
UNIVERSITY OF COPENHAGEN

MASTER THESIS

Porting DISPATCH MHD to GPU Using
Directive-Based Programming

Author:
Michael HAAHR

Supervisors:
Troels Haugbølle

Åke Nordlund

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science in Physics

in the

Centre for Star and Planet Formation
Niels Bohr Institute

June 1, 2021

https://www.ku.dk/english/
https://di.ku.dk/Ansatte/?pure=da/persons/477681
https://www.nbi.ku.dk/english/staff/?pure=en/persons/12830
https://www.nbi.ku.dk/english/research/astrophysics/?pure=en/persons/35229
https://globe.ku.dk/research/starplan/
https://www.nbi.ku.dk/english/

iii

Declaration of Authorship
I, Michael HAAHR, declare that this thesis titled, “Porting DISPATCH MHD to GPU
Using Directive-Based Programming” and the work presented in it are my own. I
confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

UNIVERSITY OF COPENHAGEN

Abstract
Faculty of Science

Niels Bohr Institute

Master of Science in Physics

Porting DISPATCH MHD to GPU Using Directive-Based Programming

by Michael HAAHR

The use of directive-based programming for porting HydroDynamics (HD) and Mag-
netoHydroDynamics (MHD) computations to the GPU has been investigated. Both
OpenMP and OpenACC HD implementations have been tested, but only OpenMP
has been used for MHD. The use of asynchronous execution and pinned memory
in OpenMP is not supported by the GCC compiler, and it was not possible to get a
running version with the Cray or LLVM compiler. To hide overhead and keep the
GPU busy it was found necessary to bunch together multiple patches. With bunch-
ing, comparing 1 GPU to 40 CPU cores gave a speedup of around 3 for the MHD
implementation. The MHD implementation has been integrated into DISPATCH as
a new type of solver. A module for bunching DISPATCH tasks has likewise been
added. The new solver, MHD_Bunch, has been validated with a 1D MHD shock
tube experiment and the Orszag-Tang Vortex experiment. The MHD_Bunch GPU
implementation is around 1.7 times faster than the MHD_Bunch CPU implementa-
tion, and around 2.9 times faster than DISPATCH/RAMSES.

Overall, the goal of porting DISPATCH MHD solver to GPU has been a success
and a production-ready solver and bunching module have been implemented into
DISPATCH.

HTTPS://WWW.KU.DK/ENGLISH/
https://www.science.ku.dk/english/
https://www.nbi.ku.dk/english/

vii

Acknowledgements
First and foremost, I would like to thank my supervisors, Troels Haugbølle and Åke
Nordlund, for providing guidance and assistance throughout the project. Their help
laid the foundation, both technical and theoretical, on which the thesis is built.

I would also like to give special thanks to Sven Karlson, for the invaluable insight
into fine details of GPU hardware and programming.

I would also like to acknowledge the assistance of the Danish e-infrastructure
Cooperation (DeIC) especially in the early phases of the project. Specifically, I would
like to thank René Løwe Jacobsen and Tethys Svensson.

Lastly, I would like to acknowledge access through a PRACE preparatory alloca-
tion to Piz Daint at CSCS, Switzerland, which allowed me to test the code in a Cray
environment.

ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Introduction 1

2 Theory 3
2.1 Hydrodynamics . 3

2.1.1 Finite Volume Method . 4
2.1.2 Riemann Problem . 4
2.1.3 Wave Speed and Characteristic Variables 5
2.1.4 Wave Solutions . 7

Shock Waves . 7
Rarefaction Waves . 8
Contact Waves . 9
Waves summary . 10

2.1.5 Riemann Solvers . 10
Godunov Method . 10
HLL . 11
HLLC . 13

2.1.6 Wave-Speed Estimates for HLL and HLLC 14
2.2 MUSCL Type Solvers . 14

2.2.1 Primitive Variables . 15
2.2.2 Slope Limiters . 15
2.2.3 Prediction . 16
2.2.4 Interface Values . 17
2.2.5 Riemann Solver . 17
2.2.6 Flux update . 18

2.3 Magneto Hydrodynamics . 19
2.3.1 Governing Equations . 19
2.3.2 HLLD: Riemann Solver for MHD 19
2.3.3 HLLD 2D - stable magnetic flux corrections 21
2.3.4 MUSCL Extensions for MHD . 22

Primitive Variables . 22
Slopes . 23
Predict . 23
2D predictions . 23
Calling the HLLD 2D . 24

2.4 Summary . 25

x

3 DISPATCH 27
3.1 Motivation and Key Ideas . 27
3.2 Tasks . 28
3.3 Task Scheduling . 28

4 the Central Processing Unit (CPU) 31
4.1 Purpose of the CPU . 31
4.2 The Memory Model . 32

4.2.1 Virtual Memory . 33
4.2.2 Cache Coherence . 34
4.2.3 False Sharing . 34

5 Graphics Processing Units (GPU) 35
5.1 Accelerator Programming . 35
5.2 GPU Architecture . 36
5.3 CUDA . 37

5.3.1 Loops in CUDA . 38
5.3.2 Defining Grid and Blocks in CUDA 39
5.3.3 Handling GPU-CPU Memory Movement 40
5.3.4 Latency Hiding . 41
5.3.5 Streams . 41
5.3.6 Pinned Memory . 42
5.3.7 Bank Conflict . 43
5.3.8 Recap of Optimal GPU Performance 43

5.4 Directive-Based Programming . 43
5.4.1 OpenMP . 44
5.4.2 OpenACC . 46

Comparing OpenMP and OpenACC 47

6 Implementation 49
6.1 DISPATCH Mockup . 49

6.1.1 Mockup.f90 . 49
6.1.2 Muscl.f90 . 49
6.1.3 Riemann.f90 . 49

6.2 Proof of Concept . 50
6.2.1 OpenACC . 50

OpenACC v0.1 . 50
OpenACC v0.2 . 51
OpenACC v0.3 . 52
OpenACC v0.4 . 52
OpenACC v0.5 . 53
OpenACC v0.6 . 54

6.2.2 OpenMP . 55
OpenMP v0.1 . 55
OpenMP v0.2 . 55
OpenMP v0.3 . 56

6.3 HLLD . 56
6.3.1 Code Refactoring . 56

Dimension Representation . 56
Refactoring Trace3D . 57
DISPATCH/Ramses Errors . 58

xi

Symmetry in Trace3d . 59
Optimizing HLLD 1D for GPU 59
Optimizing HLLD 2D for GPU 59

6.4 DISPATCH Integration . 60
6.4.1 offload_mod . 60
6.4.2 bunch_mod . 61

7 Results 63
7.1 Experimental Setup . 63

7.1.1 Desktop System . 63
7.1.2 STENO . 63

7.2 Proof of Concept Runtimes . 63
7.3 Optimal Dimension Layout . 65
7.4 HLLD Runtime . 68

7.4.1 GPU Dependency of Bunch Size and Threads 68
7.4.2 CPU Comparison . 68

7.5 Integration Validation . 72

8 Discussion 77
8.1 Current State . 77
8.2 Remaining Issues . 77
8.3 Extensions to the Bunching Module . 78

8.3.1 Dynamic Bunching . 78
8.3.2 Other Solvers . 78

8.4 Reducing Memory Footprint . 78
8.5 Other Compilers . 79
8.6 Different approaches . 79

8.6.1 OpenACC/OpenMP Hybrid . 79
8.6.2 CUDA/C . 79

8.7 Comparison With GenASIS and GENE Codes 79

9 Conclusion 83

A Corner values, y- and z-direction 85

B Compiler installation 87
B.1 PGI . 87
B.2 GCC . 88

C OpenACC v0.1 update 91

D Orszag-Tang experiments 93

Bibliography 95

xiii

List of Figures

2.1 Control volume of 1D conservation laws 4
2.2 Average values for each grid point. Dashed line represent interface

between cells. 5
2.3 Riemann problem and characteristic wave 5
2.4 Riemann structure for M variables and solution for 2 variables. 7
2.5 Relation between flux and value for a convex flux function. The upper

part shows the initial condition and the lower part shows the corre-
sponding flux characteristics for the different values. The region be-
tween x(1)0 and x(4)0 is expansive and the region between x(4)0 and x(7)0
is compressive. 8

2.6 Shock and rarefaction waves for convex flux function. 9
2.7 Shock wave, contact discontinuity, and rarefaction wave. Arrows in-

dicate the direction of characteristics on either side of the wave. 10
2.8 10 different solutions for the Euler equations evaluated at x

t = 0 de-
pending on the wave speeds. a1-5) shows solutions with positive par-
ticle speed and b1-5) shows solutions with negative particle speeds.
Bold lines indicate shock, dashed lines indicate contact discontinuity,
a fan of four lines indicates a rarefaction wave, and a pair of two lines
indicates a wave of unknown character. 12

2.9 Control volume for HLL solver with signal velocities SL and SR. 3
distinct regions exists after time T: [xL, TSL] , [TSL, TSR] and [TSR, xR].
Dashed lines indicate contact discontinuity and two lines indicate a
wave of unknown characteristics. 13

2.10 The true values for some variable is shown in red and the integral
average shown as constant lines in each grid cell. 15

2.11 Left and right interface values in each direction 17
2.12 Left and right array values are used as right and left values in the

Riemann problem respectively. Calculated flux is stored in index (i,j,k)
(down-staggered). 18

2.13 six-state HLLD solver for MHD. 20
2.14 Magnetic field and EMF location are represented with array index val-

ues. x, y, and z and denoted with index i,j,k respectively. 22
2.15 Corner values in each direction. t1 and t2 denote the first and second

transverse direction. 24
2.16 Cell corner values to edge-centered corner values in the x-direction.

SW, SE, NW, NE values are used to solve the 2D Riemann problem
and calculate EMF. 25

3.1 Flowchart showing a simplified execution flow of DISPATCH within
a single node. 29

4.1 Main differences in GPU and CPU architecture. 31

xiv

4.2 Simple memory hierarchy for a dual-core system. Only cache and
main memory are shown in the figure. 32

5.1 Streaming Multiprocessor overview (Negrutn, 2013) 36
5.2 GPU achitecture (Dr. Momme Allalen, 2020) 37
5.3 CUDA structure. Basic execution flow a CUDA program is shown

to the left, and the inner structure of the grid is shown to the right.
Processing units are divided into a grid of blocks, each with a unique
block id. Blocks are further divided into threads with a thread id,
which is unique in that block. Threads have shared memory in a
block, while threads of different blocks can only communicate via
global memory. Grid and block structure may be 1D, 2D, or 3D. (No-
bile et al., 2014) . 38

5.4 Difference between pinned and non-pinned memory transfer from
host to device. More communication and data transfer are involved
in non-pinned memory making it slower than pinned memory. 42

5.5 Fork-join execution of OpenMP program. Parallel regions may be
nested within parallel regions. 44

6.1 Profiling of the first OpenACC implementation with the use of NVIDIA’s
visual profiler, nvvp. There is substantial overhead in each kernel call
and delay between Riemann kernels(light blue) because of host-to-
device communication. 51

6.2 Profiling of the second OpenACC implementation with the use of
NVIDIA’s visual profiler, nvvp. Much of the idle time has been cut
off, but the individual kernels take longer. 52

6.3 Profiling of the third OpenACC implementation with the use of NVIDIA’s
visual profiler . 52

6.4 Profiling of the fourth OpenACC implementation with the use of NVIDIA’s
visual profiler. The kernel launch overhead is largely gone, and the
GPU is active a larger percentage of the time. There is still no latency
hiding. 53

6.5 Profiling of the fifth OpenACC implementation with the use of NVIDIA’s
visual profiler. Multiple kernels are being executed at the same time,
and data transfer is happening while some kernels are executing. . . . 54

6.6 DISPATCH execution flow with the added bunch module. 60

7.1 Relative speedup of GPU implementations compared to CPU. 64
7.2 Optimal index test on CPU . 66
7.3 Optimal index test on CPU using a different array for reading and

writing. 66
7.4 Optimal index test on GPU . 67
7.5 Optimal index test on GPU, ignoring largest runtimes. 67
7.6 Optimal runtimes sorted by bunch size and number of threads for

different numbers of total patches. 68
7.7 Runtime and relative speedup using different numbers of CPU threads.

For each patch size and thread count, only the time of the best per-
forming bunch size is shown. For the GPU only the time of the best
bunch/thread combination is stored . 70

7.8 Runtime and relative speedup for a large number of patches. 71

xv

7.9 Profiler of MHD implementation for 240 patches, running 10 updates
with a bunch-size of 48 and using 2 threads. 71

7.10 1D shock tube test with initial condition (ρL = 1, vx L = 0, vyL =
0, vzL = 0, El = 1, ByL = 1, BzR = 0) and (ρR = 0.21, vxR = 0, vyR =
0, vzR = 0, ER = 1, ByR = 1, BzR = 0) for the left and right states. 73

7.11 Side by side snapshots of DISPATCH/RAMSES solution and MHD_Bunch
implementation running the Orszag-Tang experiment on a 512x512
grid. There is a slight mismatch in the later time steps 75

7.12 Side by side snapshots of DISPATCH/RAMSES solution and MHD_Bunch
implementation running the Orszag-Tang experiment on a 1024x1024
grid. There is a slight mismatch in the later time steps 76

8.1 Runtime and speedup comparing 1 GPU to 7 CPU thread. 81

A.1 Corner values for y- and z-direcitions 85

D.1 Different outcomes for the Orszag-Tang experiments. 94

xvii

List of Tables

4.1 Table of reference timings for different memory actions. Taken from
http://norvig.com/21-days.html##answers 33

http://norvig.com/21-days.html####answers

xix

Listings

5.1 Fortran vs. CUDA format . 39
5.2 Specifying grid-block structure . 39
5.3 Initiating arrays/variables on the device 40
5.4 Adding stream to function call . 41
5.5 Parallel directive of a structured block (Mattson, He, and Koniges, 2019) 44
5.6 Target and target data directive for OpemMP 45
5.7 Optimal parallel structure of loops . 46
5.8 OpenACC parallel and data region . 46
6.1 Update subroutine in early mockup . 49
6.2 Update subroutine in first OpenACC version. 50
6.3 Compiling subroutines with loops for device execution 51
6.4 Pseudocode for parallel use of linked list 53
7.1 loop structure to determine optimal storing 65
C.1 Update function in first OpenACC version. 91

xxi

List of Abbreviations

PDE Partial Differential Equation
IC Initial Ccondition
MHD MagnetoHydroDynamics
HLL Harton Lax and van Leer
HLLC Harton Lax and van Leer Contact
HLLD Harton Lax and van Leer Discontinuities
MUSCL Monotonic Upstream-centered Scheme for Conservation Laws
EMF ElectroMotive Force
CPU Central Processing Unit
FLOPS Floating Point Operations Per Second
NUMA Non-Uniform Memory Access
GPU Graphics Processing Unit
CUDA Compute Unified Device Architecture
HIP Heterogeneous-Computing Interface for Portability
API Application Programming Intrface
GPGPU General Purpose GPU
SM Streaming Multiprocessor
SIMT Single Instruction Multiple Thread
OpenMP Open Multi-Processing
OpenACC Open ACCelerators
LB Left Bottom
LT Left Top
RB Right Bottom
RT Right Top

xxiii

List of Symbols

ρ density kg m−3

u x velocity m s−1

v y velocity m s−1

w z velocity m s−1

px x momentum kg m s−1

py y momentum kg m s−1

pz z momentum kg m s−1

p pressure kg m−1 s−2

e energy kg m2 s−2

Bx or A x magnetic field flux kg A−1 s−2

By or B y magnetic field flux kg A−1 s−2

Bz or C z magnetic field flux kg A−1 s−2

Ex x edge-averaged electromotive force kg m A−1 s−3

Ey y edge-averaged electromotive force kg m A−1 s−3

Ez z edge-averaged electromotive force kg m A−1 s−3

c+ or c− courant number dimensionless
ca Alfvén velocity m s−1

cs slow magneto acoustic velocity m s−1

c f fast magneto acoustic velocity m s−1

1

Chapter 1

Introduction

Numerical simulations have long been a key source of knowledge in astrophysics.
Simulations have greatly increased our understanding of everything from cosmol-
ogy scales down to planet formation. Particularly, the application of the equations
of magnetohydrodynamics (MHD) has given key insight into non-trivial physical
systems.

The methods used in MHD have become more and more sophisticated and have
constantly pushed the limit of the available hardware at any given time. Different
techniques have been employed to utilize the available compute resources. Par-
ticularly, the block-based mesh and block-based adaptive mesh refinement (AMR;
Berger and Oliger, 1984) techniques are widespread. Both block-based mesh and
AMR can be almost-trivially converted to run in parallel on different compute nodes
by dividing the mesh into smaller blocks and distributing the blocks.

However as supercomputers are becoming ever larger, these methods face is-
sues with scalability. DISPATCH is a task-based simulation framework that aims to
solve the scalability problem, which most simulation frameworks face today. Unlike
standard meshed, which has a global timestep, each block (or task) in DISPATCH
has its own timestep. This means that large-timestep blocks are not slowed down
by small-timestep blocks, increasing the overall performance. MHD may be solved
near-independently in each block, with the only dependency being on neighboring
blocks. This reduces overall communication and allows for better dynamic load
balancing for both inter- and intra-node. DISPATCH has been shown to possess
near-optimal weak and strong scaling (Nordlund et al., 2018).

With the exascale supercomputer about to come online, frameworks like DIS-
PATCH will become essential for large simulations. In the next-generation super-
computers such as LUMI1 and FRONTIER2, the majority of the compute power
lies in accelerators (GPU). To run efficiently on these machines DISPATCH must be
adapted to use GPUs. GPUs have extremely high throughput but require a lot of
work per memory transfer to be favored over standard CPU execution. MHD codes
such as RAMSES (Teyssier, 2002) are computationally intensive and are therefore
ideal for GPU execution.

Accelerating computations with the GPU is an active research topic. The GenA-
SIS code (Budiardja and Cardall, 2019) was accelerated using a mix of Fortran and
C. FARGO3d (Benitez-Llambay and Masset, 2016) is a fully GPU-based framework
written solely in CUDA. Most recently several approaches for GPU accelerated were
investigated in the GENE code (Germashewski et al., 2021), which ultimately de-
cided on using CUDA C++.

Both GenASIS and GENE are written in Fortran, but use CUDA/C or CUD-
A/C++ to offload code to the GPU. GENE (Germashewski et al., 2021) did try using

1https://www.lumi-supercomputer.eu/
2https://www.olcf.ornl.gov/frontier/

https://www.lumi-supercomputer.eu/
https://www.olcf.ornl.gov/frontier/

2 Chapter 1. Introduction

only OpenACC and OpenMP but did not pursue this due to limited compiler sup-
port at the start of their project. Similar conclusions were made in the early stages
of this thesis, but with the newest GCC version, OpenMP offload saw much better
support. In this thesis, the use of OpenMP, and briefly OpenACC, is examined as a
means to port the DISPATCH/RAMSES solver to GPUs. An almost complete refac-
toring of the code was found necessary as large and complicated functions are not
well suited for GPU execution.

It was found necessary to bunch several tasks together and execute all at the
same time for the GPU version to be favorable. In addition to the solver, a bunching
module has been added to the DISPATCH framework. Simulations using both GPU
solver and bunching-module have been tested and validated to produce the same
result down to machine precision for a single timestep. Two experiments have been
carried out the validate the solver: A 1D MHD shock tube (Ryu and Jones, 1995) and
the Orszag-Tang Vortex (Orszag and Tang, 1979).

The thesis is divided as follows. Chapter 2 gives an overview of the physi-
cal theory and numerical methods of hydrodynamics and magnetohydrodynam-
ics. Chapter 3 gives a detailed description of DISPATCH and its task-based struc-
ture, which separates it from other frameworks. In Chapter 4 and 5 the fundamen-
tals of CPU and GPU architecture are explained, as well as the basics of directive-
based programming. Chapter 6 goes through the various changes made to the DIS-
PATCH/RAMSES MHD code to get it GPU ready. Chapter 7 goes through the results
showing both correctness and speedup of the GPU version as compared to the ex-
isting code. Chapter 8 comments on the current implementation as well as possible
future extensions and compares the results to other works. Lastly, chapter 9 gives
the conclusion of the thesis.

3

Chapter 2

Theory

2.1 Hydrodynamics

Hydrodynamics is the study of liquids in motion. In the context of astrophysics,
liquid is used rather broadly, to also include gas. This section focuses on the govern-
ing equations of hydrodynamics and the numerical methods used in the thesis. The
description and figures are based largely on Toro (2009), and follows the notation
given there.

A hydrodynamic system is, in the simplest sense, described by the Euler equa-
tions for conserved variables. The conserved variables are density, momentum (x,y,z),
and energy:

ρt + (ρu)x + (ρv)y + (ρw)z = 0 (2.1)

(ρu)t + (ρu2 + p)x + (ρuv)y + (ρuw)z = 0 (2.2)

(ρv)t + (ρu + v)x + (ρv2 + p)y + (ρvw)z = 0 (2.3)

(ρw)t + (ρu + w)x + (ρvw)y + (ρw2 + p)z = 0 (2.4)

Et + [u(E + p)]x + [v(E + p)]y + [w(E + p)]z = 0 (2.5)

Where u, v, and w are the velocities in the x-, y-, and z-directions, E is the total
energy, p is the pressure and ρ is the density. The subscripts denote derivatives of
the respective variables; t, x, y, and z. The total energy is given by E = ρ(1

2 V2 + e),
where V2 = u2 + v2 + w2 and e is the internal energy per unit mass.

The laws in equations 2.1-2.5 relates the change over time in mass, momentum,
and energy to the changes in space. The equations all sum to zero, as all changes in
time must be caused by a displacement in space, e.i., they are conserved. In some
cases, a source term might be added to the right side to factor in any work done by
some outside force. This is however not considered in the thesis.

The equations are often written in vector form, which can simplify many expres-
sions. The vector form is shown below and will be used in the rest of the section.

Ut + F(U)x + G(U)y + H(U)z = 0 (2.6)

Where:

U =

ρ

ρu
ρv
ρw
E

 , F(U) =

ρu

ρu2 + p
ρuv
ρuw

u(E + p)

 , G(U) =

ρv

ρvu
ρv2 + p

ρvw
v(E + p)

 , H(U) =

ρw

ρwu
ρwv

ρw2 + p
w(E + p)

(2.7)

Throughout this chapter F and F(U) is used interchangeably.

4 Chapter 2. Theory

2.1.1 Finite Volume Method

FIGURE 2.1: Control volume of 1D conserva-
tion laws

Finite volume methods are a class of
methods used for evaluating partial dif-
ferential equations with the use of vol-
ume and surface integrals. In order to
use the finite volume method, equation
2.6 is put in integral form. For the 1D
case, this can be written as:∮

[Udx− F(U)dt] = 0 (2.8)

A control volume can be defined in
space and time. If the control volume
is defined as V = [xL, xR] × [t1, t2] the
equation can be further simplified. The
control volume given here is a rectangle
as shown in figure 2.1. Under this as-
sumption equation 2.8 becomes:

∫ xR

xL

U(x, t2)dx =
∫ xR

xL

U(x, t1)dx +
∫ t2

t1

F(U)(xL, t)dt−
∫ t2

t1

F(U)(xR, t)dt (2.9)

This equation states that any control volume can be updated by calculating the net
flux over the surface area of the volume. The method holds in higher dimensions.

With equation 2.9 in mind, any 1D experiment can be updated in time by splitting
the space into M finite volumes. Each grid point will hold the volume average value
for mass, momentum, and energy. This allows us to simplify 2.9 to:

Ut+1
x = Ut

x + F(U)x− 1
2
− F(U)x+ 1

2
= Ut

x + F(U)L − F(U)R (2.10)

The fluxes going into the volume elements are calculated at the interface of the grid
cell. Thus, the i’th grid cell will have F(U)L = F(Ui− 1

2
) and F(U)R = F(Ui+ 1

2
).

The basic idea of average values, cell center, and interfaces are shown in figure
2.2. The problem in the finite volume method is thus reduced to finding the fluxes
in and out of each grid cell for each time step. The methods used for this are the
so-called Riemann Solvers, described in the following sections

2.1.2 Riemann Problem

The setup shown in figure 2.2 gives rise to several Riemann problems. A Riemann
problem is a special group of partial differential equations and initial conditions for
which follows:

PDE : Ut + AUx = 0

IC : U(x, 0) = U0(x) =

{
UL if x < 0
UR if x > 0

(2.11)

The structure of the Riemann problem is shown in figure 2.3 for a single PDE,
whereas equation 2.11 is written for multiple PDEs. Figure 2.3b shows 1 wave em-
anating from the origin with a characteristic speed, a. The example here is that of

2.1. Hydrodynamics 5

FIGURE 2.2: Average values for each grid point. Dashed line repre-
sent interface between cells.

linear advection where the characteristic speed is a constant and does not change
depending on the value of U. In the general case, there will be multiple nonlinear
waves propagating from the origin. The speed and nature of the waves are discussed
below.

(A) Initial condition for the Riemann problem (B) Wave propagation for the Riemann problem

FIGURE 2.3: Riemann problem and characteristic wave

2.1.3 Wave Speed and Characteristic Variables

The matrix A in equation 2.11, which describes the type of waves can be expressed
as:

A = KΛK−1 (2.12)

Where Λ is a diagonal matrix of the eigenvalues, λi, and the columns in K are the
corresponding eigenvectors. For a system with m entries in U, this gives rise to m
eigenvalues. Each eigenvalue represents a wave propagating from the origin with a
speed of λi. The structure of the general solution is seen in figure 2.4a.

The introduction of K allows us to define a new set of variables, W, for which:

W = K−1U or U = KW (2.13)

6 Chapter 2. Theory

Substituting this into equation 2.11 gives a new set of PDEs:

KWt + AKWx = 0 (2.14)

By multiplication of K−1 this becomes:

Wt + ΛWx = 0 (2.15)

This equation is referred to as the canonical or characteristic form of the system. The
characteristic form becomes a set of decoupled partial differential equations of the
form:

∂wi

∂t
+ λi

∂wi

∂x
= 0 (2.16)

The left and right initial conditions may be expanded as a linear combination of the
eigenvectors. This can be used to write the general solution at any position. The left
and right initial condition can be written as:

UL =
m

∑
i=1

αiK(i) , UR =
m

∑
i=1

βiK(i) (2.17)

Initial data can be obtained from setting w(0)
i (x) = αi if x < 0 and w(0)

i (x) = βi if
x > 0. From this, the solution at a later time can be found using

wi(x, t) = w(0)
i (x− λit) =

{
αi if x− λit < 0
β if x− λit > 0

(2.18)

Thus, for a given coordinate (x,t), there is an eigenvalue λI such that λI <
x
t < λI+1.

This means that for all i ≤ I it holds that x − λit < 0 and for all i > I it holds that
x− λit > 0. In terms of the original variables, α and β, and I the general solution be
be written as:

U(x, t) =
m

∑
i=I+1

αiK(i) +
I

∑
i=1

βiK(i) (2.19)

For a system with only 2 variables, the result corresponds to what is shown in
figure 2.4b. Here UL and UR can be written in terms of α and β as:

UL = α1K(1) + α2K(2), UR = β1K(1) + β2K(2) (2.20)

These can be combined to find the values in the star region

U∗(x, t) = β1K(1) + α2K(2) (2.21)

Given U and A, U∗(x, t) can be uniquely found. A solution for any time at x = 0 can
then be derived as:

U(0, t) =

UL if λ1t > 0
U∗ if λ1t < 0 < λ2t
UR if λ2t < 0

(2.22)

The solution to the Riemann problem with 2 variables thus becomes a matter of
calculating the wave speeds, and choosing the pre-defined solution (UL, U∗ or UR)
accordingly. This solution is the basic notion of the HLL-solver, discussed in section
2.1.5.

2.1. Hydrodynamics 7

(A) Structure of the Riemann problem for m vari-
ables

(B) Riemann problem for a system of 2 variables.
Riemann solution found at x = 0. the solution is

here in the Star region

FIGURE 2.4: Riemann structure for M variables and solution for 2
variables.

2.1.4 Wave Solutions

So far, only the case of linear advection has been considered, where a wave travels at
a constant speed, which does not change depending on the value of U. In the non-
linear case where the characteristic speed is a function of U, distortions in the wave
are produced. Consider the case of a single variable for which the characteristic
speed is a convex function of the value u. Here u is used to denote that it is only a
single value and not a vector. Such a setup is illustrated in figure 2.5. As the figure
shows, two distinct regions occur.

The expansive region from x1 to x4 occurs because the flux characteristic at x2 is
larger than at x1, the flux characteristic at x3 is larger than at x2 and flux characteristic
at x4 is larger than at x3. The value of u4 will thus propagate faster than u3, which
will propagate faster than u2, which will propagate faster than u1. This will result in
a broader and flatter region.

The compressive region from x4 to x7 occurs for the opposite reasons as the ex-
pansive region. In the compressive region, u7 propagate slower than u6, which prop-
agate slower than u5 etc. This region will become narrower and steeper.

The following subsections describe the three fundamental wave types. uL and
uR are scalar variables with the flux assumed to be convex.

Shock Waves

Shock waves are small transition layers of very rapid change in physical quantities.
Because the transition layers are physically small they are very well represented as
mathematical/numerical discontinuities. Figure 2.6a shows the setup resulting in a
shock wave. The values of uL are higher than uR. uL will thus propagate faster than
uR. This is the extreme case of the compressive region discussed in the previous
section. The overlap of characteristics will result in a shock wave. The shock wave
propagates with a speed S. Shock waves satisfy the Rankine-Hugoniot condition. For
the scalar case, this is

S =
∆ f
∆u

(2.23)

where ∆ f = f (uR)− f (uL) and ∆u = uR − uL. Additionally, shock waves satisfy
the entropy condition:

λ(uL) > S > λ(uR) (2.24)

8 Chapter 2. Theory

FIGURE 2.5: Relation between flux and value for a convex flux func-
tion. The upper part shows the initial condition and the lower part
shows the corresponding flux characteristics for the different values.
The region between x(1)0 and x(4)0 is expansive and the region between

x(4)0 and x(7)0 is compressive.

That is, the characteristics to the left of the shock waves are larger than those to the
right. The solution to a shock wave becomes

u(x, t) =

{
uL if x− St < 0
uR if x− St > 0

(2.25)

Rarefaction Waves

Rarefaction shocks occur when uL < uR and the entropy condition from shock waves
are violated. The setup can be seen at the top of figure 2.6b. It is mathematically cor-
rect to keep the same solution from equation 2.25, but the solution is not physically
correct and is therefore not used.

The setup here is the extreme case of the expansive wave, and one would there-
fore expect a more smooth transition, rather than a shock. This smooth region will
slowly expand. The bottom of figure 2.6b shows the Tail and Head of the expansion.
To the left of the Tail, the solution will be uL and to the right of the Head to the so-
lution will be uR. The speed of the Head will be given by the characteristics of the
right side, λR. and the speed of the Tail will be given by the characteristics of the left
side, λL.

In between the Head and Tail, there will be a family of waves that takes on all
values between λL and λR. The solution in this region will thus depend on the
position, u(x, t), between the Head and Tail. The general solution for inviscid flow
with convex flux becomes:

2.1. Hydrodynamics 9

u(x, t) =

uL if x

t < λL
x
t if λL < x

t < λR

uR if x
t > λR

(2.26)

(A) From top to bottom: Initial condition, charac-
teristics, and resulting shock wave.

(B) From top to bottom: Initial condition, charac-
teristics, and resulting rarefaction waves.

FIGURE 2.6: Shock and rarefaction waves for convex flux function.

Contact Waves

Contact waves (or discontinuities) are waves for which both the Rankine-Hugoniot
condition and the Generalised Riemann Invariants hold and that have parallel char-
acteristics:

λL = λR = S (2.27)

The Generalised Riemann Invariants are relations between the changes in wi and the
respective right eigenvector component ki. Here wi and ki refer to the characteristic
variables described in section 2.1.3. For the Generalised Riemann Invariants to hold
the following must hold:

dw1

k(i)1

=
dw2

k(i)2

= ... =
dwm

k(i)m

(2.28)

10 Chapter 2. Theory

FIGURE 2.7: Shock wave, contact discontinuity, and rarefaction wave.
Arrows indicate the direction of characteristics on either side of the

wave.

Waves summary

Three different types of solutions representing different waves can occur in the Rie-
mann Problem. The solutions are outlined in figure 2.7. In the previous sections,
only the scalar case has been discussed. However, the wave types extend to vec-
tor cases with UL and UR where the characteristic of each wave is given by λi from
equation 2.16. For a system of m variables, each of the m different waves may be
any of the three types.

2.1.5 Riemann Solvers

The goal of Riemann Solvers is to provide a computationally feasible solution to
the general Riemann problem. For the thesis, only the solvers based on the Harten
Lax and van Leer (HLL) method are considered. These methods include the later
extensions such as the HLLC and HLLD. The HLL, HLLC and HLLD are methods
for estimating the flux at the interface (figure 2.2) between cells. This flux is referred
to as the Godunov flux.

Godunov Method

Before introducing the Godunov method, a quick recap of the numerical first-order
upwind scheme is needed, as the Godunov method is an extension to this scheme.

Partial derivatives of PDE’s are often calculated numerically on either side of the
cell:

ux =
ut

i − ut
i−1

∆x
(2.29)

or

ux =
−ut

i + ut
i+1

∆x
(2.30)

Each of these is a viable mathematical approach. Depending on the sign of the wave
propagation, sign(a), one of the solutions will be unstable and the other will be
stable. The stable solution will be the upwind scheme. For positive a equation 2.29
is the upwind scheme and for negative a, it will be equation 2.30. When updating a
cell from time t to time t + 1 the two equations can be combined into:

ut+1
i = ut

i − c+(ut
i − ut

i−1)− c−(−ut
i + ut

i+1) (2.31)

2.1. Hydrodynamics 11

where the Courant numbers c+ and c− are based on wave speeds:

c+ =
∆ta+

∆x
, c− =

∆ta−

∆x
(2.32)

where a+ = a and a− = 0 if a ≥ 0, a+ = 0 and a− = a if a < 0. Choosing a time step
such that 0 < |c±| < 1 ensures that the scheme is conditionally stable.

While the above upwind scheme is stable, it is not conservative. Equation 2.31
can be changed to instead use intercell flux, which makes it conservative. For a PDE,

Ut + F(U)x = 0 (2.33)

the conservative numerical method becomes

Ut+1
i = Ut

i +
∆t
∆x

(Fi− 1
2
+ Fi+ 1

2
) (2.34)

The Godunov flux, Fi− 1
2
, is an approximation of the physical flux. As explained

in section 2.1.4, the flux is assumed to be dependent on the value of U, i.e. Fi− 1
2
=

F(Ũi− 1
2
). Here, Ũi− 1

2
is the solution to the Riemann Problem with initial left and

right states UL = Ui−1 and UR = Ui. In order to calculate the Godunov flux, the
Riemann problem must be solved for both i− 1

2 and i + 1
2 .

For the Euler equations, there will at each interface be 10 possible solutions to the
Riemann problem as illustrated in figure 2.8. The Euler equations have 5 variables,
which means 5 wave patterns. Here, only three are shown as the contact discontinu-
ity wave has multiplicity 3.

HLL

The HLL Riemann solver was proposed in 1983 by Harten Lax and van Leer (Harten,
Lax, and Leer, 1983). The purpose is to directly compute an approximate flux at the
cell interface, i± 1

2 . The approximation is done by assuming that two waves separate
the left and right states. Between the two waves the solution, U∗, is assumed to be
constant. The central idea is similar to the two-variable system sketched in figure
2.4b. The HLL solver approximates the fastest signal velocities SL and SR. How the
values are approximated and how this affects the solver will be discussed in section
2.1.6. This creates a control volume for which the average value after a timestep
can be calculated using integrals. This approach is sketched in figure 2.9. This is
very similar to figure 2.1, but there are now 3 distinct regions instead of 1 at time
T. These are the regions between [xL, TSL], [TSL, TSR] and [TSR, xR]. Note that a
contact discontinuity is sketched but is not used to split the solution into additional
regions.

The Godunov flux at x
t = 0 depends on which regions this falls under. If SL ≥ 0,

the intercell flux is determined by the values in the left region,[xL, TSL], or F(UL).
Similarly, if SR ≤ 0 the values lie in the [TSR, xR] region and the flux becomes F(UR).
If SL < 0 < SR the flux is determined by the variables in the star region, [TSL, TSR].
Putting this into a single equation the HLL flux, Fhll , is given by:

Fhll =

FL, if SL ≥ 0
SRFL−SLFR+SLSR(URUL)

SR−SL
, if SL < 0 < SR

FR, if SR ≤ 0

(2.35)

12 Chapter 2. Theory

FIGURE 2.8: 10 different solutions for the Euler equations evaluated
at x

t = 0 depending on the wave speeds. a1-5) shows solutions with
positive particle speed and b1-5) shows solutions with negative par-
ticle speeds. Bold lines indicate shock, dashed lines indicate contact
discontinuity, a fan of four lines indicates a rarefaction wave, and a

pair of two lines indicates a wave of unknown character.

2.1. Hydrodynamics 13

FIGURE 2.9: Control volume for HLL solver with signal velocities SL
and SR. 3 distinct regions exists after time T: [xL, TSL] , [TSL, TSR] and
[TSR, xR]. Dashed lines indicate contact discontinuity and two lines

indicate a wave of unknown characteristics.

where FL = F(UL) and FR = F(UR). The HLL flux can be calculated sequentially in
each dimension, and the conservative property still holds.

The shortcoming of the HLL solver is in the assumption that the star region is
constant. This assumption works well for shock waves, but does not properly eval-
uate rarefaction waves and tends to dissipate contact discontinuities.

HLLC

The HLLC is an extension to the HLL solver, which aims at solving the issue of the
dissipation of contact discontinuities (Hence "C" for contact). In the HLLC approach,
the star region is split into the left and right star region, U∗L and U∗R. This creates
4 regions separated by 3 waves. The left and right most waves are referred to as SL
and SR as in the HLL, and the middle wave is referred to as S∗ or SM. Equation 2.35
can be extended to

Fhllc =

FL, if SL ≥ 0
F∗L, if SL < 0 < S∗
F∗R, if S∗ < 0 < SR

FR, if SR ≤ 0

(2.36)

Where F∗L = F(U∗L) and F∗R = F(U∗R). For the Euler equations, the left and right
fluxes in the star region in the x-direction are calculated by:

F∗L =
S∗(SLUL − FL) + SL(pL + ρL(SL − uL)(S∗ − uL))D∗

SL − S∗
(2.37)

F∗R =
S∗(SRUR − FR) + SR(pR + ρR(SR − uR)(S∗ − uR))D∗

SR − S∗
(2.38)

Where D∗ = [0, 1, 0, 0, S∗]. D∗ can be changed when calculating the differences in
the y- and z-direction. The speed of the middle wave can be calculated only based
on SL and SR and initial values:

S∗ =
pR − pL + ρLuL(SL − uL)− ρRuR(SR − uR)

ρL(SL − uL)− ρR(SR − uR)
(2.39)

14 Chapter 2. Theory

2.1.6 Wave-Speed Estimates for HLL and HLLC

The estimates of SL and SR has a big impact on the performance of the algorithm.
As described in Roe, 1981 the smallest, λ1, and largest, λm, eigenvalues for the one-
dimensional equivalent of equation 2.6 is:

SL = λ1 = ũ− ã , SR = λm = ũ + ã (2.40)

where ũ and ã is the Roe-averaged particle and sound speed:

ũ =

√
ρLuL +

√
ρRuR√

ρL +
√

ρR
, ã =

(
(γ− 1)(H̃ − 1

2
ũ)2
)

(2.41)

where enthalpy H = E+p
ρ may be approximated by H̃ =

√
ρL HL+

√
ρR HR√

ρL+
√

ρR
.

A simpler approach was suggested by Davis, 1988 where SL and SR are based
solely on data values:

SL = uL − aL , SR = uR + aR (2.42)

or
SL = min(uL − aL, uR − aR) , SR = max(uR + aR, uL + aL) (2.43)

where aα is the sound speed for ideal gas, calculated by aα =
√

γpα

ρα
. Here the sub-

script, α, denotes either left or right subscript.
The best estimate of left and right wave speed depends on the experiment. De-

pending on the choice, some solver may fail and predict non-physical negative den-
sity. Einfeldt et al., 1991 introduced a subclass of solvers called positively conservative,
which are guaranteed to produce physical results. Einfeldt et al., 1991 further argues
that equation 2.43 is positivily conservative for the HLL solver. Similarly, Batten et
al., 1997 argues that the following wave speed estimates make the HLLC solver pos-
itivity conservative:

SL < uL −

√
γ− 1

2γ
aL , SR > uR −

√
γ− 1

2γ
aR (2.44)

where again, aα =
√

γpα

ρα
.

2.2 MUSCL Type Solvers

The previous sections described the hydrodynamical laws and how to update in a
grid-based system. Each grid cell was assumed to have a constant physical value,
which leads to the Riemann problem at the interface of each grid cell. In reality, the
physical variables will not be constant over the entire cell. This is illustrated in figure
2.10. Here the true value of some variable is shown in red and the integral average
is shown by horizontal lines at each grid cell. As the figure shows some interface
values are poorly described by the cell average. Better values, therefore, need to be
extrapolated to be used by the Riemann Solvers.

Leer, 1979 introduced the Monotonic Upstream-centered Scheme for Conservation
Laws (MUSCL) scheme for extrapolating interface values and update cell-centered
values. The scheme employs a leapfrog-like method. MUSCL type solvers make
predictions at t + 1

2 ∆t. These values are then used in the Riemann problem to find
the flux at time t + 1

2 ∆t. This flux is then used to update the values at time t to

2.2. MUSCL Type Solvers 15

FIGURE 2.10: The true values for some variable is shown in red and
the integral average shown as constant lines in each grid cell.

t+∆t. The generic steps of the MUSCL-type solver as used in DISPATCH/RAMSES
are discussed in the following subsections.

2.2.1 Primitive Variables

As described in section 2.1.3, the conserved variables may be expressed with an-
other set of characteristic variables. For the Euler equations with variables U =
[ρ, ρu, ρv, ρw, E]T the characteristic variables are W = [ρ, u, v, w, p]T. The first vari-
able, density, remains the same, but momentum and energy are replaced with veloc-
ity and pressure.

These variables are in the MUSCL scheme referred to as the primitive variables,
which is also done in the rest of the thesis. The use of these makes the next steps
in the scheme simpler as all steps can be done independently for each Wi in each
dimension when solving in 3D.

2.2.2 Slope Limiters

From the primitive variables, left and right interface values may be extrapolated
based on the gradient between two cells. Artificial numerical oscillations may occur
in simulations, which can cause unrealistic interface values. To suppress this effect,
slope limiters are used. The general idea is that instead of representing ui as the
integral value of a constant function, we may instead think of it as the integral of a
linear function in the region. In other words, the red line in figure 2.10 are in each
cell approximated by a linear function:

ui(x) = un
i +

x− xi

∆x
∆i, (2.45)

where ∆i/∆x is the slope of the cell. This slope is calculated from the physical vari-
ables by looking at the neighbor cells. The simplest estimate is based on the central
derivative, which imposes no limitations on the slope and thus does not suppress
the artificial oscillations. minmod (Yee, 1989) is one of the simpler slope limiters. It
examines the left and right gradient. If the gradients have opposite signs, zero will
be set as the gradient. Otherwise, if the left gradient is positive the minimum of the
left and right gradient is chosen. If the left gradient is negative, the maximum of
the left and right gradient is chosen. This method will often tend to smear sharp

16 Chapter 2. Theory

gradients. Other methods such as the double minmod, superbee, van Albada or van Leer
may alternatively be used. Bai, Yang, and Zhou, 2018 compares the aforementioned
limiters and concludes that "The appropriate limiter should be selected based on actual
cases.".

2.2.3 Prediction

Once the gradient is found predictions are made for the time t + 1
2 ∆t. This is done

purely using the gradient and existing values and is based on a simple forward in
time Euler discretization of the primitive variables:

ρt + uρx + ρux + vρy + ρvy + wρz + ρuz = 0 (2.46)

ut + uux +
1
ρ

px + vuy ++wuz = 0 (2.47)

vt + uvx ++vvy +
1
ρ

py + wvz = 0 (2.48)

wt + uwx ++vwy ++wwz +
1
ρ

pz = 0 (2.49)

pt + upx + uxa2 p + vpy + vya2 p + wpz + wza2 p (2.50)

where a is corresponds to the values such that the eigenvalues becomes (for 1D in
x-direction) λ1 = u − a, λ2 = u and λ3 = u + a. Based on these equations the
predictions are then made as follows

ρn+ 1
2 = ρn +(−u ∗∆ρx−∆ux ∗ ρ)

1
2

dt
dx

+(−v∆ρy−∆vyρ)
1
2

dt
dy

+(−w∆ρz−∆wzρ)
1
2

dt
dz

(2.51)

un+ 1
2 = un + (−u∆ux − (∆px + B∆Bx + C∆Cx)

1
ρ
)

1
2

dt
dx

+ (−v∆uy + B∆Ay
1
ρ
)

1
2

dt
dy

+ (−w∆uz + C∆Az
1
ρ
)

1
2

dt
dz

(2.52)

vn+ 1
2 = vn + (−u∆vx + A∆Bx

1
ρ
)

1
2

dt
dx

+ (−v∆vy − (∆py + A∆Ay + C∆Cy)
1
ρ
)

1
2

dt
dy

+ (−w∆vz + C∆Bz
1
ρ
)

1
2

dt
dz

(2.53)

wn+ 1
2 = wn + (−u∆wx + A∆Cx

1
ρ
)

1
2

dt
dx

+ (−v∆wy + B∆Cy)
1
2

dt
dy

+ (−w∆wz − (∆pz + A∆Az + B∆Bz)
1
ρ
)

1
2

dt
dz

(2.54)

2.2. MUSCL Type Solvers 17

pn+ 1
2 = pn + (−u∆px − ∆uxγp)

1
2

dt
dx

+ (−v∆py − ∆vxγp)
1
2

dt
dy

+ (−w∆pz − ∆wxγp)
1
2

dt
dz

(2.55)

In the equations above, the magnetic fields in x-, y-, and z-directions (A, B, and C)
are included. For now, these can all be assumed to be 0, but they will be further
discussed in the next section when discussing MHD.

2.2.4 Interface Values

The predictions made at time t + 1
2 ∆t are all cell centered. The face-centered values

at t + 1
2 ∆t are then extrapolated by subtracting or adding the half gradient from the

predicted values. It is important to note that the gradient is still the one evaluated at
t while the predicted values are evaluated at t + 1

2 ∆t. In DISPATCH/RAMSES these
values are stored as arrays called left and right, which holds the values in each
direction as sketched in figure 2.11.

FIGURE 2.11: Left and right interface values in each direction

2.2.5 Riemann Solver

The interface values are then used to solve the 1D Riemann problem at each inter-
face in each direction. The Godunov flux values are downstaggered, which corre-
spond to the left interface in each direction. When solving the Riemann problem in
the x-direction for cell (i,j,k), interface values left(i,j,k) and right(i-1,j,k) are
required. An important thing to note here is that the left(i,j,k) actually corre-
sponds to the right values in the Riemann problem and the right(i-1,j,k) values
corresponds to the left values, as sketched in figure 2.12. The Riemann Solver is run
similarly in the y- and z-directions.

18 Chapter 2. Theory

FIGURE 2.12: Left and right array values are used as right and left
values in the Riemann problem respectively. Calculated flux is stored

in index (i,j,k) (down-staggered).

2.2.6 Flux update

The last step in the MUSCL scheme is to use the Godunov flux to update each cell
value. The update is rather simple and can be written as:

Cn+1
val = Cn

val + (f luxn+ 1
2

x (i,j,k) − f luxn+ 1
2

x (i+1,j,k))
dt
dx

+ (f luxn+ 1
2

y (i,j,k) − f luxn+ 1
2

y (i,j+1,k))
dt
dy

+ (f luxn+ 1
2

z (i,j,k) − f luxn+ 1
2

z (i,j,k+1))
dt
dz

(2.56)

Where Cval is any of the conserved variables. Once again, recall that the flux indices
are face-centered.

2.3. Magneto Hydrodynamics 19

2.3 Magneto Hydrodynamics

2.3.1 Governing Equations

The Euler equations (eq 2.6) can be extended to include the magnetic fields in each
direction. For ideal MHD this becomes:

U =

ρ
ρu
ρv
ρw
Bx
By
Bz
E

, F(U) =

ρu
ρu2 + pT − B2

x
ρuv− BxBy
ρuw− BxBz

0
Byu− Bxv
Bzu− Bxw

u(E + pT)− Bx(v · B)

, G(U) =

ρv
ρuv− ByBx

ρv2 + pT − B2
y

ρwv− ByBz
Bxv− Byu

0
Bzb− Byw

v(E + pT)− By(v · B)

,

H(U)=

ρw
ρuw− BzBx
ρvw− BzBy

ρw2 + pT − B2
z

Bxw− Bzu
Byw− Bzv

0
w(E + pT)− Bz(v · B)

(2.57)

where v = (u, v, w), B = (Bx, By, Bz), p = (γ − 1)(E − 1
2 ρ|v|2 − 1

2 |B|2) and pT =

p + 1
2 |B|2. The flux of the normal magnetic field component is always zero due to

the divergence-free condition of the magnetic field. Note here the introduction of
total pressure, which includes the pressure due to the magnetic fields. Similar to
the Riemann problem without magnetic fields, the problem can be split up in each
dimension and the 1D Riemann problem can be solved at each cell interface.

2.3.2 HLLD: Riemann Solver for MHD

The HLL and HLLC can be extended to include the magnetic fields. However, by
introducing magnetic fields to the equation, rotational discontinuities propagating
with the Alfvén waves occurs. These are not well handled by neither HLL nor HLLC.
Miyoshi and Kusano, 2005 suggested using the same assumptions as HLLC, but
extending the Riemann fan with two additional intermediate states as illustrated in
figure 2.13.

The eigenvalues (waves separating each state) of equation 2.3.1 are well known.
In the 1D case along the x-axis, these are given by:

λ1,7 = SM ± c f , λ2,6 = SM ± ca, λ3,5 = SM ± cs, λ4 = SM (2.58)

where SM is the normal velocity across the fan. This correspond to two Alfvén
waves, ca, four magneto-acoustic waves, cs and c f , and one entropy wave, SM. In
the HLLD solver, cs is not used. The Aflvén and magneto-acoustic waves in the

20 Chapter 2. Theory

FIGURE 2.13: six-state HLLD solver for MHD.

x-direction are given by:

ca =
|Bx|√

ρ
, c f =

(
γp + |B|2 +

√
(γp + |B|2)2 − 4γpB2

x
2ρ

)1/2

(2.59)

For the rest of this chapter I will refer to λ1 = SM − c f L as SL, λ7 = SM + c f R as SR,
λ2 = SM − caL as S∗L, 6 = SM + caR as S∗R and λ4 = SM simply as SM.

Here c f L and c f R are calculated using the left and right region values respectively.
Similarly, caL and caR will be calculated based on left and right star region values,
which is also shown further below.

The normal velocity across the Riemann fan is similar to the HLLC, but with the
total pressure:

SM =
(SR − uR)ρRuR − (SL − uL)ρLuL − pTR + pTR

(SR − uR)ρR − (SL − uL)ρL
(2.60)

The normal velocity and total pressure are assumed to be constant over the fan. The
total pressure is given by:

p∗T =
(SR − uR)ρR pTL − (SL − uL)ρL pTR + ρLρR(SR − uR)(SL − uL)(uR − uL)

(SR − uR)ρR − (SL − uL)ρL
(2.61)

In both HLL and HLLC the star region flux was directly linked to the left/right
flux. In the HLLD scheme, intermediate values in the star and double-star region
are instead calculated and the flux is then calculated according to equation 2.3.1.

In the following, the α subscript denotes either the left or right state. For 1D in
the x-direction, the left and right star region values are given by:

ρ∗α = ρα
Sα − uα

Sα − SM
(2.62)

v∗α = vα − BxByα

SM − uα

ρα(Sα − uα)(Sα − SM)− B2
x

(2.63)

2.3. Magneto Hydrodynamics 21

w∗α = wα − BxBzα

SM − uα)

ρα(Sα − uα)(Sα − SM)− B2
x

(2.64)

B∗yα
= Byα

ρα(Sα − uα)2 − B2
x

ρα(Sα − uα)(Sα − SM)− B2
x

(2.65)

B∗zα
= Bzα

ρα(Sα − uα)2 − B2
x

ρα(Sα − uα)(Sα − SM)− B2
x

(2.66)

e∗α =
(Sα − uα)eα − pTα uα + pTα + p∗TSM + Bx(vα · Bα − v∗α · B∗α)

Sα − SM
(2.67)

These values are then used to determine double-star region values as well as the
Alfvén waves:

S∗L = SM −
|Bx|√

ρ∗L
, S∗R = SM +

|Bx|√
ρ∗R

(2.68)

Furthermore, the transverse velocities and magnetic field can be shown to be con-
stant in the double star region, and we thus do not need to differentiate between left
and right double star region values:

v∗∗ =

√
ρ∗Lv∗L +

√
ρ∗Rv∗R + (B∗yR

− B∗yL
)sign(Bx)√

ρ∗L +
√

ρ∗R
(2.69)

w∗∗ =

√
ρ∗Lw∗L +

√
ρ∗Rw∗R + (B∗zR

− B∗zL
)sign(Bx)√

ρ∗L +
√

ρ∗R
(2.70)

B∗∗y =

√
ρ∗LB∗yR

+
√

ρ∗RB∗yL
+
√

ρ∗Lρ∗R(v
∗
R − v∗L)sign(Bx)√

ρ∗L +
√

ρ∗R
(2.71)

B∗∗z =

√
ρ∗LB∗zR

+
√

ρ∗RB∗zL
+
√

ρ∗Lρ∗R(w
∗
R − w∗L)sign(Bx)√

ρ∗L +
√

ρ∗R
(2.72)

where sign(Bx) = 1 if Bx > 0 and sign(Bx) = −1 if Bx < 0. Finally, the energy of the
double star regions can be found by:

e∗∗α = e∗α ±
√

ρ∗α(v
∗
α · B∗α − v∗∗α · B∗∗α) (2.73)

where the ± is minus for α = L and plus for α = R.
The equations listed above make it possible to compute the flux for each different

region. The final flux is then chosen based on

Fhlld =

FL, if SL > 0
F∗L, if SL ≤ 0 ≤ S∗L
F∗∗L , if S∗L ≤ 0 ≤ SM

F∗∗R , if SM ≤ 0 ≤ S∗R
F∗R, if S∗R ≤ 0 ≤ SR

FR, if SR < 0

(2.74)

2.3.3 HLLD 2D - stable magnetic flux corrections

An issue with the HLLD equations as described in the previous section is that it
does not enforce the divergence of the magnetic field to vanish at all times. Early
MHD solvers fixed this by adding divergence cleaning steps or reformulating the

22 Chapter 2. Theory

FIGURE 2.14: Magnetic field and EMF location are represented with
array index values. x, y, and z and denoted with index i,j,k respec-

tively.

MHD equations (see Ryu et al., 1998 or Brackbill and Barnes, 1980). Fromang, Hen-
nebelle, and Teyssier, 2012 proposed extending the MUSCL variant of HLLD to in-
clude the induction equation in a constrained transport formulation. In this scheme,
the density, momentum, and energy are updated based on the flux found in the 1-
dimensional HLLD equations described in the previous section. From this point, this
will be referred to as the HLLD 1D. The magnetic fields are updated based on the
edge-averaged electromotive force (EMF) found by solving the Riemann problem in
2D. This will be referred to as HLLD 2D.

The magnetic fields are face-centered. In the x-direction the value of Bx(i, j, k)
thus actually represent the value at Bx(i− 1

2 , j, k) and similar for y- and z-direction.
The change in magnetic field can be calculated from time n to n + 1 based on the
edge-centered EMFs calculated from the HLLD 2D as follows:

Bn+1
x (i− 1

2 ,j,k) = Bn
x (i− 1

2 ,j,k)+
En+ 1

2
z (i− 1

2 ,j+ 1
2 ,k) − En+ 1

2
z (i− 1

2 ,j− 1
2 ,k)

dy
dt−

En+ 1
2

y (i− 1
2 ,j,k+ 1

2)
− En+ 1

2
y (i− 1

2 ,j,k− 1
2)

dz
dt

(2.75)
with similar expressions for Bz and By. This expression can be rewritten in term of
array indexes as:

Bn+1
x (i,j,k) = Bn

x (i,j,k)+
En+ 1

2
z (i,j+1,k) − En+ 1

2
z (i,j,k)

dy
dt−

En+ 1
2

y (i,j,k+1) − En+ 1
2

y (i,j,k)

dz
dt (2.76)

If not stated otherwise, the indexes based on array value will be used. An illustration
of the location of the magnetic field and EMF based on array indices can be seen in
figure 2.14. The rest of this chapter will focus on the actual extensions made to the
MUSCL solver to get stable EMF values in the HLLD 2D.

2.3.4 MUSCL Extensions for MHD

Primitive Variables

The primitive variables as described in section 2.2 are extended to also include the
magnetic field in each direction (A, B, and C). In DISPATCH/RAMSES two values
are stored of the magnetic field. The face-centered values are stored in a separate

2.3. Magneto Hydrodynamics 23

BF array. Interpolated cell-centered values are stored in the same array as the other
primitive variables.

Slopes

The slope of the cell-centered magnetic field is calculated identically to the primitive
variables. The slopes of the face-centered magnetic field variables are calculated in
the transverse direction. Face-centered slopes in the same direction as the magnetic
field are not needed.

Predict

Predictions at time t+ 1
2 ∆t are made as described in section 2.2 for density, velocities

and pressure. For the magnetic field, additional steps must be made. First the edge-
centered EMFs as illustrated in figure 2.14 are calculated at time t. This is done by
simple arithmetic averages of the magnetic field and velocities. For example the
EMF En

z (i,j,k) is calculated by:

En
z (i,j,k) = v̄x B̄y − v̄yB̄x (2.77)

with
v̄x =

1
4
(vn

x (i,j,k) + vn
x (i,j−1,k) + vn

x (i−1,j,k) + vn
x (i−1,j−1,k)) (2.78)

v̄y =
1
4
(vn

y (i,j,k) + vn
y (i,j−1,k) + vn

y (i−1,j,k) + vn
y (i−1,j−1,k)) (2.79)

B̄x =
1
2
(Bn

x (i,j,k) + Bn
x i,j−1,k) (2.80)

B̄y =
1
2
(Bn

y (i,j,k) + Bn
y i−1,j,k) (2.81)

Here vx and vy are the cell centered values, and Bx and By are face-centered. The
EMFs are then used to predict the face-centered magnetic fields at time t + 1

2 ∆t. This
is done exactly according to equation 2.76, but with the EMF values at t, and mul-
tiplied with 1

2 dt instead of dt. This gives predictions for the face-centered values of
each magnetic field along their respective direction, which corresponds to left/right
array values. Note that these predictions means that right(A,i,j,k)=left(A,i+1,j,k),
and similar for B and C, further enforcing that the magnetic fields are constant across
the cells.

Lastly, the transverse magnetic field is needed in each direction. This is done by
interpolating the cell-centered magnetic fields and using the cell-centered gradient
similar to how left/right values are calculated for the primitive variables.

2D predictions

To use the HLLD 2D Riemann Solver the full MHD state at each edge must be recon-
structed at time t + 1

2 ∆t. Each edge will have 4 values corresponding to the values
predicted by each cell connected to the edge. As such, edge-centered corner values
are interpolated in each direction. The corner values are labeled as LB, LT, RB, and
RT denoting left/right and bottom/top. Here left/right is used to denote the first
and second edge in the first transverse direction. Similar bottom/top denotes first
and second edge in the second transverse direction. An illustration of the corner
values can be seen in figure 2.15.

24 Chapter 2. Theory

FIGURE 2.15: Corner values in each direction. t1 and t2 denote the
first and second transverse direction.

The predictions for the primitive variables are calculated based on the cell-centered
value and the transverse gradients as follows:

LBρ = ρ− ∆ρ1 − ∆ρ2

LTρ = ρ− ∆ρ1 + ∆ρ2

RBρ = ρ + ∆ρ1 − ∆ρ2

RTρ = ρ + ∆ρ1 + ∆ρ2

(2.82)

Where subscripts 1 and 2 denote gradient in the first and second transverse direction.
Velocities and pressure are calculated in the same way. The magnetic field in the
normal direction (A for dir=1, B for dir=2, and C for dir=3) is calculated similarly
with the cell-centered average of the left and right state along with the cell-centered
gradient.

The transverse magnetic fields on the other hand are calculated using face-centered
values and face-centered gradients. The magnetic field in the first transverse direc-
tion uses the gradient in the second transverse direction. For example, when looking
in the x-direction the RB values are calculated as follows:

RBB = BR− ∆BRz

RBC = CL + ∆CLy
(2.83)

Where BR is the right interface value of B, CL is the left interface value of C, ∆BRz
is the face-centered gradient of B at the right interface in the z-direction and ∆CLy is
the face-centered gradient of C at the left interface in the z-direction. Here left and
right for B is in the y-direction while left and right for C is in the z-direction.

Calling the HLLD 2D

The corner values from the 2D predictions are then used in the HLLD 2D. The values
required by the solver in each cell are the corner values from 4 neighboring cells at
the edges where the EMF is defined. As such, when looking in the x-direction the
HLLD solver requires 4 values in the same position as Ex(i,j,k) in figure 2.14. When
calling the HLLD 2D instead of calling the edge-centered values LB, LT, RB, and RT
they are instead called the SW, NW, SE, and NE values. This is done to highlight the
fact that they are not the same corner values as earlier described. When looking in
the x-direction the LB value of cell (i,j,k) becomes the NE value. LT of cell (i,j,k-1)
becomes SE, RT of cell (i,j-1,k-1) becomes SW and RB of cell (i,j-1,k) becomes NW.

2.4. Summary 25

FIGURE 2.16: Cell corner values to edge-centered corner values in the
x-direction. SW, SE, NW, NE values are used to solve the 2D Riemann

problem and calculate EMF.

This is also sketched in figure 2.16. Similar figures for y- and z-direction can be
found in figure A.1 in the appendix.

2.4 Summary

To summarise this chapter. The MUSCL method for solving HD and MHD equations
has been presented. It is based in part on the volume integral for density, momentum
and energy. ∫

V
U(x, y, z, t1)dV =

∫
V

U(x, y, z, t2)dV+∫ t2

t1

∫
ALX

F(U)(x1, y, z, t)dAdt−
∫ t2

t1

∫
ARX

F(U)(x2, y, z, t)dAdt+∫ t2

t1

∫
ALY

G(U)(x, y1, z, t)dAdt−
∫ t2

t1

∫
ARY

G(U)(x, y2, z, t)dAdt+∫ t2

t1

∫
ALZ

H(U)(x, y, z1, t)dAdt−
∫ t2

t1

∫
ARZ

H(U)(x, y, z2, t)dAdt

(2.84)

where subsript V denotes volume integral, subscript A denotes surface integral and
subscript LX, RX, LY, RY, LZ and RZ denotes left or right interface in x- y- and
z-direction.

It is furthermore based on the integral form of the induction equation:

− ∂B
∂t

dA =
∮

Edl (2.85)

To find the required flux and EMF the full MHD state is reconstructed at the
interface and at the edges of each cell. For interface values slope interpolation is used
inside each cell and the Riemann problem is solved at the interface. The following
steps describe the numerical implementation:

26 Chapter 2. Theory

1. Convert conserved to primitive variables

2. Compute slopes

3. Predict values based on simple Euler time discretization of the primitve vari-
ables

4. Construct predicted states at interface and corners

5. Solve 1D and 2D Riemann problem in each direction

6. Update conserved variables

The following chapters will discuss in practice how the DISPATCH code work and
how the MUSCL solver has been implemented using GPUs.

27

Chapter 3

DISPATCH

The goal of the thesis has been to convert the MHD code of the DISPATCH/RAM-
SES solver to GPU. This chapter aims at giving a brief overview of the DISPATCH
framework.

3.1 Motivation and Key Ideas

There currently exist many different codes for astrophysics fluid simulation. Some
examples are ZEUS (Stone and Norman, 1992), FARGO3D (Benitez-Llambay and
Masset, 2016), BIFROST (Gudiksen et al., 2011), STAGGER (Nordlund, Galsgaard,
and Stein, 1994), and GenASIS (Cardall et al., 2014). These codes are at their core
grid-based. Traditional grid-based codes distribute equal-sized chunks of the over-
all grid to each available compute unit. Timesteps may be computed locally, but are
applied globally, which both gives rise to extra communication and also waste of up-
date cost since all cells must respect the most restrictive timestep constraint encoun-
tered. Additionally, the amount of computations needed to advance different parts
of the grid may differ, especially in cases with Adaptive Mesh Refinement(AMR).
All this means that traditional codes only scale well up to a limit on the number of
cores used. One might partially compensate for this by custom fitting a code specif-
ically to the system it is to be run on. However, as discussed in Dubey et al., 2014,
modern codes are too large to be realistically modified to run optimally on a given
machine/architecture. Dubey et al., 2014 therefore reasons, that existing codes must
be refactored, and new frameworks must be designed, aimed specifically for scala-
bility.

DISPATCH (Nordlund et al., 2018) is a relatively new framework, which aims to
solve the scalability problems that traditional codes face. DISPATCH breaks with the
traditional domain-decomposition strategy. Instead of statically splitting up a grid
into relatively large chunks, smaller chunks are used and are represented as Fortran
objects (referred to as extended data types in Fortran). These hold several time slices
of the grid-values, and also meta-data, such as location, mesh information, time,
timestep, etc. These chunks are in DISPATCH referred to as patches, which are one
type of extension to a basic, underlying task concept.

The patch organization allows timestep constraints to be applied locally, which
reduces update costs significantly in cases where the allowed time step varies a lot.
It also enables dynamic load balancing as patches can freely be exchanged between
compute nodes. Each patch is updated individually and only communicates with
neighboring patches to exchange guard/ghost zones. Advancing patch values for
hydrodynamic, MHD, or radiative transfer can be done locally in each patch. If
multiple types of updates are to be made on the same patch separate tasks may be
created for MHD and radiative transfer, for example. While typically not executing
as a separately scheduled task, the exchange of ghost zones and similar services

28 Chapter 3. DISPATCH

are handled by procedures that are independent of the solvers, which makes the
development of new solvers, or porting of existing solvers to GPU much easier.

What tasks need to be updated and the order in which this happens is controlled
by a central task scheduler, which dispatches the tasks inside each compute node.

3.2 Tasks

The concept of tasks is central to the DISPATCH framework. As mentioned above,
patches are grid-based extensions of basic task objects in DISPATCH, with task ID,
flags, etc.

As both DISPATCH and OpenMP are used in this thesis, it is important to note
that tasks have different meanings depending on the context. When discussing OpenMP
a task is best defined as "a schedulable unit of work defined by a region of code plus a data
environment" (Mattson, He, and Koniges, 2019). When discussing DISPATCH a task
is simply an extended data type, which carries information such as task number,
readiness, and more.

In practice, a DISPATCH task is often implemented inside an OpenMP task re-
gion. For performance, multiple DISPATCH tasks may be scheduled together inside
a single OpenMP region if there are direct dependencies or small DISPATCH service
tasks that are better executed with other work to avoid scheduling overhead.

The basic task object in DISPATCH may be extended to represent many different
things, such as single finite-size objects with complex interiors (stars, planets, ...),
ensembles of millions of particles (e.g. dust), or bundles of rays of light, describing
radiative energy transfer.

This creates a hierarchy for the different types of task-specific data commonly
used. The task object holds the basic information about the task (ID fx.) as mentioned
above, and related methods (such as giving unique ID numbers to tasks). Next in
the hierarchy, the patch object adds information and methods related to the spatial
properties of such as size, number of cells, guard zones, physical variables, and co-
ordinate system. Further up is the solver object, which holds information and proce-
dures related to the specific solver (fx. MHD, HD, or radiative transfer). And lastly,
the experiment object holds experiment-specific and procedures, including boundary
and initial conditions.

Tasks are furthermore organized into a task list, whose nodes (called links in DIS-
PATCH to avoid confusion with compute nodes) contain pointers to the tasks. The
link objects also contain information about the neighboring tasks on which the cur-
rent task depends or vice versa. The DISPATCH main program calls the execute
procedure in the tasks list object, which in turn calls update on each task in the ready-
queue of tasks that are ready to be updated until all tasks are finished.

3.3 Task Scheduling

The task scheduler is the novel technique that separates DISPATCH from other codes.
A simplified flowchart is shown in figure 3.1. The figure show only intra-node
scheduling and ignore the dispatching of tasks between nodes.

As described above, each patch object has some meta-information about the
patch. Part of this is the patch’s readiness. Readiness is used to determine if the patch
is ready to advance in time. This depends mainly on how far in time the neighbor-
ing patches have advanced. This readiness is checked in the pre-processing part for
figure 3.1.

3.3. Task Scheduling 29

FIGURE 3.1: Flowchart showing a simplified execution flow of DIS-
PATCH within a single node.

Once a patch is ready it is appended to the ready-queue, which is a different type of
task list. The ready-queue is sorted by time, with the oldest task in front. DISPATCH
offers several (currently 6) different modes for dispatching the tasks in the ready
queue.

The first mode, which is also the default one, simply lets threads ’pop’ the queue
to access the oldest task. After updating a task, the thread checks the neighboring
tasks to see if the update has made any neighbor ready. This is done in the post-
process part of figure 3.1. If any ready tasks are found they are added to the queue.
This approach is simple and scales very well. The reason for this is that the time it
takes to pop a task from the queue is very small, and thus even if this needs to be
protected by an OpenMP lock it does not cause significant waiting time.

The other modes were mainly used to evaluate other strategies for dispatching
tasks; e.g. using a single thread exclusively for such work. None of these alterna-
tive strategies turned out to have significant advantages, given the typical range of
cores-per-processor in use today. If much larger numbers of cores per processor be-
come available in the future, it may well pay off to set aside one or more cores to
exclusively do work related to task dispatching.

The above-described scheduling explains how tasks are scheduled within a sin-
gle compute node. DISPATCH may be run on multiple compute nodes. Here, each
node will have its task list, which is a subset of the entire grid. Non-blocking MPI
calls are used to exchange ghost zones for boundary patches in each compute node.
Boundary patches will have a special flag set.

Rather than sending only ghost zones DISPATCH transfers the entire neighbor
patch. This simplifies package creation and also simplifies balancing work between
nodes. This means that patches may be stored on multiple compute nodes. Only

30 Chapter 3. DISPATCH

one node needs to update any given patch. This is handled by setting the boundary
flag to virtual instead.

This also makes load balancing easier. Because entire patches are exchanged,
load balancing requires no extra data exchange between nodes. If for example node
1 is overloaded, and node 2 has little work, the virtual patches on node 2 may simply
change the flag from virtual to boundary. Similarly, these patches on node 1 will
change status from boundary to virtual, and node 2 will have more work to do while
node 1 has less.

31

Chapter 4

the Central Processing Unit (CPU)

To better understand the considerations needed to program for GPUs, a brief overview
of the CPU is needed. The goal of this chapter is to highlight the most important fea-
tures and potential problems of the CPU. Many of these features are hidden from
the programmer, and as such are often not considered during development.

4.1 Purpose of the CPU

FIGURE 4.1: Main differences in GPU and CPU architecture.

The main purpose of the CPU is to process data. The CPU needs to be able to
handle branch prediction, arithmetic, as well as input/output operations. All this
needs to happen with low latency.

To support such a general workload, the CPU needs to be able to support multi-
ple different memory access patterns. This is most effectively done by having a large
cache and a large portion of the CPU is therefore dedicated to memory. A large part
of the CPU is also dedicated to the control unit, which maintains and handles what is
being stored and what instruction to be executed next. This leaves only a small part
of the CPU for actual computation. This structure is sketched in figure 4.1, which
also shows the main differences between a CPU and GPU.

32 Chapter 4. the Central Processing Unit (CPU)

FIGURE 4.2: Simple memory hierarchy for a dual-core system. Only
cache and main memory are shown in the figure.

When programming for the CPU, it is therefore common practice to try to elim-
inate redundant computations as much as possible. This is however not always ad-
vantageous as fetching from the L1 cache is still slower than a single computation.
When the approach is taken, it often comes at the cost of having many local vari-
ables and storing intermediate values. On the CPU this is not a problem as there is
plenty of storage for the variables. On the GPU storage is limited but computations
are inexpensive and as such require a different programming approach.

The rest of the chapter will focus on the memory model, as optimizing memory
transfer is the most important part of GPU programming. It is therefore necessary
to know how memory is managed on the CPU compared to the GPU and how this
can affect performance.

4.2 The Memory Model

Today, a state-of-the-art CPU may run at around 5Ghz (5 ∗ 109 cycles per second).
An operation such as a multiplication of two floating-point numbers takes around 1
clock cycle. This means that a typical CPU can theoretically run 5 · 109 Floating Point
Operations Per Second (FLOPS) or five GFLOPS. This estimate does not take into
account any form of instruction-level parallelism. Many modern CPUs are capable
of executing over 16 instructions per clock cycle.

To perform arithmetic operations the CPU needs to have the values in registers.
Moving data from main memory to registers takes a long time compared to a single
clock cycle (see table 4.1 for reference). For this reason, modern computers come
with a memory hierarchy, that not only consists of a disk and main memory, but also
several smaller and smaller caches ending with the registers. Data is moved between
system memory, main memory, and caches in chunks. Between system memory and
main memory, these chunks are referred to as blocks and between main memory
and cache are referred to as cache lines. Blocks are moved as programs often access
memory stored in close proximity. This is true both for data and for instructions. For
example, if one instruction is selected for execution there is a high probability that
the next instruction in memory will be executed after. Similarly, if index i in an array
is used in a for-loop, chances are that index i + 1 will be referenced soon thereafter.

4.2. The Memory Model 33

This spatial locality is a key idea for the performance of the cache system. Programs
are however not forced to adhere to spatial locality.

A simple overview of the memory hierarchy for a dual-core system can be seen
in figure 4.2. Each core has its own L1 cache. The two cores share an L2 cache, which
is connected to a larger L3 cache, which is then connected to the main memory. The
main memory is in turn connected to some disk, and the computer will most likely
be connected to other computers via the internet. The further away from the cores
the longer it takes to read from the corresponding memory. As it can be seen in table
4.1, reading from main memory is on the order of 500 times slower than executing a
typical instruction.

The CPU will generally try to keep things as close to the CPU (or core) as possi-
ble to avoid idle wait time. This works well for single-core CPUs but can have some
negative impact on multi-core systems. If core 1 has a value in its L1 cache and core
2 needs access to that value, there is substantial overhead in the transfer. Thus, dif-
ferent cores may have different access times for the same memory. This is generally
referred to as Non-Uniform Memory Access (NUMA).

Modern CPUs and compilers are very advanced, and for general-purpose com-
puting, they can make very good predictions on how to best store and move data in
the memory. However, a downfall to the generality of the modern CPU and compil-
ers is that they handle everything well, but not optimally.

execute typical instruction 1/5.000.000.000 sec = 0.2 ns
read from L1 cache memory 0.5 ns
branch misprediction 5 ns
fetch from L2 cache memory 7 ns
Mutex lock/unlock 25 ns
fetch from main memory 100 ns
send 2K bytes over 1Gbps network 20.000 ns
read 1MB sequentially from memory 250.000 ns
fetch from new disk location (seek) 8.000.000 ns
read 1MB sequentially from disk 20.000.000 ns
send packet US to Europe and back 150 milliseconds = 150.000.000 ns

TABLE 4.1: Table of reference timings for different memory actions.
Taken from http://norvig.com/21-days.html#answers

4.2.1 Virtual Memory

Virtual memory is a memory management technique employed by the operating
system. It is an abstraction of the memory system, which simplifies memory man-
agement within each program. Each program will have its virtual memory. This
memory will be seen as contiguous by the program. From the perspective of the
program, it looks as if it has uncontested access to all main memory. The operating
system and hardware will map each programs virtual memory to physical memory.
Contiguous memory in a program’s virtual memory is not guaranteed to be con-
tiguous in physical memory. Having virtual memory also allows a program, which
requires more memory than physically available to run without errors.

The translation between physical and virtual memory happens in the Memory
Management Unit (MMU), which is located on the CPU in modern computers. Vir-
tual memory is usually stored in chunks of 4096 bytes called pages. This is referred

http://norvig.com/21-days.html##answers

34 Chapter 4. the Central Processing Unit (CPU)

to as a memory frame when referencing the physical memory counterpart. Each
process will have its page table, which holds information about address translation;
going between virtual and physical memory. If a page is referenced and it is not in
the main memory, it is called a page fault.

To reduce access time the MMU has a memory cache called the Translation Looka-
side Buffer (TLB). The TLB is essentially a cache for the page table. Due to the large
size of the page table typical miss rate is only around 0.01− 0.1% (Negrutn, 2013).

The distinction between virtual and physical memory becomes important for
memory transfer between CPU and GPU, which will be discussed in more detail in
section 5.3.6.

4.2.2 Cache Coherence

Cache lines are constantly moving between the different levels of the memory hi-
erarchy. The CPU will have a cache coherence protocol, which makes sure that all
cores see the same values in memory. This means that when a core updates a cache
line, it will invalidate any other copies. The next use of the cache line will thus be
forced to reload the most recent value. A detailed explanation of how this is handled
is beyond the scope of this thesis.

4.2.3 False Sharing

False sharing refers to a severe decrease in performance due to multiple cores com-
peting for access to the same cache line. As explained above, data is moved between
caches in chunks called cache lines. Let two different variables X and Y be stored
in the same cache line. If core1 tries to access X and core2 tries to access Y they will
both request the cache line to be stored in their L1 cache. As explained above, only
one core may have control over a cache line at a time and will as such invalidate the
other core’s copy of the cache line. If each core updates X and Y multiple times, they
will keep on invalidating the other core’s copy of the cache line, which can severely
impact performance.

A typical cache line is 64 bytes (Mattson, He, and Koniges, 2019). When making a
for-loop run in parallel over an array with 8-byte values one might want to distribute
at least 8 values to each core if the cache size of typical size (8x8 = 64). There is
however no guarantee that each cache line will be filled with 8 values used by the
same core, as values may be stored staggered.

35

Chapter 5

Graphics Processing Units (GPU)

5.1 Accelerator Programming

As discussed in the last chapter, the CPU is a very good general-purpose machine.
The CPU works incredibly well on a single core due to the complex control logic
and data management, but only a small fraction of the transistors is dedicated are
used for actual computations. GPUs (and other accelerators) devote much fewer
transistors to control and memory and instead focuses on throughput as is shown in
figure 4.1. The GPU is more restrictive and should not be used for all applications,
but can vastly outperform the CPU when parallelism can be exploited.

Most simulations work on large arrays where each index must be updated as
time progresses. If an update of an array index does not depend on other indices (or
at least only locally), it can easily be parallelized to run on an accelerator. There exist
different types of accelerators, but the Graphics Processing Unit (GPU) is by far the
most common option. The high peak performance makes GPUs incredibly useful in
computational physics, where the data access patterns are regular and algorithms
can be executed with the single-instruction-multiple-data paradigm.

This chapter will describe the basic architecture of the GPU, how to program it
low-level and slowly build up to the more abstract high-level directive-based pro-
gramming. It will focus on CUDA and NVIDIA terminology. For example, NVIDIA
refers to a collection of cores on the GPU as a Streaming Multiprocessor while AMD
refers to this as a SIMD unit. The different vendors use slightly different terminol-
ogy, but the basic ideas remain the same and should translate fairly easily.

The CUDA part of the chapter is largely based on the CUDA C Programming
Guide (NVIDIA Corporation, 2020).

36 Chapter 5. Graphics Processing Units (GPU)

5.2 GPU Architecture

The GPU as separate computer hardware was invented in the 90s as a tool to solve
the toughest computational problem in mainstream computers: Rendering Graph-
ics (McClanahan, 2011). NVIDIA was the first to release a ’true’ GPU in 1999 and
came to define a GPU as "a single-chip processor with integrated transform,
lighting, triangle setup/clipping, and rendering engines that is capable
of processing a minimum of 10 million polygons per second"(GPU: Changes Ev-
erything). 8 years later in 2007 NVIDIA released its CUDA development environ-
ment, which allowed the complex graphics rendering hardware to be used for general-
purpose computing. The corresponding hardware is commonly referred to as Gen-
eral Purpose GPU (GPGPU). To understand how this works, the basic architecture
setup of a modern GPU will be explained, before explaining the development envi-
ronment, CUDA, and the more high-level approaches of directive-based program-
ming.

FIGURE 5.1: Streaming Multiprocessor overview (Negrutn, 2013)

Because of the vast
amount of cores on the
GPU, cores are par-
titioned into groups.
Each group is called
a Streaming Multipro-
cessor (SM). The im-
portant distinction be-
tween CPUs and GPUs
is that instructions are
carried out by the SM
rather than individual
cores. SMs are thus the
GPU equivalent of a
core. A SM is sketched
in figure 5.1. As the
figure shows, there are
multiple cores in a sin-
gle SM. The overall
structure of the GPU is
sketched in figure 5.2.

Each SM has a ded-
icated amount of space
for registers. This
means that, unlike CPU
cores, the cores here
share register space. If one executes code that requires a lot of variables in regis-
ters per core, the cores can compete for register space, which heavily reduces the
throughput. The register file on the new NVIDIA Ampere A100 GPU is 256KB,
which corresponds to 32768 8-byte words per SM.

The cache/shared memory is much smaller than that of the CPU. This means
that each core can only have a few hundred variables in L1 memory. If a variable
is simple it will be better to recompute it when it is needed rather than persistently
storing it.

When executing code on the GPU several threads will be spawned. Instructions
to be carried out by each thread will then be mapped to individual cores. In the

5.3. CUDA 37

FIGURE 5.2: GPU achitecture (Dr. Momme Allalen, 2020)

remainder of the chapter, I will refer to threads rather than cores as the individual
component carrying out instructions.

Threads a grouped for execution by the SM in chunks called warps. The size
of a warp depends on the specific GPU architecture, but the standard is 32. A SM
typically has 2 warp schedulers and the A100 may handle up to 64 warps at a time.
This means that up to 2048 threads may be active in one SM. The warps are created
by the warp scheduler and dispatched to hardware cores. When a warp is being
executed 32 threads will execute the scheduled instructions before being terminated.
Each execution will be referred to as "a thread being executed". An important thing
to note here is that the warp will not terminate until ALL 32 threads are done with
the work. if 31 threads take 1 second to complete, but the last takes 10 seconds, the 31
threads will remain idle until the last is done. Making sure that work is distributed
roughly evenly is therefore very important when programming for GPUs.

Similar to the CPU, a warp may stall because it is waiting for data to be available.
If only 1 warp was active this would have a huge impact on performance. However,
since multiple warps may be active the latency can be hidden, by the warp sched-
uler picking up a different warp. Oversubscription is therefore important for good
performance.

5.3 CUDA

CUDA or Compute Unified Device Architecture is an API model created by NVIDIA
for targeting their GPUs for general purposes. While CUDA is not directly used in
the project, the low-level CUDA functions are indirectly used when using directive-
based programming. A basic understanding of the low-level features is therefore
still useful when using high-level directive programming.

CUDA provides a level of abstraction, which allows the programmer to target
the SM and cores of the GPU without close knowledge of the hardware. The overall
structure of a CUDA program is shown in figure 5.3. To the left in the image is
sketched the execution flow and to the right is the inner structure of the grid. In the

38 Chapter 5. Graphics Processing Units (GPU)

FIGURE 5.3: CUDA structure. Basic execution flow a CUDA program
is shown to the left, and the inner structure of the grid is shown to the
right. Processing units are divided into a grid of blocks, each with a
unique block id. Blocks are further divided into threads with a thread
id, which is unique in that block. Threads have shared memory in
a block, while threads of different blocks can only communicate via
global memory. Grid and block structure may be 1D, 2D, or 3D. (No-

bile et al., 2014)

context of GPU programming, the host refers normally to the CPU. The host is the
place from which kernels are dispatched. A kernel simply means ’A function that
is run on the GPU’. The GPU (or any other accelerator) is referred to as the device.
The left side of the image shows how a normal CUDA program is executed. The
program will start on the host (CPU) and execute instructions. At some point, it will
encounter a call to a kernel (GPU function). This will stop the execution on the host
and move execution to the device (GPU). Once the kernel is completed the host will
resume execution until another kernel is met or the program terminates. The host
can continue in parallel with the kernel execution. This is achieved by running the
kernels asynchronous, which will be discussed more below.

5.3.1 Loops in CUDA

CUDA follows the Single Instruction Multiple Thread (SIMT) execution model. This
means that the same instruction will be performed by many threads. The same in-
struction is carried out by each thread on different data by using thread ID as an
anchor for array indices. This means that CUDA programs will differ from reg-
ular programming. An example can be seen in listing 5.1. The example shows a
simple function for initiating an array. In the normal Fortran function, a do-loop
iterates over each index. In the CUDA version, the loop is removed. Instead, i is
initialized as the threadidx%x, the thread number/index. By spawning 100 threads
with a thread index from 1 to 100 the array will be initialized similarly to the nor-
mal Fortran program. The attributes keyword lets the compiler know that this

5.3. CUDA 39

is a device function. An important thing to note about the below example is that
all data-movement-related CUDA steps are excluded, as this will be discussed later.
The example serves only to show the syntax differences in a simple do-loop function
and corresponding CUDA kernels.

1 subroutine int_fortran(x)
2 real , dimension (:) :: x
3 integer :: i
4 do i = 1,100
5 x(i) = 0
6 end subroutine
7

8 attributes(global) subroutine int_cuda_fortran(x)
9 real , dimension (:) :: x

10 integer :: i
11 i = threadidx%x
12 x(i) = 0
13 end subroutine

LISTING 5.1: Fortran vs. CUDA format

5.3.2 Defining Grid and Blocks in CUDA

Making sure that the correct number of threads is spawned and data is distributed
correctly is the next important part of CUDA programming. This is done by using
the Grid-Block-Thread structure seen in the right part of figure 5.3. CUDA allows
the programmer to define grids of blocks for each kernel. A grid can be 1D, 2D, or
3D and can contain several blocks. The blocks can similarly be 1D, 2D, or 3D and
contain several threads. The thread id is local within a block. A thread can thus be
uniquely referenced globally by using block id, grid size, thread id, and block size.
A thread can also be locally referenced by using only thread id and potentially the
block size. Each block cannot have more than 1024 threads.

The threads required for the above code can thus be initiated in multiple ways.
For example, one could have a grid with a single block that has 100 threads in a 1D
structure. It is also possible to have a grid with 10 blocks in 1D structure, each with
10 threads in 1D. The structure is specified in the call to the kernel as shown below
in listing 5.2. Note that if the second option is used int_cuda_fortran should be
changed to include the block id when specifying i. Another thing to note is that
nothing is preventing the programmer from writing int_cuda_fortran<<<1, 101 >>>,
which will result in an out-of-bound reference of x.

1 !call int_cuda_fortran <<<grid , block >>>(function parameters)
2 call int_cuda_fortran <<<1, 100 >>>(x)
3 call int_cuda_fortran <<<(10,1), (10 ,1) >>>(x)

LISTING 5.2: Specifying grid-block structure

There is, assuming the thread/block id is used correctly, no semantic difference
between the different ways of assigning block/thread id. The difference comes in
performance. In the simple example above the difference will likely not be noticeable
as an array of 100 values is small enough to be cached entirely in shared memory.
For larger problems, this is not true and the difference can be significant.

As shown in figure 5.3 a block has a shared memory. On the hardware level,
this corresponds to the shared memory / L1 cache of an SM. A CUDA block is thus
restricted to have all threads running on the same SM. Since the shared memory is
much faster than the global memory making sure that the data used within a block
can fit in shared memory can have a big impact on performance. The programmer

40 Chapter 5. Graphics Processing Units (GPU)

must adapt the grid-block structure to best fit the problem at hand. The programmer
may choose the dimensions of the grid and block and as such the number of threads
per block. The programmer can however not choose the number of blocks scheduled
for each SM.

The best structure cannot be derived directly from the problem because the hard-
ware plays an important role. A program optimized on the V100 GPU may for exam-
ple not be optimal for the A100 GPU as the A100 has much larger available memory
and cache, and thus would respond differently to the grid and block structure. Simi-
larly, the number of blocks per SM may be differently scheduled on the two devices.
When optimizing CUDA code it is, therefore, necessary to fine-tune the program to
the target hardware.

As mentioned in section 5.2, the actual execution of threads happens in warps
which, usually, consists of 32 threads. For this reason, it is custom that the number
of threads within a block is some multiple of 32. Usually, far more threads than
physical cores are spawned in a kernel. This allows the schedulers to keep multiple
warps going on each SM at all times.

5.3.3 Handling GPU-CPU Memory Movement

The GPU comes with a large L2 cache and its main memory access is structured
similar to the CPU memory model. This allows a large amount of data to be stored
physically closer to the GPU cores making it much faster than if it had to rely on the
CPU main memory. The GPU memory has its own distinct address space separate
from the CPU main memory. When programming CPUs, the CPU and/or compiler
handles all memory transfer from disk to main memory and caches. When program-
ming CUDA code, the programmer has to explicitly handle the memory transfer
from host to device. With CUDA 6 NVIDIA introduced a unified memory where
host and device share address space. This functionality of CUDA has however not
been used in the thesis as the simpler syntax can harm performance.

In Fortran, there are 2 ways to create device variables and arrays. The first more
Fortran-like is to add device to the parameter specification. The second, more C
like is to use the CUDA version of malloc, cudaMalloc. A simple example of this
is shown in listing 5.3. The second option offers more control to the programmer
about when exactly the arrays are initialized. There is however a bigger chance that
something will go wrong, as we often see in C/C++ where pointers are not handled
properly.

1 subroutine host_func1 ()
2 real , device ,dimension (100) :: x,y
3 call device_function <<<*,*>>>(x,y)
4 end subroutine
5

6 subroutine host_func2 ()
7 real , device , allocatable :: x_ptr ,y_ptr
8 call cudaMalloc(x_ptr ,100)
9 call cudaMalloc(y_ptr ,100)

10 call device_function <<<*,*>>>(x_ptr ,y_ptr)
11 call cudaFree(x_ptr)
12 call cudaFree(y_ptr)
13 end subroutine

LISTING 5.3: Initiating arrays/variables on the device

Memory can be transferred between host and device with the CUDA function,
cudaMemcpy, which can move both from host to device and from device to host de-
pending on the input parameters. A more advanced allocation function and memory

5.3. CUDA 41

movement function exists to target arrays or sub-arrays. It is also possible to make
use of the constant or texture memory of the GPU, which is faster than both shared
and global memory. These are however not used in the thesis and are therefore out-
side the scope of this discussion.

5.3.4 Latency Hiding

Memory movement from host to device is very time-consuming. Referring back
to table 4.1, fetching memory from main memory on the CPU takes on the order of
100ns. Memory movement between host and device varies a lot but may be anything
from the order of 10− 103µs (Lustig and Martonosi, 2013). Reducing memory reads
is important in CPU programming. Taking into account the larger computational
capacity of the GPU reducing transfer between CPU and GPU becomes even more
important when programming for GPUs. Because of the large number of cores and
the high percentage of transistors dedicated to computations, calculations on the
GPU are almost instantaneous compared to the time spent waiting on the data to
arrive. For this reason, the most important part of optimizing GPU code is to reduce
the time spend waiting. This is done by so-called latency hiding.

Latency hiding is achieved by making sure the GPU is always busy. Instead of
fetching data from main memory to GPU once the data is needed, the data should be
moved before the kernel execution call. This way, when the kernel is called and data
eventually needed, the data is already available on the GPU, and virtually no time
is spent waiting for the data. In most programs, there will be multiple kernels. The
CPU may continue without waiting on a kernel to terminate by using asynchronous
execution and may continue executing other instructions. These instructions could
include asynchronous memory transfer to the device, such that the data required by
a second kernel is ready when the second kernel is called. Computations, memory
transfer in, and memory transfer out of the GPU can proceed simultaneously.

5.3.5 Streams

A stream in CUDA is a sequence of instructions that execute in sequence. A stream
will likely consist of some data movement and several kernels. Kernels and data
movement can be put in a queue such that the execution on the host may continue
while the stream is being executed asynchronously. Streams are used to handle con-
currency. This is done by separating dependent kernels and data movement into the
same stream. Kernels that have no dependencies can be put in separate streams and
potentially be run concurrently on the device.

1 !call int_cuda_fortran <<<grid , block ,stream >>>(function parameters)
2 call int_cuda_fortran <<<1, 100,1 >>>(x)
3 call int_cuda_fortran <<<(10,1), (10 ,1) ,2 >>>(x)

LISTING 5.4: Adding stream to function call

Listing 5.4 shows the function calls from listing 5.2, but with the stream specified for
both function calls. For the first function call stream one is used and for the second
stream two is used. This means that both of these functions can be run concurrently
by the two streams.

There is no software limit to the number of streams one can create, but there
will be a hardware limit where additional software streams are mapped to the same
hardware stream. This puts a limit on the number of concurrent streams. This will
most likely not be a problem as most kernels take up a substantial portion of the
GPU. Fx. if each kernel uses half of the available cores in the GPU, only 2 kernels

42 Chapter 5. Graphics Processing Units (GPU)

FIGURE 5.4: Difference between pinned and non-pinned memory
transfer from host to device. More communication and data transfer
are involved in non-pinned memory making it slower than pinned

memory.

can be active at the same time even though the hardware might support 16 concur-
rent streams. In a scientific context with large simulations, the hardware limit on
concurrent streams will not be the bottleneck.

5.3.6 Pinned Memory

Another important aspect in optimizing GPU code is the use of pinned memory. The
general differences between a pinned and non-pinned data transfer are shown in
figure 5.4. When transferring data to the device without the use of pinned memory,
the requested data will first be moved in host memory to a pinned buffer. From here
it will then be transferred to the device.

The reason for this extra step is that the memory controller on the device can only
transfer memory for which the address space is contiguous in physical memory. As
mentioned earlier, processes on the CPU will use virtual memory. The arrays (or
other data types) will be contiguously located only in virtual memory, as discussed
in section 4.2.1, but may be split into pieces in physical memory or perhaps even
stored on disk. For this reason, the host must first move it to the pinned buffer.
The pinned buffer is a portion of the main memory where the virtual address is also
stored sequentially in physical space.

If pinned memory is used a larger portion of the memory is allocated as pinned
and data is stored directly in the pinned buffer. When transferring data to the device,
data no longer have to be moved to pinned memory. This can make the data transfer
faster by orders of magnitude (Lustig and Martonosi, 2013).

Provided a large enough main memory, the use of pinned memory can speed up
any GPU code for which the data transfer takes up a large portion of the total time.
Since data transfer is often a bottleneck, this means that the use of pinned memory
will in almost all cases give better results.

5.4. Directive-Based Programming 43

5.3.7 Bank Conflict

The shared memory that is available locally on each SM is divided into equally sized
chunks called banks. This affects threads within a block, which may use the shared
memory for fast memory access. Each bank can handle one request at a time. If n
threads access n different banks all memory read/write can happen concurrently.
Banks are not consecutive in memory. If there are 32 banks in shared memory, bank
0 may hold for example address 0,32,64,96 and so on. If multiple threads access the
same bank, the requests will be serialized, which is called a bank conflict. Having
the bank memory being non-consecutive makes bank conflicts less likely to occur.
The problem with bank conflicts is similar to false sharing within multi-core CPUs.
Bank size and structure differ from hardware and CUDA versions. Mei and Chu,
2017 discusses in more detail how bank conflicts occur and how to avoid them.

5.3.8 Recap of Optimal GPU Performance

When writing optimal GPU programs, the most important part is to hide the latency
by transferring data before it is needed by kernels and programming the kernels in
a cache-friendly way. Once this is achieved, pinned memory may be implemented
to make the required memory transfers even faster. Finally, if kernels are not large
enough to utilize the entire device, multiple streams can be used by non-dependent
kernels. As a rule of thumb, you should always oversubscribe the device by having
at least 4-10 times more active threads than available hardware cores.

5.4 Directive-Based Programming

CUDA offers great flexibility and control, but can be tedious to program and requires
specifying separate functions for CUDA application, which cannot be run without a
CUDA-enabled GPU. An alternative to CUDA is to use directive-based APIs such as
OpenMP and OpenACC. These APIs are more abstract and high-level, which builds
on top of the CUDA model without explicit use of CUDA.

Directive-based APIs work by adding special comments to the regions you wish
to parallelize. When compiling, the compiler will then choose how to translate this
into run-able device machine code. For example, a comment could be added to a for-
loop specifying that you want the compiler to make the for-loop run in parallel. On
a computer with a GPU, the compiler might choose to make GPU code for executing
the for-loop. On a computer with no GPU, the compiler might choose to parallelize
the loop using multiple CPU threads.

This means that the code remains portable to different computer architectures
so that a single code base can be maintained, and the code does not have to be as
fine-tuned just to run on the target device. It is also far easier to write a comment
instructing the compiler to run something in parallel than to explicitly re-write the
code to using CUDA thread/block id as the index.

Some compilers have today reached a state where they can optimize code almost
as well as an intermediate programmer would be able to in CUDA (Li and Shih,
2018). For these reasons, it is highly favorable to make GPU implementations using
directive programming.

The two following sections of this chapter will give a brief overview of OpenMP
and OpenACC, which are the two directive-based APIs investigated in the thesis.

44 Chapter 5. Graphics Processing Units (GPU)

FIGURE 5.5: Fork-join execution of OpenMP program. Parallel re-
gions may be nested within parallel regions.

5.4.1 OpenMP

OpenMP (Open Multi-Processing) is an API developed in the 90s to transform a
sequential program into a parallel program. The original idea was for the parallel
program to be run on a shared memory multiprocessor computer. Another key idea
was that it should be done with minimal changes to original sequential code and
keep both parallel and sequential code semantically equivalent.

1 !$omp parallel [clause ,clause]
2 ...
3 !$omp end parallel

LISTING 5.5: Parallel directive of a structured block (Mattson, He,
and Koniges, 2019)

The basic structure of an OpenMP parallel region can be seen in listing 5.5. The
code in this region will be run by every thread spawned by the compiler. The clause
directive gives the programmer control over how the parallel region behaves. The
clause could specify if a variable is private or shared among threads, or specify
how many threads should be spawned. Some clauses, like the number of threads
spawned, are only compiler suggestions and may be ignored by the compiler. The
execution follows a fork-join pattern shown in figure 5.5. This approach is very sim-
ilar to that shown in figure 5.3.

As mentioned above, certain clauses may control how data is stored for a parallel
region. How data behaves in OpenMP is referred to as the OpenMP Data Environ-
ment. The three most important clauses for this is the shared(list), private(list)
and firstprivate(list) clauses. The shared(list) clause specifies that the vari-
ables in the (list) should be shared among threads. These variables will thus exist
before and after the parallel region and changes made will persists. In OpenMP, vari-
ables defined before parallel regions are shared by default. Variables defined within
the parallel region are private by default. If a variable is set as private in the paral-
lel data clause, each thread will have a new variable with that name and type. If the
variable is defined before the parallel construct, the value of the variable will not be
copied to the thread. Variables defined before the parallel construct, which should
be copied to each thread should use the firstprivate clause. This works similar to
private but copies the value to each thread. For both firstprivate and private
the changes made to the variables does not persist after the parallel region ends. It is

5.4. Directive-Based Programming 45

good practice to set the default(none) clause that forces the programmer to explic-
itly set the scope of each variables as either shared, private or firstprivate. This
makes sure that no private variables are accidentally treated as shared, or the other
way around.

Since its development in the 90s multiple iterations of the API have been made
with the newest being OpenMP 5.0. From OpenMP 4.5, which was released in 2015,
the target directive has been supported. The target directive is added to the parallel
directive to denote that this should be offloaded to the target. This is OpenMP jargon
for executed on a device separate from the CPU. At the same time, the data environment
now has a separate directive such that multiple parallel regions may share the same
data environment. An example can seen in listing 5.6. The clauses for the data re-
gion, [to,from,tofrom], tells the compiler if an array or variable should be moved to
the GPU, from the GPU, or moved to GPU and back after the data region has ended.
The example also show that not only has the target directive been added, but also
teams and distribute. As mentioned, the target directive tells the compiler that
the region has to do with the device. The teams directive tells the compiler to create
a number of thread ’teams’. The distribute tells the compiler that the correspond-
ing for loop should be distributed among the teams. The directive "target teams
distribute parallel do" thus tells the compiler that it should create a league of
teams on the device, distribute the for-loop in chunks across the teams, and execute
those chunks in parallel on the threads within a team.

1 !$omp target data [to ,from ,tofrom]
2 !$omp target teams distribute parallel do
3 do i=1,N
4 ...
5 end do
6 !$omp end target teams distribute
7 !$omp end target data

LISTING 5.6: Target and target data directive for OpemMP

The teams clause roughly corresponds to the blocks in CUDA. Each team will
be a block. With the distribute clause the workload in the parallel region will be
distributed across the blocks. The parallel do within a target region corresponds
to the parallelism within a block. That is, teams distribute determines the grid
variable in listing 5.2 and parallel do determines the block variable in the same
listing.

When parallelizing loops it is important to consider how the clauses translate
into CUDA (or CUDA-like) code. If multiple nested loops are present, it is usually
best practice to surround the outermost loop with the target teams distribute
statement. The innermost loop should, if applicable, be parallelized with the simd
statement. Intermediate loops should be collapsed and parallelized as shown in
listing 5.7.

46 Chapter 5. Graphics Processing Units (GPU)

1 !$omp target data [to ,from ,tofrom]
2 !$omp target teams distribute
3 do i=1,N
4 !$omp parallel do collapse (2)
5 do j=1,N
6 do k=1,N
7 !$omp simd
8 do l=1,N
9 ...

10 end do
11 end do
12 end do
13 end do
14 !$omp end target teams distribute
15 !$omp end target data

LISTING 5.7: Optimal parallel structure of loops

5.4.2 OpenACC

Unlike OpenMP, which in the beginning was concerned only with multi-core paral-
lelism, OpenACC has since its beginning been focused on directive-based program-
ming for heterogeneous computing (computing on more than one type of system).
OpenACC 1.0 was announced in 2011 and has supported offloading code to an accel-
erator since the beginning. The syntax of directives is very similar to that of OpenMP.
Listing 5.8 shows the OpenACC version of listing 5.6.

1 !$acc data [to,from ,tofrom]
2 !$acc parallel do
3 do i=1,N
4 ...
5 end do
6 !$acc end parallel
7 !$acc end data

LISTING 5.8: OpenACC parallel and data region

As the example shows there is nothing to differentiate between accelerator paral-
lelism and CPU parallelism in OpenACC. How the directive should be interpreted
is handled by a compiler flag that tells the compiler what the ’target’ is for offload-
ing. The compiler flag -ta:tesla::cc75 will write GPU code for an NVIDIA(Tesla)
GPU with compute capability 7.5. The compile flag -ta:multicore will instead cre-
ate parallelism on the CPU, similar to OpenMP without target directives.

The fact that OpenACC does not have the target directive can somewhat sim-
plify the code, but it does give the user less control. The simplicity of OpenACC has
also been one of the main goals of the API. The lack of target directive, means that
OpenACC cannot be used to achieve both host and device parallelism within the
same program. Both host and device parallelism can still be achieved by specifying
host parallelism with OpenMP and device parallelism with OpenACC.

Similar to OpenMP’s teams, OpenACC has different levels of device parallelism,
which may be put in front of the parallel statement in listing 5.8. OpenACC has
3 levels of parallelism: gang, worker and vector. Additionally seq may be used to
explicitly specify sequential execution. The gang directive have an almost one-to-one
correspondence with the teams directive from OpenMP, and specifies parallelism on
a CUDA block level. worker specifies parallelism on the warp level and vector on
the threads level.

5.4. Directive-Based Programming 47

Comparing OpenMP and OpenACC

While OpenACC as a whole is much younger than OpenMP, its support of accelera-
tor offloading is older. As a result, most accelerator compiler implementation issues
have been solved in OpenACC, while many remain in OpenMP. OpenACC offers
a more fine-grained control, as one can control both block, warp, and thread-level
parallelism with OpenACC. In OpenMP, only block and thread-level parallelism can
be directly used.

OpenACC was originally developed by PGI and was intended as a multi-platform
standard. But since PGI was acquired by NVIDIA it has been primarily developed
for NVIDIA devices. While it is possible to compile OpenACC for other devices us-
ing other compilers, it may not perform as well as with NVIDIA GPUs. OpenMP on
the other hand has always had broad industry support and is less dependent on the
device on which it runs. In recent years more and more vendors are starting to use
AMD. In addition, many next-generation supercomputers use AMD GPU, which
makes OpenMP the more favorable choice.

49

Chapter 6

Implementation

6.1 DISPATCH Mockup

To test the OpenMP and OpenACC features a mockup of DISPATCH was created
by my supervisors. The mockup consisted of three different files. The content and
purpose of these files are here briefly described.

6.1.1 Mockup.f90

This file consisted of the main program to be executed. In addition, a linked list was
implemented. The linked list was used as a substitute for the task-scheduling found
in DISPATCH. In the earliest implementation, each task was popped from the list,
updated, and then pushed back onto the list. Each list item contained a pointer to a
solver-type object as in DISPATCH. There was no parallelism on the CPU.

6.1.2 Muscl.f90

This file consisted of a simplified version of the MUSCL-type HD solver. An update
subroutine based on the MUSCL routine was created as seen in listing 6.1.

1 SUBROUTINE update (self)
2 class(solver_t):: self
3 call alloc (self)
4 call ctoprim (self)
5 call slopes (self)
6 call predict (self)
7 call riemn3d (self)
8 call divflux (self)
9 call dealloc (self)

10 self%time = self%time + self%dtime
11 END SUBROUTINE update

LISTING 6.1: Update subroutine in early mockup

In this subroutine everything is still object oriented. alloc allocates the needed
temporary arrays. ctoprim converts the conserved variables to primitive variables.
slopes performs the slope limiter step, predict makes prediction for the values at
time t + 1

2 ∆t. riemn3d calculates left/right values and subsequently call the Rie-
mann solver in each direction. divflux then uses the calculated flux to update the
conserved variables, and lastly dealloc deallocates all temporary arrays.

6.1.3 Riemann.f90

This file consisted of the simple HLL solver, which was used in the early phases of
the project.

50 Chapter 6. Implementation

6.2 Proof of Concept

The first implementations using both OpenACC and OpenMP focused solely on the
feasibility of using only directive-based approaches for targeting GPUs. As such
the correctness of the code was not investigated, and many positivity preserving
steps were left out. Only the core-subroutines from listing 6.1 was used. Initially,
OpenACC was investigated as OpenMP did not have sufficient support. Later in the
thesis, GCC released an update, and the focus switched to OpenMP, which remained
the main focus throughout the thesis. In this section, the iterative steps towards an
optimized HD code are explained.

Throughout this chapter, meta-results of the implementations and compilers are
also reported. This includes for example, how easy compilers are set up and made
ready or how compiler implementations differ from OpenMP or OpenACC specifi-
cations.

6.2.1 OpenACC

The OpenACC implementations were compiled with the Portland Group Compiler
(PGI). Early in the project the community edition 19.10 was used. As PGI got in-
tegrated into NVIDIA HPC SDK the 20.9 and 21.2 versions were used instead. No
differences in performance were found between version 19.10 and 20.9, but version
21.2 that used cuda 11.2 performed significantly worse, and version 20.9 was there-
fore used. A step-by-step guide to setting up the two versions can be found in the
appendix B.1.

OpenACC v0.1

The first implementation aimed to examine the basic challenges of directive-based
approaches in modern Fortran. !$acc parallel loop collapse(n) was added to
each loop where n is the number of nested loops. This approach was by no means
optimal but was an easy way to get the majority of the calculations ported to the
GPU. In the update subroutine, a data-region was created covering all subroutine
calls. This reduced the required memory transfer between host and device between
each kernel calls.

An important issue was discovered. OpenACC does not handle object-oriented
programming well. The self object may be moved to the device, but internal sub-
routines and arrays are not properly moved, and/or pointers still refer to the CPU
subroutine/array. To circumvent this limit, arrays and variables used within each
subroutine were instead passed directly to the subroutine. Arrays were passed as
pointers, as these seem to be better handled in OpenACC (this was later found to be
redundant).

The update subroutine was therefore changed to become slightly more complex.
A snippet of the update subroutine can be seen in listing 6.2. The full update sub-
routine can be found in appendix C. As shown, a pointer to each array is created
and new copies of all variables are stored. These are then passed directly to the indi-
vidual MUSCL solver subroutines. The data regions ensure that the arrays are only
moved between host and device once per update.

1 subroutine update(self)
2 class(solver_t),target :: self
3 integer :: i3, i2 , i1
4 real , dimension (:,:,:,:,:,:), pointer :: mem
5 real , dimension (:,:,:,:), pointer :: prim

6.2. Proof of Concept 51

FIGURE 6.1: Profiling of the first OpenACC implementation with the
use of NVIDIA’s visual profiler, nvvp. There is substantial overhead
in each kernel call and delay between Riemann kernels(light blue)

because of host-to-device communication.

6 ...
7 mem => self%mem
8 prim => self%prim
9 ...

10 !$acc data copyin(new ,...,prim , grad , left , rght , flux , mem)
11 call ctoprim (self , mem , new , it, prim , lb , ub , g2, u2_max)
12 call slopes (self , prim , grad , nv, l, u)
13 ...
14 !$acc end data
15 end subroutine update

LISTING 6.2: Update subroutine in first OpenACC version.

A program consisting of a single update was profiled and a snapshot can be seen
in figure 6.1. The profiler shows significant delay, or overhead, between each kernel
call. In addition, some kernels have host-to-device transfer, which should all be
handled at the beginning of the update. As a result, the GPU is not fully utilized.
The next iteration tried to solve this overhead issue.

OpenACC v0.2

This version aimed at reducing the overhead by combining kernels. As described
earlier, each loop was simply run as an individual kernel. Within a single subrou-
tine, multiple loops may instead be run within the same parallel region. However,
to run loops in different subroutines in the same kernel the subroutines had to be
compiled as device subroutines. This was achieved by adding !$acc routine at
the start of each subroutine call. The directive can be called with the clauses gang,
worker, vector, seq. Each clause defined the level of parallelism for which the rou-
tine is intended as explained in section 5.4.2. An example of how this was used in
the implementation is shown in listing 6.3.

Contrary to initial findings in v0.1 it was found that some object-oriented features
were supported, and thus the subroutines could be called with the self variables.
All subroutines in the muscl.f90 file except riemann3d was listed as device subrou-
tines. The loops in riemann3d had pragma statements similar to v0.1 and the call to
the HLL solver was likewise made on the CPU.

1 SUBROUTINE predict (self)
2 !$acc routine gang
3 ...
4 !$acc loop gang
5 do ..
6 end do
7 end subroutine predict

LISTING 6.3: Compiling subroutines with loops for device execution

52 Chapter 6. Implementation

FIGURE 6.2: Profiling of the second OpenACC implementation with
the use of NVIDIA’s visual profiler, nvvp. Much of the idle time has

been cut off, but the individual kernels take longer.

FIGURE 6.3: Profiling of the third OpenACC implementation with the
use of NVIDIA’s visual profiler

Similar to v0.1 a profiler was run on a single update. The snapshot of the profiler can
be seen in figure 6.2. Fewer kernels are executed, and as a result, the kernel launch
overhead is reduced. However, the execution time of the kernels is higher.

Combining multiple subroutines into one kernel was later found to produce race
conditions. Race conditions occur when fx. some threads would begin executing the
loops in predict before all threads had finished executing the loops in slopes. As
OpenACC provides no way to enforce that the same thread executes the same index
in different loops, the only alternative is to have barriers between each subroutine.

OpenACC v0.3

In the third implementation, all subroutine calls in update were moved to one kernel.
This was done by creating a new subroutine in the riemann.f90 file, which was not
object-oriented. As seen in figure 6.3 this removed all host-to-device communication
during the update, but the kernel itself had a longer execution time. This approach
also further increased how often race conditions could occur, and it was decided to
not pursue this approach any longer.

OpenACC v0.4

This implementation took its starting point in v0.2. Instead of having multiple sub-
routines contained in the same kernel, each subroutine was called in separate paral-
lel regions. In the parallel region, the pragma statement async(self%task_number)
was added. Each patch has its unique ID, which was referenced with self%task_number.
Each parallel region in an update thus had the same task number/ID. The subrou-
tines were therefore placed in the same async queue. Each queue corresponds to a
stream in CUDA jargon.

Because async is used the CPU will send the kernel corresponding to the parallel
region to the GPU and continue. With a parallel region around each subroutine, each
kernel will be sent to the GPU before anything has been computed. At the end of the
update, !$acc wait(self%task_number) was added to make sure all kernels in the
queue had completed before finishing the update.

The use of the async queue almost eliminated the overhead between kernel calls.
This is seen in the profiler snapshot in figure 6.4. Note here that the HLL Riemann

6.2. Proof of Concept 53

FIGURE 6.4: Profiling of the fourth OpenACC implementation with
the use of NVIDIA’s visual profiler. The kernel launch overhead is
largely gone, and the GPU is active a larger percentage of the time.

There is still no latency hiding.

solver was only run in the x-direction. The duration of each kernel is roughly the
same as for v0.1.

Although async is used to send kernels asynchronously to the GPU, no kernels
are being executed in parallel on the GPU. This was the focus of the next iteration.

OpenACC v0.5

The main focus of this implementation was to add parallelism both on CPU and
GPU. No changes were made to the file containing the MUSCL update routine or
the HLL solver. In the previous implementations, each task was popped from the
list, updated, and pushed back if the time did not exceed the end time set by the
experiment.

To have multiple threads accessing the same list the mockup had to be changed.
A pseudocode showing the general idea is shown in listing 6.4. A parallel region
was created with a single region inside. The thread executing the single region will
be referred to as the master thread.

The master thread is responsible for generating tasks that can be executed by
other threads. A nested while-loop pops n tasks and stores them in a temporary
list. This is referred to as a bunch. After this an OpenMP task is created for which the
temporary list is given as a firstprivate variable

Two nested loops are required as the master thread will finish generating tasks
before the first task is finished. If only a single loop is used the global list will then
be empty and the loop will terminate. If the taskwait clause was within the inner
loop only one task would be generated before waiting for all tasks to finish. This
implementation does create artificial wait latency between updates for different task
times. The idea was to get closer to the task-based scheduler currently implemented
in DISPATCH.

Each task will pop patches from the temporary list and call the update routine.
If the task time remains below a given end time they will be pushed back to the
temporary list. After all tasks have been updated the temporary list is pushed back
onto the global list. This is done rather than to push each task to the global list
individually, to reduce the overhead generated by the critical region.

A profiler was run on this implementation and a snapshot is shown in figure 6.5.
The test was done using 5 threads, so only 5 streams are active at the same time.
The setup allows kernels and data transfers to be performed concurrently. While not
visible in the snapshot, the latency caused by the taskwait statement was visible
and had a noticeable impact on performance.

1 !$omp parallel
2 !$omp single
3 do while (full_list not empty)
4 do while (full_list not empty)

54 Chapter 6. Implementation

FIGURE 6.5: Profiling of the fifth OpenACC implementation with the
use of NVIDIA’s visual profiler. Multiple kernels are being executed
at the same time, and data transfer is happening while some kernels

are executing.

5 !$omp critical
6 temp_list = pop n elements from full_list
7 !$omp end critical
8 !$omp task firstprivate(temp_list)
9 do while (temp_list not empty)

10 link = pop temp_list
11 call link%task%update
12 if link&task%time < end_time
13 append to temp_list
14 end do
15 !$omp critical
16 append temp_list to full_list
17 !$omp end critical
18 !$omp end task
19 end do
20 !$omp taskwait
21 end do
22 !$omp end parallel
23 !$omp end single

LISTING 6.4: Pseudocode for parallel use of linked list

OpenACC v0.6

This implementation improved v0.5 by using pinned memory. Nothing was changed
in the files as compared to v0.5 but the compiler flag -ta=tesla:pinned was added.

6.2. Proof of Concept 55

6.2.2 OpenMP

Once the initial OpenACC implementations had shown that porting to GPU and
hiding much of the memory latency is possible, investigation of OpenMP imple-
mentation took place. This was originally not deemed feasible, but with the release
of GCC 10.1 in May and 10.2 in July 2020, new offload features were added. In ad-
dition, the announcement that LUMI would feature AMD GPUs made OpenMP a
priority. A step-by-step guide to installing GCC with offload can be found in ap-
pendix B.2.

OpenMP v0.1

This followed a similar approach to OpenACC v0.5. The mockup.f90 file was set up
to pop a bunch of tasks and the tasks were updated one by one. Unlike OpenACC,
OpenMP does not handle object-oriented features at all. For example !$omp target
data map(to:self%mem) does not compile with GCC. Instead, temporary pointers
had to be created for each array similar to OpenACC v0.1. This was a common
approach used through the rest of the OpenMP implementations, which allowed a
somewhat indirect use of "object-arrays". Each subroutine was called on the CPU,
and a target region was put around each loop.

Despite using almost the same setup as the OpenACC version, this implemen-
tation was much slower. There was a much larger kernel execution overhead and
the kernels themselves were much slower. Each kernel launch was accompanied
by a host to device transfer. This was not the case for OpenACC, where all memory
transfer could be done in the beginning of the update. In addition, asynchronous ex-
ecution is not supported in GCC. This meant, that even with multiple CPU threads
running, only one stream was used. Using multiple CPU threads did hide some of
the kernel execution overhead.

OpenMP v0.2

This approach attempted to remove the overhead by executing the entire bunch in
one kernel. The target and target data region was moved to the mockup.f90 file. The
target region was placed around a loop, calling update for each patch in the bunch.
update was changed to be fully imperative and now took the required arrays and
variables as input.

This approach however never got fully functional as several issues were discov-
ered. Initially, target teams distribute was placed around the loop. This meant
that a team of threads would be associated with each patch, and the teams dis-
tributed across the available SM’s. Although much effort was put into bug-fixing,
memory errors kept occurring. These errors seem to arise when a single kernel is
either using too many registers or too many separate arrays within a single kernel.

Another approach was tested, where the teams distribute clause was removed
in mockup.f90 and instead put together with the parallel clause. While this com-
piled and ran without errors it did not produce the correct result. In fact, with this
implementation, nothing was done in the kernels. This approach also showed an-
other flaw in GCC. Although the result was not correct, the approach was run for
several iterations. After running for some time, out-of-memory errors would occur.
It was discovered that the arrays allocated with OpenMP statements inside OpenMP
tasks were not properly deallocated, and memory usage would build up. This was
confirmed by also running OpenMP v0.1 for an extended period of time.

56 Chapter 6. Implementation

OpenMP v0.3

The issues from v0.2 were solved in two different ways. First, the issue regarding
memory errors was solved by going back to having a kernel for each subroutine in-
side update. However, each loop was extended to also loop over all patches in the
bunch. In this way, primitive variables for all patches were calculated in ctoprim,
before any patch started calculating the slopes. This approach allowed full utiliza-
tion of the GPU in each kernel but required more memory. Additionally, with large
bunch sizes, the overhead became insignificant, and the drawbacks of having a ker-
nel for each loop were removed.

Secondly, the issue regarding memory leak was fixed by having static arrays. All
arrays were extended to now have two additional indices. One bunch index and one
thread index. Once an OpenMP task began executing its thread id could be used to
only access and move part of the global static arrays.

6.3 HLLD

As the HD implementations indicated that a purely directive-based approach was
feasible with both OpenACC and OpenMP the focus of the project shifted to the
more complex MHD implementation. Initially, the implementation was done anal-
ogous to the simpler HD implementation. However, several positivity preserving
steps had been left out and these now had to be incorporated into the mockup. In
DISPATCH/RAMSES, most of the preparation happens in the trace3D subroutine.
trace3D consists of a large loop that calculates the required variables for calculat-
ing the fluxes in HLLD 1D and the EMFs in HLLD 2D. This large loop uses many
different arrays and around 70-80 loop private variables. This is not an issue on
the CPU, but several issues arose on the GPU. The A100 GPU has around 255 avail-
able registers per thread. While this is larger than the 80 used loop variables, the
compiler may choose to use more registers. As mentioned in the previous section, it
was found that using this many variables in combination with many different arrays
causes runtime memory errors.

The subroutine, therefore, had to be re-written by splitting it up into multiple
smaller subroutine, which could be run as separate kernels, similar to the HD im-
plementation. This imposed several new problems. In trace3D each iteration of
the loop is independent of other iterations. By splitting up the loop dependen-
cies across kernels arises. In addition, as discovered during HD implementation
OpenMP comes with a large overhead when creating kernels. Splitting one loop
into multiple kernels thus created additional overhead. In the later stages of imple-
mentation, it was found possible to recombine the kernels, eliminating almost all
overhead from kernel execution. The rest of this subsection will explain the steps
taken to port the existing DISPATCH/RAMSES MHD solver to the GPU.

6.3.1 Code Refactoring

Dimension Representation

In the HD setup, the main arrays containing data about the fluid variables and
derivatives are indexed as mem(x,y,z,nv,ii,tid) and grad(x,y,z,nv,dir,ii,tid).
Here (x,y,z) references patch dimension, nv references variables (density, momen-
tum etc.), ii references bunch index and tid references thread index as explained in
the HD section. prim was stored similar to mem and [flux,left,right] was stored

6.3. HLLD 57

similar to grad. Fortran stores arrays column-wise. As density, momentum and en-
ergy are often used in the same iteration, this way of storing the loops is not cache
friendly.

A small test program was created to test several permutations of the dimension
representation. The test program simply loaded a value from an array, added an
integer, and stored the new value back into the array. This was done for each in-
dex in the array multiple times and the total time for each permutation was stored.
Based upon the result, dimension was instead stored as mem(x,nv,y,z,ii,tid) and
grad(x,nv,dir,y,z,ii,tid). When running the innermost loop (over the first di-
mension) as SIMD, this setup performed much better.

In addition the scheduling clause schedule(static,1)was changed to schedule(static),
as this too is more cache-friendly. These changes allowed an entire bunch update to
be performed by a single kernel.

The arrays storing left and right values were also merged into one array with
the structure left_right(x,nv,lr,dir,y,z,ii,tid), where lr is 1 for left and 2 for
right. This made sure that both left and right variables were always close in memory
as they are always used together. The corner values were stored in a similar array.

Furthermore, instead of storing left and right interface values in index (x,y,z), the
left and right Riemann variables were stored. This simplified the access to the left
and right variables in the HLLD 1D subroutine.

Refactoring Trace3D

In the current version of DISPATCH/RAMSES HD and MHD solvers, the conver-
sion to primitive variables and calculation of slopes happens before trace3d is called.
Everything else needed in the Riemann Solvers happens in trace3d. First, EMF is
calculated based on time t, which is used to predict magnetic fields at time t + 1

2 dt.
For convenience, slopes are expressed as differences. Magnetic field and primitive
variables are then predicted at time t+ 1

2 dt. From these predicted values, differences
are used to infer the face-centered values stored in the left and right arrays (qp
and qm in DISPATCH/RAMSES). Lastly, corner values are calculated.

All steps described above happen in one single loop. The first step towards a
working GPU code was to split this into several semi-independent steps. Each step
below corresponds to a subroutine:

1. Convert conservative to primitive values and calculate umax.

2. Calculate slopes.

3. Calculate EMFs for time t.

4. Use EMFs to predict magnetic fields at time t + 1
2 dt.

5. Infer left and right magnetic field values.

6. Predict primitive variables at t + 1
2 dt.

7. Infer left and right primitive variables.

8. Predict corner values for primitive variables.

9. Predict corner values for magnetic fields.

10. Calculate fluxes in HLLD 1D based on left/right values.

58 Chapter 6. Implementation

11. Update conservative variables based on fluxes.

12. Calculate EMFs in HLLD 2D based on corner values.

13. Update magnetic fields based on EMFs.

14. Convert conservative to primitive values and calculate umax.

In DISPATCH/RAMSES conversion to primitive variables and slopes are not called
in trace3d, but these are calculated on the GPU and therefore included in the above
steps. Furthermore, primitive variables are calculated twice: both in the beginning
and in the end. The reason for this is that the timestep is normally calculated after
conversion to primitive variables. However, in the GPU version, the timestep has
to be calculated before using existing CPU subroutines. Therefore umax must be
calculated at the end of each update so the newest value is used when calculating
the next timestep.

Some of these subroutines could be fused. For example, corner values could be
predicted in a single subroutine. However, sometimes memory errors would occur.
As explained in section 6.2.2, these errors seem to arise when using too many vari-
ables or arrays in the same subroutine. Therefore calculations on primitive variables
and magnetic field were separated as much as possible. This allowed as few arrays
as possible to be used in any given subroutine.

Originally, a target region was created around each subroutine, and the subrou-
tine calculated for several patches. This allowed the GPU to have plenty of data and
made sure each step had been completed on all patches before moving to the next.
This did however introduce overhead to each kernel call.

The overhead was removed by having one single target region covering all steps.
Each subroutine was changed to only update one patch based on a patch index. This
also allowed the subroutines to be called separately on the CPU without bunching.
All subroutines were placed inside a loop. The omp distribute clause was used to
distribute each patch update across the available SMs. This approach was originally
found to not work in OpenMPv0.2, but with the new array representation, it no
longer produced memory errors.

DISPATCH/Ramses Errors

During implementation, some minor algorithmic mistakes were discovered in the
MHD solver used in both DISPATCH and RAMSES. This is interesting, since the
MHD solver has existed in RAMSES since 2002, and has been used in more than
1000 articles.

First, when calculating corner values and transverse slopes for the magnetic
fields the first and second transverse directions are flipped in the y-direction. If a
right-handed coordinate system is maintained, the z-direction should be the first
transverse direction and the x-direction the second. However, in DISPATCH/RAM-
SES it is the other way around. For the magnetic field, it has no effect as the values
are stored and loaded in the same way, so the correct values are still used. How-
ever, it has an effect when calculating corner values. Here, the RB and LT values are
flipped in the y-direction, and this is not properly accounted for when transforming
LB, LT, RB, and RT to SW, NW, SE, and NE values for the HLLD 2D.

Second, for the EMF found in HLLD 2D the values are not multiplied with the
correct dx, dy, dz. In DISPATCH/RAMSES EMFx is multiplied with dt/dy, EMFy
is multiplied with dt/dz and EMFz is multiplied with dt/dx. This is done as the

6.3. HLLD 59

cell size is assumed to be the same in each direction. However, if the number of
cells/patches is not identical in each direction small numerical differences will arise.
These errors will have an effect over time.

Symmetry in Trace3d

The trace3d subroutine uses separate code for each direction effectively increasing
code length by a factor of three. This avoids advanced index manipulation by coding
explicitly for each direction. However, this makes the code more difficult to read and
increases the likelihood of errors as future improvements on the code will have to be
added in three different places.

The GPU implementation has in many places taken the opposite approach and
instead relied on index manipulation to reduce repeats in the code. This has mainly
been done using six small arrays: j1(1,0,0), j2(0,1,0), j3(0,0,1), v1(2,3,4),
v2(3,4,2) and v3(4,2,3). The j-arrays are used when ±1 is added to the x-, y- or
z-dimension. For example, prim(x+j1(dir),nv,y+j2(dir),z+j3(dir),ii) may be
used to add 1 to the x dimension, if dir = 1, or 1 to y direction if dir = 2 and 1 to z
dimension if dir = 3.

The v array’s are used to keep track of the velocities and magnetic field. The array
values are assumed to be stored as: (ρ, vx, vy, vz, p, Bx, By, Bz). v1 always hold the
index of the normal velocity. v2 always hold the index of the first transverse velocity,
and v3 the index of the second transverse velocity. As such if dir = 1 the used values
will be v1 = 2, v2 = 3, v3 = 4. If dir = 2 the values will be v1 = 3, v2 = 4, v3 = 2
and if dir = 3 the values will be v1 = 4, v2 = 2, v3 = 3. Similarly, magnetic field
indices are found by just adding +4.

Optimizing HLLD 1D for GPU

The inner loop of the HLLD 1D solver remains more or less unchanged. There are
only two differences between the GPU implementation and DISPATCH/RAMSES.
First, the DISPATCH/RAMSES version takes as input a 1D array whereas the GPU
version is run on the entire patch. This is done to avoid having to copy left and right
variables into temporary 1D arrays. Instead, the direction is added as a loop. In each
direction the HLLD solver expects the "normal" velocity to be located at index iu. In
the x-direction this means U is stored in iu, in the y-direction V is stored in iu and
in the z-direction W is stored in iu. Similarly first and second transverse direction
are always stored in iv and iw respectively. Magnetic field components are stored
likewise. Here the normal, first transverse and second transverse component are
stored in ia, ib and ic respectively. This index manipulation happens when the left
and right variables are stored using the array and not in the HLLD 1D subroutine.

Optimizing HLLD 2D for GPU

Similar to the HLLD 1D, the HLLD 2D was implemented to run on the entire patch
in each direction. In each direction, indices were similarly defined, such that the
"normal" direction was always stored at index iu for velocities and ia for magnetic
fields. Unlike DISPATCH/RAMSES, this version of the HLLD 2D has U and A as
the normal velocity/magnetic field, V and B as the first transverse, and W and C as
the second transverse.

The inner loop was changed such that almost all the required computations hap-
pened outside the if-statements. This was done to reduce the execution time of the

60 Chapter 6. Implementation

FIGURE 6.6: DISPATCH execution flow with the added bunch mod-
ule.

divergent part of the code. Although this may lead to some unnecessary computa-
tions by some threads, all threads will have roughly the same execution time in each
loop, which is preferable in SIMT.

6.4 DISPATCH Integration

6.4.1 offload_mod

Similar to the original mockup code, a skeleton code with the basic module setup
was provided by Åke Nordlund. The dispatcher data type remains unchanged. The
task_list has been slightly altered. task_list%update is now split into two sepa-
rate subroutines: task_list%update and task_list%update_end. The task_list%update_end
consists of all post-update handling of the link. The flowchart shown in chapter 3
is shown in figure 6.6 with the new execution flow.

If the offload module is used, task_list%update will call offload%update and
return. If the offload module is not used, task%update is called as usual and task_list%update_end
is called immediately.

offload%update will call bunch%update on one of the available bunches. An
offload type is initiated at the start of the program and is globally available. Upon
initialization offload_params are read from the input file. These parameters define
if offload is on/off, size of bunches, number of bunches, the interval between forced
updates, and if updates may be run on the CPU when all bunches are occupied.

The offload data type has a list of bunch types. The length of this list is deter-
mined by the "number of devices" input, but cannot exceed the actual number of
available devices. The intent is to have one bunch per available device, but cur-
rently, multiple devices are not yet implemented. Multiple devices can still be used
by having multiple MPI ranks per node.

6.4. DISPATCH Integration 61

6.4.2 bunch_mod

This module is in charge of scheduling bunches on a single device. To avoid confus-
ing terminology these bunches are referred to as bunch data, and the bunch sched-
uler itself is just a bunch. As such, each device has a bunch tied to it. Each bunch
may have multiple bunch data, which is stored in a list. The "number of bunches"
input parameter determines how many active bunch data a scheduler will control.

When bunch update is called it will check if all bunch data types are already
filled and busy. If this is the case and use_cpu is set to true, the task is updated on the
CPU. If this is not the case the task will be placed in the input bunch data. input is a
pointer to one of the bunch data in the list. When placed in input, mht_t%pre_update
is called to determine timestep and afterward, the task data will be copied to the
static arrays. After the task has been added the bunch scheduler will check if the
input bunch data is filled or a certain wall clock time interval has passed. Once
either of these is true, the tasks in the input bunch data will be updated. When this
happens, the input bunch data pointer will be updated to the next bunch data in the
list in a round-robin fashion. This makes it possible to schedule and fill bunch data
while one or more bunch data is being updated.

After all GPU computing on a bunch data is done, updated values from the static
arrays are copied back to the task and task_list%update_end is called for each task
to return it to the task list. The bunch module is responsible for the right part of
figure 6.6.

The GPU implementation can easily be compiled to run on the CPU as well. The
implementation will therefore from now on be referred to as the MHD_Bunch imple-
mentation. When the MHD_Bunch implementation is referenced, it is implied that
it is run on the GPU. Note that some individual tasks may still be run on the CPU
when bunches are compiled for GPU. When running only on the CPU it will be re-
ferred to as the MHD_Bunch CPU implementation or MHD_Bunch implementation
(CPU).

63

Chapter 7

Results

7.1 Experimental Setup

Experiments and runtime measurements were run both on a desktop system and the
HPC compute cluster used at the Center for Star and Planet Formation1 referred to
as STENO. Unless otherwise stated all runtime measurements are averaged over 3
separate runs.

7.1.1 Desktop System

Part of the experiments and runtime measurements were performed on my desktop.
The desktop is running Linux Mint 19.1 Cinnamon, with the following hardware:

• Intel(C) Core(TM) i7-4790U CPU @ 4.00GHz(4cores and 8 hardware threads)

• NVIDIA GeForce GTX 1660 Ti (1770 MHz, 6 GB GDDR6, 24SMs)

• 2x(Kingston KHX1600C10D3/8G 8GB DDR3 1600MHz)

7.1.2 STENO

The experiments run on STENO have been run either on the astro2_gpu, astro2_long
or astro2_short partition.

The astro2_gpu is equipped with 4 NVIDIA A100 GPU’s and 2x16-core AMD
EPYC 7302 at 3GHz. The NVIDIA A100 GPUs each have a FP32 peak performance
of 19.5TFLOPS, and the CPU has a peak performance of around 3TFLOPS.

astro2_short and astro2_long runs on the same machines. They are running
on nodes with 2x24 core Intel Cascade-Lake CPUs (24-core Xeon 6248R @ 3.0GHz)
with a theoretical peak performance of just above 4TFLOPS. As only 40 cores are
used in the experiments, the peak performance is a bit below 4TFLOPS.

The peak performance is roughly 5 times higher on a single NVIDIA A100 com-
pared to the CPUs on astro2_short. If we include the performance of the CPU on
astro2_gpu the speedup is roughly 6 times higher.

7.2 Proof of Concept Runtimes

The initial runtime measurements for the HD implementations are shown in fig-
ure 7.1. These measurements were performed on the desktop system comparing 1
GPU with 5 CPU threads. Only 5 threads were used as multiple background pro-
cesses were running, which reduced performance when using all 8 available hard-
ware threads. The first two OpenMP implementations are not shown as they ran out

1https://starformation.hpc.ku.dk/

https://starformation.hpc.ku.dk/

64 Chapter 7. Results

FIGURE 7.1: Relative speedup of GPU implementations compared to
CPU.

of memory when using 1000 patches or simply didn’t run properly. As the figure
shows the simplest implementations gave little to no speedup.

The speedup reached during OpenACC implementation is around 3.5 when hav-
ing multiple threads calling GPU kernels and hiding overhead with asynchronous
execution. As profiling also shows (figure 6.5), there is in this implementation still
much idle time on the GPU.

The OpenACC v0.6 speedup is calculated based only on 1 time measurement.
The reason for this is that pinned memory did not work properly with some of the
newer NVIDIA driver updates on the desktop system. Only 1 runtime measurement
was made in the early phases of the project.

For the OpenMP implementations, only the third implementation could run on
1000 patches. As a result only OpenMPv0.3, which uses static array and bunching,
is shown in the figure. The runtime is very similar to OpenACC v0.6. The OpenMP
implementation used neither asynchronous execution nor pinned memory. The fig-
ure shows that the performance from bunching and using static arrays is roughly the
same as hiding latency with asynchronous execution and using pinned memory. If
bunching and static array’s were added to the OpenACC implementation, it would
most likely be much faster than the OpenMP version.

There is roughly a factor 2 in speedup between OpenACC v0.5 and OpenACC
v0.6. A similar speedup is to be expected in the OpenMP version if pinned memory
becomes available.

7.3. Optimal Dimension Layout 65

7.3 Optimal Dimension Layout

Several tests were carried out to determine the optimal way of storing and accessing
variables. The tests was done by shuffling the possible ways of storing nv (prim-
itive/conservative variables) and dir (direction). For example, one permutation
could be to store the array as (nv,x,y,dir,z,patches) and another could be (x,nv,dir,y,z,patches).
In the setup, patch index is always stored last, and x,y, and z are always stored in that
order. A simple nested loop was set up to evaluate performance. In the innermost
loop, the array value is stored in a temporary variable, added a constant, and stored
back into the array. Since the real solver often accesses values in neighboring cells,
tests were also carried out where the value is loaded from the cell with x-1, y-1, or
z-1. The basic structure of the loop can be seen in listing 7.1. The inner loop was run
with !$omp simd for both CPU and GPU. When running on the GPU, the patches
were distributed across SMs with !$omp target teams distribute and the inter-
mediate loops were collapsed and parallelized. On the CPU only the !$omp simd
clause on the innermost loop was present. The loops were run a hundred times, to
smooth out any fluctuations in runtime.

1 !$omp target teams distribute
2 do i6=1,patches
3 !$omp parallel do schedule(static ,1) &
4 !$omp shared(arr ,i6,dims) private(test ,i1) collapse (4)
5 do i5=1,dims (5)
6 do i4=1,dims (4)
7 do i3=1,dims (3)
8 do i2=1,dims (2)
9 !$omp simd

10 do i1=1,dims (1)
11 test = arr(i1 ,i2 ,i3,i4,i5,i6) + 5
12 arr(i1,i2,i3,i4,i5 ,i6) = test
13 end do
14 end do
15 end do
16 end do
17 end do
18 end do

LISTING 7.1: loop structure to determine optimal storing

In figure 7.2 the results running on the CPU can be seen. Except when dir is stored in
the first index, there isn’t much difference in runtime when loading and storing from
the same cell. Interestingly, there seems to be a large and consistent jump in runtime
when accessing the x-neighboring cell when nv is not stored in the first index. The
cause of this was investigated in collaboration with Sven Karlson. By inspection of
the assembly code, it was determined that several different versions of the loop were
compiled. The program would then at runtime choose what version to run.

When accessing the neighbor in the x-direction and x-dimension were stored in
the first index no instruction-level parallelism could be achieved. This happens as
each iteration of the inner loops depends on the prior iteration.

In the MHD_Bunch implementation, this is not the case as read and write mostly
happens to different arrays. Another test was therefore made where read and write
operations were done on two different arrays. The result is seen in figure 7.3. As
it can be seen, there is no longer a spike in runtime when accessing the x-neighbor.
In this case, there is no noticeable difference in runtime except when storing dir in
the first index. However, some of the kernels are about 50% slower, despite no extra
computations are added.

66 Chapter 7. Results

FIGURE 7.2: Optimal index test on CPU

FIGURE 7.3: Optimal index test on CPU using a different array for
reading and writing.

7.3. Optimal Dimension Layout 67

FIGURE 7.4: Optimal index test on GPU

FIGURE 7.5: Optimal index test on GPU, ignoring largest runtimes.

Figure 7.4 shows the experiment using the same array to load and store values
on the GPU. A large increase in runtime is seen when dir is stored in the first index.
However, unlike the CPU, storing nv in the first index gives a much worse perfor-
mance. Figure 7.5 shows the GPU runtimes, but with the largest runtimes ignored.
There is no significant difference between storing nv in the second, third, fourth of
the fifth index. There is no difference when accessing and storing in the same cell.
There also seems to be no impact when accessing the x-neighbor cell. There is how-
ever a small, but noticeable, difference when accessing the y- and z-neighbor cells.

Since some temporary arrays in DISPATCH/RAMSES are already stored as (x,nv,dir,y,z,patches)
it was therefore decided to use this layout.

68 Chapter 7. Results

FIGURE 7.6: Optimal runtimes sorted by bunch size and number of
threads for different numbers of total patches.

7.4 HLLD Runtime

7.4.1 GPU Dependency of Bunch Size and Threads

The runtime of the HLLD mockup was measured on STENO for different bunch
sizes and number of threads. The experiment was run using 26x26x26 patches with
3 guard cells in each direction for a total of 32x32x32 cells per patch. The experi-
ment examines up to 1400 patches. This is roughly the number of 32x32x32 patches
that can be stored on the GPU. This corresponds to an effective volume of 2903. No-
tice that the total volume is limited by CPU memory since different patches can be
shuffled in and out of the GPU. The result is shown in figure 7.6.

In the left figure, the runtime is shown sorted by bunch size and in the right, it
is sorted by the number of threads. In the left figure, the optimal runtime for each
bunch size is shown. Optimal runtime is to be understood as the smallest runtime
for the 5 different number of threads. Similarly in the right figure, for each number
of threads, the optimal bunch size was chosen. Due to an issue in the mockup-
scheduler, only bunch sizes that were divisible by the total number of patches could
be run.

The results consistently show that a bunch size of somewhere between 100-500
and using between 2-4 threads is optimal. The A100 has 108 SMs. For full utilization
of the GPU, all SMs needs to be working. Each patch in a bunch is distributed to an
SM with !$omp teams distribute. It is therefore expected that at least 108 patches
per bunch are needed for optimal performance. The experiment indicates that a
bunch size between 1-4 times the number of SMs gives optimal performance. More
than 1 thread should also be used to hide kernel overhead.

7.4.2 CPU Comparison

Once the optimal bunch/thread combination for the GPU was found, the experi-
ment could be run on the CPU. The experiment is shown in figure 7.7 and 7.8. Figure
7.7 shows the result going up to 1400 patches. The best performing GPU and CPU

7.4. HLLD Runtime 69

runtime for each number of patches is shown in figure 7.7a. The relative runtime
(compared to GPU) for 4 different numbers of threads is shown in 7.7b. In all cases,
using 40 threads performs best, but the relative speedup gained from doubling the
number of threads diminishes, and there is very little difference between using 20
and 40 threads.

Figure 7.7a shows a slightly sublinear trend for the GPU and a slightly super-
linear trend for the CPU. The speedup increases quickly up to around 800 patches.
After this, it continues to increase, but at a slower rate. This indicates that at least
around 800-1000 patches are needed for the GPU to be saturated.

The speedup using 5 or 10 threads increases smoothly, and continues to increase
as more and more patches are added. This is not the case for 20 and 40 threads
were the speedup is almost constant. The reason for this is most likely that the
added overhead of using so many threads still accounts for a significant portion of
the runtime.

Figure 7.8 shows the same experiment, but going up to 10.000 patches. In this
part of the experiment, only 40 threads were used on the CPU. Like the result for
smaller patch sizes, the relative speedup increases rapidly up to around 800. Then
there is a small dip in performance, which is quickly restored when using more
patches.

This dip is most like caused by a sub-optimal choice of bunch size in this range.
A broader range of bunch sizes was not used because only bunch sizes divisible
by the number of patches could be used. This is not the case in the MHD_Bunch
implementation.

For 5000 and 10000 patches, the speedup increases slightly, most likely due to
the GPU being fully saturated in both cases, but the CPU implementation having
superlinear scaling. The speedup is in the range of 2.6-3.0. This is somewhat lower
than the theoretical speedup of just under 6.

A profiler was run to determine any obvious causes for the non-optimal speedup.
As the profiler could not be run on the server, it was run for a smaller setup on
the desktop system. The setup ran 240 patches for 10 updates using 2 threads and
a bunch size of 48. The profiler output can be seen in figure 7.9. From the start
of the first HtoD transfer to the end of the last DtoH transfer 2731ms passes. Of
these 426ms is spent on HtoD transfer, 471ms on DtoH, 1426ms on kernel execution,
which leaves around 408ms idle time. If the transfer and idle time could be hidden
the performance would increase by roughly a factor of 2, which would bring the
speedup compared to using 40 CPU threads to around 5-6 bringing it close to the
theoretical maximal speedup.

70 Chapter 7. Results

(A) Runtime

(B) Relative Speedup

FIGURE 7.7: Runtime and relative speedup using different numbers
of CPU threads. For each patch size and thread count, only the time
of the best performing bunch size is shown. For the GPU only the

time of the best bunch/thread combination is stored

7.4. HLLD Runtime 71

(A) Runtime

(B) Relative Speedup

FIGURE 7.8: Runtime and relative speedup for a large number of
patches.

FIGURE 7.9: Profiler of MHD implementation for 240 patches, run-
ning 10 updates with a bunch-size of 48 and using 2 threads.

72 Chapter 7. Results

7.5 Integration Validation

Validation was first performed by writing out all arrays (prim, grad, flux, etc.) af-
ter 1 update on a single patch with a fixed timestep. This was done for both the
MHD_Bunch implementation and for DISPATCH/RAMSES. This method was use-
ful in the early stages of integration when serious errors were still present in the
GPU implementation. However, as the MHD_Bunch implementation approached
correctness this was not a robust validation for two reasons.

First, because a different approach was taken numerical differences were bound
to occur even with a physically correct solution. For FP32 one might expect around
6-9 significant digit precision. Errors such as sign errors may in some cases (where
the value is small) not produce much difference in the result after one update. This
difference was often in the 6-9 significant digit range. As such it was not possible to
discern between correct or incorrect solutions based on this approach.

Secondly, as stated in section 6.3.1 some minor errors were discovered in DIS-
PATCH/RAMSES. This meant that strict enforcement of the same values would not
prove the correctness of the MHD_Bunch implementation.

For these reasons more complex experiments was set up for validation. Two
experiments were chosen. First, the 1D MHD shock experiment from Ryu and Jones,
1995 was chosen. The initial conditions is a standard Riemann problem with left and
right starting states. To the left of 0.5 the initial conditions are (ρL = 1, vx L = 0, vyL =
0, vzL = 0, El = 1, ByL = 1, BzR = 0) and to the right (ρR = 0.21, vxR = 0, vyR =
0, vzR = 0, ER = 1, ByR = 1, BzR = 0) with Bx = 1 on both left and right states.
The experiment is run in the range x = [0, 1] using 512 grid point. The MHD_Bunch
CPU and DISPATCH/RAMSES uses a single patch with 512 cells. The MHD_Bunch
GPU experiment uses 8 patches each with 64 cells as the bunching scheduler crashes
with only 1 patch. The results can be seen in figure 7.10. As the figure shows, the
results are identical for all three solvers and matches the results in figure 4a in Ryu
and Jones, 1995. The second experiment chosen was the Orszag-Tang vortex (Orszag
and Tang, 1979). This experiment was chosen as it features a multitude of waves that
interacts and cross one another. This results in a complex system that covers a wide
range of conditions. As such any errors in a solver will quickly become noticeable in
the experiment. The experiment has the initial conditions:

V = −sin(y)x̂ + sin(x)ŷ (7.1)

B = −B0sin(2πy)x̂ + B0sin(4πx)ŷ (7.2)

The experiment was run with both DISPATCH/RAMSES and the MHD_Buch im-
plementation (CPU and GPU) for a setup with 32x32x1 cells per patch and 16x16x1
patches (512x512 cells) and with 32x32x1 cells per patch and 32x32x1 patches (1024x1024
cells). The "mistake" in DISPATCH/RAMSES in the EMF should not matter in this
case, if the size of the z-direction is chosen to be 1/(32 ∗ 16) in the first case and
1/(32 ∗ 32) in the second case.

The results can be seen in figure 7.11 and 7.12. The solutions are identical up until
0.5s. At this point, the inner part starts forming small vortices that are seen at t=0.6 in
both figures. Three vortexes are seen in the 512x512 experiment. Two small on either
side and one in the middle. Five is seen in the 1024x1024 experiment. Two very
small on either side, two somewhat larger closer to the center and one in the center.
It may be hard to discern from the figures, but these vortices are slightly displaced
in the two different runs, which causes a large effect at time t=1. It should be noted
that multiple runs were performed for both DISPATCH/RAMSES and MHD_Bunch

7.5. Integration Validation 73

FIGURE 7.10: 1D shock tube test with initial condition (ρL = 1, vx L =
0, vyL = 0, vzL = 0, El = 1, ByL = 1, BzR = 0) and (ρR = 0.21, vxR =
0, vyR = 0, vzR = 0, ER = 1, ByR = 1, BzR = 0) for the left and right

states.

74 Chapter 7. Results

implementation. The results of some of these varied. Some examples are shown in
figure D.1 in the appendix.

The reason for this variation is not in the solvers themselves but the exchange
and interpolation of ghost zones. The Orszag-Tang experiment is a completely sym-
metric setup, and any small deviation from symmetry might set off a domino effect
that disrupts the system later in the simulation. Patches are picked up and updated
in a semi-random order. This means that neighboring cells may be updated in a
different order when running the simulation multiple times. Because of this, the
patches will not have the same time and ghost zone interpolation will therefore dif-
fer. This is enough to cause the small disturbance at around t=0.6 that leads to the
larger and more visible differences at time t=1. This only happens because of the
strict symmetry. As such, in realistic scenarios, the result will be the same. Valida-
tion of MHD_Bunch implementation was performed both when compiling for GPU
and CPU bunch execution.

A larger Orszag-Tang experiment was run on STENO to measure the runtime of
the different versions. This experiment used 26x26x26 cells per patch (32x32x32 with
ghost zones) and 32x32x3= 3072 patches. This experiment was only run for about
100 iterations. The MHD_Bunch GPU implementation ran in 180.4s, MHD_Bunch
CPU implementation ran in 305.8s and DISPATCH/RAMSES ran in 527.4s. The
MHD_Bunch GPU implementation was run for 4 different bunch sizes: 54, 108, 216,
and 432 where 108 gave the lowest runtime.

The speedup comparing MHD_Bunch GPU is thus around 1.7 compared to MHD_Bunch
CPU. This is a somewhat smaller speedup than the mockup because bunching is still
not optimal. The speedup comparing MHD_Bunch GPU to DISPATCH/RAMSES is
2.9, and the speedup comparing MHD_Bunch CPU to DISPATCH/RAMSES is 1.7.

7.5. Integration Validation 75

(A) DISPATCH/RAMSES solution at time 0.1 (B) MHD_Bunch solution at time 0.1

(C) DISPATCH/RAMSES solution at time 0.6 (D) MHD_Bunch solution at time 0.6

(E) DISPATCH/RAMSES solution at time 1.0 (F) MHD_Bunch solution at time 1.0

FIGURE 7.11: Side by side snapshots of DISPATCH/RAMSES solu-
tion and MHD_Bunch implementation running the Orszag-Tang ex-
periment on a 512x512 grid. There is a slight mismatch in the later

time steps

76 Chapter 7. Results

(A) DISPATCH/RAMSES solution at time 0.1 (B) MHD_Bunch solution at time 0.1

(C) DISPATCH/RAMSES solution at time 0.6 (D) MHD_Bunch solution at time 0.6

(E) DISPATCH/RAMSES solution at time 1.0 (F) MHD_Bunch solution at time 1.0

FIGURE 7.12: Side by side snapshots of DISPATCH/RAMSES solu-
tion and MHD_Bunch implementation running the Orszag-Tang ex-
periment on a 1024x1024 grid. There is a slight mismatch in the later

time steps

77

Chapter 8

Discussion

8.1 Current State

The MHD_Bunch implementation has been integrated into DISPATCH and a bunch-
ing module added for scheduling of bunches. The implementation has been vali-
dated with a 1D MHD shock tube and the Orszag-Tang vortex experiments. The
implementation only has support for the use of 1 device per MPI rank, but the code
is prepared for possible future implementation of multiple devices. The way bunch-
ing is scheduled (size, interval, etc.) is statically set as user input.

The mockup shows a speedup of around 3.0 comparing one A100 GPU to 40 CPU
threads. If idle time and memory transfer can be hidden, this speedup is expected to
roughly double to around 6. As 4 GPUs are available an additional factor 4 could be
added for a speedup of 24. The long-term goal is to target the LUMI system, which
features a slightly slower socket. LUMI will also have the AMD InstinctTM GPUs1.
The current AMD Instinct GPU, MI100, is just under 20% faster than the A100, and
LUMI will likely use a successor to the MI100. This would bring the speedup to
around 30. Although this estimate is based on the current speedup of the mockup,
it is expected that DISPATCH could see the same speedup on large experiments.

8.2 Remaining Issues

There currently persists some issues in the MHD_Bunch implementation. They are
briefly listed below:

• The bunching module will crash in very small experiments, such as the 1D
shock tube.

• Stalling sometimes causes a lot of small bunches to be scheduled, which can
harm performance.

• When finishing a simulation the bunching module will sometimes stall for 30s-
1min especially in smaller experiments.

• The static array allocation still assumes that each dimension (x,y,z) has the
same number of cells, which causes it to sometimes allocate unnecessarily
large arrays.

• The current implementation has required a change of the basic task data type.
This may cause an issue when integrated into production as many other solvers
rely on this type.

1https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-
supercomputers/

https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/

78 Chapter 8. Discussion

8.3 Extensions to the Bunching Module

8.3.1 Dynamic Bunching

Optimizing the bunch-scheduling remains the largest potential for improving per-
formance. The scheduler does not properly ensure that a bunch is always filled and
ready to be sent, executed, and returned to the CPU and as a result, more idle time
occurs than in the mockup.

This could be improved by implementing a dynamic bunch scheduler. For ex-
ample, the interval between forced updates could be adjusted throughout a simu-
lation. This would also supersede the interval scaling parameter.

Currently, there is an option for updating a single task on the CPU if all bunches
are busy. This could likewise be extended to updating a small bunch on the CPU.
For example, if the bunch size is set to 200, but only 2 tasks have been added to the
bunch. After a while, it might be preferable to just run these on the CPU.

The choice of whether or not to run a partly filled bunch on the GPU might be
driven by the number of tasks that will become available after the update. DIS-
PATCH routinely interacts with the neighboring patches to exchange ghost zones
and checks if neighbors have become ready after an update. This could be altered
to instead check before updating how many neighbors rely on the patch. If a large
number of patches are waiting for a single patch or a small bunch to be updated it
might be better to update on the CPU immediately.

8.3.2 Other Solvers

The current bunching module only supports the MHD_Bunch solver. An obvious
next step in the development of DISPATCH would be to port other solvers to GPU.
Higher-order MHD-solvers would be good candidates. Alternatively, ray-tracing
radiative transfer or self-gravity could for example be ported. Just like MHD, it will
most likely be the case that the best approach for the GPU version of these solvers
will be to bunch tasks together.

Depending on the implementation only a little (or perhaps nothing) would have
to be changed in the bunching module to support these solvers.

8.4 Reducing Memory Footprint

The DISPATCH/RAMSES solver has been refactored but the basic structure of the
solver remains the same. Several temporary arrays are used to store intermediate
values of the entire patch. In the MHD_Bunch implementation, these intermediate
arrays are statically stored both on the GPU and on the CPU, which requires a lot of
memory.

Each cell requires in principle only knowledge about its neighbors. Each cell can
thus be updated by only storing a 3x3x3 region of temporary variables. On the CPU,
it might provide better results to not store the temporary arrays for the entire patch.
Instead, only a 3x3x3 region could be stored. Each cell could then be looped over in
sequence. The extra memory requirement of each patch only would be reduced to
O(1).

This would probably not be the best approach on the GPU as there would not be
enough work for each thread and/or not enough threads. An alternative approach

8.5. Other Compilers 79

could be to only look at a slice of the patch. At any given time, the temporary vari-
ables needed to be stored would only be NxNx3. This would reduce the memory
requirement from O(N3) to O(N2), with N being the patch size in each dimension.

8.5 Other Compilers

Only the GCC and PGI have been used in this thesis. As earlier discussed, these
both have their nondesirable quirks. The PGI compiler works great for OpenACC
on NVIDIA GPUs, but it is not well optimized for OpenMP or running on other
GPUs. GCC on the other hand does not suffer a vendor bias. However, GCC is far
behind in many of the offload features in OpenMP for Fortran.

Specifically, the support of asynchronous execution is completely missing in GCC.
Other compilers (Cray, LLVM, and IBM) do have advertised support for asynchronous
execution. The Cray compiler was briefly investigated during this thesis. In exten-
sion to my work, René Løwe Jacobsen and Tethys Svensson from DeIC investigated
the use of other compilers to run kernels asynchronously in OpenMP. However, the
effort proved unsuccessful for the GCC, PGI, and Cray compilers.

8.6 Different approaches

8.6.1 OpenACC/OpenMP Hybrid

With the announcement that LUMI was going to feature AMD GPUs, OpenMP took
priority over the OpenACC. As a result, the OpenACC HD implementation was
never fully integrated with a bunch solution. Furthermore, no OpenACC imple-
mentation was done for MHD. As shown during HD implementation asynchronous
execution is fully working and easy to implement once a working solution is imple-
mented in OpenACC. For these reasons, it could be an interesting future project to
implement the MHD with an OpenACC approach.

8.6.2 CUDA/C

As stated multiple times during the thesis, one of the largest obstacles has been
the limited compiler support for offloading with OpenMP in Fortran, specifically
the memory transfer. Similar to the GenASIS (Budiardja and Cardall, 2019) and
GENE code(Germashewski et al., 2021) interoperability with CUDA/C or CUD-
A/C++ could be used as the compiler support for C and C++ is much better. The
AMD non-vendor-specific API HIP could be used as an alternative to CUDA.

8.7 Comparison With GenASIS and GENE Codes

The GenASIS and GENE codes are in some ways very similar to DISPATCH. They
are both Fortran-based and make use of the object-oriented features introduced in
Fortran 2003. Comparing the results achieved when porting these two code bases to
GPU is therefore a good proxy for the quality of the MHD_Bunch implementation.

Both codes were tested on Summit at the Oak Ridge Leadership Computing Fa-
cility2. Summit has two IBM Power9 CPUs with 22-cores per node leading to a total
of 44 cores per node. 1 core on each socket is reserved for the operating system, so

2https://www.olcf.ornl.gov/summit/

https://www.olcf.ornl.gov/summit/

80 Chapter 8. Discussion

a total of 42 cores is available. Each socket is connected to 3 NVIDIA Volta V100
GPUs. A total of 6 GPUs is thus available on each node. This also gives 7 CPU cores
for each GPU.

The V100 has FP32 peak performance of around 15.7 TFLOPS making the total
peak performance around 94.2 TFLOPS per node. This is around 1.2 times higher
than the peak performance per node on STENO, which features 4 A100 GPU each
with 19.5 TFLOPS peak performance for a total of 78 TFLOPS. The Power9 CPU has
a peak performance of around 2.161 TFlops per node or 344 GFLOPS per 7 cores3.
The relative theoretical peak performance between 7 cores and 1 GPU is therefore
around 45.

The GenASIS code achieved a speedup of around 6 when comparing 1 GPU with
7 CPU threads, and double that with pinned memory. The GENE code likewise
saw a speedup of roughly 15 when comparing 6 GPUs to 42 cores (1 GPU per 7
threads). Clearly, this is way below the theoretical peak performance in both cases.
As noted by Germashewski et al., 2021 the speedup of 15 corresponds better to the
ratio between the GPU and CPU memory bandwidth of around 16 within a single
socket. However, this speedup of 15 only holds for single-node and drops to around
6 when using multiple nodes.

The mockup was similarly run using only 7 threads for a better comparison. The
result is seen in figure 8.1. As the figure shows, the speedup is about a bit higher than
what was found for GenASIS without pinned memory. GenASIS reduced runtime
by 50% when using pinned memory. As earlier discussed the speedup is expected to
roughly double if memory transfer and idle time can be hidden. This would bring
the speedup to 13-15.

In addition, the CPUs on STENO is about twice as fast as on Summit, so the
relative theoretical peak performance between 7 cores and 1 GPU is therefore around
30 on STENO. The peak memory transfer on STENO comparing 1 A100 to 1 CPU
node is around 5.5. This is again very close to the expected speedup comparing 1
GPU with 40 cores. This was expected to be around 6 if memory transfer and idle
time could be hidden

Considering all this, the results achieved in this project are on par with the results
reached in the GenASIS and GENE code.

As shown in Nordlund et al., 2018, DISPATCH has near-optimal scaling. As the
newly added bunch module does not interfere with the inter-node communication
the scalability of DISPATCH remains the same. The speedup achieved in this project
will therefore not suffer the same decrease in performance as the GENE code when
running on multiple nodes.

It should be noted however that DISPATCH, GenASIS, and GENE are in many
ways very different codes and the experiments were run of different systems. The
comparison is meant only to give a superficial look at the current state and potential
improvements in the MHD_Bunch implementation.

3https://fuse.wikichip.org/news/1351/ornls-200-petaflops-summit-supercomputer-has-
arrived-to-become-worlds-fastest/

https://fuse.wikichip.org/news/1351/ornls-200-petaflops-summit-supercomputer-has-arrived-to-become-worlds-fastest/
https://fuse.wikichip.org/news/1351/ornls-200-petaflops-summit-supercomputer-has-arrived-to-become-worlds-fastest/

8.7. Comparison With GenASIS and GENE Codes 81

FIGURE 8.1: Runtime and speedup comparing 1 GPU to 7 CPU
thread.

83

Chapter 9

Conclusion

It has been shown that porting DISPATCH to GPUs is possible using only directives
and without any C/CUDA interoperability. Both OpenACC and OpenMP versions
have been implemented and tested successfully on a hydrodynamic mockup using
the HLL solver. Memory transfer is the main bottleneck in the HLL solver. Stati-
cally allocating work arrays and bunching tasks together significantly increase per-
formance when running on the GPU, as it reduces the overhead and reduces latency,
by oversubscribing the GPU work. Asynchronous execution and memory transfer
have also been shown to be possible with OpenACC, which further improves GPU
performance. Asynchronous execution of kernels with OpenMP is currently not pos-
sible with the GCC compiler. Asynchronous execution is in principle supported by
the LLVM and Cray compilers, but it has not been possible to get a working version.

An HLLD solver has similarly been tested in a mockup and then implemented
in DISPATCH. Memory transfer time is similar to the kernel execution time. The
current speedup using 1 GPU per 40 cores is around 3 for the mockup. If memory
transfer and idle time can be hidden, this is expected to be increased to be around 30
for 4 GPU per 42 cores on the LUMI system.

Porting the HLLD MHD solver required a complete refactoring of the code. A
new solver, MHD_Bunch, has been implemented together with a bunching mod-
ule. The code has been tested and validated with a 1D MHD shock tube and the
Orszag-Tang Vortex experiments. Two issues in the DISPATCH/RAMSES code re-
garding the symmetry of the code were discovered and fixed in the MHD_Bunch
implementation. The kernels have not been fine-tuned and there is still some room
for improvement. The bunching module does not perfectly schedule the bunches,
which causes idle time on the GPU. The speedup comparing MHD_Bunch GPU to
MHD_Bunch CPU is around 1.7. The speedup comparing MHD_Bunch GPU to
DISPATCH/RAMSES is 2.9, and the speedup comparing MHD_Bunch CPU to DIS-
PATCH/RAMSES is 1.7.

Overall, the project has been a success and the MHD_Bunch implementation
outperforms the existing code both when running on the GPU and the CPU. More
significantly, the thesis has demonstrated the viability of porting complex physics
modules, using exclusively directives with satisfactory performance. I hope that the
MHD_Bunch solver will be used in production and that the results and experiences
of this thesis can be used as a template for porting more physics modules to GPUs.
This would make it possible to execute non-trivial science applications at scale on
LUMI in the near future.

85

Appendix A

Corner values, y- and z-direction

(A) Cell corner values to edge-centered corner values in the y-direction. SW,SE,NW,NE val-
ues are used to solve 2D Riemann problem and calculate EMF.

(B) Cell corner values to edge-centered corner values in the z-direction. SW,SE,NW,NE val-
ues are used to solve 2D Riemann problem and calculate EMF.

FIGURE A.1: Corner values for y- and z-direcitions

87

Appendix B

Compiler installation

B.1 PGI

Installation of PGI before HPC SDK integration:

• Make sure to have gfortran installed. At least v. 7.4.0 or newer

• Download the install file.

• Unpack tar file "tar xpfz <tarfile>.tar.gz"

• navigate to install folder and type "sudo ./install"

• accept and choose single network install (use default installation folder)

• use links - install cuda and Mpi components

• Install license key

• Update the .bashrc with the following (may need to change depending on the
version)

export PGI=/opt/pgi;
export PATH=/opt/pgi/linux86-64/19.10/bin:$PATH;
export MANPATH=$MANPATH:/opt/pgi/linux86-64/19.10/man;
export LM_LICENSE_FILE=$LM_LICENSE_FILE:/opt/pgi/license.dat;

• Install openjdk-8-jre

Installaion of PGI with HPC SDK:

• Download install package from https://developer.nvidia.com/nvidia-hpc-
sdk-downloads

• Follow install instruction

• After install add the following to .bashrc

NVARCH=‘uname -s‘_‘uname -m‘; export NVARCH
NVCOMPILERS=/opt/nvidia/hpc_sdk; export NVCOMPILERS
MANPATH=$MANPATH:$NVCOMPILERS/$NVARCH/20.9/compilers/man; export MANPATH
PATH=$NVCOMPILERS/$NVARCH/20.9/compilers/bin:$PATH; export PATH
export PATH=$NVCOMPILERS/$NVARCH/20.9/comm_libs/mpi/bin:$PATH
export MANPATH=$MANPATH:$NVCOMPILERS/$NVARCH/20.9/comm_libs/mpi/man
export LD_LIBRARY_PATH="/opt/nvidia/hpc_sdk/Linux_x86_64/20.7/cuda/11.0/

lib64:$LD_LIBRARY_PATH"
export PATH="/opt/nvidia/hpc_sdk/Linux_x86_64/20.7/cuda/11.0:$PATH"
export PATH="/opt/nvidia/hpc_sdk/Linux_x86_64/20.7/cuda/11.0/bin:$PATH"

https://developer.nvidia.com/nvidia-hpc-sdk-downloads
https://developer.nvidia.com/nvidia-hpc-sdk-downloads

88 Appendix B. Compiler installation

B.2 GCC

• Version 10.2 has issues with CUDA 11 so install cuda 10.2

• To allow profiler:

– install java with sudo apt-get install openjdk-8-jre

– set as default with: sudo update-alternatives –config java - select
java-8

– Create a file (e.g profile.conf) in the folder /etc/modprobe.d

– Open file and insert the following:

options nvidia "NVreg_RestrictProfilingToAdminUsers=0"

– Close and restart

• once cuda is installed and profiler added add the following to the .bashrc

export PATH=/usr/local/cuda-10.2:$PATH"
export PATH=/usr/local/cuda-10.2/bin:$PATH"
export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib64:$LD_LIBRARY_PATH

• Run GCC-offload script (see below). Change cuda-variable to denote your
local cuda folder

#!/bin/bash
Build GCC with support for offloading to NVIDIA GPUs.
set -o nounset -o errexit
Location of the installed CUDA toolkit
cuda=/usr/local/cuda-10.2
directory of this script
MYDIR="$(cd -P "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
work_dir=$MYDIR/gcc-10-2-offload
install_dir=$work_dir/install
rm -rf $work_dir
Build assembler and linking tools
mkdir -p $work_dir
cd $work_dir
git clone https://github.com/MentorEmbedded/nvptx-tools
cd nvptx-tools
./configure \

--with-cuda-driver-include=$cuda/include \
--with-cuda-driver-lib=$cuda/lib64 \
--prefix=$install_dir

make
make install
cd ..
Set up the GCC source tree
git clone https://github.com/MentorEmbedded/nvptx-newlib
wget -c https://github.com/gcc-mirror/gcc/archive/releases/gcc-10.2.0.tar.gz
tar xf gcc-10.2.0.tar.gz
ln -s gcc-releases-gcc-10.2.0 gcc-src

B.2. GCC 89

cd gcc-src
contrib/download_prerequisites
ln -s ../nvptx-newlib/newlib newlib
target=$(./config.guess)
cd ..
Build nvptx GCC
mkdir build-nvptx-gcc
cd build-nvptx-gcc
../gcc-src/configure \

--target=nvptx-none \
--with-build-time-tools=$install_dir/nvptx-none/bin \
--enable-as-accelerator-for=$target \
--disable-sjlj-exceptions \
--enable-newlib-io-long-long \
--enable-languages="c,c++,fortran,lto" \
--prefix=$install_dir

make -j4
make install
cd ..
Build host GCC
mkdir build-host-gcc
cd build-host-gcc
../gcc-src/configure \

--enable-offload-targets=nvptx-none \
--with-cuda-driver-include=$cuda/include \
--with-cuda-driver-lib=$cuda/lib64 \
--disable-bootstrap \
--disable-multilib \
--enable-languages="c,c++,fortran,lto" \
--prefix=$install_dir

make -j4
make install
cd ..

91

Appendix C

OpenACC v0.1 update

1 subroutine update(self)
2 class(solver_t),target :: self
3 integer :: i3, i2 , i1
4 real , dimension (:,:,:,:,:,:), pointer :: mem
5 real , dimension (:,:,:,:), pointer :: prim
6 real , dimension (:,:,:,:), pointer :: left
7 real , dimension (:,:,:,:), pointer :: rght
8 real , dimension (:,:,:,:,:), pointer :: grad
9 real , dimension (:,:,:,:,:), pointer :: flux

10 real , dimension (:,:), pointer :: ff
11 integer , dimension (:), pointer :: gn
12 integer , dimension (3) :: lb, ub, l, u
13 integer :: new , it, nv
14 real (8) :: gamma , ds(3), dtime , g1
15 real :: u2_max , g2, dtd1 , dtd2 , dtd3 , dt2
16 integer :: iv, uo(3), lo(3), li(3), ui(3)
17 ff => self%ff
18 grad => self%grad
19 flux => self%flux
20 mem => self%mem
21 gn => self%gn
22 prim => self%prim
23 left => self%left
24 rght => self%rght
25 nv = self%nv
26 lb = self%lb
27 ub = self%ub
28 new = self%new
29 it = self%it
30 gamma = self%gamma
31 dtime = self%dtime
32 ds = self%ds
33 g1 = self%g1
34 g2 = self%g2
35 uo = self%uo
36 lo = self%lo
37 ui = self%ui
38 li = self%li
39 l = lb+1
40 u = ub -1
41 if (gamma == 1d0) then
42 g2 = 1.0
43 else
44 g2 = (gamma -1d0)*gamma
45 end if
46 u2_max = 0.0
47 dt2 = dtime *0.5
48 dtd1 = dt2/ds(1)
49 dtd2 = dt2/ds(2)

92 Appendix C. OpenACC v0.1 update

50 dtd3 = dt2/ds(3)
51 !$acc data copyin(new ,it ,lb ,ub, g2, u2_max , & !ctoprim variables
52 !$acc l, u, & !slopes variables
53 !$acc dtd1 , dtd2 , dtd3 , dt2 , g1, lo , uo, ff, &
54 !$acc li, ui, nv , &
55 !$acc prim , grad , left , rght , flux , mem)
56 call ctoprim (self , mem , new , it, prim , lb , ub, g2, u2_max)
57 call slopes (self , prim , grad , nv, l, u)
58 call predict (self , prim , grad , mem , new , g1 , lo, uo, dtd1 , dtd2 ,

dtd3 , dt2 , ff)
59 call riemn3d(self , lo, uo, left , rght , prim , grad , flux , nv , mem)
60 call divflux(self , mem , flux , li , ui, new , nv , dtd1 , dtd2 , dtd3)
61 call sources(self , mem , prim , gamma , new)
62 !$acc end data
63 self%time = self%time + self%dtime
64 self%it = mod(self%it ,5) + 1
65 self%new = mod(self%new ,5) +1
66 end subroutine update

LISTING C.1: Update function in first OpenACC version.

93

Appendix D

Orszag-Tang experiments

94 Appendix D. Orszag-Tang experiments

(A) MHD_Bunch at t=1 for grid-size 512x512 (B) MHD_Bunch at t=1 for grid-size 512x512

(C) MHD_Bunch at t=1 for grid-size 512x512 (D) DISPATCH/RAMSES solution at t=1 for grid-
size 512x512

(E) MHD_Bunch at t=1 for grid-size 1024x1024 (F) DISPATCH/RAMSES solution at t=1 for grid-
size 1024x1024

FIGURE D.1: Different outcomes for the Orszag-Tang experiments.

95

Bibliography

Bai, Feng peng, Zhong hua Yang, and Wu gang Zhou (2018). “Study of total varia-
tion diminishing (TVD) slope limiters in dam-break flow simulation”. In: Water
Science and Engineering 11.1, pp. 68–74. ISSN: 1674-2370. DOI: https://doi.org/
10.1016/j.wse.2017.09.004. URL: https://www.sciencedirect.com/science/
article/pii/S1674237018300255.

Batten, P. et al. (Nov. 1997). “On the Choice of Wavespeeds for the HLLC Riemann
Solver”. In: SIAM J. Sci. Comput. 18.6, 1553–1570. ISSN: 1064-8275. DOI: 10.1137/
S1064827593260140. URL: https://doi.org/10.1137/S1064827593260140.

Benitez-Llambay, Pablo and Frédéric S. Masset (2016). “FARGO3D: A NEW GPU-
ORIENTED MHD CODE”. In: The Astrophysical Journal Supplement Series 223.1,
p. 11. ISSN: 1538-4365. DOI: 10.3847/0067-0049/223/1/11. URL: http://dx.
doi.org/10.3847/0067-0049/223/1/11.

Berger, Marsha J. and Joseph Oliger (Mar. 1984). “Adaptive mesh refinement for hy-
perbolic partial differential equations”. English (US). In: Journal of Computational
Physics 53.3, pp. 484–512. ISSN: 0021-9991. DOI: 10.1016/0021-9991(84)90073-1.

Brackbill, J.U and D.C Barnes (1980). “The Effect of Nonzero · B on the numerical
solution of the magnetohydrodynamic equations”. In: Journal of Computational
Physics 35.3, pp. 426–430. ISSN: 0021-9991. DOI: https://doi.org/10.1016/
0021- 9991(80)90079- 0. URL: https://www.sciencedirect.com/science/
article/pii/0021999180900790.

Budiardja, Reuben D. and Christian Y. Cardall (2019). “Targeting GPUs with OpenMP
directives on Summit: A simple and effective Fortran experience”. In: Parallel
Computing 88, p. 102544. ISSN: 0167-8191. DOI: https://doi.org/10.1016/j.
parco.2019.102544. URL: http://www.sciencedirect.com/science/article/
pii/S0167819119301358.

Cardall, Christian Y. et al. (2014). “GENASIS: GENERAL ASTROPHYSICAL SIM-
ULATION SYSTEM. I. REFINABLE MESH AND NONRELATIVISTIC HYDRO-
DYNAMICS”. In: The Astrophysical Journal Supplement Series 210.2, p. 17. ISSN:
1538-4365. DOI: 10.1088/0067-0049/210/2/17. URL: http://dx.doi.org/10.
1088/0067-0049/210/2/17.

Davis, S. F. (1988). “Simplified Second-Order Godunov-Type Methods”. In: SIAM
Journal on Scientific and Statistical Computing 9.3, pp. 445–473. DOI: 10 . 1137 /
0909030.

Dr. Momme Allalen (June 17, 2020). Fundamentals of Accelerated Computing with CUDA
C/C++. PRACE. URL: https://doku.lrz.de/display/PUBLIC/PRACE+Course\
%3A+Deep+Learning+and+GPU+Programming+Workshop (visited on 12/22/2020).

Dubey, Anshu et al. (2014). “A survey of high level frameworks in block-structured
adaptive mesh refinement packages”. In: Journal of Parallel and Distributed Com-
puting 74.12. Domain-Specific Languages and High-Level Frameworks for High-
Performance Computing, pp. 3217 –3227. ISSN: 0743-7315. DOI: https://doi.
org/10.1016/j.jpdc.2014.07.001. URL: http://www.sciencedirect.com/
science/article/pii/S0743731514001178.

https://doi.org/https://doi.org/10.1016/j.wse.2017.09.004
https://doi.org/https://doi.org/10.1016/j.wse.2017.09.004
https://www.sciencedirect.com/science/article/pii/S1674237018300255
https://www.sciencedirect.com/science/article/pii/S1674237018300255
https://doi.org/10.1137/S1064827593260140
https://doi.org/10.1137/S1064827593260140
https://doi.org/10.1137/S1064827593260140
https://doi.org/10.3847/0067-0049/223/1/11
http://dx.doi.org/10.3847/0067-0049/223/1/11
http://dx.doi.org/10.3847/0067-0049/223/1/11
https://doi.org/10.1016/0021-9991(84)90073-1
https://doi.org/https://doi.org/10.1016/0021-9991(80)90079-0
https://doi.org/https://doi.org/10.1016/0021-9991(80)90079-0
https://www.sciencedirect.com/science/article/pii/0021999180900790
https://www.sciencedirect.com/science/article/pii/0021999180900790
https://doi.org/https://doi.org/10.1016/j.parco.2019.102544
https://doi.org/https://doi.org/10.1016/j.parco.2019.102544
http://www.sciencedirect.com/science/article/pii/S0167819119301358
http://www.sciencedirect.com/science/article/pii/S0167819119301358
https://doi.org/10.1088/0067-0049/210/2/17
http://dx.doi.org/10.1088/0067-0049/210/2/17
http://dx.doi.org/10.1088/0067-0049/210/2/17
https://doi.org/10.1137/0909030
https://doi.org/10.1137/0909030
https://doku.lrz.de/display/PUBLIC/PRACE+Course\%3A+Deep+Learning+and+GPU+Programming+Workshop
https://doku.lrz.de/display/PUBLIC/PRACE+Course\%3A+Deep+Learning+and+GPU+Programming+Workshop
https://doi.org/https://doi.org/10.1016/j.jpdc.2014.07.001
https://doi.org/https://doi.org/10.1016/j.jpdc.2014.07.001
http://www.sciencedirect.com/science/article/pii/S0743731514001178
http://www.sciencedirect.com/science/article/pii/S0743731514001178

96 Bibliography

Einfeldt, B et al. (1991). “On Godunov-type methods near low densities”. In: Journal
of Computational Physics 92.2, pp. 273 –295. ISSN: 0021-9991. DOI: https://doi.
org/10.1016/0021-9991(91)90211-3. URL: http://www.sciencedirect.com/
science/article/pii/0021999191902113.

Fromang, Sebastien, P. Hennebelle, and Romain Teyssier (Dec. 2012). “A high order
Godunov scheme with constrained transport and adaptive mesh refinement for
astrophysical magnetohydrodynamics”. In: Astronomy and Astrophysics. DOI: 10.
1051/0004-6361:20065371.

Germashewski, K. et al. (2021). In:
Gudiksen, Boris et al. (July 2011). “The stellar atmosphere simulation code Bifrost”.

In: Astronomy Astrophysics - ASTRON ASTROPHYS 531. DOI: 10.1051/0004-
6361/201116520.

Harten, Amiram, Peter Lax, and Bram van Leer (Jan. 1983). “On Upstream Differenc-
ing and Godunov-Type Schemes for Hyperbolic Conservation Laws”. In: SIAM
Rev 25, pp. 35–61.

Leer, Bram van (July 1979). “Towards the Ultimate Conservative Difference Scheme
V. A Second-order Sequel to Godunov’s Method”. In: Journal of Computational
Physics 32, pp. 101–136. DOI: 10.1016/0021-9991(79)90145-1.

Li, Xuechao and Po-Chou Shih (Jan. 2018). “An Early Performance Comparison of
CUDA and OpenACC”. In: MATEC Web of Conferences 208, p. 05002. DOI: 10.
1051/matecconf/201820805002.

Lustig, Daniel and Margaret Martonosi (2013). “Reducing GPU Offload Latency
via Fine-Grained CPU-GPU Synchronization”. In: Proceedings of the 2013 IEEE
19th International Symposium on High Performance Computer Architecture (HPCA).
HPCA ’13. USA: IEEE Computer Society, 354–365. ISBN: 9781467355858. DOI: 10.
1109 / HPCA . 2013 . 6522332. URL: https : / / doi . org / 10 . 1109 / HPCA . 2013 .
6522332.

Mattson, T.G., Y. He, and A.E. Koniges (2019). The OpenMP Common Core: Making
OpenMP Simple Again. Scientific and Engineering Computation. MIT Press. ISBN:
9780262538862. URL: https://books.google.dk/books?id=e6beyAEACAAJ.

McClanahan, Chris (2011). “History and Evolution of GPU Architecture A Paper
Survey”. In:

Mei, X. and X. Chu (2017). “Dissecting GPU Memory Hierarchy Through Microbench-
marking”. In: IEEE Transactions on Parallel and Distributed Systems 28.1, pp. 72–86.
DOI: 10.1109/TPDS.2016.2549523.

Miyoshi, Takahiro and Kanya Kusano (2005). “A multi-state HLL approximate Rie-
mann solver for ideal magnetohydrodynamics”. In: Journal of Computational Physics
208.1, pp. 315 –344. ISSN: 0021-9991. DOI: https://doi.org/10.1016/j.jcp.
2005.02.017. URL: http://www.sciencedirect.com/science/article/pii/
S0021999105001142.

Negrutn, Dan (2013). Primer: Elements of Processor Architecture. The Hardware/Software
Interplay. URL: https : / / www . sciencedirect . com / science / article / pii /
S1674237018300255.

Nobile, Marco et al. (Mar. 2014). “cuTauLeaping: A GPU-Powered Tau-Leaping Stochas-
tic Simulator for Massive Parallel Analyses of Biological Systems”. In: PloS one 9,
e91963. DOI: 10.1371/journal.pone.0091963.

Nordlund, Aake et al. (May 2018). “DISPATCH: A numerical simulation framework
for the exa-scale era - I. Fundamentals”. In: Monthly Notices of the Royal Astronom-
ical Society 477. DOI: 10.1093/mnras/sty599.

Nordlund, Åke, Klaus Galsgaard, and R. F. Stein (1994). “Magnetoconvection and
Magnetoturbulence”. In: Solar Surface Magnetism. Ed. by Robert J. Rutten and

https://doi.org/https://doi.org/10.1016/0021-9991(91)90211-3
https://doi.org/https://doi.org/10.1016/0021-9991(91)90211-3
http://www.sciencedirect.com/science/article/pii/0021999191902113
http://www.sciencedirect.com/science/article/pii/0021999191902113
https://doi.org/10.1051/0004-6361:20065371
https://doi.org/10.1051/0004-6361:20065371
https://doi.org/10.1051/0004-6361/201116520
https://doi.org/10.1051/0004-6361/201116520
https://doi.org/10.1016/0021-9991(79)90145-1
https://doi.org/10.1051/matecconf/201820805002
https://doi.org/10.1051/matecconf/201820805002
https://doi.org/10.1109/HPCA.2013.6522332
https://doi.org/10.1109/HPCA.2013.6522332
https://doi.org/10.1109/HPCA.2013.6522332
https://doi.org/10.1109/HPCA.2013.6522332
https://books.google.dk/books?id=e6beyAEACAAJ
https://doi.org/10.1109/TPDS.2016.2549523
https://doi.org/https://doi.org/10.1016/j.jcp.2005.02.017
https://doi.org/https://doi.org/10.1016/j.jcp.2005.02.017
http://www.sciencedirect.com/science/article/pii/S0021999105001142
http://www.sciencedirect.com/science/article/pii/S0021999105001142
https://www.sciencedirect.com/science/article/pii/S1674237018300255
https://www.sciencedirect.com/science/article/pii/S1674237018300255
https://doi.org/10.1371/journal.pone.0091963
https://doi.org/10.1093/mnras/sty599

Bibliography 97

Carolus J. Schrijver. Dordrecht: Springer Netherlands, pp. 471–498. ISBN: 978-94-
011-1188-1. DOI: 10.1007/978-94-011-1188-1_37. URL: https://doi.org/10.
1007/978-94-011-1188-1_37.

NVIDIA. GPU: Changes Everything. https://web.archive.org/web/20160408122443/
http://www.nvidia.com/object/gpu.html. Accessed: 2020-12-22.

NVIDIA Corporation (2020). NVIDIA CUDA C Programming Guide. Version 11.0.
Orszag, S. A. and C. M. Tang (Jan. 1979). “Small-scale structure of two-dimensional

magnetohydrodynamic turbulence”. In: Journal of Fluid Mechanics 90, pp. 129–
143. DOI: 10.1017/S002211207900210X.

Roe, P.L (1981). “Approximate Riemann solvers, parameter vectors, and difference
schemes”. In: Journal of Computational Physics 43.2, pp. 357 –372. ISSN: 0021-9991.
DOI: https://doi.org/10.1016/0021-9991(81)90128-5. URL: http://www.
sciencedirect.com/science/article/pii/0021999181901285.

Ryu, Dongsu and Tom Jones (Mar. 1995). “Numerical Magnetohydrodynamics in
Astrophysics: Algorithm and Tests for One-Dimensional Flow”. In: Astrophysical
Journal 442.

Ryu, Dongsu et al. (July 1998). “A Divergence-Free Upwind Code for Multidimen-
sional Magnetohydrodynamic Flows”. In: Astrophysical Journal 509. DOI: 10.1086/
306481.

Stone, James M. and Michael L. Norman (June 1992). “ZEUS-2D: A Radiation Mag-
netohydrodynamics Code for Astrophysical Flows in Two Space Dimensions. I.
The Hydrodynamic Algorithms and Tests”. In: 80, p. 753. DOI: 10.1086/191680.

Teyssier, R. (Apr. 2002). “Cosmological hydrodynamics with adaptive mesh refine-
ment. A new high resolution code called RAMSES”. In: 385, pp. 337–364. DOI:
10.1051/0004-6361:20011817. arXiv: astro-ph/0111367 [astro-ph].

Toro, Eleuterio F. (2009). “Riemann Solvers and Numerical Methods for Fluid Dy-
namics. A Practical Introduction”. In: Springer-Verlag. DOI: 10.1007/978- 3-
540-49834-6.

Yee, H. C. (1989). “A class of high resolution explicit and implicit shock-capturing
methods”. In:

https://doi.org/10.1007/978-94-011-1188-1_37
https://doi.org/10.1007/978-94-011-1188-1_37
https://doi.org/10.1007/978-94-011-1188-1_37
https://web.archive.org/web/20160408122443/http://www.nvidia.com/object/gpu.html
https://web.archive.org/web/20160408122443/http://www.nvidia.com/object/gpu.html
https://doi.org/10.1017/S002211207900210X
https://doi.org/https://doi.org/10.1016/0021-9991(81)90128-5
http://www.sciencedirect.com/science/article/pii/0021999181901285
http://www.sciencedirect.com/science/article/pii/0021999181901285
https://doi.org/10.1086/306481
https://doi.org/10.1086/306481
https://doi.org/10.1086/191680
https://doi.org/10.1051/0004-6361:20011817
https://arxiv.org/abs/astro-ph/0111367
https://doi.org/10.1007/978-3-540-49834-6
https://doi.org/10.1007/978-3-540-49834-6

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Theory
	Hydrodynamics
	Finite Volume Method
	Riemann Problem
	Wave Speed and Characteristic Variables
	Wave Solutions
	Shock Waves
	Rarefaction Waves
	Contact Waves
	Waves summary

	Riemann Solvers
	Godunov Method
	HLL
	HLLC

	Wave-Speed Estimates for HLL and HLLC

	MUSCL Type Solvers
	Primitive Variables
	Slope Limiters
	Prediction
	Interface Values
	Riemann Solver
	Flux update

	Magneto Hydrodynamics
	Governing Equations
	HLLD: Riemann Solver for MHD
	HLLD 2D - stable magnetic flux corrections
	MUSCL Extensions for MHD
	Primitive Variables
	Slopes
	Predict
	2D predictions
	Calling the HLLD 2D

	Summary

	DISPATCH
	Motivation and Key Ideas
	Tasks
	Task Scheduling

	the Central Processing Unit (CPU)
	Purpose of the CPU
	The Memory Model
	Virtual Memory
	Cache Coherence
	False Sharing

	Graphics Processing Units (GPU)
	Accelerator Programming
	GPU Architecture
	CUDA
	Loops in CUDA
	Defining Grid and Blocks in CUDA
	Handling GPU-CPU Memory Movement
	Latency Hiding
	Streams
	Pinned Memory
	Bank Conflict
	Recap of Optimal GPU Performance

	Directive-Based Programming
	OpenMP
	OpenACC
	Comparing OpenMP and OpenACC

	Implementation
	DISPATCH Mockup
	Mockup.f90
	Muscl.f90
	Riemann.f90

	Proof of Concept
	OpenACC
	OpenACC v0.1
	OpenACC v0.2
	OpenACC v0.3
	OpenACC v0.4
	OpenACC v0.5
	OpenACC v0.6

	OpenMP
	OpenMP v0.1
	OpenMP v0.2
	OpenMP v0.3

	HLLD
	Code Refactoring
	Dimension Representation
	Refactoring Trace3D
	DISPATCH/Ramses Errors
	Symmetry in Trace3d
	Optimizing HLLD 1D for GPU
	Optimizing HLLD 2D for GPU

	DISPATCH Integration
	offload_mod
	bunch_mod

	Results
	Experimental Setup
	Desktop System
	STENO

	Proof of Concept Runtimes
	Optimal Dimension Layout
	HLLD Runtime
	GPU Dependency of Bunch Size and Threads
	CPU Comparison

	Integration Validation

	Discussion
	Current State
	Remaining Issues
	Extensions to the Bunching Module
	Dynamic Bunching
	Other Solvers

	Reducing Memory Footprint
	Other Compilers
	Different approaches
	OpenACC/OpenMP Hybrid
	CUDA/C

	Comparison With GenASIS and GENE Codes

	Conclusion
	Corner values, y- and z-direction
	Compiler installation
	PGI
	GCC

	OpenACC v0.1 update
	Orszag-Tang experiments
	Bibliography

