(

√
λr). (3.66)

Substituting this into Eq.(3.65) yields

λr2P ′′(
√
λr) +

√
λrP ′(

√
λr) + (λr2 − n2)P (

√
λr) = 0. (3.67)

Finally, introduce the variable ρ =
√
λ r, so that the equation becomes

ρ2P ′′(ρ) + ρP ′(ρ) + (ρ2 − n2)P (ρ) = 0, (3.68)

which is exactly Bessels equation! Thus the solution will be a linear combination of Bessel
functions of the first kind, Jn(ρ), and the second kind, Yn(ρ):

P (ρ) = C · Jn(ρ) +D · Yn(ρ), (3.69)

where the integer n labels the order of the Bessel functions, and C and D are constants.
Fig.(7) shows the Bessel functions of the first and second kind for the zeroth and first
order. A linear combination of these constitutes the radial solution of the Laplace eigenvalue
equation. This is interesting as Bessel and Hankel function were solutions to the radial part
of the wavefunction in the vortex core system as well, in the limits r < rc and r > rc

respectively. Thus one might expect the wavefunction of the low-lying excited state in the
vortex to have an oscillatory behaviour around 0 in the radial direction, just as seen in the
Fig.(7)!
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Figure 7: Bessel functions of the first and second kind of order 0 and 1. The
blue lines are of the first kind while the orange represent Bessel functions of
the second kind. The full lines show the order n = 0 while dashed lines are
for order 1. The functions oscillate around 0 and are dampened as the radius
increases.

Note that the Bessel functions of the second kind all blow up at ρ = 0, and since this
point is indeed included, one must demand that D = 0 in Eq.(3.69). Thus the solution for
the Laplace eigenvalue equation on a unit disk is

u(r, θ) = [A cos(nθ) +B sin(nθ)]
[
CJn(

√
λr)
]

. (3.70)

One can now find the eigenvalues of the purely radial solution, n = 0, using the boundary
condition u(1, θ) = 0. Setting the constants A = C = 1 reduces Eq.(3.70) to

0 = J0(
√
λ · 1). (3.71)

The eigenvalues λ are then to be found from the roots, which are given as
√
λ, of the Bessel

function of the first kind with order 0. Thus one must find the roots and square these to
obtain the eigenvalues.
In Fig.(8) the zeroth order Bessel function of the first kind is plotted and its roots are
identified. The first few are presented in the figure.
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Figure 8: The roots of the zero order Bessel function of the first kind is shown.
The eigenvalues are given as the square of these roots, as seen in Eq.(3.71)

The eigenvalues of this purely radial solution are then found as

λ = {5.78319, 30.4713, 74.887, 139.04}. (3.72)

Note that the values presented in Eq.(3.72) are calculated using the "BesselJZero" function
in Mathematica, which of course finds the roots of a given Bessel function. Thus one has
something with which one can compare a result from a numerical calculation, which follows
below.
The function NDEigensystem solves, as the name suggests, (coupled) differential equations
numerically, yielding both the eigenvalues and eigenfunctions. For completeness sake I
present now the function as it is written in Mathematica:

{λ,u} =NDEigensystem
[
{−Laplacian [u [x, y] , {x, y}] ,

DirichletCondition [u [x, y] == 0,True]},u [x, y] , {x, y} ∈ Reg,m,

Method→ {"SpatialDiscretization"→ {”FiniteElement”, ”MeshOptions”→

{"MaxCellMeasure"→MCM}}}
]
, (3.73)

where m is the number of solutions found and MCM is a measure for how finely the region
is discretized. The smaller this number, the more precise our solution is. In this case
MCM = 0.001 was used, which I found to be more than sufficient. The Dirichlet condition
is simply the boundary condition and "Reg" is a discretized region, which in this case is a
disk of radius 1.
Note that the function is written using Cartesian coordinates, and so a transformation is
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necessary. For the case of the Laplacian on a unit disk this is trivial, but less so when one
returns to the excited states in the vortex.
Shown in Fig.(9) is a contour plot of the eigenfunctions of the Laplace operator on a unit
disk as found from the NDEigensystem method. The contour shows changes around 0, so a
change in colour represents a change from positive to negative values, or oppositely. Above
each contour plot is displayed the associated eigenvalue for the given eigenfunction. Note
further that there are duplicates of certain energies, but the corresponding solutions are
clearly the same (n is the same for solutions with same energy).
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Figure 9: Contours around 0 for the lowest energy solutions for the problem
of Laplace on a unit (r = 1) disk. The value above each plot is the eigenvalue
associated with the shown eigenfunction. The increase to number of "regions"
seen in a plot corresponds to an increase in n. Plots with a θ dependence are
the n 6= 0 solutions.

First of all, one sees some familiar eigenvalues! These correspond to the plots with n = 0,
as expected. The other eigenvalues in Fig.(9) of course represent n 6= 0 solutions. This
is expected, as these are dependent on the angle θ and so exhibit some circulation of the
eigenfunctions.
Looking only at the purely radial solutions found by NDEigensystem in Fig.(10), one finds
the same eigenvalues as was found analytically!
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Figure 10: Purely radial solutions of the Laplace on a unit disk problem. Thus
n = 0 for these solutions. Above each contour plot is shown the corresponding
eigenvalue, and these match exactly with those found analytically. One sees
an increase in the energy as the solutions increase in oscillations around 0.

The eigenvalues found by the numerical method, as seen in Fig.(10), exactly match those of
the analytical procedure from Eq.(3.72), and so the numerical method is a success, at least
so far.

3.2.2 Numerical Analysis of the CdGM States

Armed with some trust in our numerical method, one may turn to the problem of the CdGM
states again. The NDEigensystem function in Mathematica should now be able to find the
eigenvalues and -functions describing the low-lying excited states near the center of a vortex
in a pure type-II superconductor numerically!
Thus one can now design a system of a single vortex in an infinite superconductor and
attempt to find the energy of the states living in the vortex. Before looking into possible
materials to house the vortex, one must first prepare the numerical method for the task at
hand. This is done by rendering the BdG Hamiltonian onto a dimensionless form.
Start first all the way back to Eq.(3.1a) and Eq.(3.1b), which without the magnetic field can
be written as

− }2

2m∇2u(r)−EFu(r) + ∆(r)e−iθv(r) = εu(r), (3.74a)

}2

2m∇2v(r) +EF v(r) + ∆(r)eiθu(r) = εv(r), (3.74b)
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whereW (r) = ∆(r)e−i·1·θ. The above equations must further be transformed into Cartesian
coordinates and subsequently made dimensionless. Using the standard transformations r =√
x2 + y2 and θ = arctan

( y
x

)
, one finds:

− }2

2m

(
d2u(x, y)
dx2 +

d2u(x, y)
dy2

)
−EFu(x, y) + ∆(x, y)e−i arctan( yx )v(x, y) = εu(x, y),

(3.75a)
}2

2m

(
d2v(x, y)
dx2 +

d2v(x, y)
dy2

)
+EF v(x, y) + ∆(x, y)ei arctan( yx )u(x, y) = εv(x, y).

(3.75b)

Now one can write the above to a dimensionless form by using the substitutions x = α
kF

and

y = β
kF

, so that d2u(x,y)
dx2 = k2

F ·
d2u(α,β)
dα2 and likewise for y. This also means that one should

scale the parameters with respect to kF in the code, which will be addressed later. For now:

−
}2k2

F

2m

(
d2u(α,β)
dα2 +

d2u(α,β)
dβ2

)
−EFu(α,β) + ∆(α,β)e−i arctan

(
β
α

)
v(α,β) = εu(α,β),

(3.76a)
}2k2

F

2m

(
d2v(α,β)
dα2 +

d2v(α,β)
dβ2

)
+EF v(α,β) + ∆(α,β)ei arctan

(
β
α

)
u(α,β) = εv(α,β).

(3.76b)

Dividing through by EF =
}2k2

F
2m will leave every term dimensionless:

−d
2u(α,β)
dα2 − d2u(α,β)

dβ2 − u(α,β) + ∆(α,β)
EF

e−i arctan
(
β
α

)
v(α,β) = ε

EF
u(α,β), (3.77)

d2v(α,β)
dα2 +

d2v(α,β)
dβ2 + v(α,β) + ∆(α,β)

EF
ei arctan

(
β
α

)
u(α,β) = ε

EF
v(α,β). (3.78)

Eqs.(3.77) and (3.78) are now entirely dimensionless and one can finally find the eigenvalues,
ε, using the NDEigensystem method! One only needs values for the energy gap and the
Fermi energy.
When choosing values for ∆0, EF and the radius of the vortex, I found inspiration from the
paper [4], in which these CdGM states are believed to have been found experimentally. The
experiment involved the iron-based superconductor FeTe0.55Se0.45. First of all, the energy
gap function is again chosen to be represented by a hyperbolic tangent multiplied by the
gap size at r →∞, labelled ∆0, as this nicely depicts the change in the gap from the normal
region (the vortex core) to the superconducting region. Thus

∆(r) = ∆0tanh
(√

x2 + y2

3

)
ei arg(x+iy), (3.79)
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where the number 3 determines how quickly ∆(r) reaches ∆0, which should match the radius
of the vortex, ≈ ξ. This was decided looking at Fig(2a) of [4], where an approximate number
for the radius of the vortex is set as 3 nm. One must also define the region on which the
states can exist. This region will be a disk, just as in Sec.(3.2.1), with the radius R. The
vortex of course extends all the way through the superconductor, but this direction does not
play a big role, so it is left out. As the vortex itself is 3 nm in radius, one should choose
some R > 3. Ideally one would want to write R → ∞, so that the entire superconductor
is included. This would prove computationally inefficient. Luckily, this seems not to be
necessary, as ∆(r) changes only until the edge of the vortex (R ≈ ξ) and remains constant
from r > ξ until infinity, meaning the most important features happen in the first 3 nm.
Recall that the parameters used in the code are scaled with respect to kF . For example,
if one have x = α

kF
, then one must know kF to determine α, the size used in the code.

Fortunately, from [4] one finds kF ≈ 0.1Å−1, so that k−1
F ≈ 10Å = 1nm, meaning conversion

is trivial.
Thus one can calculate the eigenenergies for different values of the radius R of the disk itself,
while keeping the vortex radius constant at ξ = 3, and see if the energies converge. This is
shown in Fig.(11), where the negative ε are calculated for R running from 3 nm to 14 nm.
The eigenvalues themselves and how these were obtained will be discussed shortly.
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Figure 11: The first 4 negative eigenvalues are calculated for different radii,
R, of the region (the disk). The radius of the vortex was set constant at 3 nm,
a value obtained from [4] Fig.(2a). The subscripts of ε refer to the order of
the energies, with higher numbers representing higher order excitation.

Notice that the eigenvalues indeed converge as the radius of the entire region is increased,
and I choose R = 10 nm for subsequent calculations. With this, one can finally find the
eigenvalues!
As mentioned before, [4] was used for inspiration for our values of gap strength and Fermi
energy. They present the following ranges of values: ∆0 = [1.1, 2.1]meV and EF =
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[1.3, 4.9]meV. The Fermi energy was found from the relation Eq.(3.58) using the stated
range of ∆0 and the experimentally observed eigenvalues. Using ∆0 = 1.1 meV and EF =

1.3 meV in the numerical method, Fig.(12) presents the 8 eigenvalues closest to 0, with
R = 10 nm
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Figure 12: The energies for radius R = 10 are presented in units of meV .
Also plotted is the gap strength, ∆0 = 1.1 meV. The energies come in pairs
of ±ε. Several bound states are observed in the vortex. The energies seem
not to be equidistant.

These states come in pairs of ±ε1 = ε±1, where a notation of higher numbers in the
subscript to represent higher excitations was adopted. The energies are paired up due to
particle-hole symmetry. Fig.(12) shows several bound states in the vortex, as also presented
in [6], Fig.(4.12-left). Here the states are also shown to increase in energy with the quantum
number µ, which is essentially the angular momentum. Furthermore the states close to the
core are shown to be equidistant, which is something Fig.(12) does not reproduce. However,
the energies do match the behaviour further away from the core, see again Fig.(4.12-left)
of [6]; the spacing becomes smaller until the energies seem to join the continuum. The 10
lowest positive eigenvalues are shown in Fig.(13) and one sees that they indeed approach
∆0!
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Figure 13: The positive eigenenergies of the first 10 CdGM states, calculated
for R = 10 nm. They approach ∆0 for higher excitations, as predicted in [6],
Fig.(4.12-left). The numbers on the x-axis represent the index i, i.e. the first
point corresponds to ε+1, the next to ε+2 and so on. The higher order states
seem to join the continuum.

Take now a closer look into the actual values of these eigenvalues. Specifically, the very
first eigenvalues obtained are

εnum. = ±0.19 meV, (3.80)

which is most easily seen in Fig.(13). The analytical result yields

εan = 0.45meV. (3.81)

To be perfectly clear; the analytical result above is from the article [4], found experimen-
tally. From the values ∆0 = 1.1 meV, ε = 0.45 meV and then using Eq.(3.58) they find
EF = 1.34 meV. Using these values for ∆0 and EF I obtained the numerical result pre-
sented in Eq.(3.80). Thus the numerical method can successfully find the eigenenergies at
least to the correct order.

The NDEigensystem method also finds the eigenfunctions, which to be discussed presently.
Recalling the Eqs.(3.17) and (3.18) one expects the "radial behaviour" to look like Bessel
functions. Having plotted plenty of these in Sec.(3.2.1), one should be able to recognize the
form! Fig.(14) show the eigenfunctions for the lowest positive eigenvalue of the vortex states.
Recall that the wavefunction is a superposition of u and v.
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Figure 14: Contour plots of the eigenfunctions of the lowest positive eigenvalue.
The real part and the imaginary part are plotted for both the electron-like
part and the hole-like part of the eigenfunction. They are seen to behave like
Bessel functions in the radial direction, as expected. They have some angular
momentum as well, from the quantum number µ.

One indeed sees Bessel function like behaviour in the radial direction, in the form of an
oscillatory behaviour around 0. As a sanity check, Fig.(15) shows an example of an actual

wavefunction given by Ψ(x, y) =

(
u(x, y)
v(x, y)

)
, where the probability plotted is found as

|Ψ(x, y)|2, with eigenfunctions corresponding to the lowest positive eigenvalue. Note that
integrating the squared modulus from 0 to infinity equals 1 and thus it is indeed normalized.
The figure shows that this state is localized around the center of the vortex and does not
exhibit any significant azimuthal dependence.

Figure 15: Plot of the wavefunction of the lowest positive energy state. The
wavefunction squared is presented in the plot as |Ψ(x, y)|2. Integration of
|Ψ(x, y)|2 from 0 to infinity reveals that the wavefunction is indeed normal-
ized.

One can now plot contours around 0 for the other energy excitations in the vortex. Look-
ing exclusively at the positive eigenvalues, Fig.(16) shows the real part of their associated
eigenfunctions.
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Figure 16: Eigenfunctions of the energy excitations. Contour plots of the
real part of u and v for the lowest 4 positive eigenvalues. The v+1 and u+1
are also presented in Fig.(14). An increase to the energy is associated with
a higher angular momentum, labelled with the quantum number µ. Note
that Re(v+1) starts at µ = 1 while Re(u+1) has µ = 0. For the negative
eigenvalues (v−1, v−2 and so on) this is reversed, so that Re(v−1) would show
µ = 0 and Re(u−1) would have µ = 1.

The eigenfunctions are seen to increase in energy with the azimuthal quantum number
µ, representing angular momentum. Where the positive eigenvalues results in the hole part
having µ = 1 for the lowest energy and the electron part having u = 0 for the lowest energy,
the opposite holds for the negative eigenvalues.
The supercurrents are shown as well, for some of the first 8 negative eigenvalues in Fig.(17).
These are calculated using

j ∝ Im [Ψ∗∇Ψ] , (3.82)

where one should only use the eigenfunctions related to negative eigenvalues, as these rep-
resent the occupied states and thus the ones contributing to the current. One indeed sees
currents circulating the vortex core. The currents calculated for each state should, when
summed together, converge to a specific direction around the core, either clockwise or anti-
clockwise.
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Figure 17: Supercurrents for the first, third, fifth and seventh eigenfunction
corresponding to a negative energy. These eigenfunctions are the ones con-
tributing to the supercurrent, as they denote occupied states in the vortex.
The summation of the supercurrents should converge when including every
single state, which reflects the actual current seen in the physical system.

Note also that the supercurrents reduce to zero if one removes the phase factor, as expected.
This corresponds to having set n = 0 in W (r), i.e. no winding is present.

As a final note, I discuss the Fermi energy obtained in the experiment [4]. This Fermi
energy is very small, and so one would expect the electron concentration to be small as well.
This is investigated and compared with other often used superconductors, from Fig.(6) of
[18], reprinted in Fig.(18). Here the Fermi temperature and the critical temperature for
several superconductors is shown, and an estimate for the superconductor examined in this
section, FeTe0.55Se0.45, is included in the form of a black vortex.
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Figure 18: Figure taken directly from [18], Fig.(6). Shown above are the
Fermi temperature, critical temperature and carrier density of many super-
conducting compounds. Having seen a rather low Fermi energy for the iron
based superconductor FeTe0.55Se0.45, I investigated the density of electrons
by adding it to the figure. It was found that TF = 15.1K and TC ≈ 7.24K,
placing the superconductor in question near the T = TF line, labelled by a
black vortex.

The Fermi temperature was found as TF = EF
kB

= 0.0013 eV
8.617·10−5 eV ·K−1 = 15.1K and the

critical temperature as TC ≈ ∆0
1.764kB = 0.0011 eV

1.764·8.617·10−5 eV ·K−1 ≈ 7.24K.
Thus the iron-based superconductor used here was placed close to the T = TF line, indeed
revealing a rather low density. As expected, the Fermi temperature is smaller compared to
most of the presented compounds, while the critical temperature is around average, if not a
bit below average.

This concludes the analysis of the CdGM states in a vortex for now. I have found the
states analytically and subsequently numerically in a specific case inspired by the experi-
ment [4], using the iron-based superconductor FeTe0.55Se0.45. The energies found from the
numerical method were comparable with the analytical result Eq.(3.58) and the experimen-
tal result. In Sec.(4) I investigate how the magnetic field, which was neglected throughout
this section, could affect the energy of the vortex states. Later, in Sec.(5), I investigate a
more phenomenological claim about these CdGM states, namely that they in [6] Fig.(4.11)
were described as Andreev states. This claim and the concept of Andreev reflection will be
studied.
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But first, the numerical method is applied a system with a region different from a disk.
Specifically, the model is applied to a hollow hexagonal structure as used in the article [3]
and the energy spectrum of whatever states are present in such a system is found.

3.2.3 Hexagonal Superconductor

The numerical method can now be applied to a cylindrical superconductor in the presence of
a magnetic field pointing along the length of the cylinder. However, the cylindrical structure
is replaced with a hexagonal structure, as experiments such as [3] use hexagonal wires. It is
assumed the two regions are approximately similar.

Ideally I would analyze the hexagonal wire presented in [3], consisting of an indium
arsenide core with an outer aluminium shell that is used to proximitize the InAs. Unfor-
tunately this was not feasible due to computational constraints arising from the material
properties of aluminium. Using the Fermi wavevector for aluminium, kF = 17.5 nm−1, the
dimensionless parameters used in the numerical method would have to be far too large for
the computer to handle. Instead, to showcase the concept, I investigate a hexagonal wire
of the material used in the prior section, FeTe0.55Se0.45. For this wire, the center is not
included. This is due to the fact that the proximity effect of the superconducting aluminium
does not reach the core, and so the system reduces to a hexagonal shell, as seen in Fig.(19).
The inner radius is set to R1 = 10 nm while the outer radius is R2 = 14 nm. The Fermi
energy and the energy gap is kept at the same values as the prior section. However, the gap
profile is set to be constant over the entire region.

R

R1

2

Figure 19: A hexagonal shell, simulating the superconducting wire presented
in [3]. The inner radius is R1 = 10 nm and the outer R2 = 14 nm. The
small system size is a consequence of the limitations of the numerical method
and the computational power available. The energy gap is constant at ∆0
throughout the region.

The 8 lowest positive energies of this system is given in Fig.(20), which shows energies on
the order of 1 meV and with some energies above the gap. Thus not all the energies found
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are sub-gap states. In Fig.(21), the eigenfunctions corresponding to the first 4 positive eigen-
values are shown, and the presence of angular momentum is noted again. Contrary to the
CdGM states, the higher energy states does not correspond to higher angular momentum.
Furthermore, the v part of the wavefunction again exhibit higher angular momentum com-
pared to that of the u part, exactly as was seen for the CdGM states. The opposite is true
for eigenfunctions corresponding to the negative eigenvalues.
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Figure 20: Energies of the 8 lowest positive eigenvalues for the hexagonal shell.
The energies are of the order 1 meV, with some being above the energy gap.
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Figure 21: Eigenfunctions corresponding to the 4 lowest positive eigenvalues.
As was the case for the CdGM states, the v part exhibits a higher angular
momentum µ when compared with the corresponding u part. For the negative
eigenvalues, this is reversed.
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Finally, the supercurrent was determined once again and the first, third, fifth and seventh
eigenfunction corresponding to negative eigenvalues is presented in Fig.(22). The number
n present in the phase of the order parameter now plays an important role, as the winding
of the system can change. The supercurrents behave very much like expected, exhibiting
winding around the hexagonal shell. Once again, these current die out if the phase on the
order parameter is removed, i.e n = 0.
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Figure 22: Supercurrents in the hexagonal shell. The first, third, fifth and
seventh current is presented here. Again it is assumed these will sum to either
a clockwise or anti-clockwise current, if all states were taken into account.

Noticeably, the supercurrent is expected to change direction if the winding is set as
n = −1 instead of the usual n = 1. The resulting plot is shown in the Appendix (A.5), and
the supercurrent is indeed observed to have changed direction, compared to Fig.(22).
The numerical method has now been applied to a hexagonal wire in the presence of a mag-
netic field. The material properties of FeTe0.55Se0.45 was used for easier computation and
a 4 nm thick hexagonal hollow wire was investigated. The energies and eigenfunctions were
shown, along with the supercurrents associated with some of the eigenfunctions correspond-
ing to negative eigenvalues. Returning to the bound vortex states of Caroli et al., the
inclusion of the magnetic field is studied next.



4
MAGNETIC F IELD EFFECTS

4.1 magnetic field effects

As a final examination of the energies of the CdGM states, one may take into consideration
the effects of the magnetic field, which was neglected in [15]. The eigenvalues are determined
analytically, followed by a comparison with the numerical work. This section will be based
on the work of E. B. Hansen [16].
One can include magnetic field effects in the model by introducing the vector potential
A = 1

2B0 (−y,x, 0), where B0 represents the magnetic field strength. This vector potential
corresponds to a magnetic field pointing along the longitudinal direction, i.e. along the length
of the cylinder. Converting this vector potential from Cartesian to cylindrical coordinates
yields

A =
1
2B0(−yx̂+ xŷ+ 0ẑ)

=
1
2B0

(
−r sin(θ)

[
cos(θ)r̂− sin(θ)θ̂

]
+ r cos(θ)

[
sin(θ)r̂+ cos(θ)θ̂

])
=

1
2B0rθ̂. (4.1)

Note the vector potential only has a θ component, again corresponding to a magnetic field
along the z-direction.
The Bogoliubov-de-Gennes equations, which take the form

− }2

2m

(
∇− ie

} A
)2

u(r)−EFu(r) +W (r)v(r) = εu(r), (4.2a)

}2

2m

(
∇ +

ie

} A
)2

v(r) +EF v(r) +W ∗(r)u(r) = εv(r), (4.2b)

are now solved. Recall that the θ and z dependence in u, v was suppressed for convenience.
One can show explicitly how a new eigenvalue equation is obtained from Eq.(4.2a) when A
is included. The first task is to determine

(
∇− ie

} A
)2
u(r), where the radial dependence is

now suppressed as well. The squared term can be written out as(
∇− ie

} A
)
·
(

∇− ie

} A
)
u,

m

∇2u− ie

} (∇ ·A)u− 2 ie} (A ·∇u)− e2

}2 (A ·A) u. (4.3)

43
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Show now that the divergence of A is zero, which is also evident from the form of the vector
potential:

(∇ ·A) u =

(
1
r

∂(rAr)

∂r
+

1
r

∂(Aθ)

∂θ
+
∂(Az)

∂z

)
u

=
1
r

∂

∂θ

(
1
2B0r

)
u = 0, (4.4)

where ∇ has been written in cylindrical coordinates. Thus the second term of Eq.(4.3) drops
out. Continue with the first term by writing out the Laplacian in cylindrical coordinates:

∇2u =
∂2u

∂r2 +
1
r

∂u

∂r
+

1
r2
∂2u

∂θ2 +
∂2u

∂z2 . (4.5)

The last term of Eq.(4.3) is:

e2

}2 (A ·A) u =

(
eB0r

2}

)2
u. (4.6)

Turning to the only remaining term of Eq.(4.3) one simply gets

A · (∇u) = A ·
(
∂u

∂r
r̂+

1
r

∂u

∂θ
θ̂+

∂u

∂z
ẑ

)
,

=
1
2B0rθ̂

(
1
r

∂u

∂θ
θ̂

)
,

=
1
2B0

∂u

∂θ
. (4.7)

Thus the result of Eq.(4.3) becomes

∂2u

∂r2 +
1
r

∂u

∂r
+

1
r2
∂2u

∂θ2 +
∂2u

∂z2 − 2 ie}
1
2B0

∂u

∂θ
−
(
eB0r

2}

)2
u. (4.8)

The rest of the calculations follow closely those of Sec.(3.1), so the explanations will be brief.
Writing again the definitions of u and v:

u = eikF cos(α)zei(µ−
1
2 )θf+(r),

v = eikF cos(α)zei(µ+
1
2 )θf−(r). (4.9)

Recall that one wants to obtain an expression for the eigenvalue equation with the applied
magnetic field included. This is shown explicitly for the electron part only.
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Let the derivative act on u, divide out the exponential functions and write out W (r) =

∆(r)e−iθ. Plugging the result back into the Bogoliubov Eq.(4.2a) yields:

− }2

2m

[
∂2f+
∂r2 +

1
r

∂f+
∂r
− 1
r2

(
µ− 1

2

)2
f+ − k2

F cos2(α)f+ −
(
eB0r

2}

)2
f+

+
eB0
}

(
µ− 1

2

)
f+

]
−EF f+ + ∆f− = εf+, (4.10)

where the radial dependence of f± and ∆ has been suppressed. As in Sec.(3.1), the eiµθ

terms cancel, while the e±i
1
2 θ terms combine to cancel the phase factor inW . One can again

rewrite −k2
F cos2(α) + 2m

}2 EF = k2
F sin2(α). Split now the last term in the square bracket

and pull these outside the parenthesis:

− }2

2m

[
∂2f+
∂r2 +

1
r

∂f+
∂r
− 1
r2

(
µ− 1

2

)2
f+ + k2

F sin2(α)f+ −
(
eB0r

2}

)2
f+

+
eB0
} µf+ −

eB0
2} f+

]
+ ∆f− = εf+

m

− }2

2m

[
∂2f+
∂r2 +

1
r

∂f+
∂r
− 1
r2

(
µ− 1

2

)2
f+ + k2

F sin2(α)f+ −
(
eB0r

2}

)2
f+

]

− }2

2mµ
eB0
} f+ +

}2

2m
eB0
2} f+ + ∆f− = εf+. (4.11)

Finally one can use the definition ωL = − eB0
2m from [16], thus obtaining the first eigenvalue

equation for the vortex system with a non-zero magnetic field:

− }2

2m

[
∂2f+
∂r2 +

1
r

∂f+
∂r
− 1
r2

(
µ− 1

2

)2
f+ + k2

F sin2(α)f+ −
(
eB0r

2}

)2
f+

]

+ µ}ωLf+ −
1
2}ωLf+ + ∆f− = εf+. (4.12)

This can be rewritten to have the same structure as the regular case by introducing the
notation:

− }2

2m

[
∂2f+
∂r2 +

1
r

∂f+
∂r
− 1
r2

(
µ− 1

2

)2
f+ + Ωf+ −

(
eB0r

2}

)2
f+

]
+ ∆f− = ε′f+, (4.13)

where Ω = k2
F sin2(α) + 2m

}2
1
2}ωL and ε′ = ε− µ}ωL, as also presented in [16]. Neglecting

the term with B0 to the second power is allowed, as this is small compared to }ωL in the
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core region [16]. Furthermore, if one assumes Ω ≈ k2
F sin2(α), i.e. that 2m

}2
1
2}ωL is small as

well, then Eq.(4.13) reduces to the same form obtained in Sec.(3.1)! Specifically, Eq.(4.13)
matches the form of the electronic part of Eq.(3.8). Thus the same procedure performed in
Sec.(3.1) can be employed to obtain the eigenvalue ε′.

ε′ =
µ

kF sin(α)
d∆(r)
dr

∣∣∣∣∣
r=0

. (4.14)

The actual eigenenergies are found as ε = ε′ + µ}ωL

ε =
µ

kF sin(α)
d∆(r)
dr

∣∣∣∣∣
r=0

+ µ}ωL. (4.15)

Thus the inclusion of the magnetic field leads to an increase in energy of µ}ωL, which de-
pends on the magnetic field strength B0. For positive energies (positive µ) the energy will
increase, while for negative energies (negative µ) the energy should decrease further.
This also leads to an increased spacing between each energy, which in turn results in a lower
density of states, as fewer states exist within the vortex. A caveat; I ignore the interaction
between the magnetic field and the magnetic moment of the particles, which [16] states
simply introduces a Zeeman splitting of the energies.
Returning to the numerical method, one can confirm the analytical result obtained in
Eq.(4.15).

4.2 numerical approach

The magnetic effects is now incorporated in the numerical work and one can investigate
whether the energy spacing increases, as [16] and Eq.(4.15) predict.
The dimensionless equations with the addition of the magnetic field become

− d2u(x, y)
dx2 − d2u(x, y)

dy2 − i}ωL
EF

(
x
du(x, y)
dy

− y du(x, y)
dx

)
+

m2

}2k4
F

ω2
L

(
x2 + y2)u(x, y)

− u(x, y) + ∆(x, y)
EF

e−in arctan( yx )v(x, y) = ε

EF
u(x, y), (4.16a)

d2v(x, y)
dx2 +

d2v(x, y)
dy2 − i}ωL

EF

(
x
dv(x, y)
dy

− y dv(x, y)
dx

)
− m2

}2k4
F

ω2
L

(
x2 + y2) v(x, y)

+ v(x, y) + ∆(x, y)
EF

ein arctan( yx )u(x, y) = ε

EF
v(x, y), (4.16b)

once again written in Cartesian coordinates for the sake of the numerical method. Here
x and y are dimensionless parameters, quite like in Eqs.(3.77 & 3.78), but where α and β
were renamed back to x and y for notational clarity. Since [ωL] = s−1, the third term is
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clearly dimensionless. The constant in front of the fourth term, however, warrants a closer
inspection: [

m2

}2k4
F

ω2
L

]
=

kg2

J2s2m−4 s
−2 =

kg2

kg2m4

s4 s4m−4
=
kg2

kg2 = 1. (4.17)

Thus Eqs.(4.16a) and (4.16b) are indeed dimensionless.
Now one can find the energy ε from the numerical method, exactly like in Sec.(3.2.2). The
same values for the gap and the Fermi Energy as before are used, which came from the
article [4]. Thus ∆0 = 1.1 meV and EF = 1.3 meV. Furthermore, the radius for the vortex,
the radius for the disk and other parameters of the model were kept the same. Inspired
by an example given in [16], one may set B0 = 0.2 T. Now, expecting ωL to be positive,
since it is a frequency, one must assume the electron charge is given by e = −1.60 · 10−19 C.
Inserting this, along with the electron mass, yields

}ωL ≈ 1.16 · 10−5eV (4.18)

This is in accordance with the analytical result in Eq.(4.15), so that the energy will increase
for positive µ and decrease for negative µ. Like in [16] the term with ωL to the second
power is neglected, as this is small. The NDEigensystem method is used once more and the
results are plotted in Fig.(23) along with the eigenvalues obtained in Sec.(3.2.2), where the
magnetic field was neglected.
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Figure 23: The 16 first eigenenergies (i ranges from −8 to +8) for the states
in the vortex core system in meV in the case of neglecting the magnetic field
(blue) and including it (red). The magnetic field is taken to be B0 = 0.2 T
following an example in [16]. The energy spacing is observed to increase,
which was expected from Eq.(4.15), though only up until the states seem to
join the continuum, as was the case in Sec.(3.2.2).

Fig.(23) presents the eigenvalues both with the magnetic field effects neglected (blue)
and included (red). As expected from Eq.(4.15), one notes an increase in the energy spac-
ing of the states when the magnetic field effects are included, labelled εm i, compared to
those of the original case, labelled εi. The energies of the low energy vortex states in a
type-II superconductor have now been thoroughly analysed. The eigenenergies were found
analytically and numerically, both with the magnetic field and without it. Turning to a
more phenomenological study of the nature of CdGM states, the next section presents a
suggestion on how these states might be bound in the vortex.



5
ANDREEV REFLECTION

Taking a closer look at the Caroli-de Gennes-Matricon (CdGM) states themselves, these
were described as "Andreev states" in the notes by V.B. Eltsov [6], Fig.(4.11). Thus, in
order to understand the more physical picture of what CdGM states actually are, one must
understand Andreev states. This sparked my interest for Andreev reflections and will be the
topic for the current section. Furthermore, one can imagine a cylinder with a normal core
and a superconducting outer shell; another system which can exhibit Andreev reflections.
This phenomenon is therefore an important one to understand.
The phenomenon was first discovered by A. F. Andreev in 1964 [19] and has been of great
importance ever since. Before describing the nature of these Andreev reflections (AR) how-
ever, one must first describe the system in which they can occur. This section will follow
the work of Blonder, Tinkham and Klapwijk [5], in which they study these ARs in a 1-
dimensional system, which I will further extend to a 2-dimensional system. The system
setup is as follows:

Consider a plane interface between 2 semi infinite regions; a superconductor (SC) and a
normal conductor (N). Let the z-axis be normal to the interface, and define the regions as
N for z < 0 and SC for z > 0, with the interface itself situated at z = 0. This system is
shown in Fig.(24), along with the superconducting gap function, which for this case is set
to be the simple Heaviside-theta function ∆(z) = ∆0Θ(z). In making this assumption one
essentially argues that the gap rises to its full value on a scale shorter than the coherence
length ξ of the superconductor, i.e a particle will see the gap as immediately having risen to
its full strength, ∆0. Simultaneously, a possible phase on the gap function is neglected as well.

49
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Figure 24: Sketch of the system. A normal metal is connected to a supercon-
ductor. It is assumed that the gap rises to its full strength ∆0 immediately in
the superconductor and remains constant throughout this region.

One may then investigate particles hitting the interface, coming from the normal metal
towards the superconductor. Where [5] investigates particles hitting the interface perfectly
perpendicular, an angle of incidence θ is introduced here. This angle is with respect to the
direction of propagation, z, so that θ = 0 corresponds to the particle moving perpendicular
to the interface.
The goal is to find the probability for a particle to undergo Andreev reflection as a function of
first this angle of incidence, θ and later as a function of the energy, ε, of the incident particle.

Often a potential barrier is introduced on the boundary as well, which will represent
impurities and other similar effects situated on the interface between the two regions. This
potential will be described with a delta function: H(z) = Hδ(z), where H represents the
strength of the barrier.
Andreev reflection itself is a process in which a particle hits an NS-interface and is reflected
as the corresponding antiparticle with a different sign on all components of the velocity
compared to the incident particle, as explained in for example the article [20] by R. Hoon-
sawat & I. M. Tang. The electron hitting the interface (from the normal region) will form a
Cooper-pair in the superconductor by connecting with another electron of opposite momen-
tum. The sudden absence of this second electron is exactly the hole, which will be filled by
electrons from further away, essentially letting the hole move away from the interface. This
in turn means AR is a charge transfer process of 2e across the interface. AR usually hap-
pens for particles with energy smaller than the gap (but not exclusively, as will be shown),
meaning the process is generally sub-gap transport. Furthermore, the process is highly spin
dependent; if the normal state material is fully spin polarized then AR cannot happen, as
a pair of electrons of opposite spin cannot be formed in the superconductor. Finally, single
particle transmission is of course impossible for particles with incident energy smaller than
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the gap, since there are no free states in the SC below the energy gap.

Moving on to the main part of the analysis; the scattering processes. As the particle hits
the interface, 4 possible scattering events can occur: Andreev reflection, normal reflection,
normal transmission and transmission with branch crossing. The latter of these means the
particle is transmitted as the antiparticle into the superconductor, and will be referred to as
"Andreev Transmission" going forward. Furthermore it is assumed that the incident particle
is an electron, although the same procedure can be carried out for the hole.
The possible scattering events are presented in Fig.(25). The figure shows the group velocity
in black and red for electrons and holes respectively. The wavevectors are shown in blue and
one notes that the group velocity of holes are opposite their wavevector.

Figure 25: Normal reflection, Andreev reflection, normal transmission and
transmission with branch crossing. All 3 components of the velocity will
change sign if the particle undergoes Andreev reflection. The black arrows
(electrons) and the red arrows (holes) on this figure represent group velocity,
whereas the blue arrows are momenta. Notice that holes have group velocity
opposite their momentum. The angle θ is with respect to the z-axis, so that
θ = 0 means moving completely perpendicular to the interface.

As mentioned earlier single particle transfer is not allowed, so if an electron has energy
less than the gap ∆0, only the two types of reflection can occur. Thus the most interesting
case to investigate will be E > ∆0, where the subscript on ∆0 is dropped subsequently. Fur-
thermore, normal reflection can only occur if there exists a non-zero barrier strength at the
interface, as will be seen later on. The main objective will be to find the probability for each
of these processes to occur, both as a function of the incident energy and as a function of
the angle with which the incident particle hits the interface. The results will be compared
with those of [5]. The article [20] also investigates the effect of adding the angle of incidence
θ on the probability of AR occurring; another result to compare with.
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Describe first the wavefunction as a spinor of electrons and holes: Ψ(r) =
(
u(r)
v(r)

)
.

Here u and v are as previously discussed the amplitudes for the Bogoliubov quasiparticles
being superpositions of electrons and holes, with u denoting the electron part and v the hole
part. In a normal metal u = 1 and v = 0 for an electron and vice versa for a hole.
In the normal region (z < 0) one observes an incident electron as well as the twofold types of
reflections; Andreev reflected holes and normally reflected electrons. In the SC region there
exists the two forms of transmission; normal transmission and Andreev transmission. As
seen in Fig.(24), the gap function changes only in the z-direction. Furthermore, the angle of
incidence is included as a method of changing the momentum perpendicular to the interface,
so only the z-direction needs to be considered throughout this section.
The wavefunction in the normal region can be described by the following trial wavefunctions,
written in spinor space of electrons and holes:

ψN =

(
1
0

)
eik

+
z z + a

(
0
1

)
eik
−
z z + b

(
1
0

)
e−ik

+
z z, (5.1)

while for the superconducting region:

ψS = c

(
u0

v0

)
eiq

+
z z + d

(
v0

u0

)
e−iq

−
z z. (5.2)

Here k± represents electrons(+) and holes(-) in the normal metal, while q± represents
the same in the superconductor. The letters a, b, c, d are the coefficients belonging to each
type of scattering; Andreev reflection, normal reflection, normal transmission and Andreev
transmission respectively. The actual probabilities (to be denoted with capital letters) can
be found as the modulus squared of the coefficient times their group velocity [5]. This is
also confirmed in the article [21] by Gifford et al., along with the definition of the group
velocity vgS = |u0|2 − |v0|2, which is also presented with the accompanying constants in [6],
pages 103 and 104. Note here that u0 and v0, present also in Eqs.(5.1) and (5.2), represent
the superconducting coherence factors, seen for example in [6], Eq.(2.82), and are given as

u0 =
1√
2

(
1 +
√
ε2 − ∆2

ε

) 1
2

and v0 =
1√
2

(
1−
√
ε2 − ∆2

ε

) 1
2

, (5.3)

which one notes depend on the energy ε.
Note also the signs in exponential functions of Eqs.(5.1) and (5.2); the reflected particle and
the Andreev transmitted particle both have momentum in the −z direction, the latter by
virtue of holes having momentum in the opposite direction as that of their group velocity.
Furthermore, as explained earlier, quasiparticles in the SC region are superpositions of u0

and v0.
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Next, using the approximation µ ≈ EF one can write the wavenumber as }k± =
√

2m(µ± ε) ≈√
2m(EF ± ε), as seen in [5] and with the inclusion of θ in [20]. Furthermore, one can write:

k±z =

√
2mEF
}2 ± 2mε

}2 =

√
k2
F cos2(θ)± 2mε

}2 , (5.4)

for the normal metal, and likewise one gets }q± =
√

2m(µS ±
√
ε2 − ∆2) which can be

rewritten to

q±z =

√
k2
F cos2(θ)± 2m

}2

√
ε2 − ∆2, (5.5)

for the superconductor.
Assume now that EF � ε (or ∆) so that Eqs.(5.4) and (5.5) reduce to yield k±z = q±z =

kF cos(θ). This is called the Andreev approximation and essentially demands that the par-
ticle must have a large momenta perpendicular to the boundary. This is very often the case
but one must be aware of the possible inaccuracy of this approximation, should the angle θ
be too large. The article [22] by Mortensen et al. indeed explains that for incident angles
near π

2 the approximation fails, but also that these particles of vanishing perpendicular mo-
mentum do not contribute significantly to the perpendicular current. This work however, is
occupied with the probabilities for the different scattering events to occur, so this possible
inaccuracy for large angles must be kept in mind.

One can now introduce the boundary conditions. First of all the wavefunctions must be
continuous in the z-direction i.e. ψN = ψS must hold at the interface. Furthermore, the first
derivative of the wavefunctions must be continuous for a delta function potential. Examples
of these are presented in [6], Eqs.(4.7) and (4.8). Thus:

ψN (0)−ψS(0) = 0 and ψ′S(0)−ψ′N (0) = 2m
}2 HψS(0), (5.6)

where H is the strength of the delta function potential at the interface. In the second
equation above ψS(0) is used since the wavefunction is continuous and thus can be either
ψN or ψS at z = 0. Subjecting Eqs.(5.1) and (5.2) to these conditions, one finds the 4
equations

1 + b− c · u0 − d · v0 = 0, (5.7)

a− c · v0 − d · u0 = 0, (5.8)

i(q+z ẑ)c · u0 − i(q−z ẑ)d · v0 + (b− 1) i(k+z ẑ)

=
2mH
}2 (c · u0 + d · v0), (5.9)

i(q+z ẑ)c · v0 − i(q−z ẑ)d · u0 − a i(k−z ẑ)

=
2mH
}2 (c · v0 + d · u0). (5.10)



andreev reflection 54

Going forward, the subscript 0 on u0 and v0 is suppressed. The Eqs.(5.7) and (5.9)
represent the electronic part, while Eqs.(5.8) and (5.10) consider the hole part.
One may now isolate the coefficients in above equations, starting with Eq.(5.9). Employ
the Andreev approximation k±z = q±z = kF cos(θ), isolate b in Eq.(5.7) and plug this into
Eq.(5.9) to get:

kF cos(θ)c · u− kF cos(θ)d · v− kF cos(θ) + b kF cos(θ)

=
2mH
i}2 (c · u+ d · v)

m

kF cos(θ)c · u− kF cos(θ)d · v− kF cos(θ)

+ (c · u+ d · v− 1)kF cos(θ) = 2mH
i}2 (c · u+ d · v)

m

− 2kF cos(θ) + 2kF cos(θ)c · u = −i2mH}2 (c · u+ d · v)

m (
kF cos(θ) + i

mH

}2

)
c · u+ i

mH

}2 d · v = kF cos(θ). (5.11)

The next step is to obtain an expression for d, by isolating a from Eq.(5.8) and plugging it
into Eq.(5.10):

kF cos(θ)c · v− kF cos(θ)d · u− a kF cos(θ)

= −i2mH}2 (c · v+ d · u)

m

kF cos(θ)c · v− kF cos(θ)d · u− (c · v+ d · u)kF cos(θ)

= −i2mH}2 (c · v+ d · u)

m

− 2
(
kF cos(θ)− imH}2

)
d · u = −i2mH}2 c · v

m

d =
imH}2 · v

u
(
kF cos(θ)− imH}2

) · c. (5.12)
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Insert this back into Eq.(5.11) to get

(
kF cos(θ) + i

mH

}2

)
c · u+ i

mH

}2 ·
imH}2 · v

u
(
kF cos(θ)− imH}2

) · c · v
= kF cos(θ). (5.13)

Defining the shorthand notation λ± =
(
kF cos(θ)± imH}2

)
and rewrite Eq.(5.13) to

c

(
uλ+ −

v2 (mH
}2
)2

uλ−

)
= kF cos(θ)

m

c =
kF cos(θ)(

uλ+ −
v2
(
mH
}2
)2

uλ−

) . (5.14)

Plugging this back into the expression for d from Eq.(5.12) yields the first result:

d =
imH}2 · v
uλ−

· kF cos(θ)(
uλ+ −

v2
(
mH
}2
)2

uλ−

) (5.15)

d =
imH}2 · v kF cos(θ)

u2λ−λ+ − v2 (mH
}2
)2 (5.16)

d =
imH}2 · v kF cos(θ)

u2k2
F cos2(θ) + (u2 − v2)

(
mH
}2
)2 =

i mH
kF }2 · v cos(θ)

u2 cos2(θ) + (u2 − v2)
(
mH
kF }2

)2 , (5.17)

thus obtaining an expression for the first coefficient. Now yet another shorthand notation
is introduced; Σ = u2 cos2(θ) + (u2 − v2)

(
mH
kF }2

)2
. Eq.(5.14) can be further reduced by

inserting the newly found d (before dividing by k2
F ) back into Eq.(5.12):

c =
uλ−

i
(
mH
}2
)
v
·

imH}2 · vkF cos(θ)

u2k2
F cos2(θ) + (u2 − v2)

(
mH
}2
)2

=
uλ−kF cos(θ)

u2k2
F cos2(θ) + (u2 − v2)

(
mH
}2
)2 =

u
(
kF cos(θ)− imH}2

)
kF cos(θ)

u2k2
F cos2(θ) + (u2 − v2)

(
mH
}2
)2

=
u
(

cos2(θ)− i
(
mH
kF }2

)
cos(θ)

)
Σ

. (5.18)
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Now that c and d are found, one can quickly find the coefficients a and b from Eqs.(5.8) and
(5.7) respectively:

a = c · v+ d · u =
u v cos2(θ)

Σ
, (5.19)

b = c · u+ d · v− 1 =
u2
(

cos2(θ)− i
(
mH
kF }2

)
cos(θ)

)
Σ

+
i mH
kF }2 · v2 cos(θ)

Σ
− Σ

Σ
. (5.20)

The number 1 was rewritten so that everything will have the same numerator. One then
gets

b =
�����u2 cos2(θ)− iu2

(
mH
kF }2

)
cos(θ) + iv2

(
mH
kF }2

)
cos(θ)

Σ

−
�����u2 cos2(θ) + (u2 − v2)

(
mH
kF }2

)2

Σ

b =

(v2 − u2)

((
mH
kF }2

)2
+ i
(
mH
kF }2

)
cos(θ)

)
Σ

. (5.21)

Thus all the coefficients are finally found! Writing them up once more for clarity:

a =
u v cos2(θ)

Σ
b =

(v2 − u2)

((
mH
kF }2

)2
+ i
(
mH
kF }2

)
cos(θ)

)
Σ

c =
u
(

cos2(θ)− i
(
mH
kF }2

)
cos(θ)

)
Σ

d =
iv
(
mH
kF }2

)
cos(θ)

Σ
, (5.22)

where the shorthand notation for the numerator is Σ = u2 cos2(θ) + (u2 − v2)
(
mH
kF }2

)2
.

These exactly correspond to the findings of BTK. [5] page 4531 Eq.(A11a-d), with γ being
our Σ and with their Z given by mH

kF }2 .
From these expressions one can already make an observation, namely how the different
probabilities depend on the barrier potential H. One notices that for H = 0, both b and
d will be zero, meaning only AR (a) and normal transmission (c) can occur. Specifically
Eqs.(5.22) will reduce to:

a =
v0
u0

, b = 0, c =
1
u0

, d = 0. (5.23)

Thus for H = 0 there is no dependency on the angle of incidence and only AR and normal
transmission can occur. Furthermore, in the case of a normal metal on both sides, i.e. ∆ = 0,
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one expects the probabilities for AR and Andreev transmission to go to zero. Recalling the
coherence factors

u0 =
1√
2

(
1 +
√
ε2 − ∆2

ε

) 1
2

, v0 =
1√
2

(
1−
√
ε2 − ∆2

ε

) 1
2

, (5.24)

where the subscripts have been restored, one sees that v0 becomes zero for ∆ = 0. Looking
again at Eqs.(5.22), one immediately see that a and d becomes 0, as expected.

The dependence of the different probabilities on the angle θ and the energy ε is now
studied. Starting with the former, the respective probabilities as functions of θ are plotted
initially for some values of ε and ∆. To be completely clear the probabilities are given as:

A = aa∗, B = bb∗, C = cc∗vgS , D = dd∗vgS , (5.25)

where vgS = |u0|2− |v0|2 as stated earlier. These probabilities are found using Mathematica
and plotted for energies just above and below the gap, and for different strengths of the
barrier potential as well. In Fig.(26) the probabilities are plotted as a function of the angle
with energy larger than the gap. Specifically, ε = 1.1 · ∆, inspired by [20].
Notice that as the angle of incidence increases, the normal reflection will dominate. This is
in agreement with [22], who describes the increasing angle as effectively an increase to the
barrier strength, thus reducing the likelihood of for example AR, as seen in Fig.(26). This is
due to the fact that the perpendicular momentum of the incident particle becomes smaller,
while the parallel momentum increases. The smaller momentum effectively corresponds to a
stronger barrier potential. Finally, note that some AR still occur, even if the energy is large
enough to allow single particle transmission.
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(b) ε = 1.1, mH
kF }2 = 0.5.

Figure 26: Plots of the different probabilities, as well as the total probability,
for ∆ = 1 with ε and the barrier strength written below each plot. a) As the
angle of incidence increases, normal reflection becomes the dominant event,
compared to the others. At θ = π

2 only normal reflection is possible, but
recall the possible inaccuracy of the Andreev approximation here. b) As the
strength of the delta function barrier is reduced, both normal transmission
and AR becomes more likely. This is in accordance with the expectation that
normal reflection and Andreev transmission go to zero for H = 0.

In Fig.(27) the case of ε < ∆ is explored. As expected, there is no transmission possible
for these energies. As in Fig.(27), note that normal reflection becomes less probable for a
smaller barrier potential.
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(b) ε = 0.9, mH
kF }2 = 0.5.

Figure 27: Plots of the different probabilities, for ∆ = 1 with ε and the barrier
strength written below each plot. Since ε < ∆, single particle transmission
is not allowed and thus only reflection is seen. a) The probability for AR is
reduced with increasing angle, as the effective strength of the barrier increases
with the angle. b) ARs are enhanced for a lower barrier strength. Note also
that if H = 0, the only possible event to occur will be AR.

Next is the investigation of the different events’ dependence on the energy of the incident
particle and a comparison of the results with those of [5]. For this purpose, θ = 0 is used
in the following. Furthermore ∆ = 1 is used and shown in Fig.(28) are plots for different
values of the barrier strength H.
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Figure 28: The probabilities as functions of energy ε. The total probability
is no longer plotted. The values θ = 0 and ∆ = 1 were used. Single particle
transmission is not allowed for ε < ∆ as stated in the text. Further, AR
tends to zero for energies larger than the gap. These results match those
of [5], Fig.(5). a) Interestingly one sees that the probability for Andreev
reflection grows significantly as ε approaches ∆ and that it does not become
zero immediately for ε > ∆. Further, normal reflection dominates for ε < ∆,
while normal transmission dominates for ε > ∆. b) As the barrier strength is
decreased, AR becomes more likely, while the probability for normal reflection
drops for all energies.

It is seen that single particle transmission is indeed not allowed for energies below ∆,
and also seen is an increased probability of AR for weaker barrier potentials, as was also
the conclusion in Fig.(26) and Fig.(27). The likelihood of AR peaks near ∆ and falls off
as the energy grows beyond the gap. These figures are in agreement with the findings of
[5], Fig.(5). For completeness, one may plot the probabilities as a function of the energy
without a potential barrier, which is presented in Fig.(29). Again normal reflection and
Andreev transmission cannot occur, as was the conclusion of Eq.(5.23).
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Figure 29: The probabilities as functions of energy. Here H = 0, showing
that only AR can occur for energies smaller than the gap in this case and that
both normal reflection and Andreev transmission is disallowed.

This I believe is simply due to the fact that there is nothing for the particle to scatter on;
the surface is so perfectly smooth that the particle is completely unhindered. However, if
the particle has energy lower than the gap, there are no states in the SC it can occupy and
therefore it must undergo AR, creating a Cooper-pair that lives in the SC.

A few concluding remarks are in order.
First of all, the article [22] discusses a possible critical angle θc above which AR would
no longer be possible. The authors show that this critical angle depends on the Fermi
wavevector of both regions:

θc = arcsin
(
k
(S)
F

k
(N)
F

)
. (5.26)

Thus, if there is no Fermi wavevector mismatch, then the critical angle would be

θc = arcsin(1) = π

2 , (5.27)

which is the natural limit. If there were a mismatch however, then for any angle above
the critical angle, the parallel momentum of the incident particle would exceed the Fermi
momentum of the superconductor. This would lead to a breaking of the conservation of
momentum, which is not allowed. Therefore AR is not allowed for θ > θc.
Another important observation concerns the wavevector of the Andreev reflected hole, in the
case of an incident electron. As stated earlier, it was assumed the wavevectors were identical,
but the fact remains; the trajectories of the incident electron and the outgoing hole are not
completely identical, [6] Sec.(4.2). This will have consequences, which will be discussed in
due time, along with the origin of this deviation. Finally, a brief comment on the barrier
potential strength mH

kF }2 follows. In a review on ARs by Yu. G. Naidyuk & K. Gloos [23]
the physical meaning of the parameter is discussed. They report that the main contribution
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to H, and therefore also normal reflection, is the disordered crystal lattice at the contact
point. They state that even a few atomic layers are enough to produce the barrier strength,
as used in this section. Furthermore they explain how a possible Fermi velocity mismatch
does not contribute to this barrier strength at the interface.
This concludes the analysis of the different possible scattering events that can occur as
a particle hits an interface between a normal metal and a superconductor. Having now
understood the basics of Andreev reflections, one can suggest what is meant when the
CdGM-states are called an Andreev state, named such by [6], Fig.(4.11). These are the
Andreev Bound States (ABS), formed by the repeated process of Andreev reflection and are
discussed in for example [6] and the article [24] by J. A. Sauls. The process is shown in
Fig.(30), which represents a system consisting of a normal metal "sandwiched" between two
superconducting metals. An incident electron undergoing AR on the interface between the
normal metal and the right SC will create a Cooper-pair in the SC while expelling a hole
moving to the left. The hole follows the same trajectory as the incident electron but in the
opposite direction until it hits the interface between the metal and the left SC. Another AR
happens in which this hole annihilates with an electron from a Cooper-pair in the SC, while
the leftover electron is expelled into the normal metal, moving to the right. This electron
follows exactly the path of the incident electron, and the process begins anew. The particles
are thus localized in the normal metal and will have a discreet energy spectrum.
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Figure 30: Sketch of an Andreev Bound State. A normal region is sandwiched
between two superconducting regions. An incident electron hitting the inter-
face to the right will create a Cooper-pair while expelling a hole that travels
through the normal metal towards the other superconductor. This hole will
annihilate a Cooper-pair in the left superconductor when hitting the interface
and expel an electron, with which the process repeats.

The Abrikosov vortex from Sec.(3) can be seen as such an SNS system, even though there
is only a single superconductor, completely surrounding the normal region. The particles
will Andreev reflect off of the spatial variance of the gap function in the vortex, and thus one
can expect the CdGM states to be at the very least analogue to ABS. This same description
translates perfectly to a cylinder of a normal core and an superconducting outer shell; the
particles traverse the normal core region and can Andreev reflect off of the superconductor
at the interface.
Recalling the fact that an Andreev reflected hole will not be perfectly retro-reflected, but
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instead deviate slightly from the trajectory of the incident electron, one can imagine the
ABS precess around in the vortex/cylinder core, as imagined in Fig.(31).

Figure 31: Rough sketch to show the idea behind the precession of the states.
Each reflection has a small deviation from the incident particle/antiparticle
and thus the ABS can precess around in the vortex. The red trajectories
signify holes, while the black represents an electron. The particles are An-
dreev reflected off of the spatial variations of the order parameter. The above
circle can also represent the normal core of a solid cylinder with an outer
superconducting shell.

One could further imagine that as the states precess, at some point the angle of incidence
would be almost parallel with the vortex edge, meaning normal reflection would become much
more likely. Actual calculation of the precession would be necessary in order to understand
exactly the underlying physics of the system.
Another very interesting article, this one by M. Stone [25], discusses the possible precession
of the bound states, both due to the imperfect reflection but more importantly due to
a possible supercurrent in the superconductor. The supercurrent circling the vortex core
(generated to screen the magnetic field line in the center of the vortex from the rest of the
SC) will let the bound states precess within the vortex, as shown in Fig.(5) of [25].
In the next section, I will be investigating exactly the force acting on the Andreev reflected
particles as they hit the interface, in order to better understand this precession of the CdGM
states within the vortex.



6
EHRENFEST DYNAMICS

Here I seek to describe the forces acting on a particle as it hits the NS-interface from the
normal region. This section will go through the method of Ehrenfest dynamics in which
one finds the time derivative of an expectation value of an operator. Thus one can find
the total force acting on a particle as the time derivative of the expectation value of the
momentum operator. I will specifically be interested in the off-diagonal forces, as these
are the ones dealing with electron-hole transitions (and vice versa). These can describe
what happens at the interface as a particle undergoes Andreev reflection. This one can
use to better understand the CdGM states, behaving as Andreev states within the vortex,
reflecting off of the spatially varying order parameter. As I discussed in the prior section,
a supercurrent is circling the vortex line and may affect the states in such a way that a
precession of the states is possible. Furthermore, returning to the superconducting cylinder
with a normal core and a superconducting shell, I explained that a supercurrent can be
induced in the superconductor due to a magnetic field, as was examined in the Little-Parks
discussion. This supercurrent could possibly lead to a precession of the bound states within.
The forces acting on a particle at the NS interface must therefore be investigated.
First, one can describe the quasiparticle excitation with the spinor wavefunction

Ψ(r) =

(
u(r)

v(r)

)
, (6.1)

where the functions u and v, quite familiar by now, are made time-dependent. This section
follows the work of S. Hofmann and R. Kümmel [26].
Write first the time dependent BdG equations:

i} ∂
∂t

Ψ(r, t) = Ĥ(r, t)Ψ(r, t), (6.2)

where

Ĥ(r, t) =
(
Ĥe(r, t) ∆(r, t)
∆∗(r, t) −Ĥ∗e(r, t)

)
, (6.3)

is the Nambu (particle-hole) matrix Hamiltonian. Here Ĥe(r, t) = (−i}∇−eA(r,t))2

2m +U(r, t)−
µ, which is the Hamiltonian acting on single electrons and holes added to some external scalar
potential U and the chemical potential µ. Finally e is the charge and A(r, t) is the vector
potential. Going forward, the dependencies on r and t are suppressed. In the off-diagonal
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of Ĥ is the pair potential, or gap function, ∆.
The expectation value of some operator α̂ is defined to be

〈α̂〉 =
∫
dr Ψ†α̂Ψ =

∫
dr

(
u

v

)†(
α11 α12

α21 α22

)(
u

v

)
= 〈u|α11|u〉+ 〈u|α12|v〉+ 〈v|α21|u〉+ 〈v|α22|v〉, (6.4)

inspired by Eq.(6) of [26] and using Eq.(6.1). The † represents the adjoint of a matrix
operator.
The Ehrenfest theorem, stated by P. Ehrenfest, gives an expression for the time derivative
of an operator, see Eq.(7) of [26].

∂

∂t
〈α̂〉 =

∫
dr

[(
∂Ψ†

∂t

)
α̂Ψ + Ψ†

(
∂α̂

∂t

)
Ψ + Ψ†α̂

(
∂Ψ
∂t

)]
(6.5)

One may find the time derivatives of the wavefunctions from the Eqs.(6.2):
(
∂Ψ
∂t

)
= −i

} ĤΨ

and
(
∂Ψ†
∂t

)
= +i

}
(
ĤΨ

)†
= +i

} Ψ†Ĥ†.
If there is no explicit time dependence on the operator α̂, then the second term in Eq.(6.5)
is zero and one can write

∂

∂t
〈α̂〉 =

∫
dr

[
i

}Ψ†
(
Ĥ†α̂− α̂Ĥ

)
Ψ
]

(6.6)

Using Eq.(6.6) to find an expression for the velocity, given as the time derivative of the
expectation value of the position operator q̂(r), one finds:

v =
∂

∂t
〈q̂〉 =

∫
dq i}

(u
v

)† (Ĥe ∆
∆∗ −Ĥ∗e

)†
q̂− q̂

(
Ĥe ∆
∆∗ −Ĥ∗e

)(u
v

) , (6.7)

where q̂ is proportional to the identity matrix in the Nambu space and contains no explicit
time dependence. Perform the dot products to get

v =

∫
dq i}

[
〈u|Ĥeq̂|u〉+ 〈u|∆q̂|v〉+ 〈v|∆∗q̂|u〉+ 〈v|

(
−Ĥ∗e

)
q̂|v〉

−
(
〈u|q̂Ĥe|u〉+ 〈u|q̂∆|v〉+ 〈v|q̂∆∗|u〉+ 〈v|q̂(−Ĥ∗e)|v〉

)]
. (6.8)

Here the fact that Ĥe is hermitian was used, by virtue of the momentum operator, p̂ = −i}∇,
being formally self-adjoint (= hermitian), i.e. p̂† = p̂. That the momentum operator is
indeed hermitian is shown in Appendix (A.6).
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This, alongside the fact that q̂ commutes with ∆, which allows one to cancel all ∆(∗)q terms,
allows Eq.(6.8) to be rewritten as

v =

∫
dq i}

[
−
〈
u
∣∣ [q̂, Ĥe

] ∣∣u〉+ 〈v∣∣ [q̂, Ĥ∗e
] ∣∣v〉]. (6.9)

Now one can write out Ĥe again using the definition p̂ = −i}∇, and since q̂ also commutes
with U and µ, one finds

v =

∫
dq i}

[
−
〈
u

∣∣∣∣ [q̂, (p̂− eA)2

2m

] ∣∣∣∣u〉+

〈
v

∣∣∣∣ [q̂, (−p̂− eA)2

2m

] ∣∣∣∣v〉]. (6.10)

Note the sign change on p̂ in the last term from the complex conjugate of Ĥe. The relevant
commutation relations between position and momentum is [q̂, p̂] = i} and

[
q̂, p̂2] =

2i}p̂ and using these one gets

v =

∫
dq i

}2m

[
− 〈u| (2i}p̂− 2i}eA) |u〉+ 〈v| (2i}p̂ + 2i}eA) |v〉

]
=

∫
dq 1
m

[
〈u| (p̂− eA) |u〉 − 〈v| (p̂ + eA) |v〉

]
=

∫
dq 1
m

[
〈u|p̂e|u〉 − 〈v|p̂h|v〉

]
, (6.11)

where p̂e = −i}∇− eA and p̂h = −i}∇ + eA. The velocity can now be written in its
Nambu matrix form, from which one also obtains the momentum operator:

v =
1
m

〈(
pe 0
0 −ph

)〉
, p̂ =

(
pe 0
0 ph

)
. (6.12)

Note here that holes have momentum with opposite direction from their group velocity, as
explained in Sec.(5).
Next, using this same technique once again, one can calculate the time derivative of the
new-found momentum operator. This will of course give the total force acting on the quasi-
particles, which one can split into diagonal and off-diagonal parts. Therefore

∂

∂t
〈p̂〉 =

∫
dq
[

Ψ†
(
∂p̂
∂t

)
Ψ +

i

}Ψ†
(
Ĥ†p̂− p̂Ĥ

)
Ψ
]

. (6.13)
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Notice that the first term is not neglected due to the vector potential A possibly having an
explicit time dependence. Eq.(6.13) is written out:

∂

∂t
〈p̂〉 =

∫
dq

Ψ†
(
∂p̂
∂t

)
Ψ +

i

}Ψ†

(Ĥe ∆
∆∗ −Ĥ∗e

)†(
p̂e 0
0 p̂h

)
−

(
p̂e 0
0 p̂h

)(
Ĥe ∆
∆∗ −Ĥ∗e

)Ψ


=

∫
dq

Ψ†

 ∂

∂t
p̂e 0

0 ∂

∂t
p̂h

Ψ +
i

}Ψ†
[(
Ĥep̂e ∆p̂h
∆∗p̂e −Ĥ∗ep̂h

)
−

(
p̂eĤe p̂e∆
p̂h∆∗ −p̂hĤ∗e

)]
Ψ

 .

(6.14)

Write out the wavefunctions and take the dot product:

∂

∂t
〈p̂〉 = i

}

[
〈u|Ĥep̂e|u〉+ 〈u|∆p̂h|v〉+ 〈v|∆∗p̂e|u〉+ 〈v| − Ĥ∗ep̂h|v〉,

−
(
〈u|p̂eĤe|u〉+ 〈u|p̂e∆|v〉+ 〈v|p̂h∆∗|u〉+ 〈v| − p̂hĤ∗e |v〉

)
,

+ 〈u|}
i

∂p̂e
∂t
|u〉+ 〈v|}

i

∂p̂h
∂t
|v〉
]
. (6.15)

The time derivative of p̂e and p̂h can be written out as

∂p̂e
∂t

=
∂

∂t
(−i}∇− eA) = −e

∂A
∂t

, ∂p̂h
∂t

=
∂

∂t
(−i}∇ + eA) = e

∂A
∂t

. (6.16)

Collecting the terms in Eq.(6.15) yields

∂

∂t
〈p̂〉 = i

}

[
− 〈u|

[
p̂e, Ĥe

]
+
e}
i

∂A
∂t
|u〉 − 〈u| (p̂e∆− ∆p̂h) |v〉

− 〈v| (p̂h∆∗ − ∆∗p̂e) |u〉+ 〈v|
[
p̂h, Ĥ∗e

]
+
e}
i

∂A
∂t
|v〉
]

=
i

}

[
〈u|f̂11|u〉+ 〈u|f̂12|v〉+ 〈v|f̂21|u〉+ 〈v|f̂22|v〉

]
, (6.17)

where the force operator f̂ was introduced, given by the time derivative of the momentum;

〈f̂〉 =
〈(

f̂11 f̂12

f̂21 f̂22

)〉
= ∂

∂t 〈p̂〉. The off-diagonal forces f̂12 and f̂21 which are the ones relating

u and v, are the ones of interest to this section and are written below

〈u|f12|v〉 = −
i

} 〈u| (pe∆− ∆ph) |v〉 (6.18)

〈v|f21|u〉 = −
i

} 〈v| (ph∆∗ − ∆∗pe) |u〉. (6.19)
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One notes that these forces deal with events that scatter electrons into holes and vice-versa.
Write out p̂e and p̂h in Eq.(6.18) to get

〈u|f̂12|v〉 = −
i

} 〈u|
(
(−i}∇− eA)∆− ∆ (−i}∇ + eA)

)
|v〉,

=

∫
dqu∗−i}

[
− i} (∇∆) v−�����i} (∇v)∆ +�����i}∆ (∇v)− 2eA∆v

]
,

=

∫
dqu∗−i}

[
− i} (∇∆) v− 2eA∆v

]
= − i} 〈u| (−i}∇− 2eA)∆|v〉. (6.20)

In the last equality the derivative acts only on the gap function, ∆, and not on the state |v〉.
The same is done for f̂21 and one finds these off-diagonal forces to be

〈u|f̂12|v〉 = 〈u|
−i
} (−i}∇− 2eA)∆|v〉,

〈v|f̂21|u〉 = 〈v|
−i
} (−i}∇ + 2eA)∆∗|u〉. (6.21)

These forces are non-zero when ∆ is non-zero, which is true only in the SC region. One can
add the two contributions and define the sum as f̂∆:

f̂∆ = 〈u|f̂12|v〉+ 〈v|f̂21|u〉

=

∫
dq
[
u∗
(
−∇∆ +

i

}2eA∆
)
v+ v∗

(
−∇∆∗ − i

}2eA∆∗
)
u

]
. (6.22)

Notice that these are each others complex conjugate and thus the addition of the two terms
will equal twice the real part of either one:

f̂∆ = 2Re
∫
dq
[
u∗v

(
−∇∆ +

i

}2eA∆
)]

. (6.23)

Now one may write out the pair potential as ∆ = |∆| exp(iφ) and let ∇ act on each compo-
nent

f̂∆ = 2Re
∫
dq
[
u∗veiφ

(
−(∇|∆|)− i|∆|(∇φ) +

i

}2eA|∆|
)]

. (6.24)

Split first this into the following two terms

f̂∆ = −2Re
∫
dq
[
u∗v(∇|∆|)eiφ

]
− 2Re

∫
dq
[
u∗v · i

(
(∇φ)− 2eA

}

)
|∆|eiφ

]
. (6.25)
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Use now that the real part of a complex number times i is given by minus the imaginary
part, i.e. Re(i · z) = Re(i · a− b) = −b = −Im(z), where z = a+ i · b is a complex number.
Thus one can write

f̂∆ = 2Re
∫
dq
[
u∗v (−∇|∆|) eiφ

]
+ 2Im

∫
dq
[
u∗v(∇φ− 2eA

} )∆
]

(6.26)

= f̂∆1 + f̂∆2. (6.27)

Here f̂∆1 corresponds to a radial part, dependent on the gradient of the gap, and f̂∆2 to a
"convective" part dependent on the gradient of the phase of the order parameter. The first
force is the one responsible for the AR process and is thus a force that acts perpendicular
to the interface, as also explained in [26]. One can further rewrite the latter of the forces
by introducing the Cooper-pair velocity vs = }

2m
(
∇φ− 2e

} A
)
, which was also presented in

Sec.(2), Eq.(2.11). Thus

f̂∆2 =
4m
} Im

∫
dq [u∗v vs∆] . (6.28)

It is this convective contribution from the off-diagonal force which are of greatest interest.
One can see that this force is dependent on the supercurrent velocity of the Cooper-pairs.
The article [27] (again by S. Hofmann and R. Kümmel) confirms this; the force f̂∆2 is ex-
erted on the Andreev reflected quasiparticles by the supercurrent. They elaborate further;
electron-to-hole scattering takes momentum from the quasiparticle in order to provide the
created Cooper-pair enough momentum to join the moving condensate. Oppositely, in the
hole-to-electron case, a Cooper-pair is broken apart and the momentum of the pair is trans-
ferred to the outgoing quasiparticle. The momentum gained or lost is in the direction of the
supercurrent, i.e. parallel to the interface. It is this transfer of momenta that is the origin
of the "convective" nickname given to the force f̂∆2. The authors of [27] also show that f̂∆2
indeed acts parallel to the interface. Finally they claim that their results, obtained for a
plane NS interface, is valid for the vortex line as well (page 1321).
Lastly I introduce the article by B. Götzelmann, S. Hofmann and R. Kümmel [28], in which
they discuss these off-diagonal forces further. First of all, the force acting parallel to the
interface, f̂∆1, is finite if u and v belong to quasiparticles with energy less than the maximum
value of the gap. This is normally what one would expect, although Sec.(5) did show some
AR for energies just above the gap.

More interesting, however, is their investigation of f̂∆2. They explain how the force,
present when one has a non-zero supercurrent in the SC region, will change the trajectories
of the Andreev reflected particles compared to the case of vs = 0. This is seen clearly
in their Fig.(2a), presented in our Fig.(32). An incoming electron undergoes AR, creating
a Cooper-pair in the superconductor while expelling a hole back into the normal region.
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Since the created Cooper-pair must have momentum equal to the moving condensate, this
momentum is transferred from the incoming particle. The result is the changed trajectory
of the outgoing hole. The trajectory deviation has been exaggerated a lot for clarity.

Figure 32: Figure taken from [28], Fig.(2a). Changed trajectory of an Andreev
reflected particle, due to the force f̂∆2 acting parallel to the interface. P labels
the point contact from which the electron (e) is emitted, while ps labels the
supercurrent. The electron undergoes AR at the NS interface and is repelled
as a hole, h. The deviation (grossly exaggerated for clarity) is due to a
momentum transfer from the quasiparticle to the created Cooper-pair, which
must have momentum enough to join the moving condensate.

This confirms the suspicion that the supercurrent circling the vortex core indeed can
lead to a precession of the bound CdGM states, as I hypothesized, inspired by the article
[25]! The vortex states are Andreev states, moving back and forth inside the vortex by
scattering off the spatial variance of the gap, and in the presence of a supercurrent in the
superconductor, these states are affected by the force f̂∆2. This force acts parallel to the
interface and can change the trajectory of the outgoing particle, compared to that of the
ingoing, effectively leading to the precession of these bound states. This is imagined to
translate well to the solid cylinder with a supercurrent. I would expect the precession of
states in a normal core of a cylinder with a superconducting shell, due to the circulating
supercurrent, from the force f̂∆2.



7
CONCLUS ION

I have in this thesis studied the different sub-gap states of a superconducting cylinder (or
hexagonal shell), focusing mostly on the Caroli-de Gennes-Matricon states existing in vor-
tices in a type-II superconductor. The energy spectrum of these states was studied, followed
by an analysis of their nature, i.e. how these are bound in the system.

I presented first a study on the LP effects on superconducting cylinders in the presence
of an axial magnetic field and derived the dependence of the critical temperature and the
supercurrent velocity as a function of the applied magnetic field.
An analytical study of the vortex states following the work of Caroli et al.[15] was presented.
A rather involved calculation was performed to obtain the energy spectrum of the states
through the use of the Bogoliubov-de Gennes equation. Then, constructing a method using
the NDEigensystem function in Mathematica, the energies were found numerically. Inspired
by the work in [4], I successfully found credible results for the energy spectrum of the CdGM
states in a vortex system based on the experiment presented in [4]. The energies were shown
to each have a partner of opposite sign, due to the particle-hole symmetry. It was shown
how the energy-spacing decreased as the states condensed close to the continuum at ∆0.
Furthermore, I presented the eigenfunctions of the CdGM states and these were found to
resemble Bessel functions in the radial direction, while the angular momentum µ determined
the order of the excitations. Further, the supercurrents were plotted and, as a sanity check,
shown to disappear in the case of no phase on the superconducting order parameter. Finally,
I briefly investigated the small value of the Fermi energy, showing how this corresponded to
a very small carrier density compared to other often used superconducting compounds.
An example of a hollow hexagonal wire system was studied for the same material as used
for the solid superconductor housing the CdGM states, FeTe0.55Se0.45. The energies of a
very small nanowire system was determined to showcase the numerical method, along with
both the eigenfunctions and the supercurrents in the hexagonal shell. For such a system the
supercurrent was found to depend on the winding number n presented in the LP section.
Thereafter I included the effects of an applied magnetic field. Analytically, the energy
spacing between states was found to increase due to the magnetic field. This was also
verified numerically.
The concept of Andreev reflection was investigated, in order to describe the vortex states
as Andreev states, bound in the vortex due to the spatial variance of the order parameter
∆. Furthermore, this description applies just as well to a solid cylinder with a normal metal
core and a superconducting outer shell. I investigated thoroughly how AR depends both
on the energy and the angle of incidence for the incoming particle as it hits an interface,
inspired by the work of [5]. AR was found to occur usually for incident particles with energy
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below the gap, although it was seen to occur for energies above the gap as well. It was
understood that as the barrier strength increased, the probability for all scattering events
except normal reflection decreased. Since an increase to the angle of incidence effectively
increases the barrier strength, the same conclusion was drawn for the probabilities as a
function of θ. Furthermore, I showed that for energies below the gap, only AR and normal
reflection is allowed, since no single particle transmission is allowed. I suggested further how
the states in either the vortex or a normal core of a cylinder with a superconducting shell
might be bound in the form of multiple Andreev reflections.
Lastly I discussed the forces acting on Andreev reflected particles as they come into contact
with the interface between a normal metal and a superconductor. The force responsible
for Andreev scattering, which acts perpendicular to the interface, was identified, alongside
another force that acts parallel to the interface on a particle undergoing Andreev reflection.
This latter force depends on the supercurrent in the SC and will change the path of the
outgoing particles, compared to the case of vs = 0. I hypothesized that this deviation
in trajectory can lead to precession of the states in either a vortex or the aforementioned
cylinder, as the scattering is no longer perfectly retro-reflective.



A
APPENDIX

a.1 ψ(r) and K(r)

It is trivial to show that Eq.(3.35) satisfies Eq.(3.33) using cos(ψ(r)) ≈ 1, since ψ(r) is
small:

d

dr

(
a−1

∫ r

0
∆(r′)dr′

)
= a−1∆(r). (A.1)

The anti-derivative evaluated in zero vanishes since there is no r-dependence.
Next, taking the derivative of Eq.(3.36) yields:

dψ(r)

dr
= 2dK(r)

dr
·ψ(r)− e2K(r) ·

(
0− e−2K(r)

(
2q+ µ

kF sin(α)r2

))
= 2(a)−1∆(r)ψ(r) + 2q+ µ

kF sin(α)r′2 . (A.2)

In the above, it was used that the product rule when taking the derivative of ψ(r) and that
dF (∞)
dr (where F represents the anti-derivative of ψ(r)) is zero since it has no r dependence.

Pull now 2
a outside a parenthesis on the RHS:

dψ(r)

dr
= 2a−1

[(
ε+ a

µ

2kF sin(α)r′2

)
+ ∆(r)ψ(r)

]
m
dψ(r)

dr
= 2a−1

[(
ε+

}2µ

2mr2

)
+ ∆(r)ψ(r)

]
(A.3)

Using that ψ(r) is small one can let sin(ψ(r)) ≈ ψ(r) in Eq. (3.34) and thus it is shown
that Eq.(3.36) indeed satisfies Eq. (3.34)
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a.2 showing ĝ, eq.(3.26), is a solution to eq.(3.25)

It is shown here how Eq.(3.26) is a solution to the differential equation Eq.(3.25), if one
neglects the second order derivative.
Look first at the g+ equation of Eq.(3.26):

− ia
[
e−K(r)

(
d

dr
e
i
2ψ(r)

)
+ e

i
2ψ(r)

(
d

dr
e−K(r)

)]
− i∆(r)e−

i
2ψ(r)e−K(r)

=

(
ε+

}2µ

2mr2

)
e
i
2ψ(r)e−K(r)

m

− ia
[
e−K(r) i

2

(
dψ(r)

dr

)
e
i
2ψ(r) + e

i
2ψ(r)

(
−dK(r)

dr

)
e−K(r)

]
− i∆(r)e−

i
2ψ(r)e−K(r)

=

(
ε+

}2µ

2mr2

)
e
i
2ψ(r)e−K(r) (A.4)

Use now Eqs.(3.33) and (3.34) with the small angle approximation on the cosine and sine,
while also dividing e−K(r) from all terms:

− ia
[
i

22(a)−1
[(
ε+

}2µ

2mr2

)
+ ∆(r)ψ(r)

]
e
i
2ψ(r) + e

i
2ψ(r)

(
−a−1∆(r)

)]
− i∆(r)e−

i
2ψ(r) =

(
ε+

}2µ

2mr2

)
e
i
2ψ(r). (A.5)

Multiply by e
−i
2 ψ(r) and reduce:(
ε+

}2µ

2mr2

)
+ ∆(r)ψ(r) + i∆(r)− i∆(r)e−iψ(r) =

(
ε+

}2µ

2mr2

)
m

∆(r)ψ(r) + i∆(r)− i∆(r)e−iψ(r) = 0. (A.6)

Finally one can divide ∆(r) out, write the exponential function in terms of cosine and sine
and once again use the small angle approximation:

ψ(r) + i− i(cos(ψ(r))− i sin(ψ(r))) = 0

m

ψ(r) + i− i+ i2ψ(r)

m

ψ(r)−ψ(r) = 0, (A.7)
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and it is shown!
Showing g− also satisfies Eq. (3.25):

ia

[
−ie−K(r)

(
d

dr
e
−i
2 ψ(r)

)
− ie

−i
2 ψ(r)

(
d

dr
e−K(r)

)]
+ ∆(r)e

i
2ψ(r)e−K(r)

= −
(
ε+

}2µ

2mr2

)
ie
−i
2 ψ(r)e−K(r)

m

ia

[
e−K(r)−1

2

(
dψ(r)

dr

)
e
−i
2 ψ(r) − ie

−i
2 ψ(r)

(
−dK(r)

dr

)
e−K(r)

]
+ ∆(r)e

i
2ψ(r)e−K(r)

= −
(
ε+

}2µ

2mr2

)
ie
−i
2 ψ(r)e−K(r). (A.8)

Use again Eqs.(3.33) and (3.34) and divide by e−K(r):

ia

[
−1
2 2(a)−1

[(
ε+

}2µ

2mr2

)
+ ∆(r)ψ(r)

]
e
−i
2 ψ(r) + ie

−i
2 ψ(r)

(
a−1∆(r)

)]
+ ∆(r)e

i
2ψ(r) = −

(
ε+

}2µ

2mr2

)
ie
−i
2 ψ(r). (A.9)

Multiply by e
i
2ψ(r) and reduce further:

− i
[(
ε+

}2µ

2mr2

)
+ ∆(r)ψ(r)

]
− ∆(r) + ∆(r)eiψ(r) = −

(
ε+

}2µ

2mr2

)
i

m

− i∆(r)ψ(r)− ∆(r) + ∆(r)eiψ(r) = 0. (A.10)

Finally write out the exponential function and reduce:

− iψ(r)− 1 + cos(psi(r)) + i sin(ψ(r)) = 0

m

− iψ(r)− 1 + 1 + iψ(r) = 0, (A.11)

and it is shown.
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a.3 finding ψ(rc) for g−(rc)

It is shown how to obtain ψ(rc) using the hole part (g−(rc)) of Eq.(3.44):

A−

√
2
π

(γ − qrc)−
1
2 cos

[
γ − qrc +

(
µ+ 1

2
)2

2 (γ − qrc)
− π

2

(
µ+

1
2

)
− π

4

]

=

√
2
π
γ−

1
2

(
g−(rc) exp

[
i

(
γ +

n2

2γ −
π

2n−
π

4

)]

+ g∗−(rc) exp
[
−i
(
γ +

n2

2γ −
π

2n−
π

4

)])
. (A.12)

Now use the definition of g− from Eq.(3.26), which one can write as g− = −ie−
i
2ψ(rc)+i

π
4 ,

again having neglected eK(rc) and the constant c. Reduce now the RHS as follows:

RHS =

√
2
π
γ−

1
2

(
− i exp

[
i

(
γ +

n2

2γ −
π

2n−
π

4 −
ψ(rc)

2 +
π

4

)]

+ i exp
[
−i
(
γ +

n2

2γ −
π

2n−
π

4 −
ψ(rc)

2 +
π

4

)])

= 2
√

2
π
γ−

1
2 sin

[
γ +

n2

2γ −
π

2n−�
�π

4 −
ψ(rc)

2 +
�
�π

4

]
. (A.13)

Eq.(A.12) becomes:

(γ + qrc)
− 1

2 cos
[
γ − qrc +

(
µ+ 1

2
)2

2 (γ − qrc)
− π

2

(
µ+

1
2

)
− π

4

]

= γ−
1
2 sin

(
γ +

n2

2γ −
π

2n−
ψ(rc)

2

)
(A.14)

Using again γ >> qrc and making the same approximations as in the main text, while also
rewriting the sine function to a cosine function on the RHS, yields:

γ−
1
2 cos

[
γ − qrc +

(
µ+ 1

2
)2

2γ − π

2

(
µ+

1
2

)
− π

4

]
= γ−

1
2 cos

[
γ +

n2

2γ −
π

2n−
ψ(rc)

2 − π

2

]
.

(A.15)
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Matching the arguments and writing out n =
√
µ2 + 1

4 yields

γ − qrc +
(
µ+ 1

2
)2

2γ − π

2

(
µ+

1
2

)
− π

4 = γ +
µ2 + 1

4
2γ − π

2

√
µ2 +

1
4 −

ψ(rc)

2 − π

2
m

− qrc +
µ

2γ −
π

2µ−�
�π

2 = −π2

√
µ2 +

1
4 −

ψ(rc)

2 −
�
�π

2 . (A.16)

Finally approximate
√
µ2 + 1

4 ≈ µ for large µ, and one obtains the expression

ψ(rc) = 2qrc −
µ

kF sin(α)rc
, (A.17)

which indeed matches Eq.(3.51), as one would expect.

a.4 order of terms in eq.(3.23)

A brief discussion on the size of the different terms is presented, as to investigate whether
the terms 1

rHn
dĝ
dr and −σz }2

2m
d2ĝ
dr2 are small and if neglecting these can indeed be justified.

One can write up the different terms from the LHS of Eq.(3.23) and compare them using the
superconducting coherence length ξ. Note that the Hankel functions are divided out later
and are therefore not included. The coherence length is:

ξ ≈
}vf
∆0

. (A.18)

From Eq.(3.23), the terms to compare are the following:

kF
dĝ

dr
, d2ĝ

dr2 , 1
r

dĝ

dr
, 2m

}2 ∆(r)ĝ. (A.19)

Here kF dĝ
dr came from the derivative of the Hankel functions in Eq.(3.23). One can now

investigate the size of the first term. The derivative of g+ is once more:

dg+(r)

dr
=

d

dr

(
e
i
2ψ(r)e−K(r)ei

π
4
)
= g+

(
i

2
dψ(r)

dr
− dK(r)

dr

)
, (A.20)

where the derivatives ofK(r) and ψ(r) are given by Eqs.(3.33) and (3.34). The ei
π
4 term was

ignored here. Focus now on the terms ∆
a and ∆

aψ(r) from Eqs.(3.33) and (3.34) respectively,
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where in the latter it was argued that the ε+ }2µ
2mr2 bracket is small. Recall the argumentation

of [15] that ε� ∆0 and that µ� kF r. One can then write

∆
}vF sin(α) ≈

1
ξ sin(α) , (A.21)

by using a = }vF sin(α), so that

kF
dĝ

dr
∝ kF

ξ
ĝ. (A.22)

Looking at the second derivative one finds

d2ĝ

dr2 ∝
1
ξ2 ĝ =

1
ξkF

kF
ξ
ĝ. (A.23)

Thus the second order derivative is a factor 1
ξkF

smaller than the first derivative, allowing
us to safely neglect this second order derivative of ĝ(r).
Looking at the term

1
r

dĝ

dr
∝ 1
rξ
ĝ =

1
rkF

kF
ξ
ĝ, (A.24)

one notes this term is also small compared to kF dĝ
dr , by virtue of r being large. Finally the

last term can be rewritten as follows (where ∆(r) = ∆0 for large r):

2m
}2 ∆0ĝ =

2kF
}vF

∆0ĝ ≈
2kF
}vF

}vF
ξ
ĝ =

2
π

kF
ξ
ĝ. (A.25)

This is seen to be on the same order of magnitude as the term kF
dĝ
dr and is therefore not

neglectable.

a.5 supercurrents in the hexagonal shell for n = −1

The supercurrents of the hexagonal shell is found for n = −1. The currents are seen to have
changed direction as the sign on n changed, compared to Fig.(22).

-10 -5 0 5 10

-10

-5

0

5

10

x

y

j-1

-10 -5 0 5 10

-10

-5

0

5

10

x

y

j-3

-10 -5 0 5 10

-10

-5

0

5

10

x

y

j-5

-10 -5 0 5 10

-10

-5

0

5

10

x

y

j-7

Figure 33: Supercurrents in a hexagonal shell for n = −1. The currents have
shifted directions as the sign on the phase of the order parameter changed.
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a.6 showing the momentum operator is hermitian

This can be shown as follows:∫
dx (p̂ψ)∗ψ =

∫
dx (−i}∇ψ)∗ ψ =

∫
dx i} (∇ψ∗)ψ = 0−

∫
dx i}ψ∗ (∇ψ) =∫

dx ψ∗ (p̂ψ) ,

and thus p̂ is hermitian. To get the third equality one uses that the total derivative is zero,
since the wavefunctions ψ are assumed to vanish at infinity.
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