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Abstract

We set out to make a method to capture the gene-gene regulation of single-celled
RNA sequencing data by using a single regression tree. This data was taken from
mice, respectively 6.5, 7.5, 8.5 and 9.5 days after fertilization. We called the
method single tree network(STN). We compared our method to a well-known
method in the field called GRNboost2. After comparing the methods, we used
the inferred networks by STN and GRNboost2 to predict the underlying changes
to the network structure and then related it to the underlying biology. Lastly,
we observed if the methods captured the difference in between essential and
non-essential genes for survival in the network properties. Based on the results,
we could conclude that STN and GRNboost2 can not predict regulation, since
they either predicted slightly better or worse than random. This performance
could be because of how we validate the methods, but a deficient performance
would happen either way. The tree does capture some biological events since the
properties of essential and viable genes are different for both methods. This lead
us to believe that essential genes are expressed in more celled than non-essential
genes. We could also capture a change in the network structure between the
days. GRNboost2 predicted that over the period, the networks gets less and
less hierarchical, where STN predicted the opposite result.

Resume p̊a dansk

Vores forskning startede ved at udvikle en metode til at udlede gen-gen reguler-
ing fra enkelt-cellede RNA sekventerings data ved at bruge et regressions træ.
Dataen blev opsamlet fra mus henholdsvis 6.5, 7.5, 8.5 og 9.5 dage efter befrug-
telse. Vi opkaldte vores metode single tree network(STN). Vi sammenlignede
vores metode med en velkendt metode i feltet kaldt GRNboost2. Efter vi havde
sammenlignet metoderne brugte vi STN og GRNboost2 til at forudse den ud-
erliggende udvikling i netværks strukturerne og herefter sammenlignede vi den
med underliggende biologi. Til sidst undersøgte vi om metoderne kunne op-
fange forkellene i netværk egenskaberne for essentielle og ikke essentielle-gener.
Baseret p̊a vores resultater kan vi konkludere at STN og GRNboost2 ikke kan
forudse gen-regulering, da deres evne til at forudse gen-regulation enten er en
smule bedre eller en smule værre end tilfældigt. Dette resultat kunne stamme
fra vores m̊ade at validere metoderne p̊a, men metoderne ville stadig have lav
præcision til forudselse af regulering. Metoderne opfangede stadig nogle mønstre
i dataen, da de kunne opfange forskellen p̊a essentielle gener og ikke essentielle
gener p̊a deres netværks egenskaber. Dette leder os til konklusionen at essen-
tielle gener er udtrykt i flere celler end ikke essentielle gener. Vi kunne ogs̊a
opfange ændringer i netværks strukturerne over dagene. GRNboost2 foruds̊a at
netværkene fik mindre hierarkisk struktur over perioden. STN foruds̊a det stik
modsatte resultat.
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Chapter 1

Introduction

During the last couple of years, the technology for collecting large samples
of cells has been improving to a point where it is possible to collect between
104 − 107 cells in animal experiments depending on the set-up. Inside the cells,
we have genes that code for different proteins. With these large samples of cells
and genes, we can try to predict how different genes regulate each other.
Predicting which genes regulate each other is a complicated task when working
with more complex organisms. The mouse is one such organism and predicting
the regulators is challenging for multiple reasons. The first reason is that the
number of cells and genes are way higher than in simple organisms like yeast, so
powerful computers are needed. The second reason is that single-celled data has
a high noise level, which means we sometimes use noise to predict the regulators,
resulting in awful predictions. The last thing is that mammals’ genes do not
have to be placed in the same cells to regulate each other, this is one of the
primary reasons why modern methods do not perform very well on mammalian
genetics.
We will try to predict regulator using methods based on regression trees. The
methods are based on the assumption that genes are likely to regulate each
other if genes are placed in the same cells. Regression trees also assume that
genes that lie in the same cells are more likely to regulate each other. We will
use GRNboost2, a more complex and well-tested method, and compare it to a
single regression tree network(STN) that we have developed. It is a single tree
with no restriction. After adding all the genes’ predicted regulators, we can
infer a network.
We will infer the networks from a mouse on the day 6.5 to 9.5 after fertilization.
This period is where the shape of the mouse and the formation of organs occur.
Therefore, we will look at how the inferred networks evolve during these days
and try to estimate what makes essential genes for survival special based on the
network properties. Lastly we will validate how much trust we can put on the
predictions of the Regulators in the inferred networks by comparing them to
networks where we know which genes are regulating each other.
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Chapter 2

Theory

2.1 Introduction to genetics of Mammalian
species

2.2 Research question section

Hypothesis
Can we infer a gene regulatory network based on regression trees that capture
the underlying gene-gene regulation of a mouse’s embryonic developmental
stages?
To answer this question, we have four steps we need to go through

1) What data are we using, and where does it come from?

2) What methods are we using to infer the network, and what are the
underlying assumptions of the method?

3)How does the network structure evolve over the days?

4) Can we find the profiles of essential genes’ for survival?

5) How do we validate our network’s performance?

2.2.1 Introduction Data-set

The data comes from an in vivo experiment. The experiment uses a method
to extract cells and count the genes inside called single-celled RNA sequencing
(scRNAseq). The experiment captures the mouse gene expression by performing
scRNAseq on as many cells as possible on days 6.5, 7.5, 8.5, and 9.5. The
experiment is close to the underlying biology since the embryos are grown inside
a mouse. The data consists of 9000 cells and 23000 genes; figure 2.1 shows the
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number of genes and cells for the different days in experiment. The describing
the data-set is not assemble yest since the authors are not done with it yet but
the data can be downloaded here here

Day 6.5 7.5 8.5 9.5
Cell count 745 2287 2986 849
Gene count 18315 20615 20829 17800

Figure 2.1: Overview of the experiment, cell count and gene count for the
different days. Very low count of cells at day 9.5.

Figure 2.2: Important stages of early mouse development. Look at the changes
from gastrulation to early Organogenesis these stages is a direct overlap with
day 6.5 to 9.5 after fertilization [1]

The period between day six and day eight is called gastrulation; in this
period the number of cells and the volume of the embryo drastically increases.
In the late stages of gastrulation, the formation of crucial organs starts, and the
number of stem cells decrease due to cell differentiation. The period from day
8.5 to the birth of a mouse is called organogenesis. In organogenesis, the rest
of the stem cells differentiate into different types of cells, and the volume of the
rest of the organs increase drastically.

2.3 How do we infer the Regulators?

After reading multiple articles on implementing the best ways of inferring reg-
ulatory gene-gene networks, we chose to work with models based on regression
trees. Regression tree methods are well tested and have some of the best results
in the field . The data they are using in the articles are from yeast data, which
has less complex regulation than that of a mouse, so we expect the models in the
articles to have better validation performance. To infer networks with regression
trees we first need to understand the framework.

3
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2.3.1 Introduction to regression trees

Regression trees use training data to predict future outcomes of samples. Sam-
ples are specific objects or events we want to know the outcome of, this could
be the price of a car. To make the best prediction for the outcome, we need to
give the regression tree multiple features, which could potentially influence the
outcome. So if we are trying to predict the cost of a car, we could give it the
features: How old is the car? What was the start price? Which brand is it?

2.3.2 How is a decision tree structured?

Figure 2.3 shows the structure of a decision tree, with a mother node at the top
of the tree. The mother node is the first split and has the most impact on the
regression.
Root nodes are all nodes that contain a split; the further away a root node is
from the mother node, the less significant it is for the regression. The distance
from the mother is called the depth.
Each root node contains predictions so the algorithm can estimate the perfor-
mance of the split, these estimations are called Residuals. The algorithm needs
a function to measure the performance, which is called a loss function. At the
bottom of the tree, we have the predictions which are called the leaf nodes.

Mother node

root node a

leaf c leaf d

root node b

leaf e leaf f

Depth 2

Depth 1

Predictions

Figure 2.3: Figure of tree structure with depth 2

The standard loss function used for regression trees is the squared distance
between the true value and the predicted value, also written as

Rsum = 1/Nm

∑
y∈Qm

(y − ȳm)2 (2.1)

Rsum= The sum over the Residual
yi,m= True value of sample i
yi,m predicted value for split m.
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2.3.3 How do we find the best feature and threshold for a
split?

Given training data x and target data y, we want to find a threshold t and
a feature j for a subset of the training data Qm, which minimizes the total
distance. First, we split the subset up into two nodes Qleft

m and a Qright
m , and

we define the parameter θ = (jm, tm) we can write this as:

Qleft
m (θ) = {(x, y)|xj <= tm}, Qright

m (θ) = Qm /∈ Qleft
m (2.2)

We can then describe the quality of the split by using the loss function H, which
is a measure of distance between the predicted and true value of y, the total
function for the split is then

G(Qm, θ) =
N left

m

Nm
H(Qleft

m (θ)) +
Nright

m

Nm
H(Qright

m (θ)) (2.3)

where Nm is the number of samples in the split m.

The best parameters are found by minimizing the loss function H.

θ∗ = argminθ(G(Qm, θ)) (2.4)

2.3.4 Feature importance

Features are the different properties in our data x. If we want to predict the
number of fires in a specific area, this could be: temperature, number of people
grilling, and humidity in the air. The feature importance measures how efficient
a feature is at predicting the outcome of the samples, and is formalized the
following way:

FIj =
∑
m∈j

Rj
sum,m

∑
m∈j

Nm,j

N
(2.5)

Rj
sum,i: The summed residual of split m feature j

Nm,j : Number of samples in split m feature j
FIj : feature importance of feature j

2.4 iRGN with multiple regression trees

2.4.1 Stochastic Gradient Boosting

This method uses multiple trees in sequential order. Each tree is called an
estimator, the first tree fits the residual between the true value and the mean of
each sample, the next tree fits the residuals of the previous tree, etc. So in the
case of three estimators, we would have three trees, and if we set the maximum
depth to one, this is visualized in figure 2.4.
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Rm

X1 < 1

7 10

RX1

X2 < 1

2 5

RX2

X3 < 1

2 5

Rtot

Figure 2.4: Example of gradient boosting algorithm with three estimators and
a depth of one

Each tree Reduces the Residuals by a small amount. This reduction is
called the learning rate or the gradient of each tree. This can be a fixed value
or dependent on how well the tree reduces the total error, we will only be using
a fixed value of the learning rate. To calculate the residual after each tree, we
subtract the residual from the previous tree with the residual of the present tree
multiplied by the learning rate written as

Ri+1 = Ri −Ri+1 ∗ ϵ (2.6)

Ri+1: Residual after i trees
Ri: Residual after i-1 trees
ϵ: learning rate

To calculate the total Residual of the example in figure 2.4, we can use
equation 2.6 and input the Residual for each tree.

Rtot = RM −RX1 ∗ ϵ−RX2 ∗ ϵ−RX3 ∗ ϵ (2.7)

The main reason for having a learning rate is to make sure multiple samples can
have an impact on the prediction of the outcome. This makes the algorithm more
likely to predict the outcome using multiple features. This means the algorithm
is more robust to changes in the data and also gives way more candidates for
features. Stochastic Gradient Boosting uses the algorithm ”Gradient descent”
to compute the local minimums of a district function with low computational
time. It is used to find the minimum of the loss functions and predict the best
split of the regression trees. The Gradient descents and stopping after N tries,
this represents the boosting part of the algorithm. Each tree a get fraction of
the features and fraction of the samples to make sure each tree does not find the
same features/samples, this is the stochastic part of the algorithm. All these
changes make a more complex version of a single regression tree, but it has a
lower variance between each run of sub-sampled data and is not biased towards
specific features, which would normally dominate a standard regression tree.
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2.4.2 Feature importance for Stochastic Gradient Boost-
ing

each tree conri

FIj =
∑
m∈j

Rj
sum,m

∑
m∈j

Nm,j

N
(2.8)

Rj
sum,i: The summed residual of split m feature j

Nm,j : Number of samples in split m feature j
FIj : feature importance of feature j

2.4.3 Methods to infer a Gene-gene Regulatory Net-
work(IGRN)

The true goal of standard machine learning is to generate a general model, which
can find useful patterns in the data and predict future data points, classes, val-
ues, etc.
This means the models need to be robust, and the goal is not to be too special-
ized to a specific batch of data. This is not the case when we want to predict
regulatory Genes; we want the model to fit specifically to the gene without
including the underlying noise and indirect regulation. This is a difficult task
since biological data has an extreme amount of noise and the regulation of a
protein is sometimes a network of proteins. This makes it hard to predict the
direct regulators instead of the indirect.

2.5 Inferring Regulatory Gene-gene networks

When we use a regression tree to infer a regulatory network, we assume that
the gene’s gene-expression is a combination of other genes’ gene expressions
multiplied by a weight written mathematically as

xn = f(X̸=n) = w1 ∗ x1 + w2 ∗ x2 + w3 ∗ x3 + ...wN ∗ xN =
∑
i ̸=n

wi · xi (2.9)

xn: cell expression of gene n
X: the total matrix of genes
FIn: the feature importants of gene n.

GRN approach using regression trees

When we are working with scRNAs data, the rows are cells and columns are
genes, shown in figures 2.5 a, b, and c.
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C|G g1 g2 g3 g4

c1 10 90 0 0

c2 40 80 80 0

c3 0 0 200 200




(a) RNA seq data

C|G g1 g2 g3 g4

c1 0.1 0.9 0 0

c2 0.2 0.4 0.4 0

c3 0 0 0.5 0.5




(b) Table a where each row is normalised
by the sum of the cells

C|G g1 g2 g3 g4

c1 0.1 0.9 0 0

c2 0.2 0.4 0.4 0

c3 0 0 0.5 0.5




(c) We use the input green box to fit to
the output y red box

Gin|Gout g1 g2 g3 g4

g1 0 0 0 0.25

g2 0 0 0 0.25

g3 0 0 0 0.5

g4 0 0 0 0




(d) We return the feature imports to the
columns of a new matrix G

g1

g2

g3

g4

(e) Graph representation of table d

g1

g2

g3

g4

(f) Example of what the full network
would look like

Figure 2.5: How to construct a network with a regression tree from single celled
RNA sequencing data

Steps to create a GRN from Single celled data

• Normalise each row by its sum, see figure 2.5 b

• Remove cells and genes when the sum is equal to zero

• Choose a Regression tree method to infer the network regulation

• Use the method to fit the matrix X without feature j to the feature
j, see figure 2.5 c

• Return the feature importance from the fit and store it in the column
j of a m * m matrix which we call G, see figure 2.5 d

• Go back to step 4 until we reach j = m

• Set all values in G to one

• Convert the matrix G to a directed Graph, see figure 2.5 f

Figure 2.6
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In figure 2.5, we have a step-by-step visual introduction to inferring a GRN
from single-celled data with a regression tree method, and in figure 2.6, we have
a more detailed text version of figure 2.5.

2.6 Single tree network(STN) and GRNboost2

Single tree network(STN) is our attempt to create a simplistic model to infer the
gene-gene regulatory network. It is one regression tree that massively overfits,
meaning it keeps grouping genes until there are no fits left or the loss function
is zero. GRNboost2 is a well-tested method for inferring gene-gene regulatory
networks from scRNAs data. It uses multiple trees with depth one and finds
all likely regulators. To get a more detailed understanding of the models, we
will go through the parameters of regression trees one by one. In generating the
STN, we considered maximum depth, minimum decrease in the distance for a
split, sub-sampling, maximum Numbers of features, number of estimators, and
learning rate.

Maximum depth

The maximum depth is the longest path from the mother node to the leaf
nodes. We choose not to use the maximum depth in STN since some genes’
gene expressions are very complex, and other genes’ gene expressions are very
simple. This means that we would be limiting the number of inferred regulators
for the more complex genes which is not preferred. STN first stops when no
minimization of the loss function is possible. GRNboost2 has a maximum depth
of one since there are multiple estimators.

Decrease in total distance.

A smaller decrease in the loss function means you are less likely to be a good
fit for a regulator, but if a gene with almost the same gene expression is picked
up, we will find one, maybe two genes. To make sure we find more than one
regulator pr gene, we need to make sure it captures as many as possible for the
limitations of STN we used the default which is zero. GRNboost2 has other
parameters for regularisation of overfitting, so it is zero as well.

Sub-sampling

Sub-sampling is the number of samples each tree has access to, this can be a
specific number or just a fraction of the samples. STN uses fraction one, and
GRNboost2 uses 0.9.

Maximum number of features

Max features are the fraction of features each tree has access to; STN Uses one,
and GRNboost2 uses 0.1

9



Number of estimators

The number of estimators is how many trees are used for making a prediction.
STN uses one where GRNboost2 uses 5000

Learning rate

The learning rate is how much each tree contributes to reducing the Residuals,
STNs learning rate is one, and since GRNboost2 has multiple trees, the learning
rate is 0.01

2.6.1 Summing up the difference

STN is a single tree that is massively over-fitting with no constraints on pa-
rameters. Besides that, features should have a least 0.005 absolute Pearson
correlation to be considered for the fit. GRNboost2 is 5000 trees with depth
one, which has access to 90 % of the sources and 10 % of the features, and each
tree contributes 1 % to the prediction, and the features can be picked multi-
ple times. Therefore STN is one massive tree, versus GRNboost2 which is an
extreme amount of small trees.

2.7 Graph theory

Graph theory is a computational/mathematical tool that looks at the relation-
ship between objects or events. Graphs have a very simple framework but can
describe very complex systems. This is one of the major reasons it is one of
the most used methods for studying systems with a large number of events in
relation to each other. A Graph consists of nodes symbolized as a circle, which
is an event or an object, and the relation between them is an edge. Graphs with
edges pointing both ways are undirected see figure 2.7a, and graph which are
directed has edges which point from one node to another node, see figure 2.7 b.

A

B

C

D

(a) Undirected Graph

A

B

C

D

(b) Directed Graph

Figure 2.7

Edges have a weight between 0 and 1 which tells us how related the two
nodes are, we will use a binary version where it is either zero or one and only
consider directional Graphs. In Graph theory, we have properties, the properties
describe: the number of relations to a node, how central a node lies in the
graph, which link has the most traffic and etc. We have chosen to focus on four
properties in degree, out degree, betweenness, and flow see section 2.7.1.
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2.7.1 Directional Graph properties

In degree

In degree is the number of edges pointing towards a specific node, this tells us
how many nodes are related to the node. Looking at figure 2.8, we can see B
has in degree one with an edge pointing from A to B, and the node with the
highest in degree is G which has an in degree of three.

A

B

G

C D

E

F

H

Figure 2.8: Directional Graph example with 8 nodes and 12 edges,the red node
indicates the node with highest out degree and the green node is the node with
highest in degree

Out Degree

The out degree is the number of edges pointing out from a specific node, this
is how many nodes a specific node has a relation to. Looking at figure 2.8, we
can see that B has an out degree of two, one from B to C and one from B to H.
The node with the highest out degree is node H which has out degree equal to
three.

Betweenness

Betweenness is a way to find central nodes for the network structure. Between-
ness is based on the assumption that the network uses the shortest path for
transportation. The shortest path is the minimum number of edges between
two nodes. When we want to calculate the shortest path between two nodes,
we start at the source node and end at The target node. In figure 2.8 we use A
as source node and F as target node. We start by moving from node A to B to
H. From node H there are two paths: from H to E to F and from H to F. Since
H to F is the shortest path, the shortest path is equal to three. To calculate the
betweenness, we need to calculate the shortest path between all nodes as both
target nodes and as source nodes. To calculate the betweenness, we then count
the shortest going through a node divided by the total number of shortest paths
in the network

CB(n) =
∑
s,t∈G

σ(s, t|n)
σ(s, t)

(2.10)
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CB(n) betweenness of node n
σ(s, t|v):number of shortest path from source s to target t going through node
n
σ(s, t): total number of shortest path from source s to target t∑

s,t∈G: sum over all nodes as sources and target in graph G

Directed Flow

The flow is an estimate of how many times a node is visited during a directed
version of a random walk, called a random surf. In a direct network, a random
walk would get stuck if a node has no out degree, see figure 2.9 node D. A
random surf fixes this by jumping to a random node if it gets stuck. It also
fixes the problem if an area in the network only has out degree to nodes inside
the area. A Random surf does this by jumping to a random node at each jump
with probability tau, see figure 2.9 red area. The number of visits for nodes in
this area would dominate a random walk.

A

B

G

C D

E

F

H

Figure 2.9: Directional Graph example with 8 nodes and 12 edges, the red nodes
indicate an area where a random walk would get stuck since the area only has
edges pointing to other nodes in the area, the green node indicates a node with
no degree out

2.7.2 Directed Graph properties: Biological meaning.

Feature importance: How important is a Gene for another Gene’s regulation.
Out Degree: How many genes do a gene regulate?
In Degree: How many Genes Regulate a specific gene?
Flow: How much is a gene regulated in the network?
Betweenness: How central is the gene to Regulation in the network?

2.8 Pearson correlation

The Pearson correlation coefficient is an estimate of how likely two samples x
and y are shifted higher or lower than the mean at the same time. The Pearson
correlation is a normalized property, it is normalized by the standard deviation
of each sample. Because of this, The correlation will always lay between minus
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one and plus one. When one value is below its own mean, and the other is
above its mean, we get a negative value, and if both samples are above or below
their means at the same time, we get a positive value. When we sum over all
values in the sample, we get the most common case. The Pearson correlation
coefficient can be calculated the following way:

ρx,y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2 ·
√∑n

i=1(yi − ȳ)2
(2.11)

x̄ mean of sample x
ȳ mean of sample y
xi value i in sample x
yi value i in sample y
n is the number of data points in the samples.
ρx,y is the Pearson correlation coefficient of sample x, y.
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Chapter 3

Results

To better understand how the network’s structure evolves, we will first look at
the ratio between the number of edges and nodes; this allows us to know the
average number of connections pr. node in the network. After this, we will
visualize the networks to get a feeling for the placement of high degree nodes.
Lastly, we will look at the distribution of the graph properties and the correlation
between them. These distributions will give us a view of the hierarchy of genes
for different properties.
In the section ”essential genes for survival”, we will find the graph properties
that separate essential and non-essential genes for survival. The correlation
between the essential genes’ properties for survival and non-essential genes. This
will show the tendencies between the properties, so we compare the two kinds of
genes’ tendencies in the network. In the last section, ”Wnt-signalling network”,
we will look at the validation performance of the methods for inferring the
regulators and how robust the methods are for changes in the input. All results
are assembled in code in results.zip.

3.1 Is the Network structure evolving?

To understand how the network structure is evolving. we will first introduce
the networks and look at the ratio between the number of edges and nodes.
Then, we visualize all the networks, and comment on our observations. We will
look for patterns when plotting in degree versus out degree. At last, we look at
the distribution of network properties to understand the network’s hierarchy of
genes based on properties.

3.1.1 Stats and visual view of GRNboost2 and STN’s net-
works.

We used GRNboost2 and STN to infer eight networks for the days: 6.5, 7.5,
8.5, and 9.5 for both methods. Figure 3.1 shows the number of edges and nodes
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in the network and their ratio.

STN day: 6.5 7.5 8.5 9.5
Number of edges(NES) 67407 238333 456025 36134
Number of Nodes(NNS) 12212 18356 19305 11276

Ratio between NES and NNS 5.5 13 24 3.2
GRNboost2 day: 6.5 7.5 8.5 9.5

Number of edges (NEG) 2844589 2143939 2407523 1686469
Number of Nodes (NNG) 18315 20615 20829 17800

Ratio between NEG and NNG 155.3 104 115.6 94.7

Figure 3.1: Number of nodes and edges for all networks
STN and GRNboost2’s networks have very different ratios. GRNboost2’s ratios
are between 94.57 and 155.3, and STN is between 3.2 and 24. These ratios
indicate that GRNboost2’s networks are more connected than STN’s networks.
This difference also shows the algorithms are very different in the way they infer
Regulators, STN predicts fewer regulators than GRNboost2.
STN’s ratios increase from day 6.5 to 8.5 and collapses on itself at day 9.5
with a lower ratio than the rest of the days, where GRNboost2’s ratios decrease
steadily from day to day.

Now we have a feeling for the average number of edges pr. node and how
differently GRNboost2 and STN predicts regulators. To better observe how the
nodes are placed in the networks and especially the nodes with high in degree
and out degree. We have visualised the networks and highlighted the in and
out degree in the plots. This is shown visually in figure 3.2 and 3.3.
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Figure 3.2: Visualization of GRNboost2’s networks.
Figure A to D: networks highlighting in degree, and figures E to H networks
highlighting out degree.
Figure I: Indicates how to analyze the plots; it shows that a small blue node
means a low degree and the redder and larger the nodes get, the higher the
degree.
Figure A to H: the nodes with high in and out degree get more and more
clustered towards day 9.5.
We have one end where all genes have both low in degree and out degree and
another end with high in and out degree.
figures E to H the genes with high out degree are also centralized in a way
smaller area than the in degree.
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Figure 3.3: Visualization of STN’s networks.
Figure A to D: in degree and Figure E to H: out degree
Figure I: Indicates how to analyze the plots; it shows that a small blue node
means a low degree, the redder and larger the nodes get, the higher the degree.
Figure A to D: the networks have a central cluster of genes in the middle with
an outer ring that only connects to the closest gene.
The nodes with the highest in degree are in the center, with smaller nodes
connected to them. The structure does not seem to change, but the number of
genes in the outer ring varies.
The maximum in degree increases between day 6.5 and 8.5. Afterwards, the
maximum in degree goes back to a similar range of day 6.5 at day 9.5.
Figure E to H: The out degree is high for a fewer genes in the center, whereas
the in degree networks have more genes with lower values. A gene underneath
the central cluster has a very high out degree, but the cluster blocks its view in
the plots.

We have now observed the difference between GRNboost2 and STN visually.
We now want to observe if there are any patterns in the plot of in degree versus
out degree for both STN and GRNboost2.
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Figure 3.4: In degree versus out degree patterns.
Figure A to D: GRNboost2 between day 6.5 and 9.5, and figures E to H are
STN between day 6.5 and 9.5.
The color indicates the days after fertilization: Day 6.5 is blue, day 7.5 is red,
day 8.5 is green, and day 9.5 is magenta.
Figure A: The in and out degree of the genes are spread over a large area, with
no clear pattern.
Figures B -C: has a similar pattern; their dense areas can be approximated
to a triangle with a rectangle on top. If we compare it to figure D, we can
see that the triangle is still there, but the rectangle is missing on top. These
observations indicate a massive change in the network structure over the days,
especially from day 6.5 to 7.5 and day 8.5 to 9.5.
Figures E to H: The in degree and out degree are correlated, which means
that we are over-fitting massively and capturing indirect regulation.
We can also see that the in and out degree increase from E to G and then
collapse and go back to a similar structure in figure H.

We now observed how the in and out degree are correlated and the visible
in degree versus out degree patterns for the networks. We now want to under-
stand which genes are important for the network structure based on how the
properties are distributed on the network.

3.1.2 Distribution of properties

The distribution of different properties shows different aspects of the network
structure. The distribution will show the importance of different genes based
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on their different properties. In the case of the distribution of In degree, it will
show if genes are regulated by the same numbers of genes or if all genes are
regulated by a different number of genes. In general, it highlights if all genes
are essential for maintaining the structure or if only a few genes are essential
for maintaining the network’s structure.

3.1.3 Who contributed the most?

To analyse which genes contributed the most to the network structure, we have
plotted the cumulative function of the sorted list each property divided by the
total sum of the property. This will clearly show, how much different intervals
of the distributions contributes to the total network structure. This way of
plotting is useful, since we want describe the network’s evolution over the time
period.
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Figure 3.5: Property hierarchy of nodes
inferred by GRNboost2
The color indicates the number of days after fertilization, day 6.5 is blue, 7.5
yellow, 8.5 green, 9.5 is red.
The steeper the function’s slope is in the intervals, the more impact the interval
has on the network structure.
Low range properties are between zero and 20 % of the maximal x axis length,
medium range is between 40 and 70% and high range is between 70 and 100 %
Figure A: day 9.5 relies heavily on the nodes with a small in degree. After we
have 7.5 and 8.5, which have the same steepness of their functions between 0.4
and 0.8. Day 8.5 is more reliant on the nodes with medium-ranged in degree
than 7.5. At last, we have day 9.5, which is not that reliant on low in degree
nodes and relies primarily on nodes with medium to high in degree.
Figure B: the out degree structure is very similar for all days, and they mostly
rely on low to medium ranged nodes.
Figure C: The days which rely most on nodes with low betweenness are day
9.5,7.5,8.5 then 6.5
Figure D: The days which rely most on nodes with low flow are 9.5, 7.5,8.5
than 6.5
GRNboost2: predicts that besides out degree, that day 6.5 relies more on
nodes with medium to high ranged properties to maintain the structure com-
pared to the other days. Day 7.5 and 8.5 rely almost equally on nodes with
medium to high properties, and lastly, we have day 9.5 which relies the least on
nodes with medium to high properties.
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Figure 3.6: Property hierarchy of nodes inferred by STN
Low range properties are between zero and 20 % of the maximal x axis length,
medium range is between 40 and 70% and high range is between 70 and 100 %
Figure A: all the days are very similar, and they rely on all nodes except nodes
with really high in degree.
Figure B: day 6.5 is reliant on nodes with really low in degree, and the ranking
from reliance on nodes with low out degree to high out degree is day 6.5 and
7.5, Day 8.5 has the same reliance as 9.5.
Figure C: Day 6.5 is heavily reliant on the nodes with low betweenness com-
pared to days 7.5,8.5, and 9.5, which rely equally on all ranges.
Figure D: day 6.5,7.5 and 8,5 relied on nodes with low flow. Their rank order
is 6.5,7.5,8.5, and 9.5, whereas 9.5 relies way more on nodes with the medium-
ranged flow.
STN: predicts that day 6.5 relay more on nodes with low properties than the
other days, without considering the in degree.

We have now compared the different days structure and what we are missing
is observing the original distribution.
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3.1.4 How does the in degree distribution evolve?

Figure 3.7: In degree distributions inferred by STN and GRNboost2.
Figure A to D: are inferred by GRNboost2, and Figure E to H: are inferred
by STN.
Figure A to D : when we look at the distributions, we can observe that there
are an extreme amount of genes at the start of the distributions. The difference
in the distribution lay in-between 20 to 40 % of the max in degree, so around
300-700 in degrees( See figure 3.5). Besides the difference, the shape of the
distributions look similar.
Figure E to H: The shape of the distribution looks similar, but the tail of days
7.5 and 8.5 is way wider than 6.5 and 9.5. If we look at figure 3.6, we can see
the count decreases very similarly towards the maximum in degree, when the
distributions are normalised. The in degree expands to day 8.5 and collapses
between days 8.5 and 9.5.
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3.1.5 How does the out degree distributions evolve?

Figure 3.8: Distributions of out degrees
Figure A to D: is inferred by GRNboost2, and figure E to H: is inferred by
STN.
The color indicates the days after fertilization: Day 6.5 is blue, day 7.5 is red,
day 8.5 is green, and day 9.5 is magenta.
A to D: when we look at day 6.5, we can see it has a way longer tail than
the rest of the days and also fewer genes with low out degree. By looking
at the plots, we can see that the in degree gets pushed towards zero over the
days. The distribution shapes look similar. E to H: day 6.5 and 9.5 has
a similar distribution, with day 6.5 have several genes with out degree above
100 compared to day 9.5. We can also see that days 6.5 and 9.5 have similar
out degree scaling, and 7.5 and 8.5 are similar and have a similar out degree
scaling. It looks like the network expands and collapses back on day 9.5.
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3.1.6 How does the distribution of betweenness evolve ?

Figure 3.9: Distribution of Betweenness.
Figure A to D: is inferred by GRNboost2, and figure E to H: is inferred by
STN.
The color indicates the days after fertilization: Day 6.5 is blue, day 7.5 is red,
day 8.5 is green, and day 9.5 is magenta.
A to D: when we observe the distribution, we can see that the tail of the distri-
bution expands towards day 9.5. The days 6.5 to 8.5 have similar distributions.
Day 9.5 is different because it has way less nodes in the interval between 1 to 2
10−3. betweenness
E to H: These distributions have similar shapes. Day 6.5 has a few genes with
massive betweenness, and again day 6.5 and 9.5 are in a similar range, and 7.5
and 8.5 are in a similar range. Looking at figure 3.6, we can see that day 6.5
scales very differently compared to the other days.

3.1.7 How does the distribution of Flow evolve ?

Flow is highly correlated with the in degree since the in degree measures how
many genes are regulating a gene. The flow measures how often or how much
a gene is getting regulated compared to other genes. This also means their
distributions will be closely related.
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Figure 3.10: Distribution of Flow.
Figure A to D: is inferred by GRNboost2, and Figure E to H: is inferred by
STN.
The color indicates the days after fertilization: Day 6.5 is blue, day 7.5 is red,
day 8.5 is green, and day 9.5 is magenta.
A to D : The shapes are very similar, day 6.5 has a very narrow distribution
tail, towards day 9.5 the distribution tails get wider. Day 9.5 is different because
it has way less nodes in the interval between 2 to 5 10−4 Flow .
E to H : The shape of day 6.5 looks different from the rest days. Day 9.5 looks
like it has more genes in the medium between 0.5 and 1 10−3 flow. This can
also be confirmed in figure 3.6, the tail changes width multiple times between
day 7.5 and 9.5
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3.1.8 how does the correlation between properties
change?

Figure 3.11: Correlation matrix for STN and GRNboost2
Figure A to D is inferred by GRNboost2, and figure E to H is inferred by
STN.
The x and y-axis are labels for properties. In, out and bet is the in degree,
out degree, and betweenness.
Figure A-D Yellow frames highlight the first pattern. The yellow pattern show
that day 6.5 and 9.5 are in a similar range and Day 7.5 and 8.5 are in a similar
range. The yellow pattern does not include correlations between in degree and
flow and between out degree and betweenness.
The blue frames show that the correlation between betweenness and out degree
stays in a similar range until day 9.5 which indicates a structural change in the
network.

3.2 What are the profile of essential genes for
survival?

In the following section, we estimate the profile of essential genes for survival.
An essential gene is a gene which when removed causes The mouse to die before
birth. A Non-essential gene which when removed allow the mouse to survive
after birth. Figure 12 shows the distribution of essential and viable genes’
properties for day 8.5 inferred by GRNboost2.
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Figure 3.12: Distributions of essential and viable genes’ properties.
Distributions of essential genes’ properties are green, distributions of viable
genes’ properties are pink and the overlap between them is brown

Since the distribution of essential and viable genes’ properties did not show
a clear tendency for any days or methods, we decided to use ”Bootstrap with
replacement” see section 3.2.1 to estimate the underlying distribution of the
means.

3.2.1 Bootstrap with replacement

Bootstrap with replacement is a method for simulating data when the sample
size is too small to estimate the underlying distribution.
Bootstrap with replacement generates a new data-point by taking N data points
with replacement from the sample x and take the mean of that sample, this
returns a value between the minimum and maximum of x. If we do this enough
times and store the values in an array, we have generated a new and larger
sample with the mean and standard deviation of the original sample. As the
number of generated samples goes towards infinity, the distribution of the sample
converges towards a Gaussian distribution due to the central limit theorem.

3.2.2 What are the tendencies of Essential genes?

To determine if the models could capture the patterns of essential genes in the
single-celled data, we found two papers that listed essential and viable genes
based on experiments. The first list is from university of Manchester’s bio-
science of the future group which has made a database for essential and viable
genes [2]. The second paper made the list by experimentally removing the genes
from mice [3]. We added the two lists together to get 1306 essential genes and
3460 viable genes, adding up to 4766 genes. We made eight samples for each
network, four samples containing the in degree, out degree, betweenness, and
flow of essential genes. We also made Four samples for the properties of the
viable genes.
We performed the Kolmogorov-Smirnov two-sample test,(see appendix A1) on
the original samples to test if the essential and viable genes came from the same
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underlying distribution. The Kolmogorov-Smirnov two-sample test returns the
likelihood for two samples to come from the same underlying distribution. The
likelihood is estimated by comparing the largest distance between the distribu-
tions of the samples versus the number of points of in the samples, for a more
detailed description see appendix A1.
To visualize the difference in Graph properties between the viable and essential
genes, we performed bootstrap with a replacement on each sample. Figures 3.13
to figure 3.16 show each property plotted separately in different figures with the
bootstrapped distribution of the means of the essential and viable samples.

In degree

Figure 3.13: Prediction of essential and viable genes’ in degree tendencies.
Figures A-D are networks inferred by GRNboost2 and Figures E-H are net-
works inferred by STN.
Essential genes are plotted in green, viable genes are plotted in pink.
All figures show that essential and viable genes’ means and underlying dis-
tributions are different since their Kolmogorov-Smirnov two-sample test, and
t-test P values are zero.
Essential genes have a tendency to have higher in degree, thus GRNboost2 and
STN predicts essential genes are regulated by more genes than viable.
Be aware the x axis limits are different from figure to figure.
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Out degree

Figure 3.14: Prediction of essential and viable genes’ out degree tendencies.
Figures A-D are networks inferred by GRNboost2 and Figures E-H are net-
works inferred by STN.
Essential genes are plotted in green, viable genes are plotted in pink.
All figures show that essential and viable genes’ means and underlying dis-
tributions are different since their Kolmogorov-Smirnov two-sample test, and
t-test P values are zero.
All figures show Essential genes tend to have higher out degree, thus GRN-
boost2 and STN predicts that essential genes tend to regulate more genes than
viable. textbfBe aware the x axis limits are different from figure to figure.
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Betweenness

Figure 3.15: Prediction of essential and viable genes’ betweenness tendencies.
Figures A-D are networks inferred by GRNboost2 and Figures E-H are net-
works inferred by STN.
Essential genes are plotted in green, viable genes are plotted in pink.
All figures show that essential and viable genes’ means and underlying dis-
tributions are different since their Kolmogorov-Smirnov two-sample test, and
t-test P values are zero.
Essential genes tend to have higher betweenness, thus GRNboost2 and STN
predict that essential genes have a higher tendency to be more central for reg-
ulation in the networks than viable genes.
Be aware the x axis limits are different from figure to figure.
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Flow

Figure 3.16: Prediction of essential and viable genes’ flow tendencies
Figures A-D are networks inferred by GRNboost2 and Figures E-H are net-
works inferred by STN.
Essential genes are plotted in green, viable genes are plotted in pink their over-
lap is brown.
Figures A,B,C,F and G Show that essential genes and viable genes has dif-
ferent means and distribution, since t-test and Kolmogorov-Smirnov two-sample
test P-value are equal to zero. This means that viable and essential genes have
different means and come from different underlying distributions.
Figure D day 9.5 t-test P-value is zero so the flow of essential and viable genes
are separate enough to have different means. The Kolmogorov-Smirnov two-
sample test is 0.131, which is above 0.05, therefore we can not reject that the
two original samples come from the same underlying distribution.
Figures E and H shows that The Kolmogorov-Smirnov two-sample is way
above 0.05. This indicates that essential and viable genes for days 6.5 and 9.5
come from the same distribution. The t-test shows a clear mean separation
since they are both zero.
Figures F and G have either a close to zero or zero p-value for both the t-test
and the Kolmogorov-Smirnov two-sample test, which indicate that essential and
viable genes for days 7.5 and 8.5 come from different distributions and have dif-
ferent means.
GRNboost2 predict that essential genes tend to be be more regulated than
viable genes.
STN predict that essential genes have a tendency to be less regulated than
viable, but E and H are close to the same means and have similar original dis-
tribution so should therefore be taken with a grain of salt for those days.
Be aware the x axis limits are different from to figure.31



3.2.3 Correlation between Essential properties

To see how essential genes’ properties are correlated and how viable genes’ prop-
erties are correlated, we have made two correlation matrices, one for essential
properties and one for viable. We have made these matrices for both models and
all the days. These matrices will show if essential and viable genes’ properties
have the same patterns between them.

32



GRN2boost

Figure 3.17: Tendencies between properties for viable and essential genes.
Networks inferred by GRNboost2. figures: A, C, E and G: are matrices of
correlation between essential genes’ properties, and figures: B, D, F, and G
:are matrices of correlation between viable genes’ properties.
The x and y-axis are labels for properties. In, out and bet is the in degree,
out degree, and betweenness.
The x and y-axis are the labels of the properties. The labels in, out, and bet
are the in degree, out degree, and betweenness.
To highlight where essential genes have a higher difference than 0.06 Pearson
correlation than viable, we have made blue frames for spaces where the corre-
lation of essential genes’ properties are lower and green frames where essential
genes’ properties have a higher correlation.
Figures A to F: have a lower correlation between in and out degree, between
flow and out degree, and between betweenness and out degree.
Figures C and D: show that essential genes have a higher correlation between
flow and in degree at day 7.5
Figures G and H: correlation matrices are very different from the other days;
the essential properties’ correlation between in degree and flow and between
out degree and flow is lower than the viable genes and the only overlap is be-
tween flow and out degree with the other figures.
figures A,B, G and H: Day 6.5 has a similar range of correlation for the
properties as 9.5 for both the essential and viable genes, which indicates that
they have a similar network structure.
Day 7.5 and 8.5 have correlations in a similar range, indicating a similar network
structure. GRNboost2 predicts that essential genes are more likely to either be
to regulated by a few genes while regulating many other genes or to be regulated
by many genes while regulating few other genes than viable ones.
From Day 6.5 to 8.5: the chance of being a more central gene to gene regulation
while regulating many genes is lower for essential genes than viable.
Day 9.5 essential genes are less likely to be regulated a lot while being regulated
by many genes simultaneously. It is also less likely to be regulated a lot and to
be a more central gene for regulation.
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STN

Figure 3.18: Tendencies between properties for viable and essential genes.
Networks are inferred by STN.
Figures A, C, E, and G: are matrices for essential properties. Figures B,
D, F and G :are matrices of viable properties. The x and y-axis are labels for
properties. In, out and bet is the in degree, out degree, and betweenness.
To highlight where essential genes have a higher difference than 0.06 Pearson
correlation than viable, we have made blue frames for spaces where the correla-
tion of essential genes’ properties is lower and made green frames where essential
genes’ properties have a higher correlation.
The correlation between in and out degree and between in degree and between-
ness is lower for all days.
Figures A and B: show that day 6.5 essential genes have a lower correlation
between in degree and flow. Figures C, D, E and F: shows that essential
genes have higher correlation between Flow and out degree and between flow
and betweenness. Viable genes have similar correlation values and essential
genes have similar correlation values between the days.
STN: predicts that essential genes are less likely to be regulated by many genes
at the same time as regulating many other genes compared to viable genes. It
also predicts that essential genes are less likely to be central to regulation in
the network at the same time as getting regulated by many genes compared to
viable genes.
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3.3 Wnt-signalling network

Introduction to the Wnt-network

The Wnt-signalling network is an essential subset of genes that control cell
division and cell differentiation cite. This network is universal for mammals,
but the network’s complexity is different from species to species. Multiple kinds
of cancer and Alzheimer’s are directly linked to Mutation and other damage
in this system. We want to investigate this system because the Wnt signaling
network is highly active during gastrulation days 6 to 8.5 and that it is one
of the most essential networks for survival in early stages of development in
mammals [4].

Wnt-validation data

We will be focusing on two networks: the mouse and human Wnt networks.
We originally only wanted to use the mouse Wnt network, but there were no
studies that had an easy way to validate the network, and the Wnt genes are
well conserved between humans and mice. Figure 3.19 shows the four sub-Wnt
networks which are present in humans. Figure 3.20 shows a simplistic version
of the mouse Wnt-network.
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Figure 3.19: The four subnetwork of the human Wnt network
Figure A: Canonical Wnt-signaling
Figure B: The inhibition of canonical-Wnt signaling
Figure C: Non-canonical Wnt-signaling
Figure D: The regulation of Wnt-signaling pathways. [5]
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Figure 3.20: Figure A-C: A simple version of the mouse Wnt network. Each
label with without numbers are multiple genes.
Figure A: Canonical Wnt-signaling
Figure B: Planar cell polarity pathway
Figure C: WNT path way
Notice some of the pathways lead to cancer and Alzheimer’s diseases. [6]

3.3.1 How validate methods for inferring the regulators

To estimate how well we are predicting the regulators, we first need to introduce
four terms: the true positive(TP), the false positive(FP), the false negative(FN),
and lastly, the true negative (TN). See equations 3.1-3.4. In IGRN models, pos-
itive means regulating, and negative means non-regulating. So TP is the num-
ber of correctly predicted regulators, and FP is number of predicted regulators
which are not regulators in reality. FN is the number of non-regulators falsely
predicted . TN number of correctly predicted non-regulators. After introducing
the basics, we can calculate the true positive rate and the false positive rate,
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see equations 3.5 and 3.6. The prediction of regulators is stored as a binary
matrix, each row and column is a gene and the values inside the matrix show if
the gene are regulating each other. If the gene in row four has a 1 in column 3
gene 1 is regulating gene 3. To validate networks wee flatten the matrix G for
each network and flatten the validation data-set and used the formulas below.

NTP =

N∑
i=0

Pi · Ti (3.1)

P : Array with prediction
T : Array with true values.
NTP : Number of correctly predicted regulators.
N: The number of elements in the arrays P and T.

NFP =

N∑
i=0

Pi ̸= Ti (3.2)

NFP : Number of falsely predicted regulators

NTN =

N∑
i=0

(Pi − 1) · (Ti − 1) (3.3)

NTN : Number of true non-regulators

NFN =

N∑
i=0

Pi ̸= Ti (3.4)

FFP : Number of falsely predicted non-regulator
With these four values we can calculate The true positive rate(TPR) and the
False Positive rate(FPR):

TPR =
NTP

NTP +NFN
(3.5)

FPR =
NFN

NFN +NTN
(3.6)

We use TPR and FPR to estimate how well a given predictor predicts the
regulators correctly in the networks. TPR is the normalized value for how well
we are predicting the regulators. If it is a perfect estimator, it will return the
value one. FPR is the normalized value for how well we are predicting non-
regulators, we have the NFN in the nominator; this means the closer to zero
we get, the better the predictor is at estimating non-regulators, see Figure 3.19
A-D. The ratio between TPR and FPR shows if the prediction is better than
random. If it is above one it is better than random and if it is below one it is
worse than random.
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3.3.2 Wnt-human TPR and FPR

The data used in this section is from the Wnt validation data and comes from
the paper [5]. We have tried to predict the regulators in the Wnt-signalling
networks using GRN2boost and STN for each method and day. We calculated
the true positive and the false positive rate, see equations 3.5 and 3.6. Each
network can be represented as a heatmap; the yellow spaces are regulation, and
the blue spaces are non-regulation. Figure 3.21 Shows an example of this.

Figure 3.21: Heatmaps of Wnt networks inferred by GRNboost2 day 6.5
Figure A-D: The Wnt subnetwork of day 6.5 inferred by GRNboost2
Figure 3.19 E-H: true regulators for day 6.5.
Comparing Figure A-D to Figure E-H we can easily see that GRNboost2 does
not predict many values correctly. Here we can see how different the matrix of
the validation-set is compared to GRNboost2’s predictions.

Before we go to validating the methods for inferring the network, we want to
introduce some earlier results of GRNboost2. It has been used to infer networks
from scRNA-seq data from humans. The networks they infered had the sizes
from 7000 to 11214 nodes. They predicted 4.1 % of the regulators correctly,
their validation data is from a human and is based on experimental data which
is preferred [7]. Similar studies have been done on yeast with a performance
of 0.69 AUROC [8]. This means 69% of all prediction are correct, not just the
predicted regulators. The performance is due to regulation in yeast being less
complicated. The assumption is that when genes lie together, they are more
likely to regulate each other. This is a very good approximation for bacteria,
now want to confirm if this is a good approximation for mice. In general there
is no perfect way to validate the regulation. Regulation is very messy, so one
should not expect a perfect performance for any method or validation-set. To
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quantify the quality of the predictions like figure 3.21, we calculated the TPR
and FPR for all methods and sub-networks and shown in figure 3.22.
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Figure 3.22: Validating the performance of predicting the regulators.
Figures A to C are inferred by GRNboost2 , and figure D to F are inferred by
STN.
The x-axis of all the figures is the labels of the Wnt networks and the y-axis is
the different days. The colorbar in figures A and B indicates the True positive
rate(TPR), the colorbar in B and E indicates the False positive rate(FPR) and
the last colorbar in figures C and F indicates the ratio between TPR and FPR .
Figure A: How well GRNboost2 is predicting the regulators. The TPR in the
networks are between 0.005 to 0.034. This means in the best case scenario,
when we are trying to predict 100 regulators only 3.4 are truly regulators.
Figure B shows the performance of predicting non regulation, FPR of the net-
work is between 0.0075 to 0.024 (remember that we want this number close to
zero). Figure C shows the ratio between TPR and FPR if the number is above
one it is predicting better than random, the ratio is between 0.39 and 2.4, which
shows we are predicting better than random for some of the networks. This is
mostly due to the fact that GRNboost does not predict many regulators. Fig-
ures D to F Show the performance of STN. Here we see many days have a TPR
of zero, and the days which are not zero have a performance in a similar range
to GRNboost2. Here the number of predictions is even lower, which makes some
of the days look better than GRNboost2.
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The performance shown in figure 3.22 can be explained in two ways: The
validation network of the mouse is not very close to that of a human even in the
Canonical network or the assumption of similar gene-expression between genes
is a bad estimate for predicting regulators in mice. It could also be mixture of
the two explanations.

3.3.3 Robustness of STN and GRNboost2

To see how robust the results in figure 3.22 are, we have run five simulations of
STN and GRNboost2 with sub-sampling of half the cells for day 6.5 and 7.5.
We have calculated the means and standard deviance of the FPR and TPR
for both the network inferred by GRNboost2 and STN. Every data-point is a
different Wnt-subnetwork’s performance. Before we start on the analysis, we
need to make some small comments about the plot in figure 3.23 It is a method
normally use in machine learning to showcase the performance of a predictor.
The good thing about this kind of plot is prediction performance above the red
line is better than a random estimator and the prediction performance below is
worse than random, since TPR needs to be higher than TFP.
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Figure 3.23: Robustness of methods for inferring regulatory networks.
Figure A shows GRNboost2 robustness, notice the large variance in standard
deviations between different networks and days. Only four out of eight networks
have a performance better than random.
Figure B: The robustness of STN, notice how many networks have a TPR of
zero and a standard deviation of zero, and a minimal variance between the false-
positive rates. In contrast to other networks, which have a sizeable standard
deviation compared to the predictor performance. Overall we can confirm that
both STN and GRNboost2 by themselves are not suitable methods for infer-
ring gene-gene regulations for the mouse. This is because almost none of the
predictions of the regulators are correct.
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Chapter 4

Discussion

Our main question was:
Hypothesis:
Can we infer a gene regulatory network based on regression trees that capture
the underlying gene-gene regulation of a mouse’s embryonic developmental
stages?
To answer this question, we have four steps we need to go through

1) What data are we using, and where does it come from?

2) What methods are we using to infer the network, and what are the
underlying assumptions of the method?

3)How does the network structure evolve over the days?

4) Can we find the profiles of essential genes’ for survival?

5) How do we validate our network’s performance?

4.1 What data are we using, and where does it
come from?

In the introduction to the theory section, we commented on the lack of cells for
all the days. Day 9.5 lacked the most cells. The lack of cells could contribute
to a different network since a small number of nodes can significantly impact
the network structure, but we have a high number of nodes meaning above 105,
which means the distributions would not change that much. The validation of
the methods for inferring the regulating would not change either, since most of
the genes from the Wnt network are already present in the current networks.
There are two ways to improve the data to make more conclusive statements.
One could start with taking cells on days 5.5 and 6, so we can get the transi-
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tion from pre-gastrulation to gastrulation. This would highlight the transition
which happens between 120 cells to 1000, which indicates a significant struc-
tural change. The second way, is to get more timestamps between the days
6.5 to 9.5, since one day is too much time. We can not see how the networks
transition into each other. So, in conclusion, the dataset is a good fit for the
question asked. A dataset with more cells could improve a small aspect of the
results but nothing significant. A better time resolution would allow us to see
the transition between the stages.

4.2 Underlying assumptions of the method
used to infer the networks?

We used a regression tree-based method called GRNboost2 based on earlier
results on single-celled yeast data, with a high ratio between TPR and FPR,
around 0.86 AUROC, which is way better than random. The performance
for GRNboost2 on our single-celled mouse data was only slightly better than
random, so around 0.5 AUROC. The validation set is not optimal since it is
from a human. However, there are overlapping regulators, so some of the days
should have decent performance for the canonical Wnt network, which both the
mouse and the human have in common, but that was not seen in the results.
Because of this, we have concluded that the underlying assumption that genes
need to be placed in the same cell is a bad way to estimate regulators based
on single celled RNAsec data from mice. In future studies, clustering the genes
before using the methods based on regression trees could potentially increase
the performance. We have not commented on STN since its performance was
terrible, with zero corrected predictions for eight networks. The rest of the
networks still have a slightly better performance than random, due to the lack
of predictions. If methods for clustering are used before inferring the regulation,
a single tree should not be used to infer the networks. A single regression tree
puts too much importance on a few genes, since it has a learning rate of 1. The
methods which use multiple trees do not necessarily have this problem, if the
learning rate is low like stochastic gradient boosting.

4.3 How does the network structure evolve
across the period?

GRNboost2 networks showed that nodes with high degrees would cluster to-
gether over the days. The ratio between the number of edges and nodes de-
crease over the period as well. The network ranking from least dependent to
most dependent on nodes with low valued properties: day 9.5,8.5,7.5 and 6.5.
Day 9.5 clearly gets impacted more by nodes with high properties compared to
the other days. If we compare theses results to the biology it predicts that early
gastrulation is more hierarchical than late gastrulation and early organogene-
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sis. This does make some sense since most of the restructuring of the embryo
and cell differentiation happens before organogenesis. STN predicts the total
opposite, that organogensis has a more hierarchical structure than gastrulation.
One comment to be made is that the stages happen differently from mouse to
mouse, so our prediction is that day 6.5 is gastrulation, day 7.5 and 8.5 are the
transition between the stages and at day 9.5 we reach organogensis. This could
be confirmed by having a day 10.5.

4.4 Can we find the profiles of essential genes
for survival?

Both GRN2boost and STN predict that essential genes regulate a larger number
of genes, that they get regulated by more genes and that they tend to be more
central for regulation on the network. For GRNboost2, the flow was conclusive;
essential genes are regulated more. For STN, the essential genes’ tendency
shifted during the days. The central tendency was that essential genes were
less likely to be regulated a lot. Day 6.5 and 9.5 were inconclusive, since there
was statistical evidence of essential genes and viable genes coming from the
same distribution, but the means were different. These results show that the
regression tree does capture some of the underlying biology but does not capture
the regulation. Our guess is that essential genes are expressed in more cells than
viable genes, and that this is what the regression tree are picking up on due the
genes finding essential genes to be more similar to them self.

4.5 How do we validate our network’s perfor-
mance?

We chose to validate our method for inferring gene- regulatory networks by
comparing the network to the human wnt network. We did this because of
the lack of studies with specific pathways for the regulation in mice. This
has influenced our validation since we do not have a precise estimate of the
overlap of genes and how they regulate each other. This gives our results from
the validation section less significance, but we know some genes overlap with
humans, so we expect some percentiles of the predicted regulators to be correct.
This leads us to conclude that the underlying assumption of modern methods
that genes placed in the same cell are more likely to regulate each other is not
a good fit for single-celled data from a mouse in this period.
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4.6 Did the methods capture the underlying
gene-gene regulation

The answer is clearly no it does not capture the regulation. However, it does
capture the similarity between genes, which is why the methods are still very
good at separating the essential and non-essential genes. This also means that
changes in the network structure are based on the similarity between the genes
and not the regulation.
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Appendix A

Statistical test

A.1 Kolmogorov-Smirnov two sample test

Estimates a probability for two samples coming from the same underlying dis-
tribution. The test does this by comparing the larges distance between the
distribution of two samples, which returns a statistical threshold based on the
significance level α you choose. The threshold and the statistical difference can
be calculated the following way

Dn,m = supx|F1,n(x)− F2,m(x)| (A.1)

Dn,m is the statistical difference
F1,n is distribution of sample n at all point along x
F2,m is distribution of sample m at all point along x
supx is the maximal bound of the distribution

we can now calculate the threshold for Dn,m by giving in our confidence
level α

Dn,m >

√
−ln(

α

2
) · 1

2
·
√

n+m

m · n
(A.2)

α is the minimal confidence level we accept
n number of points in sample n
m number of points in sample m
if Dn,m is above the threshold, we can reject the hypotheses that both sample
come form the distribution.

A.2 Welch’s t-test

The test estimates the probability of how likely two samples have the same mean.
It does this by comparing the distance between means, the degree of freedom,
and the variance of the samples in a combined distance t and a combined degree
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of freedom ν. It assumes the distribution of the samples follows a Gaussian
distribution but does not assume the two samples have the same variance as the
standard t-student-test do. To calculate the statistics distance t for the Welsh’s
t-test, we need to use the following equation:

t =
X̄1 − X̄2√

σX1√
N1

2 + σX2√
N2

2
(A.3)

X̄i mean of sample i
σXi

is the standard deviance of sample i
Ni is the number of points in sample i
t statistical difference

we can now calculate the combined degree of freedom the following way:

ν =
(
σ2
1

N1
+

σ2
2

N2
)2

σ4
1

N1∗ν1
+

σ4
2

N2∗ν2

(A.4)

νi is the degree of freedom for the sample i which is Ni − 1

we can now calculate the p-value by giving ν and t as input. If p is
below the significance level, we can reject the hypotheses.
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Appendix B

Flow conservation

B.0.1 Is flow preserved form day to day ?

Flow measures how often a gene gets a visit during a random surf on the net-
work. Flow is highly correlated with in degree and is a mixture of in degree, a
stochastic element. Flow also captures important network patterns like loops
and bottlenecks.

B.0.2 Modular Structure

The Direct Flow in section 2.7.1 can also be used to estimate areas that have
more common relations than others. These areas are called clusters or modules.
Modules are based on how long a Random surf is in a specific area. Modules
are a construct, meaning the user of the algorithm chooses how detailed the
modules should be. The framework can be seen as the view in google maps;
when we zoom in, we get more detailed information about an area like specific
countries, buildings, lakes, etc., but less overview of the earth. If we zoom
out, we have less detailed information about the area, but more overview of
more general structure like oceans, continent and land borders. The parameter
which controls the detail level is ”Markov time”, which sets the bar for how
long time a specific area of the graph should be visited to become a module.
Low values of Markov time meaning less than one, is detailed modules. High
Markov time meaning above one has less detailed modules but captures more
overall structure. The mathematical formula can be described in the following
way.

modules (B.1)

STN

Looking at the STN in figure 3.7 b, we can see that days 7.5 and 8.5 are closely
related in flow; they only have a few genes indifference. Day 6.5 does not
correlate with anything. Day 9.5 has a flow closer to 7.5 and 8.5 but only with
half of the genes in common.
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GRN2boost

Looking at figure 3.7, we see that all the days look similar except for days 6.5
and 9.5 because they have fewer genes than 7.5 and day 8.5. Day 7.5 and 8.5
have a specific module, which is the same for both days. (Looking the biology
in section 2.1.1, the most similar stages of the mouse are late gastrulation day
7.5 and early organogenesis 8.5. ) These results could indicate that a subset of
genes regulates the early formation of organs in this period. These results also
agree with the correlation between properties and out degree versus in degree
section.

Figure B.1: Alluvial Diagram from day 6.5 to 9.5 for both STN and GRNboost2
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Appendix C

out and in degree
distribution on log log plots

log log can easily showcase when things are a distributed as a power law if we
do a first order polynomial fit between multiple point 3 + and they are on the
that line.

C.1 GRNboost2

(a) (b)

Figure C.1: GRNboost2 degree in and out distribution on log log plot
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C.2 STN

(a) (b)

Figure C.2: GRNboost2 degree in and out distribution on log log plot
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Appendix D

FPR and TPR for depth 5
and 10

(a) Single tree with max depth 5

(b) Single tree with max depth 10.

Figure D.1
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Appendix E

Wnt-correlation

E.0.1 Wnt-mice-correlation different days

Figure E.1: In figure 3.4 a GRNboost2s Wnt correlation matrix, we can see
that day 6.5,8.5 and 9.5 has a Pearson correlation between them of 0.15 and
0.26 seems these days has a overlap of a decent amount of gene expression. Day
6.5 as the only day has a correlation of 0.11 to day 7.5 in the higher range than
correlation of day 8.5 and 9.5 to day 7.5 of only 0.09 and 0.06, this lead to a
small hit that day 7.5 is different from the other days. When we compare with
figure 3.5b STN, we can see day 6.5 to 8.5 has a low correlation between them.
We can see that day 6.5 and 9.5 is positively correlated with 0.1 and that 9.5
has a negative correlation to day 7.5 and 9.5 between -0.13 and -0.2. This lead
us to the conclusion that small change is happening from day 6.5 to 7.5 and
from day 7.5 to 8.5 and between 8.5 and 9.5 a drastic change happens which
has a small similarity to the gene expression of day 6.5.
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