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Abstract

In this thesis, we give a thourough investigation of the basic physics of bismuth selenide, a

recently discovered three-dimensional topological insulator. We give a detailed and pedagogical

introduction to group theory, describing the symmetry operations of the crystal lattice, in

order to construct the minimal e�ective model, describing the topological features of bismuth

selenide. Qualitatively, we discuss the physical principles of the band structure around the

Fermi level, which is found to consist of linear combinations of p-orbitals. Speci�cally, we see

that a strong spin-orbit coupling leads to a band inversion. This band inversion gives rise

to a non-trivial topology. Within this model, we calculate the topological surface states by

imposing hard-wall boundary conditions. For a single isolated surface we �nd the conditions

on the parameters of the model, for the existence of surface states. We analytically �nd the

spectrum and wave functions of the surface states. These have a Dirac-like spectrum, and a

helical spin structure. In a thin �lm, the overlap of wavefunctions on opposite surfaces, leads

to a gap in the spectrum. We discuss the dependence of the gap on the thickness, as well as

the parameters of the model and compare to experimental measurements of the gap. For a

thin �lm, the spin structure is dependent on position. The helical spin structure, gets opposite

vorticity on the two surfaces, which is a result of the inversion symmetry of the crystal.
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Chapter 1

Introduction

1.1 Historical background for the dicovery of 3D topological

insulators

In 1980 von Klitzing et al. discovered the integer quantum Hall e�ect [1], where a large

magnetic �eld, gives rise to a quantized Hall conductance, σxy. The Hall conductance is

the ratio, between the current through the material and the voltage across the perpendicular

direction. He was awarded the Nobel Prize in 1985 for this discovery. In 1982 Thouless,

Kohmoto, Nightingale and den Nijs found that this phenomenon was related to topology.

Speci�cally the topology of the Hilbert space of wave functions in a quantum Hall system.

They de�ned an integer topological invariant, which characterizes the topology of the Hilbert

space. They showed that the Hall conductivity became equal to this integer times e
h . This was

the �rst example of a topological quantum number. But for a long time no one cared about

topology in physics.

Many years later the two dimensional carbon material graphene became famous after it was

discovered in 2004 [2]. The material attracted a huge amount of attention, and in 2010 Andre

Geim and Konstantin Novoselov recieved the Nobel Prize �for groundbreaking experiments

regarding the two-dimensional material graphene�. It was proposed that graphene should be

a 2D topological insulator [3], but it required an urealistically strong spin-orbit coupling [4].

But the concept of topology, was back in the game of physics. In 2006 Bernevig, Hughes

and Zhang proposed that a mercury telluride (HgTe) quantum well should be a topological

insulator [5]. In 2007 this proposal was experimentally veri�ed by König et al. [6].

Now with the discovery of the �rst two-dimensional topological insulator, naturally, a

question arises; Does something equivalent exist in three dimensions? This is indeed the case

and the subject of the present thesis.

1.2 What is a 3D topological insulator?

As the name suggests, a topological insulator, is related to an insulator. In fact, a topological

insulator is insulating inside the material, because of a gap in the spectrum. But on the surface,

exotic topological surface states exist. Energetically these states lie within the bulk band gap.

Therefore, the surface of a topological insulator is conducting. One interesting feature of the

surface states is that they behave as massless Dirac fermions, just like in graphene. But in

contrast to graphene, the surface states in 3D topological insulators exhibit a spin momentum

locking, where the spin is always perpendicular to the momentum. This spin structure, shown

in �gure 1.1 is sometimes called helical. The helical spin structure can rotate in clock-wise, or

counter clock-wise fashion, which are refered to as negative and positive vorticity, respectively.

The simplest model, that gives rise to these helical states, is the Dirac-like Hamiltonian:

HSurface(k) = vF (kyσx − kxσy) (1.1)
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1. Introduction
The progress in condensed matter physics is often driven by

discoveries of novel materials. In this regard, materials pre-
senting unique quantum-mechanical properties are of particu-
lar importance. Topological insulators (TIs) are a class of such
materials and they are currently creating a surge of research
activities.1–3) Because TIs concern a qualitatively new aspect
of quantum mechanics, i.e. the topology of the Hilbert space,
they opened a new window for understanding the elaborate
workings of nature.

TIs are called “topological” because the wave functions
describing their electronic states span a Hilbert space that
has a nontrivial topology. Remember, quantum-mechanical
wave functions are described by linear combinations of or-
thonormal vectors forming a basis set, and the abstract space
spanned by this orthonormal basis is called Hilbert space. In
crystalline solids, where the wave vector k becomes a good
quantum number, the wave function can be viewed as a map-
ping from the k-space to a manifold in the Hilbert space (or
in its projection), and hence the topology becomes relevant to
electronic states in solids. Depending on the way the Hilbert-
space topology becomes nontrivial, there can be various dif-
ferent kinds of TIs.4) An important consequence of a nontriv-
ial topology associated with the wave functions of an insulator
is that a gapless interface state necessarily shows up when the
insulator is physically terminated and faces an ordinary insu-
lator (including the vacuum). This is because the nontrivial
topology is a discrete characteristic of gapped energy states,
and as long as the energy gap remains open, the topology can-
not change; hence, in order for the topology to change across

∗E-mail: y ando@sanken.osaka-u.ac.jp

the interface into a trivial one, the gap must close at the inter-
face. Therefore, three-dimensional (3D) TIs are always asso-
ciated with gapless surface states, and so are two-dimensional
(2D) TIs with gapless edge states. This principle for the nec-
essary occurrence of gapless interface states is called bulk-
boundary correspondence in topological phases.

A large part of the unique quantum-mechanical proper-
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Fig. 1. (Color online) Edge and surface states of topological insulators
with Dirac dispersions. (a) Schematic real-space picture of the 1D helical
edge state of a 2D TI. (b) Energy dispersion of the spin non-degenerate edge
state of a 2D TI forming a 1D Dirac cone. (c) Schematic real-space picture
of the 2D helical surface state of a 3D TI. (d) Energy dispersion of the spin
non-degenerate surface state of a 3D TI forming a 2D Dirac cone; due to the
helical spin polarization, back scattering from k to −k is prohibited.
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Figure 1.1: (a) Real space picture of the helical edge state of a 2D topological insulator. (b) Energy dis-
persion for a 2D topological insulator. (c) Real space picture of the helical surface states of a
3D topological insulator. (d) Energy dispersion and spin structure of the surface states on a 3D
topological insulator. Adopted from [4].

This model is widely used to describe the surface states of a 3D topological insulator. Note that

this is a 2D model describing only the surface states, completely ignoring the three dimensional

nature of these states. The eigenstates of this Hamiltonian are:

ψ =
1√
2

(
−i
±k+

|k|

)
E = ±vF |k| (1.2)

Giving a linear dispersion, just like massless relativistic fermions. We also get the helical spin

structure by calculating the expectation value of the spin:

〈σx〉E=±vF |k| = ∓
ky

2|k| 〈σy〉E=±vF |k| = ±
kx

2|k| (1.3)

1.3 Bismuth Selenide: Well known, but brand new

Bismuth selenide (Bi2Se3) is a material, which is widely known and used because of its ther-

moelectric properties. But recently the development of the �eld of topolological physics has

caused a renewed interest in the material. In 2009 Bi2Se3 and the related materials Bi2Te3

and Sb2Te3 were predicted to be three dimensional topological insulators.

Experiments using angle resolved photo emission spectroscopy (ARPES), can map out

the spectrum of the surface states, which is one of the most important ways to verify the

predicted existence of surface states. In 2009 the topological nature of Bi2Se3 was veri�ed by

this technique [7].

In 3D topological insulators transport measurements have not been so succesfull yet, since

the bulk often turns out to be conducting as well, due to impurities. One way of reducing

this problem is simply to make a thin �lm, such that the bulk is less important. Therefore,

thin �lms are important to understand, especially how the surface states on opposite surfaces,

a�ect each other.

2



1.4. OUTLINE OF THE THESIS

1.4 Outline of the thesis

In this thesis, Bi2Se3 is studied in detail. We begin with a chapter on group theory, discussing

the neccessary concepts and methods, which are used to construct the simplest model for

Bi2Se3. This model is constructed in chapter 3, after a detailed description of the basic

physical principles of the electronic structure of Bi2Se3. Thereafter, we dive into the study of

surface states within this model. First, we will investigate a single isolated surface in chapter

4, where much analytical progress can be made. This gives an understanding, which serves

as a great starting point for investigating a thin �lm in chapter 5. Finally the results are

summarized in chapter 6

3



Chapter 2

Group theory

In this chapter, we will introduce the necessary group theoretical concepts needed to derive the

e�ective model for Bi2Se3. We will focus more on how to use the methods in physical systems

than on rigorous proofs, though some important theorems will be proved to give an insight in

the mathematical framework. In physical applications, the groups will be groups consisting

of symmetry operations. Throughout this chapter we will use the group of symmetries of an

equilateral triangle as an example, since it has physical application on its own and is part of the

symmetry group of Bi2Se3, and hence it will be useful to have this in mind when introducing

the various concepts.

2.1 Abstract groups

A group is de�ned as a set of elements G = {A,B,C, ...} for which some kind of multiplication

is de�ned. This multiplication has to satisfy the following rules:

1. The group is closed under multiplication, i.e. AB ∈ G for any A,B ∈ G.

2. The associative law holds, i.e A(BC) = (AB)C, for any elements A,B,C ∈ G. This

means that that the notation ABC is unambiguous.

3. There exist a unit element E ∈ G such that EA = AE = A for any A ∈ G.

4. To each element A ∈ G there exist an inverse element A−1 such that AA−1 = A−1A = E.

A very simple (and uninteresting) example of a group is just G = {1}, containing only one

element. Another often used group is the set of positive real numbers, containing an in�nite

number of elements, but is often not referred to as group since it has a lot more structure.

The number of elements in a group is called the order of the group. In the following we will

focus on groups of �nite order.

In physics the typical groups considered is a set of symmetry transformations, that leaves

a physical system invariant. In this case the group multiplication AB is simply the transfor-

mation obtained by �rst performing the transformation B and then A. It should be obvious

now that the set of symmetry operations on a system is group, but let us just check the four

points in the de�nition;

1. If a system is invariant under the transformations A and B it should also be invariant

under AB, i.e. doing one transformation and then the other.

2. Associativity comes directly by the de�nition of multiplication.

3. The identity transformation will always leave a system invariant.

4. If a transformation leaves a system invariant, then doing the inverse should also leave it

invariant.

4



2.1. ABSTRACT GROUPS

Unlike the group of positive real numbers, a general group is not necessarily commutative,

i.e. in general AB 6= BA, as is the case for a group containing rotations around di�erent axes.

x

y

A

BC

Figure 2.1: The group of symmetry operations on the equilateral triangle consists of the identity, two rotations
around the z axis by 120 degrees (clockwise and counter-clockwise) and three rotations of 180
degrees around the axes A, B and C, indicated by the red dashed lines.

As an example let us consider the group called D3 that leaves an equilateral triangle

invariant, see �gure 2.1. This group consists of the elements:

• The identity element which is usually denoted by E.

• Two rotations by 120 degrees around an axis perpendicular to the triangle, denoted by

D (clockwise) and F (counter-clockwise).

• Three rotations of 180 degrees around the medians of the triangle, denoted by A, B and

C.

By performing successive transformations of the group, we can verify that the group is

indeed closed. The results of performing two successive transformations can be summarized in

a multiplication table, see table 2.11. The product AB is then read o� as the element at the

row labeled by A and the column labeled by B, and we see AB = D. We also immediately

see that BA = F 6= AB, hence this group is not commutative.

Observe that each row or column contains each element of the group exactly once. This is

no accident, it is a general theorem called the rearrangement theorem.

Rearrangement theorem: For any �nite group G = {A1, ..., An} the sequence:

A1Ak, ..., AnAk (2.1)

contains each group element Ai exactly once, for any group element Ak.

Proof. For any Ak and Ai in the group there exists Ar = AiA
−1
k ∈ G since all elements has

an inverse and G is closed under multiplication. Hence Ai = ArAk and thus appears at least
1If you try to reproduce this (or something similar) it is highly recommended to use an object which is not

symmetrical (or label the corners of the triangle), else all transformations just leaves the object invariant.

5



2. GROUP THEORY

E A B C D F
E E A B C D F
A A E D F B C
B B F E D C A
C C D F E A B
D D C A B F E
F F B C A E D

Table 2.1: Multiplication table of the symmetry group of an equilateral triangle. In agreement with the
rearrangement theorem each row (and column) contain each element exactly once.

once in the above sequence. But since the sequence contains the same number of elements as

the group, each element must appear exactly once.

2.2 Classes

We will now see how the elements of a group can be divided into classes of elements, using

the concept of conjugation of elements.

Two elements A,B ∈ G is said to be conjugate to each other if

A = XBX−1 (2.2)

for some element X ∈ G. If A and B are both conjugate to C, then they are also conjugate to

each other:

C = XAX−1 = Y BY −1

⇔ A = X−1Y BY −1X ⇔ A = X−1Y B(X−1Y )−1 (2.3)

Here we used that the inverse of a product is the product of the inverse in the reverse order

(X−1Y )−1 = Y −1X, which can easily be shown.

This means that we can divide the elements of a group into classes, which are sets of

mutually conjugate elements, i.e. in a group G = {A1, ..., An} the class containing the element
Ak is the elements:

A1AkA
−1
1 , ..., AnAkA

−1
n . (2.4)

Note that some of these elements might be equal. The identity element is for example always

its own class since AiEA−1
i = E. In a commutative group each element is its own class, since

AiAkA
−1
i = AiA

−1
i Ak = Ak.

2.2.1 Classes of D3

In the group of symmetries of the equilateral triangle, there are three classes C1 = {E},
C2 = {A,B,C} and C3 = {D,F}. This can be shown simply by looking at the multiplication

table, and computing all the conjugates, but it can also be realized from physical reasoning.

A,B,C are all rotations of 180 degrees around di�erent axes, and D and F transforms these

6



2.3. REPRESENTATIONS

axes into each other, so for example rotation around B can be obtained by �rst rotating the

B-axis into the A-axis using F then rotating around the A-axis, and then �nally rotating back

F−1 = D. And as seen on the multiplication table B = DAF . But in this way of thinking

a class is not some abstract mathematical concept, we see that we actually divides the group

into sets of elements which are physically similar. This kind of reasoning is very useful when

determining the classes of a physical symmetry group, since it can be very tedious to work out

all the products in the multiplication table.

2.3 Representations

By a representation, Γ of an abstract group G = {E,A1, ..., An}, we mean a set of square

matrices, with one matrix representing each element Ai of the group, denoted by Γ(Ai). Note

that these do not have to be di�erent matrices for each element, the only requirement is that

they ful�ll the same multiplication table, i.e.

Γ(A)Γ(B) = Γ(AB) ∀ A,B ∈ G (2.5)

The representation is of course a group itself. If all the representation matrices are di�erent

then the order of this group is the same as the original one, and the representation is said to be

true or faithful. All groups have the so-called identical representation where all the elements

are simply represented by the number 1, which is of course unfaithful unless the group is only

the identity element.

If we have a representation Γ(A) we can form an in�nity of new representations by similarity

transformations Γ′(A) = MΓ(A)M−1

Γ′(A)Γ′(B) = MΓ(A)M−1MΓ(B)M−1 = MΓ(A)Γ(B)M−1

= MΓ(AB)M−1 = Γ′(AB) (2.6)

These representations, related by similarity transformations, are said to be equivalent, since

they are basically just stated in a di�erent basis. The set of all equivalent representations is

sometimes called an equivalence class of representations.

Another way to get a new representation from two (or more) representations is to form the

matrices:

Γ(A) =

(
Γ(1)(A) 0

0 Γ(2)(A)

)
(2.7)

which clearly is a representation. This is called a reducible representation, since it can be

reduced to the representations Γ(1) and Γ(2). But this representation is also equivalent to one

where the rows and columns have been mixed around, and is no longer on block form. A

representation is reducible if it is equivalent to a representation where all the matrices are

on block form. Usually the structure of a reducible representation is given by writing it as a

sum of the representations it consists of in block form. In the above example one would write

Γ = Γ(1) + Γ(2). Note that this notation is not usual addition of matrices. An irreducible

7



2. GROUP THEORY

representation is then a representation, which cannot be brought on block form by a similarity

transformation.

The great orthogonality theorem. Consider all inequivalent, irreducible unitary2 rep-

resentations Γ(i) of a group G then:

∑
A∈G

Γ(i)(A)∗µνΓ(j)(A)αβ =
h

li
δijδµαδνβ , (2.8)

where the sum is over all elements in the group, Γ(i)(A)µν is the µν matrix element of the

i'th representation of the element A. h is the order of the group and li is the dimension of

the i'th representation. For a proof see [8]. This theorem can be interpreted geometrically, as

orthogonality between a set of vectors in a vector space of dimension h, i.e. we can consider each

matrix element of each representation as a vector Γ
(i)
µν = (Γ(i)(A1)µν ,Γ

(i)(A2)µν , ...,Γ
(i)(Ah)µν)

with one component for each element in the group. The vectors are labeled by three indices,

the representation index and the two matrix indices, so the set consists of
∑

i l
2
i vectors. Since

the maximal possible number of orthogonal vectors is equal to the dimension of the vector

space we have
∑

i l
2
i ≤ h. Furthermore it can be shown that equality always holds ([8] p. 31):∑

i

l2i = h (2.9)

2.3.1 Representations of D3

Here we will construct explicitly the irreducible representations of the group of the equilateral

triangle. Of course we have the one dimensional identical representation, where all elements

are represented by the number 1.

The elements of the group act linearly on the vector (x, y) and thus, if we simply construct

the matrices transforming this vector, we get a 2 dimensional representation of D3. These

matrices are found to be:

Γ(3)(E) =

(
1 0

0 1

)
Γ(3)(A) =

(
1 0

0 −1

)
Γ(3)(B) =

(
−1

2

√
3

2√
3

2
1
2

)

Γ(3)(C) =

(
−1

2 −
√

3
2

−
√

3
2

1
2

)
Γ(3)(D) =

(
−1

2

√
3

2

−
√

3
2 −1

2

)
Γ(3)(F ) =

(
−1

2 −
√

3
2√

3
2 −1

2

) (2.10)

Now one might wonder whether this representation is reducible. If it is reducible then all of

the matrices could be diagonal by some similarity transformation, i.e. there exists some matrix

M such that MΓ(3)(X)M−1 is diagonal for all X in D3. This corresponds simply to a change

of coordinate system in the plane, but a rotation by 2π
3 will always mix the coordinates and

the matrices can therefore not be made diagonal. Thus this is an irreducible representation.

If we also consider a z-axis perpendicular to the triangle, then the z coordinate will be

invariant under E,D,F but will change sign under the rotations A,B,C, hence we can con-

struct a new representation governing the transformation properties of the z-coordinate, given

2A unitary representation is simply a representation of unitary matrices. And any representation with
nonvanishing determinant, is equivalent to a unitary representation, [8]

8



2.4. CHARACTERS

by:
Γ(2)(E) = Γ(2)(D) = Γ(2)(F ) = 1

Γ(2)(A) = Γ(2)(B) = Γ(2)(C) = −1
(2.11)

Now we have three inequivalent, irreducible representations, since a one dimensional rep-

resentation is always irreducible. And since we have the equation:∑
i

l2i = 6, (2.12)

then these three are all the inequivalent, irreducible representations of D3.

2.4 Characters

Since all representations are equivalent to an in�nity of representations by similarity trans-

formations, which may look very di�erent, it would be useful to be able to characterize an

equivalence class of representations rather than just a single representation. This will enable

us to quickly check whether a representation is reducible and if two representations are equiv-

alent. This can be done using the character of a representation, which is a set of h numbers

χ(j)(A1), ..., χ(j)(An), where j is the index of the representation. This is given by:

χ(j)(Ai) = Tr Γ(j)(Ai) (2.13)

Since the trace of a matrix is invariant under similarity transformations, this character is

indeed the same for equivalent representations. This property also shows that all elements in

one class have the same characters and it makes sense to simply talk about the characters of

a class χ(j)(C).
The great orthogonality theorem for characters. The characters of the irreducible

representations of a group G obey the orthogonality relation:∑
A∈G

χ(i)(A)∗χ(j)(A) =
∑
k

Nkχ
(j)(Ck)∗χ(k)(Ck) = hδij (2.14)

the �rst equality is just using that the character is the same for elements in same class. Nk is

the number of elements in th class Ck.

Proof. We start by the great orthogonality theorem:

∑
A∈G

Γ(i)(A)∗µνΓ(j)(A)αβ =
h

li
δijδµαδνβ , (2.15)

Then we set µ = ν and α = β and sum over both ν and β:

∑
ν,β

∑
A∈G

Γ(i)(A)∗ννΓ(j)(A)ββ =
∑
ν,β

h

li
δijδνβδνβ

⇔
∑
A∈G

χ(i)(A)∗χ(j)(A) =
h

li
δij
∑
ν

δνν = hδij (2.16)

9



2. GROUP THEORY

This orthogonality relation is extremely important, since it shows the power of characters.

With this at hand it becomes easy to check whether a representation is reducible or not. If it

is reducible, one can �nd the representations it is composed of. The character of a reducible

representation Γ is simply the sum of the characters it is composed of, which is easy to see

when it is on block form. Thus we can have:

χ(A) =
∑
j

ajχ
(j)(A) (2.17)

where the sum is over irreducible representations, and aj is an integer denoting the number

of times the j'th irreducible representation occurs in Γ. Now we can use the orthogonality

theorem for characters to �nd the integers aj :∑
A∈G

χ(A)χ(i)(A)∗ =
∑
A∈G

∑
j

ajχ
(j)(A)χ(i)(A)∗ =

∑
j

ajhδij = hai

⇔ ai = h−1
∑
A∈G

χ(A)χ(i)(A)∗ =
∑
k

χ(Ck)χ(i)(Ck)∗ (2.18)

This shows that the integers aj are uniquely determined and can easily be found from the

characters of the irreducible representations.

The great orthogonality theorem for characters shows that the characters can be seen as a

set of orthogonal vectors, one for each irreducible representation. The dimension of this vector

space is equal to the number of classes, and hence the number of irreducible representations

cannot exceed the number of classes. In fact, it can be shown that equality always holds:

Number of classes = Number of inequivalent irreducible representations (2.19)

This can be very useful since the number of classes usually can be determined by physical

reasoning, while it can be a tedious exercise to �gure out all the representations of a group.

As we have seen now a lot of information about a group is given by the characters of the

irreducible representations. A convenient way to display these characters is to construct the

character table. The columns are labeled by the classes usually with the number of elements

in front and the rows are labeled by the irreducible representations. See table 2.3 for the case

of the symmetry group of an equilateral triangle. The �rst row is just ones, since the �rst

representation is the identical representation. The �rst column is just given by the dimension

of the representation since the �rst class is just the identity element.

2.4.1 Construction of character tables

In most cases the character table of a group can be constructed by following these steps:

1. The number of irreducible representations is equal to the number of classes which can

quite easily be determined by physical reasoning.

2. The dimensionalities li of the representations can in most cases be uniquely determined

10



2.4. CHARACTERS

by
∑

i l
2
i = h. This will determine the �rst column of the character table since the

χ(i) = li (the trace of an identity matrix is simply equal to its dimension). The �rst row

is also given already, since any group has the identity representation, where all elements

are represented by the number 1.

3. The great orthogonality theorem for characters; rows must be orthogonal and normalized

to h, using the weighting factor Nk, the number of elements in the class Ck, i.e.:∑
k

χ(i)(Ck)∗χ(j)(Ck)Nk = hδij (2.20)

4. The columns must be orthogonal and normalized to h
Nk

, i.e.:

∑
i

χ(i)(Ck)∗χ(i)(Cl) =
h

Nk
δkl (2.21)

This follows from the great orthogonality theorem for characters.

2.4.2 Character table of D3

Now we will see how these rules can be used to determine the character table, without even

writing down the multiplication table. Step 1 and 2 immediately gives all but the lower right

4 characters, see table 2.2. Now we will determine a, b, c and d by the steps 3 and 4. Step 3

{E} 2C3 3C2

Γ(1) 1 1 1
Γ(2) 1 b a
Γ(3) 2 d c

Table 2.2

gives the equations:

1 + 3|a|2 + 2|b|2 = 6 (2.22)

4 + 3|c|2 + 2|d|2 = 6 (2.23)

1 + 3a+ 2b = 0 (2.24)

2 + 3c+ 2d = 0 (2.25)

2 + 3a∗c+ 2b∗d = 0 (2.26)

while step 4 gives the equations:

1 + |a|2 + |c|2 = 2 (2.27)

1 + |b|2 + |d|2 = 3 (2.28)

1 + a+ 2c = 0 (2.29)

1 + b+ 2d = 0 (2.30)

1 + a∗b+ c∗d = 0 (2.31)

11



2. GROUP THEORY

Now we can also use that since Γ(2) is a one dimensional representation so the representation

matrices are simply the characters. Since C2 are rotations by π they are their own inverse, so

a = χ(2)(C2) = ±1. Put this into equation (2.27) and we get c = 0. Putting this into equation

(2.29) gives a = −1, equation (2.31) now gives b = 1 and at last equation (2.30) gives d = −1.

Now we have the full character table, see 2.3.

{E} 2C3 3C2

Γ(1) 1 1 1
Γ(2) 1 1 -1
Γ(3) 2 -1 0

Table 2.3

2.5 Direct product groups

As we saw above, even though a character table can be determined from these rules, it takes

some e�ort. For groups of higher order it becomes more tedious, maybe not even possible.

But if a group can be divided into two types such that each element of one commutes with all

elements of the other, then it can be written as a direct product group. This could for example

be the group of rotations and the group of the inversion operation.

For two groups GA = {E,A2, ..., AhA} and GB = {E,B2, ..., BhB}, where any element of

GA commutes with all elements of GB we de�ne the direct product of GA and GB as:

GA × GB = {E,A2, ..., AhA , EB2, A2B2, ..., AhAB2, ..., EBhB , A2BhB , ..., AhABhB} (2.32)

This is a group of order hAhB. It is closed under multiplication since elements of di�erent

groups commutes.

Now we will try to �nd the irreducible representations of the direct product group. An

educated guess would be to use the direct product (or kronecker product) of the matrices of

the representations of the original groups. For matrices M and N of dimensions a, b and c, d

the direct product M⊗N is a ac by bd matrix, in block form given by:

M⊗N =


M11N · · · M1bN

...
. . .

...

Ma1N · · · MabN

 (2.33)

For 4 matrices M,N,L,K of dimensions such that the matrix products ML and NK exists,

the so-called mixed product property holds:

(M⊗N)(L⊗K) = (ML)⊗ (NK) (2.34)

With this property we can show that the direct product matrices of a representation of GA
with a representation of GB, ΓGA×GB (AiBj) = ΓGA(Ai) ⊗ ΓGB (Bj) forms a representation of
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the direct product group:

ΓGA×GB (AiBj)Γ
GA×GB (AkBl) =

[
ΓGA(Ai)⊗ ΓGB (Bj)

] [
ΓGA(Ak)⊗ ΓGB (Bl)

]
=
[
ΓGA(Ai)Γ

GA(Ak)
]
⊗
[
ΓGB (Bj)Γ

GB (Bl)
]

= ΓGA(AiAk)⊗ ΓGB (BjBl)

= ΓGA×GB (AiAkBjBl) (2.35)

In [8] it is shown that the irreducible representations of a direct product group GA×GB is

precisely the direct products of the irreducible representations of GA and GB. The classes of
the direct product groups is easily found from the classes of the original groups, each pair of

classes (one from each group) form a class in the product group. This can be seen by using

that the elements of the two groups commute. For a general element in GA × GB AjBk we

have:

XAjBkX
−1 = XAjX

−1Bk if X ∈ GA (2.36)

XAjBkX
−1 = AjXBkX

−1 if X ∈ GB (2.37)

So the total number of classes is the product of the numbers of classes in the two original

groups, in agreement with the number of irreducible representations. The character of a direct

product representation χA×B(AiBj) is simply the product of the characters of the original

representation χA(Ai)χ
B(Bj), which just follows from the property of the kronecker product

TrA ⊗ B = TrATrB. This allows us to construct the character table of GA × GB if the

character tables for GA and GB are known.

2.5.1 Character table of D3d

The elements of D3 all commutes with the inversion operator I, which transforms x → −x.
Therefore we can construct the direct product group D3d = D3×I, where I denotes the group
containing only I and the identity. The character table of the group of the inversion operator

is easily constructed; �rst row and column are ones due to the two �rst rules, and the last

element must then be one because of the orthogonality relation. Using the character tables of

{E} I

Γ(+) 1 1
Γ(−) 1 -1

Table 2.4: Character table for the group of the inversion operator.

D3 and I we see that the character table of D3d is simply four copies of the charactertable of

D3, but with a minus sign on one of them, see table 2.5.

2.6 Basis functions

Now it is also interesting to let symmetry operations operate on functions. This is useful since

eventually we will use group theory to characterize quantum mechanical wave functions. Con-

sider a group of coordinate transformations G = {E,A1, ...} which transforms the coordinates

13
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{E} 2C3 3C2 I 2C3I 3C2I

Γ(1+) 1 1 1 1 1 1
Γ(2+) 1 1 -1 1 1 -1
Γ(3+) 2 -1 0 2 -1 0
Γ(1−) 1 1 1 -1 -1 -1
Γ(2−) 1 1 -1 -1 -1 1
Γ(3−) 2 -1 0 -2 1 0

Table 2.5: Character table for the group D3d

x → x′ = Aix. Here Ai is not necessarily a matrix it is just some transformation of the

coordinate, which could also include a translation. Now we introduce a new group of elements

operating on functions, the element corresponding to Ai is denoted by PAi and is de�ned by

the relation:

PAif(Aix) = f(x)⇔ PAif(x) = f(A−1
i x) (2.38)

These equations should hold for all x in the domain considered. The fact that the elements

PAi de�nes a group can be derived directly by the group properties of G e.g:

PAiPAjf(x) = PAif(A−1
j x) = f(A−1

j A−1
i x) = f((AiAj)

−1x) = PAiAjf(x)

⇔ PAiPAj = PAiAj (2.39)

this shows that the new group satis�es the same multiplication table, and we say that it is

isomorphic to the original group.

By a set of basis functions {f1, ..., fn} for an n-dimensional representation Γ, we mean a

set of functions satisfying the relation:

PAifα =
∑
β

Γ(Ai)βαfβ. (2.40)

We also say that the functions {f1, ..., fn} belong to this representation, or that they transform
according to it.

2.6.1 Group of the Schrödinger equation.

Let us now consider a physical system with a symmetry group of coordinate transformations

that leave the Hamiltonian invariant. This group is called the group of the Schrödinger equa-

tion. Then the group of operators PAi will all commute with the Hamiltonian. Then the time

invariant Schrödinger equation gives:

Hψn = Enψn

⇔ PAiHψn = HPAiψn = PAiEnψn (2.41)

This shows that PAiψn is also an eigenstate with the same energy En. Thus if we have one

eigenstate we can generate other eigenstates with the same energy by applying all symmetry
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operations, but they will not necessarily be independent, thus we do not know beforehand

how many states to expect at a certain energy En. This procedure will not always generate

all possible degenerate eigenstates with energy En, but when it does the degeneracy is said

to be normal, otherwise it is said to be an accidental degeneracy. Accidental generacies are

not originated by a symmetry. Often they turn out not to be exact or to have some origin

of symmetry, when studied closer. Therefore, we will from here on assume no accidental

degeneracies. Now consider an ln-fold degenerate energy level of eigenfunctions ψn1 , ..., ψ
n
ln

with energy En. By the result above any transformation PAi on any of the functions ψnj will

result in an eigenstate with the same energy, and thus can be written as a linear combination

of these ln functions. Thus the e�ect of the symmetry operations can be represented by matrix

multiplication in this subspace:

PAiψ
n
j =

∑
k

Γ(Ai)kjψ
n
k (2.42)

where the sum is over the degenerate eigenfunctions. The notation here is hinting that these

matrices actually form a representation of the group, and in fact this turns out to be true:∑
m

Γ(AiAl)mjψ
n
m = PAiAlψ

n
j = PAiPAlψ

n
j = PAi

∑
k

Γ(Al)kjψ
n
k =

∑
k,m

Γ(Al)kjΓ(Ai)mkψ
n
m

=
∑
m

[Γ(Ai)Γ(Al)]mjψ
n
m (2.43)

Then Γ(AiAl) = Γ(Ai)Γ(Al). Hence these Γ matrices form a representation, and the set of

degenerate eigenfunctions are basis functions for this representations. It is in fact an irre-

ducible representation. If it were reducible the basis for this degenerate subspace could then

be transformed such that all the matrices of the representation became block diagonal, but

this contradicts the fact that we assumed no accidental degeneracies. If the matrices were

block diagonal then all the degenerate states ψn1 , ..., ψ
n
ln

could not be generated by symme-

try transformations of one particular eigenstate ψnj which is the de�nition of an accidental

degeneracy. Thus given the group of the Schrödinger equation the dimensionalities of the

irreducible representations determine the possible non-accidental degeneracies of the system.

These degeneracies can only be split by perturbations breaking the symmetry of the system.

This shows how transformation properties can be used to label eigenstates, ψni is then the

i'th eigenstate belonging to the n'th representation. The physical meaning of the �rst label

depends on the basis chosen in the degenerate subspace.

2.7 Full rotation group and angular momentum.

In this section we will discuss the relation between the full rotatin group and angular mo-

mentum. We will assume that the reader is familiar with angular momentum in quantum

mechanics, and relate this to the full rotation group.

The full rotation group consists of rotations by any angle around any axis going through

the origin. This group is the �rst example, we have of an in�nite group. It has an in�nite

number of classes, because any rotation of a certain angle α around any axis belong to the
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same class, since the di�erent rotation axes are related by another rotation. Therefore the

number of representations is also in�nite. The angular momentum operator J can be de�ned

as the generator of rotations, which means that the operator Pθz , denoting a rotation of the

angle θz around the z axis, can be written as e−iθzJz . We can chose a basis of states with

de�nite angular momentum in the z direction |J,m〉, where quantum numbers not concerning

the angular momentum is left out. Since the total angular momentum is conserved, a rotation

of |J,m〉 will be a superposition of states with the same J . Hence, the states |J,m〉 span
a 2J + 1 dimensional representation of the full rotation group. Now we will calculate the

characters of such a representation. Since any rotation axis can be transformed into any other

rotation axis by a rotation, all rotations of the same angle will belong to the same class. So we

can simply calculate the character of rotations around one speci�c axis. This is easiest done

for the z axis:

Pθz |J,m〉 = e−imθz |J,m〉 (2.44)

and thus

ΓJ =


e−iJθz 0 ... 0

0 e−i(J−1)θz ... 0
...

0 eiJθz

 (2.45)

and we get the character:

χJ(Pθz) =
J∑

m=−J
e−imθz =

sin((J + 1
2)θz)

sin( θz2 )
(2.46)

Since the character only depends on the angle, we will just use the notation χJ(θ). It can be

shown that these ΓJ representations are all the irreducible representations of the full rotation

group [8]. The character of a rotation of θ + 2π is given by:

χJ(θ + 2π) =
sin((J + 1

2)θ + 2π(J + 1
2))

sin( θ2 + π)
= (−1)2JχJ(θ) (2.47)

Thus if J is an half integer, then the character changes sign under rotations by 2π. This is in

agreement with the fact that fermionic wavefunctions changes sign under 2π rotations 3. To

handle this we introduce a new symmetry operation R which is a rotation by 2π, but it is not

equal to the identity operator since it changes the sign on fermionic states. This doubles the

number of elements in the group, and therefore this new group is denoted the double crystal

group. To construct the double group one only needs four rules, which we will simply state

here. For a more complete discussion see [10].

1. If C = {A1, ..., An} is a class of the original group then C and RC = {RA1, ...,RAn}
both form classes in the double group. The only exception is if C is a class of rotations

3This fact was experimentally veri�ed in 1975, by measuring the phase shift of neutrons precessing in a
magnetic �eld [9].
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by π around some axis and the symmetry group also contains rotations by π around an

axis perpendicular to the �rst one. In that case C2 and RC2 belong to the same class.

2. Any irreducible representation of the original group is also an irreducible representation

of the double group with the same set of characters χ(C), where C is any class in the

original group, and χ(RC) = χ(C) for the new classes.

3. Since the number of irreducible representations is equal to the number of classes we

must have some new irreducible representations. These new representations satis�es the

relation χ(RC) = −χ(C).

2.7.1 Double group of D3d

Now we want to double the group D3d, using the above rules. Since inversion commutes with

all elements of the double group, we can start by constructing the double group of D3 and then

take the direct product with the group of the inversion. We only have one class of rotations by

π the number of classes is doubled and hence so is the number of irreducible representations.

We have that
∑

i l
2
i = 12 since we now have 24 elements in the group. If we sum only over the

old representations then
∑

i l
2
i = 6, and hence the sum over the 3 new representations is also∑

i l
2
i = 6. The only integer solution to this equation is if we have two new representations of

dimension 1 and one of dimension 2. The new representations must give a minus sign when

rotated by 2π, hence χ(C2)2 = −1⇔ χ(C2) = ±i for the one dimensional representations. By
the same argument χ(C3) = −1 for the one dimensional representations. Now we have the

character table except for two elements a and b, see table 2.6

{E} 2C3 3C2 R 2RC3 3RC2

Γ(1) 1 1 1 1 1 1
Γ(2) 1 1 -1 1 1 -1
Γ(3) 2 -1 0 2 -1 0
Γ(4) 1 -1 i -1 1 -i
Γ(5) 1 -1 -i -1 1 i

Γ(6) 2 a b -2 -a -b

Table 2.6: Character table for the double group of D3

a and b are easily found from the orthogonality relation for the columns:

−1− 1 + 2a = 0⇔ a = 1 (2.48)

2b = 0⇔ b = 0 (2.49)

At last we can construct the character table for the double group of D3d by taking the

direct product with the group of inversion and the double group of D3, giving the character

table 2.7.
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{E} 2C3 3C2 I 2IC3 3IC2 R 2RC3 3RC2 RI 2RIC3 3RIC2

Γ(1+) 1 1 1 1 1 1 1 1 1 1 1 1
Γ(2+) 1 1 -1 1 1 -1 1 1 -1 1 1 -1
Γ(3+) 2 -1 0 2 -1 0 2 -1 0 2 -1 0
Γ(4+) 1 -1 i 1 -1 i -1 1 -i -1 1 -i
Γ(5+) 1 -1 -i 1 -1 -i -1 1 i -1 1 i

Γ(6+) 2 1 0 2 1 0 -2 -1 0 -2 -1 0
Γ(1−) 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1
Γ(2−) 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1
Γ(3−) 2 -1 0 -2 1 0 2 -1 0 -2 1 0
Γ(4−) 1 -1 i -1 1 -i -1 1 -i 1 -1 i

Γ(5−) 1 -1 -i -1 1 i -1 1 i 1 -1 -i
Γ(6−) 2 1 0 -2 -1 0 -2 -1 0 2 1 0

Table 2.7: Character table for the double group of D3d

2.8 Bloch's theorem

An important application of group theory in condensed matter physics is bloch's theorem.

It applies to a physical system with translational symmetry. Let us just consider the one-

dimensional case, generalization to higher dimensions is straightforward. If we have a periodic

potential V (x) of period a then the Hamiltonian:

H =
p2

2m
+ V (x) (2.50)

is invariant under translations of an integer times a. Let this transformation be denoted by

PA, PAf(x) = f(x + a). For a �nite system of length L we must have periodic boundary

conditions to maintain translational invariance. Then we have a cyclic group of order n =
L
a since any element can be written Am and An = E because of the periodic boundary

condition. Since this group is abelian we only have one dimensional representations. One

dimensional representations are simply equal to their characters and since An = E then

the characters of any representation must be equal to eim2π/n, where m is an integer which

labels the representation. This gives exactly n distinct representations, since m = m0 and

m = m0 + n gives the same characters, and therefore the same representation. We can also

label the representations by k = 2πm
L . As we have seen any eigenfunction of the group of the

Schrödinger equation must transform according to one of the irreducible representations of the

group, we can label the eigenfunctions by k and ψk must satisfy the transformation rule:

PAψk(x) = ψk(x+ a) = eikaψk(x) (2.51)

This results in the well-known fact that eigenfunctions of a periodic potential can be written

as a product of a free particle wavefunction times a function with the same periodicity as the

potential:

ψk = eikxuk(x) (2.52)
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where uk(x) = uk(x+ a).

2.9 Time reversal

A very special and important symmetry is the time reversal operator. The time reversal

operator simply takes t → −t. Classically this reverses all momenta, but leaves the position

invariant. If we �rst consider the Schrödinger equation without spin:

(
∇2

2m
+ V (x))ψ(x, t) = i

∂ψ(x, t)

∂t
(2.53)

Now we want to see how time reversal changes this equation, and we simply take t → −t,
which gives:

(
∇2

2m
+ V (x))ψ(x,−t) = −i∂ψ(x,−t)

∂t

⇔ (
∇2

2m
+ V (x))ψ∗(x,−t) = i

∂ψ∗(x,−t)
∂t

(2.54)

We see that by complex conjugation we get the original Schrödinger equation back, but for

ψ∗(x,−t) instead of ψ(x, t). Hence, if ψ(x, t) is a solution so is ψ∗(x,−t). This shows that for
spinless particles the time reversal operator is simply comlex conjugation, denoted by K. It is

very important to note that this operator, in contrast to almost any operator used in quantum

mechanics is antilinear and not linear. An antilinear operator is de�ned by:

T (a|ψ〉+ b|ϕ〉) = a∗T |ψ〉+ b∗T |ϕ〉 (2.55)

where the di�erence from a linear operator is the complex conjugation. Furthermore this

operator is antiunitary, which means that:

〈Tψ|Tϕ〉 = 〈ψ|ϕ〉∗ (2.56)

Again the di�erence from a unitary operator is the complex conjugation. This obviously holds

for the complex conjugation operator:∫
(Kϕ)∗(Kψ) dx =

(∫
ϕ∗ψ dx

)∗
(2.57)

For particles with spin, time reversal can also act in spin space, and since spin is angular

momentum we expect time reversal to reverse the spin. Under time reversal the time evolution

operator eiHt must become TeiHtT−1 = e−iHt, for any particle regardless of spin and thus the

time reversal operator is antilinear. And since we want it to conserve the norm it must be

antiunitary. The product of two antiunitary operators must be unitary, and thus we have:

KT = U ⇔ T = UK (2.58)

where U is some unitary operator. This actually means that any antiunitary operator can be
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written as a product of complex conjugation operator and a unitary operator. Applying the

time reversal operator twice should not change the physical state of the system which means

that T 2 must be a trivial phase factor eiθ.

eiθ = T 2 = UKUK = UU∗ (2.59)

Since U is unitary UU † = 1 ⇔ U∗UT = 1, so multiplying the last equality by UT from the

right gives:

U = eiθUT ⇔ UT = Ueiθ (2.60)

Substituting the second into the �rst gives:

U = eiθUeiθ = (eiθ)2U ⇒ (eiθ)2 = 1 (2.61)

This eqaution gives that T 2 = eiθ = ±1. Using T 2 = UU∗ we see that the determinant of T 2

is:

det(T 2) = det(UU∗) = det(U) det(U∗) = det(U) det(U)∗ = 1 (2.62)

But T 2 = ±1 which means that the determinant is (±1)n where n is the dimension of the

space U is operating in. This is the spin space, which is odd dimensional for integer spin.

Hence, T 2 = 1 for integer spin.

If we have a half-integer spin instead, T 2 is not determined from this consideration. From

a classical point of view we expect the angular momentum to be reversed under time reversal.

This means that TJT = −J for any angular momentum operator J is the spin operator. For

a spin 1
2 system we have in general that T = UK. We choose a basis where the spinoperators

are represented by the pauli matrices S = 1
2σ, with:

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
(2.63)

Any 2 by 2 matrix can be written as a linear combination of the pauli matrices and the

identity matrix, so if we write:

U = d · σ + d0σ0, (2.64)

where σ = (σx, σy, σz) and σ0 is the identity matrix.

The requirement that T reverses spin then results in the following:

TσxT
−1 = UσxU

−1 = −σx ⇔ Uσx = −σxU (2.65)

TσyT
−1 = −UσyU−1 = −σy ⇔ Uσy = σyU (2.66)

TσzT
−1 = UσzU

−1 = −σz ⇔ Uσz = −σzU (2.67)
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2.9. TIME REVERSAL

U must commute with σy and anticommute with σx and σz. The �rst equation, gives that

d1 = d0 = 0 and the third that d3 = d0 = 0 and hence U = d2σy. Since U is unitary d2 is just

a phase factor. Then we have:

T 2 = d2σyKd2σyK = −|d2|2σ2
y = −1 (2.68)

Usually the phase is chosen such that T = iσyK. This shows that T 2 = −1 for a spin half

system, but it actually turns out to be the case for any non-integer spin system.

2.9.1 Kramers Theorem

For a system of non-integer spin time reversal invariance leads to a double degeneracy, known

as Kramers degeneracy. This degeneracy is a direct result of the fact that T 2 = −1. If the

system is described by the Hamiltonian H is time reversal invariant then T and H commutes.

If we have an eigenstate |ψ〉 with energy E, then:

H|ψ〉 = E|ψ〉 ⇔ TH|ψ〉 = HT |ψ〉 = ET |ψ〉 (2.69)

and T |ψ〉 is also an eigenstate of energy E. However this does not tell us if we have a

degeneracy, since |ψ〉 could be proportional to |ψ〉, but if T 2 = −1 then:

〈ψ|Tψ〉 = −〈T 2ψ|Tψ〉 = −〈Tψ|ψ〉∗ = −〈ψ|Tψ〉
⇔ 〈ψ|Tψ〉 = 0 (2.70)

showing that |ψ〉 and T |ψ〉 are orthogonal, and we have a double degeneracy. Note that the

only proporties of T used in this derivation is T 2 = −1 and the fact that T is antiunitary.

2.9.2 Inversion and time reversal

Now we turn to a translational invariant system again. The eigenstates of the Hamiltonian

can then be written as bloch states which under lattice translations transforms as:

ψn,k(x + R) = eik·Rψn,k(x) (2.71)

Then the time reversed of this state transforms as:

Tψn,k(x + R) = e−ik·RTψn,k(x) (2.72)

then Tψn,k must be a state of opposite crystal momentum ψm,−k. Note that the label m has

changed, and that it also contains the spin. This shows that for a time reversal invariant

system the dispersion relation En(k) must be symmetric around k = 0, and speci�cally at

k = 0 all bands have at least a double degeneracy.

For a system with both inversion I and time reversal symmetry then we can use that

the system also has the symmetry IT . This an antiunitary operator since I is unitary and

(IT )2 = −1, and hence the states related by this symmetry must be orthogonal because of
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2. GROUP THEORY

Kramers theorem. The state ITψn,k transforms under lattice translations as:

ITψn,k(x + R) = eik·RITψn,k(x) (2.73)

since inversion takes x → −x. This means that the states related by IT are at the same k

value, and all bands of a system with both inversion and TR symmetry are doubly degenerate.

2.10 Symmetries of crystals

In solid state physics, we consider crystals, regular arrays of identical unit cells consisting of

one or more atoms. These will of course have some symmetries. The group of all coordinate

transformations leaving a crystal invariant is called the space group of the crystal. A subgroup

of the space group, is the group of lattice translations by a vector Tn = n1a1 + n2a2 + n3a3,

where ni are integers and ai are the primitive translation vectors, de�ning the unit cell. In

addition there are transformations x → Rx where R is an orthogonal matrix. These are

rotations, inversion and combinations of those (or proper and improper rotations). A general

element is usually written {R|T}. The group we get by putting T = 0 is called the point

group. If the all elements of the point group are symmetries of the crystal, the space group is

said to be symmorphic. In a non-symmorphic group there are elements which involves both

a translation and a rotation, each of which are not symmetries of the crystal. But here we

will only consider the symmorphic groups. The three dimensional version of bloch's theorem

states that the eigenfunctions of a translationally invariant system can be written:

ψk(x) = uk(x)eik·x (2.74)

The e�ect of a transformation R from the point group on the wavefunction is then:

PRψk(x) = uk(R−1x)eik·R
−1x = uk(R−1x)eiRk·x (2.75)

Here we used the orthogonality of the matrix R, R−1 = RT . uk(R−1x) is also periodic with

the periodicity of the lattice, since R is a symmetry of the lattice. Thus applying the operator

PR on a bloch wave function, gives a bloch wave function at crystal momentum Rk.

2.11 Theory of invariants

In this section we will describe how to construct invariant linear combinations of objects

belonging to irreducible representations of a symmetry group. To do this we will need Schur's

lemma part 1 & 2, which we will just state here, for a proof se [10].

Schur's lemma Part 1 A matrix which commutes with all matrices of an irreducible

representation is a constant times the identity matrix. Therefore, if a non-constant commuting

matrix exists, the representation is reducible.

Schur's lemma Part 2 If Γ(1) and Γ(2) are two irreducible representations of a given
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2.11. THEORY OF INVARIANTS

group G of dimensionality l1 and l2, then if a l1 × l2 matrix exists such that:

Γ(1)(X)M = MΓ(2)(X) ∀X ∈ G (2.76)

Then if l1 6= l2 then M must be the null matrix (M = 0), and if l1 = l2 then either M = 0 or

Γ(1) and Γ(2) are equivalent.

Consider a symmetry group G, and two sets of objects u = (u1, ..., un) and v = (v1, .., vm)

transforming according to the irreducible representations Γ(u) and Γ(v), which are n and m

dimensional. We also choose them to be unitary 4. Then a linear combination u†Mv (where

M is a n ×m matrix), which is invariant can be constructed if and only if Γ(u) and Γ(v) are

equivalent.

Proof. First, if Γ(u) and Γ(v) are equivalent then there exists some matrix A such that

Γ(u)(X) = A−1Γ(v)(X)A for all X ∈ G. Then under the transformation X we have:

u†Mv→ u†Γ(u)(X)†MA−1Γ(u)(X)Av (2.77)

We can then choose M = A and then we have an invariant term.

And second, if u†Mv is invariant, then for all X ∈ G:

u†Mv = u†(Γ(u))†(X)M(Γ(v))†(X)v (2.78)

⇔M = (Γ(u))†(X)M(Γ(v))†(X) (2.79)

Then either M = 0 or Γ(u) and Γ(v) are equivalent by Schur's lemma part 2. Then to get a

nontrivial invariant term Γ(u) and Γ(v) must be equivalent.

Hence all invariant terms we can construct must be combinations of objects from the same

irreducible representation.

4Any representation by matrices is equivalent to a representation by unitary matrices [8]

23



Chapter 3

Low energy effective model

In this chapter, we will derive the form of the low energy e�ective model for Bi2Se3. We want

to �nd a simple model that describes the topological nature of this material. Since we have

both time reversal and inversion symmetry all bands are doubly degenerate and we need at

least a four band model to get a gapped spectrum. That is our goal for this chapter; to obtain

a four band model that describes the low energy physics of Bi2Se3. We will use the theory of

invariants, from section 2.11 to write down the most general model allowed by the symmetries

of the crystal. When this is done, the parameters can be found by �tting the spectrum to

experimental data or ab initio calculations of the spectrum. Another method is to use what

is known as k · p perturbation theory, where the parameters can be determined from matrix

elements of the momentum operator with wave functions at the gamma point (k = 0) from ab

initio calculations. Here we will only construct the model, and we will use both the parameters

of [11] and [12]. Since we only use the symmetries of the crystal this holds for any material of

the same structure, e.g. Bi2Te3. This class of materials is denoted the tetradymite group.

3.1 Crystal structure

In this section, we will describe the crystal structure of Bi2Se3. Understanding the structure

is essential, when �guring out the symmetries of the crystal and considering which basis states

to use for our e�ective model. The crystal structure of Bi2Se3 is shown in �gure 3.1. It
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Se1orSe1’
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x y
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Bi1’

Bi1

Se1
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Figure 3.1: (a) The crystal structure of Bi2Se3, with one quintuple layer framed by the red box. The positions
the triangular lattice of each layer can be A, B or C sites as indicated on (c). The positions of
the layers alternate A-C-B-A-C-B etc. while the types of atoms are arranged in quintuple layers
consisting of �ve atomic layers in the order Se-Bi-Se-Bi-Se. (b) shows the �rst Brillouin zone of
the lattice. Adapted from [11].

is a layered structure, with each layer consisting of a triangular lattice of either bismuth or
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3.1. CRYSTAL STRUCTURE

selenium atoms. We choose a coordinate system with the z-axis perpendicular to the atomic

layers. The positions of the layers alternate between the A, B and C sites. The structure

can be divided into the so-called quintuple layers consisting of �ve atomic layers, alternating

between bismuth layers and selenium layers. The primitive translation vectors are given by:

t1 =


a
2

−
√

3a
6
c
3

 , t2 =

 −
a
2

−
√

3a
6
c
3

 , t3 =

 0
√

3a
3
c
3

 , (3.1)

where a = 4.138Å is the lattice constant of the layered triangular lattices, and c = 28.64Å is

the length of the longest diagonal of the rhombohedral unit cell. On �gure 3.1 it is the distance

between the top and bottom layers. The values of a and c are from [13]. Then the thickness

of one quintuple layer is c
3 = 9.547Å. There are �ve atoms in each primitive unit cell, two

equivalent bismuth atoms denoted Bi1 and Bi1′, two equivalent selenium atoms Se1 and Se1′

and a selenium atom which is not equivalent to the two others. By equivalent we mean that

their positions can be interchanged by a symmetry operation of the crystal. One rhombohedral

unit cell is indicated by the primitive translation vectors shown on �gure 3.1, and the 5 atoms

in this unit cell are the ones exactly at the z-axis. If we take the origin to be in a Se2 atom then

the positions of the other atoms in the rhombohedral unit cell are given by±0.399cẑ for Bi1 and

Bi1′ and ±0.206cẑ for Se1 and Se1′, according to [13]. Note that these atoms are in di�erent

quintuple layers. The distances between the atomic layers within one quintuple layer can be

calculated using that the thickness of one quintuple layer is c
3 . The distance between the Se2

layer and the Bi1 or Bi1′ layers is 0.399c− c
3 = 0.066c = 1.890Å, the distance between Bi1(′)

and Se1(′) layers −0.206c + c
3 − 0.066c = 0.061c = 1.747Å. The distance between a Se1 and

the Se1′ of the neighbouring quintuple layer is 0.206c−(−0.206c+ c
3) = 0.079c = 2.263Å. The

vector from one atom to one of the nearest atoms in the next layer above is n = (0,−
√

3a
3 , h)

where h is the distance between the layers. Then the distance between the two atoms is√
a2

3 + h2. The three vectors connecting one atom to the three nearest in the next layer are

related to each other by rotations of 120 degrees, and the angle between two of these is given

by:

cos(θ) =
n ·R3n

n · n =
a2

3 cos(120◦) + h2

a2

3 + h2
=
−a2

6 + h2

a2

3 + h2
, (3.2)

where R3 is a matrix, representing a rotation of 120◦ around the z axis. We denote the angle

between the two vectors connecting a Se2 atom and two of the nearest neighbours in the Bi1

layer α, and the angle between the two vectors connecting a Bi1 atom to two of the nearest

neighbours in the Se1 layer β. These angles are shown in �gure 3.2 and using eq. (3.2) we get:

α = 85.6◦ β = 88.7◦ (3.3)

We see that the vectors connecting one atom to the three nearest atoms in the next layer, but

still in the same quintuple layer, are almost orthogonal.
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3. LOW ENERGY EFFECTIVE MODEL
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Figure 3.2: The relative positions of atoms in di�erent layers in 3 dimensions. The color indicates the type
of atom, and all atoms of the same type are in the same layer, i.e. has the same position on the
z axis. The size of the atoms indicate the position on the y axis. The positions of Bi1' and Se1'
can be found by inversion of the Bi1 and Se1. Note that the nearest neighbours are actually from
di�erent layers. The angles shown are α ≈ β ≈ 90◦, which means that the 3 p orbitals in the
direction of the nearest neighbours are approximately orthorgonal.

3.1.1 Symmetry group

The space group of this crystal consists of the group of translations by a vector:

R = n1t1 + n2t2 + n3t3 n1, n2, n3 ∈ Z (3.4)

and the point group D3d. The point group D3d is the direct product group of D3 and the

group of the inversion operator. The e�ect of these symmetries are easiest to visualize by

considering the rhombohedral unit cell and the three primitive translation vectors.

1. Rotation around the z-axis by 120 degrees. Since all the atoms in the unit cell lie on

the z axis any rotations around the z-axis does not change anything within the unit cell.

This rotation transforms (t1, t2, t3)→ (t3, t1, t2) and thus the lattice is invariant.

2. C2 rotations around the x-axis. This rotation turns the unit cell upside down, but

that simply changes interchanges Bi1 (Se1) and Bi1′ (Se1′). This rotation transforms

(t1, t2, t3)→ (−t2,−t1, t3) and thus the lattice is invariant.

3. Inversion I. This transformation takes r → −r and thus it also interchanges Bi1 (Se1)

and Bi1′ (Se1′). Inversion transforms ti → −ti and again this leaves the lattice invariant.

All elements of the point group D3d can be produced by combination of these three transfor-

mations.

3.2 Qualitative description of the basis states around the Fermi

level

The goal of this section is to �nd the basis states for our e�ective model, i.e. the states closest

around the Fermi level at the gamma point. Starting from the atomic orbitals of bismuth and

selenide we will give qualitative explanations of the essential physics. Following [11], we will

do this in three steps; �rst we consider the nearest neighbour coupling within one quintuple

layer, then the crystal �eld splitting and at last the spin-orbit coupling. See �gure 3.3 for a

schematic picture of the results of this section. The arguments of this section follows [11],

where the qualitative results are also supported by ab initio band structure calculations.
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3.2. QUALITATIVE DESCRIPTION OF THE BASIS STATES AROUND THE FERMI LEVEL

Figure 3.3: Qualitative picture of the splittings of the outermost atomic orbitals. The starting point is the
6p atomic level of bismuth and the 4p level of selenide. The degenaracies of these level are 12
for bismuth and 18 for selenide, since there is two bismuth atoms and three selenium atoms in
each unit cell. Each atom has 3 di�erent p orbitals and two di�erent spin states. i) �rst we
consider the splitting due to the nearest neighbour couplings within one quintuple layer, then ii)
the crystal �eld splitting and iii) we see a crossing between the states closest to the Fermi level
when we include the spin-orbit coupling.

3.2.1 Coupling within a quintuple layer

The electron con�guration of bismuth is 6s26p3 while selenium has 4s24p4. Therefore, the

outermost orbitals for both atoms are the p orbitals and we will neglect all other orbitals.

This gives a total of 30 states in one unit cell, 3 p orbitals for each atom, and two di�erent

spin states. The number of electrons in one unit cell is 18, three for each of the two bismuth

atoms and four for each of the three selenium atoms. Therefore the 18 lowest lying states

will be �lled, and the chemical potential is somewhere above these states, but below the other

states. Hence, in the atomic limit (the starting point on the left side of �gure 3.3) the chemical

potential is between the two atomic levels. In [14] they �nd from density functional theory

calculations, that the bismuth atoms are positively charged, while the selenium atoms are

negatively charged. Furthermore, they argue that this indicates that the coupling within one

quintuple layer is of the covalent-ionic type while the coupling between di�erent layers are

of the weaker van der Waals type. Thus, the simplest model one could imagine is simply

a tight binding model within one quintuple layer. We have 3 p orbitals in the �ve di�erent

layers. Now in principle one has to consider the coupling between any p orbital of one layer

with any p orbital of the next layer, but we can change to a basis where couplings between

orbitals of the same type dominate. We can change from px, py and pz orbitals to a basis of p

orbitals pointing in the directions of the nearest neighbours in the next layer. Let these three

be denoted by pa, pb and pc, they are shown in �gure 3.4. These are to a good approximation

orthogonal as we saw above. Then there is almost no overlap between di�erent types of p

orbitals in the di�erent layers, while there is a big overlap between p orbitals of the same type,

see 3.4. This means that for each of these three we have the Hamiltonian:
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z

Figure 3.4: If the basis for the p orbitals are chosen in the directions of the nearest neighbours, then orbitals
of one layer have large overlap with orbitals of the same type in the next layer.

Htb =


εSe t 0 0 0

t εBi t 0 0

0 t εSe t 0

0 0 t εBi t

0 0 0 t εSe

 , (3.5)

in the basis of |Se1, pα〉, |Bi1, pα〉, |Se2, pα〉, |Bi1′, pα〉, |Se1′, pα〉, where α ∈ {a, b, c}. Here εSe

t=0
Hopping constant

Se

Bi
µ

E
n
e
rg

y

|P2−x,y,z
〉

|P0−x,y,z
〉

|P1−x,y,z
〉

|P2+
x,y,z

〉

|P1+
x,y,z

〉Odd

Even

Figure 3.5: The energy levels of one quintuple layer, as a function of the hopping constant t. The �ve resulting
levels consist of 6 degenerate states; three di�erent p orbitals and two di�erent spin states. The
color shows the eigenvalue of the various states under inversion. Since the pa, pb, pc orbitals are
split in the same way, we have changed the basis back to px, py, pz.

and εBi are the atomic energies of bismuth and selenium. We use the same t for all couplings,

since this is only a qualitative model and since the distance between the layers are almost

the same. Turning on the hopping constant t splits the atomic levels as shown in �gure 3.5.

Since we have inversion symmetry, the levels are split eigenstates which are even or odd under

inversion. The inversion eigenvalues are indicated by the superscript. Note that since the p

orbitals are odd under inversion, and inversion interchanges the Bi1 (Se1) and Bi1′ (Se1′), the
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3.2. QUALITATIVE DESCRIPTION OF THE BASIS STATES AROUND THE FERMI LEVEL

inversion operator in this basis is given by:

I =


0 0 0 0 −1

0 0 0 −1 0

0 0 −1 0 0

0 −1 0 0 0

−1 0 0 0 0

 . (3.6)

Since the three di�erent p orbitals are split the same way, we can change our basis back to

px, py and pz. From now on, we focus on the two levels closest to the Fermi level, which is

between the two atomic energies, |P1+
x,y,z〉 and |P2−x,y,z〉.

3.2.2 Crystal �eld splitting

Next, we consider the crystal �eld splitting. The atomic orbitals have full rotation symmetry,

but this symmetry can be broken by the crystal �eld. However, the crystal �eld is sym-

metric under D3, which will determine how the degenaracies when the p orbitals are split1.

The p orbitals are basis functions for an irreducible representation of the full rotation group,

Γ(J=1). When the full rotation symmetry is broken down to D3 this representation is no longer

irreducible. The characters of the elements of D3 are according to eq. (2.46):

χ(J=1)(E) = 3, χ(J=1)(C2) =
sin(3

2π)

sin(π2 )
= −1, χ(J=1)(C3) =

sin(π)

sin(π3 )
= 0, (3.7)

The character of the identity is 3, since it is a 3 dimensional representation. By inspection

of the character table of the group D3 (table 2.3 p. 12) we see that Γ(J=1) is a reducible

representation of D3 which can be written in terms of the irreducible representations of D3 as

Γ(J=1) = Γ(2) + Γ(3) (3.8)

With full rotation symmetry the three p orbitals are degenerate, but lowering the symmetry

to D3 splits this degeneracy into to a non-degenerate and a doubly degenerate level. It must

be pz that belongs to the one dimensional representation Γ(2) and px and py that belongs to

Γ(3) and hence still have a degeneracy. The symmetry considerations here only shows that the

three p orbitals can be split into two levels; the pz orbital and a degenerate level of px and py.

It turns out that energy of the |P1+
x,y〉 are increased while |P1+

z 〉 decreases, and the other way

around for the states with negative inversion eigenvalue, according to [11]. Thus, both |P1+
z 〉

and |P2−z 〉 gets closer to the chemical potential.

3.2.3 Spin-orbit coupling

At this point all the states are doubly degenerate because of the spin. Now we will consider

the e�ect of spin-orbit coupling on the atomic orbitals. The atomic spin-orbit Hamiltonian is

1Here we only consider the group D3, which does not include inversion, since inversion symmetry does not
change the degeneracies.
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given by [15]:

Hso = λs · L =
1

2m2
0c

2r

∂U

∂r
s · L (3.9)

where U is the potential of the atoms, m0 is the electron mass, c is the speed of light, and r is

the position relative to the center of the nucleus. Now we consider the e�ect of this interaction

on the states |P1+
α ,ms〉 and |P2−α ,ms〉, where α denotes the type of p orbital px, py or pz while

ms denotes the spin in the z direction ±1
2 , giving in total 12 states. Now it is convenient to

change the basis to a basis with de�nite orbital angular momentum in the z direction. This

basis can be written |Λ,ml,ms〉, where Λ ∈ {P1+, P2−}, ml and ms are the projections in

the z direction of orbital and spin angular momenta. In terms of the old basis these states are

given by:

|Λ, 1,ms〉 = − 1√
2

(|Λx,ms〉+ i|Λy,ms〉) (3.10)

|Λ, 0,ms〉 = |Λz,ms〉 (3.11)

|Λ,−1,ms〉 =
1√
2

(|Λx,ms〉 − i|Λy,ms〉) (3.12)

Since the spin-orbit coupling is rotationally invariant (when rotation is applied in both spin

and orbital space) total angular momentum is conserved. The spin-orbit term can be rewritten

using the raising and lowering operators L± = Lx ± iLy and S± = Sx ± iSy:

S · L = SxLx + SyLy + SzLz =
1

2
(S+L− + S−L+) + SzLz (3.13)

the e�ect of this operator on our basis states is:

S · L|Λ, 1, 1
2〉 =

1

2
|Λ, 1, 1

2〉 (3.14)

S · L|Λ, 0, 1
2〉 =

1√
2
|Λ, 1,−1

2〉 (3.15)

S · L|Λ,−1, 1
2〉 =

1√
2
|Λ, 0,−1

2〉 −
1

2
|Λ,−1, 1

2〉 (3.16)

S · L|Λ, 1,−1
2〉 =

1√
2
|Λ, 0, 1

2〉 −
1

2
|Λ, 1,−1

2〉 (3.17)

S · L|Λ, 0,−1
2〉 =

1√
2
|Λ,−1, 1

2〉 (3.18)

S · L|Λ,−1,−1
2〉 =

1

2
|Λ,−1,−1

2〉 (3.19)

As we expected the total angular momentum in the z directionml+ms is conserved. Therefore,

the states |Λ,±1,±1
2〉 are already eigenstates of the spin-orbit Hamiltonian. The non-zero
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matrix elements coupling the other states are:

〈Λ, 1,−1
2 |Hso|Λ, 0, 1

2〉 = 〈Λ, 0,−1
2 |Hso|Λ,−1, 1

2〉 =
λΛ√

2
(3.20)

〈Λ, 1, 1
2 |Hso|Λ, 1, 1

2〉 = 〈Λ,−1,−1
2 |Hso|Λ,−1,−1

2〉 =
λΛ

2
(3.21)

〈Λ,−1, 1
2 |Hso|Λ,−1, 1

2〉 = 〈Λ, 1,−1
2 |Hso|Λ, 1,−1

2〉 = −λΛ

2
(3.22)

Where we have introduced a spin-orbit constant λΛ for each band, since they could be di�erent.

Since the spin-orbit coupling only couples states with the same total angular momentum in

the z direction mj the Hamiltonian becomes block diagonal with blocks corresponding to each

value of mj . The spin-orbit coupling is also diagonal in the P1+,P2− space, and each block

can be written:

HΛ,so =


EΛ,x + λΛ

2 0 0 0

0 hΛ, 1
2

0 0

0 0 hΛ,− 1
2

0

0 0 0 EΛ,x + λΛ
2

 , (3.23)

in the basis |Λ, 1, 1
2〉, |Λ, 1,−1

2〉, |Λ, 0, 1
2〉, |Λ,−1, 1

2〉, |Λ, 0,−1
2〉, |Λ,−1,−1

2〉. The spin 1
2 blocks

are given by:

hΛ, 1
2

= hΛ,− 1
2

=

(
EΛx − λΛ

2
λΛ√

2
λΛ√

2
EΛz

)
, (3.24)

where EΛα is the energy of the |Λα〉 without spin-orbit coupling. The remaining four eigen-

states of the spin-orbit coupling can now be found just by solving the 2×2 Hamiltonian hΛ,± 1
2
.

The six eigenstates of the each Λ block of the spin-orbit coupling can be written:

|Λ,±3
2〉 = |Λ,±1,±1

2〉 E = EΛ
3
2

(3.25)

|Λ+,±1
2〉 = uΛ

+|Λ,±1,∓1
2〉+ vΛ

+|Λ, 0,±1
2〉 E = E

Λ+
1
2

(3.26)

|Λ−,±1
2〉 = uΛ

−|Λ,±1,∓1
2〉+ vΛ

−|Λ, 0,±1
2〉 E = E

Λ−
1
2

(3.27)

where

uΛ
± =

EΛ,x − EΛ,z − λΛ
2 ±

√
(EΛ,x − EΛ,z − λΛ)2 + 2λ2

Λ

2
√
N±

(3.28)

vΛ
± =

λΛ√
2N±

(3.29)
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3. LOW ENERGY EFFECTIVE MODEL

with N± = λ2
Λ + 1

2(EΛ
x −EΛ

z −λΛ)2± 1
2(EΛ

x −EΛ
z −λΛ)

√
(EΛ

x − EΛ
z − λΛ)2 + 2λ2

Λ. The energies

are given by:

EΛ
3
2

= EΛ
x +

λΛ

2
(3.30)

E
Λ±
1
2

=
EΛ,x + EΛ,z − λΛ

2 ±
√

(EΛ,x − EΛ,z − λΛ)2 + 2λ2
Λ

2
(3.31)

The new energies are plotted in �gure 3.6 as a function of the spin-orbit constant. We see

that the |Λx,y〉 levels are split into 2 doubly degenerate levels (time reversal and inversion

symmetry requires at least double degeneracy). The levels |Λz〉 degeneracy is pushed away

from the other levels with the same Λ. Thus the two states closest to the chemical potential

are pushed towards each other, and for a certain spin-orbit coupling strength, the two level

crosses, creating a band inversion.

λ=0

Spin orbit constant

|P1+
x,y

〉
|P1+

z

〉

|P2−x,y
〉

|P2−z
〉

E
n
e
rg

y

|P1+ ,±3
2

〉
|P1+

+ ,±1
2

〉

|P1+
− ,±1

2

〉
|P2− ,±3

2

〉
|P2−+ ,±1

2

〉

|P2−− ,±1
2

〉

Figure 3.6: The energy levels as a function of the spin-orbit coupling constant. Here we have the same spin-
orbit constant for the two bands λ = λP1+ = λP1− . Note that for a strong enough spin-orbit
coupling there is a level crossing allowing the material to go into a topologically non-trivial phase.
The superscript sign on the basis states denotes the inversion eigenvalue. The spin 1

2
states have

an subscript, indicating which of the solutions to the 2× 2 block hΛ,± 1
2
it is.

�u

�

v

� � =

1

N
��E� 
���E��2 +
��

2

2

��/�2
� �12�

explicitly, where N
=��
2 +2�E�

2 
2�E�
��E�

2 +��
2 /2 and

�E�=
E�,x−E�,z−��/2

2 . The energy splitting between the px�y� or-
bital and the pz orbital due to the crystal field is larger than
the energy scale of SOC and �E� is dominated by E�,x
−E�,z. Now as we see, the SOC couples �� , pz , ↑ ���� , pz , ↓ ��
to �� , p+ , ↓ ���� , p− , ↑ �� so that it induces a level repulsion
between these two states. Consequently, �P1−

+ , 

1
2 � is pushed

down while �P2+
− , 


1
2 � is pushed up, which yields a level

crossing between these two pairs of states, when the SOC is
strong enough, as shown in Fig. 2�IV�. Since these two pairs
of states have opposite parity, their crossing leads to a band
inversion, similar to the case of the HgTe quantum wells.5

This is the key signature of the topological insulator phase in
the Bi2Se3 family of materials.1 Therefore in the following
we will focus on these four states and regard the other states
as a perturbation.

III. MODEL HAMILTONIAN DERIVED FROM
SYMMETRY PRINCIPLES

From the discussion of the atomic orbitals in the last sec-
tion, we obtain an intuitive physical picture of the band
structure of Bi2Se3. Compared with the ab initio calculation,
we can denote the bands near the Fermi surface by ��
 ,	�

where �= P1
 , P2
 and 	= 

1
2 , 


3
2 , as shown in Fig 3.

Roughly, these states mainly consist of the bonding or anti-
bonding states of the p orbitals of Bi or Se atoms. However,
other orbitals such as the s orbitals of Bi and Se will also mix
into these states. To identify each band without any ambigu-
ity, it is necessary to relate each band with the representation
of the crystal symmetry. At � point, each state should belong
to an irreducible representation of the crystal symmetry
group and the hybridization between orbitals preserve the
symmetry properties. Therefore, a suitable method to iden-
tify each band is to use the symmetry of the crystal. In this
section, we will first identify each band according to the
irreducible representation of the crystal group D3d

5 and then
try to derive our model Hamiltonian just from symmetry
principles.

First let us consider the states without spin, which are
denoted as ��
 ,	� with �= P1, P2 and 	= px , py , pz. The
crystal of Bi2Se3 belongs to the group D3d

5 with the character
table given in Table I �Appendix A�.39 Since the crystal is
inversion symmetric, each representation has a definite parity
eigenvalue. For each parity, there are two one-dimensional

representations �̃1

 and �̃2


 and one two-dimensional repre-

sentation �̃3

, where the upper index denotes the parity ��

for even and � for odd�. According to the wave functions
constructed from the simple atomic orbital picture, we can
determine the transformation property of the wave functions
under the generators R3, R2, and P of the point group. For
example, let us look at the operation R2 on the state
�P1+, px�= 1

�2
��Bx�− �Bx���. The R2 rotation does not change the

px orbital; however it changes the position of Bi1 �Se1� and
Bi1� �Se1�� and correspondingly changes �B� to �B��; thus we
should have R2�P1+, px�=−�P1+, px�. A similar argument can
be applied to other states and finally the transformation of
the states under the crystal symmetry operations is listed as
follows.

�1� Threefold rotation R3: ��
 , px�→cos ���
 , px�
−sin ���
 , py�, ��
 , py�→sin ���
 , px�+cos ���
 , py�, and
��
 , pz�→ ��
 , pz�, with �= 2�

3 .
�2� Twofold rotation R2: ��
 , px�→ � ��
 , px�, ��
 , py�

→ 
 ��
 , py�, and ��
 , pz�→ 
 ��
 , pz�.
�3� Inversion P: ��
 ,	�→ 
 ��
 ,	�, 	= px , py , pz.
Here �= P1
 , P2
. According to the above transforma-

tion, we find that ��+�−� , px� and ��+�−� , py� belong to the �̃3
+�−�

representation. ��+ , pz� belongs to the �̃1
+ representation and

��− , pz� belongs to the �̃2
− representation.

TABLE I. The character table for D3d
5 �R3̄m�.

D3d�3̄m� E 2R3 3R2 P 2PR3 3PR2

�̃1
+ 1 1 1 1 1 1

�̃2
+ 1 1 −1 1 1 −1

�̃3
+ 2 −1 0 2 −1 0

�̃1
− 1 1 1 −1 −1 −1

�̃2
− 1 1 −1 −1 −1 1

�̃3
− 2 −1 0 −2 1 0

FIG. 3. The band structure of Bi2Se3 is obtained from ab initio
calculation, and the bands near Fermi surface are identified with
��
 ,	�. �= P1
 , P2
 and 	= 


1
2 , 


3
2 . The corresponding irre-

ducible representation is also given.

LIU et al. PHYSICAL REVIEW B 82, 045122 �2010�

045122-4

Figure 3.7: The band structure of bismuth selenide, obtained from ab initio calculations in [11]. The states
are labeled
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3.3. MODEL HAMILTONIAN

According to [11] the states |P1+
−,±1

2〉, |P2−+,±1
2〉 turn out to be the states closest around

the Fermi level at the gamma point, from ab initio calculations. See �gure 3.7. Now we

have seen how this fact qualitatively can be described by considering the nearest neighbour

coupling, the crystal �eld splitting and the spin-orbit coupling. Speci�cally we saw that the

spin-orbit coupling lead to a crossing of the two levels.

3.3 Model Hamiltonian

Now we have discussed qualitatively the e�ects of the couplings within one quintuple layer,

the crystal �eld and the spin-orbit coupling. We saw how we ended with the two doubly

degenerate energy levels |P1+
−,±1

2〉 and |P2−+,±1
2〉 being closest to to the Fermi level. These

states are eigenstates at the gammapoint. We will now construct an e�ective Hamiltonian, in

the basis of these states. This is an example of quasi degenerate perturbation theory in k. We

will use the symmetries of the crystal to construct all allowed terms up to third order in k.

In general any 4 × 4 hermitian matrix can be expanded in terms of the Dirac gamma

matrices:

Heff (k) = ε(k) +
∑
i

di(k)Γi +
∑
ij

dij(k)Γij , (3.32)

for real functions di(k), dij(k), for i, j ∈ {1, 2, 3, 4, 5}. Here we chose the Dirac matrices:

Γ1 = σx ⊗ τx, Γ2 = σy ⊗ τx, Γ3 = σz ⊗ τx, Γ4 = σ0 ⊗ τy, Γ5 = σ0 ⊗ τz (3.33)

and their commutators Γij = 1
2i [Γi,Γj ]. We choose the basis |P1+

−,
1
2〉, |P2−+,

1
2〉, |P1+

−,−1
2〉,

|P2−+,−1
2〉. The σ and τ matrices are two sets of pauli matrices in the space of total angular

momentum and the P1+
−, P2+

− subspaces, respectively.

First, we will need the matrices representing the symmetry operations of the crystal in this

basis.

1. Inversion: All the basis states are eigenstates of the inversion operator labeled by their

eigenvalue, thus I = σ0 ⊗ τz.

2. Threefold rotation: Since three-fold rotation around the z axis does not change the

positions of the atoms within one unit cell it can be written in terms of the z component

of the angular momentum operator:

R3 = ei
2π
3
Jz = ei

π
3
σz⊗τ0 =

(
eiπ/3 0

0 e−iπ/3

)
⊗ τ0 (3.34)

3. Twofold rotation: This rotation changes the Bi1 and Se1 sites into Bi1′ and Se1′ like

inversion, so in the τ subspace, it is represented by τz. In the angular momentum

subspace it is given by ei
π
2 = iσx. Hence R2 = iσx ⊗ τz.

4. Time reversal: This is not part of the group D3d but should still be a symmetry of our

�nal Hamiltonian. As we saw in section 2.9 for a spin 1
2 system it can be represented by
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3. LOW ENERGY EFFECTIVE MODEL

T = iσyK, where K is complex conjugation. Therefore, we have T = iσy ⊗ τ0K.

We want an e�ective Hamiltonian which is invariant under all these transformations, i.e.

Heff (k) = U−1Heff (k′)U (3.35)

where U is any of the transformation matrices, and k′ is the transformed momentum, under

the according symmetry transformation. We have chosen a coordinate system, such that kz is

perpendicular to the layers of the material while kx and ky are in the layers. The e�ect of the

symmetry transformations on k are:

1. Inversion takes k→ −k

2. Threefold rotation around the z axis leaves kz invariant but transforms:(
kx

ky

)
→
(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)(
kx

ky

)
(3.36)

where θ = 2π
3

3. Twofold rotation around the x axis leaves kx invariant, but transforms ky, kz → −ky,−kz.

4. Time reversal takes k→ −k.

Therefore kx, ky transform according to the irreducible representation Γ(3−) of the point group

D3d, while kz transforms according to Γ(2−). In addition kx, ky, kz are odd under time reversal.

From the transformation behaviour of kx, ky, kz, we can �nd the transformation behaviour of

higher order polynomials of kx, ky, kz. This information is summarized in table 3.1.

Then we can work out how the Dirac matrices transform, by computing:

UΓaU
−1, (3.37)

where a is either i or i, j, for i, j ∈ {1, 2, 3, 4, 5}. Then we expand the resulting matrices

in the Dirac matrices again. The Dirac matrices were chosen such that they all transform

according to some irreducible representation. If we take, for example, Γ1 and Γ2, and check

their transformation properties we get:

1. Inversion: Γi → IΓiI
−1 = −Γi for i ∈ {1, 2}.

2. Threefold rotation around the z axis:(
−Γ2

Γ1

)
→
(
−R3Γ2R

−1
3

R3Γ1R
−1
3

)
=

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)(
−Γ2

Γ1

)
(3.38)

3. Twofold rotation around the x axis: Γ1 → R2Γ1R
−1
2 = −Γ1 and Γ2 → R2Γ1R

−1
2 = Γ2.

4. Time reversal: Γi → TΓiT
−1 = −Γi for i ∈ {1, 2}.
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3.3. MODEL HAMILTONIAN

Γ(1+) Γ(2+) Γ(3+) Γ(1−) Γ(2−) Γ(3−)

T even

1
k2
z

k2
x + k2

y

Γ5

{2kxky, k2
x − k2

y}
{kykz,−kxkz}

Γ35 Γ45 {−Γ25,Γ15}

T odd

Bz
Γ12

Γ34

{Bx, By}
{Γ23,Γ31}
{Γ14,Γ24}

k3
x − 3kxk

2
y

Γ3

kz
k3
z

kz(k
2
x + k2

y)

k3
y − 3kxk

2
y

Γ4

{kx, ky}
{kxk2

z , kyk
2
z}

{kx(k2
x + k2

y), ky(k
2
x + k2

y)}
{kz(k2

x − k2
y),−2kxkykz}

{−Γ2,Γ1}

Table 3.1: All polynomials of momentum up to third order, categorized according to their reducible repre-
sentation in the group D3d. The Dirac matrices are listed the same way, such that terms in the
same cell can be combined to form invariant terms in our model Hamiltonian. For the two dimen-
sional representations we list pairs, transforming together with the notation {·, ·}. The elements
are listed such that they transform exactly the same way, and invariant terms can be formed by
simply taking the dot product of two lists in the same cell. The components of a magnetic �eld is
also listed, and using the symmetry principles, we can write down a Zeeman term.

Therefore, the set of matrices {−Γ2,Γ1} transforms exactly like {kx, ky}. The transformation
properties of all the Dirac matrices are summarized in table 3.1.

As we saw in section 2.11 invariant terms can only be formed by combinations of objects

belonging to the same irreducible representation. Therefore, in the present case we can form

an invariant term by combining {−Γ2,Γ1} and {kx, ky}.

−Γ2kx + Γ1ky (3.39)

By proceeding in this way, taking all combinations of Dirac matrices and polynomials trans-

forming the same way (i.e. are listed in the same cell in table 3.1), we can �nd the most

general Hamiltonian allowed by the symmetries of the crystal. Going to third order in k we

arrive at the e�ective Hamiltonian:

H ′eff = ε0(k) +M(k)Γ5 +A1(k)kzΓ4 +A2(k)(kyΓ1 − kxΓ2)

+R1(k3
x − 3kxk

2
y)Γ3 +R2(3k2

xky − k3
y)Γ4 +R3kz(2kxkyΓ1 + (k2

x − k2
y)Γ2) (3.40)

where

ε0(k) = C +D1k
2
z +D2k

2
|| (3.41)

M(k) = M −B1k
2
z −B2k

2
|| (3.42)

A1(k) = A1 +A1,zk
2
z +A1,||k

2
|| (3.43)

A2(k) = A2 +A2,||k
2
|| +A2,zk

2
z (3.44)

where k|| =
√
k2
x + k2

y. The parameters C,D1, D2, A1, A1,||, A1,z, A2, A2,||, A2,z, R1, R2, R3

are not given by symmetry considerations, and need to be determined either by �tting to ab

initio calculations of the spectrum or by k · p theory using ab initio calculations of the wave
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3. LOW ENERGY EFFECTIVE MODEL

functions at the gamma point. We note here that the terms with coe�cients A1,||, A2,z and

R3 are not included in [11]. Whether they �nd these terms to be zero, or they are excluded for

some other reason is not clear. The three terms have in common, that they are all third order

terms, with a combination of the in plane momenta kx, ky and the out of plane momentum kz.

This Hamiltonian looks di�erent from the one used for example in [12] and [16], but is

equivalent by a unitary transformation:

U1 =


1 0 0 0

0 −i 0 0

0 0 1 0

0 0 0 i

 (3.45)

under this unitary transformation we get the Hamiltonian:

Heff = U1H
′
effU

†
1 = ε0(k) +


M(k) A1(k)kz 0 A2(k)k−

A1(k)kz −M(k) A2(k)k− 0

0 A2(k)k+ M(k) −A1(k)kz

A2(k)k+ 0 −A1(k)kz −M(k)



+
R1

2


0 i(Rdk

3
+ +Rmk

3
−) 0 −R3kzk

2
+

−i(Rdk3
− +Rmk

3
+) 0 −R3kzk

2
+ 0

0 −R3kzk
2
− 0 i(Rmk

3
+ +Rdk

3
−)

−R3kzk
2
− 0 −i(Rmk3

+ +Rdk
3
−) 0


(3.46)

where we have introduced two new parameters Rm = R1+R2
2 and Rd = R1−R2

2 and k± = kx±ky
to make the notation less messy. The second term includes third order terms that are just

�rst order terms multiplied by invariant second order terms, while the third term contains the

rest of the allowed third order terms. It is important to note, as mentioned in [17], that this

unitary transformation is a�ecting the spin operators:

sx =
1

2
U1σx ⊗ τ0U

†
1 =

1

2
σx ⊗ τz (3.47)

sy =
1

2
U1σy ⊗ τ0U

†
1 =

1

2
σy ⊗ τz (3.48)

sz =
1

2
U1σz ⊗ τ0U

†
1 =

1

2
σz ⊗ τ0 (3.49)

This will of course be very important when we calculate the spin structure of the surface states.

We emphasize here that when we talk about spin in this model, it is actually the total angular

momentum of the electronic states.

3.3.1 Magnetic �eld

If a magnetic �eld is present it a�ects the Hamiltonian in two ways; the orbital e�ect and a

Zeeman term. The orbital e�ect can be included by Peierls substitution k → k+ eA, where A

is the vector potential. The form of the Zeeman term can be deduced by requiring invariance
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3.4. BULK STATES

C(eV) -0.0083 -0.0068
D1(eVÅ2) 5.74 1.3
D2(eVÅ2) 30.4 19.6
M(eV) -0.28 0.28
B1(eVÅ2) -6.86 10.0
B2(eVÅ2) -44.5 56.6
A1(eVÅ) 2.26 2.2
A2(eVÅ) 3.33 4.1
R1(eVÅ3) 50.6
R2(eVÅ3) -113.3

g1z -25.4
g1p -4.12
g2z 4.10
g2p 4.80

Table 3.2: Parameters for the e�ective model. The �rst column is calculated from k · p theory in [11] using
ab initio calculations of wavefunctions, while the second is from [12] from �tting the spectrum to
that of an ab initio calculation.

under D3d and time reversal. Here we use the convention that the magnetic �eld is reversed by

time reversal operation, therefore the Zeeman term should be invariant under time reversal.

Using table 3.1 as before, we get:

H ′z = (α1Γ12 + α2Γ34)Bz + α3(BxΓ23 +ByΓ31) + α4(BxΓ14 +ByΓ24)

=


(α1 + α2)Bz 0 (α3 + α4)B− 0

0 (α1 − α2)Bz 0 (α3 − α4)B−

(α3 + α4)B+ 0 −(α1 + α2)Bz 0

0 (α3 − α4)B+ 0 −(α1 − α2)Bz



=
µB
2


g1zBz 0 g1pB− 0

0 g2zBz 0 g2pB−

g1pB+ 0 −g1zBz 0

0 g2pB+ 0 −g2zBz

 (3.50)

The new parameters g1z = 2
µB

(α1 + α2), g2z = 2
µB

(α1 − α2), g1p = 2
µB

(α3 + α4), g2p =
2
µB

(α3 − α4) are e�ective g factors in the di�erent orbitals. If we again perform the unitary

transformation we get the Zeeman term:

Hz = U1H
′
zU
†
1 =

µB
2


g1zBz 0 g1pB− 0

0 g2zBz 0 −g2pB−

g1pB+ 0 −g1zBz 0

0 −g2pB+ 0 −g2zBz

 (3.51)

3.4 Bulk states

Now we have arrived at the e�ective model in eq. (3.46), which was the main goal of this

chapter. This Hamiltonian will be the starting point for our investigation of the surface states

37



3. LOW ENERGY EFFECTIVE MODEL

in bismuth selenide. But before we introduce a surface, it is instructive to �nd the bulk states

of this Hamiltonian.

In the case of an in�nite insulator, we can simply diagonalize this 4 × 4 Hamiltonian.

We will do this only to second order in the momentum. Using the σ and τ matrices, our

Hamiltonian can be written:

H(k) = ε0(k)M(k)σ0 ⊗ τz +A2(kxσx + kyσy)⊗ τx +A1kzσz ⊗ τx. (3.52)

The spectrum can be found easily by squaring H(k)− ε0(k) and using the anticommuta-

tivity of the paulimatrices which cancels all the crossterms, i.e.

(H(k)− ε0(k))2 = (M(k)σ0 ⊗ τz +A2(kxσx + kyσy)⊗ τx +A1kzσz ⊗ τx)2

= (M(k)2 +A2
1k

2
|| +A2

2k
2
z). (3.53)

Hence, (H(k) − ε0(k))2 is proportional to the identity matrix and has only one eigenvalue

(M(k)2 + A2
1k

2
|| + A2

2k
2
z). The eigenvalues of a squared matrix are simply the squares of the

eigenvalues of the original matrix. Therefore, the matrix H(k)− ε0(k) must have eigenvalues

±
√
M(k)2 +A2

1k
2
|| +A2

2k
2
z . Then we get the bulk spectrum:

E±bulk = ε0(k)±
√
M(k)2 +A2

1k
2
z +A2

2k
2
||. (3.54)

We get two doubly degenerate bands due to the combination of time reversal and inversion

symmetry, as described in section 2.9.2. The dispersion relation is plotted in �gure 3.8. The

momentum dependent terms in ε0(k) breaks the particle-hole symmetry. If these are not

included the conduction band and valence band would be exactly symmetric around the value

of C.

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

k|| (Å
−1)

−1.0

−0.5

0.0

0.5

1.0

E
(e

V
)

Figure 3.8: The energy of the eigenstates in the low energy model, as a function of the in plane momentum
k|| =

√
k2
x + k2

y for evenly spaced values of kz (with a spacing of 0.03Å−1). The blue one is for
kz = 0. Here we used the parameters from [11].
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3.5. ENVELOPE FUNCTION APPROXIMATION

The eigenstates are found to be:

ψ1±(k) = C


M(k)∓

√
M(k)2 +A2

1k
2
|| +A2

2k
2
z

A1kz

0

A2k+

 , ψ2±(k) = C


0

A2k−

M(k)∓
√
M(k)2 +A2

1k
2
|| +A2

2k
2
z

−A1kz

 .

(3.55)

where C is a normalization constant. The upper/lower sign corresponds to the upper/lower

band. We see that these states are Kramers doublets Tψ1±(k) = −ψ2±(−k). The eigenstates

can be chosen in many di�erent ways because of the degeneracy, but the choice is not necce-

sarrily valid for any k, since the eigenvectors could become linearly dependent at som special

momentum. The four eigenvectors are linearly independent if the determinant of the matrix

(ψ1+, ψ1−, ψ2+, ψ2−) 6= 0. The determinant of the vectors chosen here is:

det(ψ1+, ψ1−, ψ2+, ψ2−) = 4A4
2k

2
|| + 8A2

1A
2
2k

2
||k

2
z + 4A4

1k
4
z + 4A2

2k
2
||M(k)2 + 4A2

1k
2
zM(k)2.

(3.56)

This is seen to be zero only at k = 0 (if we take A1 and A2 to be nonzero), and at that point

the Hamiltonian is diagonal and is trivially solved.

3.5 Envelope function approximation

The full wave functions of the bulk states found here, are given by an expansion in the basis

states of our model. In general an eigenspinor of our model at momementum k, denoted by:

ψ(k) =


a

b

c

d

 , (3.57)

corresponds to the wave function:

Ψ(r) = eik·r
(
a〈r|P1+

−,
1
2〉+ b〈r|P2−+,

1
2〉+ c〈r|P1+

−,−1
2〉+ d〈r|P2−+,−1

2〉
)
. (3.58)

The basis state wave function, contains the internal structure, within one quintuple layer,

whereas the plane wave factor eik·r acts as an envelope function. In the following chapters,

when we introduce one or two surfaces, the translational symmetry in the z direction is broken.

Therefore, kz is no longer a good quantum number, and we will make the substitution kz →
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3. LOW ENERGY EFFECTIVE MODEL

−i∂z. In general a solution to our model becomes z dependent

ψkx,ky(z) =


a(z)

b(z)

c(z)

d(z)

 , (3.59)

corresponding to the full wave function:

Ψ(r) = eikxx+ikyy
(
a(z)〈r|P1+

−,
1
2〉+ b(z)〈r|P2−+,

1
2〉+ c(z)〈r|P1+

−,−1
2〉+ d(z)〈r|P2−+,−1

2〉
)
.

(3.60)

We still have the lattice periodic basis functions, and plane wave envelope functions in the x

and y directions. In the z direction we have an envelope function, which is determined by the

boundary conditions. This is a way to seperate length scales, the lattice periodic functions,

gives the structure on an atomic scale, whereas the envelope function gives the structure on

larger scales due to the boundaries. For a more detailed discussion on the envelope function

approximation, see [18]

In the chapters 4 and 5, we will work entirely within this approximation, simply refering

to the envelope functions as the wave functions.
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Chapter 4

Surface states on a single surface

Bi2Se3

In this chapter we will discuss a so-called semi-in�nite geometry, which is an in�nite insulator

in the x and y directions with a surface perpendicular to the z-axis at z = 0. We will take

the the topological insulator to be �lling the z < 0 half-space, see �gure 4.1. We will use the

model Hamiltonian 3.46 to second order in the momenta. Even though a �nite geometry with

two surfaces is more realistic and interesting, the semi-in�nite case can be solved analytically

and thus gives a nice clear picture. We will �nd the criteria for the existence of surface states

based on the parameters of the Hamiltonian. Furthermore we will characterize the spatial and

spin structure of the found surface states.

Ψ(z)

z

x

y

Figure 4.1: The system considered in this chapter is an semi-in�nite topological insulator �lling the z < 0
half-space. This gives rise to localized surface states close to the surface at z = 0.

To �nd the surface states we need to impose some boundary conditions. Our choice is the

so-called hard wall or open boundary conditions:

Ψ(z = 0) = 0 (4.1)

To get localized states, we also need the wave function to decay away from the surface, i.e.:

Ψ(z → −∞) = 0 (4.2)

Other boundary conditions could be imposed, in [19] a wider class of boundary conditions,

including open boundary conditions, are explored. They �nd that both the spectrum and the

existence of surface states are dependent on the boundary condition, as well as the parameters

of the model. Another method is to let the model be valid in all space, but let the parameter

M change sign across the surface. These considerations however, are beyond the scope of this

thesis, where we will only use the open boundary conditions.
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4. SURFACE STATES ON A SINGLE SURFACE BI2SE3

4.1 Ansatz

If we have a surface perpendicular to the z axis, the translational symmetry in this direction

is broken, and kz is no longer a good quantum number. We will therefore use a more general

approach, where we restore the di�erential operators in the Hamiltonian kz → −i∂z giving:

H(kx, ky,−i∂z) = ε0(k||,−i∂z) (4.3)

+


M(k||,−i∂z) −iA1∂z 0 A2k−

−iA1∂z −M(k||,−i∂z) A2k− 0

0 A2k+ M(k||,−i∂z) iA1∂z

A2k+ 0 iA1∂z −M(k||,−i∂z)

 , (4.4)

ε0(k||,−i∂z) = C −D1∂
2
z +D2k

2
||, (4.5)

M(k||,−i∂z) = M +B1∂
2
z −B2k

2
||, (4.6)

k± = kx ± iky, (4.7)

k|| =
√
k2
x + k2

y. (4.8)

The time independent Schrödinger equation;

H(kx, ky,−i∂z)Φkx,ky(x, y, z) = EΦkx,ky(x, y, z), (4.9)

where

Φkx,ky(x, y, z) =
1√
LxLy

eikxx+ikyyΨkx,ky(z) (4.10)

since kx and ky are still good quantum numbers. The z dependent part Ψ(z) is some, yet

unknown 4-spinor. Since the x and y dependence is completely trivial, we will leave it out for

most of this chapter, and simply treat this as a one dimensional problem, given by:

H(kx, ky,−i∂z)Ψkx,ky(z) = EΨkx,ky(z). (4.11)

This is now a system of four coupled second order di�erential equations in one variable, thus

the space of solutions is 8 dimensional. Since it is a linear homogeneous system with constant

coe�cients, we can use the ansatz Ψ(z) = ψλe
λz, where ψλ is some z independent 4-vector. If

we by this ansatz can �nd 8 independent solutions we know that they span the entire space

of solutions. Hence, a general eigenfunction to 4.4, can be written as a linear combination of

these 8 independent solutions. Then, by imposing the relevant boundary conditions, one can

�nd the coe�cients of this linear combination.

4.1.1 Eigenstates

Now we will �nd the eigenstates in the ansatz Ψ(z) = ψλe
λz, following the derivation in [16].

When the hamiltionian works on this ansatz, we get the replacement ∂z → λ. The Schrödinger

42



4.1. ANSATZ

equation;

H(kx, ky,−iλ)ψλ = Eψλ (4.12)

has non-trivial solutions when:

0 = det(H(kx, ky,−iλ)− E) (4.13)

⇔ 0 =
(
M(k||,−iλ)2 − (ε0(k||,−iλ)− E)2 +A2

2k
2
|| −A2

1λ
2
)2

⇔ 0 =M(k||,−iλ)2 − (ε0(k||,−iλ)− E)2 +A2
2k

2
|| −A2

1λ
2

⇔ 0 = (M +B1λ
2 −B2k

2
||)

2 − (C −D1λ
2 +D2k

2
|| − E)2 +A2

2k
2
|| −A2

1λ
2

⇔ 0 = (B2
1 −D2

1)λ4 +
[
2B1(M −B2k

2
||)− 2D1(C +D2k

2
|| − E)−A2

1

]
λ2

+ (M −B2k
2
||)

2 − (C +D2k
2
|| − E)2 +A2

2k
2
||

⇔ 0 = D+D−λ
4 + Fλ2 + (E − L1)(E − L2)−A2

2k
2
|| (4.14)

⇔ λ = βλα = β

√
−F + (−1)α−1

√
R

2D+D−
(4.15)

where β = ± and α ∈ {1, 2} and we have de�ned:

F = A2
1 +D+(E − L1) +D−(E − L2), (4.16)

R = F 2 − 4D+D−

(
(E − L1)(E − L2)−A2

2k
2
||

)
, (4.17)

D± = D1 ±B1, (4.18)

L1 = C +M + (D2 −B2)k2
||, (4.19)

L2 = C −M + (D2 +B2)k2
||. (4.20)

The square root here denotes the principal value, to make λα uniquely de�ned. 1

This gives four di�erent solutions for λ for a given energy E. We could also have found

the energy from the secular equation, equation 4.13, giving:

E = ε0(k||, λ)±
√
A2

2k
2
|| −A2

1λ
2 +M(k||,−iλ)2,

which is simply the bulk spectrum with the replacement kz → −iλ. Usually one uses the

secular equation to �nd the energy, but the real question here is; given some k|| and E is it

possible to make a superposition of ψλeλz that ful�lls the boundary condition. If we had an

in�nite insulator the only condition on the wave function is that it does not diverge, which

means that λ must be purely imaginary, thus we can simply plug any imaginary λ into the

equation for the energy, and get the bulk spectrum again. Note that here we have assumed

that D+D− 6= 0, which will be justi�ed later.

Equation (4.15) is extremely important and is the equation that is going to tell us whether

or not surface states are possible. It tells us given some energy E and k|| how the wave function

can vary in the z direction. If there is only purely imaginary solutions for λ the wave function

1The principal value of the square root is the one with positive real part, and if the real part is zero the one
with positive imaginary part.
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4. SURFACE STATES ON A SINGLE SURFACE BI2SE3

will just oscillate, and if there is a real part it might be possible to �nd a solution that decays

away from a surface. Whether it is possible will depend on the boundary conditions and how

the actual eigenvectors ψλ turn out. Since the spectrum is doubly degenerate for a given λ

and corresponding energy E there is two independent eigenvectors, given by:

ψαβ1 =


M(k||,−iβλα)±

√
A2k2 −A1λ2

α +M(k||,−iβλα)2

−iA1βλα

0

A2k+

 =


D+λ

2
α − L2 + E

−iA1βλα

0

A2k+

 .

(4.21)

ψ′αβ2 =


−iA1βλα

−M(k||,−iβλα)±
√
A2k2 −A1λ2

α +M(k||,−iβλα)2

A2k+

0

 =


−iA1βλα

D−λ
2
α − L1 + E

A2k+

0

 .

(4.22)

These two are independent unless A2k+ = 0, but we also want to calculate the surface state

at k|| = 0, so we will instead use ψαβ1 and:

ψαβ2 =
D−λ

2
α − L1 + E

A2k+
ψαβ1 +

iA1βλα
A2k+

ψ′αβ2 =


A2k−

0

iA1βλα

D−λ
2
α − L1 + E

 , (4.23)

which is now linearly independent from ψαβ1 unless A1λα = 0. Therefore we will assume

A1 6= 0. The �rst component in eq. (4.23) was simpli�ed by using eq. (4.14) to calculate the

product:

(D+λ
2 − L2 + E)(D+λ

2 − L2 + E) (4.24)

= D+D−λ
4 + (D+(E − L1) +D−(E − L2))λ2 + (E − L1)(E − L2) (4.25)

= D+D−λ
4 + (F −A2

1)λ2 + (E − L1)(E − L2) (4.26)

= A2
2k

2
|| −A2

1λ
2 (4.27)

Now a general solution to the Schrödinger equation can be written:

Ψ(E, k||, z) =
∑
α,β,γ

Cαβγψαβγe
βλαz, (4.28)

where β ∈ {+,−} and α, γ ∈ {1, 2}. Both the spinors, ψαβγ , and λα depend on both E and

k||. The coe�cients Cαβγ is to be determined from boundary conditions.
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F 2 −R R −F
2D+D−

λ Possible states
+ - ± λ1, λ2 ∈ C and λ1 = λ∗2 Surface
+ + + λ1, λ2 ∈ R Surface
+ + - λ1, λ2 ∈ I Bulk
- + ± λi ∈ R, λj ∈ I Bulk

Table 4.1: Classi�cations of the di�erent possibilities for solutions for λ. R and F are functions of k|| and
E so this divides the k||, E plane into di�erent regions where either surface or bulk states are
possible. Note that this is includes all possible combinations, since R < 0⇒ F 2 −R > 0.

4.1.2 Spatial structure of the eigenstates

Before imposing the boundary conditions, and actually �nding the surface states we will look

at the spatial dependence of the found eigenstates.

The spatial structure of these solutions is determined by the λα(k||, E). Surface states are

only possible if both λ1 and λ2 have a real part, thus by analyzing the dependence of λα on

k|| and E it is possible to �nd out, where in the (k||, E) plane surface states are possible. The

essential part is the sign of the functions R, F 2 −R and − F
2D+D−

. We realize this by looking

at:

λ2
α =
−F + (−1)α

√
R

2D+D−
(4.29)

If R < 0, then
√
R is imaginary then λ2

α is complex and so is λα. In addition, we see that

λ1 and λ2 are complex conjugate partners. If R > 0, then λ2
α is real, and λα is either purely

real or purely imaginary, depending on the sign of λ2
α. If F 2 − R > 0 ⇒ |F | >

√
R then λ2

1

and λ2
2 have the same sign, and λ1 and λ2 are both either real or imaginary, depending on

the sign of − F
2D+D−

. On the other hand if F 2 −R < 0⇒ |F | <
√
R λ2

1 and λ2
2 have di�erent

signs, and we have on imaginary and one real λα, for α ∈ {1, 2}. The di�erent possibilities are
summarized in table 4.1.

In �gure 4.2 the (k||, E) plane is divided into regions of these four qualitative possibilities

for λ1 and λ2. We recognize that the boundary of the region, where one of the λα's is real

and the other imaginary, is exactly the kz = 0 bulk spectrum. This must be true, since across

this boundary one of the λα's change from purely imaginary to purely real, and since it is

a continuous function it must be 0 on the boundary. Eigenstates with λ = 0 are of course

equal to the bulk eigenstates with kz = 0. The regions, where at least one λα, is imaginary

there exists bulk states with kz = iλα. On the boundary of the region where both λα's are

complex they are equal, because R goes continuously from negative to positive, and therefore

R = 0⇔ λ1 = λ2 at the boundary2. At this boundary our ansatz actually breaks down, since

we only have 4 independent solutions to our 4 second order di�erential equations.

If surface states exist for the situation in 4.2a, the spatial structure of the surface states

depend on where in the (k||, E) plane they are located. If they are located in the green region,

they will have some oscillatory behaviour because of the imaginary part of λ1 and λ2. In the

2Actually, when they go into the region where they are both imaginary there is some ambiguity because of
the branch cut of the complex square root. But since the possible exponents in any case are ±λα it is only a
question of which 2 of the four solutions, we denote by λα.
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(a) Parameters from [11].
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Figure 4.2: The di�erent regions in the k||, E plane. In the white and green regions only surface states are
possible, while only bulk states are possible in the red and purple regions. The red region is
actually the union of regions with λ1 ∈ R, λ2 ∈ I and λ1 ∈ I, λ2 ∈ R, but since this has no
physical signi�cance we have just joined them.

white region both λ1 and λ2 are real, and a surface state in this region will have a simple

decay. For the situation in �gure 4.2b, we see that for k|| = 0 both λ1 and λ2 are complex,

and the surface state will have oscillatory behaviour.

4.2 Existence and spectrum of surface states

After this qualitative discussion, on the possibilty of surface states, we will now �nd the �nd the

quantitative criteria, for the existence of surface states, as well as the surface state spectrum.

To do this we need to impose the boundary conditions:

Ψkx,ky(z = 0) = 0 and Ψkx,ky(z → −∞) = 0. (4.30)

The second one tells us that the λ's must have a positive real part, and thus we can immediately

drop the β = − terms in the general solution in eq. (4.28). The condition at z = 0 gives the

following equation for the remaining four coe�cients:

0 = Ψkx,ky(z = 0) =
∑
α,γ

Cα+γψα+γ =
(
ψ1+1 ψ1+2 ψ2+1 ψ2+2

)

C1+1

C1+2

C2+1

C2+2

 (4.31)

⇔ 0 =


J1+ A2k− J2+ A2k−

−iA1λ1 0 −iA1λ2 0

0 iA1λ1 0 iA1λ2

A2k+ J1− A2k+ J2−



C1+1

C1+2

C2+1

C2+2

 (4.32)
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where we de�ned Jα+ = D+λ
2
α − L2 + E and Jα− = D−λ

2
α − L1 + E. The secular equation

for nontrivial solutions of the above system gives:

0 = iA1λ1

(
iA1λ2J2+J1− + iA1A

2
2λ1k

2
|| − iA1A

2
2λ2k

2
|| − iA1λ1J2−J2+

)
(4.33)

+ iA1λ2

(
iA1λ1J1+J2− + iA1A

2
2λ2k

2
|| − iA1A

2
2λ1k

2
|| − iA1λ2J1−J1+

)
= A2

1λ1λ2

(
2A2

2k
2
|| − J2+J1− − J1+J2−

)
(4.34)

+A2
1λ

2
1(J2−J2+ −A2

2k
2
||)

+A2
1λ

2
2(J1−J1+ −A2

2k
2
||).

This gives zero, if A1 = 0. But for A1 = 0 the basis vectors are no longer independent, and

our method breaks down. Therefore, we assumed A1 6= 0, but this assumption will be justi�ed

later. To simplify eq. (4.34), we consider the product:

D+D−(λ2
1 − λ2

2)2 = (J1+ − J2+)(J1− − J2−) (4.35)

= J1+J1− + J2+J2− − J2+J1− − J1+J2− (4.36)

= 2A2
2k

2
|| −A2

1(λ2
1 + λ2

2)− J2+J1− − J1+J2− (4.37)

⇔ 2A2
2k

2
|| − J2+J1− − J1+J2− = D+D−(λ2

1 − λ2
2)2 +A2

1(λ2
1 + λ2

2), (4.38)

where we have used that Jα+Jα− = A2
2k

2
|| −A2

1λ
2
α from eq. (4.27). Inserting this in eq. (4.34)

gives:

0 = A2
1λ1λ2D+D−(λ2

1 − λ2
2)2 +A4

1λ1λ2(λ2
1 + λ2

2)− 2A4
1λ

2
1λ

2
2 (4.39)

⇔ 0 =
D+D−
A2

1

(λ2
1 − λ2

2)2 + (λ2
1 + λ2

2)− 2λ1λ2

⇔ 0 =
D+D−
A2

1

(λ1 − λ2)2(λ1 + λ2)2 + (λ1 − λ2)2

⇔ (λ1 + λ2)2 = − A2
1

D+D−
(4.40)

Remember that the λ's are functions of k|| and E. If there exists a solution E(k||) to eq.

(4.40), then a wave function exists, using only the positive (β = +) square root solutions for

λ, that ful�lls the boundary condition at z = 0. Hence, a surface state exists with energy E

and in plane momentum k||. The square of a complex number (a+ ib)2 = a2−b2 + i2ab is real,

only if the number is either purely real or imaginary. Since the right hand side in eq. (4.40)

is real, it tells us that λ1 + λ2 is either real or imaginary. Since we want to �nd surface states

it must be real (such that the wave function decays). Hence, as we already saw in section

4.1.2, λ1, λ2 must either both be real or complex conjugate partners. Furthermore, D+D−

must be negative, which is the �rst criteria for the existence of surface states. If A1 = 0 then

λ1 + λ2 = 0, and they cannot both have a positive real part. Therefore, no surface states can

exist, and our assumption that A1 6= 0 is justi�ed.
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4. SURFACE STATES ON A SINGLE SURFACE BI2SE3

If we insert the expression for λα from eq. (4.15), we get:

− A2
1

D+D−
= (λ1 + λ2)2 =

−F +
√
R

2D+D−
+
−F −

√
R

2D+D−
+

√
F 2 −R
|D+D−|

(4.41)

⇔
√
F 2 −R = sgn(D+D−)(F −A2

1) = A2
1 − F

⇒F 2 −R = (A2
1 − F )2 (4.42)

⇔4D+D−((E − L1)(E − L2)−A2
2k

2
||) = (D+(E − L1) +D−(E − L2))2

⇔− 4D+D−A
2
2k

2
|| = (D+(E − L1)−D−(E − L2))2

⇔± sgn(B1)2
√
B2

1 −D2
1|A2|k|| = 2B1(E − C −D2k

2
||) + 2D1(−M +B2k

2
||) (4.43)

⇔E = E±(k||) = C +
MD1

B1
±
√

1− D2
1

B2
1

|A2|k|| +
(
D2 −

D1B2

B1

)
k2
||. (4.44)

This gives the spectrum of the surface states, if they exist. For small k|| we get a linear Dirac

dispersion, with a fermi velocity of |A2|
~

√
1− D2

1

B2
1
. The sgn(B1) is included, to ensure that the

upper sign correspond to upper energy in both equations. Note that the arrow in eq. (4.42)

goes only one way, since A2
1−F could be negative. But if A2

1−F is positive, then eq. (4.44) is

equivalent to eq. (4.40). Therefore, given some in plane momentum k||, a surface state exists

with energy E±(k||) if and only if A2
1 − F (k||, E±(k||)) > 0. A band of surface states can only

end at point where A2
1 − F (k||, E±(k||)) = 0, which by eq. (4.42) means that F 2 − R = 0.

As we saw in section 4.1.2, this is exactly the kz = 0 bulk spectrum, and we conclude that a

band of surface states can only end by meeting the bulk bands. This is seen when plotting

the surface and bulk spectrum, see �gure 4.3.
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Figure 4.3: The spectrum of a semi-in�nite topological insulator, including both bulk states (blue for kz = 0
and red otherwise) and surface states (black).

The criteria for a surface state at is that A2
1 − F (k||, E±(k||)) > 0. From the de�nition of
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4.2. EXISTENCE AND SPECTRUM OF SURFACE STATES

F in eq. (4.16), and using E = Ea(k||) with a = ±:

A2
1 − F (k||, Ea(k||)) = −D+(Ea − L1)−D−(Ea − L2) (4.45)

=
2B2

B1
D+D−k

2
|| − a2D1|A2|

√
1− D2

1

B2
1

k|| −
2M

B1
D+D− (4.46)

Surface states exists, when this function is positive. Since we are working in a model, which

is valid for small k|| it is interesting to see whether we have surface states for k|| = 0:

−2M

B1
D+D− > 0⇔ M

B1
> 0, (4.47)

where we used the fact that D+D− < 0. We conclude that to get two bands of surface states

crossing in k|| = 0 we need the conditions:

D+D− < 0 and
M

B1
> 0 (4.48)

Note that the �rst condition is to get surface states at all, while the second is to get surface

states at k|| = 0. Interestingly the �rst condition, equivalent to |D1| < |B1|, shows that the
topologically non-trivial state can be broken by the particle-hole asymmetry. That can happen

without the gap closing at the gamma point. If |D1| > |B1| however, we do not have a global
gap in the bulk spectrum, since both the conduction band and valence band energies diverges

in the same direction, given by the sign of D1 when kz →∞.

It is actually possible to have surface states without the second condition, but there will

still be a gap. And we cannot get a Dirac-like spectrum since the crossing must occur at the

gamma point. This happens, if we change the parameter M to 0.02 eV, while taking the rest

of the parameters from [11]. Then M
B1

< 0, but we get a region of k|| where there is surface

states. This is actually a surprise since this is in the topologically trivial regime. These surface

states go back into the lower band in both ends, as we see in �gure 4.4a.

4.2.1 Experimental veri�cation of surface states

The surface state spectrum can be measured, by angle-resolved photoemission spectroscopy

(ARPES). This experimental technique is illustrated in 4.5. The sample is subjected to a beam

of photons, and the electrons are emitted, due to the photoelectric e�ect. The energy and

momentum of the emitted electrons are measured. By conservation of energy and momentum,

this reveals the energies and momenta of the electronic states of the sample. This makes it

possible to map out the dispersion relation of the electrons in a solid.

In �gure 4.5b, we show the data from an ARPES experiment on a clean surface of Bi2Se3,

from [21]. We see the qualitative agreement with the spectrum from the low energy model,

shown in �gure 4.3. In [7], a similar experiment was reported, and the fermi velocity was found

to be approximately 5× 105 ms−1. The fermi velocity, in our model was given by:

|A2|
~

√
1− D2

1

B2
1

(4.49)

49



4. SURFACE STATES ON A SINGLE SURFACE BI2SE3

−0.10 −0.05 0.00 0.05 0.10

k|| (Å−1)
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Figure 4.4: (a) For M = 0.02 eV, and the remaining parameters taken from [11], we see surface states (black
lines) close to the bulk bands (blue for kz = 0 and red lines), for a range of k||. In (b) we see a
plot of the expectation value of z, for the same parameters. The expectation value of z diverges
in both ends, where the surface band approaches the bulk bands. Even though the surface band
is close to the lower bulk band in energy, they are quite localized getting as close as 20Å from
the surface.

(a) Adopted from [20]

Closer analysis of the STM topographs provides a
deeper insight into the subsurface doping process. For
TA %275 K [Fig.1(b)],onlyonetypeof triangular-shaped
depression is found. Samples thatwereannealedathigher
temperatures exhibit triangular-shaped depressions with
at least two different appearances in STM topographs
{Fig.1(c), [18]}.Sincethesedefectswithalargerapparent
depth only emerge at higher annealing temperatures, we
assign them to Fe incorporated into deeper subsurface
layers. Figures 2(a) and 2(b) exemplarily show high

resolution STM images of two such defects and
Figs. 2(c)–2(h) show bias-dependent STM images of one
of those defects. Defects with a strikingly similar STM
appearancehavebeenrecentlyobservedforFebulk-doped
Bi2Te3 [25], Fe adatoms on Bi2Te3 after annealing [26]
andforFebulk-dopedBi2Se3 [27]. Theywereattributedto
substitutional FeatomswithinBi sitesinthefirstquintuple
layer, i.e., in the2ndand4th subsurface layers. We, thus,
concludetheobserved triangular depressionsaresubstitu-
tional Featoms residing inBi sites. Moreover, as pointed
out in Ref. [27], Fe atoms substituted into Bi sites in a
deeper quintuple layer aretoo far below thesurfaceto be
imaged by STM. This might explain part of the discrep-
ancy between the deposited Fe and the number of Fe
substitutional defects counted after annealing [Fig. 1(f)].
The emerging clusters upon annealing probably contain
Bi and/or Fe, and may also account for this discrepancy.
However,wecannotdistinguishbetweenthepercentageof
Featoms that agglomerate into theclustersand thosethat
diffusedeeper into thesubstrate.

To further investigate the impact of Fe doping on the
TSS,ARPESmeasurementswereperformed. InFig.3, two
series of ARPES measurements are shown for pristine
3(a)–3(e) and Ca-doped 3(f)–3(j) Bi2Se3 substrates, at
different stagesof thepreparationprocedure. After in situ
cleaving 3(a) and 3(f), subsequent iterations of cold Fe
deposition (T %150 K) and annealing to TA %370 K
wereperformedwithnocleaving inbetween. Theamount
of subsequently deposited Fe was increased for each

Se vacancyFe adatoms
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FIG. 2 (color online). (a), (b) Atomically resolved STM im-
ages of two different subsurface Fe defects [I t ¼50 pA, Vb ¼
1 V (a), Vb ¼0:25 V (b)]. (c)–(h) Bias dependent constant
current images of a subsurface Fe atom (red arrows), 3 Fe
adatoms and a Se vacancy at Vb as indicated. (I t ¼100 pA,
Áz¼35pm).
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FIG. 3 (color online). Two seriesof ARPES measurements for pristine(a)–(e) andCa-doped (f)–(j) Bi2Se3 samplesafter different
Fedepositionandannealingsteps. (a), (f) Initial spectraafter insitucleaving. Subsequentcyclesof colddepositionof Fe(T %150 K,
%ML Feas indicated) andannealingat TA %370K followed. TheDP energy extracted fromthespectra ismarkedby ahorizontal
line. Thesmall arrows in (d) indicateQWS inducedfrombandbending[13]. (k) Theresultingbindingenergy of theDP isplotted in
dependence of the preparation step number for a pristine (circles) and two differently Ca-doped samples (up and down triangles).
Preparationstepnumber0indicatesthefreshlycleavedsubstratewithoutFe,preparationstep1(1%),3(2.5%),5(5%),7(10%),and2,
4, 6, 8 subsequent annealing steps.

PRL 110, 126804(2013) PHY SI CA L REV I EW L ET T ERS
week ending

22 MARCH 2013

126804-3

(b) Adapted from [21]

Figure 4.5: (a) The experimental setup for an ARPES experiment. (b) The spectrum of the surface states
found by ARPES found in [21]. Note that the energy is measured relative to the fermi level. The
Fermi level level lies in the bulk conduction band, because naturally occuring Bi2Se3 is electron
doped [7].
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4.3. SURFACE STATES AT THE GAMMA POINT

This gives 2.77× 105 ms−1 for the parameters from [11], and 6.17× 105 ms−1 for the param-

eters in [12]. This is not in exact agreement with the experimental results, but lies within an

order of magnitude. Our model can not really be expected to give exact quantitative results,

since it is only a second order approximation in k. Even though we consider kx and ky to be

small, we are investigating a phenomenon, which is localized in the z direction. Therefore, we

should also expect some e�ects of higher order terms in kz. However, this model does provide

a clear physical picture, to understand the topological surface states.

4.3 Surface states at the gamma point

Now we will �nd the surface states at k|| = 0. To do this we will solve eq. (4.32), for the

coe�cients and then calculate the resulting wave functions. But since k|| = 0, the equation

gets block diagonal. Each block corresponds to either spin up or down, since our basis spinor

ψα+1 only have spin up components, while ψα+2 only have spin down components, for k|| = 0.

This is due to the fact that the Hamiltonian gets block diagonal for k|| = 0. The secular eq.

(4.35) now factorizes into:

0 = (λ1J2+ − λ2J1+)(λ1J2− − λ2J1−)

⇔ λ1J2+ − λ2J1+ = 0 ∨ λ1J2− − λ2J1− = 0 (4.50)

Where each of the two equations correspond to one of the blocks in eq. (4.32). But since

Jα+Jα− = −A2
1λ

2
α from eq. (4.27), the two equations are equivalent. Thus, we get a double

degeneracy at the gamma point, with one spin up state and one spin down state. This is a

result of the time reversal symmetry. For the spin up block we have the equation:(
J1+ J2+

−iA1λ1 −iA1λ2

)(
C1+1

C2+1

)
= 0 (4.51)

If we choose C1+1 =

√
|D−/B1|√
2iA1λ1

we get C2+1 = −
√
|D−/B1|√
2iA1λ2

. The vector multiplying eλ1z is

simply:

C1+1ψ1+1 =


J1+

√
|D−/B1√

2iA1λ1

−
√
|D−/B1|√

2

0

0

 =


− i√

2
sgn(D+A1)

√
|D+|
|B1|

− 1√
2

√
|D−|
|B1|

0

0

 . (4.52)

The second equality can be obtained using that E = C + MD1
B1

from eq. (4.44) and λ1 + λ2 =
|A1|√
|D+D−|

from eq. (4.40). The vector multiplying eλ2z must be the same, but with opposite

overall sign to ful�ll the boundary condition. The spin down state can obtained by take the
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4. SURFACE STATES ON A SINGLE SURFACE BI2SE3

time reversal of the spin up state. The two eigenstates at the gamma point are then given by:

Ψ↑k||=0(z) = N


− i√

2
sgn(D+A1)

√
|D+|
|B1|

− 1√
2

√
|D−|
|B1|

0

0

 (eλ1z − eλ2z) (4.53)

Ψ↓k||=0(z) = N


0

0

i√
2

sgn(D+A1)
√
|D+|
|B1|

− 1√
2

√
|D−|
|B1|

 (eλ1z − eλ2z) (4.54)

where N is a normalization constant, given by:

1 =

∫ 0

−∞
(Ψσ

k||=0(z))† ·Ψσ
k||=0(z) dz = N2 1

2|B1|
(|D+|+ |D−|)

∫ 0

−∞
|eλ1z − eλ2z|2 dz (4.55)

= N2 1

2|B1|
(|D+|+ |D−|)

∫ 0

−∞
e2 Re[λ1]z + e2 Re[λ2]z − 2 Re[eλ1+λ∗2)z] dz (4.56)

= N2 1

2|B1|
(|D+|+ |D−|)

(
1

2 Re[λ1]
+

1

2 Re[λ2]
− 2 Re[

1

λ1 + λ∗2
]

)
(4.57)

The condition D+D− < 0 gives that sgn(B1) = sgn(D+), which can be realized by considering

the di�erent options for the signs of D1 and B1. This gives that the spinor part of the wave

function is already normalized, since:

1

2|B1|
(|D+|+ |D−|) =

sgn(B1)D+ − sgn(B1)D−
2 sgn(B1)B1

=
D+ −D−

2B1
= 1 (4.58)

For the spatial part, either both λ's are real or complex conjugate partners, and in either case

we get the normalization constant:

N =

(
1

2λ1
+

1

2λ2
− 2

λ1 + λ2

)− 1
2

for λ1, λ2 ∈ R

N =

(
1

a
− a

a2 + b2

)− 1
2

for λ1 = λ∗2 = a+ ib

(4.59)

Choosing a di�erent overall sign on the spin up state, the two states can be written:

Ψ↑k||=0(z) =

(
ϕ(z)

0

)
Ψ↓k||=0 =

(
0

τzϕ(z)

)
(4.60)

where

ϕ(z) = N

 i√
2

sgn(D+A1)
√
|D+|
|B1|

1√
2

√
|D−|
|B1|

 (eλ1z − eλ2z) (4.61)
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4.4. SURFACE STATES AT K|| 6= 0

We will use these states to construct a 2D model, describing the surface states. But before

doing this we will calculate the surface states at general in-plane momentum in the 3D model,

such that we can compare the results to the 2D model.

4.4 Surface states at k|| 6= 0

Now we will �nd the wave functions for the surface states at a general non-zero in-plane

momentum k||. To do this we need to �nd the coe�cients from eq. (4.32), and calculate the

full wave function from 4.28. We can choose one of the coe�cients as we please, so lets choose

C1+1 =

√
|D−/B1|
i2A1λ1

,

The second and third row of eq. (4.32) gives:

C2+1 = −λ1

λ2
C1+1 (4.62)

C2+2 = −λ1

λ2
C1+2 (4.63)

if we insert these into the �rst row of eq. (4.32), we get:

C1+2 = −
J1+ − λ1

λ2
J2+

A2k−(1− λ1
λ2

)

√
|D−/B1|
i2A1λ1

(4.64)

=
D+λ1λ2 − E + L2

2iA1A2λ1k−

√
|D−|
|B1|

(4.65)

And we now have the coe�cients:

C1+1 =
1

2iA1λ1

√
|D−|
|B1|

(4.66)

C1+2 =
D+λ1λ2 − E + L2

2iA1A2λ1k−

√
|D−|
|B1|

(4.67)

C2+1 = − 1

2iA1λ2

√
|D−|
|B1|

(4.68)

C2+2 = −D+λ1λ2 − E + L2

2iA1A2λ2k−

√
|D−|
|B1|

(4.69)
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4. SURFACE STATES ON A SINGLE SURFACE BI2SE3

the vector multiplying eλ1z is now given by:

C1+1ψ1+1 + C1+2ψ1+2 =
1

2iA1λ1

√
|D−|
|B1|


D+λ

2
1 − L2 + E

−iA1λ1

0

A2k+

 (4.70)

+
D+λ1λ2 − E + L2

2iA1A2λ1k−

√
|D−|
|B1|


A2k−

0

iA1λ1

D−λ
2
1 − L1 + E

 (4.71)

To calculate the actual surface state, we need to insert the energy E±(k||) from eq. (4.44)

into this vector. However, sometimes it will be simpler to use one of the equations from the

derivation of eq. (4.44). The �rst component is:

1

2iA1λ1

√
|D−|
|B1|

(D+λ
2
1 − L2 + E +D+λ1λ2 − E + L2) (4.72)

=
1

2iA1

√
|D−|
|B1|

D+(λ1 + λ2) =
−i
2

sgn(A1D+)

√
|D+|
|B1|

(4.73)

where we used that (λ1 + λ2) = |A1|√
|D+D−|

from eq. (4.40). The second component is trivially

−1
2

√
|D−|
|B1| . To calculate the third component, we will �rst use that λ1λ2 =

√
F 2−R

2|D+D−| from eq.

(4.15). Then we will use both
√
F 2 −R = sgn(D+D−)(F−A2

1) andD+(E−L1)−D−(E−L2) =

±2 sgn(B1)|A2|k||
√
|D+D−|, from the derivation of the surface spectrum, eq. (4.44). This

gives the third component:

D+λ1λ2 − E + L2

2A2k−

√
|D−|
|B1|

= −
sgn(D+D−)

√
F 2−R
2D−

− E + L2

2A2k−

√
|D−|
|B1|

(4.74)

=
(F −A2

1)− 2D−(E − L2)

4A2k−D−

√
|D−|
|B1|

(4.75)

=
D+(E − L1)−D−(E − L2)

4A2k−D−

√
|D−|
|B1|

(4.76)

= ± sgn(B1)
2|A2|k||

√
|D+D−|

4A2k−D−

√
|D−|
|B1|

(4.77)

= ± sgn(D−A2B1)
k+

2k||

√
|D+|
|B1|

(4.78)
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The fourth component is:

1

2iA1λ1

√
|D−|
|B1|

(
A2k+ +

(D+λ1λ2 − E + L2)(D−λ
2
1 − L1 + E)

A2k−

)

=
1

2iA1λ1A2k−

√
|D−|
|B1|

×
(
D+D−λ

3
1λ2 +D+λ1λ2(E − L1)−D−λ2

1(E − L2)

+A2
2k

2
|| − (E − L1)(E − L2)

)
(4.79)

=
1

2iA1A2k−λ1

√
|D−|
|B1|

×
(
D+D−λ

3
1λ2 +D+λ1λ2(E − L1)−D−λ2

1(E − L2)−D+D−λ
2
1λ

2
2

)
(4.80)

=
1

2iA1A2k−(λ1 + λ2)

√
|D−|
|B1|

(
D+D−λ1λ2(λ2

1 − λ2
2) +D+λ

2
2(E − L1)

−D−λ2
1(E − L2) + λ1λ2(D+(E − L1)−D−(E − L2))

)
(4.81)

Now we will insert the expression from eq. (4.15) for the squared λ's. Again we will use both√
F 2 −R = sgn(D+D−)(F−A2

1) andD+(E−L1)−D−(E−L2) = ±2 sgn(B1)|A2|k||
√
|D+D−|,

from the derivation of the surface spectrum, eq. (4.44). The product then becomes λ1λ2 =√
F 2−R

2|D+D−| =
F−A2

1
2D+D−

. Inserting all this in eq. (4.81), we get the fourth component:

1

4iA1A2k−(λ1 + λ2)D+D−

√
|D−|
|B1|

(√
R(D+(E − L1) +D−(E − L2)) (4.82)

− F (D+(E − L1)−D−(E − L2))−
√
R(D+(E − L1) +D−(E − L2))

+(F −A2
1)(D+(E − L1)−D−(E − L2))

)
=
−A2

1(D+(E − L1)−D−(E − L2))

4iA1A2k−(λ1 + λ2)D+D−

√
|D−|
|B1|

=
∓ sgn(B1)2A1|A2|k||

√
|D+D−

4iA2k−
|A1|√
|D+D−|

D+D−

√
|D−|
|B1|

= ∓ sgn(A1A2B1) sgn(D+D−)
k+

2ik||

√
|D−|
|B1|

= ∓ sgn(A1A2B1)
ik+

2k

√
|D−|
|B1|

(4.83)

Finally we arrived at a simpli�ed expression for the vector multiplying eλ1z:

−i
2 sgn(A1D+)

√
|D+|
|B1|

−1
2

√
|D−|
|B1|

± sgn(D−A2B1) k+

2k||

√
|D+|
|B1|

∓ sgn(A1A2B1) ik+

2k||

√
|D−|
|B1|

 (4.84)

where the upper sign corresponds to the energy E+ and the lower to E−. The vector multi-
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4. SURFACE STATES ON A SINGLE SURFACE BI2SE3

plying eλ2z is clearly the same but with the opposite overall sign, since the wave function must

vanish at the surface. This gives the total wave functions:

Ψ±kx,ky(z) = N



−i
2 sgn(A1B1)

√
|D+|
|B1|

−1
2

√
|D−|
|B1|

∓ sgn(A2) k+

2k||

√
|D+|
|B1|

∓ sgn(A1A2B1) ik+

2k||

√
|D−|
|B1|

 (eλ1(k||,E±(k||))z − eλ2(k||,E±(k||))z). (4.85)

We see that the resulting wave spinor part of the wave function is a superposition of the spinors

for the surface states at the gamma point, but where the the two di�erent spin parts have a

relative phase of k+

k||
. Therefore, N is again given by eq. (4.59). We can insert the energy from

eq. (4.44), to express λ1 and λ2 as functions of k|| only. We have:

λα(k||, E±(k||)) =

√
−F + (−1)α−1

√
R

2D+D−
, (4.86)

where the F and R after some algebra, can be simpli�ed to:

F = A2
1 + 2

D+D−
B1

(M −B2k
2
||)± 2D1|A2|

√
1− D2

1

B2
1

k||, (4.87)

R = A4
1 +

4A2
1

B1
D+D−(M −B2k

2
||)± 4A1D1|A2|

√
1− D2

1

B2
1

k||. (4.88)

4.4.1 Spatial structure

Now we will discuss the spatial distribution of the surface states in the z direction. This is

entirely determined by the values of λ1 and λ2, which are given in terms of k||, in eq. (4.86).

Because of the particle-hole asymmetry, λ1 and λ2 also depend on whether which part of the

Dirac cone we are on. For a particle-hole symmetric model D1 = 0, and the terms with a ±
in eq. (4.87) and (4.88) drop out. At k|| = 0 we directly see that the spatial distribution of

the surface states are equal for E+ and E−, since E+ = E−. This is can also be realized from

time reversal symmetry; at k||, the two surface states are related by the time reversal operator,

which does not change the spatial part. Qualitatively, there is two di�erent options for the

spatial part of the surface states. Either we have that λ1 and λ2 are real, or they are complex

conjugate partners. If they are complex conjugate partners λ1 = λ∗2 = a+ ib, then the spatial

part of the wave function can be written:

eλ1z − eλ2z = eaz(eib − e−ib) = 2ieaz sin(bz), (4.89)

and the wave function is simply a sine function multiplied by an exponential decay.

For the parameters from [11], the surface bands are entirely in the region where λ1, λ2 ∈ R,
and as we see on �gure 4.6a, the wave functions show a simple decay, without any oscillation.

If we instead use the parameters from [12], the wave function oscillates for small k||. For

larger k|| the imaginary part b decreases, and the wave length of the oscillation increases, and

56



4.4. SURFACE STATES AT K|| 6= 0

eventually diverges when λ1 and λ2 becomes real. On �gure 4.6b, we see the wave length

increases with k||, and at k|| = 0.06Å−1, we see a simple decay. In chapter 5, we will see how

this oscillatory behavior is of great importance, when considering a �nite topological insulator.
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k|| =0.02Å−1

k|| =0.03Å−1

(a) Parameters from [11]. Note how the lower band
gets more localized while the lower goes into the
bulk for this range of k||. For larger k|| wave
functions of both bands goes into the bulk, as
seen on �gure 4.7.
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(b) Parameters from [12]. The wave length of
the oscillation increases with k|| and for k|| =

0.06Å−1 we see a decay without any oscilla-
tion.

Figure 4.6: Wave functions for a semi-in�nite topological insulator. The dashed lines are from the upper
band E+ while the dotted ones are from the upper band E−. The color indicates the value of
the in plane momentum k|| (note that the values of k|| are di�erent for the two plots). The
spatial wave functions for the two bands are equal for k|| = 0 since in this point they are Kramers
partners.

It is also interesting to see how localized the surface states are. As we see in �gure 4.6,

this changes with k||. One way of quantifying this is to calculate the expectation value of the

z:

〈z〉 = N2

∫ 0

−∞
z(Ψ±kx,ky)

†Ψ±kx,ky dz = N2

∫ 0

−∞
ze2 Re[λ1]z + ze2 Re[λ2]z − 2zRe[eλ1+λ∗2)z] dz

(4.90)

= N2

(
− 1

(2 Re[λ1])2
− 1

(2 Re[λ2])2
+ 2 Re

[
1

(λ1 + λ∗2)2

])
(4.91)

(4.92)

Note that λ1 and λ2 are given by eq. (4.86), we have just dropped the arguments for conve-

nience. Again we can simplify by looking at either λ1, λ2 ∈ R or λ1 = λ∗2 = a + ib. For the

real case we get:

〈z〉 =
− 1

4λ2
1
− 1

4λ2
1

+ 2
(λ1+λ2)2

1
2λ1

+ 1
2λ2
− 2

λ1+λ2

= − 1

2λ1
− 1

2λ2
− 1

λ1 + λ2
(4.93)

And for the complex case:

〈z〉 =
− 1

2a2 + a2−b2
2(a2+b2)2

1
a − a

a2+b2

= − 1

2a
− a

a2 + b2
(4.94)
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4. SURFACE STATES ON A SINGLE SURFACE BI2SE3

In �gure 4.7 the expectation value is plotted as a function of the in plane momentum. By

comparing with the spectra in �gure 4.3, we see that the expectation value diverges, exactly

when the surface band touch the kz = 0 bulk band. For k|| = 0 the expectation value is bigger

than −10Å, for both sets of parameters, which is within the �rst quintuple layer. For the

parameters from [11], the lower surface state with energy E−, actually gets more localized as

k|| increases, before going into the bulk.
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−40

−35
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Figure 4.7: Expectation value of z for the surface states of a semi in�nite insulator. The red lines are from
parameters from [11], while the blue ones are from the parameters of [12].

4.4.2 Spin structure

To investigate the spin structure of these surface states we will transform back to the original

basis, related by the unitary matrix U1 given in eq. (3.45). In that basis the σ matrices

represents spin directly:

U †1Ψ±kx,ky(z) = N



−i
2 sgn(A1B1)

√
|D+|
|B1|

− i
2

√
|D−|
|B1|

∓ sgn(A2) k+

2k||

√
|D+|
|B1|

∓ sgn(A1A2B1) k+

2k||

√
|D−|
|B1|

 (eλ1z − eλ2z) (4.95)

= N

 i√
2

± sgn(A1A2B1) k+√
2k||


spin

⊗

− sgn(A1B1)
√
|D+|
2|B1|

−
√
|D−|
2|B1|


orbital

(eλ1z − eλ2z)

(4.96)

We see that the spinor splits into a spin part and an orbital part, and that the spin part is

independent of the parameters of the model except for the sign of the parameters A1, A2 and

58



4.4. SURFACE STATES AT K|| 6= 0

B1. The expectation values of the spin operators are:

〈Sz〉E± =
1

2

 − i√
2

± sgn(A1A2B1) k−√
2k||

 ·
 i√

2

∓ sgn(A1A2B1) k+√
2k||

 = 0 (4.97)

〈Sx〉E± =
1

2

 − i√
2

± sgn(A1A2B1) k−√
2k||

 ·
± sgn(A1A2B1) k+√

2k||
i√
2

 = ± sgn(A1A2B1)
ky
2k||

(4.98)

〈Sy〉E± =
1

2

 − i√
2

± sgn(A1A2B1) k−√
2k||

 ·
∓i sgn(A1A2B1) k+√

2k||

− 1√
2

 = ∓ sgn(A1A2B1)
kx
2k||

(4.99)

We see that spin and momentum are locked such that the spin is always perpendicular to

the momentum, and the only dependence on the parameters of the model is the sign of the

vorticity of the spin, which is determined by the sign of A1A2B1. For the parameters from

[11], the product A1A2B1 is negative, and we get the spin structure given in �gure 4.8. Note

that in [11], the spin structure is calculated as well, using an e�ective 2D model, giving the

opposite vorticity of the spin. The reason is that they consider a system where the topological

insulator �lls the z > 0 half-space. The two systems are related by the inversion operator,

which takes kx, ky → −kx,−ky, but does not a�ect the spin. Therefore, the vorticity of the

spin structure is reversed. For the parameters in [12], A1A2B1 is actually positive, and the

spin structure has opposite vorticity. These parameters, however, were obtained by �tting the

bulk spectrum of the model to the spectrum from ab initio calculations. The bulk spectrum

does not depend on the signs of the parameters, A1, A2 and B1 and therefore, this method

gives a sign ambiguity. Hence, the vorticity of the spin structure is not well determined by this

method only. In [11] the parameters are calculated using k· perturbation theory, where the

parameters are given by matrix elements of the momentum operator between the bulk states

at the gamma point. Therefore, these parameters should be unambiguous.

kx

ky

E

Figure 4.8: Close up of the Dirac cone of surface states. The spin is shown by the red arrows. The spin lies
within the xy plane and rotates around the gamma point, in a counter-clockwise fashion above
the Dirac crossing, and clockwise below the crossing. This is the case for the parameters from
[11], while all the spins are all opposite using the parameters from [12].
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4. SURFACE STATES ON A SINGLE SURFACE BI2SE3

4.5 2D model for surface states

Using the two surface states at the gamma point as basis states, we will now construct a 2D

model, describing the surface electrons. We will do this including only terms to second order

in k||, since then we can compare it to the analytical solution in 4.4. This can be thought of as

doing degenerate perturbation theory, in the in plane momentum. We split the Hamiltonian

into one term independent of kx and ky and the perturbation term depending on kx and ky:

H(kx, ky,−i∂z) = H0(−i∂z) + ∆H(kx, ky) (4.100)

where H0(−i∂z) = H(kx = 0, ky = 0,−i∂z) and

∆H(kx, ky) = D2k
2
|| −B2k||σ0 ⊗ τz +A2(kxσx + kyσy)⊗ τx (4.101)

To get the e�ective 2D Hamiltonian, we need to calculate the matrix elements between our

basis states Ψ↑,Ψ↓ (we drop the k|| = 0 subscript here for convenience) with the perturbation

∆H(kx, ky). Since there is no operator in ∆H(kx, ky) operating in real space, we do not have

to worry about the real space part of the wave function. Dropping the spatial part, our basis

states are:

Ψ↑ =

(
ϕ

0

)
Ψ↓ =

(
0

τzϕ

)
(4.102)

where

ϕ =

 i√
2

sgn(D+A1)
√
|D+|
|B1|

1√
2

√
|D−|
|B1|

 (4.103)

The elements of our 2D e�ective Hamiltonian are then given by

H2D
σσ′ = 〈Ψσ|∆H|Ψσ′〉 (4.104)

Thus the �rst term is just gives a constant. For the second term we need to calculate the

matrix elements of σ0 ⊗ τz. This term is diagonal in spin space and thus only give diagonal

terms in our e�ective hamiltionian. These matrix elements give:

〈Ψ↑|σ0 ⊗ τz|Ψ↑〉 = 〈ϕ|τz|ϕ〉 =
|D+| − |D−|

2|B1|
=

sgn(B1)D+ + sgn(B1)D−
2 sgn(B1)B1

=
D1

B1
(4.105)

〈Ψ↓|σ0 ⊗ τz|Ψ↓〉 = 〈ϕ|τzτzτz|ϕ〉 = 〈ϕ|τz|ϕ〉 =
D1

B1
(4.106)
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For the last term the spin is �ipped, and we get only o� diagonal terms. We will just calculate

one of them and get the other by taking the complex conjugate:

〈Ψ↑|A2

(
0 k−

k+ 0

)
⊗ τx|Ψ↓〉 = A2k−〈ϕ|τxτz|ϕ〉 = −iA2k−〈ϕ|τy|ϕ〉 = iA2 sgn(B1A1)

√
1− D2

1

B2
1

(4.107)

Putting this together, and using that the energy of the unperturbed states is E = C + MD1
B1

we get the 2D Hamiltonian:

H2D = C +
MD1

B1
+A2 sgn(B1A1)

√
1− D2

1

B2
1

(kyσx − kxσy) +

(
D2 −

B2D1

B1

)
k|| (4.108)

The linear term is the Dirac-like Hamiltonian from eq. (1.2), giving rise to spin-momentum

locking. The sign of the vorticity of the spin-momentum locking is determined by the sign of

A1A2B1, exactly like the we saw using the 3D model in section 4.4.2. In addition we also get

a second order term, which only changes the spectrum, giving a curvature of the dispersion

relation, and not the spin structure of the surface states. This Hamiltonian can easily be

solved giving the same spectrum, as the full solution to the 3D model, eq. (4.44).

4.6 Local density of states

Now we will calculate the local density of states. This will in principle not give any new infor-

mation, but will sum up the information given by the wave functions. From an experimental

point of view this is interesting, since you do not measure single wave functions. By doing for

example an STM measurement, you probe the local density of states. This can be computed

directly from the wave functions, where we now include the x and y dependence from eq.

(4.10):

ρ(z, ω) =
∑

kx,ky ,α

1

A
|Ψα

kx,ky(z)|2δ(ω − Eα(k||)) (4.109)

where α = ± denotes if we are on the upper or lower part of the Dirac cone, and A is the area

in the x, y plane, which is included to normalize the wave functions. But we will take the limit

A → ∞, which converts the sums over kx and ky to integrals as described in Appendix A of

[22]:

ρ(z, ω) =
1

(2π)2

∑
α

∫
FBZ

dkxdky|Ψkx,ky ,α(z)|2δ(ω − Eα(k||)) (4.110)

Since the Hamiltonian is invariant under any rotation around the z axis, |Ψkx,ky ,α(z)|2 =

|Ψk||,0,α(z)|2. Therefore, we change to polar coordinates in the momentum integrals and inte-
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grate out the angle:

ρ(z, ω) =
1

(2π)2

∑
α

∫
dk||k||

∫
dθ|Ψk||,0,α(z)|2δ(ω − Eα(k||)) (4.111)

=
1

2π

∑
α

∫
dk||k|||Ψk||,0,α(z)|2δ(ω − Eα(k||)) (4.112)

=
1

2π

∑
α

∫
dk||k|||Ψk||,0,α(z)|2

∑
k0

δ(k|| − k0))
dEα
dk||

(k0)
(4.113)

where k0 are the solutions to the equation Eα(k0) = ω.

ω = Eα = ak2
0 + αbk0 + c (4.114)

k0 =
−αb±

√
b2 − 4a(c− ω)

2a
(4.115)

where a = D2− D1B2
B1

, b =

√
1− D2

1

B2
1
|A2| and c = C + MD1

B1
. α = ± denotes whether we are on

the upper or lower part of the Dirac cone. This equation has two solutions, but we only want

k0 > 0 solutions since it is the magnitude of the in plane momentum. We also see on �gure

4.3 the surface the surface bands go into the bulk before the parabola reaches its extremum.

Hence, if both solutions are positive, we only want the smallest positive solution. Hence we

have a unique solution for each ω. By considering all 4 combinations of the signs of a and

c− ω, we see that the smallest positive solution always can be written:

k0(ω) = sgn(c− ω)
b−

√
b2 − 4a(c− ω)

2a
(4.116)

and the derivative of the energy in this point is:

dE

dk||
(k0) = sgn(ω − c)b+ 2ak0 (4.117)

And we get the local density of states:

ρ(z, ω) =
1

2π
k0(ω)

|Ψk0,0,sgn(ω−c)(z)|2
| sgn(ω − c)b+ 2ak0(ω)| (4.118)

And if we write this out using the speci�c form of the wave function, we get:

ρ(z, ω) =
1

2π
k0(ω)

N2|eλ1z − eλ1z|2
| sgn(ω − c)b+ 2ak0(ω)| (4.119)

where λ1 and λ2 are given by eq. (4.15) with E = ω and k = k0(ω), and N given by eq.

(4.59).

The density of states is zero at the Dirac point. The reason is that here we only get a

contribution from a single pair of states, whereas for all other energies, there is a circle of

contributing states in momentum space. The linear dependence of the DOS close to the Dirac

point is a characteristic of a Dirac Hamiltonian. When the energy moves away from the Dirac

62



4.6. LOCAL DENSITY OF STATES

−0.2 −0.1 0.0 0.1 0.2
ω(eV)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

ρ
(e

V
−

1
Å
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(a) The local density of states for speci�c distances
from the surface, as a function of the energy ω.

(b) The local density of states, as a function of
energy ω and distance d from the surface for
the semi in�nite system.

Figure 4.9: The local density of states for the surface states of a semi-in�nite topological insulator. The Dirac
point is seen at ω = 0.23Å where the density becomes zero. We see how as we go away from the
Dirac point the density goes further into the bulk, and eventually goes to zero.

point, the wave function spreads further into the material, and as a result we see the LDOS

decreasing and eventually becoming zero, when the surface state becomes a bulk state.

63



Chapter 5

Surface states in a thin film of

Bi2Se3

In this chapter, we will investigate a �nite topological insulator. We consider a system, which

is in�nite in the x, and y directions but, �nite in the z direction, see �gure 5.1. We will use

the same ansatz as in chapter 4, but in this case the secular equation leads to a transcendental

equation, which we have to solve numerically. Using this method, we will �nd both surface

and bulk states, although for thin �lms the distinction is not as clear, since all states have

a non-zero wave function throughout the material. For a very thick insulator we expect to

get the same result as in the semi-in�nite case. But as the thickness gets smaller the overlap

of the wave functions of the states on opposite surfaces induces a gap. This can be seen as

bonding/anti-bonding combinations of the surface states on opposite surfaces.

To illustrate the method used in the general case, we will �rst analyze the Hamiltonian at

the gamma point. Here the Hamiltonian gets block diagonal, and we can analyze each block

separately.

L

z

x

y

Figure 5.1: In a �nite geometry, the overlap between wave function on either side of the insulator can induce
a gap in the spectrum.

We consider a topological insulator, in�nite in the x, y plane but with surfaces at z = ±L
2 .

Again we will use hard-wall boundary conditions:

Ψ(z = ±L
2 ) = 0 (5.1)

5.1 Spectrum at the gamma point

We will start by �nding the surface states at the gamma point, which will be useful when

constructing an e�ective 2D model for the surface states. Furthermore, it illustrates the

method used for k|| 6= 0. As in 4, we have the time independent Schrödinger equation:

H(kx, ky,−i∂z)Ψ(z) = EΨ(z). (5.2)
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5.1. SPECTRUM AT THE GAMMA POINT

At the gamma point, the two spin blocks of the Hamiltonian decouples, and can be written

as:

H0(−i∂z) = H(kx = 0, ky = 0,−i∂z) =

(
h 0

0 h∗

)
, (5.3)

where the spin up block is given by:

h =

(
C +M −D−∂2

z −iA1∂z

−iA1∂z C −M −D+∂
2
z

)
. (5.4)

We only need to solve one of the blocks, then the solutions to the other can be found by time

reversal operation, or equivalently by replacing A1 → −A1. Here we will solve the spin up

block. Again we use the ansatz ψλeλz, which gives the same solutions λ = βλα, from eq.

(4.15), only with k|| = 0. We only get one eigen-spinor for the spin up block:

ψ↑αβ(z) =

(
Jα+

−iA1λα

)
eβλαz (5.5)

where Jα+ = D+λ
2
α − C + M + E. Since we have inversion symmetry in this case, it is

convenient to change to basis states which are eigenstates of the inversion operator:

ϕ↑α+(z) =
1

2
(ψ↑α+(z) + ψ↑α−(z)) =

(
Jα+ cosh(λαz)

−iA1λα sinh(λαz)

)
(5.6)

ϕ↑α−(z) =
1

2
(ψ↑α+(z)− ψ↑α−(z)) =

(
Jα+ sinh(λαz)

−iA1λα cosh(λαz)

)
(5.7)

Here the second index denotes the inversion eigenvalue. Under inversion sinh(λαz) →
− sinh(λαz), while cosh(λαz) → cosh(λαz). However, the inversion operator also operates in

the 4-spinor space, given by σ0 ⊗ τz, as we saw in section 3.3. Therefore, the above states,

are actually inversion eigenstates.

A general solution to the spin up block can be written:

Ψ↑(z) =
∑
α,ξ

C↑αξϕ
↑
αξ(z). (5.8)

Now we impose the boundary conditions:

Ψ

(
z = ±L

2

)
= 0. (5.9)
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This gives a linear homogeneous system of equations for the coe�cients:
J1+ cosh(λ1L

2 ) J2+ cosh(λ2L
2 ) J1+ sinh(λ1L

2 ) J2+ sinh(λ2L
2 )

−iA1λ1 sinh(λ1L
2 ) −iA1λ2 sinh(λ2L

2 ) −iA1λ1 cosh(λ1L
2 ) −iA1λ2 cosh(λ2L

2 )

J1+ cosh(λ1L
2 ) J2+ cosh(λ2L

2 ) −J1+ sinh(λ1L
2 ) −J2+ sinh(λ2L

2 )

iA1λ1 sinh(λ1L
2 ) iA1λ2 sinh(λ2L

2 ) −iA1λ1 cosh(λ1L
2 ) −iA1λ2 cosh(λ2L

2 )



C1+

C2+

C1−

C2−

 = 0.

(5.10)

This equation can be reduced by simple row operations to
J1+ cosh(λ1L

2 ) J2+ cosh(λ2L
2 ) 0 0

λ1 sinh(λ1L
2 ) λ2 sinh(λ2L

2 ) 0 0

0 0 J1+ sinh(λ1L
2 ) J2+ sinh(λ2L

2 )

0 0 λ1 cosh(λ1L
2 ) λ2 cosh(λ2L

2 )



C1+

C2+

C1−

C2−

 = 0. (5.11)

This matrix is now block diagonal, with each block corresponding to one inversion eigenvalue.

For the upper block, corresponding to positive inversion eigenvalue, we get the secular equation:

J1+λ2

J2+λ1
=

tanh(λ1L
2 )

tanh(λ2L
2 )

⇔ (D+λ
2
1 − C +M + E)λ2

(D+λ2
2 − C +M + E)λ1

=
tanh(λ1L

2 )

tanh(λ2L
2 )

. (5.12)

Here, λ1,2 are dependent on the energy only, and the solutions to this equation gives all energies

of the k|| = 0 states, which are even under inversion. The other block is the same just with all

cosh and sinh interchanged, and we get a similar secular equation for the states at the gamma

point, which are odd under inversion:

(D+λ
2
1 − C +M + E)λ2

(D+λ2
2 − C +M + E)λ1

=
tanh(λ2L

2 )

tanh(λ1L
2 )

. (5.13)

By solving eq. (5.12) and (5.13), we can obtain the spectrum of at the gamma point. These

equations are transcendental and we will solve them numerically. Solving these equations is

equivalent to �nding the zero points of the functions:

geven(E) =
(D+λ2(E)2 − C +M + E) tanh(λ1(E)L

2 )

λ2(E)
− (D+λ1(E)2 − C +M + E) tanh(λ2(E)L

2 )

λ1(E)
.

(5.14)

godd(E) =
(D+λ2(E)2 − C +M + E) tanh(λ2(E)L

2 )

λ2(E)
− (D+λ1(E)2 − C +M + E) tanh(λ1(E)L

2 )

λ1(E)
.

(5.15)

Since λ1 and λ2 are in general complex numbers, these functions are complex-valued. To

simplify our problem, we will instead take the sum of the real and imaginary parts of these
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5.1. SPECTRUM AT THE GAMMA POINT

functions, and then �nd the zeroes of the resulting real valued functions:

feven(E) = Re[geven(E)] + Im[geven(E)] (5.16)

fodd(E) = Re[godd(E)] + Im[godd(E)] (5.17)

We �nd the zeroes by iterating over an array of energies, and checking whether the product

of to subsequent values of the function is negative. If it is, then either the function has a

zero or a divergency between the two points. By setting a threshold value for the di�erence

between the value of the function at these points we avoid the divergencies. At the zeroes of

these functions, we know that a non-trivial solution for the coe�cients exists, which gives a

non-zero wave function, if the basis functions are linearly independent. The only possibility for

a solution to the secular equations where the basis states are linearly dependent is if λ1 = λ2,

λ1 = 0 or λ2 = 0. The case λ1 = λ2 happens when R as de�ned in eq. (4.17) is zero.

Therefore, if we �nd a zero of one of the above functions, we check whether R also has a zero.

If F 2 − R = 0 then either λ1 or λ2 is zero, which can be seen by calculating λ1λ2 =
√
F 2−R

2|D+D−|
from eq. (4.15). Therefore, we also check whether the function F 2−R has a zero. The energies

where feven or fodd are zero, but both R and F 2 − R are non-zero, are the eigenenergies of

the �nite system. See �gure 5.2 for a plot of these functions. This way we can iterate over a

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
E (eV)

−1.0

−0.5

0.0

0.5

1.0

fodd

feven

Figure 5.2: The zeroes of the functions feven(E) and fodd correspond to either eigenenergies of the system
or points where our basis states are linearly dependent. To get only the eigenenergies, we drop
all the zeroes of feven/odd where either R or F 2 − R is zero as well. The circles indicates the
eigenenergies, found by this method. This example is for a thickness of L = 20Å using the
parameters from [11].

range of thicknesses and see how the gap depends on the thickness. Here we assume that the

minimal gap is at the gamma point, which we will see when we calculate the full spectrum.

Since surface states decays exponentially, and the gap is induced by the overlap of surface

states at opposite surfaces, we expect an exponential decay of the gap as a function of the

thickness. It turns out that for certain model parameters, there is an oscillation of the gap on
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5. SURFACE STATES IN A THIN FILM OF BI2SE3

top of this exponential decay, as seen on �gure 5.3a. This oscillation is also discussed in [23],

[24] and [25].
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Figure 5.3: (a) Gap between the surface states as a function of the thickness. The red line is calculated
using the model parameters from [11], and shows only an exponential decay, while the blue line
is calculated using the parameters from [12] shows an oscillation on top of the exponential decay.
We emphasize that the gap actually goes to zero, at local minima of the blue curve, which is
not seen, because of the �nite resolution. The zeroes of the gap occurs at integer multiples of
25Å. The green circles are experimental data from [26]. (b) Oscillating wave function for a
semi-in�nite topological insulator. We can introduce another surface, exactly at one of the zeroes
of the wavefunction, indicated by the dashed lines. Then, this wave function, will still be ful�ll
the new boundary condition. Hence, the energy is not changed, by introducing a surface at one
of these points.

The equidistant zeroes of the gap, when using the model parameters from [12] can be

explained by looking at the wave functions in the semi in�nite case. For these model parameters

the wave function are oscillating, which means that the wave function is zero at equidistant

points within the insulator. If we make a second surface exactly at one of these points, then the

wave function of the semi-in�nite case is still a solution to the �nite insulator. This situation

is shown qualitatively in �gure 5.3b. Therefore, since the semi-in�nite insulator is gapless, the

�nite insulator must be gapless too. Furthermore, we note here that each time the gap goes

to zero the energies of the even and odd surface state interchanges, such that if we de�ne the

gap by ∆ = E− − E+, it changes sign.

In [26], the �nite size e�ect were investigated by ARPES experiments on �lms of Bi2Se3,

with thicknesses of 2-6 quintuple layers (9.547Å). The measured gap is plotted in �gure 5.3a,

for 2-5 quintuple layers. For 6 quintuple layers they do not see any gap in the experiment. The

experiment clearly shows an exponential decay of the gap, as a function of thickness. The size

of the gap, agrees remarkably well at two quintuple layers, with the theoretical predictons for

both sets of parameters, but decays slower with the thickness. The experimental data show no

sign of oscillation of the gap. This strongly suggest using the parameters from [11]. However,

absence of gap oscillation is not conclusive, since we only have 4 points. It is an experimental

challenge to fabricate thin �lms, with a non-integer number of quintuple layers, due to the

strong coupling within the quintuple layers.
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5.1.1 Wave functions at the gamma point

Now we will �nd the wave functions at the gamma point. To do this we have to solve eq.

(5.11) for the coe�cients. Since each block is only 2×2 this can be done analytically, however

we still need to �nd the energy numerically. For the upper block corresponding to positive

inversion eigenvalue, we can choose the coe�cients to be:

C1+ = − 1

λ1 sinh(λ1L
2 )

, C2+ =
1

λ2 sinh(λ2L
2 )

. (5.18)

Which gives the eigenstate (written as a 2-spinor in the spin up subspace):

ϕ+(z) = N+

(
− 1

λ1 sinh(λ1L
2 )

ϕ↑1+(z) +
1

λ2 sinh(λ2L
2 )

ϕ↑1+(z)

)

= N+

−J1+
cosh(λ1z)

λ1 sinh(
λ1L

2
)

+ J2+
cosh(λ2z)

λ2 sinh(
λ2L

2
)

iA1

(
sinh(λ1z)

sinh(
λ1L

2
)
− sinh(λ2z)

sinh(
λ2L

2
)

) 

= N+

−
J1+

tanh(
λ1L

2
)

(
cosh(λ1z)

cosh(
λ1L

2
)
− cosh(λ2z)

cosh(
λ2L

2
)

)
iA1

(
sinh(λ1z)

sinh(
λ1L

2
)
− sinh(λ2z)

sinh(
λ2L

2
)

)


= N+

D+

(
λ2

2−λ2
1

λ1 tanh(
λ1L

2
)−λ2 tanh(

λ2L
2

)

)(
cosh(λ1z)

cosh(
λ1L

2
)
− cosh(λ2z)

cosh(
λ2L

2
)

)
iA1

(
sinh(λ1z)

sinh(
λ1L

2
)
− sinh(λ2z)

sinh(
λ2L

2
)

)
 (5.19)

To rewrite the wave function into this simple form we used eq. (5.12), in both steps. We have

introduced a normalization constant N↑+. To �nd λ1 and λ2 we have to �nd the energies by

solving the corresponding secular equation. In eq. (5.11) we see that the odd inversion block

is equal to the even inversion block if we interchange sinh and cosh. So the wave functions of

the odd inversion eigenstates can be obtained by simply interchanging sinh and cosh in the

even inversion wave function:

ϕ−(z) = N−

D+

(
λ2

2−λ2
1

λ1 coth(
λ1L

2
)−λ2 coth(

λ2L
2

)

)(
sinh(λ1z)

sinh(
λ1L

2
)
− sinh(λ2z)

sinh(
λ2L

2
)

)
iA1

(
cosh(λ1z)

cosh(
λ1L

2
)
− cosh(λ2z)

cosh(
λ2L

2
)

)
 (5.20)

The two degenerate solutions are written as full 4-spinors given by:

Ψ↑ξ(z) =

(
ϕξ(z)

0

)
and Ψ↓ξ(z) =

(
0

τzϕξ(z)

)
, (5.21)

where the energy is found by solving the secular equation corresponding to the inversion

eigenvalue ξ. For convenience we have written the spin down state with a τz, instead of

complex conjugating1. Some examples of these wave functions are seen on �gure 5.4. We see

1The i in the second component, becomes −i while complex conjugating. The rest of the spinor is either
real, if λ1 and λ2 are both purely real or imaginary, or imaginary if λ1 = λ∗2 is complex. To avoid getting an
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(a) The wave function of the lower surface state,
having an energy of 0.21 eV.
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(b) Wave function of a bulk state at the energy
−0.70 eV

Figure 5.4: The wave functions in the spin down block, for a thickness of L = 30Å. The color denotes the 4
di�erent components, in the basis of our model Hamiltonian. The color denotes the 4 di�erent
components, in the basis of our model Hamiltonian. The solid lines are the real part, while dashed
are the imaginary part.

that the components of the bulk state looks like the wave functions of an in�nite square well,

where the number of oscillations increases with energy. In contrast the surface states have large

peaks close to both surfaces, which becomes more signi�cant as L is increased. On �gure 5.5,

the density of the surface state with the highest energy, is shown for a range of thicknesses L.

Here we see that the density at z = 0 decreases, when L is increased, and eventually becomes

negligible. This agrees with the fact that surface states on opposite surfaces decouples in the

large L limit, and the gap becomes negligible. When L is large enough that the gap can be

neglected, then all four surface states are degenerate at the gamma point. Then we can make

a superpositions of the even and odd states, which will be localized close to a single surface,

simmilar to the wave functions found in chapter 4.

5.1.2 2D model

Using the states at the gamma point as a basis, we can compute an e�ective 2D model of a

�lm of 3D topological insulator. We follow the approach of [16]. We will only use the four

surface states, denoted by |Ψσ
ξ 〉, where ξ denotes the inversion eigenvalue, and σ the spin. We

denote the energies of these states Eξ, where ξ is the inversion eigenvalue again. We split the

Hamiltonian into the k|| = 0 part and a part dependent on kx, ky:

H = H0(−i∂z) + ∆H(kx, ky) (5.22)

The momentum dependent part can be written:

∆H(kx, ky) = D2k
2
|| −B2k

2
||σ0 ⊗ τz +A2(kxσx + kyσy)⊗ τx (5.23)

overall sign in the latter case, we use τz instead of complex conjugation.
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Figure 5.5: Density of the upper surface state for di�erent thicknesses from L = 10Å to L = 100Å. For small
L we see a big change in the density, when changing L, while we can the density for L = 100Å
almost has the same form the density for L = 80Å.

Since our basis is already eigenstates of H0 we need only to calculate the matrix elements of

∆H. By using the inversion symmetry of the Hamiltonian, ∆H(kx, ky) = I∆H(−kx,−ky)I,
and the fact that our basis states are eigenstates of the inversion operator we get:

〈Ψσ′
ξ′ |∆H(kx, ky)|Ψσ

ξ 〉 = 〈Ψσ′
ξ′ |I∆H(−kx,−ky)I|Ψσ

ξ 〉 = ξξ′〈Ψσ′
ξ′ |∆H(−kx,−ky)|Ψσ

ξ 〉 (5.24)

(5.25)

From this we conclude that the k2
|| terms only couple states of the same parity, while the terms

linear in momentum couple states of opposite parity. The only non-zero matrix elements are:

〈Ψσ
ξ |∆H(kx, ky)|Ψσ

ξ 〉 = D2k
2
|| −B2k

2
||〈ϕξ|τz|ϕξ〉 (5.26)

〈Ψ↑+|∆H(kx, ky)|Ψ↓−〉 = A2k−〈ϕ+|τxτz|ϕ−〉 (5.27)

〈Ψ↑−|∆H(kx, ky)|Ψ↓+〉 = A2k−〈ϕ−|τxτz|ϕ+〉 (5.28)

By de�ning some new quantities:

B = B2
〈ϕ−|τz|ϕ−〉 − 〈ϕ+|τz|ϕ+〉

2
(5.29)

D = B2
〈ϕ−|τz|ϕ−〉+ 〈ϕ+|τz|ϕ+〉

2
−D2 (5.30)

E0 =
E+ − E−

2
(5.31)

∆ = E− − E+ (5.32)

Ã2 = A2〈ϕ−|τxτz|ϕ+〉 = −iA2〈ϕ−|τy|ϕ+〉 (5.33)
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We can write the e�ective model in the basis {|Ψ↑−〉, |Ψ↓+〉, |Ψ↑+〉, |Ψ↓−〉}:

H2D(kx, ky) = E0 −Dk2
|| +


∆
2 −Bk2

|| Ã2k− 0 0

Ã∗2k+ −∆
2 +Bk2

|| 0 0

0 0 −∆
2 +Bk2

|| −Ã∗2k−
0 0 −Ã2k+

∆
2 −Bk2

||

 (5.34)

In [16], it is argued, that the parameter Ã2, is either purely real or purely imiginary, giving

two di�erent cases for this model. However, the basis states we use have an arbitrary phase or

gauge freedom. Hence, by performing a gauge transformation only on the positive inversion

states, |ϕ+〉 → eiθ|ϕ+〉, we get the parameter Ã2 → eiθÃ2. We see that the two cases are

related by this simple transformation, which does not change any of the other parameters,

since they include only matrix elements between states with the same inversion eigenvalue.

This model is equivalent to the BHZ model for HgTe quantum wells, derived in [5]. This

model was shown to describe a 2D topological insulator. Using the same approach, that we

used in chapter 4 to �nd surface states, one can �nd edge states in the BHZ model. Therefore,

a thin �lm of a 3D topological insulator, can behave as 2D topological insulator. Here the

surface states are gapped out, because of the coupling between the two surfaces, and edge states

arises within the gap. Whether the thin �lm is a 2D topological insulator or not depends on

the parameters of the model. It can be shown that for;

∆

2B
> 0, (5.35)

the thin �lm is topologically non-trivial, and there exists counterpropagating edge states. In

appendix A, we show the equivalence of these models, calculate the edge states and derive

the condition in eq. 5.35 for the existence of edge states. For the parameters of [12], the

gap ∆ oscillates, as a function of the thickness L. Therefore, the thin �lm oscillates between

the trivial and non-trivial topology, assuming that the sign of B does not change, which was

showed in [23].

5.2 Bulk and surface spectrum

Now we will calculate the full spectrum of a �nite topological insulator. We will do this, and

the rest of this chapter, only using the parameters from [11].

We will change to a basis of states where the state at in plane momentum kx, ky is related

by inversion to the same state at −kx,−ky. In chapter 4 we used the basis:

ψαβ1e
iβλαz =


Jα+

−iA1βλα

0

A2k+

 eiβλαz, ψαβ2e
iβλαz =


A2k−

0

iβA1λ

Jα−

 eiβλαz, (5.36)

where β = ± and α = 1, 2. Now we change the basis to ϕαξγ = 1
2(ψα+γ + (−1)γ−1(ξψα−γ)).
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The positive inversion basis states are given by:

ϕα+1(z) =


Jα+ cosh(λαz)

−iA1λα sinh(λαz)

0

A2k+ cosh(λαz)

 , ϕα+2(z) =


A2k− sinh(λαz)

0

iA1λ cosh(λαz)

Jα−. sinh(λαz)

 (5.37)

The negative inversion states have the same form except, all cosh are replaced by sinh and

vice versa. The general solution to the Schrödinger equation is given by a superposition of

these eight eigenstates:

Ψ(z) =
∑
αξγ

Cαξγϕαξγ(z) (5.38)

When we impose the boundary conditions (5.1) it gives a 8 dimensional linear homogeneous

system of equations for the coe�cients. It will be convenient to arrange the coe�cients in the

order C = (C1+1, C1−2, C2+1, C2−2, C1−1, C1+2, C2−1, C2+2). The system of equations can be

written as:

MC = 0 (5.39)

M is a matrix where each column consist of the corresponding 4-spinor wavefunction evaluated

at the boundaries ϕαβγ(L2 ), ϕαβγ(−L
2 ). This matrix can be written simpler on block form:

M =

(
m1(L2 ) m2(L2 )

m1(−L
2 ) m2(−L

2 )

)
, (5.40)

where

m1(L2 ) =


J1+ cosh(λ1L

2 ) A2k− cosh(λ1L
2 ) J2+ cosh(λ2L

2 ) A2k− cosh(λ2L
2 )

−iA1λ1 sinh(λ1L
2 ) 0 −iA1λ2 sinh(λ2L

2 ) 0

0 iA1λ1 sinh(λ1L
2 ) 0 iA1λ2 sinh(λ2L

2 )

A2k+ cosh(λ1L
2 ) J1− cosh(λ1L

2 ) A2k+ cosh(λ2L
2 ) J2− cosh(λ2L

2 )

 .

(5.41)

and m2(L2 ) is obtained from m1(L2 ) by interchanging cosh and sinh.

Now we want to compute the determinant to obtain the secular equation for the nontrivial

solution of the coe�cients. If we just try and calculate the determinant we would get 4608

nonzero terms. But we can perform row operations to obtain a simpler matrix equation,

equivalent to the original one. Using that sinh is odd and cosh is even, and multiplying row 5

and 6 by −1, we get the matrix: (
m1(L2 ) m2(L2 )

m1(L2 ) −m2(L2 )

)
C = 0 (5.42)
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This matrix can easily be reduced to a block diagonal matrix of the form:(
m1(L2 ) 0

0 m2(L2 )

)
C = 0 (5.43)

The secular equation for nontrivial solutions now factors into the product of the determi-

nants of the two submatrices. In addition, since this matrix is on block form, we can �nd

solutions, using only four of the basis states. First we compute the determinant of the upper

block:

det(m1(L2 )) =∣∣∣∣∣∣∣∣∣∣
J1+ cosh(λ1L/2) A2k− cosh(λ1L/2) J2+ cosh(λ2L/2) A2k− cosh(λ2L/2)

−iA1λ1 sinh(λ1L/2) 0 −iA1λ2 sinh(λ2L/2) 0

0 iA1λ1 sinh(λ1L/2) 0 iA1λ2 sinh(λ2L/2)

A2k+ cosh(λ1L/2) J1− cosh(λ1L/2) A2k+ cosh(λ2L/2) J2− cosh(λ2L/2)

∣∣∣∣∣∣∣∣∣∣
= A2

1 sinh(λ1L/2) sinh(λ2L/2) cosh(λ1L/2) cosh(λ2L/2)λ1λ2(2A2
2k

2 − J2+J1− − J1+J2−)

+A2
1 sinh2(λ1L/2) cosh2(λ2L/2)λ2

1(J2+J2− −A2
2k

2)

+A2
1 sinh2(λ2L/2) cosh2(λ1L/2)λ2

2(J1+J1− −A2
2k

2)

= A2
1λ1λ2 sinh(λ1L/2) sinh(λ2L/2) cosh(λ1L/2) cosh(λ2L/2)

(
D+D−(λ2

1 − λ2
2)2 +A2

1(λ2
1 + λ2

2)
)

−A4
1λ

2
1λ

2
2

(
sinh2(λ1L/2) cosh2(λ2L/2) + sinh2(λ2L/2) cosh2(λ1L/2)

)
setting this equal to zero gives the equation:

D+D−
A2

1
(λ2

1 − λ2
2)2 + (λ2

1 + λ2
2)

λ1λ2
=

tanh(λ1L/2)

tanh(λ2L/2)
+

tanh(λ2L/2)

tanh(λ1L/2)
, (5.44)

which was also found in [16]. This is the secular equation for solutions belonging to the upper

block. Remember that λ1,2 are functions of the in plane momentum k|| and the energy E. A

solution E(k||) to this equation means that there is an eigenstate of the system at that point

using only the �rst four basis states. This state can be either a surface state or a bulk state.

Since the lower block m2(L2 ) can be obtained from the upper block, by interchanging cosh and

sinh, we can simply do that substitution in the resulting secular equation, eq. (5.44). But this

substitution does not change the equation, and the secular equation for solutions belonging to

each block is the same. This fact ensures that all bands are at doubly degenerate, since any

solution E(k||) to eq. (5.44) ensures that there exist a nontrivial solution for the coe�cients

belonging to each block separately, with energy E and momentum k||. This is actually what

we expect, since we have a system with both inversion and time reversal symmetry. Therefore

all bands must have a double degeneracy as explained in 2.9.2. And to �nd the wave function,

it is convenient to just do it for one block, and then apply the TI symmetry operator to get

state of the other block. This ensures that the two degenerate states are orthogonal, even

though we use a basis which is not orthogonal.

Now we want to solve eq. (5.44) numerically. Hence, the problem now is �nding the zeroes
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in the (k||, E) plane of the function:

f(k||, E) =

D+D−
A2

1

[
λ2

1(k||, E)− λ2
2(k||, E)

]2
+ (λ2

1(k||, E) + λ2
2(k||, E))

λ1(k||, E)λ2(k||, E)
(5.45)

−
tanh(λ1(k||, E)L/2)

tanh(λ2(k||, E)L/2)
−

tanh(λ2(k||, E)L/2)

tanh(λ1(k||, E)L/2)
(5.46)

To do this, we iterate over k|| and for each value ki we �nd the points where f(ki, E) changes

sign as a function of E. But since the function diverges for some points it can also change

sign at those points, we impose a maximum threshold di�erence between the points on either

side of the sign change. The necessary resolution and threshold were determined simply by

looking at the plot of f(ki, E) for some speci�c ki. This ad hoc method was necessary since we

do not beforehand know, how many solutions to expect. By this method, we can obtain the

spectrum. This method should give us all the points, where we have a non-trivial eigenstate,

ful�lling the boundary conditions, but only if all our basis states are linearly independent. If

we have some linearly dependent basis states, then we can make a linear combination, which

is equal to zero, even though the coe�cients are nonzero, by de�nition of linear dependence.

The basis vectors are linearly dependent only if A1λ1 = 0, A1λ2 = 0 or if λ1 = λ2. We will

again assume A1 6= 0, and the points where λ1 or λ2 are zero are avoided, since we divide by

λ1λ2 in eq. (5.46). If λ1 = λ2 then by eq. (4.15), then R = 0. If we at each point where f

changes sign check whether R changes sign and exclude the points where it does, then we avoid

the solutions to the secular equation, which are caused by our basis becoming incomplete.

The resulting spectra are plotted in �gure 5.6. We see that already at 60Å the gap has

closed and the surface bands coincide with the bands from the semi-in�nite case. We also see

that the spacing between the bulk bands decreases with the thickness, which is analogous to

a 1D particle in a box, then the momentum gets quantized to �t the boundary condition.

5.2.1 Comparison with experimental data

Again we will compare to the results from the ARPES experiments, reported in [26]. The

spectra for 1-6 quintuple layers are shown in �gure 5.7. As indicated by blue and red dashed

lines there doubly degenerate Dirac cone at the gamma point is split into two Dirac cones,

slightly displaced from the gammapoint. This is due to a structural inversion asymmetry

(SIA). The thin �lm is fabricated on a substrate, which breaks the inversion symmetry. One

surface is subjected to vacuum, while the other surface is on top of the substrate. This e�ect is

not included in our model, and we do not see this splitting. The dashed lines are the spectrum

of the 2D model, including SIA. The outer branches of the upper surface states and the inner

branches in the lower, are almost invisible in the data. The reason is that they are located

primarily on the lower surface, and therefore are not reached by the incoming photons.

Besides this splitting due to SIA, the experimentally found spectrum, are qualitatively in

great agreement with our calculations, shown in �gure 5.6. We clearly see the particle-hole

asymmetry; The upper surface band has a greater curvature than the lower, in both theory

and experiment. Because of the smaller energy range in �gure 5.7, we do not see the bulk

bands until 5 and 6 quintuple layers. For 6 quintuple layers, we see two bulk bands above the
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Figure 5.6: The dispersion relation for various thicknesses, calculated by numerically solving the secular
equation. The blue lines shows the kz = 0 bulk spectrum and the black is the surface spectrum
for the semi in�nite case for comparison. We see that the gap closes as the L increases, as well
as the spacing between the bulk bands decreases.
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Dirac point, with a spacing of approximately 0.1 eV at the gamma point, agreeing well with

the spacing of 0.14 eV seen in �gure 5.6c.
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0̄–K̄ direction. d, Thickness-dependent normal emission photoemission spectra of Bi2Se3 films. The thickness step is∼0.3 QL.
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Figure 2 |ARPES spectra of Bi2Se3 films at room temperature. a–e, ARPES spectra of 1, 2, 3, 5 and 6 QL along the 0̄–K̄ direction measured at room
temperature. f, EDCs of c. g, EDCs of d. h, EDCs of e. The pink dashed lines in b represent the fitted curves using equation (1). The blue and red dashed
lines in c–e represent the fitted curves using equation (2). The corresponding fitting parameters are listed in Table 1.

The Dirac point at 6QL is located at−0.26 eV, lower by 0.14 eV
than that of the thick (50QL) Bi2Se3 films shown in Fig. 1c. It
suggests that the film is electron doped. Above 6QL, the Dirac
point moves towards the Fermi level with increasing thickness
until ∼20QL where the saturation value is reached. Figure 3a
plots the thickness dependence of the Dirac point position. For
comparison, the measured mid-gap energies of the surface states
and the spin-degenerate points of the Rashba-split upper surface
states are also shown. As STM experiments show little difference in
surface defect density between thick and thin films, the thickness-
dependent electron doping may come from band bending resulting
from charge transfer from the SiC substrate.

Besides the surface states, above 2QL, there are other features
either above the upper surface states or below the lower surface
states. With increasing thickness, these bands move up or down
towards the surface states, and more bands emerge. In Fig. 3b we

summarize the energies of these bands at the 0̄ point with respect
to the mid-gap energies of the surface states. The mid-gap energies
are used as a reference to remove the influence of chemical potential
change. The energy evolution shows a typical QWS behaviour.
Therefore, these bands can be attributed to QWSs of conduction
and valence bands.

When the thickness of a film is reduced to only several
nanometres, overlapping between the surface-state wavefunctions
from the two surfaces of the film becomes non-negligible, and
hybridization between them has to be taken into account. For a
freestanding and symmetric Bi2Se3 film, the spin-polarized surface
states at one surface will be mixed up with the components of
opposite spin from the other surface when the thickness is small
enough. It will lead to a hybridization gap at theDirac point to avoid
crossing of bands with the same quantum numbers. The observed
gap opening below 6 QL can preliminarily be attributed to this

NATURE PHYSICS | VOL 6 | AUGUST 2010 | www.nature.com/naturephysics 585
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Figure 5.7: The spectra for thin �lms of Bi2Se3 measured by ARPES in [26], for di�erent numbers of quintuple
layers (QL). The dashed lines are the spectra of the 2D model, �tted to the data, including
structural inversion asymmetry. Note that some of the brances are nearly invisible, which is a
result of these states being located on the opposite surface.

5.3 Wave functions

To �nd the wave functions, we need to solve the system of equations for the coe�cients, eq.

(5.43). But since we already reduced it to block form we can simply solve one block at a time.

We can also set ky = 0 and then afterwards apply the rotation operator around the z axis to

get to any general in-plane momentum vector kx, ky. This can be done, since the Hamiltonian

to second order in momentum is invariant under any rotation around the z-axis. The equation

we need to solve to �nd the coe�cients is:

m1(L2 )C = 0 (5.47)

We know that this equation only has non-trivial solutions at the k||, E points found above. At

these points we numerically do a singular value decomposition of the matrix. A singular value

decomposition is a factorization of a matrix, similar to an eigenvalue decomposition, but can

be done for any matrix. Here, we will brie�y introduce the concept for the case of a square

matrix. For a more detailed discussion, see [27]. The singular value decomposition of m1(1
2),

is given by:

m1(1
2) = USV †, (5.48)

where U and V are unitary matrices and S is a diagonal matrix, consisting of the singular

values, which are real and non-zero. If the columns of U and V are denoted by ui and vi, and

the singular values by si we get:

m1(1
2)vi = siui. (5.49)
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Figure 5.8: The density at L = 30Å for the upper and lower surface states. Exactly as in the semi-in�nite
case we see that the lower state gets more localized in the beginning when increasing k||, before
spreading out again and going in to the bulk. The upper state just spreads in to the bulk directly,
for a relatively small value of k||.

If some si = 0, then the corresponding vector vi is a solution to eq. (5.47), and if all si 6= 0,

then there is only the trivial solution C = 0. Therefore, we take out the vector corresponding

to the smallest singular value, which will be an approximate solution to eq. (5.47). The

smallest singular value would be zero, if we had used exact value for E(k||). We assume that

there is no other degeneracy than the one caused by TI invariance, and we only look for one

solution to each block. This gives us the coe�cients, and we can calculate the wave function.

The other degenerate solution belonging to the lower block, is simply obtained using the TI

operator on the found wave function.

The notion of surface state is not as clear cut as in the semi-in�nite case, since all states

have non-zero wave functions throughout the topological insulator. Here we could de�ne a

surface state, as a state with an energy in the bulk gap. According to that de�nition there

is only one surface state for L = 20Å, while at L = 40Å we see two surface states on �gure

5.6. And as we see on �gure 5.8, the surface states becomes bulk states when k|| is increased,

exactly as in the semi-in�nite case.

The connection to the semi-in�nite case can be made when L becomes large enough that

the gap can be neglected. In this limit the surface state wave functions are almost zero in the

center of the insulator as we see on �gure 5.5 and we can make superpositions located on either

surface of the material. For k|| 6= 0 we make superpositions of the degenerate TI partners:

Ψkx,ky ,n ± TIΨkx,ky ,n (5.50)

which gives to new states located on each surface, as seen on �gure 5.9. At the gamma point

the TI partners are purely from the spin up block or the spin down block, and hence, they

cannot cancel out. Therefore we need to combine states from both the upper and lower surface

band with the same spin, to get a state localized on one surface. This is possible, since we

are in the limit of large L and hence the gap is neglected, and there is 4 degenerate states at

k|| = 0 (even/odd and spin up/down).
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(Å)−
1
2

P1+
−, ↑ P2−+, ↑ P1+

−, ↓ P2−+, ↓

(b)

−40 −30 −20 −10 0 10 20 30 40

z (Å)
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Figure 5.9: For L = 80Å the gap is negligible, and we can make superpositions located on a single surface. (a)
and (c) shows the even and odd spin up wave functions at the gamma point, and the superposition
of the them, located on a single surface, is shown in (e). (b) and (d) shows the two degenerate
eigenstates at kx = 0.01Å, for which all 4 components are nonzero. Their superposition, located
on a single surface is shown in (e). If we had taken the di�erence instead of the sum, we would
have gotten a state located at the opposite surface. The color denotes the 4 di�erent components,
in the basis of our model Hamiltonian. The solid lines are the real part, while dashed are the
imaginary part.
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5.3.1 Spin

We saw in the semi-in�nite case that the surface states exhibits spin momentum locking. One

could think that when we have an inversion symmetric system this is not the case, since:

TISTI = −S, (5.51)

and then the two doubly degenerate states have opposite spin, and hence can form superposi-

tions giving spin states in any direction. But if we look at the spatial dependence of the spin

we see a momentum dependence. And since we cannot measure each of the doubly degenerate

states individually, we want to calculate the sum of the expectation values of the spin of the

two TI partners. We only need to do this for ky = 0. The rotational symmetry in the (x, y)

plane, ensures that when you rotate into some other state with ky 6= 0, the spin is just rotated

along. Therefore, if we �nd spin-momentum locking at some k|| = kx, then there must be spin

momentum locking for all states with this magnitude of in plane momentum k||.
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Figure 5.10: The spatial dependence of the expectation value of the spin in the y direction for a surface states
in an insulator with L = 40Å at kx = 0.001, ky = 0. The spin in the other directions is zero.

We see on �gure 5.10 that the spin is opposite on the two surfaces. For the upper band,

〈Sy〉 ∝ kx at the top surface. Therefore, the top surface shows the same vorticity of the

spin-momentum locking as the semi-in�nite insulator, in section 4.4.2. The bottom surface

has the opposite vorticity. This fact is due to the inversion symmetry; The inversion operator

interchanges the two surfaces, and takes kx, ky → −kx,−ky. Therefore, since the spin is

unchanged, the vorticity of the spin-momentum locking must be reversed.

The dependence of the spin expectation value on L and k||, follows completely from the

general dependence of the wavefunctions. When L increases the two peaks stays close to the

surface, while the value in the middle goes to zero, and when k|| increases they extent further

into to the material.
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5.4 Local density of states

Again we will calculate the local density of states, here including both surface states and bulk

states.

ρ(z, ω) =
∑

kx,ky ,n

2

A
|Ψkx,ky ,n(z)|2δ(ω − En(k||) (5.52)

n is an index indicating the band, which can be both surface and bulk bands. The factor of 2

is because of the double degeneracy due to TI symmetry. Since we consider a system, which

is in�nite in the x, y plane we take the limit A → ∞ turning the sums over momenta into

integrals:

ρ(z, ω) =
1

(2π)2

∑
n

∫
FBZ

dkxdky|Ψkx,ky ,n(z)|2δ(ω − En(k||)) (5.53)

The integral is in principle over the �rst brillouin zone, but since we only consider low energies

we will have som cut-o�. By the symmetry under rotations around the z axis, we can change

to polar coordinates and integrate out the angle:

ρ(z, ω) =
1

2π

∑
n

∫ kc

0
dk||k|||Ψkx,ky ,n(z)|2δ(ω − En(k||)) (5.54)

For a given k||, we can calculate the eigenenergies and the corresponding wave functions

numerically. We will approximate the k|| integral with a sum, and therefore we need to replace

the delta function by some distribution with a �nite width. We will use a Lorentz distribution

L(E), i.e.

ρ(z, ω) =
1

2π

∑
k||

∑
n

δk||k|||Ψkx,ky ,n(z)|2L(ω − En(k||)). (5.55)

The k|| is summed over equidistant values from 0 to some kmax, with the spacing δk||. The

sum should in principle go to in�nity, but since we are only interested in a �nite energy range,

we can terminate the sum at kmax, where all En(kmax) are out of this range. The width of

the Lorentz distribution has to be small enough that the details of the function does not get

washed out, but big enough that that you do not see the individual k|| points in the sum.

The LDOS are plotted in �gure 5.11. We clearly see the energy gap for L = 20Å, through-

out the topological insulator. For increased L we see the surface gap closing, but in the center

of the insulator we see the bulk gap. The bulk bands are seen as vertical lines, throughout the

material. Note the similarity of the LDOS for L = 80Å and the semi-in�nite case. The only

di�erence is the large contribution from the bulk states for L = 80Å, which was not included

in the semi-in�nite case.
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(a) L = 20Å (b) L = 40Å

(c) L = 60Å (d) L = 80Å

(e) L = 80Å (f) Semi-in�nite

Figure 5.11: The local density of states for various thicknesses, as a function of distance from the surface d
and energy ω. Note that the color scale is the same for all the plots, with an upper cut-o�, to
see the surface states clearly. For the plots with �nite L, the range of d is L

2
, the other half

is the same due to inversion symmetry. We see the large gap for L = 20Å and at L = 80Å
the gap is almost disappeared. For comparison we show the LDOS of the surface states in the
semi-in�nite case in (f) and for L = 80Å in (e), with the same range of d and ω. At the energies
where the bands are �at (e.g. at an extremum point) we get a large contribution to the density
of states. This explains the vertical lines in the LDOS, if we compare to 5.6.
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Chapter 6

Summary and discussion

In this thesis, we have investigated the 3D topological insulator Bi2Se3. We started by giving

a detailed introduction to applications of group theory in physics. This gave us the necessary

tools to proceed, and give a qualitative discussion on the electronic structure of Bi2Se3. With

this at hand we constructed a low energy model, using the four bands closest to the Fermi

level. This model was the starting point for the rest of the thesis, where we investigated this

model under di�erent boundary conditions.

In chapter 4, we gave a detailed derivation of the surface states of a semi-in�nite topological

insulator. We found the criteria for the existence of surface states. Surprisingly the surface

states could be destroyed by a large particle-hole asymmetry. By calculating the spin expec-

tation values of the surface states, we found a helical spin structure. The vorticity of the spin

structure was found to be opposite above and below the Dirac point. The spin structure was

independent of the model parameters, except the sign of the vorticity was determined by the

sign of the parameter combination A1A2B1. We considered two di�erent sets of parameters,

and surprisingly, these lead to two di�erent vorticities. The spatial structure of the surface

states showed a strong dependence on the in-plane momentum. For larger k||, the surface

states extended further into the material, with the expectation value of the distance to the

surface eventually diverging, exactly when the surface band touches the kz = 0 bulk band.

For a real sample, there is always two surfaces, and in chapter 5, we discussed the �nite

size e�ect of Bi2Se3. An energy band gap was induced, due to the coupling between the two

surfaces. We saw an exponential decay of this gap, as expected, because of the exponential

decay of the wave functions. At a thickness of six quintuple layers, approximately 60Å, we

found the gap to be below 0.01Å, which is consistent with the experiment in [26] measuring no

gap at this thickness. Therefore, for samples of 6 quintuple layers or more, we can safely use

the semi-in�nite boundary conditions. For 2-4 quintuple layers, the measured gap was larger

than our theoretical prediction. There can be many reasons for this discrepancy. One reason

could be higher order terms in kz. Even though we consider the gap at the gamma point in the

two-dimensional brillouin zone, the surface states are localized in the z direction. Therefore,

we have no reason to expect a low order expansion in kz to give exact results. These terms

could in principle be included perturbatively. However, this would require to determine the

model parameters of higher order terms.

When increasing the thickness, they �nd in [26] that the Dirac point increases in energy,

and saturates at 20 quintuple layers. This e�ect is not seen in our theoretical model, where

the gap closes exactly at the Dirac point for the semi-in�nite system. But since the spectrum

is measured only relative to the Fermi level, they argue that this is an e�ect of thickness

dependent electron doping, changing the Fermi level.

Using the parameters of [12], we saw an oscillation of the gap on top of the decay. Exper-

imental data from [26], show no sign of this oscillation. The closing of the gap, in the L→∞
limit, is guaranteed by time reversal symmetry. In contrast the gap closings at �nite L are not

protected by any symmetry. Therefore, it is reasonable to expect that these gap closings can
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be destroyed by impurities. These gap closings are merely a result of the speci�c form of the

wave functions and boundary conditions.

The spin structure of the surface states showed a position dependence, with opposite spin

on opposite surfaces. This can be explained by the inversion symmetry of the crystal, which

interchanges the two surfaces.

6.1 Outlook

There are many possibilities for further studies of three-dimensional topological insulators.

Staying within this model, it could be interesting to consider other options for the boundary

conditions, which according to [19], can change both the spectrum and even existence of surface

states. In this article they a class of boundary conditions, where some linear combination of

the wave function and its �rst derivative is required to vanish at the surface. Another option

is to let the parameter M continuously change sign across the surface.

In [11], they include a magnetic �eld in a 2D model for the surface states. In the 2D model

for thin �lms, both a magnetic �eld and a structural inversion asymmetry could be included.

Then there is three di�erent mechanisms to open a gap at the gamma point; Finite size e�ect,

structural inversion asymmetry and magnetic �eld. It could be interesting to see how these

a�ect the edge states of a thin �lm.

Here we have only considered surfaces, parallel to the atomic layers. In [17] they show, that

a di�erent spin structure arises for surfaces perpendicular to the atomic layers, by considering a

semi-in�nite topological insulator with hard-wall boundary conditions. It could be interesting

to consider a �nite system, with two surfaces not parallel to the atomic layers. However, it

might be an experimental challenge to fabricate such a sample, due to the structure of the

crystal.

Another conceptually interesting option, would be to consider a semi-classical approach

to the surface states. Then it might be possible to calculate semi-classical orbits, similar to

skipping orbits in a quantum hall system [28].
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Appendix A

2D model for thin film Bi2Se3

In this appendix, we will show that the 2D model for thin �lms of 3D topological insulators,

found in section 5.1.2 and in [16] is unitary equivalent to the BHZ model for HgTe quantum

wells given in [5]

The 2D model is given by:

H2D = E0 −Dk2
|| +


M −Bk2

|| Ã2k− 0 0

Ã∗2k+ −M +Bk2
|| 0 0

0 0 −M +Bk2
|| −Ã∗2k−

0 0 −Ã2k+ M −Bk2
||

 (A.1)

where we have de�ned a new parameter M = ∆
2 , to use the same notation as in the BHZ

model. In the appendix of [16] they show that Ã2 is either purely real or purely imaginary.

If we for the real one de�ne A = Ã2 and for the imaginary one A = −iÃ2 we have the two

models:

HR = E0 −Dk2
|| +


M −Bk2

|| Ak− 0 0

Ak+ −M +Bk2
|| 0 0

0 0 −M +Bk2
|| −Ak−

0 0 −Ak+ M −Bk2
||

 (A.2)

HI = E0 −Dk2
|| +


M −Bk2

|| iAk− 0 0

−iAk+ −M +Bk2
|| 0 0

0 0 −M +Bk2
|| iAk−

0 0 −iAk+ M −Bk2
||

 (A.3)

These two models are unitary equivalent since:

HR = U1HIU
†
1 (A.4)

for

U1 =


1 0 0 0

0 i 0 0

0 0 i 0

0 0 0 1

 (A.5)

The HR can be transformed into the BHZ model by interchanging basis states 3 and 4, or
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equivalent by:

HBHZ = E0 −Dk2
|| +


M −Bk2

|| Ak− 0 0

Ak+ −M +Bk2
|| 0 0

0 0 −M +Bk2
|| −Ak−

0 0 −Ak+ M −Bk2
||

 = U2HRU
†
2 (A.6)

where

U2 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (A.7)

So both case I and case II are unitary related to the BHZ model.

A.1 Edge states in the BHZ model

HBHZ =

(
h(k) 0

0 h∗(−k)

)
(A.8)

Since the upper block is simply the time-reversal of the lower block we will focus on solving

the upper.

h(k) = ε(k||) + σ · d (A.9)

where ε(k||) = C −Dk2
|| and d = (Akx, Aky,M − Bk2

||). For convenience we just put C = 0

(it just de�nes the zero point of the energy). Now we seek solutions to a semi-in�nite plane,

in the region y ≤ 0, with hardwall boundary conditions i.e.

Ψ(y = 0) = 0. (A.10)

To ensure that the wavefunction is normalizable we also impose:

Ψ(y → −∞) = 0. (A.11)

We use the ansatz Ψ = ψλe
yλ. Then we get the eigenvalue equation:(

M −D+(k2
x − λ2)− E A(kx − λ)

A(kx + λ) −M −D−(k2
x − λ2)− E

)
ψλ = 0, (A.12)
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where D± = D ±B. This gives the secular equation:

0 = (M −D+(k2
x − λ2)− E)(−M −D−(k2

x − λ2)− E)−A2(k2
x − λ2) (A.13)

= E2 −M2 +D+D−(k2
x − λ2)2 + (2MB + 2DE −A2)(k2

x − λ2) (A.14)

⇔ k2
x − λ2 = −F ±

√
F 2 −Q (A.15)

⇔ λ1,2 =

√
k2
x + F ±

√
F 2 −Q (A.16)

Where we de�ned F = 2MB+2DE−A2

2D+D−
and Q = E2−M2

D+D−
. The boundary value at y → −∞

excludes the negative (outer) squareroot. The boundary value at y = 0 gives:

ψλ1 + ψλ2 = 0 (A.17)

The eigenvectors can be written in two ways (which are equivalent if the secular equation is

satis�ed);

ψλ =

(
A(λ− kx)

M −D+(k2
x − λ2)− E

)
=

(
M +D−(k2

x − λ2) + E

A(kx + λ)

)
. (A.18)

The equation (A.17) means that that ψλ1 and ψλ2 has to be linearly dependent i.e., the

determinant of (ψλ1ψλ2) is equal to zero. Using the �rst form of (A.18) gives the equation:

0 = A(λ1 − kx)(M −D+(k2
x − λ2

2)− E)−A(λ2 − kx)(M −D+(k2
x − λ2

1)− E) (A.19)

0 = D+kx(λ2
1 − λ2

2) + (λ1 − λ2)(M − E −D+(k2
x + λ1λ2)) (A.20)

0 = D+kx(λ1 + λ2) + (M − E −D+(k2
x + λ1λ2)) (A.21)

M − E
D+

= k2
x + λ1λ2 − kx(λ1 + λ2) (A.22)

And from the second form of (A.18) we obtain the equation:

M + E

−D−
= k2

x + λ1λ2 + kx(λ1 + λ2) (A.23)

The sum of these equations give:

D−(M − E)−D+(M + E)

2D+D−
= k2

x + λ1λ2 (A.24)

⇔ λ1λ2 = −BM +DE

D+D−
− k2

x (A.25)

and the di�erence:

D−(M − E) +D+(M + E)

2D+D−
= −kx(λ1 + λ2) (A.26)

⇔ λ1 + λ2 = −DM +BE

kxD+D−
(A.27)
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From equation (A.25) we insert the form of the λ's and square to obtain:

(k2
x + F )2 − F 2 +Q =

(
BM +DE

D+D−

)2

+ k4
x + 2k2

x

BM +DE

D+D−
(A.28)

⇔ −A
2k2
x

D+D−
+
E2 −M2

D+D−
=

(
BM +DE

D+D−

)2

(A.29)

⇔ 0 = B2E2 + 2MBDE +M2D2 +D+D−A
2k2
x (A.30)

⇔ E = −MD

B
± |A||B|

√
−D+D−|kx| (A.31)

And we get a linear spectrum in kx. If an edge state exists, then λ1λ2 > 0, since λ1 and λ2 are

either real and positive or complex conjugate partners. For kx = 0 the energy is E = −MD
B ,

and inserting this in A.25 gives the condition:

Then we use equation (A.22) to rewrite the eigenvector as:

ψλ1 ∝
(

1
M−E

A(λ1−kx) + D+

A (λ1 + kx)

)
=

(
1

D+

A (λ2 − kx) + D+

A (λ1 + kx)

)
(A.32)

=

 1
|A|
A

√
−D+

D−

 (A.33)

We see that it is independent of λ1 (which it should be since it should be proportional to ψλ2

) and surprisingly also independent of kx

0 < λ1λ2 = −BM +DE

D+D−
=
M

B
(A.34)

To �nd the edge state for the lower block we use that the hamiltonian is time reversal

invariant:

θH(k)θ−1 = −iσyK
(
h(k) 0

0 h∗(−k)

)
iσyK = K

(
h∗(−k) 0

0 h(k)

)
K = H(−k) (A.35)

So we have that ψ↓ = θψ↑ is an eigenstate:

H(k)ψ↑ = E↑kψ↑ (A.36)

⇔ θH(k)θ−1θψ↑ = E↑kθψ↑ (A.37)

⇔ H(−k)ψ↓ = E↑kψ↓ (A.38)

So we have:

E↓k = E↑−k (A.39)
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A.1. EDGE STATES IN THE BHZ MODEL

And the total eigenstates are

ψ↑ = eikxx(eλ1y − eλ2y)


1

|A|
A

√
−D+

D−

0

0

 , ψ↓ = eikxx(eλ1y − eλ2y)


0

0

1
|A|
A

√
−D+

D−

 (A.40)

with eigenenergies:

Eσk = −MD

B
± |A|

B

√
−D−D+kx (A.41)

with plus sign for spin up and minus sign for spin down.

The eigenstates for HR are then U2ψBHZ

ψ1 = eikxx(eλ1y − eλ2y)


1

|A|
A

√
−D+

D−

0

0

 , ψ2 = eikxx(eλ1y − eλ2y)


0

0
|A|
A

√
−D+

D−

1

 (A.42)

But in this basis the two �rst basis states have di�erent spins, so both eigenstates are

superpositions of spin up and spin down.

And for case II (HI) we get (U
†
1ψR)

ψ1 = eikxx(eλ1y − eλ2y)


−i

|A|
A

√
−D+

D−

0

0

 , ψ2 = eikxx(eλ1y − eλ2y)


0

0

i |A|A

√
−D+

D−

1

 (A.43)
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