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ABSTRACT

In this thesis, we give a thourough investigation of the basic physics of bismuth selenide, a
recently discovered three-dimensional topological insulator. We give a detailed and pedagogical
introduction to group theory, describing the symmetry operations of the crystal lattice, in
order to construct the minimal effective model, describing the topological features of bismuth
selenide. Qualitatively, we discuss the physical principles of the band structure around the
Fermi level, which is found to consist of linear combinations of p-orbitals. Specifically, we see
that a strong spin-orbit coupling leads to a band inversion. This band inversion gives rise
to a non-trivial topology. Within this model, we calculate the topological surface states by
imposing hard-wall boundary conditions. For a single isolated surface we find the conditions
on the parameters of the model, for the existence of surface states. We analytically find the
spectrum and wave functions of the surface states. These have a Dirac-like spectrum, and a
helical spin structure. In a thin film, the overlap of wavefunctions on opposite surfaces, leads
to a gap in the spectrum. We discuss the dependence of the gap on the thickness, as well as
the parameters of the model and compare to experimental measurements of the gap. For a
thin film, the spin structure is dependent on position. The helical spin structure, gets opposite

vorticity on the two surfaces, which is a result of the inversion symmetry of the crystal.
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CHAPTER 1

INTRODUCTION

1.1 Historical background for the dicovery of 3D topological

insulators

In 1980 von Klitzing et al. discovered the integer quantum Hall effect [I], where a large
magnetic field, gives rise to a quantized Hall conductance, o,,. The Hall conductance is
the ratio, between the current through the material and the voltage across the perpendicular
direction. He was awarded the Nobel Prize in 1985 for this discovery. In 1982 Thouless,
Kohmoto, Nightingale and den Nijs found that this phenomenon was related to topology.
Specifically the topology of the Hilbert space of wave functions in a quantum Hall system.
They defined an integer topological invariant, which characterizes the topology of the Hilbert
space. They showed that the Hall conductivity became equal to this integer times 7. This was
the first example of a topological quantum number. But for a long time no one cared about
topology in physics.

Many years later the two dimensional carbon material graphene became famous after it was
discovered in 2004 [2]. The material attracted a huge amount of attention, and in 2010 Andre
Geim and Konstantin Novoselov recieved the Nobel Prize “for groundbreaking erperiments
regarding the two-dimensional material graphene”. It was proposed that graphene should be
a 2D topological insulator [3], but it required an urealistically strong spin-orbit coupling [4].
But the concept of topology, was back in the game of physics. In 2006 Bernevig, Hughes
and Zhang proposed that a mercury telluride (HgTe) quantum well should be a topological
insulator [5]. In 2007 this proposal was experimentally verified by Konig et al. [0].

Now with the discovery of the first two-dimensional topological insulator, naturally, a
question arises; Does something equivalent exist in three dimensions? This is indeed the case

and the subject of the present thesis.

1.2 What is a 3D topological insulator?

As the name suggests, a topological insulator, is related to an insulator. In fact, a topological
insulator is insulating inside the material, because of a gap in the spectrum. But on the surface,
exotic topological surface states exist. Energetically these states lie within the bulk band gap.
Therefore, the surface of a topological insulator is conducting. One interesting feature of the
surface states is that they behave as massless Dirac fermions, just like in graphene. But in
contrast to graphene, the surface states in 3D topological insulators exhibit a spin momentum
locking, where the spin is always perpendicular to the momentum. This spin structure, shown
in figure is sometimes called helical. The helical spin structure can rotate in clock-wise, or
counter clock-wise fashion, which are refered to as negative and positive vorticity, respectively.

The simplest model, that gives rise to these helical states, is the Dirac-like Hamiltonian:

HSurface(k> = UF(kyUx - kxay) (1'1)
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Figure 1.1: (a) Real space picture of the helical edge state of a 2D topological insulator. (b) Energy dis-
persion for a 2D topological insulator. (c¢) Real space picture of the helical surface states of a
3D topological insulator. (d) Energy dispersion and spin structure of the surface states on a 3D
topological insulator. Adopted from [4].
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This model is widely used to describe the surface states of a 3D topological insulator. Note that
this is a 2D model describing only the surface states, completely ignoring the three dimensional

nature of these states. The eigenstates of this Hamiltonian are:

W = \2 (;,i) E = +vp|K| (1.2)

Tkf

Giving a linear dispersion, just like massless relativistic fermions. We also get the helical spin
structure by calculating the expectation value of the spin:

ky kw
(02) E=tvp|k| = ¥m (0y) E=top|k| = im (1.3)

1.3 Bismuth Selenide: Well known, but brand new

Bismuth selenide (BizSes) is a material, which is widely known and used because of its ther-
moelectric properties. But recently the development of the field of topolological physics has
caused a renewed interest in the material. In 2009 BisSes and the related materials BisTeg
and SboTes were predicted to be three dimensional topological insulators.

Experiments using angle resolved photo emission spectroscopy (ARPES), can map out
the spectrum of the surface states, which is one of the most important ways to verify the
predicted existence of surface states. In 2009 the topological nature of BioSes was verified by
this technique [7].

In 3D topological insulators transport measurements have not been so succesfull yet, since
the bulk often turns out to be conducting as well, due to impurities. One way of reducing
this problem is simply to make a thin film, such that the bulk is less important. Therefore,
thin films are important to understand, especially how the surface states on opposite surfaces,

affect each other.
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1.4 Outline of the thesis

In this thesis, BisSes is studied in detail. We begin with a chapter on group theory, discussing
the neccessary concepts and methods, which are used to construct the simplest model for
BisSes. This model is constructed in chapter after a detailed description of the basic
physical principles of the electronic structure of BisSes. Thereafter, we dive into the study of
surface states within this model. First, we will investigate a single isolated surface in chapter
where much analytical progress can be made. This gives an understanding, which serves
as a great starting point for investigating a thin film in chapter f] Finally the results are

summarized in chapter [o]




CHAPTER 2

(GROUP THEORY

In this chapter, we will introduce the necessary group theoretical concepts needed to derive the
effective model for BisSes. We will focus more on how to use the methods in physical systems
than on rigorous proofs, though some important theorems will be proved to give an insight in
the mathematical framework. In physical applications, the groups will be groups consisting
of symmetry operations. Throughout this chapter we will use the group of symmetries of an
equilateral triangle as an example, since it has physical application on its own and is part of the
symmetry group of BisSes, and hence it will be useful to have this in mind when introducing

the various concepts.

2.1 Abstract groups

A group is defined as a set of elements G = {A, B, C, ...} for which some kind of multiplication

is defined. This multiplication has to satisfy the following rules:
1. The group is closed under multiplication, i.e. AB € G for any A, B € G.

2. The associative law holds, i.e A(BC) = (AB)C, for any elements A, B,C € G. This

means that that the notation ABC' is unambiguous.
3. There exist a unit element E € G such that FA = AF = A for any A € G.
4. To each element A € G there exist an inverse element A~1 such that AA~! = A=A = E.

A very simple (and uninteresting) example of a group is just G = {1}, containing only one
element. Another often used group is the set of positive real numbers, containing an infinite
number of elements, but is often not referred to as group since it has a lot more structure.
The number of elements in a group is called the order of the group. In the following we will
focus on groups of finite order.

In physics the typical groups considered is a set of symmetry transformations, that leaves
a physical system invariant. In this case the group multiplication AB is simply the transfor-
mation obtained by first performing the transformation B and then A. It should be obvious
now that the set of symmetry operations on a system is group, but let us just check the four

points in the definition;

1. If a system is invariant under the transformations A and B it should also be invariant

under AB, i.e. doing one transformation and then the other.
2. Associativity comes directly by the definition of multiplication.
3. The identity transformation will always leave a system invariant.

4. If a transformation leaves a system invariant, then doing the inverse should also leave it

invariant.
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Unlike the group of positive real numbers, a general group is not necessarily commutative,

i.e. in general AB # BA, as is the case for a group containing rotations around different axes.

Y

Figure 2.1: The group of symmetry operations on the equilateral triangle consists of the identity, two rotations
around the z axis by 120 degrees (clockwise and counter-clockwise) and three rotations of 180
degrees around the axes A, B and C, indicated by the red dashed lines.

As an example let us consider the group called D3 that leaves an equilateral triangle

invariant, see figure [2.1] This group consists of the elements:
e The identity element which is usually denoted by FE.

e Two rotations by 120 degrees around an axis perpendicular to the triangle, denoted by

D (clockwise) and F' (counter-clockwise).

e Three rotations of 180 degrees around the medians of the triangle, denoted by A, B and
C.

By performing successive transformations of the group, we can verify that the group is
indeed closed. The results of performing two successive transformations can be summarized in
a multiplication table, see table The product AB is then read off as the element at the
row labeled by A and the column labeled by B, and we see AB = D. We also immediately
see that BA = F # AB, hence this group is not commutative.

Observe that each row or column contains each element of the group exactly once. This is
no accident, it is a general theorem called the rearrangement theorem.

Rearrangement theorem: For any finite group G = {4, ..., A, } the sequence:
A1 Ay, ..., Ap Ay (2.1)

contains each group element A; exactly once, for any group element Ay.

Proof. For any Ay and A; in the group there exists A, = A,-A,;1 € G since all elements has

an inverse and G is closed under multiplication. Hence A; = A,Aj and thus appears at least

'Tf you try to reproduce this (or something similar) it is highly recommended to use an object which is not
symmetrical (or label the corners of the triangle), else all transformations just leaves the object invariant.
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Table 2.1: Multiplication table of the symmetry group of an equilateral triangle. In agreement with the
rearrangement theorem each row (and column) contain each element exactly once.

once in the above sequence. But since the sequence contains the same number of elements as

the group, each element must appear exactly once. ]

2.2 Classes

We will now see how the elements of a group can be divided into classes of elements, using
the concept of conjugation of elements.

Two elements A, B € G is said to be conjugate to each other if
A=XBX™! (2.2)

for some element X € G. If A and B are both conjugate to C, then they are also conjugate to

each other:

C=XAX"'=vYBYy!
S A=X'YBY ' X e A=X"1yB(X'y)! (2.3)

Here we used that the inverse of a product is the product of the inverse in the reverse order
(X~1Y)~! = Y~1X, which can easily be shown.

This means that we can divide the elements of a group into classes, which are sets of
mutually conjugate elements, i.e. in a group G = {A;, ..., A,,} the class containing the element

Ay is the elements:
AlAkAfl, oy A AR ALY (2.4)

Note that some of these elements might be equal. The identity element is for example always
its own class since AZ'EA;1 = F. In a commutative group each element is its own class, since
AZ-AkAi_l = AiAi_lAk = Ag.

2.2.1 Classes of D;

In the group of symmetries of the equilateral triangle, there are three classes C; = {E},
Co ={A,B,C} and C3 = {D, F'}. This can be shown simply by looking at the multiplication
table, and computing all the conjugates, but it can also be realized from physical reasoning.

A, B, C are all rotations of 180 degrees around different axes, and D and F transforms these
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axes into each other, so for example rotation around B can be obtained by first rotating the
B-axis into the A-axis using F' then rotating around the A-axis, and then finally rotating back
F~1 = D. And as seen on the multiplication table B = DAF. But in this way of thinking
a class is not some abstract mathematical concept, we see that we actually divides the group
into sets of elements which are physically similar. This kind of reasoning is very useful when
determining the classes of a physical symmetry group, since it can be very tedious to work out

all the products in the multiplication table.

2.3 Representations

By a representation, I' of an abstract group G = {F, Ay, ..., Ay}, we mean a set of square
matrices, with one matrix representing each element A; of the group, denoted by I'(4;). Note
that these do not have to be different matrices for each element, the only requirement is that

they fulfill the same multiplication table, i.e.
NAT(B)=T(AB) V A,Beg (2.5)

The representation is of course a group itself. If all the representation matrices are different
then the order of this group is the same as the original one, and the representation is said to be
true or faithful. All groups have the so-called identical representation where all the elements
are simply represented by the number 1, which is of course unfaithful unless the group is only
the identity element.

If we have a representation I'(A) we can form an infinity of new representations by similarity
transformations IV(A) = MT(A)M !

I'(A)T(B) = MT(A)M*MT(B)M ™ = MT(A)T(B)M~*
= MT(AB)M ™' =T’(AB) (2.6)

These representations, related by similarity transformations, are said to be equivalent, since
they are basically just stated in a different basis. The set of all equivalent representations is
sometimes called an equivalence class of representations.

Another way to get a new representation from two (or more) representations is to form the

matrices:
I'A) = (F(l)(A) 0 > (2.7)

which clearly is a representation. This is called a reducible representation, since it can be
reduced to the representations I'™) and T'®). But this representation is also equivalent to one
where the rows and columns have been mixed around, and is no longer on block form. A
representation is reducible if it is equivalent to a representation where all the matrices are
on block form. Usually the structure of a reducible representation is given by writing it as a
sum of the representations it consists of in block form. In the above example one would write
I' = TM 4+ T, Note that this notation is not usual addition of matrices. An irreducible
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representation is then a representation, which cannot be brought on block form by a similarity
transformation.
The great orthogonality theorem. Consider all inequivalent, irreducible unitaryE] rep-

resentations I'® of a group G then:

Z F( )(A);U/F(])(A)aﬁ = *5ij5,uoc(51/ﬁ7 (28)

Aeg i

where the sum is over all elements in the group, F(i)(A) uv is the pv matrix element of the
i’th representation of the element A. h is the order of the group and [; is the dimension of
the ¢’th representation. For a proof see [8]. This theorem can be interpreted geometrically, as
orthogonality between a set of vectors in a vector space of dimension h, i.e. we can consider each
matrix element of each representation as a vector Fffg = (F(i) (A1) s F(i)(Ag)w,, - F(i)(Ah)W)
with one component for each element in the group. The vectors are labeled by three indices,
the representation index and the two matrix indices, so the set consists of Y, vectors. Since
the maximal possible number of orthogonal vectors is equal to the dimension of the vector

space we have Y, [? < h. Furthermore it can be shown that equality always holds ([§] p. 31):

dIE=h (2.9)

2.3.1 Representations of D3

Here we will construct explicitly the irreducible representations of the group of the equilateral
triangle. Of course we have the one dimensional identical representation, where all elements
are represented by the number 1.

The elements of the group act linearly on the vector (z,y) and thus, if we simply construct
the matrices transforming this vector, we get a 2 dimensional representation of Ds. These

matrices are found to be:

rO)(E) = <(1) ‘f) ro)(4) = (; 01> r(B) = (Qg ﬁ)
- 2

1 V3 _1 V3 1 V3
r<3><c>—< Vs ) P<3><D>—< Vs ) F<3><F>—<¢§ )
_ V3 3 V3

1 1 —
2 2 2

N[ N

(2.10)

1
2 2
Now one might wonder whether this representation is reducible. If it is reducible then all of
the matrices could be diagonal by some similarity transformation, i.e. there exists some matrix
M such that MT®)(X)M~" is diagonal for all X in Ds. This corresponds simply to a change
of coordinate system in the plane, but a rotation by %’r will always mix the coordinates and
the matrices can therefore not be made diagonal. Thus this is an irreducible representation.
If we also consider a z-axis perpendicular to the triangle, then the z coordinate will be
invariant under F, D, F' but will change sign under the rotations A, B, C, hence we can con-

struct a new representation governing the transformation properties of the z-coordinate, given

2A unitary representation is simply a representation of unitary matrices. And any representation with
nonvanishing determinant, is equivalent to a unitary representation, [8]
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(2.11)

Now we have three inequivalent, irreducible representations, since a one dimensional rep-

resentation is always irreducible. And since we have the equation:
> =6, (2.12)
i

then these three are all the inequivalent, irreducible representations of Ds.

2.4 Characters

Since all representations are equivalent to an infinity of representations by similarity trans-
formations, which may look very different, it would be useful to be able to characterize an
equivalence class of representations rather than just a single representation. This will enable
us to quickly check whether a representation is reducible and if two representations are equiv-
alent. This can be done using the character of a representation, which is a set of h numbers

X9 (A1), ...,xU)(A,), where j is the index of the representation. This is given by:
XD (4;) = Tr 1O (4;) (2.13)

Since the trace of a matrix is invariant under similarity transformations, this character is
indeed the same for equivalent representations. This property also shows that all elements in
one class have the same characters and it makes sense to simply talk about the characters of
a class xU)(C).

The great orthogonality theorem for characters. The characters of the irreducible

representations of a group G obey the orthogonality relation:
S oA KD (A) =D N (€)X W (Cr) = héy; (2.14)
Aeg k

the first equality is just using that the character is the same for elements in same class. Ny, is

the number of elements in th class Cy.

Proof. We start by the great orthogonality theorem:

Z F(Z) (A)ZZ,F(]) (A)aﬁ = ﬁéijéuaévﬂv (215)

Aeg li
Then we set © = v and a = 8 and sum over both v and :
PO (A5, PO(A) g5 = 3 26,.6,50
> 1A, 10 )[w—zfz‘j v8ouB
v,B AeG vB

S h
=3 YD (A)* ) (A) = ;5@ > " bu = héy; (2.16)
Aeg ' v
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O]

This orthogonality relation is extremely important, since it shows the power of characters.
With this at hand it becomes easy to check whether a representation is reducible or not. If it
is reducible, one can find the representations it is composed of. The character of a reducible
representation I' is simply the sum of the characters it is composed of, which is easy to see

when it is on block form. Thus we can have:
X(A) = a;xY(4) (2.17)
J

where the sum is over irreducible representations, and a; is an integer denoting the number
of times the j'th irreducible representation occurs in I'. Now we can use the orthogonality

theorem for characters to find the integers a;:

> AN = 32 3 axPAND(A) = Y ashdy; = ha

Aeg Aeg j J
S a;=h"" 3 (AN (A) =D X (Cr)” (218)
A€g k

This shows that the integers a; are uniquely determined and can easily be found from the
characters of the irreducible representations.

The great orthogonality theorem for characters shows that the characters can be seen as a
set, of orthogonal vectors, one for each irreducible representation. The dimension of this vector
space is equal to the number of classes, and hence the number of irreducible representations

cannot exceed the number of classes. In fact, it can be shown that equality always holds:
Number of classes = Number of inequivalent irreducible representations (2.19)

This can be very useful since the number of classes usually can be determined by physical
reasoning, while it can be a tedious exercise to figure out all the representations of a group.
As we have seen now a lot of information about a group is given by the characters of the
irreducible representations. A convenient way to display these characters is to construct the
character table. The columns are labeled by the classes usually with the number of elements
in front and the rows are labeled by the irreducible representations. See table for the case
of the symmetry group of an equilateral triangle. The first row is just ones, since the first
representation is the identical representation. The first column is just given by the dimension

of the representation since the first class is just the identity element.

2.4.1 Construction of character tables

In most cases the character table of a group can be constructed by following these steps:

1. The number of irreducible representations is equal to the number of classes which can

quite easily be determined by physical reasoning.

2. The dimensionalities I; of the representations can in most cases be uniquely determined

10
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by >,1? = h. This will determine the first column of the character table since the
x = I; (the trace of an identity matrix is simply equal to its dimension). The first row
is also given already, since any group has the identity representation, where all elements

are represented by the number 1.

3. The great orthogonality theorem for characters; rows must be orthogonal and normalized

to h, using the weighting factor Vi, the number of elements in the class Cy, i.e.:

Zx(i)(ck)*x(j)(ck)]\fk = hdi; (2.20)
k

4. The columns must be orthogonal and normalized to le, i.e.

h

=—90 2.21
ol (221)

> XD @C) ¥
This follows from the great orthogonality theorem for characters.

2.4.2 Character table of D;

Now we will see how these rules can be used to determine the character table, without even
writing down the multiplication table. Step 1 and 2 immediately gives all but the lower right
4 characters, see table Now we will determine a, b, c and d by the steps 3 and 4. Step 3

{E} 2C3 3C,
rdl 1 1 1
r® 1 b a
r® 2 d C

Table 2.2

gives the equations:

1+ 3la> + 2> =6 (2.22)
44 3|c)>+2|d? =6 (2.23)
1+3a+2b=0 (2.24)
24+3c+2d=0 (2.25)
2+ 3a*c+2b*d =0 (2.26)

while step 4 gives the equations:

L+ al? +|e[* = 2 (2.27)
L4+ b2+ 1]d*=3 (2.28)
l+a+2c=0 (2.29)
1+b+2d=0 (2.30)
14+a*b+c'd=0 (2.31)
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Now we can also use that since I'® is a one dimensional representation so the representation
matrices are simply the characters. Since Cy are rotations by 7 they are their own inverse, so
a = x?(Cy) = 1. Put this into equation (2.27) and we get ¢ = 0. Putting this into equation

(2.29) gives a = —1, equation (2.31) now gives b = 1 and at last equation (2.30) gives d = —1.
Now we have the full character table, see [2.3

{E} 2C3 3C,
M| 1 1 1
re | 1 1 -1
@ 2 1 o0

Table 2.3

2.5 Direct product groups

As we saw above, even though a character table can be determined from these rules, it takes
some effort. For groups of higher order it becomes more tedious, maybe not even possible.
But if a group can be divided into two types such that each element of one commutes with all
elements of the other, then it can be written as a direct product group. This could for example
be the group of rotations and the group of the inversion operation.

For two groups G4 = {E, As,...,Ap,} and Gp = {E, Ba, ..., By, }, where any element of
G4 commutes with all elements of Gp we define the direct product of G4 and Gp as:

QA X gB = {E, Ag, ...,AhA,EBQ,AQBQ, ...,AhABQ, ...,EBhB,AQBhB, ...,AhABhB} (2.32)

This is a group of order hahp. It is closed under multiplication since elements of different
groups commutes.

Now we will try to find the irreducible representations of the direct product group. An
educated guess would be to use the direct product (or kronecker product) of the matrices of
the representations of the original groups. For matrices M and N of dimensions a,b and ¢, d

the direct product M ® N is a ac by bd matrix, in block form given by:

M;N - MpN
M®N = S (2.33)
MaN - MyN

For 4 matrices M, N, L, K of dimensions such that the matrix products ML and NK exists,
the so-called mized product property holds:

(M® N)(L e K) = (ML) ® (NK) (2.34)

With this property we can show that the direct product matrices of a representation of G4
with a representation of Gg, ['94%98(A; B;) = I'94(4;) ® ['92(B;) forms a representation of

12
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the direct product group:

194%9B (AZ,Bj)I‘gAng (AkBl) _ [FQA (Az) ® 9B (Bj)] [I‘gA (Ak) ® IKZE (Bl)]
= [P94(A)T9(A)] @ [T97(B;)T97 (By)] = T94(A;Ay) @ T'9 (B; By)
= 194795 (A; A, B; B)) (2.35)

In [8] it is shown that the irreducible representations of a direct product group G4 x Gp is
precisely the direct products of the irreducible representations of G4 and Gg. The classes of
the direct product groups is easily found from the classes of the original groups, each pair of
classes (one from each group) form a class in the product group. This can be seen by using
that the elements of the two groups commute. For a general element in G4 x G A;Bj, we

have:

XA;ByX ' =XA; X 'Brif X €Ga (2.36)
XA;BeX ' = A, XB X if X €Gp (2.37)

So the total number of classes is the product of the numbers of classes in the two original
groups, in agreement, with the number of irreducible representations. The character of a direct
product representation XAXB(AiBj) is simply the product of the characters of the original
representation XA(AZ-)XB(Bj), which just follows from the property of the kronecker product
TrA® B = Tr ATr B. This allows us to construct the character table of G4 x Gp if the

character tables for G4 and Gg are known.

2.5.1 Character table of Dy,

The elements of D3 all commutes with the inversion operator I, which transforms x — —x.
Therefore we can construct the direct product group Dsq = D3 X I, where I denotes the group
containing only I and the identity. The character table of the group of the inversion operator
is easily constructed; first row and column are ones due to the two first rules, and the last

element must then be one because of the orthogonality relation. Using the character tables of

{E}y I
T 1 1
re-| 1 -

Table 2.4: Character table for the group of the inversion operator.

D3 and I we see that the character table of D3g is simply four copies of the charactertable of
D3, but with a minus sign on one of them, see table

2.6 Basis functions

Now it is also interesting to let symmetry operations operate on functions. This is useful since
eventually we will use group theory to characterize quantum mechanical wave functions. Con-

sider a group of coordinate transformations G = {F, A1, ...} which transforms the coordinates
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{E} 2C3 3Cy | I 2C3I 3CoI
rao | 1 1 1 |1 1 1
ret | 1 1 -1 |1 1 -1
réH | 2 1 0|2 -1 0
ra=- | 1 1 1 [-1 -1 1
rée)| 1 1 -1 /-1 -1 1
ré=)| 2 10 |2 1

Table 2.5: Character table for the group D34

x — x' = A;x. Here A; is not necessarily a matrix it is just some transformation of the
coordinate, which could also include a translation. Now we introduce a new group of elements
operating on functions, the element corresponding to A; is denoted by P4, and is defined by

the relation:
Py, f(Ax) = f(x) & Pa, f(x) = f(A;'x) (2.38)

These equations should hold for all x in the domain considered. The fact that the elements

Py, defines a group can be derived directly by the group properties of G e.g:

Py, Pa; f(x) = Pa, f(A;'%) = f(A7TAT'%) = F((Aidj)7'x) = Pa,a, f (%)
© Pa,Pa; = Pa,a, (2.39)

this shows that the new group satisfies the same multiplication table, and we say that it is
1somorphic to the original group.
By a set of basis functions {f1,..., fn} for an n-dimensional representation I', we mean a

set of functions satisfying the relation:

Pafo =Y T(A)sals- (2.40)
B

We also say that the functions { f1, ..., fn} belong to this representation, or that they transform

according to it.

2.6.1 Group of the Schrédinger equation.

Let us now consider a physical system with a symmetry group of coordinate transformations
that leave the Hamiltonian invariant. This group is called the group of the Schrédinger equa-
tion. Then the group of operators P4, will all commute with the Hamiltonian. Then the time

invariant Schrodinger equation gives:

Hwn = En¢n
& Pa,Hopy, = HPy,pn = Pa,Enthy (2.41)

This shows that P4, is also an eigenstate with the same energy E,. Thus if we have one

eigenstate we can generate other eigenstates with the same energy by applying all symmetry
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operations, but they will not necessarily be independent, thus we do not know beforehand
how many states to expect at a certain energy F,. This procedure will not always generate
all possible degenerate eigenstates with energy F,, but when it does the degeneracy is said
to be normal, otherwise it is said to be an accidental degeneracy. Accidental generacies are
not originated by a symmetry. Often they turn out not to be exact or to have some origin
of symmetry, when studied closer. Therefore, we will from here on assume no accidental
degeneracies. Now consider an [,-fold degenerate energy level of eigenfunctions 97, ..., ¢
with energy Ej,. By the result above any transformation P4, on any of the functions ¢7 will
result in an eigenstate with the same energy, and thus can be written as a linear combination
of these [,, functions. Thus the effect of the symmetry operations can be represented by matrix

multiplication in this subspace:
Pyt = Z T(Ai)jop (2.42)

where the sum is over the degenerate eigenfunctions. The notation here is hinting that these

matrices actually form a representation of the group, and in fact this turns out to be true:

ZFAAZ mj¥m = Pa,a,0j = Pa,Pa = Pa, ZF (AR = Y T (A kT (Ad) ity

k,m

= Z T(AD) | ms ™ (2.43)

Then T'(A;A;) = T'(A;)T'(A;). Hence these I' matrices form a representation, and the set of
degenerate eigenfunctions are basis functions for this representations. It is in fact an irre-
ducible representation. If it were reducible the basis for this degenerate subspace could then
be transformed such that all the matrices of the representation became block diagonal, but
this contradicts the fact that we assumed no accidental degeneracies. If the matrices were
block diagonal then all the degenerate states ¢7,...,4;" could not be generated by symme-
try transformations of one particular eigenstate ¢7 which is the definition of an accidental
degeneracy. Thus given the group of the Schrédinger equation the dimensionalities of the
irreducible representations determine the possible non-accidental degeneracies of the system.
These degeneracies can only be split by perturbations breaking the symmetry of the system.
This shows how transformation properties can be used to label eigenstates, ¢} is then the
1’th eigenstate belonging to the n’th representation. The physical meaning of the first label

depends on the basis chosen in the degenerate subspace.

2.7 Full rotation group and angular momentum.

In this section we will discuss the relation between the full rotatin group and angular mo-
mentum. We will assume that the reader is familiar with angular momentum in quantum
mechanics, and relate this to the full rotation group.

The full rotation group consists of rotations by any angle around any axis going through
the origin. This group is the first example, we have of an infinite group. It has an infinite

number of classes, because any rotation of a certain angle o around any axis belong to the
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same class, since the different rotation axes are related by another rotation. Therefore the
number of representations is also infinite. The angular momentum operator J can be defined
as the generator of rotations, which means that the operator P, , denoting a rotation of the

—0=J: e can chose a basis of states with

angle 6, around the z axis, can be written as e
definite angular momentum in the z direction |.J,m), where quantum numbers not concerning
the angular momentum is left out. Since the total angular momentum is conserved, a rotation
of |J,m) will be a superposition of states with the same J. Hence, the states |J,m) span
a 2J 4+ 1 dimensional representation of the full rotation group. Now we will calculate the
characters of such a representation. Since any rotation axis can be transformed into any other
rotation axis by a rotation, all rotations of the same angle will belong to the same class. So we
can simply calculate the character of rotations around one specific axis. This is easiest done

for the z axis:

Py |J,m) = e~ ™% | ] m) (2.44)
and thus
e~ - 0 0
0 e~iJ-10=
/= _ (2.45)
0 eiJOZ
and we get the character:
y N ime, _ sin((J £ 5)6:)
X (Po)= ) erimle = ———2 (2.46)
e sin(%)

Since the character only depends on the angle, we will just use the notation x”(#). It can be
shown that these I'V representations are all the irreducible representations of the full rotation
group [8]. The character of a rotation of 6 + 27 is given by:

sin((J + 3)0 +2n(J + 1))

x’ (0 + 27) = n(? ) = (—1)2‘7)(”7(9) (2.47)
2

Thus if J is an half integer, then the character changes sign under rotations by 27. This is in
agreement with the fact that fermionic wavefunctions changes sign under 27 rotations ﬂ To
handle this we introduce a new symmetry operation R which is a rotation by 2, but it is not
equal to the identity operator since it changes the sign on fermionic states. This doubles the
number of elements in the group, and therefore this new group is denoted the double crystal
group. To construct the double group one only needs four rules, which we will simply state

here. For a more complete discussion see [10].

1. If C = {A4,...,A,} is a class of the original group then C and RC = {RA;,..., RA,}

both form classes in the double group. The only exception is if C is a class of rotations

3This fact was experimentally verified in 1975, by measuring the phase shift of neutrons precessing in a
magnetic field [9].
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2.7. FULL ROTATION GROUP AND ANGULAR MOMENTUM.

by 7 around some axis and the symmetry group also contains rotations by m around an

axis perpendicular to the first one. In that case Cy and RCs belong to the same class.

2. Any irreducible representation of the original group is also an irreducible representation
of the double group with the same set of characters x(C), where C is any class in the

original group, and x(RC) = x(C) for the new classes.

3. Since the number of irreducible representations is equal to the number of classes we
must have some new irreducible representations. These new representations satisfies the

relation x(RC) = —x(C).

2.7.1 Double group of D3y

Now we want to double the group D34, using the above rules. Since inversion commutes with
all elements of the double group, we can start by constructing the double group of D3 and then
take the direct product with the group of the inversion. We only have one class of rotations by
7 the number of classes is doubled and hence so is the number of irreducible representations.
We have that >, 12-2 = 12 since we now have 24 elements in the group. If we sum only over the
old representations then ), ll-2 = 6, and hence the sum over the 3 new representations is also
> l? = 6. The only integer solution to this equation is if we have two new representations of
dimension 1 and one of dimension 2. The new representations must give a minus sign when
rotated by 2, hence x(C2)? = —1 < x(C2) = +i for the one dimensional representations. By
the same argument x(C3) = —1 for the one dimensional representations. Now we have the
character table except for two elements a and b, see table

{E} 203 3C; [R 2RC3 3RCy
rdl 1 1 1|1 1 1
r@| 1 1 -1 |1 1 -1
ré | 2 10 |2 -1 0
r@ | 1 1 | -1 1 -7
ré | 1 1 4| 1 i
r® | 2 a b | -2  -a -b

Table 2.6: Character table for the double group of D3

a and b are easily found from the orthogonality relation for the columns:

—1-142a=0&a=1 (2.48)
W=0sb=0 (2.49)

At last we can construct the character table for the double group of D3y by taking the
direct product with the group of inversion and the double group of D3, giving the character
table
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{E} 2C3 3Co | I 2IC3 3IC; | R 2RC3 3RCo | RI 2RIC3 3RIC,
ras | 1 1 1 |1 1 1 1 1 1 1 1 1
ret |1 1 -1 |1 1 1)1 1 -1 1 1 -1
réyH | 2 1 0|2 -1 0 |2 -1 0 2 -1 0
rdH | 1 1 1 -1 | -1 1 - 1 1 ]
ré+H |1 1 |1 -1 i -1 1 i -1 1 i
L@+ | 2 1 2 1 0o |-2 -1 0 -2 -1 0
rad=- | 1 1 1|1 -1 101 1 1 -1 -1 -1
re) | 1 1 -1 ]-1 -1 1 1 1 1 1 1 1
ré-) | 2 10 |2 1 0 2 -1 0 -2 1
r“» 1 -1 4 |-1 4|1 1 i 1 1 i
ré=) | 1 A S | i | -1 1 i 1 -1 )
ré-)| 2 1 0 |-2 -1 0 |-2 -1 0 2 1 0

Table 2.7: Character table for the double group of D34

2.8 Bloch’s theorem

An important application of group theory in condensed matter physics is bloch’s theorem.
It applies to a physical system with translational symmetry. Let us just consider the one-
dimensional case, generalization to higher dimensions is straightforward. If we have a periodic
potential V' (z) of period a then the Hamiltonian:

H = ﬁ + V(x) (2.50)
2m

is invariant under translations of an integer times a. Let this transformation be denoted by
Py, Paf(z) = f(z + a). For a finite system of length L we must have periodic boundary
conditions to maintain translational invariance. Then we have a cyclic group of order n =
% since any element can be written A”™ and A" = E because of the periodic boundary
condition. Since this group is abelian we only have one dimensional representations. One
dimensional representations are simply equal to their characters and since A" = FE then

m2r/n where m is an integer which

the characters of any representation must be equal to e
labels the representation. This gives exactly n distinct representations, since m = myg and
m = mg + n gives the same characters, and therefore the same representation. We can also
label the representations by k = %Tm As we have seen any eigenfunction of the group of the
Schrédinger equation must transform according to one of the irreducible representations of the

group, we can label the eigenfunctions by k and ¢, must satisfy the transformation rule:

Pay(z) = (x4 a) = ey (a) (2.51)

This results in the well-known fact that eigenfunctions of a periodic potential can be written
as a product of a free particle wavefunction times a function with the same periodicity as the

potential:

U = e ug(x) (2.52)
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where ug(z) = ug(x + a).

2.9 Time reversal

A very special and important symmetry is the time reversal operator. The time reversal
operator simply takes t — —t. Classically this reverses all momenta, but leaves the position
invariant. If we first consider the Schrédinger equation without spin:

V2 oY(z,t)

(5, + V@)Y, t) =i—p— (2.53)

Now we want to see how time reversal changes this equation, and we simply take ¢ — —t,

which gives:

2 .
(2% +V(@))i(z, 1) = —iw
2 2
(2% Y0 = iw (2.54)

We see that by complex conjugation we get the original Schrédinger equation back, but for
*(z, —t) instead of ¢(z,t). Hence, if ¢(x,t) is a solution so is ¥*(x, —t). This shows that for
spinless particles the time reversal operator is simply comlex conjugation, denoted by K. It is
very important to note that this operator, in contrast to almost any operator used in quantum

mechanics is antilinear and not linear. An antilinear operator is defined by:
T(aly) +blp)) = a"T[Y) + b"Tlp) (2.55)

where the difference from a linear operator is the complex conjugation. Furthermore this

operator is antiunitary, which means that:

(TY|Te) = (Ple)* (2.56)

Again the difference from a unitary operator is the complex conjugation. This obviously holds

for the complex conjugation operator:

/(KSO)*(K?/J) dx = </<p*w dX>* (2.57)

For particles with spin, time reversal can also act in spin space, and since spin is angular
momentum we expect time reversal to reverse the spin. Under time reversal the time evolution
operator et must become TeHtT—1 = ¢#H! for any particle regardless of spin and thus the
time reversal operator is antilinear. And since we want it to conserve the norm it must be

antiunitary. The product of two antiunitary operators must be unitary, and thus we have:
KI'=U<T=UK (2.58)

where U is some unitary operator. This actually means that any antiunitary operator can be
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written as a product of complex conjugation operator and a unitary operator. Applying the

time reversal operator twice should not change the physical state of the system which means

that 72 must be a trivial phase factor €.

e =T =UKUK = UU* (2.59)

Since U is unitary UUT = 1 & U*UT = 1, so multiplying the last equality by U’ from the
right gives:

U=eUT Ut =Ue? (2.60)
Substituting the second into the first gives:
U =eUe? = ()2U = ()2 =1 (2.61)
This eqaution gives that T2 = ¢ = 41. Using T? = UU* we see that the determinant of 72
is:
det(T?) = det(UU*) = det(U) det(U*) = det(U) det(U)* =1 (2.62)
But T? = +1 which means that the determinant is (£1)"” where n is the dimension of the
space U is operating in. This is the spin space, which is odd dimensional for integer spin.
Hence, T2 = 1 for integer spin.
If we have a half-integer spin instead, 7 is not determined from this consideration. From
a classical point of view we expect the angular momentum to be reversed under time reversal.
This means that TJT = —J for any angular momentum operator J is the spin operator. For

a spin % system we have in general that 7' = UK. We choose a basis where the spinoperators

are represented by the pauli matrices S = %0, with:

UI:<0 1) ,Uy:<9 _i> ,O’z:<1 0) (2.63)
1 0 1 0 0 -1

Any 2 by 2 matrix can be written as a linear combination of the pauli matrices and the

identity matrix, so if we write:
U=d-o+ dyoy, (2.64)

where 0 = (04,0y,0.) and o9 is the identity matrix.

The requirement that T" reverses spin then results in the following;:

To, 7' =Uc, U = -0, ©Us, = —0,U (2.65)
To,7 ' = -Uo,U ' = -0, & Usy =0o,U (2.66)
To. T '=Uc,U = -0, o Us.=—0.U (2.67)
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U must commute with o, and anticommute with o, and o.. The first equation, gives that
dy = do = 0 and the third that d3 = dop = 0 and hence U = dy0,. Since U is unitary d is just

a phase factor. Then we have:
T? = dyoy Kdyoy K = —|dz*op = —1 (2.68)

Usually the phase is chosen such that T = i0y K. This shows that T 2 = —1 for a spin half

system, but it actually turns out to be the case for any non-integer spin system.

2.9.1 Kramers Theorem

For a system of non-integer spin time reversal invariance leads to a double degeneracy, known
as Kramers degeneracy. This degeneracy is a direct result of the fact that 72 = —1. If the
system is described by the Hamiltonian H is time reversal invariant then 7" and H commutes.

If we have an eigenstate |¢) with energy FE, then:
H|p) = ElY) < TH[y) = HT|y) = ET|¢) (2.69)

and T|vy) is also an eigenstate of energy E. However this does not tell us if we have a

degeneracy, since |1) could be proportional to |¢), but if 72 = —1 then:

(WITY) = —(T*|TY) = —(TY[)* = —(Y|T)
& (Y[TY) =0 (2.70)

showing that [¢) and T'|¢) are orthogonal, and we have a double degeneracy. Note that the

only proporties of T used in this derivation is 72 = —1 and the fact that 7" is antiunitary.

2.9.2 Inversion and time reversal

Now we turn to a translational invariant system again. The eigenstates of the Hamiltonian

can then be written as bloch states which under lattice translations transforms as:

Uni(x + R) = MRy, 1 (x) (2.71)

Then the time reversed of this state transforms as:
Tynx(x +R) = e BT, 1 (x) (2.72)

then T, ; must be a state of opposite crystal momentum ), . Note that the label m has
changed, and that it also contains the spin. This shows that for a time reversal invariant
system the dispersion relation E, (k) must be symmetric around k = 0, and specifically at
k = 0 all bands have at least a double degeneracy.

For a system with both inversion I and time reversal symmetry then we can use that
the system also has the symmetry I7T. This an antiunitary operator since I is unitary and

(IT)?> = —1, and hence the states related by this symmetry must be orthogonal because of
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Kramers theorem. The state IT, x transforms under lattice translations as:
IT, 1 (x + R) = e X RIT4, 1 (x) (2.73)

since inversion takes x — —x. This means that the states related by IT are at the same k

value, and all bands of a system with both inversion and TR symmetry are doubly degenerate.

2.10 Symmetries of crystals

In solid state physics, we consider crystals, regular arrays of identical unit cells consisting of
one or more atoms. These will of course have some symmetries. The group of all coordinate
transformations leaving a crystal invariant is called the space group of the crystal. A subgroup
of the space group, is the group of lattice translations by a vector T,, = nia; + nsas + nsas,
where n; are integers and a; are the primitive translation vectors, defining the unit cell. In
addition there are transformations x — Rx where R is an orthogonal matrix. These are
rotations, inversion and combinations of those (or proper and improper rotations). A general
element is usually written {R|T}. The group we get by putting 7" = 0 is called the point
group. If the all elements of the point group are symmetries of the crystal, the space group is
said to be symmorphic. In a non-symmorphic group there are elements which involves both
a translation and a rotation, each of which are not symmetries of the crystal. But here we
will only consider the symmorphic groups. The three dimensional version of bloch’s theorem

states that the eigenfunctions of a translationally invariant system can be written:
Ui (x) = g (x)e®> (2.74)
The effect of a transformation R from the point group on the wavefunction is then:
Pri(x) = uc(R1x)e™RT* = 3y (R 1x) e/ REx (2.75)

Here we used the orthogonality of the matrix R, R™! = R”. u(R~!x) is also periodic with
the periodicity of the lattice, since R is a symmetry of the lattice. Thus applying the operator

Pr on a bloch wave function, gives a bloch wave function at crystal momentum Rk.

2.11 Theory of invariants

In this section we will describe how to construct invariant linear combinations of objects
belonging to irreducible representations of a symmetry group. To do this we will need Schur’s
lemma part 1 & 2, which we will just state here, for a proof se [10].

Schur’s lemma Part 1 A matrix which commutes with all matrices of an irreducible
representation is a constant times the identity matrix. Therefore, if a non-constant commuting
matrix exists, the representation is reducible.

Schur’s lemma Part 2 If (M) and T® are two irreducible representations of a given

22



2.11. THEORY OF INVARIANTS

group G of dimensionality {; and lo, then if a [; X [y matrix exists such that:
(X )M = Mr®(x) vx eg (2.76)

Then if [; # I then M must be the null matrix (M = 0), and if [ = Iy then either M =0 or
I'D and I'® are equivalent.

Consider a symmetry group G, and two sets of objects u = (uq, ..., up) and v = (v, .., vp,)
transforming according to the irreducible representations I'®) and T'(*) which are n and m
dimensional. We also choose them to be unitary [l Then a linear combination uf Mv (where
M is a n X m matrix), which is invariant can be constructed if and only if I'® and T are

equivalent.

Proof. First, if T and '™ are equivalent then there exists some matrix A such that
(X)) =A™ (X)A for all X € G. Then under the transformation X we have:

uf Mv — o T (X)) MA~IT™ (X)) Av (2.77)

We can then choose M = A and then we have an invariant term.
And second, if ufMv is invariant, then for all X € G:
uf Mv = uf (0T (X)) M (@) (X)v (2.78)
e M= C")(x)Mr®)Hx) (2.79)

Then either M = 0 or I'™ and T'") are equivalent by Schur’s lemma part 2. Then to get a

nontrivial invariant term '™ and I'® must be equivalent. O

Hence all invariant terms we can construct must be combinations of objects from the same

irreducible representation.

* Any representation by matrices is equivalent to a representation by unitary matrices [§]
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CHAPTER 3

LOW ENERGY EFFECTIVE MODEL

In this chapter, we will derive the form of the low energy effective model for BisSes. We want
to find a simple model that describes the topological nature of this material. Since we have
both time reversal and inversion symmetry all bands are doubly degenerate and we need at
least a four band model to get a gapped spectrum. That is our goal for this chapter; to obtain
a four band model that describes the low energy physics of BisSe;. We will use the theory of
invariants, from section to write down the most general model allowed by the symmetries
of the crystal. When this is done, the parameters can be found by fitting the spectrum to
experimental data or ab initio calculations of the spectrum. Another method is to use what
is known as k - p perturbation theory, where the parameters can be determined from matrix
elements of the momentum operator with wave functions at the gamma point (k = 0) from ab
wnitio calculations. Here we will only construct the model, and we will use both the parameters
of [11I] and [12]. Since we only use the symmetries of the crystal this holds for any material of

the same structure, e.g. BigTes. This class of materials is denoted the tetradymite group.

3.1 Crystal structure

In this section, we will describe the crystal structure of BisSes. Understanding the structure
is essential, when figuring out the symmetries of the crystal and considering which basis states

to use for our effective model. The crystal structure of BisSes is shown in figure It

(a) (b)
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Figure 3.1: (a) The crystal structure of BizSes, with one quintuple layer framed by the red box. The positions
the triangular lattice of each layer can be A, B or C sites as indicated on (c). The positions of
the layers alternate A-C-B-A-C-B etc. while the types of atoms are arranged in quintuple layers
consisting of five atomic layers in the order Se-Bi-Se-Bi-Se. (b) shows the first Brillouin zone of
the lattice. Adapted from [I1].

is a layered structure, with each layer consisting of a triangular lattice of either bismuth or

24



3.1. CRYSTAL STRUCTURE

selenium atoms. We choose a coordinate system with the z-axis perpendicular to the atomic
layers. The positions of the layers alternate between the A, B and C sites. The structure
can be divided into the so-called quintuple layers consisting of five atomic layers, alternating

between bismuth layers and selenium layers. The primitive translation vectors are given by:

a _a 0
2 2

t; = _\/ga ) ty = _\/g:a ) t3 = \/Sga ) (31)
C C C
3 3 3

where a = 4.138 A is the lattice constant of the layered triangular lattices, and ¢ = 28.64 A is
the length of the longest diagonal of the rhombohedral unit cell. On figure[3.T]it is the distance
between the top and bottom layers. The values of a and ¢ are from [13]. Then the thickness
of one quintuple layer is § = 9.547 A. There are five atoms in each primitive unit cell, two
equivalent bismuth atoms denoted Bil and Bil’, two equivalent selenium atoms Sel and Sel’
and a selenium atom which is not equivalent to the two others. By equivalent we mean that
their positions can be interchanged by a symmetry operation of the crystal. One rhombohedral
unit cell is indicated by the primitive translation vectors shown on figure 3.1} and the 5 atoms
in this unit cell are the ones exactly at the z-axis. If we take the origin to be in a Se2 atom then
the positions of the other atoms in the rhombohedral unit cell are given by £0.399¢2 for Bil and
Bil’ and £0.206¢2 for Sel and Sel’, according to [13]. Note that these atoms are in different
quintuple layers. The distances between the atomic layers within one quintuple layer can be
calculated using that the thickness of one quintuple layer is . The distance between the Se2
layer and the Bil or Bil’ layers is 0.399¢ — § = 0.066¢ = 1.890 A, the distance between Bil(’)
and Sel(’) layers —0.206¢ + § — 0.066c = 0.061c = 1.747 A. The distance between a Sel and
the Sel’” of the neighbouring quintuple layer is 0.206c — (—0.206¢+ §) = 0.079¢ = 2.263 A. The
vector from one atom to one of the nearest atoms in the next layer above is n = (0, —@, h)
where h is the distance between the layers. Then the distance between the two atoms is
\/ @ | h2. The three vectors connecting one atom to the three nearest in the next layer are
related to each other by rotations of 120 degrees, and the angle between two of these is given

by:

2

n-Ren 9 cos(120°) +h?  —% +h?

cos(f) = =

; (3.2)

where R3 is a matrix, representing a rotation of 120° around the z axis. We denote the angle
between the two vectors connecting a Se2 atom and two of the nearest neighbours in the Bil
layer a, and the angle between the two vectors connecting a Bil atom to two of the nearest
neighbours in the Sel layer 5. These angles are shown in figure and using eq. we get:

o =856 B =887 (3.3)

We see that the vectors connecting one atom to the three nearest atoms in the next layer, but

still in the same quintuple layer, are almost orthogonal.
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3. LOW ENERGY EFFECTIVE MODEL

Sel

1.747 A

Bil

1.890 A

Se2

Figure 3.2: The relative positions of atoms in different layers in 3 dimensions. The color indicates the type
of atom, and all atoms of the same type are in the same layer, i.e. has the same position on the
z axis. The size of the atoms indicate the position on the y axis. The positions of Bil’ and Sel’
can be found by inversion of the Bil and Sel. Note that the nearest neighbours are actually from
different layers. The angles shown are o ~ 8 =~ 90°, which means that the 3 p orbitals in the
direction of the nearest neighbours are approximately orthorgonal.

3.1.1 Symmetry group

The space group of this crystal consists of the group of translations by a vector:
R =n1t1 + noty + n3ts ny,no,n3 €7 (34)

and the point group Dsq. The point group D3q is the direct product group of D3 and the
group of the inversion operator. The effect of these symmetries are easiest to visualize by

considering the rhombohedral unit cell and the three primitive translation vectors.

1. Rotation around the z-axis by 120 degrees. Since all the atoms in the unit cell lie on
the z axis any rotations around the z-axis does not change anything within the unit cell.

This rotation transforms (t1,t2,ts3) — (t3,t1, t2) and thus the lattice is invariant.

2. Cg rotations around the z-axis. This rotation turns the unit cell upside down, but
that simply changes interchanges Bil (Sel) and Bil’ (Sel’). This rotation transforms
(t1,to,t3) — (—t2, —t1,t3) and thus the lattice is invariant.

3. Inversion I. This transformation takes r — —r and thus it also interchanges Bil (Sel)

and Bil’ (Sel’). Inversion transforms t; — —t; and again this leaves the lattice invariant.

All elements of the point group D3y can be produced by combination of these three transfor-

mations.

3.2 Qualitative description of the basis states around the Fermi

level

The goal of this section is to find the basis states for our effective model, i.e. the states closest
around the Fermi level at the gamma point. Starting from the atomic orbitals of bismuth and
selenide we will give qualitative explanations of the essential physics. Following [11], we will
do this in three steps; first we consider the nearest neighbour coupling within one quintuple
layer, then the crystal field splitting and at last the spin-orbit coupling. See figure for a
schematic picture of the results of this section. The arguments of this section follows [11],

where the qualitative results are also supported by ab initio band structure calculations.
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3.2. QUALITATIVE DESCRIPTION OF THE BASIS STATES AROUND THE FERMI LEVEL

|P1F,+3)
|P1;,.)
s [Pliy) IP1E, 1)
+3 93
|P13,.)
|P17) P27 +1
Bi |P23,£3)
N ________________________________________________________________________
_ P17, +4
Se P2, .) |P2.) P1£g)
|P27,+3)
P2t
P2rs) )
PO; ' ~ 1
D |PO;,..) i) i) |P22,+1)

Figure 3.3: Qualitative picture of the splittings of the outermost atomic orbitals. The starting point is the
6p atomic level of bismuth and the 4p level of selenide. The degenaracies of these level are 12
for bismuth and 18 for selenide, since there is two bismuth atoms and three selenium atoms in
each unit cell. Each atom has 3 different p orbitals and two different spin states. i) first we
consider the splitting due to the nearest neighbour couplings within one quintuple layer, then ii)
the crystal field splitting and iii) we see a crossing between the states closest to the Fermi level
when we include the spin-orbit coupling.

3.2.1 Coupling within a quintuple layer

The electron configuration of bismuth is 6s26p> while selenium has 4s24p*. Therefore, the
outermost orbitals for both atoms are the p orbitals and we will neglect all other orbitals.
This gives a total of 30 states in one unit cell, 3 p orbitals for each atom, and two different
spin states. The number of electrons in one unit cell is 18, three for each of the two bismuth
atoms and four for each of the three selenium atoms. Therefore the 18 lowest lying states
will be filled, and the chemical potential is somewhere above these states, but below the other
states. Hence, in the atomic limit (the starting point on the left side of figure[3.3)) the chemical
potential is between the two atomic levels. In [I4] they find from density functional theory
calculations, that the bismuth atoms are positively charged, while the selenium atoms are
negatively charged. Furthermore, they argue that this indicates that the coupling within one
quintuple layer is of the covalent-ionic type while the coupling between different layers are
of the weaker van der Waals type. Thus, the simplest model one could imagine is simply
a tight binding model within one quintuple layer. We have 3 p orbitals in the five different
layers. Now in principle one has to consider the coupling between any p orbital of one layer
with any p orbital of the next layer, but we can change to a basis where couplings between
orbitals of the same type dominate. We can change from p;, p, and p, orbitals to a basis of p
orbitals pointing in the directions of the nearest neighbours in the next layer. Let these three
be denoted by pg, pp and pc, they are shown in figure 3.4l These are to a good approximation
orthogonal as we saw above. Then there is almost no overlap between different types of p
orbitals in the different layers, while there is a big overlap between p orbitals of the same type,
see This means that for each of these three we have the Hamiltonian:
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3. LOW ENERGY EFFECTIVE MODEL

Figure 3.4: If the basis for the p orbitals are chosen in the directions of the nearest neighbours, then orbitals
of one layer have large overlap with orbitals of the same type in the next layer.

o

e

o
+~ o o o

in the basis of [Sel, pa), |Bil,pa), |Se2, pa), |Bil’, pa), [Sel’; pa), where a € {a,b,c}. Here ege

|PL,,.)
— 0Odd
— Even |P1z+,y,z
3 Bi
o M-t T T T T T T T T T T T T T T T T T T T T T T T T B
5 Se P2,,.)
+
|mz,y,z>
Po-
t=0 | z,y,z)

Hopping constant

Figure 3.5: The energy levels of one quintuple layer, as a function of the hopping constant ¢. The five resulting
levels consist of 6 degenerate states; three different p orbitals and two different spin states. The
color shows the eigenvalue of the various states under inversion. Since the pq, ps, p. orbitals are
split in the same way, we have changed the basis back to p.,py,p-.

and ep; are the atomic energies of bismuth and selenium. We use the same ¢ for all couplings,
since this is only a qualitative model and since the distance between the layers are almost
the same. Turning on the hopping constant ¢ splits the atomic levels as shown in figure 3.5
Since we have inversion symmetry, the levels are split eigenstates which are even or odd under
inversion. The inversion eigenvalues are indicated by the superscript. Note that since the p

orbitals are odd under inversion, and inversion interchanges the Bil (Sel) and Bil’ (Sel’), the
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3.2. QUALITATIVE DESCRIPTION OF THE BASIS STATES AROUND THE FERMI LEVEL

inversion operator in this basis is given by:

O 0 0 0 -1
0 0 0 -1 0

I=l0o 0 -1 0 0 (3.6)
0 -1 0 0
-1 0 0 0

Since the three different p orbitals are split the same way, we can change our basis back to
Dz, Py and p,. From now on, we focus on the two levels closest to the Fermi level, which is

between the two atomic energies, |P1}, ) and [P2,, ).

3.2.2 Crystal field splitting

Next, we consider the crystal field splitting. The atomic orbitals have full rotation symmetry,
but this symmetry can be broken by the crystal field. However, the crystal field is sym-
metric under D3, which will determine how the degenaracies when the p orbitals are splitF_-].
The p orbitals are basis functions for an irreducible representation of the full rotation group,
/=1 When the full rotation symmetry is broken down to D3 this representation is no longer
irreducible. The characters of the elements of D3 are according to eq. :

N

sin( sin(m)

) _

=—1, \YTI(@) = =0 3.7
The character of the identity is 3, since it is a 3 dimensional representation. By inspection
of the character table of the group D3 (table p. we see that V=1 is a reducible

representation of D3 which can be written in terms of the irreducible representations of D3 as

XV(E) =3, xUY(C) =

sin(

wola
ol

r/=1 _ 7@ 4 16 (3.8)

With full rotation symmetry the three p orbitals are degenerate, but lowering the symmetry
to Dj3 splits this degeneracy into to a non-degenerate and a doubly degenerate level. It must
be p, that belongs to the one dimensional representation I'® and p, and py that belongs to
I'®) and hence still have a degeneracy. The symmetry considerations here only shows that the
three p orbitals can be split into two levels; the p, orbital and a degenerate level of p, and p,.
It turns out that energy of the [P1} ) are increased while |[P1}) decreases, and the other way
around for the states with negative inversion eigenvalue, according to [I1]. Thus, both |P1})

and |P27) gets closer to the chemical potential.

3.2.3 Spin-orbit coupling

At this point all the states are doubly degenerate because of the spin. Now we will consider

the effect of spin-orbit coupling on the atomic orbitals. The atomic spin-orbit Hamiltonian is

'Here we only consider the group D3, which does not include inversion, since inversion symmetry does not
change the degeneracies.
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3. LOW ENERGY EFFECTIVE MODEL

given by [15]:

1 oU

Hy=Xs L=_——_ 5.
S 2m3cr 87”5

L (3.9)
where U is the potential of the atoms, mg is the electron mass, ¢ is the speed of light, and r is
the position relative to the center of the nucleus. Now we consider the effect of this interaction
on the states |P1}, ms) and | P27, ms), where o denotes the type of p orbital pg, py or p, while
mg denotes the spin in the z direction :i:%, giving in total 12 states. Now it is convenient to
change the basis to a basis with definite orbital angular momentum in the z direction. This
basis can be written |A, my, ms), where A € {P1T, P27}, m; and my are the projections in

the z direction of orbital and spin angular momenta. In terms of the old basis these states are

given by:
1
A 1,mg) = ———=(|Ag, ms) +i|Ay, ms 3.10
ALy = =(Ama) +ilAgma) (3.10)
A, 0,m) = [Az,my) (3.11)
1
A, —1,mg) = —=(|Agz, ms) —i|Ay, ms)) (3.12)

V2

Since the spin-orbit coupling is rotationally invariant (when rotation is applied in both spin
and orbital space) total angular momentum is conserved. The spin-orbit term can be rewritten

using the raising and lowering operators Ly = L, 4L, and Sy = S, £ iSy:
1
S-L=S,L,+SyL,+S.L,= §(S+L, +S_Ly)+S.L, (3.13)

the effect of this operator on our basis states is:

S LIA 1) = JA L) (3.14)
S-LIA,0,1) = \2;A,1,—;> (3.15)
S- LA, ~1,1) = \}5’A’0"5> I (3.16)
S-LIA,1,—1) = ém,o,; ~SIA L)) (3.17)
S L|A,0, 1) = \2;A,-1,;> (3.18)
S LA, -1, 1) = %|A7—1,—%> (3.19)

As we expected the total angular momentum in the z direction m;+m is conserved. Therefore,

the states |A, :l:l,:l:%) are already eigenstates of the spin-orbit Hamiltonian. The non-zero
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3.2. QUALITATIVE DESCRIPTION OF THE BASIS STATES AROUND THE FERMI LEVEL

matrix elements coupling the other states are:

AA
1 1 1
<A> T |HSO|A707 §> = <A,0, _§|HSO|A7 _17 §> = ﬁ (320>
AA
(A1, 3| Hoo|A 1, 2) = (A, —1, =4[ Ho|A, —1,-3) = > (3.21)
AA
(A, =1, Ho|A, =1, 1) = (A, 1, =3 |Hyo|A, 1, —3) = -5 (3.22)

Where we have introduced a spin-orbit constant A for each band, since they could be different.
Since the spin-orbit coupling only couples states with the same total angular momentum in
the z direction m; the Hamiltonian becomes block diagonal with blocks corresponding to each
value of m;. The spin-orbit coupling is also diagonal in the P17, P2~ space, and each block

can be written:

Era+2 0 0 0
H O Ty 0 ’ (3.23)
A,so — 0 0 hA B 0 ) .
T2
0 0 0  Eap+%

in the basis |A, 1, %>, A, 1, —%>, |A, 0, %>, A, —1, %>, |A, 0, —%), |A, —1,—1). The spin % blocks

are given by:

Er — 2 A

hyi=hy 1= " 2 Vi), (3.24)
Az A % Ea
2 ¥4

where Ej, is the energy of the |A,) without spin-orbit coupling. The remaining four eigen-
states of the spin-orbit coupling can now be found just by solving the 2 x 2 Hamiltonian h, , 1.
2

The six eigenstates of the each A block of the spin-orbit coupling can be written:

A, £3) = [A,+1,+)) E=E} (3.25)
2
A, £3) = ud A, £1, 1) +0}]A,0,£5) E=EM (3.26)
2
A, 1) = wd A 41,51 + 0B A, 0,+)) E=EY (3.27)
2

where

Eng — By, — 20+ \/(EA,I —Ep.— )2 +2)3

A Y
= 2
Ui N (3.28)
A
T— (3.29)

2N
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3. LOW ENERGY EFFECTIVE MODEL

with N = A+ (B2 — B2 —\0)? £ 4B — BN = \x) /(B — B2 — Ay)2 4 2)%. The energies

are given by:

A
B} =E} + 5 (3.30)
v EnetEn.- %+ \/(EA,I — B — )2 +2)2
B = 5 (3.31)
2

The new energies are plotted in figure 3.6 as a function of the spin-orbit constant. We see
that the |A;,) levels are split into 2 doubly degenerate levels (time reversal and inversion
symmetry requires at least double degeneracy). The levels |A,) degeneracy is pushed away
from the other levels with the same A. Thus the two states closest to the chemical potential
are pushed towards each other, and for a certain spin-orbit coupling strength, the two level

crosses, creating a band inversion.

P, £2)
|PL,) |PLT,£L)

>
e — N
@ |P2; |PL, 1)
L

|P2~ , £3)

|P2” , &1)

Spin orbit constant

Figure 3.6: The energy levels as a function of the spin-orbit coupling constant. Here we have the same spin-
orbit constant for the two bands A = Ap;+ = Ap;—. Note that for a strong enough spin-orbit
coupling there is a level crossing allowing the material to go into a topologically non-trivial phase.
The superscript sign on the basis states denotes the inversion eigenvalue. The spin % states have
an subscript, indicating which of the solutions to the 2 x 2 block hA’i% it is.

] \f p1}ed) if
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Figure 3.7: The band structure of bismuth selenide, obtained from ab initio calculations in [II]. The states
are labeled
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3.3. MODEL HAMILTONIAN

According to [11] the states |P1T,£3), P27, £1) turn out to be the states closest around
the Fermi level at the gamma point, from ab initio calculations. See figure Now we
have seen how this fact qualitatively can be described by considering the nearest neighbour
coupling, the crystal field splitting and the spin-orbit coupling. Specifically we saw that the

spin-orbit coupling lead to a crossing of the two levels.

3.3 Model Hamiltonian

Now we have discussed qualitatively the effects of the couplings within one quintuple layer,
the crystal field and the spin-orbit coupling. We saw how we ended with the two doubly
degenerate energy levels [P17, 1) and [P27,£3) being closest to to the Fermi level. These
states are eigenstates at the gammapoint. We will now construct an effective Hamiltonian, in
the basis of these states. This is an example of quasi degenerate perturbation theory in k. We
will use the symmetries of the crystal to construct all allowed terms up to third order in k.
In general any 4 x 4 hermitian matrix can be expanded in terms of the Dirac gamma

matrices:
Hepp(k) =ce(k) + > di(k)Ts + Y dij(K)Ty;, (3.32)
i ij

for real functions d;(k), d;;(k), for 4,5 € {1,2,3,4,5}. Here we chose the Dirac matrices:
M=0,07, In=0y®1, I's3=0,017%, Iu=0o71, I's=0&T (3.33)

and their commutators I';; = 2-[I;,I';]. We choose the basis |P1F, 1), |[P27,3), |[P1T,—1),
| P27, —%> The o and 7 matrices are two sets of pauli matrices in the space of total angular
momentum and the P17, P2F subspaces, respectively.

First, we will need the matrices representing the symmetry operations of the crystal in this

basis.

1. Inversion: All the basis states are eigenstates of the inversion operator labeled by their

eigenvalue, thus I = 0¢ ® 7.

2. Threefold rotation: Since three-fold rotation around the z axis does not change the
positions of the atoms within one unit cell it can be written in terms of the z component

of the angular momentum operator:

o . in/3 0
R3 — e’L%Jz — e’£§0'2®7—0 — € . X 70 (334:)
0 e—z7r/3

3. Twofold rotation: This rotation changes the Bil and Sel sites into Bil’ and Sel’ like
inversion, so in the 7 subspace, it is represented by 7,. In the angular momentum

. . ;T . .
subspace it is given by e'2 = io,. Hence Ry = io, ® 7.

4. Time reversal: This is not part of the group Dsq but should still be a symmetry of our
final Hamiltonian. As we saw in section for a spin % system it can be represented by
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3. LOW ENERGY EFFECTIVE MODEL

T = ioyK, where K is complex conjugation. Therefore, we have T' = ioy ® 19 K.

We want an effective Hamiltonian which is invariant under all these transformations, i.e.
Hepp(k) = U Hepp (KU (3.35)

where U is any of the transformation matrices, and k’ is the transformed momentum, under
the according symmetry transformation. We have chosen a coordinate system, such that k, is
perpendicular to the layers of the material while k, and k, are in the layers. The effect of the

symmetry transformations on k are:
1. Inversion takes k — —k

2. Threefold rotation around the z axis leaves k, invariant but transforms:
ky . C‘OS(H) —sin(0)\ [ kz (3.36)
ky sin(d)  cos(6) ky

3. Twofold rotation around the x axis leaves k, invariant, but transforms ky, k. — —k,, —k..

where 0 = %’r

4. Time reversal takes k — —k.

Therefore k., ky transform according to the irreducible representation '3-) of the point group
Ds3q4, while k, transforms according to '), In addition k,, ky, k. are odd under time reversal.
From the transformation behaviour of k., ky, k., we can find the transformation behaviour of
higher order polynomials of k;, ky, k.. This information is summarized in table

Then we can work out how the Dirac matrices transform, by computing:
Ur,ut, (3.37)

where a is either i or 4,j, for 7,5 € {1,2,3,4,5}. Then we expand the resulting matrices
in the Dirac matrices again. The Dirac matrices were chosen such that they all transform
according to some irreducible representation. If we take, for example, I'y and I'2, and check

their transformation properties we get:
1. Inversion: I'; — IT;I~! = —T; for i € {1,2}.

2. Threefold rotation around the z axis:

(—r2> . (—Rgrz Ri?) _ <cf)s(0) —sin(9)> <—PQ> (3.38)
Iy RsT' Ry sin(f)  cos(0) Iy

3. Twofold rotation around the z axis: 'y — Rol' Ry ' = —T'y and T'y — Rl Ry =Ty,

4. Time reversal: I'; — TT;T-1 = —T; for i € {1,2}.
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3.3. MODEL HAMILTONIAN

T [ reH TG+H =) T2 G-
1
k2 {2koky, k2 — K2}
T even k‘g —+ k:; {kyk27 _kxkz} F35 F45 {—F25, F15}
I's
k- {ky, Ky}
Bz {Bl‘v By} k3 — 3k k)2 kiz)) {kxkzv kykg}
T odd L2 {T23, a1} Copy | ek k) | Rk k), Ry (K + R}
I3y {T'14, o4} kp — 3okl | {ka(k2 — k2), —2kgkyk.}
Ly {—T2, 1}

Table 3.1: All polynomials of momentum up to third order, categorized according to their reducible repre-
sentation in the group Dsq. The Dirac matrices are listed the same way, such that terms in the
same cell can be combined to form invariant terms in our model Hamiltonian. For the two dimen-
sional representations we list pairs, transforming together with the notation {-,-}. The elements
are listed such that they transform exactly the same way, and invariant terms can be formed by
simply taking the dot product of two lists in the same cell. The components of a magnetic field is
also listed, and using the symmetry principles, we can write down a Zeeman term.

Therefore, the set of matrices {—I'y,T'1} transforms exactly like {k,, ky}. The transformation
properties of all the Dirac matrices are summarized in table [3.1]

As we saw in section invariant terms can only be formed by combinations of objects
belonging to the same irreducible representation. Therefore, in the present case we can form

an invariant term by combining {—T'2,I'1} and {ks, ky}.
—I'9k, + Flk‘y (339)

By proceeding in this way, taking all combinations of Dirac matrices and polynomials trans-
forming the same way (i.e. are listed in the same cell in table B.1), we can find the most
general Hamiltonian allowed by the symmetries of the crystal. Going to third order in k we

arrive at the effective Hamiltonian:

Héff = Eo(k) + /\/l(k)F5 + Al(k)kzF4 + Ag(k)(kyrl — kxl—‘g)
+ Ry(k3 — 3kok)T's + Ro(3kiky — kT4 + Rsk.(2koky Ty + (K2 — kJ)T2)  (3.40)

where
eo(k) = C + DikZ + Daokj (3.41)
M(k) = M — BikZ — Bokj| (3.42)
Ay(k) = Ay + Ay k2 + Ay )kt (3.43)
.Ag(k) = Ay + A27Hkﬁ + A27zk3 (3.44)

where k)| = k24 k‘g The parameters C, D1, Do, A1, Ay ||, A1z, A2, Ag )|, A2 2, R, R, R3
are not given by symmetry considerations, and need to be determined either by fitting to ab

initio calculations of the spectrum or by k - p theory using ab initio calculations of the wave
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3. LOW ENERGY EFFECTIVE MODEL

functions at the gamma point. We note here that the terms with coefficients Ay, A2 . and
R3 are not included in [I1]. Whether they find these terms to be zero, or they are excluded for
some other reason is not clear. The three terms have in common, that they are all third order
terms, with a combination of the in plane momenta k;, k, and the out of plane momentum k..

This Hamiltonian looks different from the one used for example in [12] and [16], but is

equivalent by a unitary transformation:

1 0 0 0
0 —2 0 O
U, = 3.45
"o 0o 10 (3.45)
0 0 0 =2
under this unitary transformation we get the Hamiltonian:
M)  Ai(k)k, 0 Aa(k)k_
Ai1(k)k, —-M(k Ao (k)k_ 0
Hegp = Uiy U] = eoti) + [ 10 1o A
0 Ar(k)ky  M(k)  —Ai(k)k:
Ao (k)k 0 -A1(kK)k, —M(k)
0 i(Rak3 + Rnk?) 0 — Rk, k%
Ry | —i(Rak® + Ry kY) 0 —Rsk. k% 0
2 0 —Rsk. k2 0 i(Rmk3 + Rak?)
—R3k, k% 0 —i(Rmk3 + Rqk?) 0
(3.46)

where we have introduced two new parameters R, = @ and Ry = @ and ky = k, Lk,
to make the notation less messy. The second term includes third order terms that are just
first order terms multiplied by invariant second order terms, while the third term contains the
rest of the allowed third order terms. It is important to note, as mentioned in [I7], that this

unitary transformation is affecting the spin operators:

1 1

Sy = §U10'x ® ToUl]L =50 ® T, (3.47)
1 Pl

5y = iUlgy ®mU{ = 39 ® T, (3.48)
1 Pl

S, = §U1<7z ®mU| = L ® 1o (3.49)

This will of course be very important when we calculate the spin structure of the surface states.
We emphasize here that when we talk about spin in this model, it is actually the total angular

momentum of the electronic states.

3.3.1 Magnetic field

If a magnetic field is present it affects the Hamiltonian in two ways; the orbital effect and a
Zeeman term. The orbital effect can be included by Peierls substitution k — k+eA, where A

is the vector potential. The form of the Zeeman term can be deduced by requiring invariance
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3.4. BULK STATES

C(eV) [ -0.0083 | -0.0068
D1(eVA?) | 5.74 1.3
Do (eVA?) | 304 19.6
M(eV) -0.28 0.28
B1(eVA?) | -6.86 10.0
Bo(eVA?%) | -445 56.6
A(eVA) | 226 2.2
As(eVA) | 3.33 4.1
Ri(eVA3) | 506
Ro(eVA?3) | -113.3

g1z -25.4

9ip -4.12

g2z 4.10

92p 4.80

Table 3.2: Parameters for the effective model. The first column is calculated from k - p theory in [II] using
ab initio calculations of wavefunctions, while the second is from [12] from fitting the spectrum to
that of an ab initio calculation.

under D34 and time reversal. Here we use the convention that the magnetic field is reversed by
time reversal operation, therefore the Zeeman term should be invariant under time reversal.

Using table as before, we get:

H; = (alrlg + a2F34)Bz + 013(er23 + Byrgl) + 044(er14 + ByF24)

(Ozl + QQ)BZ 0 (043 + 044)37 0
_ 0 (041 — Ozg)BZ 0 (043 — a4)B_
(a3 + aa) B 0 —(a1 + a2) B, 0
0 (043 — Oé4)B+ 0 —(041 — OéQ)BZ
glsz 0 glpB— 0
0 B 0 B_
_ kB 922Dz 92p (3.50)
2 | g1pBs 0 —91:B: 0
0 92pB+ 0 _QQZBZ

The new parameters g1, = e

i (
1B
transformation we get the Zeeman term:

2 (1 + a2), g2, =

%B(Oél — ), gip = u%(oés + a4), gop =

ag — ay) are effective g factors in the different orbitals. If we again perform the unitary

glsz 0 glpB_ 0
0 B 0 —gopB_
H.=UHU] =22 927 92 (3.51)
2 glpB+ 0 —91:B. 0
0 *QQpB+ 0 7922BZ

3.4 Bulk states

Now we have arrived at the effective model in eq. (3.46]), which was the main goal of this

chapter. This Hamiltonian will be the starting point for our investigation of the surface states
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3. LOW ENERGY EFFECTIVE MODEL

in bismuth selenide. But before we introduce a surface, it is instructive to find the bulk states
of this Hamiltonian.

In the case of an infinite insulator, we can simply diagonalize this 4 x 4 Hamiltonian.
We will do this only to second order in the momentum. Using the ¢ and 7 matrices, our

Hamiltonian can be written:
H(k) = eo(k)M(k)oo @ 7. + Az(ke0s + kyoy) @ 1o + Ark.0. @ 7. (3.52)

The spectrum can be found easily by squaring H (k) — ¢o(k) and using the anticommuta-

tivity of the paulimatrices which cancels all the crossterms, i.e.

(H(k) — 60(1{))2 = (M(k)oo ® 7, + As(kyoy + kyoy) @ T + Arkzo, ® Tgc)2
= (M(k)? + ATk + A3E2). (3.53)

Hence, (H (k) — £o(k))? is proportional to the identity matrix and has only one eigenvalue
(M(k)? + A%kﬁ + A3k2). The eigenvalues of a squared matrix are simply the squares of the
eigenvalues of the original matrix. Therefore, the matrix H (k) — £o(k) must have eigenvalues
i\//\/l(k)2 + A%kﬁ + A2k2. Then we get the bulk spectrum:

B = o(k) £ /M(K)? + A2k2 + AZi2. (3.54)

We get two doubly degenerate bands due to the combination of time reversal and inversion
symmetry, as described in section [2.9.2] The dispersion relation is plotted in figure [3.8] The
momentum dependent terms in gyg(k) breaks the particle-hole symmetry. If these are not

included the conduction band and valence band would be exactly symmetric around the value
of C.

ky (A7)

Figure 3.8: The energy of the eigenstates in the low energy model, as a function of the in plane momentum
k) = \/kZ + k2 for evenly spaced values of k. (with a spacing of 0.03 A1), The blue one is for
k. = 0. Here we used the parameters from [I1].
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The eigenstates are found to be:

M(K) F \/M(k)2 + A3K? + AZK? 0
Ak Ak
k)=C z k)=C
Aoy — Ak,

(3.55)

where C' is a normalization constant. The upper/lower sign corresponds to the upper/lower
band. We see that these states are Kramers doublets T4 (k) = —1po4(—k). The eigenstates
can be chosen in many different ways because of the degeneracy, but the choice is not necce-
sarrily valid for any k, since the eigenvectors could become linearly dependent at som special
momentum. The four eigenvectors are linearly independent if the determinant of the matrix
(Y14, ¥1—, o4, 12_) # 0. The determinant of the vectors chosen here is:

det(Y14, 1, oy, o) = 4A3k] + BATAZKERS + 4ATE] + 4ASKT M (k) + 4ATK2 M (k).
(3.56)

This is seen to be zero only at k = 0 (if we take A; and As to be nonzero), and at that point

the Hamiltonian is diagonal and is trivially solved.

3.5 Envelope function approximation

The full wave functions of the bulk states found here, are given by an expansion in the basis

states of our model. In general an eigenspinor of our model at momementum k, denoted by:

a
b
v = | ], (3.57)
d
corresponds to the wave function:
U(r) = ™ (a(r|P1E, L) + b(r| P23, 3) + c(r|P1T, 1) + d(r| P27, - 1)) . (3.58)

The basis state wave function, contains the internal structure, within one quintuple layer,

whereas the plane wave factor e’®T acts as an envelope function. In the following chapters,
when we introduce one or two surfaces, the translational symmetry in the z direction is broken.

Therefore, k. is no longer a good quantum number, and we will make the substitution k, —
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3. LOW ENERGY EFFECTIVE MODEL

—i0,. In general a solution to our model becomes z dependent

)
Yo, (2) = ; , (3.59)
)

corresponding to the full wave function:

U(r) = tkzrtikyy (a(z)(r\Plf, %> + b(2)(r| P2, %} + c(2)(r| P17, —%> +d(z2)(r| P27, —%>) .
(3.60)

We still have the lattice periodic basis functions, and plane wave envelope functions in the x
and y directions. In the z direction we have an envelope function, which is determined by the
boundary conditions. This is a way to seperate length scales, the lattice periodic functions,
gives the structure on an atomic scale, whereas the envelope function gives the structure on
larger scales due to the boundaries. For a more detailed discussion on the envelope function
approximation, see [I§]

In the chapters [] and [5] we will work entirely within this approximation, simply refering

to the envelope functions as the wave functions.
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CHAPTER 4
SURFACE STATES ON A SINGLE SURFACE
BI>SEs

In this chapter we will discuss a so-called semi-infinite geometry, which is an infinite insulator
in the z and y directions with a surface perpendicular to the z-axis at z = 0. We will take
the the topological insulator to be filling the z < 0 half-space, see figure We will use the
model Hamiltonian to second order in the momenta. Even though a finite geometry with
two surfaces is more realistic and interesting, the semi-infinite case can be solved analytically
and thus gives a nice clear picture. We will find the criteria for the existence of surface states
based on the parameters of the Hamiltonian. Furthermore we will characterize the spatial and

spin structure of the found surface states.

v (z)

Figure 4.1: The system considered in this chapter is an semi-infinite topological insulator filling the z < 0
half-space. This gives rise to localized surface states close to the surface at z = 0.

To find the surface states we need to impose some boundary conditions. Our choice is the

so-called hard wall or open boundary conditions:
U(z=0)=0 (4.1)
To get localized states, we also need the wave function to decay away from the surface, i.e.:
U(z — —00) =0 (4.2)

Other boundary conditions could be imposed, in [19] a wider class of boundary conditions,
including open boundary conditions, are explored. They find that both the spectrum and the
existence of surface states are dependent on the boundary condition, as well as the parameters
of the model. Another method is to let the model be valid in all space, but let the parameter
M change sign across the surface. These considerations however, are beyond the scope of this

thesis, where we will only use the open boundary conditions.
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4. SURFACE STATES ON A SINGLE SURFACE BI;SE3

4.1 Ansatz

If we have a surface perpendicular to the z axis, the translational symmetry in this direction
is broken, and k. is no longer a good quantum number. We will therefore use a more general

approach, where we restore the differential operators in the Hamiltonian k, — —i0, giving:

H k., ky, —id-) = eo(ky, —id.) (4.3)
Mk, —i0)  —iAy0. 0 Ak
—3A410, —M(kH, —iaz) Agk_ 0 (4 4)
0 Asky M(ky, —i0) iA10; L
Aok 0 1A10, —M(kH, —i0,)
50(]{7”, —Zaz> =C - Dlaz + ngﬁ, (4.5)
M(kH, —282) =M+ 31822 - ngﬁ, (46)
ky = ky £ ik, (4.7)
Ky =\ k2 + k2. (4.8)

The time independent Schréodinger equation;
H(ky, ky, —i0,)Pp, k, (2, Y, 2) = E®p, 1, (2,9, 2), (4.9)
where

Py ko, (7,9, 2) = eik”HkaWkMy (2) (4.10)

v/ LyL

<

since k; and ky are still good quantum numbers. The z dependent part W¥(z) is some, yet
unknown 4-spinor. Since the x and y dependence is completely trivial, we will leave it out for

most of this chapter, and simply treat this as a one dimensional problem, given by:
H(kg, ky, —10.) Wy, 1, (2) = EVg, 1, (2). (4.11)

This is now a system of four coupled second order differential equations in one variable, thus
the space of solutions is 8 dimensional. Since it is a linear homogeneous system with constant
coefficients, we can use the ansatz ¥(z) = ¥ye?, where ¢, is some z independent 4-vector. If
we by this ansatz can find 8 independent solutions we know that they span the entire space
of solutions. Hence, a general eigenfunction to 4.4} can be written as a linear combination of
these 8 independent solutions. Then, by imposing the relevant boundary conditions, one can

find the coefficients of this linear combination.

4.1.1 Eigenstates

Now we will find the eigenstates in the ansatz W(z) = ye?, following the derivation in [I6].

When the hamiltionian works on this ansatz, we get the replacement 0, — A. The Schrodinger
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4.1. ANSATZ

equation;
H(ka, by —iN)or = By (4.12)

has non-trivial solutions when:

0 = det(H (ky, ky, —i\) — E) (4.13)
0= (M(kH, —iX)? — (eo(ky, —iX) — B)? + A3k% — A%AZ)Q
& 0= M(kj, —iX)? — (eo(ky, —iA) — B)? + A3kf — ATN?
& 0= (M + B\ = Bokl)? = (C — DiX* + Dakfi — E)? + AJkfi — ATN
= 0= (B D)+ [2Bl(M — Bok?) — 2Dy (C + Dok — E) — Aﬂ 2
+ (M — Boki})? = (C + Dakit — E)* + A3k

& 0=DyD_ X'+ FX + (E — L1)(E — La) — A3kf (4.14)
I R G VA
S A=A\ = ﬁ\/ 5D.D_ (4.15)

where § = £ and «a € {1,2} and we have defined:

F=A2+D,(FE—L))+D_(E — Ly), (4.16)
R=F?_4D,D_ ((E L) (E — Ly) — Agkﬁ) , (4.17)
Di =D+ By, (4.18)
Ly = C+ M + (D3 — By)k, (4.19)
Ly =C — M + (D3 + Ba)kf. (4.20)

The square root here denotes the principal value, to make A, uniquely defined. E]
This gives four different solutions for A for a given energy E. We could also have found

the energy from the secular equation, equation giving:

E = eo(ky, ) £ \/Agk,-ﬁ — A2D2 4 M(ky, —iN)2,

which is simply the bulk spectrum with the replacement k, — —i\. Usually one uses the
secular equation to find the energy, but the real question here is; given some k) and E is it
possible to make a superposition of ¥ e that fulfills the boundary condition. If we had an
infinite insulator the only condition on the wave function is that it does not diverge, which
means that A\ must be purely imaginary, thus we can simply plug any imaginary A into the
equation for the energy, and get the bulk spectrum again. Note that here we have assumed
that Dy D_ # 0, which will be justified later.

Equation is extremely important and is the equation that is going to tell us whether
or not surface states are possible. It tells us given some energy F and k)| how the wave function

can vary in the z direction. If there is only purely imaginary solutions for A the wave function

!The principal value of the square root is the one with positive real part, and if the real part is zero the one
with positive imaginary part.
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4. SURFACE STATES ON A SINGLE SURFACE BI;SE3

will just oscillate, and if there is a real part it might be possible to find a solution that decays
away from a surface. Whether it is possible will depend on the boundary conditions and how
the actual eigenvectors ¥, turn out. Since the spectrum is doubly degenerate for a given A

and corresponding energy E there is two independent eigenvectors, given by:

M(kyj, —iBAa) £ \/A2k2 — AINZ + Mk, —iBAa)? DN — Lo+ E
. —iAlﬁ)\a o _iAlﬁ)\a
7/}0151 0 0
Aok Aok
(4.21)
_iAlﬁ)\a —’L'Alﬁ)\a
o ~M(ky, —iBA) £ \/A2k2 — AN+ Mk, —iBAa)? | | DXL+ E
o2 Aok, Aok
0 0
(4.22)

These two are independent unless Aok, = 0, but we also want to calculate the surface state

at k)| = 0, so we will instead use 1,1 and:

Ask_
D_ ) —I1,+FE A8 |, 0
o — [0 o + — Y, = 5 423
Vap2 Aok Vas1 Aok Vas2 iA1 BN (4.23)

D_X—Li+E

which is now linearly independent from 1,51 unless A;\, = 0. Therefore we will assume
Ay # 0. The first component in eq. (4.23) was simplified by using eq. (4.14)) to calculate the
product:

(DiX2 — Ly + E)Y(D2 N2 — Ly + E) (4.24)
=D, D N4+ (D (E—L1)+ D_(E — L))A\> + (E — L1)(F — L) (4.25)
=D D N4 (F—-AHN + (E - L1)(FE — L) (4.26)
= A3kt — ATN (4.27)
Now a general solution to the Schrédinger equation can be written:
(B, ky,2) = Y Capythapse™?, (4.28)

a,Byy

where § € {+, -} and a,v € {1,2}. Both the spinors, g, and A, depend on both E and

k. The coefficients Cyp, is to be determined from boundary conditions.

44



4.1. ANSATZ

F2—R| R 2[)1% A Possible states
+ - + A, A2 € Cand A = A3 Surface
+ + + A, ER Surface
+ + - A, Ag €1 Bulk
- + + NieR N el Bulk

Table 4.1: Classifications of the different possibilities for solutions for A. R and I are functions of k|| and
E so this divides the k|, £ plane into different regions where either surface or bulk states are
possible. Note that this is includes all possible combinations, since R < 0 = F2 — R > 0.

4.1.2 Spatial structure of the eigenstates

Before imposing the boundary conditions, and actually finding the surface states we will look
at the spatial dependence of the found eigenstates.

The spatial structure of these solutions is determined by the Ay (k|, £). Surface states are
only possible if both A; and A2 have a real part, thus by analyzing the dependence of A, on
ki and E it is possible to find out, where in the (kH, E) plane surface states are possible. The
essential part is the sign of the functions R, F? — R and —m%. We realize this by looking

at:

)\2 _ —F+ (71)04@
« 2D, D_

(4.29)

If R < 0, then VR is imaginary then A2 is complex and so is \,. In addition, we see that
A1 and Ay are complex conjugate partners. If R > 0, then A2 is real, and ), is either purely
real or purely imaginary, depending on the sign of \2. If F2 — R > 0 = |F| > VR then \?
and A3 have the same sign, and A\; and Ay are both either real or imaginary, depending on
the sign of —5575—. On the other hand if F? — R < 0= |F| < v/R A} and A3 have different
signs, and we have on imaginary and one real A,, for o € {1,2}. The different possibilities are
summarized in table [£.1]

In figure the (kH, E) plane is divided into regions of these four qualitative possibilities
for A1 and Ay. We recognize that the boundary of the region, where one of the A,’s is real
and the other imaginary, is exactly the k, = 0 bulk spectrum. This must be true, since across
this boundary one of the A,’s change from purely imaginary to purely real, and since it is
a continuous function it must be 0 on the boundary. Eigenstates with A = 0 are of course
equal to the bulk eigenstates with k, = 0. The regions, where at least one )., is imaginary
there exists bulk states with k, = iA,. On the boundary of the region where both \,’s are
complex they are equal, because R goes continuously from negative to positive, and therefore
R=0< A\ = A at the boundaryﬂ At this boundary our ansatz actually breaks down, since
we only have 4 independent solutions to our 4 second order differential equations.

If surface states exist for the situation in [.2a] the spatial structure of the surface states
depend on where in the (K|, ) plane they are located. If they are located in the green region,

they will have some oscillatory behaviour because of the imaginary part of A\; and As. In the

2 Actually, when they go into the region where they are both imaginary there is some ambiguity because of
the branch cut of the complex square root. But since the possible exponents in any case are +)\, it is only a
question of which 2 of the four solutions, we denote by A,.
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0-4“"'7_ "1

02 ] 0.2
ALy €R
3 3 oo
S S
—-0.2+
-04 —0.4}
-015 -010 -0.05 000 005 010 015 -015 -010 -0.05 000 005 010 015
k(A7) k(A7)
(a) Parameters from [I1]. (b) Parameters from [12]

Figure 4.2: The different regions in the k), & plane. In the white and green regions only surface states are
possible, while only bulk states are possible in the red and purple regions. The red region is
actually the union of regions with Ay € R,A2 € [ and A\; € I, A2 € R, but since this has no
physical significance we have just joined them.

white region both A; and Ay are real, and a surface state in this region will have a simple
decay. For the situation in figure @ we see that for k| = 0 both A; and Ay are complex,

and the surface state will have oscillatory behaviour.

4.2 Existence and spectrum of surface states

After this qualitative discussion, on the possibilty of surface states, we will now find the find the
quantitative criteria, for the existence of surface states, as well as the surface state spectrum.

To do this we need to impose the boundary conditions:
W, k, (2 =0) =0 and ¥y, , (2 = —o0) = 0. (4.30)

The second one tells us that the A\’s must have a positive real part, and thus we can immediately
drop the f = — terms in the general solution in eq. (4.28). The condition at z = 0 gives the

following equation for the remaining four coefficients:

Ci1
C
0=, k,(2=0)= Z CotrPaty = (¢1+1 Y142 Yo ¢2+2) CHZ (4.31)
ay 241
Coyo
Jip Ask— Joy Ask_\ [Cin
== —ZAl)\l 0 —7,A1)\2 0 Cl+2 (4.32)
0 1A\ 0 1 A1\ Cg+1
Asky  Jio Asky  Joo ) \Copo
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where we defined J,y = D;A2 — Ly + E and J,_ = D_)\2 — L; + E. The secular equation

for nontrivial solutions of the above system gives:
0=id\ (iAl)\2J2+J1_ i AL AZMAT — iA ARNoR] — iAl)\ljg_J2+> (4.33)
i (z‘AlleHJQ, +iA1 ARk — iALABNR] — iAlAQJl,JH)
= A2\ N <2A§kﬁ — T i — J1+J2_) (4.34)
+ AIN(Jo-Jay — AZKT)
+ AP (1= Ty — ASKD).
This gives zero, if A1 = 0. But for A; = 0 the basis vectors are no longer independent, and
our method breaks down. Therefore, we assumed A; # 0, but this assumption will be justified
later. To simplify eq. (4.34]), we consider the product:
DiD-(A = X3)? = (Jis — Joi)(J1- — Jo-)
= J1+J1_ + JoyJo_ — J2+J1_ — J1+J2_
= 243k% — AT(AT + A3) — oy i — Jis Joe
& 245k — Jor 1o — JipJas = DyD_(A] — A3)* + AT(A] + A3),

4.35
4.36
4.37

(
(
(
(4.38

)
)
)
)

where we have used that Jo4Jo— = A%kﬁ — A2)2 from eq. (#.27). Inserting this in eq. (4.34)

gives:

0= AN XD D_(A] — A3)2 4+ AT\ da (M + A3) — 241NN (4.39)
D,D_
&0= ;12 (A2 2AH2 1 (A2 4+ 02) — 200
1
D.D_
0= ;2 (A1 = X2)2(A1 + X2)2 + (M — Ag)?
1
s MA+N)2=— At (4.40)
1 2)” = D.D_ .

Remember that the \’s are functions of k)| and E. If there exists a solution E(kj) to eq.
, then a wave function exists, using only the positive (8 = +) square root solutions for
A, that fulfills the boundary condition at z = 0. Hence, a surface state exists with energy FE
and in plane momentum k). The square of a complex number (a+1ib)? = a® — b+ i2ab is real,
only if the number is either purely real or imaginary. Since the right hand side in eq.
is real, it tells us that A1 4+ Ag is either real or imaginary. Since we want to find surface states
it must be real (such that the wave function decays). Hence, as we already saw in section
A1, A2 must either both be real or complex conjugate partners. Furthermore, D D_
must be negative, which is the first criteria for the existence of surface states. If A; = 0 then
A1+ A2 = 0, and they cannot both have a positive real part. Therefore, no surface states can

exist, and our assumption that A; # 0 is justified.
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If we insert the expression for A, from eq. (4.15), we get:

Al :(A1+A2)2:_F+‘/E+_F_m+'FQ_R (4.41)
D.D_ 2D, D_ 2D.D_ ' |DyD_| '

SV F2 - R=sgn(D,D_)(F - A}) = A} - F

=F? - R=(A?-F)? (4.42)
4D, D_((E — L1)(E — Lz) — A3kj}) = (D+(E — L1) + D_(E — L»))?

& — 4D, D_A3kf = (D4 (E — L1) — D_(E — Ly))?

&+ Sgn(B1)2 B% - D%|A2‘k‘” = QBl(E - C - ngﬁ) + 2D1<—M + ngﬁ) (443)

MDy, , |~ D? DBy \ 5
sE = E:t(kn) =C+ B +4/1— B7%’A2‘k|| + <D2 — B, kH (4.44)

This gives the spectrum of the surface states, if they exist. For small k| we get a linear Dirac

Bl

dispersion, with a fermi velocity of % 1 — =%, The sgn(By) is included, to ensure that the

upper sign correspond to upper energy in both equations. Note that the arrow in eq.
goes only one way, since A? — F could be negative. But if A7 — F is positive, then eq. is
equivalent to eq. . Therefore, given some in plane momentum k|, a surface state exists
with energy E. (k) if and only if A7 — F(k), Ex(k;)) > 0. A band of surface states can only
end at point where A3 — F(ky, E+(k))) = 0, which by eq. means that F? — R = 0.
As we saw in section this is exactly the k, = 0 bulk spectrum, and we conclude that a
band of surface states can only end by meeting the bulk bands. This is seen when plotting
the surface and bulk spectrum, see figure

0.0t

E (eV)
E (eV)

|

~1. ‘ ‘ ) - - -
W5 =010 —o» 000 005 010 015 0.5 —0.10 —0.05 000 005 0.0  0.15

]\H (Agl) kH (A_])

(a) Parameters from [IT] (b) Parameters from [12]

Figure 4.3: The spectrum of a semi-infinite topological insulator, including both bulk states (blue for k. = 0
and red otherwise) and surface states (black).

The criteria for a surface state at is that A7 — F(k, Ex(k;)) > 0. From the definition of
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Fin eq. (4.16), and using £ = F,(k||) with a = =+:

AT — F(kyj, Ea(K)))) = —=D1(Eq — L1) — D_(E, — Lo) (4.45)
2By ) D? 2M

Surface states exists, when this function is positive. Since we are working in a model, which
is valid for small k| it is interesting to see whether we have surface states for k| = 0:
2M M
——DiD_>0& — >0, 4.47
where we used the fact that Dy D_ < 0. We conclude that to get two bands of surface states

crossing in k| = 0 we need the conditions:
M
D+D7 < 0 and F >0 (448)
1

Note that the first condition is to get surface states at all, while the second is to get surface
states at k| = 0. Interestingly the first condition, equivalent to [D1| < |Bi], shows that the
topologically non-trivial state can be broken by the particle-hole asymmetry. That can happen
without the gap closing at the gamma point. If |D1| > |B;| however, we do not have a global
gap in the bulk spectrum, since both the conduction band and valence band energies diverges
in the same direction, given by the sign of D; when k, — oo.

It is actually possible to have surface states without the second condition, but there will
still be a gap. And we cannot get a Dirac-like spectrum since the crossing must occur at the
gamma point. This happens, if we change the parameter M to 0.02eV, while taking the rest
of the parameters from [11]. Then BMl < 0, but we get a region of k|| where there is surface
states. This is actually a surprise since this is in the topologically trivial regime. These surface

states go back into the lower band in both ends, as we see in figure 4.4al

4.2.1 Experimental verification of surface states

The surface state spectrum can be measured, by angle-resolved photoemission spectroscopy
(ARPES). This experimental technique is illustrated in The sample is subjected to a beam
of photons, and the electrons are emitted, due to the photoelectric effect. The energy and
momentum of the emitted electrons are measured. By conservation of energy and momentum,
this reveals the energies and momenta of the electronic states of the sample. This makes it
possible to map out the dispersion relation of the electrons in a solid.

In figure we show the data from an ARPES experiment on a clean surface of BisSes,
from [21]. We see the qualitative agreement with the spectrum from the low energy model,
shown in figure[4.3] In [7], a similar experiment was reported, and the fermi velocity was found
to be approximately 5 x 10°ms~!. The fermi velocity, in our model was given by:

|As| D?

72l 1 4.49
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> <
3 =20
K 3
—25
—30
—35
748) s s s s L
0.00 0.02 0.04 0.06 0.08 0.10

k” (Ail)

(a) (b)

Figure 4.4: (a) For M = 0.02€V, and the remaining parameters taken from [I1I], we see surface states (black
lines) close to the bulk bands (blue for k. = 0 and red lines), for a range of k. In (b) we see a
plot of the expectation value of z, for the same parameters. The expectation value of z diverges
in both ends, where the surface band approaches the bulk bands. Even though the surface band
is close to the lower bulk band in energy, they are quite localized getting as close as 20A from
the surface.

0 0— Bi,Se;
photon source energy analyser ?‘_}/ —E |
> 0.23
pust -
s :
L] 3 —
o 0.4
hy £ E
© 3
£ 3
@ 0.6 3
UHV - Ultra High Vacuum -||||||||||IIII|IIII
(p <1077 mbar)
-0.1 0.0 0.1

(a) Adopted from [20] k||(A1)
(b) Adapted from [21]

Figure 4.5: (a) The experimental setup for an ARPES experiment. (b) The spectrum of the surface states
found by ARPES found in [2I]. Note that the energy is measured relative to the fermi level. The
Fermi level level lies in the bulk conduction band, because naturally occuring BisSes is electron

doped [7].
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4.3. SURFACE STATES AT THE GAMMA POINT

This gives 2.77 x 10° ms~! for the parameters from [I1], and 6.17 x 10°ms~! for the param-
eters in [I2]. This is not in exact agreement with the experimental results, but lies within an
order of magnitude. Our model can not really be expected to give exact quantitative results,
since it is only a second order approximation in k. Even though we consider k, and &, to be
small, we are investigating a phenomenon, which is localized in the z direction. Therefore, we
should also expect some effects of higher order terms in k.. However, this model does provide

a clear physical picture, to understand the topological surface states.

4.3 Surface states at the gamma point

Now we will find the surface states at k| = 0. To do this we will solve eq. , for the
coefficients and then calculate the resulting wave functions. But since k| = 0, the equation
gets block diagonal. Each block corresponds to either spin up or down, since our basis spinor
Ya+1 only have spin up components, while 1442 only have spin down components, for k| = 0.
This is due to the fact that the Hamiltonian gets block diagonal for k) = 0. The secular eq.

(4.35) now factorizes into:

0= ()\1J2+ — )\2J1+)()\1J27 — XJi_ )
S Adop —AJiy =0V A1Jon — AJi- =0 (450)

Where each of the two equations correspond to one of the blocks in eq. (4.32). But since
Jorda_ = —A3N2 from eq. (#.27), the two equations are equivalent. Thus, we get a double
degeneracy at the gamma point, with one spin up state and one spin down state. This is a

result of the time reversal symmetry. For the spin up block we have the equation:

f]” f]2+ G _ (4.51)
—lAl)\l —ZAl)\Q CQ+1

V|D-/Bi| VID-/Bi|

If we choose C141 = iAo, we get Coqq = A, The vector multiplying eM? g
simply:
Ji+4/|1D- /B s /1D+]
V2iA1 M\ V2 Sgn( ) | B1]
_V/ID-/Bi] _ 1 —|
Ciy1¥141 = V2 = V2 By . (4.52)
0 O
0 0

The second equality can be obtained using that £ = C' + MB?l from eq. (4.44) and A\; + Xy =
|Ai]

VIDyD—|

overall sign to fulfill the boundary condition. The spin down state can obtained by take the

from eq. (4.40). The vector multiplying e*2* must be the same, but with opposite
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4. SURFACE STATES ON A SINGLE SURFACE BI;SE3

time reversal of the spin up state. The two eigenstates at the gamma point are then given by:

J D+
—Lz sgn(Dy Ay) IBYI
) — L /- A1z A2z
Wy —o(2) = N 20 1Bl (" —e™7) (4.53)
0
0
i\ 0 A A
Uy _(2)=N| ; D (eM* — e'?%) (4.54)
k=0 <5 sen(Dy A1) '|BI|'
_1 /D]
V2V B

where N is a normalization constant, given by:

O g o 1 0 z z
1= / (W, —o(2))! - W, _o(2) dz = N (ID4] + D) / M — M 2de (4.55)

o 2|Bi| -
1 0 .
= NQW(‘D+| + ‘D_D/ 62 Re[/\l}z + 62 Re[/\Q]Z — 2Re[€)\l+>\2)z] dZ (456)
1 —00
1 1 1 1
=N’>—(|D D_ —2R 4.57
71241+ 100 (g * 2w 2™ 3g) @57

The condition Dy D_ < 0 gives that sgn(B) = sgn(D+ ), which can be realized by considering
the different options for the signs of D and By. This gives that the spinor part of the wave
function is already normalized, since:

sgn(B1)Dy —sgn(B1)D- Dy —D_

1
—(|D D_|) = = =1 4.
2| B, | 1D+ +1P-D 2sgn(B1) By 2By (4.58)

For the spatial part, either both \’s are real or complex conjugate partners, and in either case

we get the normalization constant:

1
1 1 2 T2
N:(+—> for \i, M2 €R
2\ 2\ A1+ A
! 2 ALt (4.59)
1 a 2 N .
N = a—m for)\lz)\2:a+zb
Choosing a different overall sign on the spin up state, the two states can be written:
o(2) 0
Ul _o(2) = Ty o= (4.60)
I 0 I 20(2)
where
i [Dy|
75 sgn(Dy Ar) ; .
o(z) =N 2 B [Bi] (6)‘1 _ M ) (4.61)
V2V 1Bi]
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4.4. SURFACE STATES AT K| # 0

We will use these states to construct a 2D model, describing the surface states. But before
doing this we will calculate the surface states at general in-plane momentum in the 3D model,

such that we can compare the results to the 2D model.

4.4 Surface states at k) # 0

Now we will find the wave functions for the surface states at a general non-zero in-plane
momentum k). To do this we need to find the coefficients from eq. (4.32), and calculate the

full wave function from We can choose one of the coefficients as we please, so lets choose

D /B
C —
LT A0
The second and third row of eq. (4.32)) gives:
A
Cop1 = —A—lcm (4.62)
2
A1
CQ+2 - —)\701+2 (463)
2

if we insert these into the first row of eq. (4.32)), we get:

Jig — %J2+ V/|D-/Bi| (4.64)

Agk_(1—4L) 2410

Ciy2 = —

_ DiMd—E+ Ly [|D_|

= A Aok \ B (4.65)
And we now have the coefficients:
Ci = QZ-Alm ’éﬂ' (4.66)
Crea = D+2);22A2A?k+ - ||1E)31| (4.67)
Cot1 = _22'/111)\2 |\I;I\’ (4.68)
Caqo = DA m B Ly 1D (4.69)

QiAlAg)\Qk_ ‘Bl‘
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4. SURFACE STATES ON A SINGLE SURFACE BI;SE3

the vector multiplying e? is now given by:

D)\ —Ly+ E
1 |D_]| —1A1\
_ 4
Crr1¥141 + Cry2¥i42 2iaon \| 1B 0 (4.70)
Aok
Aok _
D+)\1>\2_E+L2 |D_| 0 (4 71)
QiAlAg)\lk‘_ ’Bl‘ iAl)\l '
DXL +E

To calculate the actual surface state, we need to insert the energy Ei (k) from eq. (4.44)
into this vector. However, sometimes it will be simpler to use one of the equations from the
derivation of eq. (4.44). The first component is:

L D= 5 e
DN —Lo+E+DiM —E+L 4.72
AN |B1|( +A1 2t L+ DiArAg + L2) (4.72)
1[I —i 1D, |
= —D (M +A — A1D 4.73
2id, \| 5] +( M+ A) = 5 sgn(A1 D) B (4.73)
where we used that (A; + A\2) = % from eq. (4.40). The second component is trivially
+

IP=| " To calculate the third component, we will first use that A Ao = from eq.

_1 VI?—R

2 |B1] 2|D+D_|
(4.15). Then we will use both VVF2 — R = sgn(D, D_)(F—A?)and Dy (E—L1)—D_(E—L3) =
+2sgn(B1)|Az|k)\/| D4 D—|, from the derivation of the surface spectrum, eq. (4.44). This

gives the third component:

DM —E+ Ly [|D| Sgn(D+D )Yap=" — B+ Ly |D-| (4.74)
2Aqk_ By 2A2k_ | B ‘
4Ask_D_ X '
Dy(E—Li)—D_(E—Lp) [|D-|
_ 4.76
4A9k_D_ | B1| ( )
— +sgn(B )2‘A2|k" VIDD- (4.77)
4A5k_D_ |B1] ’
D
= +sgn(D_ AQBl) D (4.78)

2k \ B
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The fourth component is:

1 |D_| (Diddy — E+ Ly)(D_X; — L1 + E)
; A2k+ =+
22A1)\1 ‘Bl| AQ]{_

B 1 |D_|
© 2iA M Ask_\| | By

X (D4D_MAs + Dy MAo(E — L) — D_N}(E — Lo)
+A3KE — (B~ L1)(E — L)) (4.79)

1 D]
C 2iA1Ask M\ \ | By

X (D4D-XiXo + Dy MAo(E — L1) — D_X}(E — La) — Dy D_\})3) (4.80)

1 |D_| ) ) )
= = DiD_MAa(A{—X5)+ D M5(E—L
20A1A2k— (N + X2) \| |Bi] ( + 1A2(A1 3) +AN( 1)

—~D_N(E — L2) + Mido(D+(E — L1) = D—(E — Ly))) (4.81)

Now we will insert the expression from eq. ({4.15) for the squared A’s. Again we will use both
VF?2 — R=sgn(DyD_)(F—A?%)and D, (E—L;)—D_(E—L3) = +2 sgn(B1)|Az|ky\/| Dy D—|,
from the derivation of the surface spectrum, eq. (4.44). The product then becomes A\jAg =

A2
5f DFjBﬁ = 215;2)17. Inserting all this in eq. (4.81)), we get the fourth component:

1 |D-—|
4iAy Agk_ (M + M) Dy D_\| | By (m(D#E — L)+ D_(E — Ly)) (4.82)

— F(D4(E — L1) = D_(E — Ly)) — VR(D4(E — L1) + D_(E — Ly))
+(F = A2)(D+(E — L) — D_(E — Ly)))
_ —A%(D4(E — L) — D_(E — Ly)) ||D_|

41 A1 Ak _ ()\1 + )\2)D+D_ ‘Bl|
B :FSgIl(Bl)QAllAQU{ZH\/ ‘D.i_D_ |D7|
C 4idgk MDD | By
YT s
ke [|D| iky [|D—|
= A1A2B D.D_ = A1A>B 4,
Tsgn(A1AzBy)sgn(Dy )2ik\| A Fsgn(A1A2By) ok \| [B1] (4.83)

Finally we arrived at a simplified expression for the vector multiplying e?:

Sisgn(A1Dy ),/ D]

[Bi]
_1 /ID-|
2V B
+sgn(D_AsB;) % ‘III;J{\'

Fsgn(A1A2B1) QIZT‘ \ @ﬂ‘

where the upper sign corresponds to the energy E and the lower to F_. The vector multi-

(4.84)
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plying e*2# is clearly the same but with the opposite overall sign, since the wave function must

vanish at the surface. This gives the total wave functions:

Sgn(AlBl) ||B ||
_1 /ID-]
\I/k:tx,ky (Z) =N |B1] o (ez\l(kH,E'i(kH))z _ e)\z(kH,Ei(k’H))Z). (485)

:FSgH(AQ)QkH [B1]

Fsgn(A142B1) ;]Z;] l\DBIH

We see that the resulting wave spinor part of the wave function is a superposition of the spinors
for the surface states at the gamma point, but where the the two different spin parts have a
relative phase of ’%\ Therefore, N is again given by eq. . We can insert the energy from
eq. , to express A1 and Az as functions of kj| only. We have:

Aa(kyp, Ex (k) = \/_F 4_2&11);_—1\@, (4.86)

where the F' and R after some algebra, can be simplified to:

D.D_

F = A} + 2———(M — Bak{}) + 2D;|Ag|y 1 kH, (4.87)

BQ

AA3 D
R=Aj+ 5D D (M = Bykf) & 441 Dy | ol 1 - k:H (4.88)

4.4.1 Spatial structure

Now we will discuss the spatial distribution of the surface states in the z direction. This is
entirely determined by the values of A\; and Ag, which are given in terms of k|, in eq. .
Because of the particle-hole asymmetry, A\; and Ao also depend on whether which part of the
Dirac cone we are on. For a particle-hole symmetric model D; = 0, and the terms with a £+
in eq. (4.87) and drop out. At k) = 0 we directly see that the spatial distribution of
the surface states are equal for £ and E_, since £, = E_. This is can also be realized from
time reversal symmetry; at k)|, the two surface states are related by the time reversal operator,
which does not change the spatial part. Qualitatively, there is two different options for the
spatial part of the surface states. Either we have that A\; and Ao are real, or they are complex
conjugate partners. If they are complex conjugate partners \; = A5 = a + b, then the spatial
part of the wave function can be written:
@ (el _ =) = 24e9% sin(bz), (4.89)
and the wave function is simply a sine function multiplied by an exponential decay.

For the parameters from [I1]], the surface bands are entirely in the region where A, Ay € R,
and as we see on figure the wave functions show a simple decay, without any oscillation.
If we instead use the parameters from [I2], the wave function oscillates for small k. For

larger k| the imaginary part b decreases, and the wave length of the oscillation increases, and
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4.4. SURFACE STATES AT K| # 0

eventually diverges when A\; and Ao becomes real. On figure we see the wave length

increases with k)|, and at k| = 0.06 A1 we see a simple decay. In chapter [5| we will see how
this oscillatory behavior is of great importance, when considering a finite topological insulator.

0.35 0.35 ‘
ky =0.0A"! -~k =0.0A"" .
: i 30 . AT
030y ky =0.014"! SeE 03001 __ Ky =0.024"! y LN
-3 . PR
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(a) Parameters from [I1]. Note how the lower band (b) Parameters from [12].
gets more localized while the lower goes into the

The wave length of
bulk for this range of k. For larger k| wave

the oscillation increases with k|| and for k)| =

0.06 A= we see a decay without any oscilla-
functions of both bands goes into the bulk, as tion.
seen on figure

Figure 4.6: Wave functions for a semi-infinite topological insulator. The dashed lines are from the upper
band E while the dotted ones are from the upper band E_. The color indicates the value of
the in plane momentum k| (note that the values of k|| are different for the two plots). The
spatial wave functions for the two bands are equal for k|| = 0 since in this point they are Kramers
partners.

It is also interesting to see how localized the surface states are. As we see in figure [4.6]

this changes with k). One way of quantifying this is to calculate the expectation value of the
z:

0 0
(2) = NZ/ 2Oy VG, Az = NZ/

—00 —00

Ze2Re[)\1]z + ZeZRe[)\Q]z — 9, Re[e)\1+>\§)z] dz

(4.90)

=N (- R oL

- ( (2Re[A1])? (2Re[)\2})2+2R {(Aﬁ%)z]) (4.91)
(4.92)

Note that A\; and Ay are given by eq. ({4.86)), we have just dropped the arguments for conve-

nience. Again we can simplify by looking at either Aj, A2 € R or A\; = A5 = a + ib. For the
real case we get:

-1 _ 1 4 2
ax? a2 T (qt+e)? 1 1 1
S i W S V) W W (4.93)
P + e Aitre 1 2 1+ A2
And for the complex case:
1 a?—b?
2a2 T 2(a2+52)2 a
(z) = = - — (4.94)
T - 20 a?+b?
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In figure the expectation value is plotted as a function of the in plane momentum. By
comparing with the spectra in figure 4.3] we see that the expectation value diverges, exactly
when the surface band touch the k., = 0 bulk band. For k| = 0 the expectation value is bigger
than —10 A, for both sets of parameters, which is within the first quintuple layer. For the

parameters from [I1], the lower surface state with energy E_, actually gets more localized as
k|| increases, before going into the bulk.

0

Ky (A1)

Figure 4.7: Expectation value of z for the surface states of a semi infinite insulator. The red lines are from

parameters from [11I], while the blue ones are from the parameters of [12].

4.4.2 Spin structure

To investigate the spin structure of these surface states we will transform back to the original

basis, related by the unitary matrix U; given in eq. (3.45). In that basis the o matrices
represents spin directly:

%’L’ Sgl’l(AlBl) M

[B1]
_i JID-]
UjvE () =N 2V 15 (eM? — M%) (4.95)
:FSgn(AlAgBl) ky 1D

2k 1B
g —sgn(AlBl) ‘D”
- N V2 . ® 2|B1| (6>\12 e)\gz)
+segn(A1AsB + _ /1D-]
g ( 142 1)\/516” Spin 2|Bl‘

orbital
(4.96)

We see that the spinor splits into a spin part and an orbital part, and that the spin part is

independent of the parameters of the model except for the sign of the parameters Ay, As and
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B1. The expectation values of the spin operators are:

2 = - . = 4
(S:)Es 2 ibgn(AlAQBl)\[kH :FSgn(AlA2Bl)\[k,H 0 (4.97)
1 —% :Esgn(AlAgBl)\[kH ky
- == . =4 A1A>B 4.
(Sa) s 2 ngn(AlAzBl)\[kH 7 nldide 1)%II (499
1 -7 Fisgn(A1 A2 Br) 5 ke
gy 1L . 1| = Fsen(A, A8

(4.99)

We see that spin and momentum are locked such that the spin is always perpendicular to
the momentum, and the only dependence on the parameters of the model is the sign of the
vorticity of the spin, which is determined by the sign of A1 AsB;. For the parameters from
[11], the product A;AsB; is negative, and we get the spin structure given in figure Note
that in [11], the spin structure is calculated as well, using an effective 2D model, giving the
opposite vorticity of the spin. The reason is that they consider a system where the topological
insulator fills the z > 0 half-space. The two systems are related by the inversion operator,
which takes k;,k, — —kz, —ky, but does not affect the spin. Therefore, the vorticity of the
spin structure is reversed. For the parameters in [12], A;A2Bj is actually positive, and the
spin structure has opposite vorticity. These parameters, however, were obtained by fitting the
bulk spectrum of the model to the spectrum from ab initio calculations. The bulk spectrum
does not depend on the signs of the parameters, A;, As and B; and therefore, this method
gives a sign ambiguity. Hence, the vorticity of the spin structure is not well determined by this
method only. In [II] the parameters are calculated using k- perturbation theory, where the
parameters are given by matrix elements of the momentum operator between the bulk states

at the gamma point. Therefore, these parameters should be unambiguous.

kZ

Figure 4.8: Close up of the Dirac cone of surface states. The spin is shown by the red arrows. The spin lies
within the xy plane and rotates around the gamma point, in a counter-clockwise fashion above
the Dirac crossing, and clockwise below the crossing. This is the case for the parameters from
[11], while all the spins are all opposite using the parameters from [12].
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4.5 2D model for surface states

Using the two surface states at the gamma point as basis states, we will now construct a 2D
model, describing the surface electrons. We will do this including only terms to second order
in kj|, since then we can compare it to the analytical solution in . This can be thought of as
doing degenerate perturbation theory, in the in plane momentum. We split the Hamiltonian

into one term independent of k, and £, and the perturbation term depending on k; and k,:
H(ky, ky,—i0,) = Ho(—i0,) + AH (ky, ky) (4.100)
where Hy(—1i0,) = H(k, = 0,k, =0, —10,) and
AH (ky, ky) = Dokl — Bokyjoo ® 7. + Az (kz0s + kyoy) @ 7 (4.101)

To get the effective 2D Hamiltonian, we need to calculate the matrix elements between our
basis states ¥T, U+ (we drop the k)| = 0 subscript here for convenience) with the perturbation
AH (ky, ky). Since there is no operator in AH (k,, k) operating in real space, we do not have

to worry about the real space part of the wave function. Dropping the spatial part, our basis

states are:
Ul = <¢> wh = ( 0 ) (4.102)
0 T2
where
i D4
sgn(Dy Ay /1B
o= 5 151l (4.103)

V2V 1Bi]

The elements of our 2D effective Hamiltonian are then given by
H2D = (W7 |AH|®7) (4.104)

Thus the first term is just gives a constant. For the second term we need to calculate the
matrix elements of o9 ® 7,. This term is diagonal in spin space and thus only give diagonal
terms in our effective hamiltionian. These matrix elements give:
Di|—|D-| sgn(B1)D+ +sgn(B1)D- D
il ol — — D+ — -t
D,

<\I’¢|00 ® TZ|\I]¢> = (p|mTm:lp) = (ol T:]p) = By (4.106)

(4.105)
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For the last term the spin is flipped, and we get only off diagonal terms. We will just calculate

one of them and get the other by taking the complex conjugate:

0 k- , , D?

<‘I’T‘A2 < > ® Tx]\I"L> = Aok_(p|muT:|p) = —iAsk_{p|Ty|p) = iAasgn(Bi1Ar) — —%
k+ 0 Bl

(4.107)

Putting this together, and using that the energy of the unperturbed states is £ = C' + MB—?

we get the 2D Hamiltonian:

MD D? By D
H*P =C + : : (Dz— e

B, + Agsgn(B1Ap)y /1 — B—%(k‘yaz — kgoy) + > k| (4.108)
The linear term is the Dirac-like Hamiltonian from eq. , giving rise to spin-momentum
locking. The sign of the vorticity of the spin-momentum locking is determined by the sign of
A1 Ao By, exactly like the we saw using the 3D model in section In addition we also get
a second order term, which only changes the spectrum, giving a curvature of the dispersion
relation, and not the spin structure of the surface states. This Hamiltonian can easily be
solved giving the same spectrum, as the full solution to the 3D model, eq. .

4.6 Local density of states

Now we will calculate the local density of states. This will in principle not give any new infor-
mation, but will sum up the information given by the wave functions. From an experimental
point of view this is interesting, since you do not measure single wave functions. By doing for
example an STM measurement, you probe the local density of states. This can be computed

directly from the wave functions, where we now include the x and y dependence from eq.
(4.10):

pew)= 3 10 ()5 — Balhy) (1109)

ke ky,a

where o = & denotes if we are on the upper or lower part of the Dirac cone, and A is the area
in the x, y plane, which is included to normalize the wave functions. But we will take the limit
A — oo, which converts the sums over k, and k, to integrals as described in Appendix A of
[22]:

plew) = < 2717)2 Ea: /F | dbidty ¥, 0 (2500~ Ball) (4.110)

Since the Hamiltonian is invariant under any rotation around the z axis, Wk, k, o(2)> =

|\Ifk‘|70,a(z)|2. Therefore, we change to polar coordinates in the momentum integrals and inte-
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grate out the angle:
1
) = o Z/dk||k| /de\\ykl,o,a(z)ﬁa(w ~ Ba(k)) (4.111)

- % Z/dk||k|\l’k,07a(2)|25(w — Ea(kiH)) (4.112)

9 (kY —
- z:/dkllkl\l”f 0.a(2)]” Z dEa( ) (4.113)
ko dky \M0
where ko are the solutions to the equation F, (ko) = w.
w = E, = ak} + abko + ¢ (4.114)

— 2 _ 4 —
ko — Ozb:t\/b2 alc —w) (4.115)
a

where @ = Dy — 32 \Ag[ and c =C+ MDI. o = * denotes whether we are on

D}B;BQ’ b—
the upper or lower part of the Dirac cone. This equation has two solutions, but we only want
ko > 0 solutions since it is the magnitude of the in plane momentum. We also see on figure
the surface the surface bands go into the bulk before the parabola reaches its extremum.
Hence, if both solutions are positive, we only want the smallest positive solution. Hence we
have a unique solution for each w. By considering all 4 combinations of the signs of a and

¢ — w, we see that the smallest positive solution always can be written:

b— /b? —4da(c—w)

ko(w) = sgn(c — w) 5 (4.116)
and the derivative of the energy in this point is:
dE
1 — (ko) = sgn(w — ¢)b + 2aky (4.117)
I
And we get the local density of states:
1 ‘\Ijkzo 0 sgn(w—c)(z)‘2
=—k ~ 4.118
plz:w) 27 0(w) | sgn(w — ¢)b + 2ako(w)| ( )
And if we write this out using the specific form of the wave function, we get:
1 N2|6)\1z - e>\1z|2
=—k 4.11
plz:w) 27 o) | sgn(w — ¢)b + 2ako(w)| (4.119)

where \; and Ao are given by eq. with £ = w and k = ko(w), and N given by eq.
(14.59]).

The density of states is zero at the Dirac point. The reason is that here we only get a
contribution from a single pair of states, whereas for all other energies, there is a circle of
contributing states in momentum space. The linear dependence of the DOS close to the Dirac

point is a characteristic of a Dirac Hamiltonian. When the energy moves away from the Dirac
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from the surface, as a function of the energy w. the semi infinite system.

Figure 4.9: The local density of states for the surface states of a semi-infinite topological insulator. The Dirac
point is seen at w = 0.23 A where the density becomes zero. We see how as we go away from the
Dirac point the density goes further into the bulk, and eventually goes to zero.

point, the wave function spreads further into the material, and as a result we see the LDOS

decreasing and eventually becoming zero, when the surface state becomes a bulk state.
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CHAPTER 5
SURFACE STATES IN A THIN FILM OF
BI>SE3

In this chapter, we will investigate a finite topological insulator. We consider a system, which
is infinite in the z, and y directions but, finite in the z direction, see figure 5.1 We will use
the same ansatz as in chapter ] but in this case the secular equation leads to a transcendental
equation, which we have to solve numerically. Using this method, we will find both surface
and bulk states, although for thin films the distinction is not as clear, since all states have
a non-zero wave function throughout the material. For a very thick insulator we expect to
get the same result as in the semi-infinite case. But as the thickness gets smaller the overlap
of the wave functions of the states on opposite surfaces induces a gap. This can be seen as
bonding/anti-bonding combinations of the surface states on opposite surfaces.

To illustrate the method used in the general case, we will first analyze the Hamiltonian at
the gamma point. Here the Hamiltonian gets block diagonal, and we can analyze each block

separately.

Figure 5.1: In a finite geometry, the overlap between wave function on either side of the insulator can induce
a gap in the spectrum.

We consider a topological insulator, infinite in the z, y plane but with surfaces at z = :i:%.

Again we will use hard-wall boundary conditions:

U(z=xL)y=0 (5.1)

5.1 Spectrum at the gamma point

We will start by finding the surface states at the gamma point, which will be useful when
constructing an effective 2D model for the surface states. Furthermore, it illustrates the

method used for k|| # 0. As in 4] we have the time independent Schrodinger equation:

H(ky, ky, —i0.)0(z) = BU(2). (5.2)
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5.1. SPECTRUM AT THE GAMMA POINT

At the gamma point, the two spin blocks of the Hamiltonian decouples, and can be written

as:

h 0O
Hy(—10;) = H(k; = 0, ky =0, —i0,) = (0 h*> ) (5.3)

where the spin up block is given by:

_ 2 —iA
h:<C+M D_? iA,0, ) 5.4)

—iA10, C— M — D, 5?

We only need to solve one of the blocks, then the solutions to the other can be found by time
reversal operation, or equivalently by replacing A7 — —A;. Here we will solve the spin up
block. Again we use the ansatz 1ye?, which gives the same solutions A = )\, from eq.
, only with k)| = 0. We only get one eigen-spinor for the spin up block:

4 [ ot Baz
¢aﬁ(z) - <—ZA1)\Q> € (55)

where J,i = Dy A2 — C + M + E. Since we have inversion symmetry in this case, it is

convenient to change to basis states which are eigenstates of the inversion operator:

4 R B T — Jat cosh(Ny2)

Plaz) = 5014 () + ¥l () = <_¢ o Smh@az) (5:6)
0 _1 0 2) — 0 2)) = Ja+sinh()\az)
oo (2) = 514 (2) — ¥l () = (_Z. e COSMZJ 5:1)

Here the second index denotes the inversion eigenvalue. Under inversion sinh(\,z) —
—sinh(Aqz), while cosh(Ay2z) — cosh(Ayz). However, the inversion operator also operates in
the 4-spinor space, given by o9 ® 7., as we saw in section [3.3] Therefore, the above states,
are actually inversion eigenstates.

A general solution to the spin up block can be written:
Z agSDag (5.8)

Now we impose the boundary conditions:

¥ (z _ ié) ~0. (5.9)
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5. SURFACE STATES IN A THIN FILM OF BI>SE3

This gives a linear homogeneous system of equations for the coefficients:

Ji+ cosh(%) Joy cosh(%) Ji+ sinh(%) Joy sinh()‘ZT) Ci+
—i A1\ sinh(’\lTL) —iA1 )\ sinh(’\QTL) —iA1 )\ cosh(’\%) —iA1 )\ cosh(%L) Cayt _o.
Ji+ cosh(% Joy cosh(% —Jit+ sinh(%) —Jogt sinh(%) Ci-
1 A1\ sinh(/\lTL) 1 A1)\ sinh(A?TL) —1 A1)\ cosh(’\lTL) —1A1 s cosh()‘QTL) Co_
(5.10)
This equation can be reduced by simple row operations to
Jit cosh(22)  Joy cosh(22L) 0 0 Ch+
Apsinh(25£)  Apsinh(22E) 0 0 G | _ (5.11)
0 0 Jigsinh(ML) Ty sinh(22E) [ oo | '
0 0 A1 cosh(%) A2 Cosh(%) Co_
This matrix is now block diagonal, with each block corresponding to one inversion eigenvalue.
For the upper block, corresponding to positive inversion eigenvalue, we get the secular equation:
Tipde _ tanh(25%)
Jo+ A1 tanh(23E)
(D4X = C+ M+ E)\, _ tanh(%F) (512)
(D3 —C+ M+ E)A tanh(E) ‘

Here, A1 2 are dependent on the energy only, and the solutions to this equation gives all energies
of the k| = 0 states, which are even under inversion. The other block is the same just with all
cosh and sinh interchanged, and we get a similar secular equation for the states at the gamma

point, which are odd under inversion:

(DiA —C+ M+ E)X; _ tanh(*3F)
(DA —C+ M+ E)A\1  tanh(ML)’

By solving eq. (5.12) and (5.13)), we can obtain the spectrum of at the gamma point. These

(5.13)

N
~

equations are transcendental and we will solve them numerically. Solving these equations is

equivalent to finding the zero points of the functions:

(DyAa(E)? — C + M + E) tanh(MEL) (DA (E)? — C + M + E) tanh (228

Geven (E) — -

Xo(E) M (E)
(5.14)
(E) = (D X(E)?2 —C+ M+ E) tanh(%) B (DAM(E)? —C + M + E) tanh()‘l(f)L)
Jodd Xo(E) M (E) .
(5.15)

Since A; and Ay are in general complex numbers, these functions are complex-valued. To

simplify our problem, we will instead take the sum of the real and imaginary parts of these
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5.1. SPECTRUM AT THE GAMMA POINT

functions, and then find the zeroes of the resulting real valued functions:

feven(E) = Re[geven(E)] + Im[geven(E)] (5-16)
foaa(E) = Re[goda(E)] + Im[goad (£)] (5.17)

We find the zeroes by iterating over an array of energies, and checking whether the product
of to subsequent values of the function is negative. If it is, then either the function has a
zero or a divergency between the two points. By setting a threshold value for the difference
between the value of the function at these points we avoid the divergencies. At the zeroes of
these functions, we know that a non-trivial solution for the coefficients exists, which gives a
non-zero wave function, if the basis functions are linearly independent. The only possibility for
a solution to the secular equations where the basis states are linearly dependent is if Ay = Ao,
A = 0 or Ay = 0. The case Ay = A9 happens when R as defined in eq. is zero.
Therefore, if we find a zero of one of the above functions, we check whether R also has a zero.
If F2 — R = 0 then either A\; or )y is zero, which can be seen by calculating A\ Ay = %
from eq. . Therefore, we also check whether the function F?2 — R has a zero. The energies
where foven OF fodd are zero, but both R and F? — R are non-zero, are the eigenenergies of

the finite system. See figure for a plot of these functions. This way we can iterate over a

1.0

— fodd
— fe’uen
0.5}
0.0 ¢ 3 ¢ o oo
—0.5
—1.0

Figure 5.2: The zeroes of the functions feven(E) and foaa correspond to either eigenenergies of the system
or points where our basis states are linearly dependent. To get only the eigenenergies, we drop
all the zeroes of feven/oaa Where either R or F? — R is zero as well. The circles indicates the
eigenenergies, found by this method. This example is for a thickness of L = 20 A using the
parameters from [11].

range of thicknesses and see how the gap depends on the thickness. Here we assume that the
minimal gap is at the gamma point, which we will see when we calculate the full spectrum.
Since surface states decays exponentially, and the gap is induced by the overlap of surface
states at opposite surfaces, we expect an exponential decay of the gap as a function of the

thickness. It turns out that for certain model parameters, there is an oscillation of the gap on
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5. SURFACE STATES IN A THIN FILM OF BI>SE3

top of this exponential decay, as seen on figure This oscillation is also discussed in [23],
[24] and [25].

10!

100}

107 . . . . (b)
20 10 60 80 100

(a)

Figure 5.3: (a) Gap between the surface states as a function of the thickness. The red line is calculated
using the model parameters from [II], and shows only an exponential decay, while the blue line
is calculated using the parameters from [12] shows an oscillation on top of the exponential decay.
We emphasize that the gap actually goes to zero, at local minima of the blue curve, which is
not seen, because of the finite resolution. The zeroes of the gap occurs at integer multiples of
25 A. The green circles are experimental data from [26]. (b) Oscillating wave function for a
semi-infinite topological insulator. We can introduce another surface, exactly at one of the zeroes
of the wavefunction, indicated by the dashed lines. Then, this wave function, will still be fulfill
the new boundary condition. Hence, the energy is not changed, by introducing a surface at one
of these points.

The equidistant zeroes of the gap, when using the model parameters from [12] can be
explained by looking at the wave functions in the semi infinite case. For these model parameters
the wave function are oscillating, which means that the wave function is zero at equidistant
points within the insulator. If we make a second surface exactly at one of these points, then the
wave function of the semi-infinite case is still a solution to the finite insulator. This situation
is shown qualitatively in figure [5.3b] Therefore, since the semi-infinite insulator is gapless, the
finite insulator must be gapless too. Furthermore, we note here that each time the gap goes
to zero the energies of the even and odd surface state interchanges, such that if we define the
gap by A = F_ — E,, it changes sign.

In [26], the finite size effect were investigated by ARPES experiments on films of BiySes,
with thicknesses of 2-6 quintuple layers (9.547 A). The measured gap is plotted in figure m
for 2-5 quintuple layers. For 6 quintuple layers they do not see any gap in the experiment. The
experiment clearly shows an exponential decay of the gap, as a function of thickness. The size
of the gap, agrees remarkably well at two quintuple layers, with the theoretical predictons for
both sets of parameters, but decays slower with the thickness. The experimental data show no
sign of oscillation of the gap. This strongly suggest using the parameters from [11]. However,
absence of gap oscillation is not conclusive, since we only have 4 points. It is an experimental
challenge to fabricate thin films, with a non-integer number of quintuple layers, due to the

strong coupling within the quintuple layers.
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5.1. SPECTRUM AT THE GAMMA POINT

5.1.1 Wave functions at the gamma point

Now we will find the wave functions at the gamma point. To do this we have to solve eq.
(5.11)) for the coefficients. Since each block is only 2 x 2 this can be done analytically, however
we still need to find the energy numerically. For the upper block corresponding to positive

inversion eigenvalue, we can choose the coefficients to be:

1 1
o o N 5.18
" A1 smh(%) T A2 smh(TL) (5.18)
Which gives the eigenstate (written as a 2-spinor in the spin up subspace):
1 1
T T
z) =Ny | —————
QO-I—( ) +< )\1 sinh(%)%r( ) )\QSIHh % ¥1 ( ))
. cosh(A12) cosh(A22)
JIJF/\ smh()‘lL) + )\ sinh( >‘2L
- NJF i sinh(\12) sinh >\22
sinh(21L)  sinh(22L)
St cosh(A1z) cosh()\gz
- N tanh(#) cosh()‘1 ) cosh(22%
o iA sinh(A12)  sinh(A22)
! sinh(%) 1nh(>\22L)
D /\2 A2 cosh(A\1z)  cosh(X22)
N, + A1 tanh( Ey—X2 tanh( Ly cosh(%) cosh( 2L) (519)
iA sinh(A12)  sinh(A22)

sinh( %) sinh(%)

To rewrite the wave function into this simple form we used eq. , in both steps. We have
introduced a normalization constant NI. To find A; and A2 we have to find the energies by
solving the corresponding secular equation. In eq. we see that the odd inversion block
is equal to the even inversion block if we interchange sinh and cosh. So the wave functions of
the odd inversion eigenstates can be obtained by simply interchanging sinh and cosh in the

even inversion wave function:

D /\2 sinh(A12)  sinh(J22)
+ A1 coth( L /\2 coth( Ly sinh(h—L) sinh( >\2L)

cosh(A\1z)  cosh(A22)
cosh(AlTL) Cosh(AQL)

w_(z)=N_ (5.20)

The two degenerate solutions are written as full 4-spinors given by:

V(2) = <<P£(§Z)> and W¢(z) = (T @2@) : (5.21)

where the energy is found by solving the secular equation corresponding to the inversion
eigenvalue £. For convenience we have written the spin down state with a 7., instead of

complex conjugating’l Some examples of these wave functions are seen on figure We see

!The 4 in the second component, becomes —i while complex conjugating. The rest of the spinor is either
real, if A; and Ay are both purely real or imaginary, or imaginary if \; = A3 is complex. To avoid getting an
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— PIT1 — P20.1 — P1t — P23l — P1t¢ — P21 — Pt — P27l

2 2 0.0 R ‘\\ , \ - /,’ \ _ . / \
—0.10 M oL -
—0.1
—0.15
~0.20 —0.2
5 10 1

5 10 =5 0 5 10 15 L FR— T E— 0
2 (A) 2 (A)

9

(a) The wave function of the lower surface state, (b) Wave function of a bulk state at the energy
having an energy of 0.21eV. —0.70eV

Figure 5.4: The wave functions in the spin down block, for a thickness of L = 30 A. The color denotes the 4
different components, in the basis of our model Hamiltonian. The color denotes the 4 different
components, in the basis of our model Hamiltonian. The solid lines are the real part, while dashed
are the imaginary part.

that the components of the bulk state looks like the wave functions of an infinite square well,
where the number of oscillations increases with energy. In contrast the surface states have large
peaks close to both surfaces, which becomes more significant as L is increased. On figure [5.5
the density of the surface state with the highest energy, is shown for a range of thicknesses L.
Here we see that the density at z = 0 decreases, when L is increased, and eventually becomes
negligible. This agrees with the fact that surface states on opposite surfaces decouples in the
large L limit, and the gap becomes negligible. When L is large enough that the gap can be
neglected, then all four surface states are degenerate at the gamma point. Then we can make
a superpositions of the even and odd states, which will be localized close to a single surface,

simmilar to the wave functions found in chapter [

5.1.2 2D model

Using the states at the gamma point as a basis, we can compute an effective 2D model of a
film of 3D topological insulator. We follow the approach of [16]. We will only use the four
surface states, denoted by ]\I/g), where ¢ denotes the inversion eigenvalue, and o the spin. We
denote the energies of these states E¢, where { is the inversion eigenvalue again. We split the

Hamiltonian into the k) = 0 part and a part dependent on kg, ky:
H = Hyo(—i0,) + AH (ky, ky) (5.22)
The momentum dependent part can be written:

AH (ky, ky) = Dokif — Bokfoo @ 7, + Az (kyoy + kyoy) © 7, (5.23)

overall sign in the latter case, we use 7, instead of complex conjugation.
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Figure 5.5: Density of the upper surface state for different thicknesses from L = 10 A to L = 100 A. For small
L we see a big change in the density, when changing L, while we can the density for L = 100 A
almost has the same form the density for L = 80 A.

Since our basis is already eigenstates of Hy we need only to calculate the matrix elements of
AH. By using the inversion symmetry of the Hamiltonian, AH (ky, ky) = IAH (—ky, —ky)I,

and the fact that our basis states are eigenstates of the inversion operator we get:

(WG | AH (kg k) UE) = (WG [TAH (~ kg, k) IV = £ (VT |AH (~ky, —k,)| ) (5.24)

From this we conclude that the kﬁ terms only couple states of the same parity, while the terms

linear in momentum couple states of opposite parity. The only non-zero matrix elements are:

(UZ|AH (g, ky)|0F) = Dok — Bok? (pe| | oc) (5.26)
(UL AH (ky, k) [WE) = Ask (o |mm]0-) (5.27)
(UL|AH (ky, k) [WY) = Aok (o |m7]i04) (5.28)

By defining some new quantities:

B — By \PoITelen) — (plmeles) (5.29)
2
D=5, (p—|Tzlp-) ‘; (o1lmlo+) — Dy (5.30)
Ei—E_
Ey = *T (5.31)
A—E —E, (5.32)

Ay = Ag(p-|mamslipy) = —iAa(o-|myle) (5.33)
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5. SURFACE STATES IN A THIN FILM OF BI>SE3

We can write the effective model in the basis {]\I/T_>, \\I!b, \\Ill), ]lIl¢_>}

S - Bkﬁ Agk_ 0 0
Ay ~5+BK 0 0
Hop (ks k) = E _DkZ 2 2 I - 5.34
2D (ke ky) 0 [ 0 0 -5+ Bkﬁ —ASk_ (539
0 0 —Aoky G - Bk

In [I6], it is argued, that the parameter Ao, is either purely real or purely imiginary, giving
two different cases for this model. However, the basis states we use have an arbitrary phase or
gauge freedom. Hence, by performing a gauge transformation only on the positive inversion
states, |py) — €?|p,), we get the parameter Ay — e Ay. We see that the two cases are
related by this simple transformation, which does not change any of the other parameters,
since they include only matrix elements between states with the same inversion eigenvalue.
This model is equivalent to the BHZ model for HgTe quantum wells, derived in [5]. This
model was shown to describe a 2D topological insulator. Using the same approach, that we
used in chapter {4]to find surface states, one can find edge states in the BHZ model. Therefore,
a thin film of a 3D topological insulator, can behave as 2D topological insulator. Here the
surface states are gapped out, because of the coupling between the two surfaces, and edge states
arises within the gap. Whether the thin film is a 2D topological insulator or not depends on

the parameters of the model. It can be shown that for;

2 9 (5.35)
2B ~ '

the thin film is topologically non-trivial, and there exists counterpropagating edge states. In
appendix [A] we show the equivalence of these models, calculate the edge states and derive
the condition in eq. for the existence of edge states. For the parameters of [12], the
gap A oscillates, as a function of the thickness L. Therefore, the thin film oscillates between
the trivial and non-trivial topology, assuming that the sign of B does not change, which was
showed in [23].

5.2 Bulk and surface spectrum

Now we will calculate the full spectrum of a finite topological insulator. We will do this, and
the rest of this chapter, only using the parameters from [I1].
We will change to a basis of states where the state at in plane momentum k;, k, is related

by inversion to the same state at —k,, —k,. In chapter 4 we used the basis:

Tt Aok
iBAaz __ _iAlﬁ)‘Oé iBAaz iBAaz __ 0 iBAaz
« € - e ) (0% e —_— e 9 536
Va1 0 Vap2 iBALN (5.36)
Aok Jo—

where 3 = + and a = 1,2. Now we change the basis t0 Yagy = 3(Vaty + (—1)77H(Ea—ry)).
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5.2. BULK AND SURFACE SPECTRUM

The positive inversion basis states are given by:

Jagt cosh(Ap2) Agk_ sinh(\y2)
—1A1 A sinh(Ay 2) 0
at+1(z) = , at2(2) = 5.37
posi(2) ) e = o (5:37)
Asky cosh(Ay2) Ja—.sinh(Ay2)

The negative inversion states have the same form except, all cosh are replaced by sinh and
vice versa. The general solution to the Schrédinger equation is given by a superposition of

these eight eigenstates:

= Z Caﬁ’y@a&j”/(z) (538)

ady

When we impose the boundary conditions (5.1)) it gives a 8 dimensional linear homogeneous
system of equations for the coefficients. It will be convenient to arrange the coefficients in the
order C = (C141,C1-2,Co41,C5-2,C1_1,C14+2,C2-1,Ca42). The system of equations can be

written as:
MC=0 (5.39)

M is a matrix where each column consist of the corresponding 4-spinor wavefunction evaluated

at the boundaries Qg (5), Pagy(—%). This matrix can be written simpler on block form:

where
Jipcosh(ME)  Apkcosh(*F)  Jaycosh(8E)  Agk- cosh(*3F)
(L) = | A sinh () 0 —i A1 g sinh(22L) 0
2 0 iA1 A 51nh(TL) 0 iAo sinh(TL)
Agkycosh(2E)  Ji_cosh(2E)  Askycosh(?2E)  Jo_ cosh(3E)

(5.41)

and mo(%) is obtained from m1(%) by interchanging cosh and sinh.

Now we want to compute the determinant to obtain the secular equation for the nontrivial
solution of the coefficients. If we just try and calculate the determinant we would get 4608
nonzero terms. But we can perform row operations to obtain a simpler matrix equation,

equivalent to the original one. Using that sinh is odd and cosh is even, and multiplying row 5

i
ml(

and 6 by —1, we get the matrix:

L
2

~—

) ma(

) —ma(

))czo (5.42)

Gl o
ol
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5. SURFACE STATES IN A THIN FILM OF BI>SE3

This matrix can easily be reduced to a block diagonal matrix of the form:

m(y) 0 >C:0 5.43
< 0 mak) (5:43)

mg(

The secular equation for nontrivial solutions now factors into the product of the determi-
nants of the two submatrices. In addition, since this matrix is on block form, we can find

solutions, using only four of the basis states. First we compute the determinant of the upper
block:

det(mi(%)) =
Jigcosh(ML/2)  Ask_cosh(A1L/2)  Joycosh(AeL/2)  Ask_ cosh(M2L/2)
—1A1 A1 sinh(A\ L/2) 0 —1A1 A9 sinh(A2L/2) 0
0 iAj A sinh(M\ L/2) 0 iAj g sinh(A\oL/2)

Asgky cosh(ML/2)  Ji—cosh(ML/2)  Askycosh(AeL/2)  Jo— cosh(A2L/2)
= A?sinh(\ L/2) sinh(A2L/2) cosh(A L/2) cosh(XaL/2)A Ao (243K* — Joi J1— — JiiJo)
+ A2 sinh?( A1 L/2) cosh?( Ao L /2) X2 (Joy Jo_ — A2K?)
+ A2 sinh?(\oL/2) cosh?(\ L/2)N3(Jy 4 J1— — A2k?)
= A?X\1 Ao sinh(\ L/2) sinh(A2L/2) cosh(A1 L/2) cosh(MaL/2) (D+D_ (A3 — A3)? + AT(A + \3))
— ATAA3(sinh?(A\ L/2) cosh?(AoL/2) + sinh?(AoL/2) cosh?® (A1 L/2))

setting this equal to zero gives the equation:

DyD_
A =27+ (M +M) tanh(ML/2)  tanh(AL/2)

A1 A N tanh(/\gL/Z) + tanh()\lL/2)’

(5.44)

which was also found in [16]. This is the secular equation for solutions belonging to the upper
block. Remember that ;2 are functions of the in plane momentum k| and the energy E. A
solution E(k)|) to this equation means that there is an eigenstate of the system at that point
using only the first four basis states. This state can be either a surface state or a bulk state.
Since the lower block mg(%) can be obtained from the upper block, by interchanging cosh and
sinh, we can simply do that substitution in the resulting secular equation, eq. . But this
substitution does not change the equation, and the secular equation for solutions belonging to
each block is the same. This fact ensures that all bands are at doubly degenerate, since any
solution E(k|) to eq. ensures that there exist a nontrivial solution for the coefficients
belonging to each block separately, with energy £ and momentum k. This is actually what
we expect, since we have a system with both inversion and time reversal symmetry. Therefore
all bands must have a double degeneracy as explained in[2.9.2] And to find the wave function,
it is convenient to just do it for one block, and then apply the T'I symmetry operator to get
state of the other block. This ensures that the two degenerate states are orthogonal, even
though we use a basis which is not orthogonal.

Now we want to solve eq. (5.44) numerically. Hence, the problem now is finding the zeroes
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5.2. BULK AND SURFACE SPECTRUM

in the (&), £) plane of the function:

D= [Nk ) = 05 BV + O )+ Mk E)
f(kllvE) = Al(kH,E))\Q(kHaE) 54

_tanh()\l(k‘H, E)L/2) B tanh(Aa(ky|, £)L/2)
tanh(A2(ky, £)L/2)  tanh(A1 (K, E)L/2)

(5.46)

To do this, we iterate over k)| and for each value k; we find the points where f(k;, ') changes
sign as a function of E. But since the function diverges for some points it can also change
sign at those points, we impose a maximum threshold difference between the points on either
side of the sign change. The necessary resolution and threshold were determined simply by
looking at the plot of f(k;, E) for some specific k;. This ad hoc method was necessary since we
do not beforehand know, how many solutions to expect. By this method, we can obtain the
spectrum. This method should give us all the points, where we have a non-trivial eigenstate,
fulfilling the boundary conditions, but only if all our basis states are linearly independent. If
we have some linearly dependent basis states, then we can make a linear combination, which
is equal to zero, even though the coefficients are nonzero, by definition of linear dependence.
The basis vectors are linearly dependent only if A1A1 = 0, AjAs = 0 or if Ay = Ao. We will
again assume A; # 0, and the points where A1 or Ao are zero are avoided, since we divide by
Az in eq. (B.46). If Ay = Ay then by eq. (4.15), then R = 0. If we at each point where f
changes sign check whether R changes sign and exclude the points where it does, then we avoid
the solutions to the secular equation, which are caused by our basis becoming incomplete.
The resulting spectra are plotted in figure . We see that already at 60 A the gap has
closed and the surface bands coincide with the bands from the semi-infinite case. We also see
that the spacing between the bulk bands decreases with the thickness, which is analogous to

a 1D particle in a box, then the momentum gets quantized to fit the boundary condition.

5.2.1 Comparison with experimental data

Again we will compare to the results from the ARPES experiments, reported in [26]. The
spectra for 1-6 quintuple layers are shown in figure As indicated by blue and red dashed
lines there doubly degenerate Dirac cone at the gamma point is split into two Dirac cones,
slightly displaced from the gammapoint. This is due to a structural inversion asymmetry
(STA). The thin film is fabricated on a substrate, which breaks the inversion symmetry. One
surface is subjected to vacuum, while the other surface is on top of the substrate. This effect is
not included in our model, and we do not see this splitting. The dashed lines are the spectrum
of the 2D model, including SIA. The outer branches of the upper surface states and the inner
branches in the lower, are almost invisible in the data. The reason is that they are located
primarily on the lower surface, and therefore are not reached by the incoming photons.
Besides this splitting due to SIA, the experimentally found spectrum, are qualitatively in
great agreement with our calculations, shown in figure We clearly see the particle-hole
asymmetry; The upper surface band has a greater curvature than the lower, in both theory
and experiment. Because of the smaller energy range in figure 5.7, we do not see the bulk

bands until 5 and 6 quintuple layers. For 6 quintuple layers, we see two bulk bands above the
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The dispersion relation for various thicknesses, calculated by numerically solving the secular

equation. The blue lines shows the k, = 0 bulk spectrum and the black is the surface spectrum
for the semi infinite case for comparison. We see that the gap closes as the L increases, as well
as the spacing between the bulk bands decreases.
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Dirac point, with a spacing of approximately 0.1eV at the gamma point, agreeing well with

the spacing of 0.14 eV seen in figure [5.6¢

{6 aL
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0

0 . . -0.1 A -01
k,, (A1) k,, (A1) k,, (A1) k,, (A1) k,, (A1)

0.1 0.1

Figure 5.7: The spectra for thin films of Bi>Ses measured by ARPES in [26], for different numbers of quintuple
layers (QL). The dashed lines are the spectra of the 2D model, fitted to the data, including
structural inversion asymmetry. Note that some of the brances are nearly invisible, which is a
result of these states being located on the opposite surface.

5.3 Wave functions

To find the wave functions, we need to solve the system of equations for the coefficients, eq.
(5.43)). But since we already reduced it to block form we can simply solve one block at a time.
We can also set ky, = 0 and then afterwards apply the rotation operator around the z axis to
get to any general in-plane momentum vector k;, k,. This can be done, since the Hamiltonian
to second order in momentum is invariant under any rotation around the z-axis. The equation

we need to solve to find the coefficients is:
mi(5)C =0 (5.47)

We know that this equation only has non-trivial solutions at the k|, E' points found above. At
these points we numerically do a singular value decomposition of the matrix. A singular value
decomposition is a factorization of a matrix, similar to an eigenvalue decomposition, but can
be done for any matrix. Here, we will briefly introduce the concept for the case of a square
matrix. For a more detailed discussion, see [27]. The singular value decomposition of my(3),

2
is given by:

mi(3) =USVT, (5.48)

where U and V are unitary matrices and S is a diagonal matrix, consisting of the singular
values, which are real and non-zero. If the columns of U and V are denoted by w; and v;, and

the singular values by s; we get:

ml(%)vi = S;Uy;. (5.49)
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Figure 5.8: The density at L = 30 A for the upper and lower surface states. Exactly as in the semi-infinite
case we see that the lower state gets more localized in the beginning when increasing k), before
spreading out again and going in to the bulk. The upper state just spreads in to the bulk directly,
for a relatively small value of k.

If some s; = 0, then the corresponding vector v; is a solution to eq. , and if all s; # 0,
then there is only the trivial solution C = 0. Therefore, we take out the vector corresponding
to the smallest singular value, which will be an approximate solution to eq. . The
smallest singular value would be zero, if we had used exact value for E(k)|). We assume that
there is no other degeneracy than the one caused by T'I invariance, and we only look for one
solution to each block. This gives us the coefficients, and we can calculate the wave function.
The other degenerate solution belonging to the lower block, is simply obtained using the T
operator on the found wave function.

The notion of surface state is not as clear cut as in the semi-infinite case, since all states
have non-zero wave functions throughout the topological insulator. Here we could define a
surface state, as a state with an energy in the bulk gap. According to that definition there
is only one surface state for L = 20 A, while at L = 40 A we see two surface states on figure
And as we see on figure the surface states becomes bulk states when k| is increased,
exactly as in the semi-infinite case.

The connection to the semi-infinite case can be made when L becomes large enough that
the gap can be neglected. In this limit the surface state wave functions are almost zero in the
center of the insulator as we see on figure[5.5]and we can make superpositions located on either

surface of the material. For k) # 0 we make superpositions of the degenerate T'I partners:

Vi by TT TV, ey (5.50)

which gives to new states located on each surface, as seen on figure At the gamma point
the T'I partners are purely from the spin up block or the spin down block, and hence, they
cannot cancel out. Therefore we need to combine states from both the upper and lower surface
band with the same spin, to get a state localized on one surface. This is possible, since we
are in the limit of large L and hence the gap is neglected, and there is 4 degenerate states at

k)| = 0 (even/odd and spin up/down).
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Figure 5.9: For L = 80 A the gap is negligible, and we can make superpositions located on a single surface. (a)
and (c) shows the even and odd spin up wave functions at the gamma point, and the superposition
of the them, located on a single surface, is shown in (e). (b) and (d) shows the two degenerate
eigenstates at k, = 0.01 A, for which all 4 components are nonzero. Their superposition, located
on a single surface is shown in (e). If we had taken the difference instead of the sum, we would
have gotten a state located at the opposite surface. The color denotes the 4 different components,
in the basis of our model Hamiltonian. The solid lines are the real part, while dashed are the
imaginary part.
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5. SURFACE STATES IN A THIN FILM OF BI>SE3

5.3.1 Spin

We saw in the semi-infinite case that the surface states exhibits spin momentum locking. One

could think that when we have an inversion symmetric system this is not the case, since:
TISTI = -8, (5.51)

and then the two doubly degenerate states have opposite spin, and hence can form superposi-
tions giving spin states in any direction. But if we look at the spatial dependence of the spin
we see a momentum dependence. And since we cannot measure each of the doubly degenerate
states individually, we want to calculate the sum of the expectation values of the spin of the
two T'I partners. We only need to do this for k, = 0. The rotational symmetry in the (z,y)
plane, ensures that when you rotate into some other state with &, # 0, the spin is just rotated
along. Therefore, if we find spin-momentum locking at some k|| = k;, then there must be spin

momentum locking for all states with this magnitude of in plane momentum k.
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Figure 5.10: The spatial dependence of the expectation value of the spin in the y direction for a surface states
in an insulator with L = 40 A at k, = 0.001, ky = 0. The spin in the other directions is zero.

We see on figure that the spin is opposite on the two surfaces. For the upper band,
(Sy) o kg at the top surface. Therefore, the top surface shows the same vorticity of the
spin-momentum locking as the semi-infinite insulator, in section [£.4.2] The bottom surface
has the opposite vorticity. This fact is due to the inversion symmetry; The inversion operator
interchanges the two surfaces, and takes k;,k, — —kg, —k,. Therefore, since the spin is
unchanged, the vorticity of the spin-momentum locking must be reversed.

The dependence of the spin expectation value on L and k|, follows completely from the
general dependence of the wavefunctions. When L increases the two peaks stays close to the
surface, while the value in the middle goes to zero, and when k| increases they extent further

into to the material.
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5.4 Local density of states

Again we will calculate the local density of states, here including both surface states and bulk

states.

pe) = 3 AWk (6w — (k) (552

ke ky,n

n is an index indicating the band, which can be both surface and bulk bands. The factor of 2
is because of the double degeneracy due to T'I symmetry. Since we consider a system, which
is infinite in the z,y plane we take the limit A — oo turning the sums over momenta into

integrals:

1
p(z,w) = @ zn: /F Bzdkxdkyy\pkl_,w(z)|25(w — By (k) (5.53)

The integral is in principle over the first brillouin zone, but since we only consider low energies
we will have som cut-off. By the symmetry under rotations around the z axis, we can change

to polar coordinates and integrate out the angle:

1 e
) = 52 3 [ W n (PO = Bnlly) (5.54)

For a given k)|, we can calculate the eigenenergies and the corresponding wave functions
numerically. We will approximate the k|| integral with a sum, and therefore we need to replace
the delta function by some distribution with a finite width. We will use a Lorentz distribution
L(E), i.e.

() = 5 3 37 Sk Wi, i (L — Enlhy). (5.55)
Ky n

The k| is summed over equidistant values from 0 to some kpax, with the spacing Jkj. The
sum should in principle go to infinity, but since we are only interested in a finite energy range,
we can terminate the sum at kmax, where all E,,(kmax) are out of this range. The width of
the Lorentz distribution has to be small enough that the details of the function does not get
washed out, but big enough that that you do not see the individual k)| points in the sum.
The LDOS are plotted in figure We clearly see the energy gap for L = 20 A, through-
out the topological insulator. For increased L we see the surface gap closing, but in the center
of the insulator we see the bulk gap. The bulk bands are seen as vertical lines, throughout the
material. Note the similarity of the LDOS for L = 80 A and the semi-infinite case. The only
difference is the large contribution from the bulk states for L = 80 A, which was not included

in the semi-infinite case.
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Figure 5.11: The local density of states for various thicknesses, as a function of distance from the surface d

and energy w. Note that the color scale is the same for all the plots, with an upper cut-off, to
see the surface states clearly. For the plots with finite L, the range of d is %, the other half
is the same due to inversion symmetry. We see the large gap for L = 20A and at L = 80A
the gap is almost disappeared. For comparison we show the LDOS of the surface states in the
semi-infinite case in (f) and for L = 80 A in (e), with the same range of d and w. At the energies
where the bands are flat (e.g. at an extremum point) we get a large contribution to the density
of states. This explains the vertical lines in the LDOS, if we compare to
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CHAPTER 6

SUMMARY AND DISCUSSION

In this thesis, we have investigated the 3D topological insulator BisSe;. We started by giving
a detailed introduction to applications of group theory in physics. This gave us the necessary
tools to proceed, and give a qualitative discussion on the electronic structure of BigSes. With
this at hand we constructed a low energy model, using the four bands closest to the Fermi
level. This model was the starting point for the rest of the thesis, where we investigated this
model under different boundary conditions.

In chapter[d], we gave a detailed derivation of the surface states of a semi-infinite topological
insulator. We found the criteria for the existence of surface states. Surprisingly the surface
states could be destroyed by a large particle-hole asymmetry. By calculating the spin expec-
tation values of the surface states, we found a helical spin structure. The vorticity of the spin
structure was found to be opposite above and below the Dirac point. The spin structure was
independent of the model parameters, except the sign of the vorticity was determined by the
sign of the parameter combination A;AsB;. We considered two different sets of parameters,
and surprisingly, these lead to two different vorticities. The spatial structure of the surface
states showed a strong dependence on the in-plane momentum. For larger k|, the surface
states extended further into the material, with the expectation value of the distance to the
surface eventually diverging, exactly when the surface band touches the k., = 0 bulk band.

For a real sample, there is always two surfaces, and in chapter [5| we discussed the finite
size effect of BigSes. An energy band gap was induced, due to the coupling between the two
surfaces. We saw an exponential decay of this gap, as expected, because of the exponential
decay of the wave functions. At a thickness of six quintuple layers, approximately 60 A, we
found the gap to be below 0.01 A, which is consistent with the experiment in [26] measuring no
gap at this thickness. Therefore, for samples of 6 quintuple layers or more, we can safely use
the semi-infinite boundary conditions. For 2-4 quintuple layers, the measured gap was larger
than our theoretical prediction. There can be many reasons for this discrepancy. One reason
could be higher order terms in k.. Even though we consider the gap at the gamma point in the
two-dimensional brillouin zone, the surface states are localized in the z direction. Therefore,
we have no reason to expect a low order expansion in k. to give exact results. These terms
could in principle be included perturbatively. However, this would require to determine the
model parameters of higher order terms.

When increasing the thickness, they find in [26] that the Dirac point increases in energy,
and saturates at 20 quintuple layers. This effect is not seen in our theoretical model, where
the gap closes exactly at the Dirac point for the semi-infinite system. But since the spectrum
is measured only relative to the Fermi level, they argue that this is an effect of thickness
dependent electron doping, changing the Fermi level.

Using the parameters of [12], we saw an oscillation of the gap on top of the decay. Exper-
imental data from [26], show no sign of this oscillation. The closing of the gap, in the L — oo
limit, is guaranteed by time reversal symmetry. In contrast the gap closings at finite L are not

protected by any symmetry. Therefore, it is reasonable to expect that these gap closings can
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be destroyed by impurities. These gap closings are merely a result of the specific form of the
wave functions and boundary conditions.

The spin structure of the surface states showed a position dependence, with opposite spin
on opposite surfaces. This can be explained by the inversion symmetry of the crystal, which

interchanges the two surfaces.

6.1 Outlook

There are many possibilities for further studies of three-dimensional topological insulators.
Staying within this model, it could be interesting to consider other options for the boundary
conditions, which according to [19], can change both the spectrum and even existence of surface
states. In this article they a class of boundary conditions, where some linear combination of
the wave function and its first derivative is required to vanish at the surface. Another option
is to let the parameter M continuously change sign across the surface.

In [11], they include a magnetic field in a 2D model for the surface states. In the 2D model
for thin films, both a magnetic field and a structural inversion asymmetry could be included.
Then there is three different mechanisms to open a gap at the gamma point; Finite size effect,
structural inversion asymmetry and magnetic field. It could be interesting to see how these
affect the edge states of a thin film.

Here we have only considered surfaces, parallel to the atomic layers. In [I7] they show, that
a different spin structure arises for surfaces perpendicular to the atomic layers, by considering a
semi-infinite topological insulator with hard-wall boundary conditions. It could be interesting
to consider a finite system, with two surfaces not parallel to the atomic layers. However, it
might be an experimental challenge to fabricate such a sample, due to the structure of the
crystal.

Another conceptually interesting option, would be to consider a semi-classical approach
to the surface states. Then it might be possible to calculate semi-classical orbits, similar to

skipping orbits in a quantum hall system [28].
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APPENDIX A

2D MODEL FOR THIN FILM BI>SEj

In this appendix, we will show that the 2D model for thin films of 3D topological insulators,
found in section and in [I6] is unitary equivalent to the BHZ model for HgTe quantum
wells given in [5]

The 2D model is given by:

M — Bkﬁ Aok 0 0
Axk —M + BE? 0 0
HyD = Ey — DI + 2 l , (A.1)
0 —M + Bk?  —Azk-
0 0 —Asky M — Bk?

where we have defined a new parameter M = %, to use the same notation as in the BHZ

model. In the appendix of [I6] they show that Ay is either purely real or purely imaginary.

If we for the real one define A = Ay and for the imaginary one A = —iAy we have the two
models:
M — Bkﬁ Ak_ 0 0
Ak —M + Bk? 0 0
Hp = Ey — Dk} + I A2
S 0 ~M+ Bk} —Ak_ (A2
0 0 ~Aky M- Bkﬁ
M — Bkt iAk_ 0 0
—iAk, —M + Bk} 0 0
Hr = Ey — Dk} + - l , (A.3)
0 —M + Bk iAk-
0 0 —i Ak, M — Bkﬁ
These two models are unitary equivalent since:
Hg = Uy HU] (A.4)
for
1 0 00
0« 00
U, = A5
=1, 0 (A.5)
0 0 01

The Hp can be transformed into the BHZ model by interchanging basis states 3 and 4, or
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equivalent by:

M — Bk Ak_ 0 0
Ak,  —M + Bk? 0 0
Hppz = Eg— DK + i — Uy HRUJ (A6
BHE =0T 0 0 ~M+ Bk} Ak Uz (A.0)
0 0 ~Aky M- Bk2
where
10 0O
01 0 O
Us = AT
*“lo o 01 (A7)
0010
So both case I and case 11 are unitary related to the BHZ model.
A.1 Edge states in the BHZ model
h(k) 0
H = A8
e ( 0 h*(—k)) (A8)

Since the upper block is simply the time-reversal of the lower block we will focus on solving

the upper.
h(k) :E(k‘H)—i-U-d (A.9)

where (k) = C — Dkﬁ and d = (Ak,, Aky, M — Bk‘ﬁ) For convenience we just put C' = 0

(it just defines the zero point of the energy). Now we seek solutions to a semi-infinite plane,

in the region y < 0, with hardwall boundary conditions i.e.
Y(y=0)=0. (A.10)
To ensure that the wavefunction is normalizable we also impose:
U(y — —o0) =0. (A.11)
We use the ansatz W = 95e¥*. Then we get the eigenvalue equation:

(M —D (k2 =))—F A(ky — A

A(kac + )‘) —M — D—(kg _ )\2) _ E) ¢>\ =0, (A12)
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where Dy = D £+ B. This gives the secular equation:

0=(M—D, (k2 =X)—E)(—M — D_(k?> = )\?) — E) — A%(k2 — \?) (A.13)

=E> - M?+DyD_(k2 - X)?+ (2MB +2DE — A%)(k% — \?) (A.14)
SkE-XN=_-F+F2-Q (A.15)

S Ao = \/k%JrFi\/F?—Q (A.16)

Where we defined F' = Wﬁ# and @ = %. The boundary value at y — —o0

excludes the negative (outer) squareroot. The boundary value at y = 0 gives:

%1 + ¢)\2 =0 (Al?)

The eigenvectors can be written in two ways (which are equivalent if the secular equation is
satisfied);

B A\ — k) (M +D_(k2-X)+E
Yr= (M—D+(k§, L —E) B ( Alkg + \) ) ' (4.18)

The equation (A.17) means that that ), and 1), has to be linearly dependent i.e., the
determinant of (¢x,1),) is equal to zero. Using the first form of (A.18]) gives the equation:

0= A\ — ka)(M = Do (k2 = 23) = E) = A — ka)(M — Dy (2= X) — E)  (A.19)

0= Dyke (A = A3) + (M = X)(M — E = Dy (k3 + Ai)a)) (A.20)

0=Dyky(A + o)+ (M — E — Dy (k2 + X )a)) (A.21)

M=-F _ k2 4+ Mo — ko (M + M) (A.22)
Dy

And from the second form of (A.18]) we obtain the equation:

M+ FE

= k2 4+ Mo + k(A + o) (A.23)

The sum of these equations give:

D_(M — E)— Dy (M +E)

2
= A.24
5D, D ks 4+ A2 ( )
BM + DFE 9
= — A2
S A2 DD p (A.25)
and the difference:
D_(M—-E)+Dy(M+EFE)
= —k, A2
2D, D_ ku(M1 + A2) (A.26)
DM + BE
S A+ A= + (A.27)

" kyDyD_
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From equation (A.25]) we insert the form of the \’s and square to obtain:

BM + DE\? BM + DE
K2+ F)? — F? === KX 4op2—— A28
—A%K2  E? — M2 BM + DE\?>
e :( D+D ) (A.29)
+4- +4- +4-
& 0= B*E*>+2MBDE + M?D* + D, D_ A%k? (A.30)

MD  |A

And we get a linear spectrum in k.. If an edge state exists, then A\j g > 0, since A1 and Ag are

either real and positive or complex conjugate partners. For k, = 0 the energy is F = —%,
and inserting this in gives the condition:
Then we use equation (A.22)) to rewrite the eigenvector as:
v 1 1 (A32)
A X - D =\ D D :
o \abgg A Ot k) ZEg = kg) + ZE (M1 + k)
1
A\ T D_

We see that it is independent of A; (which it should be since it should be proportional to ¥y,

) and surprisingly also independent of k,

BM +DE M

0< AMAo=— D.D —B
+ —

(A.34)

To find the edge state for the lower block we use that the hamiltonian is time reversal

invariant:
IR (17" R WY 4 ST S N
OH(k)0 " = —ioy K ( 0 h*(—k)) ioy K = K ( 0 h(k:)) K = H(—k) (A.35)
So we have that 1] = v is an eigenstate:
H (k) = Elay (A.36)
& 0H(K)0 1001 = E] 6y (A.37)
& H(—k)p, = Ely, (A.38)

So we have:

El=E', (A.39)
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A.1. EDGE STATES IN THE BHZ MODEL

And the total eigenstates are

1
|A] D
wT _ eikzx<€)\1y _ e)\Qy) A _D71L
0
0

with eigenenergies:

Ef =

0
‘ 0
7¢¢ _ ezkzm(ez\ly _ e>\2y) 1 (A40)
Al /_ Dy
A D_

MD |A
—— £ |B|\/—DD+kx (A.41)

with plus sign for spin up and minus sign for spin down.

The eigenstates for Hg are then UstYprz

1

IAl /Dy

wl _ eikzx(e/\ly _ e)\zy) A D_
0
0

But in this basis the two first basis

superpositions of spin up and spin down.

And for case IT (Hj) we get (Ufz/JR)

P = eikxfc(ehy _ ekzy) A D_

0
) 0
Sy = et (MY — M) |A] D, (A.42)
A\ T D_
1

states have different spins, so both eigenstates are

0

‘ 0
Sy = et (MY — M) 14| D, (A.43)
YA\ Do
1
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