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To My Family

You know, for saving the world.

“... If the scientist had infinite time at her/his disposal, it would be sufficient to say to her/him,
“Look, and look carefully” . But, since she/he has no time to look at everything, and above all to
look carefully, and since it is better not to look at all than to look carelessly, she/he is forced to
make a selection. The first question, then, is to know how to make this selection. This question
confronts the physicist as well as the historian ... Trying to make science contain nature is like

trying to make the part contain the whole, but scientists believe that there is a hierarchy of facts,
and that a judicious selection can be made ... the more general a law is, the greater is its value.

This shows us how our selection should be made. The most interesting facts are those which can
be used several times, those which have a chance of recurring. We have been fortunate enough to
be born in a world where there are such facts ... Which, then, are the facts that have a chance of

recurring? In the first place, simple facts. It is evident that in a complex fact many
circumstances are united by chance, and that only a still more improbable chance could ever so

unite them again. But are there such things as simple facts? ...”

Henry Poincaré , Science and Method
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Abstract

When macromolecules are suspended in a fluid, they perform a random walk on
account of the molecular movement of the fluid constituents. On average, these
molecules move towards low particle concentration regions. This phenomenon
is classically know as diffusion. In this work, we addressed the role this type of
mass transport can play in the formation of bacterial colonies to find that, within a
given density of bacteria, it can be a player of the same magnitude than exponential
growth, and provokes the acceleration of bacterial clustering when overlapped to
it. We, additionally, addressed the ecological implications to bacteria caused by the
diffusive formation of colonies when these are exposed to predation by phages.
We quantified a delay in the population extinction based on the increased viral
searching times associated to bacterial clustering. Although this discards diffusive-
limited aggregation as a solid passive surviving mechanism, it opens the possibility
of colony survival upon a transient phage attack.
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Introduction

Bacteria are prokaryotic 1 microorganisms with a typical lenght of∼ 1µm, mostly sphere
or rod-shaped. Prokaryotes are ubiquitous in nature (1), and so are bacteria. Even in the
human body, they are estimated to hold a 1 : 1 ratio with respect to human cells (2).
An important feature in order to understand how bacteria evolve is via their growth
dynamics. They are usually understood, or at least explained, from the perspective of
the growth patterns from cultured groups in laboratory conditions. For the interested
reader we refer to (3). Since bacteria are the cornerstone of this work, it is of importance
to briefly comment on these ways of bacterial growth, since the discussion involves con-
cepts we will return to recursively.

Imagine we are in our laboratory. If we consider a low number of E.coli cells and put
them into a transparent liquid with the proper growth conditions (this is, the necessary
nutrients for the system to undergo cell division), the medium would gradually become
turbid. This change in the liquid’s optical properties is caused by cellular growth, and
quantified by measuring the optical density2 (OD) of the medium. If we plot against
time in a semi-logarithmic scale the optical density (which is assumed to be propor-
tional to the total cell mass), it will show a sigmoidal growth curve (see Figure 1.1). The
first plateau is known as lag phase, and it corresponds to the time it takes our cells to
adapt to their new environment (more precisely, to synthesise the necessary proteins to
undergo cell division). Following the lag phase one would encounter a linear increase in
OD, which in a semi-log scale translates to exponential growth, hence the received name

1Single-celled organism without a membrane-enclosed nucleus
2The optical density is a rescaled transmitance, defined as OD600 = −log10T(λ). The subscript in-

dicates that the sample has been measured at a λ = 600nm. This wave length is usually used in spec-
trophotometry to estimate the cell concentration in a culture, since does little or no damage and has no
interference with the growth pattern.
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of exponential phase. Here the culture’s rate of growth is proportional to the population
number, as we shall see in the subsequent subsection. Since these types of growing ex-
periments are usually performed on batch cultures 3, once growing cells have consumed
most nutrients they enter the stationary phase, where the curve reaches a second plateau.
Consequently, the death and growth rates are equal and the population number remains
unchanged.

Figure 1.1: Growth curve, displaying the different growth phases of the cell culture.

As we said, bacteria are usually studied in liquid batch cultures. A recent paper by
K. N. Kragh et. al. (4) investigates how different methods used to inoculate bacteria
into these cultures could influence the development of biofilm 4 aggregates. In their
research, they discover an impact of the inoculation method on the fraction of aggre-
gated biomass in a liquid bacterial culture. Furthermore, cultures with more aggregated
biomass show an increase of survival rates when exposed to the antibiotic tobramycin,
a trait in accordance with biofilm-forming bacteria (5). The suggested mechanism of
aggregate formation, based on observation, is the recruitment of single cells from the

3Technique to grow bacteria where a finite amount of nutrients is supplied. When these are used up
cells stop growing in an exponential manner and the culture is then ready to be harvested.

4A biofilm is a way to label microbial aggregates wrapped in a matrix of extrecellular substances. These
substances form a mechanical scaffold by providing adhesion to surfaces. This type of consortia develop a
variety of properties, such as protection against some antibiotics (5).
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surroundings of the aggregate.

From this investigation starts our project. More precisely, from this last thought. Can
we explain the formation of bacterial aggregates via basic physical principles? If so,
what is the impact of the different colony-forming mechanisms in the overall aggregate
distribution? We based our approach on a basic principle know as diffusion, which we
will briefly describe, and proceeded to study its impact and outreach when it comes to
the formation of aggregates.

Since we can not characterize every layer of a system in a single framework or model,
we made a selection of the length scale where the system would be studied. We were
not interested in the specific bacteria-bacteria mechanical interactions, or the emergent
colony properties that can fundamentally change bacterial growth via the presence of
chemical gradients of nutrients (food) within the aggregate (6). Our aim turned out to
be at a different length scale, where a coarse-grained description of bacteria as spherical
colloids was acceptable (see Figure 1.2).

Figure 1.2: Spherical approximation. Bacteria, which display different morphology and
size, are here approximated as spherical colloids of fixed radius and a movement ruled
by diffusion.

At this scale, where the detailed interactions are not described, we focus on zoomed out
events, described by rates. A particular rate encompasses an average behavior of the
system in relation to a specific event. This can be, for example, how often do aggregates
stick to each other upon collision, or the frequency of cell division, without diving into
a molecular description of the different mechanisms at play. Consequently, we built a
mass-action kinetics model 5 where colloidal particles (representing bacteria) could col-
lide and merge to form bigger aggregates, as well as grow. We will address this model

5A mass action kinetics model is a kinetic model where events are proportional to the densities of the
involved reactants.
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as the Bacteria Aggregation Model (BAM). This was aimed to describe bacterial cluster-
ing, accomplished by both the growth in size of the colony via aggregation events, ruled
by diffusion, and the growth and division of single cells embedded in the aggregate.

Environmental bacteria, however, might present themselves quite differently than in
laboratory conditions. A concern raised given the impossibility to study most microbes
in laboratory conditions (7) as well as the fact that bacteria are unlikely to encounter
reasonable growth conditions outside batch cultures found in laboratories (8). This be-
comes evident by noticing that a single E.coli cell, if growing in the exponential phase,
would grow to a population equivalent to the mass of the Earth within 2 days (9), a state-
ment that obviously disagrees with both common sense, and the estimated (4− 6) · 1030

(1) prokaryotes on Earth. This discrepancy between potential and actual behavior un-
derscores the existence of energy-limited ways for bacteria to survive (9).

However, bacterial population levels are not fully explained via energy-limited mech-
anisms. They are part of, at least, one predator-prey system. So, then, we ask, who’s
eating them? In 1989 viruses came along as a plausible answer to this question, with
the discovery that there are ∼ 10 million virus-like particles (VLPs) in every mL of sea
water (10). Most of these particles are assumed to be phages (virus that infect bacteria),
since viral abundance correlates with microbial presence with a ratio of 5− 10 VLPs per
bacteria (11). There is an estimate of 1031 viruses on Earth (12), and they are considered
to kill 4− 50% of the bacteria produced every day (13; 14).

With this in mind, and as we built the former bacterial aggregation framework, we
raised the second question of this work. What are the ecological implications to bacteria
associated with the formation of structured environments when exposed to predation
by bacteriophages?

It has been shown in the past that bacteria-phage dynamics are fundamentally different
in spatially structured environments (15; 16; 17), so, has our question already been ad-
dressed?

Former studies on the role of spacial structures for bacteria-phage fate have suggested
microcolonies as a survival mechanism (16). However, these studies have focused on
semisolid medium where bacteria are immobile and do not diffuse. This allows for a
static description where bacteria grow into spherical aggregates, keeping phage infec-
tion on the surface. Prokaryotes are, on the other hand, ubiquitous in liquid medium
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such as marine and fresh water (lakes, rivers, open ocean) (1). This represents a differ-
ent paradigm and thus the need for a different mathematical description that includes
bacterial diffusion and, therefore, aggregation events.

In order to address this question we used the model of bacteria aggregation (BAM) as a
basis to incorporate bacteria-phage interactions. This expanded model, which we will
label as Predator-Prey Aggregation Model (PPAM), considers phages as smaller (than
bacteria) spherical colloidal particles that perform a diffusive search and encounter with
bacteria. The concrete bacterium-phage interactions and the way to quantify them shall
be left to future sections.

� Document Structure

The project can be divided into different stages.

First - Selection and development of the tools to be used in order to fulfill the proposed
objective. In Chapter 2 we review the conceptual and mathematical background neces-
sary to understand the following section. We first establish the mathematical grounds of
mass aggregation, followed by the estimation of the aggregation rate between colloids
assuming a diffusive transport mechanisms, labeled as brownian kernel. We then refresh
the concept of diffusion, which will be used throughout the whole dissertation. We con-
tinue with a brief comment on the biological factors at play, i.e., viruses and bacteria,
in order to understand how to model their interplay. To properly identify aggregation
traits on phage-bacteria dynamics we must first conform a background aggregation-
less model “template” to be used as comparison. Here is where we go over a simple
predator-prey model that will be used as a comparison to study aggregation effects on
virus-bacteria interactions. In Chapter 3 we make use of the reviewed material to build
the models from which we shall address our research questions.

Second - Computer simulations, analysis and comment on the results. The models built
in Chapter 3 were simulated on a specific range of parameters. In Chapter 4 we explain
step by step the procedure we followed to launch those simulations and the posterior
analysis of the results.

Third - Conclusion. In Chapter 5 an overall review of the project is made, followed by
the accomplished goals and a critique of our models. Speculations about future work
follow to end the project.
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2

Background

Before getting to the development of the framework that we used to address our re-
search questions, it is of importance to explain the theory required to understand its
conceptual and analytical basis. In this sense, we review a kinetic way of describing
mass aggregation, followed by a refreshment of the concept of diffusion, the principle
that will determine the transport mechanism of bacteria and phages. From the concep-
tual definition and the equations describing this type of mass transport, we shall recover
an important result, derived by Smoluchowski, which quantifies the rate at which two
colloidal particles of different sizes coalesce. This result shall then be coupled, in the
next chapter, to the kinetic aggregation framework and bacterial growth to establish the
BAM.

We, then, will briefly stop and explain the interplay of the biological factors that conform
the system of study in order to lay the grounds for the BAM expansion into the PPAM.

2.1 | Aggregation: Mathematical Description
We now start by finding a way to describe bacterial aggregation. We shall make a small
abstraction and think of bacteria as monomers of some undetermined unit mass. These
monomers will bump into each other to form a bigger aggregate, which shall be charac-
terized by an integer number, representing the number of its constituents. With this in
mind, we now describe a more general framework, where bacteria are not mentioned
at all. This is a fairly well-established framework that can be found in literature such as
(18).

7



In a kinetic description, the dynamics of aggregation involves a sequence of coalescence
events represented as

Ai + Aj
Kij−→ Ai+j,

where two active aggregates of mass i and j merge into one cluster of mass i + j (Fig.
2.1), irreversibly losing their identity, as opposed to a scattering event. The process is
regulated by an intrinsic aggregation rate, Kij, know as the kernel of the reaction (i + j).
A reaction or event rate in a kinetic description is the probability of that event happen-
ing per unit time. The concise value of a rate is determined by each of the underlying
mechanisms that make up the event associated to it. For example, in a chemical reac-
tion we would find two time-scales influencing the reaction rate between reactants. The
first one being the time of the (typically diffusive) searching process, and the second the
actual reaction-upon-encounter time. The dominating time-scale (if any) would then
define the value of the rate. We shall think of aggregation as an instantaneous event,
thus the aggregation rate will be purely determined by the transport mechanism of the
aggregates, i.e., diffusion or ballistic movement.

Figure 2.1: Irreversible merging of two aggregates of size i and j into one of mass i + j
with (i, j) ∈N.

In this description the total mass is measured in positive integer units, i.e., everything
is expressed in terms of an undetermined minimal monomer mass. Hence, a cluster of
mass k, or a k-mer, is made out of k minimal mass units. The aggregates are referred
to as clusters and it’s density denoted as ck. As in any dynamical study, the aspiration
is to calculate the time evolution of the key observables. In this description, one aims
to determine the time evolution of the distribution of cluster sizes, ck(~r, t) ∀ k ∈ [1, ∞),
for a given aggregation kernel, which is assumed to be known. The time evolution
of the system is dictated by an infinite set of coupled nonlinear differential equations
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analytically soluble for a few simple cases such as Kij = constant, Kij = ij or Kij = i + j.
This set of master equations reads as

dck

dt
=

1
2 ∑

i+j=k
Kijcicj − ck

∞

∑
i=1

Kikci (k = 1, .., ∞). (2.1)

The first term accounts for the gain in mass concentration from the coalescence of two
clusters such that i + j = k. The second term is a loss term accounting for the reaction of
clusters of mass k with any other cluster. These equations incorporate some underlying
assumptions on the system’s behaviour that we will now briefly comment.

Assumptions:

� No inactive clusters: all clusters are treated as active reactants. Hence, interaction
probabilities, which dictate the rates, include total cluster size concentrations.

� Geometry independence: the only dynamical variable is the cluster mass. This as-
sumption is not physically justifiable, with the exemption of systems with spher-
ical symmetry, such as those where surface tension plays a key role on the ag-
gregate’s shape. Furthermore, this approach tacitly assumes a diffusive transport
mechanism, since for ballistic aggregation each cluster is characterized by its mass
and velocity, and this last one should, in such case, appear in the equivalent set of
equations.

� Well-mixed system: the probability of two clusters interacting factorizes into the
product of individual cluster size probabilities which, in a non-normalized way,
corresponds to the concentrations of their respective cluster sizes. This interac-
tion probability, as we can see, is weighted by the reaction kernel Kij, which con-
tains information on the intrinsic character of the system and the aggregates, be-
yond their actual concentrations. Since there is spatial homogeneity we get that
ck(~r, t) = ck(t), thus the rate of interaction between two clusters of sizes i and j
takes the form ∼ ci(t)cj(t)Kij. We make here no assumptions regarding the func-
tional dependence of the reaction kernel.

� Dilute system: aggregation events are second order cluster collisions. This is only
asymptotically correct, as the number of aggregates decreases with time and merge
into a single cluster. Hence, a system initially dense eventually becomes dilute and
higher order cluster collisions become negligible. This approach would turn out
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to be fundamentally wrong if higher order interactions played an essential role in
the dynamics. An example would be catalyst-assisted reactions.

As analytic solutions are only available for a narrow palette of functional forms of the
reaction kernel, it is worth looking at some general properties of aggregation by looking
at the moments of the cluster size distribution,

Mn(t) = ∑
k≥1

kn · ck(t) . (2.2)

Core information about the mass distribution can be extracted; for example, a typical
definition for the average cluster mass is

〈k〉 = ∑ k · Pk =
∑ k2 · ck

∑ k · ck
=

M2(t)
M1(t)

. (2.3)

Where the probability of finding a cluster of size k, Pk, has been set equal to the number
of monomers belonging to clusters of such size, normalized by the total mass M =

∑ k · ck. A less intuitive way of defining this quantity is the ratio of the first and zero-th
moments M1/M0. For our aggregation framework the equation for the moments reads
as

dMn

dt
=

∞

∑
k=1

kn dck

dt
=

1
2 ∑

i≥1
∑
j≥1

(i + j)nKijcicj − ∑
k≥1

∑
i≥1

knKikckci. (2.4)

The irreversibility of the process and the asymptotic disappearance of all clusters into
one of infinite size can be predicted by the behaviour of the zero-th moment of the
distribution

dM0

dt
= −1

2 ∑
i≥1

∑
j≥1

cicjKij (2.5)

which, as (ci, cj, Kij) ≥ 0, remains negative unless ck = 0 ∀k ∈ [1, ∞). Furthermore, the
behavior of the first moment predicts mass conservation, since

dM1

dt
= 2 · 1

2 ∑
i≥1

∑
j≥1

iKijcicj − ∑
k≥1

∑
i≥1

kKikckci = 0. (2.6)
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Consequently, M1(t) = ∑ kck(t) = M1(0), and the total number of monomers is con-
served. This is a good property for sanity checks in computational simulations involv-
ing aggregation events.

We now have a set of equations that conform a kinetic description of aggregation. This
description relies on the aggregation kernel, Kij, which, as we said, contains intrinsic
information about the system. This information can, for example, contain idiosyncrasies
in the way monomers react. Following the example illustrated at (18), imagine that
monomers have f reactive parts (see Figure 2.2). This is, they have a limited number of
reactive regions, and they are indistinguishable from each other. When they merge, the
arising dimer will have 2 f − 1 reactive parts, a trimer 3 f − 2 and a k-mer will end up
with k f − 2(k− 1) = ( f − 2) · k + 2. The merging of two clusters of sizes i and j has a
reaction rate equal to the product of their reactive parts, which is

Kij = [( f − 2) · i + 2][( f − 2) · j + 2] = ( f − 2)2ij + 2( f − 2)(i + j) + 4 .

This is a linear combination of the product, Kij = ij, sum, Kij = i + j, and constant
kernels.

Figure 2.2: Aggregates of 3 functional units. From the left: monomer, dimer and trimer.

In the same way that the aggregation kernel can describe limiting ways of reacting be-
tween monomers, based perhaps on anisotropies, it can also incorporate information
regarding the transport mechanism by which monomers collide, and it can do so as a
function of the reactant sizes. The transport mechanism of our choice is diffusion, but
before estimating the value of the aggregation kernel in a diffusion-limited paradigm,
let’s quickly review the concept, and the phenomenological equations used to describe
it.
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2.2 | Diffusion
Bodies that can be easily observed in a microscope, when suspended in a liquid, per-
form measurable displacements on account of the molecular movements of the fluid
constituents, as suggested by Einstein and measured by Perrin (19; 20). These displace-
ments follow a random walk, or Brownian movement, which, in the continuum limit,
provokes the spread of particles from high to low particle concentration regions. This
phenomenon is known as diffusion.

There are two differential equations that respond to this spatial and temporal variation
of nonuniform particle distributions, c(~x, t). These are Fick’s first and second equa-
tions1, and we directly introduce them both.

� Fick’s first equation: without particle-particle interactions or external drift, the net
particle flux per unit area and time is proportional to the particle concentration
gradient

~j(~x, t) = −D~∇c(~x, t), (2.7)

with the proportionality constant equal to −D, where D ≥ 0 is the so-called diffu-
sion coefficient. This equation describes the particle movement from high to low
concentration regions.

� Fick’s second equation or Diffusion equation: obtained by imposing particle num-
ber conservation, tells us how a distribution of particles redistributes itself in time,
and reads as

∂c(~x, t)
∂t

= D∇2c(~x, t) . (2.8)

It is worth mentioning that by accepting Fick’s equations as a proper way to describe
dynamics in the upcoming sections, we are neglecting the hydrodynamic effect (22),
present at low Reynold’s number, as well as the problem of sedimentation (23), which

1They can be derived on account of the random walk model in a very simple way (21).
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might introduce a drift into the system 2. However, for the purposes of this dissertation,
these two equations shall be enough to work in a diffusive regime.

2.2.1 | Smoluchowski’s Theory of Coagulation: the Brownian Ker-
nel

We now know what diffusion is, and which is the way to describe it analytically. We are,
therefore, in the position to dive into Smoluchowski’s estimation of colloidal interac-
tions, which we shall use in the subsequent chapter as the diffusion-limited aggregation
rate between our colloids (bacteria).

A statistical description of coagulation (or sticky collisions) of two different diffusing
particles was developed by Marian Smoluchowski (24; 25) as an application of the the-
ory of Brownian motion. The development of this framework was based on the idea that
each colloidal particle is surrounded by an sphere of influence of some diameter such that
the particle follows a free Brownian motion unless another particle enters the sphere,
in which case both colloids merge into a new single and bigger particle (23). Accepting
this assumption, the Brownian coagulation process can be divided into two steps: en-
counter and reaction - if the reaction rate is high then the diffusive encounter dominates
the time scale of the process. This type of reaction is known as diffusion-limited, and
we shall consider coagulation as such. Prior to the general problem we first consider a
limiting situation, where one of the two types of particles is big enough to be consid-
ered static. We then make the following question: how many colloids of the smaller type
bump against one of these bigger static objects of radius R? For this we need to integrate
the particle flux on the object’s surface, which is related to the particle concentration by
Fick’s first law

j1 = −D(n̂ · ~∇c(~r, t)). (2.9)

2If, for example, the external field is gravity along the z direction, diffusion in the (x, y) plane would
occur as in the field free case. However, the equation for the z direction would have to be modified resulting
in

∂c
∂t

= D
∂2c
∂x2 + c

∂c
∂z

with c = (1− ρ0/ρ) · (g/β). Here −(1− ρ0/ρ) · g corresponds to the acceleration caused by the external
force field (thus ρ0 and ρ are the densities of the fluid and brownian particle, respectively), and β is the
dynamical friction coefficient, a friction that experiences any moving particle by the surrounding medium
and that is usually assumed to follow Stoke’s law. Thus, for a particle of mass m and radius r, β = 6πrη/m,
where η is the dynamic viscosity of the surrounding fluid.
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This is the rate at which particles describing a Brownian motion coalesce with the static
target, per unit area and unit time ; n̂ is an unitary vector perpendicular to the object’s
surface. Note that we adopted a slightly different notation for the particle concentration,
anticipating the spherical symmetry of the problem. The concentration of particles in
turn obeys the diffusion equation

∂c(~r, t)
∂t

= D∇2c(~r, t), (2.10)

whose time-dependent solution can be expressed analytically assuming spherical sym-
metry, c(~r, t) = c(r, t), absorbing boundary conditions on the particle’s surface, c(r =

R, t) = 0, and a fixed concentration far away from where the reaction takes place,
c(r → ∞, t) = c0, i.e., in the thermodynamic limit. Equation 2.10 has a solution of
the form (see A.2)

c(r, t) = c0

[
1− R

r
+

2R
r
√

π

∫ (r−R)/2
√

Dt

0
e−x2

dx

]
, (2.11)

with c0 = c(r, t = 0). The total rate on the static object’s surface is computed by sum-
ming over the surface of a sphere of radius R

J1 =
∫

Ω
j1 dΩ

∣∣∣∣
R
= 4πD

(
r2 δc

δr

∣∣∣∣
r=R

)
. (2.12)

The derivative is calculated by remembering the first fundamental theorem of calculus

d
dx

∫ b(x)

a(x)
f (t)dt =

d
dx

(F(b(x))− F(a(x))) = f (b(x)) · b′(x)− f (a(x)) · a′(x).

Hence,

r2 δc
δr

∣∣∣∣
r=R

= c0 ·
(

R
r2 · r

2 − 2R
r2
√

π
· r2

∫ (r−R)/2
√

Dt

0
e−x2

dx +
2R

r
√

π
· r2

[
e(r−R)/2

√
Dt

2
√

Dt
− e0 · 0

])
r=R

= R · c0 ·
(

1 +
R√
πDt

)
,
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and

J1 dt = 4π · D · R · c0 ·
(

1 +
R√
πDt

)
dt. (2.13)

This is the reaction rate for one particle. If we consider all particles from the static type,
in a well-mixed scenario and a concentration cs, the total aggregation rate reads as

J dt = J1 · cs dt. (2.14)

The static target limit is a reasonable assumption when one of the particles is consider-
ably larger than the other, making its movement negligible within the smaller colloid’s
diffusion time scale 3. If both particle types (i, j) are similar in size the big particle
that we have treated to be static describes now a Brownian motion, characterized by
some diffusion constant, Dj. On the other hand, the former point-like smaller colloids
shall now have their own radii of influence. Consequently, the problem has to be re-
formulated by replacing R by the sum Rij = (Ri + Rj) and D by the effective diffusive
coefficient Dij = (Di + Dj) in 2.13 (see A.3). Here the subscripts i and j have been used
to label different types of colloids which, in an aggregation framework, correspond to
the number of constituents of each aggregate, i.e., a i-mer and a j-mer, respectively. The
reaction rate equation for the coalescence events of all colloids of types (i, j) reads as

Ji+jdt = 4πDijRijcicj

(
1 +

Rij√
πDijt

)
dt . (2.15)

This reaction rate will be regarded as the Brownian kernel.

We now have the basis for our description for bacterial aggregation, but we are lacking
the knowledge to incorporate growth into the scheme, as well as interaction with phages
for our second research question. Let’s, therefore, explain a bit more about how viruses
interact with bacteria, and learn how bacterial growth can be modelled.

3A rough estimate can be computed with the ratio of variances of two colloids of different size, for
the same displacement (see equation A.17 in A.1). This is ti/tj ∼ Dj/Di ∼ (j/i)1/3. Thus, a difference in
3 orders of magnitude in monomer number translates to a 10-fold increase of the time to get to the same
place, on average.
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2.3 | Biological Factors

2.3.1 | Phage-Bacteria Interplay
Viruses are obligate 4 intra-cellular parasites constituted by a protein shell (or capsid)
filled with genetic material (DNA or RNA). These parasites reprogram the host cell
metabolism, in a pathogen-specific manner, to increase the energy supply needed for
the synthesis of viral components, such as nucleic acids and proteins, needed for the
subsequent replication of its progeny.

We shall focus in a particular kind of virus known as bacteriophage (virus that infects
bacteria), or phage, and proceed to describe the main interactions that said predator has
with its host.

Given that viruses have no metabolism, they can’t actively propel themselves and its
movement is limited by diffusion. During their diffusive search of targets viruses are
exposed to environmental agents that cause their death, at some rate δ. Upon encounter
with the host, the infection (only) occurs when the virus finds a proper receptor situ-
ated on the bacterium’s surface. The nucleic acid is then inserted into the host via a
mechanism yet poorly understood. This process is usually kinetically quantified with a
parameter called absorption rate, denoted by the letter η. If the virus is virulent the subse-
quent steps will result in the disruption (or lysis) of the cellular membrane of the host,
conforming the so-called lytic cycle (26). Following these attachment and penetration
steps comes the biosynthesis and maturation processes. Here the phage’s nucleic acid
is replicated and assembled with some deliberately made capsid proteins to form new
viral entities that shall constitute the virus progeny. Once the viruses are morphologi-
cally completed and infectious, lysis is triggered, liberating a number of particles that
can resume the searching process again to infect neighboring bacteria. The time it takes
between the delivery of the genome into the host and the membrane desintegration re-
ceives the name of latency time, and is denoted by τ. The viral progeny number is called
burst size, β, and follows a broad distribution rather than a constant value, reflecting
perhaps heterogeneity in killing and predation strategies, as suggested in (27). In fact,
all the above described events are of stochastic nature and we shall take, for simplicity,
their average value.

4An obligate parasite is a parasitic organism that cannot complete its life-cycle without finding and ex-
ploiting an adequate host.
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On the other hand, it is worth mentioning, as a parenthesis in this dissertation, that
some phages, the so-called temperate phages, are capable to choose between two devel-
opmental regimes, the lytic and lisogenic cycles. In lisogeny (28), the phage can establish
a stable relationship with the host cell, where it prevails indefinetely inside the bacterial
host as a prophage 5, with the parasite genome either integrated into the the host’s chro-
mosome or remaining in an plasmid-like state in the lysogen 6. In this state no phage
particles are produced until the lysogenic state breaks down. This process is called
prophage induction and represents a reversal to the lytic cycle. It is usually induced
by environmental stresses such as DNA damage caused by UV radiation. Infected cells
that enter the lysogenic cycle, continue to grow and are resistant to further infection, as
opposed to sensitive bacteria.

In the present work we shall focus on virulent phages. These are phages which can’t
follow the lysogenic cycle.

2.3.2 | Mathematical and Physical Modelling
As we have seen, bacteria undergo different phases of growth depending on their en-
vironmental context. In our study we will focus on a particular phase, the exponential
phase, thus we here introduce the mathematical formalism used to describe it. A simple
predator-prey model that neglects aggregation is then introduced. It is our aim to use it
as a way to identify aggregation traits in a predator-prey system by comparing it with
our PPAM.

2.3.2.1 | Exponential growth

When a population experiences an instantaneous rate of change proportional to the pop-
ulation itself, the dynamics of the system is described, in Newton’s notation, by a linear
differential equation of the type

Ṅ(t) = ±g · N(t). (2.16)

5A prophage is a latent form of a phage, in which the viral genes are present in the bacterium without
causing disruption of the bacterial cell. Pro means ”before”, so, prophage means the stage of a virus before
being activated inside the host.

6A lysogen is a bacteria that carries at least one phage genome either integrated into its chromosome
or as an independent replicating extrachromosomal system, such as a plasmid.
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With N(t) being the population number at time t, and g the growth (+)/decay (−) rate
per population unit. The exponential function

N(t) = N(0)e±gt (2.17)

satisfies equation 2.16. This phenomenological description is used to model a very wide
set of situations, ranging from radioactive decay to bacterial growth. One could argue
that, in the growth case, the description asymptotically tends to infinite size popula-
tions. That is the case indeed, but it is not the goal of this approach to predict each of
the ways bacteria can grow . If we were interested, for example, in accounting for the
system’s capacity to sustain a population, we could include non-linearities. Such is the
case of logistic equations of the type

Ḃ = g · B ·
(

1− B
K

)
, (2.18)

where B stands now for bacteria density and K is the so-called carrying capacity, whose
value depends on the system’s properties. Note that the carrying capacity dictates the
point where the growth rate equals the death rate, and that the growth rate slows down
as B→ K. We, however, shall assume our system follows a homogeneous and constant
exponential growth rate. This is, bacteria will grow in the exponential phase indepen-
dently of their aggregate state, time or total density. This translates, in the context of
aggregation, to volumic growth 7.

2.3.2.2 | Predator-prey Dynamics

Viruses and bacteria represent, as we have seen, a coupled system of the predator-prey
kind. Dynamics are typically formulated in terms of the experimentally accessible life
cycle parameters described in subsection 2.3.1. These parameters are tabulated in table
2.1 for some virulent phages infecting E. coli.

The description relies on rates, in a well-mixed scenario. The mean-field assumption
makes the interaction probabilities to factorize into the product of individual probabili-

7It has been recently shown that bacteria can indeed grow exponentially even in structured environ-
ments for relevant periods of time. As an example we refer back to (15; 16). This might seem counter-
intuitive, since nutrient availability might strongly depend on the structure of the aggregate, which could
mechanically avoid or modify nutrient transport to the inner bacteria.
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Name Adsorption η (10−9 ml/h) Latency τ (h) Burst size β Phage decay δ (h−1)
φX174 174 0.25 135 0.0083
MS2 39 0.67 400 0.0104
T2 24 0.38 135 0.0028
T3 96 0.28 200 0.0043
T4 30 0.38 150 0.0028
T5 12 0.73 290 0.0050
T7 180 0.22 260 0.0078

Table 2.1: Virulent phages infecting E. coli in rich medium at 37Co (29). These values are
the arithmetic mean of at least three independent experiments.

ties. In a description where, instead of probability functions, we work with population
densities this translates to the product of densities, coupled with a parameter (which is,
ideally, experimentally accessible). Consequently, events associated to a single actor are
represented by its individual density and weighted by the corresponding event rate.

For our system we distinguish the following events

� Bacterial growth, g: bacteria grow in a possibly space and time-dependent man-
ner. The nutrient availability as well as the structured environment in which they
are embedded cause growth to be a function of time (via nutrient concentration)
and space. This is, rg = f (~r, n(t)). However, as discussed before, we here consider
rg = const ≡ g.

� Phage-bacteria encounter and absorption, η: viral diffusive search of targets and
the subsequent infection process.

� Latency time, τ: starting with the penetration, it is the time it takes the virus to
complete the biosynthesis and maturation processes, ending with the lysis of the
host.

� Lysis: disruption of the host’s membrane and release of the progeny.

� Phage decay, δ: phage death caused by external environmental agents. It is con-
sidered to be constant, for simplicity.

The dynamics of bacteria and a virulent phage with average lysis time τ are, therefore,
described by the typical predator-prey model (30; 31)
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dB
dt

= g · B− η · B · P (2.19a)

dI
dt

= η · B · P− 1
τ
· I (2.19b)

dP
dt

=
β

τ
· I − δ · P− η · (B + I) · P (2.19c)

An intermediate state, I, has been introduced to account for infected bacteria, that lysis
at a rate 1/τ. We here assumed that lysis follows a one-step Poisson process (see, for
example, B.1). These set of euqations shall be addressed as the Simple Model (SM).
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3

Models

3.1 | Bacteria Aggregation Model
We have now reached the point where we can start building the tools we shall use to
quantify the impact of aggregation on the aggregate size distribution of exponentially
growing bacteria and on the bacteria-phage interplay. We will start by obtaining an ex-
pression for the bacteria-bacteria and phage-bacteria rate of aggregation that explicitly
contains the number of constituents of each reactant aggregate. This shall be done, of
course, within our the diffusion-limited paradigm, thus via the use of Smoluchowski’s
rate of coagulation.

Smoluchowski’s reaction rate (or brownian kernel), Jij, developed to describe coagula-
tion processes, can be used to treat bacteria aggregation. We start by simplifying the
problem a bit. The second term in 2.15 can be ignored as long as t � R2/D, which, for
a micromiter-sized colloid immersed in water at T = 30 °C, takes the value

R2

D
∼ 1 µm2

0.56 µm2/s
≈ 1.8 s ,

where we used the Einsteins-Stokes relation, D = DES = kBT/(6πηR), with ηH20(30 °C) =

0.798 · 10−3 Pa · s (32), to theoretically estimate the diffusion coefficient 1. Hence, the

1For the micrometer-sized bacterium E.coli, which can be described best as a short cylinder with hemi-
spherical caps at both ends, takes the values DX = 0.188µm2/s and DY = 0.154µm2/s for a deflagellated
strain (33), with X being the translational diffusion coefficient of the bacterium in the direction parallel to
the cylinder’s axis, and Y that perpendicular to it. The use of the Einsten-Stokes relation assumes spherical
symmetry, which for the E.coli case is not fulfilled hence some discrepancy was expected and found. The
discrepancy is DES ∼ 3 · DX and DES ∼ 3.6 · DX . They are both within the same order of magnitude, and
that, for this study, is acceptable.
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coalescence rate can be written as

Ji+jdt ≈ 4πDijRijcicjdt . (3.1)

Consequently, the intrinsic rate of aggregation from equations 2.1 takes the value

Kij = 4πDijRij . (3.2)

With this in mind equations 2.1 now read as

dck

dt
= 4π

(
1
2 ∑

i+j=k
DijRijcicj − ck

∞

∑
i=1

DkjRkjcj

)
(k = 1, ..., ∞). (3.3)

This description is half way to where we need to get. Given that we are using a for-
malism where aggregates are characterized by the number of constituents, the kernel
should be explicitly written in terms of the reactant masses (i, j). With this in mind we
employ again the Einstein-Stokes relation, Di = kBT/(6πηRi) ∝ i−1/3, to express it as

Kij =
2kBT

3η

[
2 +

(
Ri

Rj

)
+

(
Rj

Ri

)]
. (3.4)

Here kB is the Boltzmann constant, T is the absolute temperature and η is the dynamic
viscosity of the surrounding fluid. In order to obtain the prefactor to Ri ∝ i1/3 we should
first reflect on the coagulation process. This process assumes spherical symmetry before
and after merging events. This is a reasonable approximation if colloids lose their entity
in the merging process to form a bigger unified aggregate in a context where surface
tension is important. However, if the system is composed by rough colloids that keep
their shape upon encounter, the aggregates might leave empty spaces in between, as
well as form agglomerates far from being spherical. We must, therefore, proceed with
some assumptions.

Assumptions:

� Coalescence events result in the clustering of monomers to give agglomerates of
quasi-spherical symmetry.
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� In each cluster, constitutive monomers keep their identity, shape and volume and,
therefore, an empty space is left in between. This introduces a sphere packing
problem.

� The sphere packing problem, the quasi-spherical shape and the radii of influence
of aggregates is encompassed and quantified in a single parameter that we shall
denote as f .

With this understanding, the effective radius of a cluster can be written in terms of the
number of constitutive (spherical) monomers. We can picture this as if each aggregate
of size i was occupying an effective volume V(i)

TOT, a fraction of which is empty. If the
monomer volume is vi we have

i · vi = fi ·V(i)
TOT = fi ·

4π

3
R3

i , (3.5)

where the parameter is, in principle, a function of the cluster size, f = f (i) ≡ fi. Thus,

Ri =

(
3 vi

4π fi

)1/3

· i1/3 . (3.6)

Plugging 3.6 into 3.4 we can now write the kernel in terms of the reactant masses (i, j)

Kij =
2kBT

3η

[
2 +

(
vi

vj

f j

fi

i
j

)1/3

+

(
vj

vi

fi

f j

j
i

)1/3
]

(3.7)

This pre-factor correction to the radius plays an important role if monomer volumes are
highly different, which is the case of phages and bacteria, for which the ratio roughly
takes the value of vP/vB ∼ 10−3 (for bacteria we used a typical lenght of lB ∼ 1µm
and for phages, despite they range from ∼ 20− 400 nm (34) we took lP ∼ 0.1 µm 2.).
Throughout this dissertation, we shall also assume that the scaling of the fraction of
unoccupied space with cluster size is constant, i.e., fi/ f j ∼ 1 ∀ i, j 3. Since the sub-unit

2If we take for phages the diffusion constant DP = 104 µm2/h = 2.76 µm2/s (35) the discrepancy with
the theoretical estimate, for a particle radius of 0.05µm at T = 30 °C, is DES ≈ 2 · DP

3This assumption is not justifiable beyond the fact that f is not experimentally accessible. It becomes
evidently wrong in the limit case i = 1, j 6= 1, where f1 = 1 and f j 6= 1. Notice that this approximation is
conceptually different than saying fi ∼ 1, in which case the nutrient transport to inner bacteria becomes
practically impossible, exposing the volumic growth assumption.
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volume is considered independent of cluster size (second assumption), we get for bac-
teria agglomerates that vi/vj ∼ 1 ∀ i, j.

Under these assumptions 3.4 for bacteria-bacteria interaction reads as

Kij =
2kBT

3η

[
2 +

(
i
j

)1/3

+

(
j
i

)1/3
]

, (3.8)

and the total reaction rate between a bacterial aggregate of size k and free phages of
density P takes the form

KkP · ck · P =
2kBTckP

3η

[
2 +

1
10

(
1
k

)1/3

+ 10k1/3

]
. (3.9)

The specific rate of bacteria-phage interaction is thus a function of both the size of the
target and the number available aggregates. It is worth describing what equation 3.9 is
tacitly telling us and to do that we focus on the particular case of single bacteria-phage
interaction, i.e.,

K1P =
2kBT

3η

[
2 +

1
10

+ 10
]

. (3.10)

If we look back to 3.4, the intrinsic aggregation rate mostly depends, for a fixed tem-
perature, on the ratio of target radius Ri/Rj and Rj/Ri. Since diffusion is inversely
proportional to particle size and target size is proportional to particle size, we see that
phage diffusion contributes more than bacterial diffusion to the coalescence rate and so
does bacterial target size compared to phage target size. This is all embedded in the
ratio vP/vB ∼ 10−3. The diffusive target search is hence dominated by phage diffusion
and bacterial target size, even in a context lacking spatially structured environments,
as we can see from 3.10, where the 1/10 term accounts for the phage size and bacterial
diffusion contribution, whereas the 10 term accounts for that of phage diffusion and
bacterial target size. However, even after these considerations, we don’t limit ourselves
to the static target limit approach of bacterial diffusion, since the total aggregation rate
still depends on concentrations, and these can create regions in phase space where clus-
tering by aggregation becomes a relevant trait in colony formation.

We are now in the position to couple aggregation to bacterial growth. This is straight-
forward in the framework we have been developing so far. The density of aggregates
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formed by k individual bacterium will simply be represented as ck. Hence, the rate of
change of aggregate sizes caused by growth is

dck

dt
= g · (ck−1 · (k− 1)− ck · k) (k = 1, ..., ∞) . (3.11)

ck ck+1ck−1

g g

It is sometimes helpful the use of flow diagrams to summarize the range of possible
transitions within a dynamic description. With that in mind we present the above draw-
ing. The positive contribution to the rate of change in the density of clusters of size
k is proportional to the density of monomers belonging to clusters of one size below,
ck−1 · (k− 1), which, when hosting a growth event, become of size ck. Consequently, the
outgoing term accounts for fision events happening to bacteria that belong to clusters
of size ck, as we can see in the flow diagram.

It is easy to see that individual exponential growth on the volume translates to expo-
nential growth for the typical cluster size

s(t) ≡ M1(t)
M0(t)

. (3.12)

The equation for the moments takes a particularly easy form in this case

dMn

dt
=

∞

∑
k=1

kn · g · (ck−1 · (k− 1)− ck · k) = g

(
∞

∑
k=1

kn · (k− 1) · ck−1 −
∞

∑
k=1

kn+1 · ck

)
(3.13)

From which

dM0

dt
= g

(
∞

∑
k=1

(k− 1)ck−1 −
∞

∑
k=1

kck

)
= 0

dM1

dt
= g

(
∞

∑
k=1

k(k− 1)ck−1 −
∞

∑
k=1

k2ck

)
= gM1

25



Thus,

s(t) =
M1(0)
M0(0)

· egt (3.14)

On top of growing, if we ignore chemotaxis 4, aggregates describe brownian movements
and react in a diffusion-limited manner. In a compact notation the set of master equa-
tions, therefore, reads as

dck

dt
= 4π

(
1
2 ∑

i+j=k
DijRijcicj − ck

∞

∑
i=1

DkjRkjcj

)
+ g · (ck−1 · (k− 1)− ck · k) (k = 1, ..., ∞).

(3.15)

These are the equations for the Bacteria Aggregation Model (BAM) in a well-mixed
scenario.

In a continuous description (as opposed to a discrete one, proper of stochastic simula-
tions, where there is a finite number of monomers and aggregate sizes) all cluster sizes
are connected and susceptible to become any other size, via aggregation events and
growth. The flow diagram for the system 3.15 looks like

ck ck+1ck−1

g g

Kk−1,2

Kk−1,1 Kk,1Kk−1,i

i = 1, ..., ∞

Kk+1,i

i = 1, ..., ∞

4Chemotaxis is a random walk biased by a spatial gradient of a chemical attractant or repellent. In the
presence of such gradient bacteria intercalate short periods of ballistic movement by random changes in
direction. This behavior amounts to a diffusive movement with drift, not caused by an externally applied
force but by the ability of bacteria to measure an external cue. The bacterium internally analyzes this input
and generates the bias by changing the way it rotates the flagella. This transport mechanism is important
to find food or to flee from poison. It is not the aim of a diffusion-limited aggregation formalism to account
for this situation.
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A more explicit way of expressing the coupled system of ODE’s 3.15 is

dcA
k (t)
dt

=
2kBT

3η

(
1
2

k−1

∑
j=1

[
2 +

(
k− j

j

)1/3

+

(
j

k− j

)1/3
]

ck−jcj − ck

∞

∑
i=1

[
2 +

(
i
k

)1/3

+

(
k
i

)1/3
]

ci

)
(3.16)

for the diffusion-limited aggregation contribution and

dcG
k (t)
dt

= g · (ck−1 · (k− 1)− ck · k) (3.17)

for the volume-scaling growth terms, with the special case

dc1(t)
dt

= −g · c1 · 1−
2kBT

3η
· c1

∞

∑
i=1

[
2 +

(
i
1

)1/3

+

(
1
i

)1/3
]

ci . (3.18)

We shall use these equations as the basis of the predator-prey model in order to incor-
porate aggregation events in the dynamics. We are now in the position to implement,
on top of the model for bacterial growth and aggregation, phage-bacteria interactions.

It is useful, in order to make future comparisons between aggregation-free cluster size
distributions and those with aggregation events to simulate only the necessary. In this
sense we analytically solved the particular case where the kernel Kij is constant and
equal to zero.

� Kij = 0

We will employ the monomer-only initial condition. Thus, we have the system

dck

dt
= g · ck−1 · (k− 1)− g · ck · k ; ck(0) = δk,1 . (3.19)

By visual inspection we see that the following equation fulfills the system 3.19 and the
initial condition

ck(t) =
(1− e−gt)k−1

egkt . (3.20)
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We can easily see this by calculating the derivative

dck

dt
=

(k− 1)(1− e−gt)k−2 ge−gtegkt − gkegkt(1− e−gt)k−1

e2gkt =

=
g(k− 1)(1− e−gt)k−2

egt(k−1)
− gk(1− e−gt)k−1

egkt =

= g · (k− 1) · ck−1 − g · k · ck

(3.21)

3.2 | Predator-prey Aggregation Model
We have now the model to answer our first question and the basis to implement phage
interactions. This new look aims to encompass growth, diffusion, aggregation, infec-
tion, latency and lysis. However, bacterial clustering changes phage-bacteria dynamics
in various ways, hence we will have to carefully build up a description that properly
accounts for it. The infected states are introduced through the use of an extra index in
the cluster size notation, i.e.,

ck(t) −→ cn
k (t) ,

where k and n account for the number of sensitive (not infected) and infected bacteria,
respectively. Let’s write down the model equations.

� Growth

If we assume that infected bacteria don’t grow, the volume-scaling growth equation 3.17
will be hamped by the number n. This translates to the following growth contribution
to the total rate of change

dcn
k (G)

dt
= g

(
cn

k−1 · (k− 1)− cn
k · k

)
, (3.22)

where it now only depends on the number of sensitive bacteria, as pictured in the fol-
lowing diagram
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cn
k cn

k+1cn
k−1

cn−1
k cn−1

k+1cn−1
k−1

cn+1
k cn+1

k+1cn+1
k−1

g · kg · (k− 1)

g · kg · (k− 1)

g · kg · (k− 1)

� Aggregation

As stated in the previous section, chemotaxis is ignored, and the only transport mech-
anism for bacteria is diffusion. Accordingly, the aggregation contribution to the total
concentration change of cluster sizes over time is

dcn
k (A)

dt
=

1
2 ∑

i+j=k

(
∑

l+m=n
cl

ic
m
j Ki+l,j+m

)
− cn

k

∞

∑
i=0

∞

∑
l=0

cl
iKk+n,i+l , (3.23)

with K0,i = Ki,0 = 0. This is conceptually identical to the previous aggregation equations
3.16, with the proper adaptation to the new notation.

� Diffusion and Infection

The first step in phage-bacteria interactions is to implement the transport mechanism
of both factors. We remember that, since viruses can’t actively propel themselves, their
movement is also limited by diffusion. This is modeled by the use of the same brownian
kernel introduced to describe colloidal aggregation. In this case viruses are treated as
single monomer clusters that react with bacteria in accordance with their lower monomer
volume, as calculated in 3.9. Denoting the free-phage density as P, the corresponding
contribution reads as

dcn
k (P)
dt

= f ·
(

Kk+n,P · cn−1
k+1 · Sk+1,n−1 − Kk+n,P · cn

k · Sk,n

)
· P , (3.24)
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where the function S(k, n), called shielding function, accounts for the possibility of ab-
sorption to an already infected bacteria. As we can see, the aggregation between a clus-
ter of size (k, n), and free phages, i.e., Kk+n · cn

k · P, is weighted by the parameter f . The
aim here is to account for the possibility of infection failure upon phage-bacteria en-
counter. The parameter f represents the fraction of those that not only collide, but bind
to the proper receptor and manage to penetrate the bacterium’s membrane. This is not
experimentally accessible as it is. We therefore re-express it in terms of the absorption
rate η. If we calibrate the absorption rate, η, as the rate of absorption to single-monomer
clusters, f · K1,P = η, we can use equation 3.9 to get

Kk,P · f ∼ K1,P · f ·
(
2 + 10k1/3 + 0.1k−1/3)

12.1
= η · hk , (3.25)

where hk =
1

12.1

(
2 + 10k1/3 + 0.1k−1/3). Equation 3.24 now reads as

dcn
k (P)
dt

= η · hk+n ·
(

cn−1
k+1 · Sk+1,n−1 − cn

k · Sk,n

)
· P . (3.26)

Free-phage-bacteria encounters imply the following flux in the distribution of cluster
sizes

cn
k cn

k+1cn
k−1

cn−1
k cn−1

k+1cn−1
k−1

cn+1
k cn+1

k+1cn+1
k−1

η · fk+1,n−1

η · fk,n η · fk+1,n

η · fk,n−1

� Latency and Lysis

The infected population in a cluster of the type cm
i will undergo lysis with some rate

r(m). These events provoke clusters (i, m) to change size, (i, m) → (k, n). If this is a
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one-to-one transition (this is, (i, m) is not degenerate), the lysis contribution to the total
rate of change should have the form

dcn
k (L)
dt

= −r(n) · cn
k (t) + r(m) · cm

i (t) , (3.27)

The concrete relationship between cluster size indexes before and after lysis depends on
several factors. First of all, and opposed to the SM, bacterial clustering introduces a local
character to infection events. This means that, upon lysis, when the viral progeny is re-
leased into the system, they will have a higher number of bacteria from the same cluster
already available for infection. This introduces a reabsorption effect that we shall quan-
tify with a parameter α, representing the fraction of viral progeny that is reabsorbed
into the same cluster. On the other hand, the fraction 1− α escapes the aggregate and
becomes instantly available to interact with any other cluster.

These considerations establish the following relationship between the indexes (i, m) and
(k, n)

n = m− 1 + βαSi,m−1 (3.28a)

k = i− βαSi,m−1 (3.28b)

where the viral progeny number, β, is weighted by the reabsorbed fraction of the phage’s
progeny, α, and the shielding function, given that from those reabsorbed, some might
bump into an already infected bacterium. The solving of the system raises some special
cases, given that the validity of the system fully depends on the (α, β) values. A careful
description of the procedure to get the right equations is given in (B.2), consequently,
and without further delay, we directly write them down as

dcn
k (L)
dt

= −n
τ
· cn

k +
m
τ
· cm

i , i + m ≥ βα (3.29a)

dcñ
0(L)
dt

= − ñ
τ
· cñ

0 +
min(βα,ñ)

∑
i=0

ñ + 1− i
τ

· cñ+1−i
i . i + m ≤ βα (3.29b)

Here lysis rate is treated as a one-step Poisson process (see B.1). These are the last of all
contributions to the cluster size distribution change over time. The final expression is
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made by the sum of the aggregation, growth, phage encounter and lysis contributions,
i.e.,

dcn
k (t)
dt

=
dcn

k (A)

dt
+

dcn
k (G)

dt
+

dcn
k (P)
dt

+
dcn

k (L)
dt

(3.30)

� Equation for Phages

The last equation is that of the phage population density and is completely restrained
based on the former considerations. Phages will diffusively bump into clusters, and a
fraction of them will get absorbed. This introduces a negative contribution to the total
density, proportional the number of bacterial clusters as well as the phage density it-
self, of the type ∼ f · Kk+n · cn

k · P, summed over all possible (k, n) combinations. Upon
lysis within some cluster cn

k , (1− α) · β new viruses fully escape from the colony, posi-
tively contributing to the total density at a rate r(n). The total lysis contribution to the
free-phage density comes from considering all cluster sizes. Finally, there is a term ac-
counting for phage death caused by external environmental factors, at some rate δ. With
this in mind the free-phage equation reads as

dP
dt

= (1− α) · β ·∑
k

∑
n

r(n) · cn
k − f ·∑

k
∑
n
·Kk+n,P · cn

k · P− δ · P , (3.31)

and in terms of the absorption rate, η, and the one-step lysis rate per bacterium, τ−1,
reads as

dP
dt

= (1− α) · β

τ
·∑

k
∑
n

n · cn
k − η ·∑

k
∑
n

hk+n · cn
k · P− δ · P (3.32)

As we can see the phage aggregation term is not weighted by the shielding function,
since it doesn’t matter whether bacteria are infected or not for the virus to be absorbed.

Equation 3.32 can be writen more explicitly to account for lysis events of clusters of the
type (k, n) = (0, 1), cases where, upon lysis, there is no re-absorption event. With this
in mind we write

dP
dt

= (1− α) · β

τ
· ∑
(k,n) 6=(0,1)

n · cn
k +

β

τ
· c1

0 − η ·∑
k

∑
n

hk+n · cn
k · P− δ · P . (3.33)
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To summarize, the final equations for the Predator-Prey Aggregation Model (PPAM)
are

dcn
k (A)

dt
=

1
2 ∑

i+j=k

(
∑

l+m=n
cl

ic
m
j Ki+l,j+m

)
− cn

k

∞

∑
i=0

∞

∑
l=0

cl
iKk+n,i+l (3.34a)

dcn
k (G)

dt
= g

(
cn

k−1 · (k− 1)− cn
k · k

)
(3.34b)

dcn
k (P)
dt

= η · hk+n ·
(

cn−1
k+1 · Sk+1,n−1 − cn

k · Sk,n

)
· P (3.34c)

dcn
k (L)
dt

=
m
τ
· cm

i −
n
τ
· cn

k , k 6= 0, i + m ≥ βα (3.34d)

dcñ
0(L)
dt

=
min(βα,ñ)

∑
i=0

ñ + 1− i
τ

· cñ+1−i
i − ñ

τ
· cñ

0 , k = 0, i + m ≤ βα (3.34e)

for the rate of change in bacterial aggregates and

dP
dt

= (1− α) · β

τ
· ∑
(k,n) 6=(0,1)

n · cn
k +

β

τ
· c1

0 − η ·∑
k

∑
n
·hk+n · cn

k · P− δ · P (3.35)

for the phage population density.
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4

Simulations, Data Analysis and Results

Now that the mathematical modelling has been established, we are in the position to
answer our research questions. We do that by computationally simulating our models.

All simulations involve the numerical integration of a set of ODEs (either those from
the BAM, PPAM or SM). For this we used Python’s Scipy library, which contains an
adequate integrator for initial value problems 1. To speed up calculations the Numba
library was also implemented in the code 2.

4.1 | Aggregation Impact on the Aggregate Size Distri-
bution

Let’s review the first question

� Aggregation impact in an exponentially growing, and well-mixed, bacterial culture
Can diffusion-limited aggregation display a relevant role in the distribution of bacte-
rial aggregates? For this, we built a model where bacterial growth was coupled to a
diffusion-limited aggregation kinetic framework.

Aggregation displays a squared dependence on cluster size concentrations, remem-
ber that the rate of interaction of two clusters of size i and j is ∼ Kijcicj. This means
diffusion-limited cluster formation is susceptible to be negligible if we don’t focus on

1The specific integrator can be found here https://docs.scipy.org/doc/scipy/reference/
generated/scipy.integrate.solve_ivp.html

2The corresponding source, when last used, could be found here http://numba.pydata.org.
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the “right” density region. In order to identify this region we simulated the dynam-
ics of the phage-free model (BAM) with different initial monomer-only concentrations,
ck(0) = δ1,k.

� Simulation set #1

Here we chose 100 µm ≡ 1 as unit length and 1h ≡ 1 as unit time. All cluster den-
sities are therefore expressed in cells/(100µm)3 and rates in h−1. However, we will
recover units typical of microbiology when plotting in order to make delivered infor-
mation more accessible, i.e., cells/mL.

The number of launched simulations was 5, and we used the monomer-only initial con-
centrations ck(0) = δ1,k = 10α, with α = (−1, 0, 1, 2, 3) 3. The growth rate was set to
zero, g = 0. The cut-off cluster size was set to kcut = 2000 and each simulation stopped
when the mass percentage of the cut-off size was bigger than 10−10 % of the total mass,
kcut · ckcut ≥ 10−10 ·M = 10−10 ·∑ k · ck. This is a safety measure to avoid the divergence
of the integrator.

The physical parameters were chosen based on the optimal growing temperature on a
batch culture, T = 37 °C, and the dynamic viscosity of water, ηH20(37 °C) = 0.0006922 [Pa ·
s]. These two last parameters will be the same for all future simulations.

The unit length and unit time have an impact on the numerical values for the brownian
kernel pre-factor, as well as the values for cluster size concentrations. For example, the
brownian kernel pre-factor

B(T, η(T)) ≡ 2kBT
3η

=
2 · 1.38 · 10−23[ kg m2

s2 K ] · (T(°C) + 273.15)[K]

3 · η(T)[ kg
m s ]

→ B(T, η(T)) = f (T)
[

m3

s

]

For water at 37 °C→ ηH20(T = 37 °C) = 0.0006922
[

kg
m·s

]
→ f (T) ∼ 4 · 10−18

3These values were not chosen at random. We scanned around what in microbiology is considered to
be a diluted system, i.e., ∼ 106 cells/mL or, in our units, ∼ 100 cells/100µm3.
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If the unit length and time

µm ≡ 1 ; h ≡ 1 −→ m3 = 1018 ; s =
1

3600

the pre-factor takes the value

B(T, η(T)) = 4 · 10−18 · 1018

1/3600

[
µm3

h

]
= 14839.88

[
µm3

h

]

Conversely, if we instead choose the aforementioned units of 100µm3 ≡ 1 ; h ≡ 1, the
prefactor takes a value closer to unity, B = 1.483 · 10−2

[
(100µm)3

h

]
, which is computation-

ally less expensive.

As sanity check for the reader, the set of initial concentrations was given in simulation
units. If we adopt those typical from microbiology these translate to

ck(0) = 10α

[
cells

(100µm)3

]
= 10α+6

[
cells
mL

]
(α = −1, 0, 1, 2, 3) .

� Analysis set #1

To make a visual comparison of the impact of this concentration change we plot in Fig-
ure 4.1 the cluster size probability distribution 4 for this set of simulations at 4 different
times, this is

Pk(t) =
k · ck(t)

∑ k · ck(t)
, (4.1)

at t = [0.0, 0.5, 1.0, 1.5, 2.0].

Aggregation displays a great dependence on monomer concentration, as Figure 4.1 il-
lustrates. Low density regions show no aggregation effect on the studied time interval,
such as ck(0) = 105 cells/mL, where no effect is observed. Conversely, higher order
initial monomer concentrations, such as ck(0) = 108 cells/mL, reveal the existence of a

4As a reminder, we consider the probability of finding a cluster of size k, Pk, as the number of monomers
belonging to clusters of such size.
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Figure 4.1: Distribution of cluster sizes, Pk, for different initial densities ck = δ1,k. Aggregation kinetics
greatly depends on initial concentrations, as one could intuitively have seen from its squared dependence
in the aggregation kernel, ∼ Kijcicj. The unit length is expressed back in units typical of microbiology, thus
concentrations read in cells/mL. It has been plotted an exponentially growing system, see equation 3.20,
as a visual comparison to our simulations.

density region where aggregation turns out to have a large impact upon the cluster size
distribution. These qualitative statements can be translated by computing the system’s
typical mass, 〈k〉, (see Eq. 2.3), over time, as shown in Figure 4.2. This provides a way to
compute the aggregation time-scale (we compute an event’s time scale as the inverse of
the rate of increase caused by that particular type of event, either aggregation or growth,
in our case).

As we can see, the functional dependence turns out to be linear, a feature that, in prin-
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Figure 4.2: Aggregation time-scale experiment. The individual monomer growth rate, g, is set to zero.
We plot the evolution in time of the typical mass of the cluster size distribution, 〈k〉, for different monomer-
only initial concentrations. Linearity is not trivially explained, however, it provides an easy and direct way
of estimating the aggregation time-scale as the inverse of the slope τa ∼ 1/m.

ciple, is not trivially explained but that, as we will see, generates a very interesting hy-
pothesis regarding the nature of the brownian kernel. Linearity provides an easy way
for a rough estimate of the aggregation time-scale as the inverse of the slope 5. If

M2

M1
=

∑ k2 · ck

∑ k · ck
≡ s(t) = m · t + s(0) (4.2)

then

m =
∆y
∆x

=
s(t f inal)− s(0)

t f inal − 0
=

1
τa

(4.3)

with s(0) = M2(0)/M1(0) = 1, since, given the monomer-only initial condition, Mn(0) =
1 ∀n ≥ 0. The results from this analysis have been summarized in Table 4.1.

5If the functional dependency was different a χ2 test would have been a better procedure. Given the
simplicity of the results it was considered unnecessary. Furthermore, it was our aim to only make a rough
estimation of the time-scale.
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ck(0) = δ1,k

ck(0) 1E5 1E6 1E7 1E8 1E9

m 0.006 0.059 0.600 6.110 61.473

τa 168.438 16.820 1.666 0.163 0.016

Table 4.1: Values of the aggregation time-scale for a set of initial monomer-only concen-
trations. The linear dependence of the ratio of moments M2/M1 provided a direct way
of evaluating it as the inverse of the slope, i.e., τa = 1/m.

The squared dependency on cluster concentration,∼ Kijcicj, approximately translates to
10-fold decreases of the aggregation time-scale upon 103-fold increases in initial monomer
concentration. It is interesting to see that the rate of aggregation remains constant no
matter the cluster size distribution, as the linear behavior suggests, depending only on
the initial mass M = ∑ k · ck(0). This indicates a balancing behavior between the earlier
narrow free monomer distribution, where aggregation events may occur more often and
the later and wider, where diffusion-limited reactions are less frequent, but translate to
a higher increase in cluster size. This is an ideosyncrasy of the thermodynamic limit,
where there is no finite number of monomer units.

As a last comment on the linearity of the typical mass estimate - It is suggested in lit-
erature (18) that the brownian (yet unsolved) and constant kernels might be related,
being the second an uncontrolled approximation of the first. Suggestions are based on
the fact that both kernels remain invariant under the transformation (i, j)→ (ia, ij), i.e.,
Kai,aj = Ki,j. We here see that the brownian kernel’s typical mass follows a linear be-
havior, and so it does the constant kernel’s, whose first moments are M0 = 1/(1 + t),
M1 = 1 and M2 = 1 + 2t 6, supporting the aforementioned hypothesis.

Since we want to see whether diffusion-limited aggregate formation has an impact on
cluster size dynamics, calculating aggregation time-scales without comparing them to
that for growth is completely useless. Luckily enough, the growth’s time scale is straight

6To see this set Ki,j = 2 and solve for particular values of n in the moments equation 2.2 employing the
monomer-only initial condition, Mn(0) = 1 ∀n ≥ 0.

dMn

dt
=

∞

∑
i,j
(i + j)ncicj − 2Mn M0
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forward to compute. The system’s typical mass for exponential growth on the volume
can be calculated from equation 3.14, resulting in a growth rate of

τg =
1
g

. (4.4)

If we assume that typical values for the growth rate are [1 − 3] h−1, we then have a
growth time-scale of τg = [0.33, 1] h. Thus, we find a concentration interval where ag-
gregation and growth time-scales are of the same order or magnitude. This is, around
c(0) = 107 − 108 cells/mL, as visually suggested in Figure 4.1.

This argument revolves around a fixed total mass, since monomer number is conserved
in aggregation. Conversely, how does the system evolve if we, on top of aggregation,
allow monomer growth? The monomer-only initial condition might represent a kinetic
bottle neck in the formation of bigger aggregates, but with a growth contribution aggre-
gation might play a bigger role in colony formation for initial concentrations where it
seemed negligible. If so, an initially diluted medium could evolve to become an unde-
sirable set of aggregates with negative effects on clinical studies (4).

With this in mind, as a reinforcement to our argument that there exists a density re-
gion where aggregation plays an important role upon cluster size distribution dynamics
(within the density region typical of microbiology studies), we launched another set of
simulations where now the BAM has a finite value for the growth rate.

� Simulation set #2

We kept 100 µm ≡ 1 as unit length and 1h ≡ 1 as unit time.

The number of launched simulations was 5, and we used the monomer-only initial con-
centrations ck(0) = δ1,k = 10α, with α = (−1, 0, 1, 2, 3). The growth rate now has a finite
value, g = 1.5. Since the growth contribution implied a faster increase in cluster sizes
the cut-off cluster size was set to kcut = 5000 and each simulation was again stopped
when the mass percentage of the cut-off size was bigger than 10−10 % of the total mass,
kcut · ckcut ≥ 10−10 ·M = 10−10 ·∑ k · ck.

� Analysis set #2
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We start again with a visual comparison where we plot the cluster size distributions
for all simulated initial densities against that related to exponential growth only (see
equation 3.20), at time t = 0.35h.

Figure 4.3: The distribution of cluster sizes in an exponentially growing on the volume set of bacteria
is compared to that generated by a framework that also includes aggregation events. The integer-valued
BAM cluster size probabilities are plotted as continuous lines for visual simplicity, in order to avoid over-
lapping. Even low density regions such as 105 cells/mL represent now density regions where aggregate
formation is more than plausible.

We now see that, when overlapped to exponential growth, even density regions that
were absolutely negligible before, aggregation-wise , now turn out to be relevant in the
diffusive-limited formation of aggregates.

We have thus seen that diffusion-limited aggregation can match colony formation asso-
ciated to only growth environments and clearly snowballs when overlapped to expo-
nential growth. A clear picture of it can be seen in Figure 4.4.

4.2 | Ecological Implications of Aggregation in Phage-
Bacteria Dynamics

We now change our focus to address our second research question. In order to do that,
as we have commented before, we simulated the PPAM (equations 3.34) against the SM
(equations 2.19). Let’s remember the question we are addressing.

� Ecological implications to bacteria, when exposed to predation by bacteriophages,
that are associated with the formation of structured environments - From a kinetic
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Figure 4.4: Typical mass of the BAM for different initial monomer-only concentrations. The time evo-
lution of the typical mass in a system with no aggregation growing exponentially is plotted as a scale
comparison. We here see how aggregation is accelerated when monomers are allowed to grow.

stand point we address the impact of aggregate formation upon predation by phages.
For this, we built a model that encompasses bacteria aggregation, exponential volu-
mic growth, diffusion-limited search and infection by phages, latency and lysis. This
model, labeled as PPAM, is meant to be compared with a more simple predator-prey
model, the SM, which neglects clustering formation between bacteria. Both models
assume a well-mixed system and they also include latency with an intermediate in-
fected state that lysis as a one-step Poisson process. The difference lies in the cluster-
ing and hence in aggregate-related characteristics such as the re-absorption weights
(α, Sk,n), accounting for the locality of an infection, or the different viral absorption
rate ∼ f · Kk,P, cluster size dependent.

� Simulation set #3

We kept 100 µm ≡ 1 as unit length and 1h ≡ 1 as unit time. The fraction of reabsorbed
viral progeny upon lysis was set to α = 0.5.

Since the PPAM involves infected states that act as a damping mechanism on growth,
the mentioned growth time-scale, τg = 1/g, represents an upper estimation. We expect
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the effective growth to be lower thus, the set of simulations were performed over the
density grid cn

k(0) = δ0,n
1,k = (5 · 10−1 − 101) cells/(100µm)3 = (5 · 105 − 107) cells/mL

and P(0) = (100 − 103)PFU/(100µm)3 = (106 − 109)PFU/mL. The range of the phage
density grid over which we shall perform our study is related to computational limita-
tions, rather than physical or biological arguments.

The phage’s parameters were those from T7’s E.coli bacteriophage (see table 2.1).

The cut-off cluster size was set to kcut = 214 7 and each simulation stopped when the
mass percentage of one of the the cut-off sizes 8 was bigger than 10−10 % of the total
mass, (k + n) · cn

k = kcut · cn
k ≥ 10−10 ·M = 10−10 ·∑k ∑n(k + n) · cn

k .

� Analysis set #3

The PPAM’s resulting trajectories were compared to those of the SM. The comparison
was made at two different points. First, at the SM’s half-population time - when the sen-
sitive (not infected) bacteria population levels of this model without aggregation events
reached B(0)/2, we looked at the population levels of the PPAM. Second, at the SM’s
extinction time, defined as the time when the population of sensitive bacteria reaches
B = 1 cell/mL 9 10.

Figures 4.5 and 4.6 are examples of this analysis for two particular simulated trajecto-
ries. As we can already see, they show a delaying in the crashing point. The typical
mass provides information on the clustering dynamics - in Fig. 4.5, where the popu-
lation descent takes a longer time, the typical mass shows some curvature, reflecting
relevant growth contributions to the sensitive bacteria population. Conversely, in Fig.
4.6, the phage invasion and posterior lysis paradoxically 11 happens much faster thus,
the typical mass is determined by aggregation, and this is reflected in the linearity of the

7The cut-off size is lower than before since we now solve for k2
cut differential equations, instead of just

kcut.
8Sizes, in plural. Remember that we now have sensitive plus infected bacteria, (k, n), thus the cut-off

size has a degeneracy of pair combinations such that k + n = kcut of kcut + 1.
9Stochastic simulations have the advantage of having well-defined extinctions (M = 0 cells/mL) ,

whereas continuous descriptions involve an artificial definition of when the system is considered to be
extinct, since the absolute 0 is only asymptotically achieved - think, for example, of the function e−x.

10Within our range of densities and the parameters we used, all trajectories are crashing trajectories, i.e.,
the system asymptotically moves towards the fixed point (B, I, P) = (0, 0, 0).

11This is just a consequence of the number of sensitive bacteria infected by phage being proportional to
both, phage and sensitive bacteria densities.
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typical mass.

Figure 4.5: Analysis of the difference in trajectories between the two phage-bacteria models. We show
an example of the BAM sensitive population trajectory, S(BAM), against it’s SM’s equivalent, S(SM). The
example is a case with cn

k = δ0,n
1,k = 5 · 105 cells/mL and P(0) = 106 PFU/mL.

Via the above procedure a set of 2 PPAM population values was obtained for each initial
bacteria and phage densities. To summarize our results we decided to construct 2 heat
maps, were we show the differences provoked by aggregation. With those associated
to the half-population time of the SM we built the heat map from Figure 4.7, where we
plot them as the fraction with respect to their initial population value, i.e.,

f =
BPPAM(tSM

hal f−pop.)

B(0)
. (4.5)

PPAM values associated to the extinction events of the SM’s trajectories were used to
build the heat map from Figure 4.8, where we directly provide the absolute value of the
sensitive population level.

Trajectories displayed, over the studied phase space, a displacement of the crashing
point. However, no trajectory has any signs of representing a survival situation for bac-
teria. Hence, from a purely kinetic stand point, aggregation events on a non-clustered
initial population might help survive a transient virus invasion, whereas if permanent,
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Figure 4.6: Analysis of the difference in trajectories between the two phage-bacteria models. We show
an example of the BAM sensitive population trajectory, S(BAM), against it’s SM’s equivalent, S(SM). The
example is a case with cn

k = δ0,n
1,k = 107 cells/mL and P(0) = 106 PFU/mL.

Figure 4.7: Fraction of the initial population at the SM’s half-population time, i.e., S = S(0)/2 = M(0)/2.

the system is bound to the same fate as that without aggregation.
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Figure 4.8: Density of bacteria at the SM’s extinction time, i.e., S = 1 cells/mL.

Given that the PPAM has the free parameter α (we don’t know how it might be dis-
tributed), the previous set of simulations were repeated for different α values. Since the
value or distribution of α is an unknown for us, we must study how our results change
over the possible range of α values, i.e., α ∈ [0.0− 1.0].

� Simulation set #4

To study the dependence on α, a new set of simulations was launched with the same
conditions than Simulation set #3 , we thus refer back to it. We studied the system’s
behavior over the range α = [0.0 − 1.0] in steps of 0.1.

� Analysis set #4

A summary of the α effect over trajectories is provided in Figures 4.9 and 4.10, with the
grey area being the region where all α ∈ [0.1− 1.0] trajectories are contained.

α = 0.0 trajectories represent the kinetic advantage of having a clustered population,
where we don’t find the trade-off of the re-absorption effect. This comes from the fact
that phage absorption rates to a clustered population are lower than those for unstruc-
tured environments. To see this lets consider a fixed number of bacteria, and the special
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Figure 4.9: Example trajectories for a fixed number of initial sensitive bacteria density, B(0) = 5 ·
105 cells/mL, and a progressive 103-fold increase in viral initial concentration. The dotted line represents
the population level of the SM, whereas the dashed and grey area represent that of the PPAM, for α = 0.0
and the α values of [0.1− 1.0], respectively. The value α = 0.1 is the black line on the lower edge of the grey
area, whereas α = 1.0 is the higher one.

case where all belong to clusters of the same size. Does the size of these clusters in which
bacteria are embedded influence the absorption rate? To answer this we compute the
searching time as a function of the cluster size to which these monomers belong. An
estimate of this time is

τk ∼ (Kk,P)
−1 . (4.6)

To get rid of the temperature dependent prefactor (it also depends on the properties of
the surrounding fluid) we can instead compute the ratio

r(k) =
τk

τk+1
, (4.7)

which already provides the information needed to answer the question. If the system is
well-mixed, the equation c1 = ck · k holds, therefore

ci

cj
=

c1/i
c1/j

=
j
i

, (4.8)
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Figure 4.10: Example trajectories for a fixed viral initial concentration of P(0) = 108 PFU/mL and a
progressive increase in initial bacteria concentration. The same comparison between SM and PPAM for
α ∈ [0.0− 1.0] is carried.

and the typical searching time ratio is (Figure 4.11- a)

r(k) ∼
(

Kk,P

Kk+1,P

)−1

=
ck+1

ck
· hk+1

hk
=

k
k + 1

· hk+1

hk
. (4.9)

The ratio displays interesting information on the early clustering of monomers. Whereas
big clusters tend to be equally likely to be found, for a fixed total mass, being distributed
in dimers, trimers or any other low number implies a relevant difference in viral ab-
sorption rates. For example, the searching time for monomers is 60% of that for dimers,
since r(1) ≈ 0.607, and the searching time for dimers is 75% of that for trimers, since
r(2) ≈ 0.75. This quantity is useful if we want to compare clustering differences in
neighboring sizes. With this in mind, if we want to see absolute differences, a com-
plementary quantity to look at is the k-sized aggregate searching time, τk, expressed in
units of τ1 (Figure 4.11- b), i.e.,

τk

τ1
=

h1

hk
· k =

12.1 · k
2 + 10k1/3 + 0.1k−1/3 , (4.10)
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Figure 4.11: (a) Behavior of the integer-valued searching time ratio function, r(k). As cluster size in-
creases the difference becomes asymptotically negligible, since r(k) → 1 as k → ∞. On the other hand,
small clustering differences at low k values represent a major trait in phage adsorption rates, as reflected
by the value r(1) = τ1/τ2 ≈ 0.607. This is, the searching for monomers is 60% of that for dimers, on aver-
age. (b) Target search time for different sizes of cluster densities. Time is expressed in units of τ1. Along
with τ(k), as a scale to compare, the functional forms of f (k) = k1/3 as well as f (k) = k2/3 are also plotted.
Searching time scales as the surface of the clusters bacteria are embedded in, as one could expect.

given that h(1) = 1.

Thus, for α = 0.0, once a phage finds a cluster after a longer searching time, its progeny
will have to resume a new search after lysis without the locality reward of having the
same cluster nearby.

As we can see, for the studied system, clustering takes place in such a way that the typi-
cal cluster mass remains low with respect the total amount of bacteria and phages in the
system (see the typical mass time evolution in Figures 4.5 and 4.6). The typical cluster
size is smaller than any αβ combination (T7’s burst size is β = 260) for α ∈ [0.1− 1.0].
This means that clusters will tend to end up infected as a whole and die, with the differ-
ence settled in the fraction of the phage progeny entering the system. This trait makes
clusters into phage sinks, of different “quality” depending on the fraction of re-absorbed
viral progeny. Different fractions of re-absorbed progeny makes the free-phage popula-
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tion slightly different, thus creating a continuum of sensitive bacteria trajectories, hence
the grey area from Figures 4.9 and 4.10.

If the typical cluster size is greater than some α · β values, the fate of the system becomes
harder to elucidate. This could represent a reasonable future question to ask within our
framework.
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5

Discussion and Conclusions

5.1 | Achieved Aims and Objectives
In this work two questions were raised. Firstly, we addressed aggregate formation
caused by diffusion, inspired by the observations of (4). From a mass-action kinetics
aggregation framework, we constructed, with the help of the brownian kernel, a way
to describe colloidal coalescence processes ruled by diffusion. From this basis, we then
coupled bacterial exponential growth to obtain the BAM, a model that aims to imitate
bacterial clustering caused by both, encounter and merging events between aggregates,
and cell divisions within each cluster. With this model, we found the existence of a
density region where aggregation displays a relevant role in the distribution of cluster
sizes, ck, or Pk. This density region is, furthermore, where typical microbiology experi-
ments lay - bacterial overnight cultures reach a stationary phase of ∼ 109 cells/mL. In
a context where the growth rate was set to zero, g = 0, the aggregation time-scale for
densities around c ∼ 107− 108 cells/mL displayed a similar capacity to increase the sys-
tem’s typical mass than that associated with exponentially growing cells on the volume.
Conversely, when monomers were let to grow, the model with aggregation showed an
acceleration over the clustering dynamics that overcame exponential growth alone, even
for density regions 3 orders of magnitude below, i.e., c ∼ 105 cells/mL. This indicates
that diffusion plays a relevant role in colony formation in liquid environments, where
bacteria are allowed to move.

Secondly, we addressed the ecological implications of bacterial aggregation when ex-
posed to predation by phages in a well-mixed scenario. We used the BAM model as
a basis to expand on, and implement phage-bacteria interactions. Phages entered the
scene as colloidal particles, smaller in size than bacteria. Consequently, the brownian
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kernel was implemented to regulate the phage-bacteria diffusive search and encounter
rate. Simulated trajectories displayed a time delay in the crashing point. This time delay
is mainly related to aggregation effects, given the quasi-linear behavior of the system’s
typical mass. At the simulated time-scales growth turned out to have a secondary role
in the overall dynamics. This can be partially explained by the way we modelled ly-
sis events. They were treated as one-step Poisson processes with constant rate r = 1/τ.
The downside of this assumption is that the inter-event distribution is exponential, and
is not peaked around the average value, or latency time, as it would be with a 10-step
Poisson process 1. This means lysis events will start at time t = 0 (instead of being dis-
tributed around τ = 0.22 h), hence growth is hampered even more. Although this is a
trait shared by both the PPAM and the SM it indirectly affects aggregation rates, via the
size dependence of the brownian kernel. A future aim, to improve this approach, could
be the development of single infected states that lysis following a distribution peaked
around its average value, which is set to the experimentally obtained latency time. Al-
though it might not be a trivial task.

Since all presented burst sizes (see table 2.1) are quite bigger than the displayed typi-
cal cluster mass, the above arguments become fairly general, and not pathogen-specific.
Given the displacement of the crashing point, and from a kinetic stand point, aggrega-
tion events into small clusters could represent a plausible survival trait upon a transient
viral invasion.

It is worth repeating here that this study discusses aggregation traits from a purely
kinetic point of view. It completely neglects structures or idiosyncrasies associated with
bacterial colonies, such as biofilm related properties (5), colony protection against phage
attack (15; 16) or the existence of nutrient gradients within the colony, affecting bacterial
growth, among many properties present in these complex structures.

� Future Work

The information loss in the coarse-grained approach, if found relevant, could be cor-
rected in future work by the use of multi-scale simulations, which, for example, could
help to obtain the attachment probability of two bacterium upon encounter, for a de-
termined set of parameters such as the temperature, the dynamic viscosity of the sur-
rounding fluid, or the bacterium’s morphology. This shall be done, perhaps, from the

1However, this alternative and more suitable latency time treatment would involve a 10-fold increase
in the number of differential equations to be integrated, making the analysis far heavier.
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perspective of Molecular Dynamics Simulations, where the shear between two surfaces
could be obtain, and could be introduced in this coarse-grained view via a multiplica-
tive parameter in the terms of the type ∼ Kijcicj → f · Kijcicj.

Finally, since the brownian kernel is physically important, and we lack of an analytic
solution, it would be useful to study in which situations can be approximated to the
constant kernel, since this last is computationally less expensive to simulate.
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A

Diffusion

A.1 | Solution of the Diffusion Equation
The diffusion equation describes the redistribution of particles in space, as time goes by,
caused by particle density gradients. We here present the solution for the displacement
in time of a set of colloids initially at ~x0 = (x0, y0, z0). All particles are considered iden-
tical and particle-particle interactions are neglected. In this particular case solving for
the individual particle probability distribution, P(~x, t), is equivalent than doing it for
the particle concentration c(~x, t), since c(~x, t) = N · P(~x, t), with N equal to the initial
number of colloids.

The equation

∂P(~x, t)
∂t

= D
∂2P(~x, t)

∂~x2 (A.1)

is solved under the initial condition P(~x, t0) = δ(x − x0)δ(y − y0)δ(z − z0) and the
boundary conditions P(~x, t)→ 0 and ~∇P(~x, t)→~0 as |~x| → ∞.

We take the Fourier Transform (FT)of P(~x, t) in space, defined as

Q(k, t) =
∫

R3
P(~x, t)ei~k·~xd~x (A.2)
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to obtain a simpler equation to solve. The transformed diffusion equation reads as

∂Q(~k, t)
∂t

=
∫

R3
D~∇2P(~x, t)ei~k·~xdxdydz . (A.3)

The laplace operator divides the integration into three terms of the type

∫
R3

D
∂2P(~x, t)

∂x2 ei~k·~xdx = D
∫ ∞

−∞
eiky·ydy

∫ ∞

−∞
eikz·zdz · Ix , (A.4)

with

Ix =
∫ ∞

−∞

∂2P(~x, t)
∂x2 e−kx ·x = −k2

x

∫ ∞

−∞
P(~x, t)e−ikx ·xdx . (A.5)

Result one can arrive to after applying integration by parts twice and both boundary
conditions. We therefore have

∂Q(~k, t)
∂t

= −D(k2
x + k2

y + k2
z) ·Q(~k, t) = −D~k ·Q(~k, t) (A.6)

This equation is solved with the initial condition

Q(~k, t0) =
∫ ∞

−∞
δ(x− x0)δ(y− y0)δ(z− z0)ei~k·~xdxdydz = ei~k·~x0 (A.7)

to give

Q(~k, t) = e−D~k2(t−t0)+i~k·~x0 . (A.8)

We perform now the inverse transform, defined as

P(~x, t) =
1

(2π)3

∫ ∞

−∞
Q(~k, t)ei~k·~x . (A.9)

The integral factorizes into three terms of the type

1
2π

∫ ∞

−∞
e−(Dk2

xt+ikxx)dx , (A.10)
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which are solved by rewriting the exponent in such a way that the integral becomes

e−ab2

2π

∫ ∞

−∞
e−a(x+ib)2

dkx . (A.11)

In this case one can easily show that a = D(t− t0) and b = x−x0
2a . The above integral is

equivalent to the gaussian integral 1

e−ab2

2π

∫ ∞

−∞
e−ax2

dx . (A.12)

Hence, we finally get to the single-particle probability function

P(~x, t) =
1

(2π)3 · e
−((x−x0)

2+(y−y0)
2+(z−z0)

2)/4Dt−t0 ·
√

π

Dt

3

=
1√

4πD(t− t0)
3 · e

−(~x−~x0)/4D(t−t0)

(A.13)

The quantity P(~x, t)d~x gives the probability of finding the particle at the point [~x,~x + d~x]
at time t. The particle concentration for the original problem with N particles is obtained
with the change c(~x, t) = N · P(~x, t), i.e.,

c(~x, t) =
N√

4πD(t− t0)
3 · e

−(~x−~x0)/4D(t−t0) (A.14)

1Note that this type of integral can be calculated by integrating twice and changing to polar coordi-
nates. If ∫ ∞

−∞
e−ax2

dx ≡ J,

then

J2 =
∫ ∞

−∞

∫ ∞

−∞
e−a(x2+y2)dxdy =

∫ ∞

0

∫ 2π

0
e−ar2

rdrdθ = 2π

(
e−ar2

−2a

∣∣∣∣∞
0

)
=

π

a
−→ J =

√
π

a
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Since diffusion is a non-directional transport mechanism the average displacement is
zero, as we can easily compute

〈~X(t)〉 =
∫

R3
~x · P(~x, t)dV = 0 (A.15)

since the integration is performed over an odd function in a symmetric interval. An al-
ternative magnitude to make a rough estimate of the average displacement of a particle
comes from the square root of the variance,

Var(~X(t)) = 〈~X(t)2〉− 〈~X(t)〉2 = 〈X(t)2 +Y(t)2 +Z(t)2〉 = 〈X(t)2〉+ 〈Y(t)2〉+ 〈Z(t)2〉
(A.16)

where each of the last three terms has a value of

〈X(t)2〉 =
∫

R3

1√
4πD(t− t0)

· x2 · e−(~x−~x0)
2/4D(t−t0)dV = 2D(t− t0) , (A.17)

hence

∆|~x| ∼
√

6D(t− t0) . (A.18)

A.2 | Diffusion to a Spherical Adsorber
What is the rate at which small particles, perhaps nutrients or phages, collide against
a bigger and approximately static system? This is an interesting question that can be
answered within the scope of diffusion.

In this static target limit, the coalescence rate is calculated as the rate of adsorption to
a sphere of some radius, R, by some smaller colloids characterized by some diffusion
constant, D. Each particle reaching the surface is instantly swallowed up by the big-
ger target, and the system is big enough to not notice about local coalescence events
to it. These two properties translate to the boundary conditions c(r = R, t) = 0 and
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c(r → ∞, t) = c(r, t = 0) ≡ c0, respectively.

Since the system is assumed to be well-mixed there are no spatial preferred direction and
we can impose spherical symmetry for the solution of the diffusion equation, c(~r, t) =

c(r, t). Luckily enough, this assumption helps us simplify the solving by relating the
three-dimensional Laplacian operator to that in one dimension:

∂c(r, t)
∂t

= ∇2
3d c(r, t) =

1
r

∂2

∂r2 [r c(r, t)] =
1
r
∇2

1d [r c(r, t)] (A.19)

Thus, if we define u(r, t) ≡ r c(r, t) we can solve for the equivalent one-dimensional
system

∂u(r, t)
∂t

= D∇2
1du(r, t). (A.20)

We shall first see, for clarity, the general lines for a “purely” 1-dimensional system with
its corresponding boundary conditions. Once solved we can mimic the procedure for
the equivalent A.20, with its corresponding, and slightly different, boundary conditions.
We adopt the following notation to underline the small parenthesis we are taking

∂u(x, t)
∂t

= D
∂2u(x, t)

∂x2 . (A.21)

Boundary conditions:

1. Constant initial concentration u(x, t = 0) = u0

2. Absorbing boundary conditions on a point-like particle u(x = 0, t) = 0

3. Thermodynamic limit u(x → ∞, ∀t) = u(x, 0) = u0

Solution:

We define the Laplace transform with respect to t as:

L{ f (x, t)} ≡
∫ ∞

0
f (x, t) e−stdt = F(x, s) (A.22)
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With the following properties in mind: L{ ft(x, t)} = sL{ f (x, t)}− f (x, 0) ; L{ fxx(x, t)} =
δ2

δx2L{ f (x, t)} we transform the PDE we want to solve to get

s L{u(x, t)} − u(x, 0) = D
δ2

δx2L{u(x, t)} (A.23)

which, in typical notation, reads as

s U(x, s)− u0 = DU′′(x, s) (A.24)

The particular solution is Up(x, s) = u0
s . The solution to the homogeneous equation is

of the form

U(x, s) = A(s)e−x
√

s/D + B(s)ex
√

s/D (A.25)

We now apply (3) to set B(s) = 0 and (2) to determine A(s):

U(0, s) = L{u(0, s)} = 0 = A(s) +
u0

s
−→ A(s) = −u0

s

Thus,

U(x, s) =
u0

s

(
1− e−x

√
s/D
)

, (A.26)

which has an inverse transform of the form

L−1

(
u0

1− e−x
√

s/D

s

)
= u0 er f

(
x√
4Dt

)
(A.27)

Hence,

u(x, t) =
2 u0√

π

∫ x/
√

4Dt

0
e−z2

dz (A.28)
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Once we have the solution for the 1-dimensional case we can extrapolate to the 3-
dimensional system by adapting the boundary conditions.

Boundary conditions:

1. Constant initial concentration

u(r, t = 0) = r c(r, t = 0) = r c0

2. Absorbing boundary conditions on a finite-sized particle of radius a

u(r = a, t) = a · c(r = a, t) = 0

Solution:

The solution follows the general lines of the former development with the following
modifications

Lagrange transform: sU(r, s)− r c0 = DU′′(r, s)

Particular solution: U(r, s) = r c0
s

Homogeneous solution: A(s) = − c0
s e−a

√
s/D

Thus,

U(r, s) =
c0

s

(
r− ae−(r−a)

√
s/D
)

, (A.29)

expression from which we get our desired solution to the time-dependent diffusion
equation

u(r, t) = L−1{U(r, s)} = c0

[
r− a− a er f

(
r− a√

4Dt

)]
= r c(r, t), (A.30)

or, inverting the change,

c(r, t) = c0

[
1− a

r
+

a
r

er f
(

r− a√
4Dt

)]
= c0

[
1− a

r
+

2a
r
√

π

∫ (r−a)/2
√

Dt

0
e−z2

dz

]
. (A.31)
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A.3 | Out of the Static Target Limit
For the case where both particles are similar in size the problem has to be reformulated,
i.e., the merging event will now happen when the relative displacement between colloids
reaches the sum of their radii of influence. When the separation between both particles
first reaches Rij = Ri + Rj the reaction occurs.

Luckily enough, the equation

J0 dt = 4πDRc0

(
1 +

R√
πDt

)
dt. (A.32)

can be recycled by demonstrating that this relative displacement also follows the laws
of Brownian motion with an effective diffusion coefficient Dij = Di + Di . The problem
then translates to the computation of the flux to an absorbing sphere of radius Rij by an
effective particle with diffusive constant Dij.

The Dij = Di + Di equivalence is established by showing the probability of relative
displacement lying within [~r,~r + d~r] is

P(~r)d~r =
d~r√

4π(Di + Dj)t
3 e−r2/4(Di+Dj)t, (A.33)

and comparing it with the corresponding result for the displacement of an individual
colloid A.13. In A.33 we took, for simplicity ~r0 =~0 at t0 = 0, thus

P(~r)d~r =
d~r

√
4πDt

3 er2/4Dt. (A.34)

Proof:

P(~r, t)d~r = d~r
∫

R3
P1(~r1, t)P2(~r1 +~r, t)d~r1 =

d~r
(4πD1t)3/2(4πD2t)3/2

∫
R3

e−|~r1|2/4D1te−|~r1+~r|2/4D2td~r1

(A.35)
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The integral factorizes in three independent terms of the form

I(x) =
∫ ∞

−∞
e−(x2

1+2x1x+x2)/4D2t · e−x2
1/4D1tdx1 . (A.36)

Thus, the problem boils down to solving

I(x) =
∫ ∞

−∞
e−

1
4D1D2t [x

2
1(D2+D1)+x1(2xD1)+x2(D1)]dx1 ≡

∫ ∞

−∞
e−(ax′2+bx′+c)dx′ . (A.37)

By re-writing the second degree polynomial we get a gaussian integral

I = e(b
2−4ac)/4a

∫ ∞

−∞
e−(2ax′+b)2/4adx′ =

e(b
2−4ac)/4a

2a

∫ ∞

−∞
e−

1
4a y2

dy

=
e(b

2−4ac)/4a

2a
·
√

π

1/4a
= e(b

2−4ac)/4a
√

π

a

Note that this type of integrals can be calculated by integrating twice and changing to
polar coordinates. If

∫ ∞

−∞
e−ax2

dx ≡ J,

then

J2 =
∫ ∞

−∞

∫ ∞

−∞
e−a(x2+y2)dxdy =

∫ ∞

0

∫ 2π

0
e−ar2

rdrdθ = 2π

(
e−ar2

−2a

∣∣∣∣∞
0

)
=

π

a
−→ J =

√
π

a

69



We now subtitute back to get

I =

√
4DiDjπt
Di + Dj

· exp

[
4x2D2

i
16D2

i D2
j t
·

4DiDjt
4(Di + Dj)

− x2Di

4DiDjt

]
=

=

√
4DiDjπt
Di + Dj

· exp

[
x2Di

4Dj(Di + Dj)t
−

x2(Di + Dj)

4Dj(Di + Dj)t

]
=

=

√
4DiDjπt
Di + Dj

· exp
[

−x2

4(Di + Dj)t

]
.

From which

P(~r)d~r =
d~r

(4πt)3(DiDj)3/2 ·
√

4DiDjπt
Di + Dj

3

e−r2/4(Di+Dj)t =
d~r√

4π(Di + Dj)t
3 e−r2/4(Di+Dj)t .

(A.38)

Equation A.3 is then reformulated in terms of the sum of the raddi of influence Rij =

Ri + Rj, where the subscripts i and j denote a i-mer and a j-mer, respectively, and in
terms of the effective diffusive coefficient Dij = Di + Dj

Ji+jdt = 4πDijRijcicj

(
1 +

Rij√
πDijt

)
dt. (A.39)
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B

Predator-prey Aggregation Model

B.1 | Latency Time Distribution
A Poisson point process, or simply Poisson process, is a stochastic process where events
happen at a constant rate. If a collection of points (representing events) in some space
is split in finite size regions, then the number of points within each region is a random
variable Poisson distributed, hence the name. If the model is made by discrete states
where transitions are restricted to adjacent states the process is additionally labeled as
one-step Poisson process. Phage-bacteria dynamics are modeled as such, with an inter-
mediate infected state to delay lysis.

As a stochastic process, the time between events fluctuates. However, some useful infor-
mation comes from how the time between events is distributed. The inter-event interval
distribution for a one-step Poisson process is obtained by considering the probability of
success at time t = 0 and t = T + ∆t, as ∆t → 0. For this, the interval T is discretized
into M segments, hence

Pint(r∆t)∆t = (1− r∆t)M · (r∆t) , (B.1)

with ∆t = T/M, and then the limit M→ ∞ is computed. This is

Pint(T) = lim
M→∞

r
(

1− r
T
M

)M

= re−rT . (B.2)
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In both SM and PPAM latency is set to be equal to the average inter-event time of this
distribution, which is

〈T〉 =
∫ ∞

0
T r e−rTdT = r · (−) d

dr

∫ ∞

0
e−rTdT = −r

d
dr

(
−1

r
e−rT

∣∣∣∣∞
0

)
= −r

d
dr

(
1
r

)
=

1
r

.

(B.3)

B.2 | Lysis
Given a cluster with i sensitive and m infected bacteria, cm

i , the infected population will
undergo lysis with a rate r(m), yet undetermined. Lysis events provoke the cluster to
change size, (i, m) → (k, n), thus, in principle, for every cluster size there should be
incoming and outgoing terms of the type

dcn
k (L)
dt

= −r(n) · cn
k (t) + r(m) · cm

i (t) , (B.4)

where the functional dependence, L, stands for the Lysis contribution to the total rate of
change in cluster size density. It is understood that the actual explicit functional depen-
dence is time.

The latency time is set to be equal to the average inter-event time of this distribution,
thus, the lysis rate per infected bacterium is

rlys =
1
〈T〉 ≡

1
τ

, (B.5)

and equation B.4 now reads as

dcn
k (L)
dt

= −n
τ
· cn

k (t) +
m
τ
· cm

i (t) . (B.6)

A general lysis event is described in the following flow diagram
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The relationship between indexes before and after lysis is determined by the burst size
β, as well as the probability of the progeny to be reabsorbed by infected and sensitive
cells of that same cluster. The reabsorption effect comes in as a weight, α ∈ [0, 1], to the
burst size. To our knowledge, there is a lack of detailed information on the precise mech-
anisms ruling this process thus, we initially assumed α ∼ 0.5. Any statement derived
from this model must, however, be independent of the specific value of α. Monomer
conservation sets the restriction i + m = n + k + 1.

With this in mind, equation B.6 describes lysis events (i, m)→ (k, n) such that

n = m− 1 + βαSi,m−1 (B.7a)

k = i− βαSi,m−1 (B.7b)

where the function Si,m−1, known as shielding function, accounts for the absorption to
an already infected bacteria. It is assumed that each virus that manages to get back to
the cluster (α) and avoid infected cells (Si,m−1) finds a bacteria which will not be infected
by other viruses that suffer the same fate, this is, there is no infection overlapping. The
validity of the pair (i, m) in the above system depends on the (α, β) values and whether
i ≥ βαSi,m−1. For a more explicit argument we first need to now the functional form of
the shielding function.
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Within this framework we don’t have a precise way to describe the details of cluster ag-
gregation. This forces us to assume a well-mixed infected-sensible distribution of bac-
teria within each cluster. The assumption has an impact on the functional form of the
shielding function, which now takes a value equal to the probability of a virus being
absorbed by an uninfected bacteria, i.e.,

Sk,n =
k

k + n
. (B.8)

With an explicit expression for the shielding function we can now study the lysis equa-
tions more carefully. The system holds if

i ≥ β · α · Si,m−1 =
i

i + m− 1
· β · α (B.9)

or

i + m ≥ βα + 1 (B.10)

The system is easily solved

i =
(

n + k
n + k− βα

)
· k (B.11a)

m = n + k + 1− i (B.11b)

From which we see again that βα < n + k = i + m− 1.

If i ≤ βαSi,m−1 then the system reads as

ñ = m− 1 + i (B.12a)

k = i− β · α · Si,m−1 = 0 (B.12b)

and the reaction is now (i, m)→ (0, ñ). We effectively have 1 equation for 2 unknowns,
this introduces a degeneracy over the pairs (i, m) that after a lysis event go to (0, ñ).
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Pairs that fulfil n + k = m + i− 1 but are below the βα + 1 threshold will not contribute
to the lysis term for cn

k . Instead, they will contribute to the pair (0, ñ). Thus, we raise a
condition for equation B.6

dcn
k (L)
dt

= −n
τ
· cn

k +
m
τ
· cm

i , i + m ≥ βα + 1 (B.13)

The reaction (i, m)→ (0, ñ) has a degeneracy an is restricted by

ñ + 1 = i + m , m 6= 0 (B.14)

Therefore, there is an extra term for these cases,

dcñ
0(L)
dt

= − ñ
τ
· cñ

0 +
min(βα,ñ)

∑
i=0

ñ + 1− i
τ

· cñ+1−i
i , i + m ≤ βα + 1 (B.15)

75



The following flow diagram might be helful to visualize the degeneracy
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The no-overlapping-when-infecting assumption here breaks down, resulting in an overkill
situation, where clusters act as phage sinks of higher “quality”.
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