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Abstract

Spin-photon Entanglement Realised by Quantum Dots Embedded in
Waveguides

by Mikkel Bloch Lauritzen

Quantum information theory is a relatively new and rapidly growing field of physics
which in the last decades has made predictions of exciting features with no classical
counterpart. The fact that the properties of quantum systems differ significantly from
classical systems create opportunities for new communication protocols and sharing
of information. Within all these applications, entanglement is an essential quantum
feature. Having reliable sources of highly entangled qubits is paramount when apply-
ing quantum information theory. The performance of these sources is limited both by
unwanted interaction with the environment and by the performance of experimental
equipment. In this thesis, two protocols which creates highly entangled spin-photon
quantum states are presented and imperfections in the protocols are studied. The two
spin-photon entanglement protocols are both realised by quantum dots embedded in
waveguides. The studied imperfections relate to both the visibility of the system, the
ability to separate the ground states, and the branching ratio of spontaneous decay,
photon loss and phonon induced pure dephasing. In the study, realistic parameter
values are applied which are based on experimental results. It is found, that the two
studied protocols are promising and likely to perform well if applied in the laboratory
to create highly entangled states.
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Chapter 1

Introduction

Claude Shannon earned the title "The Father of the Digital Age" in 1948 when he
published the article A Mathematical Theory of Communication [1]. In this article,
Shannon introduced the concept of information entropy defined as

H(X) = −
n∑
i=0

P (xi)logbP (xi), (1.1)

where X is a discrete random variable with possible values {x1, . . . , xn} and b is
the base of the logarithm. Imagining a single toss of a coin. There are two possible
outcomes, heads or tails, each with equal probability 1/2. In the logarithm base b = 2,
the information entropy describing the toss is

H(X) = −
2∑
i=1

P (xi)log2P (xi) (1.2)

= −1

2
log2(

1

2
)− 1

2
log2(

1

2
) (1.3)

= 1, (1.4)

which defines the basic unit in information theory, sometimes referred to as a shannon
but more commonly known as a bit. In present day computers and cell phones, the
bit is not realised by coins but most often low DC voltage, where a certain voltage
corresponds to a logical value of 0 or 1. Any physical system of two equally possi-
ble distinct states is in principle a bit and in the early 1980s Paul Benioff [2], Yuri
Manin [3], Richard Feynman [4] and David Deutsch [5] pioneered the field of quantum
computing, where the physical system is governed by the laws of quantum mechanics.
This introduces a fundamental difference in the way we think of bits, since quantum
mechanics allows for the system to be in a superposition of the two states and hence
simultaneously 0 and 1. This is known as a qubit, which is the basic unit of quantum
information, and can be described as a state which is a linear combination of |0〉 and
|1〉

|ψ〉 = c0 |0〉+ c1 |1〉 , (1.5)

where c0 and c1 are probability amplitudes. The qubit have been realised in the last
decade by different physical systems such as atoms, superconducters and semiconduc-
ters. Based upon the qubit, many exciting proposals have been contemplated such as
quantum algorithms [6, 7] and quantum cryptography [8].

This thesis presents a theoretical study of two different protocols which create qubits.
Specifically, it studies possible imperfections in the protocols which can affect the
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qubits and possible ruin them. These imperfections arises from unwanted interaction
between the system creating the desired qubits and the surrounding environment and
from limited performance of the experimental equipment. The protocols studied in
this thesis are both realised using a system where a single spin is confined within a
quantum dot influenced by an external magnetic field and embedded in a waveguide.
In the first protocol, purposed by Gao et. al [9], the qubits are realised from the spin
of a spin half particle and the frequency of a photon. In the second protocol, purposed
by Lee et. al [10], the qubits are likewise realised from spin of a spin half particle and
by the time-bin in which a photon is detected. The outline of this thesis is as follows:

• Chapter 2: The concept of quantum entanglement is briefly introduced, focus-
ing on how entanglement is applied within quantum information theory. The
measure of fidelity is introduced which quantifies the probability that two quan-
tum states are identified as each other in a measurement. The fidelity is the
primary tool used in the study of protocol imperfections considered in this the-
sis.

• Chapter 3: Photonic nanostructures are introduced focusing on semiconduc-
tor quantum dots and nanophotonic waveguides, as these structures constitute
the physical system realising the protocols. Advantages and disadvantages of
employing photonic nanostructures are discussed.

• Chapter 4: Solving the Schrödinger equation, the equations of motion corre-
sponding to a four level diagram are found and solved. The considered system
consists of a single spin confined within a quantum dot influenced by an external
magnetic field. Such a four level system is applied in the two studied protocols.

• Chapter 5: The spin-photon frequency entanglement protocol [9] is presented
and imperfections are studied.

• Chapter 6: The spin-photon time-bin entanglement protocol [10] is presented
and imperfections are studied.

• Chapter 7: The studies of imperfections in the two protocols are concluded
and the need for further theoretical investigation is discussed.
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Chapter 2

Quantum Entanglement

Quantum entanglement is a concept that is easily explained but hard to grasp. In
this section, entanglement is first defined and then several important aspects and
applications of entanglement are discussed. Furthermore, the measure of fidelity is
presented and motivated.

2.1 Entanglement

In a single sentence, entanglement can be qualitatively explained as: quantum cor-
relation between two or more particles such that the state of each particle cannot be
described individually (note, however, that two or more particles can be correlated
even though they are not entangled). Mathematically, an entangled state of two or
more particles, must satisfy:

|Ψ〉AB... 6= |ψ〉A ⊗ |ψ〉B ⊗ . . . . (2.1)

Equation (2.1) shows that a state |Ψ〉AB... of multiple particles is entangled when it
is not identical to the product of states for each subsystem. We say that the state
|Ψ〉AB... is non-separable. For simplicity we begin by considering bipartite systems,
i.e. systems with a Hilbert space equal to the direct product of two factors,

HAB = HA ⊗HB, (2.2)

and hence the criteria of (2.1) simplifies to

|Ψ〉AB 6= |ψ〉A ⊗ |ψ〉B . (2.3)

A simple but important example of such systems is the Bell states. The four Bell
states are two qubit states defined as:

|Φ±〉AB =
1√
2

(
|0〉A ⊗ |0〉B ± |1〉A ⊗ |1〉B

)
(2.4)

|Ψ±〉AB =
1√
2

(
|0〉A ⊗ |1〉B ± |1〉A ⊗ |0〉B

)
. (2.5)

All of the four Bell states fulfills (2.3) and are thus entangled. Furthermore, the Bell
states are maximally entangled, meaning the reduced density matrix with respect to
either of the subsystems is maximally mixed, i.e. if one traces over the subsystem
A then the reduced density operator of the system will be a multiple of the identity
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operator. We show this explicitly for (2.4)

ρ̂B = TrA
[
|Φ±〉AB 〈Φ

±|AB
]

(2.6)

= TrA
[1
2

(
|0〉A ⊗ |0〉B ± |1〉A ⊗ |1〉B)(〈0|B ⊗ 〈0|A ± 〈1|B ⊗ 〈1|A

)]
(2.7)

= TrA
[1
2

(
|0〉A ⊗ |0〉B 〈0|B ⊗ 〈0|A + |1〉A ⊗ |1〉B 〈1|B ⊗ 〈1|A

)
± |0〉A ⊗ |0〉B 〈1|B ⊗ 〈1|A ± |1〉A ⊗ |1〉B 〈0|B ⊗ 〈0|A

]
(2.8)

=
1

2

(
|0〉B 〈0|B + |1〉B 〈1|B

)
(2.9)

=
1

2
IB. (2.10)

This is equivalent to saying that if we measure in subsystem B the result will be
completely random. 0 or 1 with equal probability 1/2. The same is true for subsystem
A if we trace out B. However, there is as perfect correlation between subsystem A and
B as seen from (2.4). If we measure 0 (1) in B we will also measure 0 (1) in A. Bell
states are for those reasons very desirable in quantum information theory.

2.1.1 Entanglement in Quantum Information Theory

Imagine the Bell states as two entangled qubits. Now imagine the two subsystems
A and B to be spatially separated. For example, subsystem A could be a laboratory
where a girl called Alice works. Thousands of kilometres away is a laboratory, subsys-
tem B, where a boy called Bob works. The idea is now that a channel exist between
Alice and Bob via the entanglement of the qubit pairs. Some applications of this
channel include superdense coding [11] and quantum teleportation [12]. Shared Bell
states have also been used to test the fundamental principles of quantum mechanics
[13].

A Bell state is the simplest example of shared qubits between Alice and Bob, but
more complex, multi-particle quantum states can also be shared between two or more
parties. For example the Greenberger–Horne–Zeilinger (GHZ) state:

|GHZ〉 =
1√
2

(
|1〉⊗N + |0〉⊗N

)
, N > 2. (2.11)

which can be used for quantum secret sharing between an arbitrary number of parties
[14, 15].

Above we motivated the use of entanglement by spatial separating Alice and Bob,
hence all examples given so far are examples of quantum communication. But en-
tanglement can be also be useful for local applications such as the one-way quantum
computing, where one preforms single qubit measurements on a so-called cluster state
[16].

2.2 Fidelity

In chapter 5 and 6, different protocols are introduced which are used to create highly
entangled spin-photon states. When applying these protocols, it is crucial to examine
possible imperfections since these ruin the entanglement of the ideal states. Hence, it
is necessary to have a measure of how closely an output state |ψoutput〉, influenced by
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imperfections, resembles an ideal state |ψideal〉, not influenced by any imperfections.
Since our ideal states are highly entangled, this measure also becomes a measure of
entanglement.
One of the most widely used measures is fidelity. For a given output state, the fidelity
is defined as the overlap between an ideal target state and the output state,

F = | 〈ψideal| |ψoutput〉 |2 (2.12)

for which 0 ≤ F ≤ 1 where F = 1 if and only if |ψoutput〉 = |ψideal〉. The fidelity is very
useful when minimising the effect of imperfections, since this is equal to maximising
the fidelity, and will be used repeatedly in chapter 5 and 6.
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Chapter 3

Nanophotonics

The protocols examined in this thesis are realised utilising photonic nanostructures
in which light is manipulated and confined on the nanometer scale. In this chapter,
relevant concepts within nanophotonics are introduced. First, quantum dots are ex-
amined in section 3.1. Then, by studying spin dynamics and optics, it is shown that
quantum dots serve excellently as single photon emitters - especially if the dots are
embedded in so-called photonic crystals which we cover in section 3.2.

3.1 Quantum dots

Simply put, a quantum dot is a tiny ensemble of semiconducting matter, typically
104 − 106 atoms, dimensions of only several nanometers and with optical properties
similar to those of a single atom. They are often referred to as artificial atoms. The
key to understanding quantum dots is to understand charge carrier (electrons and
holes) confinement in semiconductors. If a region of lower bandgap material is in-
terfaced with a higher band gap material, the charge carriers will be confined within
the region of low energy in the valence and conduction band. Hence this structure
is similar to that of the well-known square well. If some lower bandgap material is
completely surrounded by higher band gap material, such that the charge carrier is
confined in all three spatial dimensions, a three-dimensional square well if formed
which is called a quantum dot.
There are many different types of quantum dots, which differ in materials, growth
method etc., but here we shall restrict our selves to discussing Indium Arsenide
(InAs) self-assembled quantum dots embedded in Gallium Arsenide (GaAs) grown
by the Stranski-Krastanov methode [17]. These quantum dots are created using a flat
baselayer of GaAs upon which single mono-layers of InAs are applied. This thin layer
of InAs is called the wetting layer. At some point, tiny islands of InAs will be formed,
known as nuclearisation, due to a 7% larger lattice constant of InAs than GaAs since
this formation of islands minimises the binding energy. Lastly, the InAs islands are
capped with GaAs.
The properties of self-assembled quantum dots depend on several factors, such as size
and composition, which differ from dot to dot. As one might expect, the strain-driven
process of nuclearisation is random. Hence the size and composition of the quantum
dots is, to some extend, uncontrollable, and the islands formed across the GaAs sur-
face will have a distribution of size and composition. The width of the distribution
depends on the material system and growth conditions [18].
Some properties, however, can be controlled. In the next section, we discuss singly
charged self-assembled quantum dots and how to manipulate the spin of the trapped
electron or hole.
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3.1.1 Spin Dynamics and Optics of a Singly Charged Self-Assembled
Quantum Dot

Imaging a single trapped electron or hole in a self-assembled quantum dot (such a
system can be achieved by different techniques [19]-[22]). The optically excited states
are trion states. For an electron in the ground state, the trion states are singlet
electrons and a lone hole with either spin up or spin down. This is known as a
negative trion (denoted |X−〉 ≡ |↑↓,⇑〉 ∧ |↑↓,⇓〉). For a hole in the ground state, the
trion consists of paired holes and a lone electron with either spin up or spin down.
This is known as a positive trion (denoted |X+〉 ≡ |⇑⇓, ↑〉 ∧ |⇑⇓, ↓〉).

Figure 3.1: Level diagrams of a singly charged quantum dot with
an electron (a) and a hole (b) in the ground state. The spins are
written in the eigenbasis of the applied magnetic field which is oriented
in the in-plane x-direction, known as Voigt geometry. This allows
both diagonal transitions (y-polarised light) and vertical transitions
(x-polarised light). The hole is assumed to be in a pure heavy hole

state.

Fig. 3.1 shows the level diagrams of a singly charged quantum dot in the ideal limit
where the heavy hole contribution is dominant in the so called effective mass descrip-
tion. In this description, often referred to as k ·p model, the hole state is constructed
from heavy-hole (J = 3/2, Jz = ±3/2), light-hole (J = 3/2, Jz = ±1/2) and spin-
orbit split-off (J = 1/2, Jz = ±1/2). The strain and strong vertical confinement
in the quantum dot reduces the light-hole component while the spin-orbit interac-
tion and the large energy spacing compared to the Coulomb energy, known as the
strong-confinement regime, reduces the mixing of the valence band. Resultant, we
can describe the features of a quantum dot using only two bands. This is illustrated
in fig 3.2, which corresponds to the level diagrams shown in fig. 3.1, where only the
heavy-hole in the valence- and conduction-band is included, for further discussion see
[23, 24].
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Figure 3.2: Illustration of the bandstructure around the Γ point in
the effective mass description showing the lowest conduction band and
the two upper valence bands. The split-off band is not included since
it typically is sufficiently separated from the light hole and heavy hole
that it can be ignored. In (a), the light hole, lh, and the heavy hole,
hh, are at the same energy level whereas in (b), the heavy hole and
light hole are separated by the energy gap δhh−lh. The picture is taken

from [26].

3.1.2 The Zeeman Effect

The electron and hole spin states are split by the Zeeman effect due to an external
magnetic field. The Hamiltonian of the Zeeman interaction for an electron and a hole
are respectively determined as:

Ĥe
Zeeman =

µB
~

BgeŜe (3.1)

Ĥh
Zeeman =

µB
~

BghŜh, (3.2)

where µB is the Bohr magneton, B is the effective magnetic field and ge (gh) is the
electron (hole) g tensor, which determines the coupling strength between the magnetic
field and the spin. Ŝe = ~/2(êxσ̂

e
x+êyσ̂

e
y+êzσ̂

e
z) (Ŝh = ~/2(êxσ̂

h
x+êyσ̂

h
y +êzσ̂

h
z )) is the

spin operator of the electron (hole). In the case where the g tensors are orthogonal,
the Hamiltonians can be written as

Ĥe
Zeeman =

µB
2

(
Bxg

e
xσ

e
x +Bxg

e
xσ

e
x +Bxg

e
xσ

e
x

)
(3.3)

Ĥh
Zeeman =

µB
2

(
Bxg

h
xσ

h
x +Bxg

h
xσ

h
x +Bxg

h
xσ

h
x

)
. (3.4)

In case of the electron, a spin half particle, the spin operators are the three Pauli spin
operators

σex =

(
0 1
1 0

)
, σey =

(
0 −i
i 0

)
, σez =

(
1 0
0 −1

)
. (3.5)

Defining the spin operator, Ŝh, for a hole is more troublesome. Recall the effective
mass description where we deconstruct the hole into 3 parts: heavy hole with, light
hole and spin-orbit split-off and note that heavy hole has a different projection of
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the total angular momentum than the other three parts. This leads to an important
feature of the hole Zeeman interaction: the anisotropy of the hole g factor. In the
case of a pure heavy hole state, the in-plane g factor is zero, since the total angular
momentum lies exclusively in the z-direction. In reality, however, band-mixing oc-
curs for several reasons such as strain, dot size, applied electric field, total magnetic
field and the indium concentration [27]-[31]. Consequently, the hole g factor becomes
anisotropic due to the complex spin structure and varies from dot to dot, since it
depends on the particular dot properties. For completeness we should mention, that
the band-mixing of the holes and their admixture to the electron band induces an
anisotropy of the electron g factor, though not significant [32].
Some examples of observed g factor values for InAs quantum dots in the in-plane
x-direction are [27]-[30]

0.35 < |gex| < 1.9, 0.06 < |ghx | < 0.14 (3.6)

In this thesis, we chose to label gex = 0.5 and ghx = 0.08 as "typical" values.

Optical Transitions

Since the magnetic field is in the in-plane x-direction in fig. 3.1, all four optical transi-
tion between all four spin eigenstates are allowed. Vertical transitions are x-polarised
light while diagonal transitions are y-polarised. Ideally, the vertical and diagonal tran-
sitions are equally strong but often the band-mixing will soften the selection rules.
To some extend, it is possible to manipulate the selection rules via the external mag-
netic field utilising the anisotropy of the g factor. Another possibility is to embed the
quantum dot in a nanostructure to control the optical transitions. We discuss this
possibility further in section 3.2. Both spin-photon entanglement protocols rely on
control of the optical transitions, as we shall see, each in they on way.

3.1.3 Hyperfine Interactions and Spin Coherence

As stated in section 3.1, a quantum dot consists of 104-106 atoms, so even though the
dot is singly charged an have a central spin it is crucial to consider the nuclear spin
bath dynamics within the quantum dot. The confined spin interacts with the spin of
the nuclear bath via the hyperfine interaction which limits the coherence time of the
confined spin. In this section we shall describe the hyperfine interaction, introduce the
important Overhauser field, discuss the difference between holes and electrons in this
context and finally present some observed values of the time-averaged spin coherence
time T ∗2 .

The hyperfine interaction can be divided into two main contributions: Fermi con-
tact interaction and dipole-dipole interaction, the first being dominant for electrons
and the second dominant for holes. The different nature of the hyperfine interac-
tions for electrons and holes is primarily caused by the orbital differences. Electrons
have s-orbitals (zero angular momentum) resulting in a large physical overlap be-
tween the electron wavefunction and the nuclei. Hence, the Fermi contact interaction
is dominant for electrons. On the other hand, the wavefunction of the hole is p-type
(non-zero angular momentum) such that the dipole-dipole interaction becomes dom-
inant because the wave function is approximately zero at the position of the nuclei
(see fig. 3.3).



3.1. Quantum dots 11

Figure 3.3: Schematic illustration of the difference in the hyperfine
interaction with the nuclear spins of electron and holes. The electron
wavepacket is primarily centralised at the position of the nuclei (black
dots) while the wavepacket of the heavy hole is decentralised. The

illustration is taken from [24].

The electron spin Fermi-contact interaction with the nuclear spin bath and the hole
dipole-dipole interaction with the nuclear spin bath can be described, respectively, by
the Hamiltonians [33]

Ĥe
fc =

ν0

2

∑
j

Aej |ψ(rj)|2
(
ÎjzS

e
z +

1

2

[
Îj+Ŝ

e
− + Îj−Ŝ

e
+

])
(3.7)

Ĥh
dip = ν0

∑
j

Ahj
1 + β2

|ψ(rj)|2
(
ÎjzS

e
z +

α

2

[
Îj+Ŝ

e
− + Îj−Ŝ

e
+

])
, (3.8)

where ν0 is the InAs unit cell volume, rj is the position of the j’th nuclei with spin
Îj . The operators Ŝ± are spin operators acting on the confined spin, ψ(rj) is the
normalised envelope function of the confined spin, Aej and Ahj are the constants of
the hyperfine interaction and the parameters α and β quantify the amount of hole-
mixing. To say something analytically about the hyperfine interaction Hamiltonians
(3.7) and (3.8) we introduce the averaged hyperfine constants Āe and Âh for the
Fermi contact and dipole-dipole interaction, respectively. Assuming moderate heavy
hole-light hole mixing and uniform wavefunctions ψ(r) =

√
2/Nν0, (3.7) and (3.8)

respectively simplifies to

ˆ̄He
fc =

2Āe

N

(
ÎzS

e
z +

1

2

(
Î+Ŝ

e
− + Î−Ŝ

e
+

))
(3.9)

ˆ̄Hh
dip =

2Āh

N

(
ÎzS

h
z + α

[ Î+Ŝ
h
− + Î−Ŝ

h
+

2

])
. (3.10)

Two important features of the averaged interaction Hamiltonians should be high-
lighted. Firstly, the ratio |Āh|/Āe has been theoretically predicted [34] and later ex-
perimentally demonstrated [35, 36] to be ∼ 0.1. Hence we expect the coherence time
of the hole to be larger than the corresponding coherence time of the electron. Sec-
ondly, the dipole-dipole interaction depends, like the Zeeman effect, on hole-mixing.
The amplitude α of the spin-flip term is defined such that α = 0 if the hole is a
pure heavy hole. In this limit, only the z-component couples to the nuclear spin bath
while any hole-mixing will result in an in-plane coupling as well. This shows that the
coherence time of the hole, like the g factor, depends on the particular dot properties.

Returning to (3.7) and (3.8). Since the sums run over all 104-106 lattice sites, all
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simultaneously interacting with the confined spin, we may preform a mean field ap-
proximation and write the interaction as an effective magnetic field. This field is
known as the Overhauser field. In this thesis, we model the Overhauser field semi-
classically. Assuming the magnetic field to be semi-classical and Gaussian distributed,
the Overhauser field has the following property

ρ ∝ exp

(
B2
z

2δB2
‖

)
exp

(
B2
x +B2

y

2δB2
⊥

)
(3.11)

where δB‖ and δB⊥ represent the nuclear fluctuations parallel and orthogonal to the
z-direction, respectively. The two terms are necessary in order to account for the
strong hole g factor anisotropy. Note that a pure heavy hole would only experience
the component along the z-direction. For an electron we could collect the contributions
into a single distribution since the dephasing is, to a good approximation, isotropic.
If the quantum dot is subjected to a strong external magnetic field, the components
of the Overhauser field perpendicular to the applied field are negligible since the
strength of the Overhauser field is in the order of 20 mT [24] and hence suppressed to
first order. The component parallel to the applied field is, however, not suppressed and
is the limiting effect of the coherence time of the confined spin since these magnetic
field fluctuations result in a random change in the precession frequency of the confined
spin. For an electron, the dephasing time T ∗2 is typically a few nanoseconds [19, 43]
which, as we shall see later, is a serious problem when applying electrons to realise the
spin-photon entanglement protocols. The coherence time of the hole is, as expected,
larger and becomes increasingly larger with increasing in-plane magnetic field [34]
since the fluctuations along the field become increasingly suppressed - especially for a
pure heavy-hole state. A T ∗2 a factor of 10 larger than that of an electron is realistic.

3.2 Nanophotonic Waveguides

It should by now be clear why quantum dots can be effective systems for creating spin-
photon entanglement. If we wish to fully utilise them as reliable single-photon sources
in our protocols, we need a way to tailor the properties of the quantum dot to our
specific purpose. A nanophotonic waveguide allows, in principle, to do exactly that
by enhancing light-matter interaction. In particular, it gives control over the dipole-
dipole interaction between the quantum dot and the photons. Fig. 3.4 shows an
example of a nanophotonic waveguide: a nanobeam waveguide. For further discussion
on photonic waveguides see [23], upon which section 3.2.1 is also based.

Figure 3.4: Scanning electron microscope image of a GaAs nanobeam
waveguide embedded with a quantum dot and suspended in air. The
gratings in the ends of the waveguide scatter light i the z-direction.
Due to the high difference in refractive index between GaAs (n ∼
3.5) and air (n ∼ 1) the mode of an emitted photon is confined to
modes travelling along the waveguide. These modes are referred to as

waveguide modes.
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3.2.1 Purcell Enhancement and the β Factor

The mode density of the waveguide mode, which is interacting with the dipole emitter,
is described by the projected local density of state (LDOS)

ρ(r, ω, êd) =
a

πvg

f(r)

ε(r)Veff
|ê∗k(r)·êd|2, (3.12)

where a is the lattice constant, vg is the group velocity, Veff is the effective mode
volume per unit cell and f(r) = ε(r)|bk(r)|2Veff , where ε(r) is the permittivity at
position r and bk is a 1D periodic function along the waveguide, is a scalar between
0 and 1 which quantifies the spatial mismatch between the quantum dot and the
waveguide mode field maximum. If f(r) = 1, the quantum dot is optimally positioned
on an antinode of the waveguide mode. Lastly, the quantity |ê∗k(r)·êd|2 quantifies the
alignment of the electric field of the waveguide mode, êk is the unit vector of this
electric field with respect to the dipole êd.
For a quantum dot with the transition dipole moment d, a transition frequency ω0

between the ground state and excited state, and a spatial position r0, the LDOS
is related to the spontaneous emission rate given a Markow approximation. The
spontaneous emission rate is then defined by:

γrad(r0, ω0,d) =
πd2

ε0~
ρ(r0, ω0, êd), (3.13)

where ε0 is the vacuum permittivity. Equation (3.13) represents the essence of this
section: by alternating the LDOS we can control the spontaneous emission. Not only
can the spontaneous emission rate be enhanced by lowering the group velocity of
the light, we can tailor the mode of the emitted photon by strategical placement of
the quantum dot and orientation of the dipole moments. In effect, we can address
the vertical and diagonal optical transitions of fig. 3.1 separately and control the
branching ratio of the decay. The increase in decay rate can be quantified by the
Purcell factor, defined as

Fp(r, ω, êd) =
γrad(r0, ω0,d)

γhomrad (ω)
, (3.14)

which represents the ratio between the decay rate of an emitter in the tailored envi-
ronment and the same emitter in a homogeneous environment where the decay rate
is typically γhomrad (ω) ≈ 1 ns−1. A Purcell Factor of FP = 5.2 has been observed for
a GaAs waveguide embedded with a InGaAs quantum dot corresponding to a decay
rate of 5.7 ns−1. This value shall become impotent later.
This section is concluded by another quantification of the advantages achievable by
waveguides: the control of the mode of the emitted photon, i.e. enhancement of prob-
ability of emitting a photon into the mode of the waveguide which is a necessity to
archive a high collection efficiency of the photons. The β factor is defined as the rate
of photons spontaneous emitted into the waveguide mode γwg relative to the overall
spontaneous emission rate γ

β =
γwg

γwg + γ
. (3.15)

Experiments have reported β = 98.4%. We shall return to this number when we
consider the effect of loss on the time-bin entanglement protocol in section 6.2.
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Chapter 4

Four Level System

In this section we solve the Schrödinger equation

i
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 , (4.1)

for a isolated spin in a quantum dot in the Voigt geometry, which can be excited by
absorption of a photon and decay by spontaneous emission of a photon corresponding
to the four level diagram shown in fig. 3.1. The only difference between the Hamil-
tonian describing a singly charged quantum dot with either an electron or a hole, is
the sign of the Zeeman splitting. We chose to solve the Schrödinger equation for an
electron but note that the solution applies equally well to a hole, if we simply change
the sign of the ground state splitting and the splitting of the excited state δg and δe,
respectively .

4.1 The Hamiltonian

In this section, the Hamiltonian of the system is presented. In order to simplify
the equations in this chapter, the applied notation is first presented. As mentioned
above, the only difference in the equations of motion for an electron and a hole is
the sign of the Zeeman splitting, so it is not important to distinguish these states in
the notation. Throughout this thesis, we denote the ground state |↑〉 and |↓〉 and the
excited trion state as |⇑〉 and |⇓〉 independent of the choice of confined spin. Fur-
thermore, we omit the tensor product when we combine Hilbert spaces, i.e. we define
|ψ〉A ⊗ |φ〉b ⊗ . . . ≡ |ψ, φ, . . .〉.

We shall assume Markovian dynamics and under the rotating wave approximation
the total Hamiltonian in k-space is

Ĥ = Ĥ0 + ĤZeeman + Ĥfield + Ĥint, (4.2)

where

Ĥ0 = ω0

(
|⇑〉 〈⇑|+ |⇓〉 〈⇓|

)
(4.3)

ĤZeeman =
δe
2

(
|⇑〉 〈⇑| − |⇓〉 〈⇓|

)
+
δg
2

(
|↓〉 〈↓| − |↑〉 〈↑|

)
(4.4)

Ĥfield =
∑
k

ωk
(
â†k,yâk,y + â†k,xâk,x

)
(4.5)

Ĥint =
∑
k

gk
(
|⇑〉 〈↑| âk,x + |⇓〉 〈↑| âk,y + |⇓〉 〈↓| âk,x + |⇑〉 〈↓| âk,y

+ |↑〉 〈⇑| â†k,x + |↑〉 〈⇓| â†k,y + |↓〉 〈⇓| â†k,x + |↓〉 〈⇑| â†k,y
)
. (4.6)
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In (4.3), Ĥ0 is the bare spin Hamiltonian. In (4.4), ĤZeeman is the Zeeman Hamil-
tonian written in a eigenbasis of the magnetic field. In (4.5), Ĥfield is the freely
propagating photon field Hamiltonian where â†k,i (âk,i) is the creation (annihilation)
photon operator for a mode with wavenumber k and polarisation i (i = x, y). The
frequency ωk is the frequency of the free field photon, which we shall assume to be
close to the transition frequency between the ground state and excited state, such that
linear dissipation holds true for the free field photons: ωk = vg|k|. In (4.6), Ĥint is
the spin-photon interaction Hamiltonian with coupling constant gk for the k’th mode.

We proceed by Fourier transforming the photonic operators to real-space. This will
prove useful later when we solve the equations of motion if we assume the quantum
dot to be 0 dimensional, i.e. a Dirac delta function in space.
The two Hamiltonian involving photonic operators, Ĥfield and Ĥint, Fourier transform
to real space as

F
[
Ĥfield

]
= ivg

∞∫
−∞

dz
(∂â†y(z)

∂z
ây(z) +

∂â†x(z)

∂z
âx(z)

)
(4.7)

F
[
Ĥint

]
= g

∞∫
−∞

dzδ(z)
(
e−ik0z

(
|⇑〉 〈↑| âx(z) + |⇓〉 〈↑| ây(z)

+ |⇓〉 〈↓| âx(z) + |⇑〉 〈↓| ây(z)
)

+ eik0z
(
|↑〉 〈⇑| â†x(z) (4.8)

+ |↑〉 〈⇓| â†y(z) + |↓〉 〈⇓| â†x(z) + |↓〉 〈⇑| â†y(z)
))
,

where vg is the group velocity of the emitted photon wave-packet and k0 = ω0/vg. As
mentioned above, it is assumed that the quantum dot have no spatial extend which
means that there is only a dipole interaction at z = 0 where the quantum dot is
located. (4.7) is calculated by partial integration and imposing that the probability
of measuring a photon at the boundary should be zero.
The total Fourier transformed Hamiltonian is denoted ˆ̃H and can now be defined as:

ˆ̃H =ω0

(
|⇑〉 〈⇑|+ |⇓〉 〈⇓|+ δe

2

(
|⇑〉 〈⇑| − |⇓〉 〈⇓|

)
+
δg
2

(
|↓〉 〈↓| − |↑〉 〈↑|

)
+ ivg

∞∫
−∞

dz
(∂a†y(z)

∂z
ay(z) +

∂a†x(z)

∂z
ax(z)

)

+ g

∞∫
−∞

dzδ(z)
(
e−ik0z

(
|⇑〉 〈↑| âx(z) + |⇓〉 〈↑| ây(z) (4.9)

+ |⇓〉 〈↓| âx(z) + |⇑〉 〈↓| ây(z)
)

+ eik0z
(
|↑〉 〈⇑| â†x(z)

+ |↑〉 〈⇓| â†y(z) + |↓〉 〈⇓| â†x(z) + |↓〉 〈⇑| â†y(z)
))

4.2 Wavefunction

In order to solve the Schrödinger equation, it is necessary to apply a suitable ansatz
for the wavefunction. In this system, six contributions contribute to the wavefunction:
c⇓(t) and c⇑(t), which is the probability of being in the excited state with spin down
and spin up, respectively, at time t. The four ground state coefficients are φ(te, t)↑,x,
φ(te, t)↑,y, φ(te, t)↓,x and φ(te, t)↓,y which are the probabilities of being in the ground
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state with spin up or down while a photon was emitted at time te with polarisation x
or y. The wavefunction becomes

|Ψ(t)〉 = c⇑(t)e
−iω0t |⇑, 0〉+ c⇓(t)e

−iω0t |⇓, 0〉

+
√
vg

∫
dte
(
φ(te, t)↑,xâ

†
x(z0) |↑, 0〉+ φ(te, t)↑,yâ

†
y(z0) |↑, 0〉 (4.10)

+ φ(te, t)↓,xâ
†
x(z0) |↓, 0〉+ φ(te, t)↓,yâ

†
y(z0) |↓, 0〉

)
.

4.3 Schrödinger Equation

In order to solve the Schrödinger equation, see (4.1), several steps have to be applied.
First, the left- and right-hand side of the Schrödinger are evaluated separately. In the
second step, the two expressions are set equal to each other so six coupled differential
equations are determined. The third step is to solve these coupled differential equa-
tions by applying a Laplace transformation and impose boundary conditions. Finally,
an inverse Laplace transformation can be made and the coefficients for the excited
states can be determined and thus also determine the coefficients for the ground states.

First, the time-derivative of the wave function is determined:

∂

∂t
|ψ(t)〉 =

(
ċ⇑(t)− iω0c⇑(t))e

−iω0t |⇑, 0〉+ (ċ⇓(t)− iω0c⇓(t))e
−iω0t |⇓, 0〉

+
√
vg

∫
dte

(
φ̇(te, t)↑,xâ

†
x(z0) |↑, 0〉+ φ̇(te, t)↑,yâ

†
y(z0) |↑, 0〉 (4.11)

+ φ̇(te, t)↓,xâ
†
x(z0) |↓, 0〉+ φ̇(te, t)↓,yâ

†
y(z0) |↓, 0〉

)
.
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The right-hand side of (4.1) is evaluated by allowing the Fourier transformed Hamil-
tonian (4.9) to operate on the wave function (4.10)

ˆ̃H |ψ(t)〉 = ω0c⇑(t)e
−iω0t |⇑, 0〉+ ω0c⇓(t)e

iω0t |⇓, 0〉+
δe
2
c⇑(t)e

−iω0t |⇑, 0〉

− δe
2
c⇓(t)e

iω0t |⇓, 0〉 − δg
2

√
vg

∫
dte
(
φ(te, t)↑,xâ

†
x(z0) |↑, 0〉

+ φ(te, t)↑,yâ
†
y(z0) |↑, 0〉 − φ(te, t)↓,xâ

†
x(z0) |↓, 0〉 − φ(te, t)↓,yâ

†
y(z0) |↓, 0〉

)
+ iv3/2

g

∞∫
−∞

dz

∫
dte

(∂â†y(z)
∂z

ây(z) +
∂â†x(z)

∂z
âx(z)

)
(
φ(te, t)↑,xâ

†
x(z0) |↑, 0〉+ φ(te, t)↑,yâ

†
y(z0) |↑, 0〉

+ φ(te, t)↓,xâ
†
x(z0) |↓, 0〉+ φ(te, t)↓,yâ

†
y(z0) |↓, 0〉

)
(4.12)

+ g
√
vg

∞∫
−∞

dz

∫
dteδ(z0)e−ik0z

(
φ(te, t)↑,xâx(z)â†x(z0) |⇑, 0〉

+ φ(te, t)↑,xây(z)â
†
x(z0) |⇓, 0〉+ φ(te, t)↑,yâx(z)â†y(z0) |⇑, 0〉

+ φ(te, t)↑,yây(z)â
†
y(z0) |⇓, 0〉+ φ(te, t)↓,xâx(z)â†x(z0) |⇓, 0〉

+ φ(te, t)↓,xây(z)â
†
x(z0) |⇑, 0〉+ φ(te, t)↓,yâx(z)â†y(z0) |⇓, 0〉

+ φ(te, t)↓,yây(z)â
†
y(z0) |⇑, 0〉

)
+ g

∞∫
−∞

dzδ(z0)e−iω0t+ik0z
(
c⇑â
†
x(z) |↑, 0〉+ c⇑â

†
y(z) |↓, 0〉

+ c⇓â
†
x(z) |↓, 0〉+ c⇓â

†
x(z) |↑, 0〉

)
.

The expressions for the left- and right-hand side of the Schrödinger in (4.11) and
(4.12) are now set equal to each other. By multiplying with 〈⇑, 0|, 〈⇓, 0|, 〈↑, 0| âx(z),
〈↑, 0| ây(z), 〈↓, 0| âx(z), and 〈↓, 0| ây(z) we obtain a set of six coupled differential
equations. Respectively:

ċ⇑(t) = −iδe
2
c⇑(t)− i

g
√
vg
φ(te, t)↑,x − i

g
√
vg
φ(te, t)↓,y (4.13)

ċ⇓(t) = i
δe
2
c⇓(t)− i

g
√
vg
φ(te, t)↑,y − i

g
√
vg
φ(te, t)↓,x (4.14)

φ̇(te, t)↑,x = i
δg
2
φ(te, t)↑,x − i

g
√
vg
c⇑(t)δ(t− te) (4.15)

φ̇(te, t)↑,y = i
δg
2
φ(te, t)↑,y − i

g
√
vg
c⇓(t)δ(t− te) (4.16)

φ̇(te, t)↓,x = −iδg
2
φ(te, t)↓,x − i

g
√
vg
c⇓(t)δ(t− te) (4.17)

φ̇(te, t)↓,y = −iδg
2
φ(te, t)↓,y − i

g
√
vg
c⇑(t)δ(t− te). (4.18)

To solve this set of six coupled differential equations we Laplace transform (4.13)-
(4.18) to obtain a set of six coupled algebraic equations. The boundary conditions
of the system are defined using the requirement that the system is in the excited
state with spin up at time t=0. This means: c⇑(t = 0) = 1 and the additional five
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coefficients being 0 at time t=0. The Laplace transformed equations are now:

L[ċ⇑(t)](s) = sc̄⇑(s)− c⇑(t = 0)

= −iδe
2
c̄⇑(s)− i

g
√
vg
φ̄(te, s)↑,x − i

g
√
vg
φ̄(te, s)↓,y

⇒ 1 = sc̄⇑(s)− i
δe
2
c̄⇑(s) + i

g
√
vg
φ̄(te, s)↑,x + i

g
√
vg
φ̄(te, s)↓,y (4.19)

L[ċ⇓(t)](s) = sc̄ ⇓ (s)− c⇓(t = 0)

= −iδe
2
c̄ ⇓ (s)− i g

√
vg
φ̄(te, s)↑,y − i

g
√
vg
φ̄(te, s)↓,x

⇒ 0 = −sc̄ ⇓ (s)− iδe
2
c̄ ⇓ (s)− i g

√
vg
φ̄(te, s)↑,y − i

g
√
vg
φ̄(te, s)↓,x (4.20)

L[φ̇(te, t)↑,x](s) = sφ̄(te, s)↑,x − φ(te, t = 0)↑,x

= i
δg
2
φ̄(te, s)↑,x − i

g
√
vg
e−tesθ(t− te)c⇑(te)

⇒ 0 = −sφ̄(te, s)↑,x + i
δg
2
φ̄(te, s)↑,x − i

g
√
vg
e−tesθ(t− te)c⇑(te) (4.21)

L[φ̇(te, t)↑,y](s) = sφ̄(te, s)↑,y − φ(te, t = 0)↑,y

= i
δg
2
φ̄(te, s)↑,y − i

g
√
vg
e−tesθ(t− te)c⇓(te)

⇒ 0 = −sφ̄(te, s)↑,y + i
δg
2
φ̄(te, s)↑,y − i

g
√
vg
e−tesθ(t− te)c⇓(te) (4.22)

L[φ̇(te, t)↓,x](s) = sφ̄(te, s)↓,x − φ(te, t = 0)↓,x

= −iδg
2
φ̄(te, s)↓,x − i

g
√
vg
e−tesθ(t− te)c⇓(te)

⇒ 0 = −sφ̄(te, s)↓,x − i
δg
2
φ̄(te, s)↓,x − i

g
√
vg
e−tesθ(t− te)c⇓(te) (4.23)

L[φ̇(te, t)↓,y](s) = sφ̄(te, s)↓,y − φ(te, t = 0)↓,y

= −iδg
2
φ̄(te, s)↓,y − i

g
√
vg
e−tesθ(t− te)c⇑(te)

⇒ 0 = −sφ̄(te, s)↓,y − i
δg
2
φ̄(te, s)↓,y − i

g
√
vg
e−tesθ(t− te)c⇑(te). (4.24)

The four ground states can now be isolated using the expressions in (4.13)-(4.18)
which yields:

φ̄(te, s)↑,x =
g
√
vg

e−ste

s+ δg
θ(t− te)c⇑(te) (4.25)

φ̄(te, s)↑,y =
g
√
vg

e−ste

s+ δg
θ(t− te)c⇓(te) (4.26)

φ̄(te, s)↓,x =
g
√
vg

e−ste

s− δg
θ(t− te)c⇓(te) (4.27)

φ̄(te, s)↓,y =
g
√
vg

e−ste

s− δg
θ(t− te)c⇑(te), (4.28)
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where θ(t− te) is a Heaviside step function ensuring that the states only exists after
emission of a photon. Performing a inverse Laplace transformation on (4.25)-(4.28)
yields

φ(te, t)↑,x =
g
√
vg
e−

δe
2

(t−te)θ(t− te)c⇑(te) (4.29)

φ(te, t)↑,y =
g
√
vg
e−

δe
2

(t−te)θ(t− te)c⇓(te) (4.30)

φ(te, t)↓,x =
g
√
vg
e
δe
2

(t−te)θ(t− te)c⇓(te) (4.31)

φ(te, t)↓,y =
g
√
vg
e
δe
2

(t−te)θ(t− te)c⇑(te). (4.32)

The final step to solve the Schrödinger equation is to determine the coefficients for
the two excited states. This is done by integrating (4.15)-(4.18), which gives:

φ(te, t)↑,x = i
δg
2

te+ε∫
te−ε

dtφ(te, t)↑,x − i
g
√
vg

te+ε∫
te−ε

dtc⇑(t)δ(t− te)

= −i g
√
vg
c⇑(t) (4.33)

φ(te, t)↑,y = i
δg
2

te+ε∫
te−ε

dtφ(te, t)↑,y − i
g
√
vg

te+ε∫
te−ε

dtc⇓(t)δ(t− te)

= −i g
√
vg
c⇓(t) (4.34)

φ(te, t)↓,x = i
δg
2

te+ε∫
te−ε

dtφ(te, t)↓,x − i
g
√
vg

te+ε∫
te−ε

dtc⇓(t)δ(t− te)

= −i g
√
vg
c⇓(t) (4.35)

φ(te, t)↓,y = i
δg
2

te+ε∫
te−ε

dtφ(te, t)↓,y − i
g
√
vg

te+ε∫
te−ε

dtc⇑(t)δ(t− te)

= −i g
√
vg
c⇑(t). (4.36)

Inserting (4.33)-(4.36) into (4.13) and (4.14) yields

ċ⇑(t) = −iδe
2
c⇑(t)− 2

g2

vg
c⇑(t) (4.37)

ċ⇓(t) = i
δe
2
c⇓(t)− 2

g2

vg
c⇓(t) (4.38)

with the solutions

c⇑(t) = e
−2 g

2

vg
te+i

δe
2
t (4.39)

c⇓(t) = e
−2 g

2

vg
te−i δe2 t. (4.40)
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Lastly, we define the spontaneous emission rate as γ ≡ 4g
2

vg
and insert (4.39) and

(4.40) into (4.29)-(4.32). This yields the six coefficients and the result of this section

c⇑(t) = e−
γ
2
t+i δe

2
t (4.41)

c⇓(t) = e−
γ
2
t−i δe

2
t (4.42)

φ(te, t)↑,x =
√
γe−i

δg
2

(t−te)− γ2 te+i
δe
2
teθ(t− te) (4.43)

φ(te, t)↑,y =
√
γe−i

δg
2

(t−te)− γ2 te−i
δe
2
teθ(t− te) (4.44)

φ(te, t)↓,x =
√
γei

δg
2

(t−te)− γ2 te−i
δe
2
teθ(t− te) (4.45)

φ(te, t)↓,y =
√
γei

δg
2

(t−te)− γ2 te+i
δe
2
teθ(t− te). (4.46)

We have, in summation, obtained complete knowledge of a four-level system describing
an electron or hole in a magnetic field which can be excited by absorbing a photon and
spontaneous decay by emitting a photon. In the following sections we describe the
two protocols for creating spin-photon entanglement using such a four-level system
and (4.41)-(4.46) shall, naturally, play an essential role.
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Chapter 5

Spin-Photon Frequency
Entanglement

The first protocol examined in this thesis is a protocol which creates spin-photon
frequency entanglement. Specifically, it creates Bell states, see (2.4) and (2.5), by
initialising the ground state spin in |↓〉, then exciting it to a trion state |↓〉 → |⇓〉, and
finally letting it spontaneously decay which creates the Bell state.

In this chapter, spin-photon frequency entanglement is examined by first intro-
ducing the theory behind the protocol and then going into depth with the possible
imperfections that can affect the outcome of the protocol and the techniques applied
to handle these complications.

Figure 5.1: a, Level diagram showing the spontaneous emission of
a photon frequency entangled with the ground state spin. We assume
the level |⇑〉x to be isolated from the rest of the system such that we
may regard the diagram as an effective three level system. b, timeline
showing the pulse sequence of the protocol. Assuming the spin is
initialised in |↓〉x, the quantum dot is excited at t = 0, a spin-echo

pulse is applied at tπ
and the spin is subsequently read out.

The essential steps applied in the protocol are presented in fig. 5 which shows both
a level diagram of the system and a timeline providing the pulse sequence applied in
the protocol. No details about the experimental techniques for spin initialisation and
readout are provided here, but further details can be found in [9, 24].

In the previous section, the wave function for the system was derived and these results
can now be applied for this protocol. By inserting the coefficients (4.44) and (4.45)
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into the wave function (4.10), the state of the system is defined:

|ψ(t)〉 =

√
γ

2

∞∫
0

dteθ(t− te)
(
e−i

δg
2

(t−te)− γ2 te−i
δe
2
te â†y(z0) |↑, 0〉

+ ei
δg
2

(t−te)− γ2 te−i
δe
2
te â†x(z0) |↑, 0〉

)
(5.1)

=
1√
2

(
|↑〉 |ω+, y〉+ |↓〉 |ω−, x〉

)
, (5.2)

where in (5.2), the form of the wave function is simplified by introducing |ω,+〉 and
|ω,−〉.
Depending on how we map from physical qubit to logical qubit, (5.2) can be mapped
into either of the bell states (2.4) and (2.5). As an example, mapping |↑〉 → |0〉,
|↓〉 → |1〉, |ω+, y〉 → |0〉 and |ω−, x〉 → |1〉 would yield the Bell state |Φ+〉 which we
in section 2.1 showed to maximally entangled.
As mentioned above, two possible imperfections of the protocol are studied in this
chapter: sub-maximal entanglement and sub-maximal visibility. The two types of
imperfections are briefly introduced below and examined in more detail within the
following sections.

The first imperfection appear if the two created photons are not orthogonal, i.e.

〈ω+, y |ω−, x〉 6= 0. (5.3)

Physically, this means that the two photons have a overlap in frequency or, in other
words, that the grounds states are insufficiently separated. Recall the calculation
leading to (2.10) in section 2.1 which showed that Bell states are indeed maximally
entangled since the subsystem where maximally mixed. This calculation relied on
the states of the subsystem A and B to be orthogonal. Hence if this is no longer the
case the subsystems are not maximally mixed, meaning the Bell states is sub-maximal
entangled.

The second imperfection is related to the ability to observe the system, i.e. a possi-
ble imperfect visibility of the system. Imperfect visibility is twofold. The first part
involves the finite time resolution of the detector. This sets an upper limit for how
strong the external magnetic field can be since a too strong magnetic field can ruin
the visibility caused by a high Larmor frequency of the ground state spin. The second
part involves the Overhauser field of the nuclear spin-bath in the quantum dot which,
as explained in section 3.1.3, introduces an uncertainty in frequency.

In section 5.1 and 5.2 are sub-maximal entanglement and sub-maximal visibility exam-
ined, respectively. Furthermore, the effect of encountering both types of imperfections
is discussed in section 5.2.3 which shows that an optimisation problem arise due to
the inversely dependence on the decay rate γ and the ground state splitting δg.

5.1 Sub-maximal Entanglement

As explained above, it is not possible to create a Bell state if the two ground states,
|ω+, y〉 and |ω−, x〉, are insufficiently separated. In order to characterise this imper-
fection, the concept of fidelity can be applied which was introduced in section 2.2.
When studying sub-maximal entanglement, the fidelity quantifying the imperfection
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is referred to as state fidelity.
In section 2.2, the fidelity was defined as

F = | 〈ψideal| |ψoutput〉 |2. (5.4)

The fidelity of the studied system can be determined using the coefficients (4.41)-(4.46)
and the definition of the wave function (4.10). In order to ease the calculation, we start
by defining a new smarter choice of basis for the states. This basis is a photon basis
which is all ways orthogonal, even for low ground state separation, which is superior
to the photon basis used so far since this basis is naturally not all ways orthogonal.

5.1.1 Orthogonal Basis

We introduce a shorthand notation by omitting the polarisation of the photons. Using
this notation, the state in (5.2) can be written as:

|ψ〉 =
1√
2

(
|↑〉 |ω+〉+ |↓〉 |ω−〉

)
. (5.5)

The task is now to express (5.5) in a orthogonal basis. For this purpose, we introduce
the two vectors

|ψ+〉 =
1√
2

(
eiφ |↑〉+ e−iφ |↓〉

)
(5.6)

|ψ−〉 =
1√
2

(
eiφ |↑〉 − e−iφ |↓〉

)
, (5.7)

and rewrite (5.5) as

|ψ〉 =
1

2

(
|ψ+〉 (e−iφ |ω+〉+ eiφ |ω−〉) + |ψ−〉 (e−iφ |ω+〉 − eiφ |ω−〉)

)
. (5.8)

We are free to chose φ. If we chose it to be φ = −arc 〈ω+ |ω−〉 then (5.8) is orthogonal.
For further convenience we define the two vectors

|θ±〉 =
1√
2

(e−iφ |ω+〉 ± eiφ |ω−〉), (5.9)

such that (5.8) can be written as

|ψ〉 =
1

2

(
|ψ+〉 |θ+〉+ |ψ−〉 |θ−〉

)
. (5.10)

Lastly, we normalise (5.10) to obtain the spin-photon state (5.2) rewritten in an
orthogonal basis

|Φ〉 = N+ |ψ+〉 |θ+〉+N− |ψ−〉 |θ−〉 , (5.11)

such that 〈Φ |Φ〉 = 1 with the normalisation coefficients N± =

√
1±|〈ω+ |ω−〉|√

2
. In

appendix A, a further discussion of the orthogonalisation and normalisation of the
state is presented.



26 Chapter 5. Spin-Photon Frequency Entanglement

5.1.2 State Fidelity

We now proceed to calculate the state fidelity using the orthonormal state found
above. In the ideal state, i.e. maximally entangled state, the photons are completely
separated in frequency, hence 〈ω+ |ω−〉 = 0 and from (5.10) we define the ideal state
as

|ψstateideal〉 =
1√
2

(
|ψ+〉 |θ+〉+ |ψ−〉 |θ−〉

)
. (5.12)

The output state is simply (5.10)

|ψstateoutput〉 = N+ |ψ+〉 |θ+〉+N− |ψ−〉 |θ−〉 , (5.13)

which is normalised such that N2
+ + N2

− = 1. The state fidelity, given the ideal and
output states in (5.12) and (5.13) respectively, can now be determined:

Fstate = |
〈
ψstateideal

∣∣ψstateoutput

〉
|2 (5.14)

= | 1√
2

(
〈ψ+| 〈θ+|+ 〈ψ−| 〈θ−|

)(
N+ |ψ+〉 |θ+〉+N− |ψ−〉 |θ−〉

)
|2 (5.15)

= |N+√
2

+
N−√

2
|2 (5.16)

=
1

2
(N+N+ + +N−N− + 2N+N−) (5.17)

=
1

2

(1 + | 〈ω+ |ω−〉 |
2

− 1− | 〈ω+ |ω−〉 |
2

+
√

1 + | 〈ω+ |ω−〉 |
√

1− | 〈ω+ |ω−〉 |
)

(5.18)

=
1

2
+

1

2

√
1− | 〈ω+ |ω−〉 |2. (5.19)

From the definition of |ω+〉 and |ω−〉 in (5.2) we can calculate that

| 〈ω+ |ω−〉 |2 =
γ2

δ2
g + γ2

. (5.20)

By combining the expressions in (5.20) and (5.19), the state fidelity is determined

Fstate =
1

2
+

1

2

√
1− γ2

δ2
g + γ2

. (5.21)
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Figure 5.2: Each contour line corresponds to a change in Fstate of
0.01. Fstate ∼ 1 in the limit δg � γ which corresponds to a Bell state
and hence maximal entanglement. Fstate ∼ 1/2 in the limit γ � δg

which corresponds to no entanglement.

As a final remark in this section, the typical decay rates are related to the typical
g factors of electrons and holes in order to determine the necessary strength of the
magnetic field required to sufficiently separate the ground state and obtain a state
fidelity of Fstate > 0.99. The relation between the ground state energy splitting, the g
factor and the magnetic field is given by Zeeman Hamiltonians (3.3) and (3.4), which
we collectively write as

δg =
gµB
~
B. (5.22)

Without any Purcell enhancement, the decay rate is typically γ ≈ 1 ns−1 and the g
factors are typically 0.35 < |gex| < 1.9 and 0.06 < |ghx | < 0.14, see section 3.2.1 and
3.1.2, respectively. This shows that a state fidelity of Fstate > 0.99 is achievable with
a strength of the in-plane magnetic field in the x-direction of 0.14 T < B < 0.78 T
and 1.96 T < B < 4.48 T, respectively. Note, as previously stated, that the g factor
can depend on the magnetic field direction due to band mixing.

5.2 Visibility

The second imperfection we consider in the frequency entanglement protocol is im-
perfect visibility of the system. In the previous section we showed that the role of
the magnetic field is vital if we wish to create a Bell State. As a consequence, one
might naively think that a strong magnetic field all ways is favourable, however, we
also need to consider our ability to observe the system. Imperfect visibility is twofold;
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it depends both on the finite time resolution and the nuclear Overhauser field. Both
effects will be included in the fidelity Fvisibility, the measure of visibility.

5.2.1 Non-Averaged Visibility Fidelity

In contrast to the procedure used when calculating the state fidelity, it is now favourable
to first calculate the non-averaged visibility fidelity and thereafter the averaged visi-
bility fidelity. In order to do this, the non-averaged states are first identified as:

|ψvisibilityideal 〉 =
1√
2

(
|↑〉 e−i

δg
2

(t−2tπ−tc) + |↓〉 ei
δg
2

(t−2tπ−tc)) (5.23)

|ψvisibilityoutput 〉 =
1√
2

(
|↑〉 e−i(

δg
2

+∆δg)(t−2tπ−te) + |↓〉 ei(
δg
2

+∆δg)(t−2tπ−te)), (5.24)

where tπ is the timing of the spin-echo pulse which is defined such that t − 2tπ = 0
corresponds to the spin-echo pulse being applied exactly between the excitation and
readout. The actual time the photon is measured by the detector is tc, and te = tc
corresponds to no time-jitter. The uncertainty in frequency is taken into account by
∆δg which is introduced by the nuclear Overhauser field.
The non-averaged visibility fidelity is

F (t, tπ, te, tc,∆δg) = |
〈
ψvisibilityideal

∣∣∣ψvisibilityoutput

〉
|2 (5.25)

= |1
2

(
〈↑| ei

δg
2

(t−2tπ−tc) + 〈↓| e−i
δg
2

(t−2tπ−tc))(
|↑〉 e−i(

δg
2

+∆δg)(t−2tπ−te) + |↓〉 ei(
δg
2

+∆δg)(t−2tπ−te))|2 (5.26)

= |1
2

(ei
δg
2

(t−2tπ−tc)−i(
δg
2

+∆δg)(t−2tπ−te)

+ e−i
δg
2

(t−2tπ−tc)+i(
δg
2

+∆δg)(t−2tπ−te))|2 (5.27)

=
1

4

(
e−i

δg
2

(te−tc)+i∆δg(t−2tπ−te) + ei
δg
2

(te−tc)−i∆δg(t−2tπ−te))(
ei
δg
2

(te−tc)−i∆δg(t−2tπ−te) + e−i
δg
2

(te−tc)+i∆δg(t−2tπ−te)) (5.28)

=
1

4

(
2 + e−2i(

δg
2

(te−tc)+i∆δg(t−2tπ−te)

+ e2i(
δg
2

(te−tc)−i∆δg(t−2tπ−te)) (5.29)

=
1

2
+

1

2
cos
(
δg(te − tc)− 2∆δg(t− 2tπ − te)

)
. (5.30)

This shows that the visibility fidelity is perfect, Fvisibility = 1, in the limit where
δg(te − tc)− 2∆δg(t− 2tπ − te) = 2nπ.

5.2.2 Averaged Visibility Fidelity

We now proceed by averaging (5.30) over three different probability distributions: the
time resolution of the detector, the uncertainty in frequency introduced by the nuclear
Overhauser field and the emission of a photon. Hence we write the averaged visibility
fidelity as

F̄visibility =

∞∫
−∞

d∆δg

∞∫
0

dte

∞∫
0

dtcρ(tc − te)ρ(∆δg)ρ(te)F (t, tπ, te, tc,∆δg), (5.31)
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where

ρ(tc − te) =
1√
2πε

e−
(tc−te)2

2ε2 (5.32)

ρ(∆δg) =
1√
2πσ

e−
∆δ2g

2σ2 (5.33)

ρ(te) = γe−γte . (5.34)

The probability density of the time resolution of the detector, ρ(tc − te), is defined in
(5.32) which shows a Gaussian distribution with the standard deviation ε. We shall
refer to ε as the time-jitter. Detectors with ε = 0.03 ns are commercial available [25].
The probability density for the Overhauser field, see section 3.1.3, is shown in (5.33)
which is again a Gaussian distribution. The Overhauser field is approximated to only
contain the component parallel to the applied magnetic field and it is written on an
effective form where the uncertainty of the magnetic field has been substituted with
the uncertainty in frequency splitting of the ground state, for which

T ∗2 =
√

2/σ. (5.35)

The relation (5.35) is derived in appendix B
Finally, the probability density of emitting a photon at time te is defined in (5.34)
as an exponentially decaying function which can be determined using the coefficients
found in section 4.3.
Now, we have all the components necessary to determine the averaged visibility fidelity.
First, the visibility fidelity in (5.30) is inserted in the expression for the average
visibility fidelity in (5.31):

F̄visibility =

∞∫
−∞

d∆δg

∞∫
0

dte

∞∫
0

dtcρ(tc − te)ρ(∆δg)ρ(te)

(1

2
+

1

2
cos
(
δg(te − tc)− 2∆δg(t− 2tπ − te)

)
, (5.36)

which shows that two terms emerge that can be calculated separately. Separating the
two terms of the averaged fidelity

F̄visibility(t, tπ) = F̄ (1)(t, tπ) + F̄ (2)(t, tπ), (5.37)

where

F̄ (1) =
1

2

∞∫
−∞

d∆δg

∞∫
0

dte

∞∫
0

dtcρ(tc − te)ρ(∆δg)ρ(te) (5.38)

F̄ (2)(t, tπ) =
1

2

∞∫
−∞

d∆δg

∞∫
0

dte

∞∫
0

dtcρ(tc − te)ρ(∆δg)ρ(te)

cos
(
δg(te − tc)− 2∆δg(t− 2tπ − te)

)
. (5.39)
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Now, (5.38) is straight forward to calculate since the three distributions are normalised
according to (5.32)-(5.34) and hence

F̄ (1) =
1

2

∞∫
−∞

d∆δg

∞∫
0

dte

∞∫
0

dtcρ(tc − te)ρ(∆δg)ρ(te) =
1

2
. (5.40)

To calculate the second term (5.39) in the averaged fidelity, we start by plugging
(5.32)-(5.34) into (5.39) and rewriting the expression using Euler’s formula

F̄ (2) =
1

2

∞∫
−∞

d∆δg

∞∫
0

dte

∞∫
0

dtcρ(tc − te)ρ(∆δg)ρ(te)

cos
(
δg(te − tc)− 2∆δg(t− 2tπ − te)

)
(5.41)

=
γ

8πσε

∞∫
−∞

d∆δg

∞∫
0

dte

∞∫
0

dtce
− (tc−te)2

2ε2 e−
∆δ2g

2σ2 e−γte

eiδg(te−tc)+2i∆δg(t−2tπ−te) + e−iδg(te−tc)−2i∆δg(t−2tπ−te)), (5.42)

and continue by evaluating the time integrals

F̄ (2) =

√
2πγ

8πσ

∞∫
−∞

d∆δg

∞∫
0

dtee
−

∆δ2g

2σ2
(
e(te−iεδ2

g)2/2− t2e
2ε2
−γte+iδgte+2i∆δg(t−2tπ−te)

+ e(te+iεδ2
g)2/2− t2e

2ε2
−γte−iδgte−2i∆δg(t−2tπ−te)) (5.43)

=
γ

4σ
√

2π
e−(δgε)2/2

∞∫
−∞

d∆δge
−

∆δ2g

2σ2

(e2i∆δg(t−2tπ)

γ − 2i∆δg
+
e−2i∆δg(t−2tπ)

γ + 2i∆δg

)
. (5.44)

In order to solve the last integral in (5.44) we perform a Fourier transformation.
Realising that this integral is an inner product, we can use the unitarity of the Fourier
transform to evaluate it. The two functions transform individually as

F
[
e−

∆δ2g

2σ2 ±2i(t−2tπ)∆δg
]

= σe−σ
2(2(t−2tπ)±t′)2/2 (5.45)

F
[ 1

γ ± 2i∆δg

]
=
√

2πe∓γt
′
θ(±t′), (5.46)

meaning the Fourier transform of (5.44) is

F [F̄ (2)(t, tπ)] =
γ

4
e−(δgε)2/2

∞∫
−∞

dt′
(
e−σ

2(2(t−2tπ)+t′)2/2+γt′θ(−t′)

+ e−σ
2(2(t−2tπ)−t′)2/2−γt′θ(t′)

)
(5.47)

=

√
π

2

γ

16σ
e−(δgε)2/2−γ(t−2tπ)+ γ2

8σ2
(
1 + (

2σ(t− 2tπ)− γ
2σ√

2
)
)
. (5.48)

The expressions determined in (5.40) and (5.48) can now be inserted into (5.37) which
yields the result of this section
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F̄visibility(t, tπ) =
1

2
+

√
π

2

γ

16σ
e−(δgε)2/2−γ(t−2tπ)+ γ2

8σ2
(
1 + (

2σ(t− 2tπ)− γ
2σ√

2
)
)
.

(5.49)

The different parameters in (5.49) are now discussed starting with the timing of the
spin echo pulse modeled by t− 2tπ. An optimal value is reached when t− 2tπ = γ−1

since this corresponds to the case where an equal amount of time passes between the
the average decay time γ−1 and the spin echo pulse tπ and between the spin echo
pulse tπ and the readout. It is assumed from this point forward that t − 2tπ = γ−1

unless otherwise stated.
The connection between the strength of the magnetic field and the time-jitter is now
examined. In order to apply a high Larmor frequency it is necessary to have a good
detector time resolution to observe the system. A high Larmor frequency demands a
good detector time resolution to observe the system. Fig. 5.3 shows what magnetic
field strength is feasible for a given detector time-jitter. It is found that using a

Figure 5.3: A contour plot of the visibility fidelity with optimal spin
echo timing t− 2tπ = γ−1. Each contour line corresponds to a change
in fidelity of 0.01. a, Visibility fidelity for an electron in the ground
state. Chosen values are: σ = 0.7 ns−1 (corresponding to T ∗2 = 2.0
ns), γ = 2.4 ns−1, and ge = 0.5. b, Visibility fidelity for a hole in
the ground state. Chosen values are: σ = 0.07 ns−1 (corresponding to

T ∗2 = 20.2 ns), γ = 1.2 ns−1 and gh = 0.08ns−1.

hole is superior to an electron if we wish to use a strong magnetic field. A strong
magnetic field is desirable as it suppresses the components of the Overhauser field
orthogonal to B while narrowing the frequency distribution σ of the fluctuations
parallel to B, enhancing the coherence time according to (5.35). Notice that in the
case of the electron, not even a perfect detector (ε = 0) and no external magnetic field
(B = 0) would give a visibility fidelity above 0.95. This is because the visibility is
still limited by the ratio between the decay rate and the coherence time γ/σ, which is
chosen to be γ/σ = 2.4 ns−1/0.7 ns−1 = 3.43. The ratio can be improved by Purcell
enhancement (3.14) (recall that a decay rate of 5.7 ns−1 have been reported for the
system of interest), however, as seen in fig. 5.4a, it is not possible to achieve a close-
to-unity visibility fidelity for realistic Purcell enhancement and time-jitter if we refuse
to go below B = 0.3 T. For ε = 0.03 ns−1 and γ = 5.7 ns−1 the visibility fidelity is
Fvisibility ≈ 0.95 at B = 0.3 T.
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Figure 5.4: A contour plot of the visibility fidelity with optimal spin
echo timing t− 2tπ = γ−1. Each contour line corresponds to a change
in fidelity of 0.01. a, Visibility fidelity for an electron in the ground
state. Chosen values are: σ = 0.7 ns−1 (corresponding to T ∗2 = 2.0 ns),
B = 0.3 T and ge = 0.5. b, Visibility fidelity for a hole in the ground
state. Chosen values are: σ = 0.07 ns−1 (corresponding to T ∗2 = 20.2

ns), B = 0.8 T and gh = 0.08.

For the hole we have reason to be more optimistic regarding the visibility. From
fig. 5.3 we see that for ε = 0.03 ns we can allow B = 0.8 T and still achieve F ≈ 0.99
at γ = 1.2 ns−1. This is supported by fig. 5.4b which also shows that the visibility is
not particular vulnerable to lower decay rates.

Figure 5.5: A contour plot of the visibility fidelity with optimal spin
echo timing t− 2tπ = γ−1. Each contour line corresponds to a change
in fidelity of 0.01. a, Visibility fidelity for an electron in the ground
state. Chosen values are: σ = 0.7 ns−1 (corresponding to T ∗2 = 2.0 ns),
ε = 0.03 ns and ge = 0.5. b, Visibility fidelity for a hole in the ground
state. Chosen values are: σ = 0.07 ns−1 (corresponding to T ∗2 = 20.2

ns), ε = 0.03 ns and gh = 0.08.

To conclude, the following parameter values result in a visibility fidelity of F̄ electronvisibility ≈
0.95 and F̄ holevisibility ≈ 0.99:
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ε [ns] T ∗2 [ns] ge/h γ [ns−1] B [T] Fvisibility
Electron: 0.03 2.0 0.5 5.7 0.3 ≈ 0.95
Hole: 0.03 20.2 0.08 1.2 0.8 ≈ 0.99

Table 5.1: Realistic parameter values and corresponding visibility
fidelity.

Now, we will return to the state fidelity studied in section 5.1. The state fidelity
depends on γ and δg, which for the values shown in table 5.1 is Fstate = 0.77 and
Fstate = 0.69 for an electron and a hole respectively. These are relatively low fidelity
values not ideal for the performance of the protocol. This effect is caused since the
state fidelity favours a strong magnetic field. In fig. 5.3 and 5.5 is the visibility fidelity
studied for varying strengths of B which shows that the visibility fidelity favours
relatively low values of B. For the electron, it is found from from fig. 5.3a that no
realistic detector would be able to observe the system at magnetic fields necessary to
achieve a high state fidelity and from fig. 5.4a we see the same is true for realistic
Purcell enhancement. In the case of holes, the results are so far more inconclusive. We
are able to achieve close-to-unity visibility fidelity, but with a too low magnetic field
and/or too high decay rate to achieve a high state fidelity. The question of interest is
now whether it is possible to optimise the parameters such that the combined fidelity,
defined as Fcombined = FstateF̄visibility, becomes close-to-unitary. In the next section
we preform a perturbative expansion on the Fstate and F̄visibility in order to optimise
the combined fidelity for both the electron and hole.

5.2.3 Optimising the Combined Fidelity

We define the combined fidelity as

Fcombined = FstateF̄visibility. (5.50)

It is not trivial to optimise Fcombined partly due to the big parameter space and partly
because of the error function in (5.49). Therefore we shall expand both (5.49) and
(5.21) to simplify (5.50). Beginning with (5.49) we start by expanding the error
function. In general, the error function can be expanded in an asymptotic series as

erf(x) =
∞∑
n=0

(−1)n(2n− 1)!!

2n
x−(2n+1),

Identifying x =
2σ(t−2tπ)− γ

2σ√
2

, the expansion of the error function to first order becomes

(
2σ(t− 2tπ)− γ

2σ√
2

) ≈ 1− e−
(

2σ(t−2tπ)− γ
2σ

)2
/2√

π
2 (2σ(t− 2tπ)− γ

2σ )
. (5.51)

Substituting this into (5.49) yields

F̄visibility ≈
1

2
+

√
π

2

γ

16σ
e−

(δgε)
2

2
−γ(t−2tπ)+ γ2

8σ2

(
1 + 1− e−

(
2σ(t−2tπ)− γ

2σ

)2
/2√

π
2 (2σ(t− 2tπ)− γ

2σ )

)
(5.52)

=
1

2
+

√
π

2

γ

8σ
e−

(δgε)
2

2
−γ(t−2tπ)+ γ2

8σ2 − γe−(δgε)2/2−2σ2(t−2tπ)2

16(2σ(t− 2tπ)− γ
2σ )

. (5.53)
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We are interested in the limits γ � σ, γ(2−2tπ) ∼ 1 and consequently 1� σ(2−2tπ).
In this limit, (5.53) can be approximated to

F̄visibility(t, tπ) ≈ 1

2
+

γ

16(2σ(t− 2tπ)− γ
2σ )

e−
(geBε)

2

2
−2σ2(t−2tπ)2

. (5.54)

The three terms in (5.54) can now be expanded separately as follows

e−
(geBε)

2

2 ≈ 1− (δgBε)
2

2
+ . . . (5.55)

e−2σ2(t−2tπ)2 ≈ 1− 2σ2(t− 2tπ)2 + . . . (5.56)
1

2σ(2− 2tπ)− γ
2σ

≈ − γ

2σ
(1− 4σ2(t− 2tπ)

γ
+ . . .), (5.57)

where the last expansion is true since −1 < 4σ(t−2tπ)
γ < 1 in our expansion limit. This

limit also allows us to substitute t− 2tπ → γ−1 since γ(2− 2tπ) ∼ 1. Performing this
substitution in (5.56) and (5.57) and hereafter substituting (5.55)-(5.57) into (5.54)
yields

F̄visibility ≈
1

2
+
σ

8
(−1 +

4σ2

γ2
+ . . .)(1− 2σ2

γ2
+ . . .)(1− (δgε)

2

2
+ . . .) (5.58)

≈ 1− 2σ2

γ2
− (δgBε)

2

4
. (5.59)

This is the final expression for the simplified visibility of our system and it is pleasantly
intuitive and transparent. To maximise the visibility we shall minimise the time-jitter,
the frequency distribution of the nuclear spin-bath and the strength of the external
magnetic field, while maximising the decay rate.

The state fidelity, which has inverse proportionality with respect to γ and the ex-
ternal magnetic field compared to the visibility, can be approximated in the limit
δg � γ as

Fstate ≈ 1− γ2

4δ2
g

. (5.60)

We obtain the approximated combined fidelity by substituting the approximated ex-
pression for the visibility fidelity (5.59) and the approximated expression for the state
fidelity (5.60) into the combined fidelity (5.50)

Fcombined ≈ (1− 2σ2

γ2
− (δgε)

2

4
)(1− γ2

4δ2
g

) (5.61)

≈ 1− (δgε)
2

4
− γ2

4δ2
g

+
ε2γ2

8
− 2σ2

γ2
. (5.62)

Equation 5.62 allows for straightforward optimisation of Fcombined with respect to γ
and B. The optimal values are

Boptimal =

√
γ

ε(gµB/~))2
, γoptimal =

3

√
4σ2

ε
. (5.63)
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We conclude our study of imperfections in the frequency entanglement protocol by
showing selected combined fidelities.

Figure 5.6: Combined fidelity with an electron in the ground state.
Each contour line corresponds to a change in fidelity of 0.01. a is an
optimistic case, b is a realistic case and c is a pessimistic case. The

chosen values for all three cases can be seen in table 5.2.

Figure 5.6 shows three cases for the combined fidelity given an electron as the confined
spin: the optimistic, realistic and pessimistic case. The parameter values applied to
the three cases are listed in table 5.2 which are determined such that the optimistic
case require an ideal protocol setup with state-of-the-art performance, the realistic
case has lowered expectations to the protocol performance, and finally the pessimistic
case has rather low expectations to the performance.

ε [ns] T ∗2 [ns] ge γoptimal [ns−1] Boptimal [T] Fcombined
a, optimistic 0.03 2.8 0.3 3.2 0.39 0.935
b, realistic 0.03 2.0 0.5 4.0 0.26 0.921
c, pessimistic 0.03 1.4 0.7 5.1 0.21 0.903

Table 5.2: Values used in fig. 5.6 where γoptimal and Boptimal are
calculated from (5.63).

For the realistic case, an unsatisfyingly low combined fidelity is evident. Comparing
the realistic case to the optimistic shows that there is not much to gain in terms of
the value of the combined fidelity since an increase of ∼ 0.01 in the combined fidelity
is insufficient to obtain a great fidelity. Two additional advantages are present in the
optimistic case: a reduced sensitivity to changes in the decay rate around the optimal
fidelity and an increase in Boptimal. The reduced sensitivity relaxes the requirements
in the precision of the Purcell Enhancement and the increase in Boptimal decreases the
effect of the Overhauser field.
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Figure 5.7: Combined fidelity with a hole in the ground state. Each
contour line corresponds to a change in fidelity of 0.01. a is an opti-
mistic case, b is a realistic case and c is a pessimistic case. The chosen

values for all three cases can be seen in table 5.3.

Figure 5.7 similarly shows three cases for a hole in the ground state which are again
denoted optimistic, realistic and pessimistic. The parameter values applied in the
three cases are shown in table 5.3. Due to the long coherence time of the hole, it is
evident that a hole is superior to an electron when comparing the ability to achieve a
high combined fidelity.

ε [ns] T ∗2 [ns] gh γoptimal [ns−1] Boptimal [T] Fcombined
a, optimistic 0.03 28.3 0.05 0.69 1.1 0.985
b, realistic 0.03 20.2 0.08 0.87 0.76 0.981
c, pessimistic 0.03 14.2 1.0 1.1 0.69 0.976

Table 5.3: Values used in fig. 5.7 where γoptimal and Boptimal are
calculated from (5.63).
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Chapter 6

Spin-photon Time-Bin
Entanglement

When applying time-bin entanglement, quantum information is encoded in the arrival
time of photons. In this chapter, the protocol applied to create spin-photon time-bin
entanglement is examined as proposed by Lee et. al [10]. Furthermore, the possible
imperfections introduced when applying the protocol are studied. We begin by ex-
plaining the protocol. Then we shall study the visibility of the system, similarly to
the studied made in the previous chapter for the frequency entanglement protocol,
followed by a study of the impact of imperfect decay ratio and photon loss on the pro-
tocol. The last imperfection we study is the effect of phonon induced pure dephasing
of the excited state. We conclude the study of imperfections in section 6.4, where the
combined effect of the three imperfections is discussed.

Figure 6.1: a, illustration of a single repetition of the protocol, cre-
ating of a single photon time-bin entangled with the ground state spin.
b, timeline of the pulse sequence creating a N/2 photon GHZ state.
γ−1 indicates a resonant pulse driving the transition |↓〉x → |⇓〉x and

the subsequent decay. tπ,i indicates the i’th ground state flip.

After initialising the ground state is in an equal superposition 1/
√

2(|↑〉 + |↓〉) [47],
a resonant pulse drives the transition |↓〉x → |⇓〉x and the subsequent decay creates
the state 1/

√
2(|↑〉 |0〉+ |↓〉 |e〉), where |e〉 is a photon in an early time-bin. Then the

ground state spin is flip creating the state 1/
√

2(− |↑〉 |e〉+ |↓〉 |0〉), which corresponds
to the second step shown in fig. 6.1a. In the third step, another excitation and
decay creates a late photon and the state 1/

√
2(− |↑〉 |0, e〉 + |↓〉 |l, 0〉), where |l〉 is a

photon in a late time-bin. Finally, another ground state spin flip creates the state
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1/
√

2(|↑〉 |l, 0〉+ |↓〉 |0, e〉). Repeating the sequence N/2 times creates the state

|ψ〉 =
1√
2

(
|↑〉 |l, 0〉⊗

N
2 + |↓〉 |0, e〉⊗

N
2
)
. (6.1)

Mapping |l, 0〉 to a logical 1 and |0, e〉 to a logical 0 creates a N/2 photon GHZ state.
The notation in (6.1) is clarified: the states |l, 0〉⊗

N
2 and |0, e〉⊗

N
2 are to be understood

as

|l, 0〉⊗
N
2 = |l, 0, l, 0, . . .〉 (6.2)

|0, e〉⊗
N
2 = |0, e, 0, e, . . .〉 , (6.3)

with N/2 photons in each state, all with destinct emission times.

It is possible to alter the protocol to create a 1D cluster state (see section 2.1.1)
by implementing Hadamard gates. A Hadamard transform the spins as:

|↑〉 → 1√
2

(|↑〉+ |↓〉), |↓〉 → 1√
2

(|↑〉 − |↓〉). (6.4)

Applying this transformation after the creation of every late photon will result in the
creation of a 1D cluster state. In this chapter we shall only study the GHZ state, but
the imperfections considered are equally relevant for the 1D cluster state.

6.1 Visibility

It is unnecessary to include the imperfection of the detector for time-bin entangled
states when the time-bin is much larger than the uncertainty in detection time. This
assumption is very reasonable since detectors with time-jitter in the order of picosec-
onds are commercially available.
However, the nuclear Overhauser field can in some cases ruin the visibility. This ef-
fect, caused by the nuclear Overhauser field, can be examined using a calculation of
the visibility fidelity which is the focus of this section. The calculation of the visibil-
ity fidelity is very similar to the calculation performed in chapter 5.2 but with two
main differences. Since the imperfection of the detector is now longer relevant, we
do not average the fidelity over the time-resolution of the detector. Also, since the
time-bin protocol is capable of creating GHZ-states, we shall generalise the fidelity to
an arbitrary number of photons.

6.1.1 The Ideal State and Output State

In order to determine the visibility fidelity, it is necessary to first define the ideal state
and output state of the system. We begin by writing the ideal N/2-photon GHZ state
as

|ψvisibilityIdeal,GHZ〉 =
1√
2

(
|↑〉 |0, e〉

⊗ N
2 e−i

δg
2

(τ1−te,1+τ3−te,3+...+τN−1−te,N−1)

+ |↓〉 |l, 0〉
⊗ N

2 e−i
δg
2

(τ2−te,2+τ4−te,4+...+τN−te,N )
)
. (6.5)

The photon states |0, e〉 and |l, 0〉 represent an early and a late photon, respectively.
The quantum dot is excited N times, thus creating N/2 early and N/2 late states.
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The timing of the ground state flip is defined similar to the spin-echo pulse, as

τi = t− 2tπ,i (6.6)

where tπ,i is the time of the i’th π-pulse.
The emission time of the i’th photon is written as te,i. Later, when we find the averaged
fidelity, we must average over the N emission times. Furthermore we must average
over the frequency distribution introduced by the Overhauser field. We include this
in the output N/2-photon GHZ state as

|ψvisibilityoutput,GHZ〉 =
1√
2

(
|↑〉 |0, e〉

⊗ N
2 e−i(

δg
2

+∆δg)(τ1−te,1+τ3−te,3+...+τN−1−te,N−1)

+ |↓〉 |l, 0〉
⊗ N

2 e−i(
δg
2

+∆δg)(τ2−te,2+τ4−te,4+...+τN−te,N )
)
. (6.7)

6.1.2 Visibility Fidelity

We find the non-averaged fidelity by taking the absolute square of the overlap between
the input and output state, see (6.5) and (6.7), which yields

Fvisibility(τN , . . . , τ1) = | 〈ψvisibilityIdeal,GHZ |ψ
visibility
output,GHZ〉 |

2

= |1
2

(
〈↑| 〈0, e|

⊗ N
2 ei

δg
2

(τ1−te,1+τ3−te,3+...+τN−1−te,N−1)

+ 〈↓| 〈l, 0|
⊗ N

2 ei
δg
2

(τ1−te,1+τ3−te,3+...+τN−1−te,N−1)
)

(
|↑〉 |0, e〉

⊗ N
2 e−i(

δg
2

+∆δg)(τ1−te,1+τ3−te,3+...+τN−1−te,N−1)

+ |↓〉 |l, 0〉
⊗ N

2 e−i(
δg
2

+∆δg)(τ2−te,2+τ4−te,4+...+τN−te,N )
)
|2

=
1

2
+

1

2
cos
(
− iN∆δg(τN − te,N + . . .+ τ1 − te,1)

)
. (6.8)

To create a single photon the quantum dot must be excited twice, hence we do not
allow N to be an odd number and do not have to worry about an imaginary argument
in the cosine.
We write the averaged fidelity as

F̄visibility(τN , . . . , τ1) =

∞∫
−∞

d∆δg

∞∫
0

. . .

∞∫
0

dte,N . . . dte,1ρ(∆δg)

ρ(te,N . . . , te,1)F (τN , . . . , τ1), (6.9)

where

ρ(∆δg) =
1√
2πσ

e−
∆δ2g

2σ2 (6.10)

ρ(te,N , . . . , te,1) = γNe−γ(te,N−...−te,1), (6.11)

from identical arguments as in the frequency entanglement visibility fidelity.
We now calculate the averaged fidelity by inserting the non-averaged fidelity (6.8),
and the probability density distributions in (6.10) and (6.11) into the equation for the
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time-averaged fidelity (6.9), which yields

F̄ (τN , . . . , τ1) =
γN

2N
√

2πσ

∞∫
−∞

d∆δg

∞∫
0

. . .

∞∫
0

dte,N . . . dte,1e
−

∆δ2g

2σ2 −
γ
2

(te,N+...+te,1)

(
1

2
+

1

2
cos
(
− iN∆δg(τN − te,N − τN−1 + te,N−1 + . . .− τ1 − te,1)

))

=
γN

2N
√

2πσ

∞∫
−∞

d∆δg

∞∫
0

. . .

∞∫
0

dte,N . . . dte,1e
−
δδ2g

2σ2−
γ
2

(te,N+...+te,1)

(
1

2
+

1

4
(ei

N+1∆δg(τN−te,N−τN−1+te,N−1+...−τ1−te,1)

+ e−i
N+1∆δg(τN−te,N−τN−1+te,N−1+...−τ1−te,1))

)
The calculation can be split into several pieces which will now be evaluated separately.
Starting with the part independent of τN . . . τ1, we find that

γN

2N+1
√

2πσ

∞∫
−∞

d∆δg

∞∫
0

. . .

∞∫
0

dte,N . . . dte,1e
−

∆δ2g

2σ2 −
γ
2

(te,N+...+te,1) =
1

2
,

since the distributions are normalised according to (6.10) and (6.11).
The part which depends on τN . . . τ1 is more complicated to evaluate. We start by
rewriting the cosine using Euler’s formula and then evaluating the N emission time
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integrals, which gives

F ′(τN , . . . , τ1) =
γN

2N+2
√

2πσ

∞∫
−∞

d∆δg

∞∫
0

. . .

∞∫
0

dte,N . . . dte,1e
−

∆δ2g

2σ2 −
γ
2

(te,N+...+te,1)

(ei
N+1∆δg(τN−te,N−τN−1+te,N−1+...−τ1−te,1) (6.12)

+ e−i
N+1∆δg(τN−te,N−τN−1+te,N−1+...−τ1−te,1))

=
γN

2N+2
√

2πσ

∞∫
−∞

d∆δge
−

∆δ2g

2σ2

∞∫
0

. . .

∞∫
0

dte,N . . . dte,1

(
e−te,N ( γ

2
+iN+1∆δg)−...−te,1( γ

2
−iN+1∆δg)+iN+1∆δg(τN−τN−1+...−τ1)

(6.13)

+ e−te,N ( γ
2
−iN+1∆δg)−...−te,1( γ

2
+iN+1∆δg)−iN+1∆δg(τN−τN−1+...−τ1)

)
=

γN

2N+2
√

2πσ

∞∫
−∞

d∆δge
−

∆δ2g

2σ2

∞∫
0

. . .

∞∫
0

dte,N . . . dte,2

( 1
γ
2 − iN+1∆δg

e−te,N ( γ
2

+iN+1∆δg)−...−te,2( γ
2

+iN+1∆δg)

ei
N+1∆δg(τN−τN−1+...−τ1) (6.14)

+
1

γ
2 + iN+1∆δg

e−te,N ( γ
2
−iN+1∆δg)−...−te,2( γ

2
−iN+1∆δg)

e−i
N+1∆δg(τN−τN−1+...−τ1)

)
=

γN

2N+2
√

2πσ

∞∫
−∞

d∆δge
−

∆δ2g

2σ2

∞∫
0

. . .

∞∫
0

dte,N . . . dte,3

( 1
γ2

4 + ∆δ2
g

e−te,N ( γ
2

+iN+1∆δg)−...−te,3( γ
2
−iN+1∆δg)

ei
N+1∆δg(τN−τN−1+...−τ1) (6.15)

+
1

γ2

4 + ∆δ2
g

e−te,N ( γ
2
−iN+1∆δg)−...−te,3( γ

2
+iN+1∆δg)

e−i
N+1∆δg(τN−τN−1+...−τ1)

)
= . . .

...

=
γN

2N+2
√

2πσ

∞∫
−∞

d∆δge
−

∆δ2g

2σ2

(
1

γ2

4 + δδ2
g

)N
2

(
ei
N+1∆δg(τN−τN−1+...−τ1) + e−i

N+1∆δg(τN−τN−1+...−τ1)
)
. (6.16)

It is difficult to solve (6.16) for general N, so we use a different solution strategy. First
we will solve for N = 2 and then for N → ∞. Naturally, all other solutions must lie
in between these two solutions.
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For N = 2 (6.16) becomes

F ′(τ2, τ1) =
γ2

24
√

2πσ

∞∫
−∞

d∆δge
−

∆δ2g

2σ2

(
1

γ2

4 + ∆δ2
g

)
(
ei

3∆δg(τ2−τ1) + e−i
3∆δg(τ2−τ1)

)
(6.17)

We solve this using the unitarity of the Fourier transform, i.e. we will view this integral
as an inner product between two functions and Fourier transform them separately. The
two Fourier transformations give

F

[
e−

∆δ2g

2σ2 ±i∆δg(τ2−τ1)

]
= σe−

1
2

(τ1−τ2∓t′)2σ2

F

[
1

γ2

4 + ∆δ2
g

]
=

√
π/2

γ
e−

γ
2
t′
(
2(eγt

′
θ(−t′) + θ(t′)

)
,

where θ(±t′) are Heaviside step functions.
Hence the Fourier transform of (6.17) is

F [F ′(τ2, τ1)] =

√
π
2γ

16
√

2π

∞∫
−∞

dt′
(
e−

1
2

(τ1−τ2+t′)2σ2
+ e−

1
2

(τ1−τ2−t′)2σ2)
(
e−

γ
2
t′
(
2(eγt

′
θ(−t′) + θ(t′)

)
=

√
π/2γ

8σ
e
γ2

4σ2 + γ
2

(τ1−τ2)erfc
(
γ + 2σ2(τ1 − τ2)

2
√

2σ

)
(6.18)

This expression can be optimised by using the ability to freely choose the timing of
the π-pulses and requiring τ1 = τ2. This requirement is met as long as the time
between the first excitation and the first π-pulse is equal to the time between the
second excitation and the second π-pulse. Physically, this corresponds to the confined
spin spending as much time in |↑〉 as it does in |↓〉.
Imposing τ1 = τ2 in (6.18) yields the final solution to (6.16) for N = 2

Fvisibility(τ1 = τ2) =
1

2
+

√
π/2γ

4σ
e
γ2

8σ2 erfc
(

γ

2
√

2σ

)
(6.19)
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Figure 6.2: The visibility fidelity for a time-bin entangled Bell state
(N = 2) optimised with the condition τ1 = τ2. Each contour line
corresponds to a change in fidelity of 0.01. The yellow line marks a
usual realistic value for an electron: σ = 0.7 ns−1 (corresponding to a
coherence time of T ∗2 = 2ns). The green line marks a usual realistic
values for a hole: σ = 0.7 ns−1 (corresponding to a coherence time of

T ∗2 = 20.2 ns).

In fig. 6.2, we see that the visibility fidelity for an electron is increasing significantly
with an increasing γ, showing that Purcell enhancement is very beneficial. For a typ-
ical coherence time of an electron, T ∗2 = 2 ns, we are able to achieve Fvisibility = 0.975
at γ = 5.7 ns−1. For a hole, given a coherence time of T ∗2 = 20.2 ns, Purcell enhance-
ment is not necessary since Fvisibility > 0.99 at γ = 1 ns−1.
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We now solve (6.16) in the limit N → ∞. In this limit the fraction can be ap-
proximated using a series expanding as(
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Using the approximation in (6.20), the fidelity in (6.16) can in the limit N → ∞ be
expressed as:

F ′(τN , . . . , τ1) =
1

4
√

2πσ

∞∫
−∞

d∆δge
−∆δ2

g

(
1
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)(
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=
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√
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e−i
2Nσ2γ2(τ1−τ2+...−τN )2/(2γ2+16Nσ2)

Similar to the solution for N = 2, and by the same argument, we optimize (6.21)
by setting the timing of the echo pulses equal to each other pairwise τ1 = τ2, τ3 =
τ4, . . . , τN−1 = τN , yielding

Fvisibility(τ1 = τ2, τ3 = τ4, . . . , τN−1 = τN ) =
1

2
+

γ

2σ
√

4N + γ2

σ2

. (6.21)
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Figure 6.3: The visibility fidelity for a time-bin entangled GHZ state
in the limit N → ∞ optimised with the condition τ1 = τ2, τ3 =
τ4, . . . , τN−1 = τN . Each contour line corresponds to a change
in fidelity of 0.01. The yellow line marks the realistic Purcell en-
hanced values for an electron: γ/σ = 5.7 ns−1/0.7 ns−1 = 8.14. The
green line marks the realistic non Purcell enhanced values for a hole:
γ/σ = 1 ns−1/0.07 ns−1 = 14.29. Note, since the expression for visi-
bility fidelity is obtained in the limit N →∞, the plot becomes more

accurate with increasing photon number.

From fig. 6.3 we see that Purcell enhancing the electron to γ = 5.7 ns−1 allows us
to create a Bell state with Fvisibility ≈ 0.99 (note that this is in agreement with the
visibility fidelity calculated using the solution for N = 2). Even creating a four photon
GHZ state using an electron is possible with Fvisibility ≈ 0.97. For a hole the predic-
tions are, not surprisingly, even better. Here we can create a four photon GHZ state
with Fvisibility ≈ 0.99 and an eight photon GHZ state with Fvisibility ≈ 0.98 without
any Purcell enhancement. Purcell enhancing the hole to γ = 5.7 ns−1 would allow us
to create a 136 photon GHZ state with Fvisibility ≈ 0.99.

Lastly, we plot both solutions, N = 2 and N →∞, by scaling the x-axis with N−1/2.
All solutions for general N lies in between these two curves. A numerical calculation
of this result is presented in appendix C which agrees with the prediction shown in
fig. 6.4
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Figure 6.4: Scaling the x-axis by 1/
√
N allows us to plot both solu-

tions of the visibility fidelity. Solutions for general N lies in between
the two curves.

Now, the take-home message from this section is as follows: in the time-bin spin-
photon entanglement protocol, overcoming the Overhauser field and obtaining a high
visibility is a manageable problem with current values for γ and σ. The visibility
fidelity is good for an electron and great for a hole. The reason that the visibility is
better for time-bin entanglement than the frequency entanglement protocol is that in
the time-bine entanglement protocol the visibility is no longer limitied by the resolu-
tion of the detector and the strength of the applied magnetic field. This dependency,
or lack of dependency, can easily be shown by comparing the perturbative expansion
of the visibility fidelity for a single photon for the two protocols:

F frequencyvisibility = 1− 2σ2

γ2
− (δgε)

2

4
(6.22)

F time−binvisibility = 1− 2σ2

γ2
. (6.23)

6.2 Imperfect Decay Ratio and Photon Loss

Section 6.1 demonstrated that imperfect visibility of the system due to the Overhauser
field is indeed a manageable problem exploiting Purcell enhancement, however, we
have so far made assumptions about the decay. We have assumed that only the tran-
sition between the two closest energy levels in the ground state and excited state where
possible and that emitted photons are always measured by the detector. This section
is devoted to studying a more complex decay structure and photon loss. Specifically,
how imperfect decay ratios (lambda decay) and photon loss alter the generated quan-
tum state. These two effects are visualised in fig. 6.5 which shows an effective level
diagram with additional decay paths and the possibility to loose the emitted photon
before it is measured. We refer to the collective measure of these imperfections as
decay fidelity. We shall express this measure as a conditional fidelity using the density



6.2. Imperfect Decay Ratio and Photon Loss 47

matrix formalism. By "conditional" we simply mean that if we excited the quantum
dot N times, we only accept a result where the detector observes N/2 photons in the
expected time-order.

Figure 6.5: Effective level diagram with three additional decay paths.
β‖ (β⊥) is the probability for the spin to decay into the good (bad)
ground state while the emitted photon is detected. β′‖ (β′⊥) is the
probability for the spin to decay into the good (bad) ground state

while the emitted photon is lost before it is measured.

Before we calculate the decay fidelity, we must determine which spin-photon quantum
state our time-bin entanglement protocol produces, if we include all four decay paths.
This corresponds to the output state of the system.

6.2.1 The Output State

In this section, the output state of the system including the additional possible decay
paths is examined. In order to simplify the calculations performed, the applied nota-
tion is first defined: " γ−→" referees to a decay from the excited state, now emitting a
photon into the four decay paths. " π−→" referees to a ground state spin flip. When the
excited state decays into wrong state (since we have chosen a electron as the confined
spin, the correct ground state is |↑〉 and the wrong state is |↓〉) then the emitted pho-
ton has higher energy than a photon produced from a decay into the correct ground
state. An early (late) photon with higher energy is denoted as |e′〉 (|l′〉). A lost photon
is denoted |φ〉.

Initializing the ground state in an equal superposition of spin up and down, the
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produced spin-photon quantum state is

1√
2

(
|↑〉+ |↓〉

)
γ−→ 1√

2

(√
β‖ |↑〉 |e〉+

√
β′‖ |↑〉 |φ〉

+
√
β⊥ |↓〉 |e′〉+

√
β′⊥ |↓〉 |φ〉+ |↓〉 |0〉

)
(6.24)
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2
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√
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+
√
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√
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)
.

Evidently, the spin-photon state rapidly becomes unmanageable. A state created from
two excitations has 14 terms. A state created from 4 excitations can be shown to have
104 terms, so it is clearly not feasible to generalise the produced spin-photon state. As
we shall see, it is possible to obtain a conditional decay fidelity for a general number
of photons without knowing the generalised state. The reason being the condition
previously mentioned: if we excited the quantum dot N times, we only accept a result
where the detector observes N/2 photons in the correct time-order. This condition
tremendously simplifies the density matrix. We shall refer to this density matrix as
the conditional density matrix, from which we can calculate the conditional decay
fidelity.
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6.2.2 The Conditional Decay Fidelity

The conditional density matrix is a sub-ensemble of the regular density matrix. A
sub-ensemble for which a measurement yields the value αi is, in general, described as

ρ̂i =
Piρ̂Pi
Tr[Piρ̂]

, (6.29)

where ρ̂ is the density matrix and Pi is an operator projecting ρ̂ into the sub-ensamble
ρ̂i. In our case the sub-ensemble of interest is where we detect exactly N/2 photons
if we excite the quantum dot N times and where we only accept results where each
photon arrive at the detector at the expected time. Thus we write the conditional
density matrix as:

ρ̂c =
PN

2
ρ̂PN

2

Tr[PN
2
ρ̂]
, (6.30)

where PN
2

are projection operators enforcing the conditions discussed above and
Tr[PN

2
ρ̂] is the probability of detecting N/2 photons in the correct time-order.

From the conditional density matrix (6.30) we define the conditional decay fidelity
as

Fc = 〈ψN/2ideal,GHZ | ρ̂c |ψ
N/2
ideal,GHZ〉 (6.31)

=
1

Tr[PN
2
ρ̂]
〈ψN/2ideal,GHZ |PN

2
ρ̂PN

2
|ψN/2ideal,GHZ〉 , (6.32)

where

|ψN/2ideal,GHZ〉 =
1√
2

(
|↑〉 |0, e〉

⊗ N
2 + |↓〉 |l, 0〉

⊗ N
2
)
. (6.33)

The equation defining the conditional fidelity (6.32) is now solved by first considering
the expression in the numerator and then the expression in the denominator. Starting
with the numerator, we calculate the projected density matrix for N = 2. The
projection operator is

PN
2

=1 = |0, e〉 〈0, e|+ |φ, e′〉 〈φ, e′|+ |l, 0〉 〈l, 0|+ |l′, φ〉 〈l′, φ|+ |l′, 0〉 〈l′, 0| . (6.34)

The definition of the projection operator (6.34) is important if one wishes to apply
the results found in this section. Since PN/2=1 removes the two states containing
two photons in (6.29), |l, e′〉 and |l′, e′〉, the experimental setup should be designed
such that these two states can be discarded. A photon-number-resolving detector
would be a possible solution, however, current photon-number-resolving detectors
show inadequate performance [46] for our purpose. Fortunately there is a better
solution. Implementing a frequency filter will remove the unwanted states as they
both contain high energy photons emitted by the decay path β⊥.
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The density matrix becomes
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To complete the calculation of the numerator we determine the overlap with the ideal
state for N = 2, which gives
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where β‖ represents the probability that the spin decays into the good ground state
while the emitted photon is detected, see fig. 6.5. This shows that the state is
immensely simplified by the applied conditions and the calculated overlap with the
ideal GHZ state, as expected. Evidently so much that the only possible way to
generate a state complying with this is if and only if the spin decays into the correct
state after every excitation without any photon loss. This is, in fact, true for any
number of created photons, hence

〈ψN/2ideal,GHZ |PN
2
ρ̂PN

2
|ψN/2ideal,GHZ〉 = β

N/2
‖ (6.39)

Now we will evaluate the denominator of the conditional density fidelity (6.32), which
is the probability of detecting N/2 photons. We write this as Tr[PN

2
ρ], where ρ is given

by (6.29). Instead of explicitly calculating the probability, it is possible to imagine
every scenario which can create these N/2 photons. We imagine 4 possible scenarios,
which, if we excite the quantum dot twice, would lead to the detection of a single
photon. The 4 scenarios are

1. Everything goes according to plan. This happens with probability β‖.

2. The second excitation, which creates the late photon, goes to the bad state but
still hits the detector. This happens with probability 1

2β⊥.

3. The first excitation creates a photon which hits the detector, but the spin ends
up in the bad state. The photon from the second excitation is lost and the
spin ends up in either the good or bad state. This happens with probability
1
2β⊥(β′⊥ + β′‖)

4. The photon from the first excitation is lost and the spin ends up in the bad state.
The photon from the second excitation hits the detector and the spin ends up
in either the good or bad state. This happens with probability 1

2β
′
⊥(β⊥ + β‖).
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Hence the total probability of detecting a single photon, if we excite the quantum dot
twice, is

Tr[PN
2

=1ρ] =

(
1

2

(
2β‖ + β⊥ + β⊥(β′⊥ + β′‖) + β′⊥(β⊥ + β‖)

))
, (6.40)

which we generalize to N/2 photons gving

Tr[PN
2
ρ] =

(
1

2

(
2β‖ + β⊥ + β⊥(β′⊥ + β′‖) + β′⊥(β⊥ + β‖)

))N
2

. (6.41)

When applying the generalisation in (6.41), it is assumed that each time a new photon
is created, the spin is in the correct superposition. Or, in other words, we have not
taken into account that errors can propagate from the creation of a photon to the
next photon. This is clearly possible in scenario 2-4 since the spin here can end up in
the bad state. As a consequence the generalisation to N/2 photons only holds true,
strictly speaking, if scenario 1 is dominant, i.e. β‖ ∼ 1. If the branching ration is
sufficiently bad and/or the system is sufficiently lossy, the generalisation breaks down.

Both the numerator and denominator have now been evaluated in (6.39) and (6.41) re-
spectively, so the conditional decay fidelity (6.32) can be determined. After rewriting
the expression to a simplified form, the conditional decay fidelity becomes:

Fc =

(
1 +

β⊥
2β‖

(1 + 2β′⊥ + β′‖) +
β′⊥
2

)−N/2
. (6.42)

The remaining part of this section is devoted to a discussion of the result in (6.42). In
this discussion, it is beneficial to redefine the parameters by deconstructing them. The
probabilities introduced in these redefinitions are visualised in fig. 6.6 which shows
a schematic drawing of the setup. This is easiest done by first defining the following
probabilities:

β′⊥ = β′⊥,QD + β⊥(1− η⊥) (6.43)

β′‖ = β′‖,QD + β‖(1− η‖), (6.44)

where β′⊥,QD (β′‖,QD) is the probability of losing a photon at the moment of emis-
sion such that it never couples into the desired waveguide mode, but instead into a
free space mode, while the spin ends up in the bad (good) state and η⊥ (η‖) is the
probability of collecting and detecting a high energy photon (low energy photon) after
it is coupled into the waveguide mode. This includes collecting the photon from the
waveguide, the subsequent propagation loss and detector inefficiency. Also, in the case
of η⊥, the aforementioned frequency cavity can be included. If the cavity filters out
all high energy photons then η⊥ = 0. We shall assume the two loss parameters β′⊥,QD
and β′‖,QD to be equal and write them as a single parameter defined as the probabil-
ity that an emitted photon couples into a free space mode instead of the waveguide:
β′⊥,QD = β′‖,QD = βfs/2.
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Figure 6.6: Schematic drawing of the setup illustrating the probabil-
ities introduced in (6.43)-(6.46). The red circle represents the quantum
dot placed in a waveguide and the shaded semi circle represents the

photon detector.

Since β⊥ and β‖ are the probabilities of detecting a photon, we can write them as

β⊥ = β⊥,QDη⊥ (6.45)
β‖ = β‖,QDη‖, (6.46)

where β⊥,QD (β‖,QD) is the probability for the low (high) energy photon to be emitted
into the waveguide mode. These two probabilities are connected to βfs via conserva-
tion of probability: βfs = 1−β⊥,QD−β‖,QD. The probability βfs can be obtained from
the β factor (see section 3.2.1) where, as previously mentioned, a value of β ≈ 0.98
has been observed corresponding to βfs = 0.02 and β⊥,QD + β‖,QD = 0.98.
Figure 6.7 and 6.8 show the conditional decay fidelity for a single photon without and
with a frequency filter applied.

Figure 6.7: The conditional decay fidelity for a single photon without
a frequency filter. Each contour line corresponds to a change in the
fidelity of 0.01. In a we have chosen η⊥ = η‖ = 0.025 and in b

η⊥ = η‖ = 0.45.
.

Figure 6.7 shows that if the probability of collecting and detecting a photon is in-
creased, an increased dependence on the branching ratio β⊥,QD/β‖,QD is evident.
This is because detecting a good photon does less good than detecting a bad photon
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does bad. Hence, improving the collection and detection probability is not beneficial
unless the unwanted high energy photons are filtered. This is shown in fig. 6.8.

Figure 6.8: The conditional decay fidelity for a single photon with
a frequency cavity. Each contour line corresponds to a change in the
fidelity of 0.01. We have chosen β′⊥,QD + β′‖,QD = 0.02. In a we have
chosen η⊥ = 0.001 and η‖ = 0.025 and in b η⊥ = 0.001 and η‖ = 0.05.

.

Clearly a nearly perfect frequency filter relaxes the dependency on β⊥,QD/β‖,QD sig-
nificantly. For η⊥ = 0.001 and η‖ = 0.05 (fig. 6.8b), the dependence is approximately
gone. In this case is the only remaining dependency of βfs which can be obtained from
the β factor (see section 3.2.1) where, as previously mentioned, a value of β ≈ 0.98
has been observed. This corresponds to βfs = 0.02 achieving Fc ≈ 1. For η⊥ = 0.001
and η‖ = 0.025 (fig. 6.8a), where we see a small dependency on the branching ratio,
Fc > 0.99 can be achieved by β⊥,QD/β‖,QD . 0.09 when βfs = 0.02.
Note that the frequency filter reduces the efficiency, i.e. the repetition rate of the
protocol, hence a low branching ratio is still desirable if one wishes to obtain a high
efficiency.

As a final remark of this section, we will discuss the generation of GHZ states. Figure
6.9 shows the conditional decay fidelity as a function of the number of photons in the
GHZ state given five different values of βfs. It is found that we can achieve Fc ≈ 0.945
for a 5 photon GHZ state if we include a nearly perfect frequency filter and a free
space coupling of βfs = 0.02. Reducing the free space coupling by a factor of 10 would
yield Fc ≈ 0.99 for a 5 photon state and increasing it with a factor of 2 would yield
Fc ≈ 0.9, hence βfs is vital if we wish to create GHZ states.



6.2. Imperfect Decay Ratio and Photon Loss 55

Figure 6.9: Conditional decay fidelity for a GHZ state with η⊥ =
0.001, η‖ = 0.025 and β⊥,QD/β‖,QD = 0.05.

As hinted in fig. 6.8a, implementing a frequency filter still leaves us with a consid-
erable dependence on β⊥,QD/β‖,QD if η‖ is too low. This effect is further studied in fig.
6.10. A value of β⊥,QD/β‖,QD ≈ 0.01 is seen to be sufficient to achieve a reasonable
decay fidelity for the chosen loss and detection probabilities.

Figure 6.10: Conditional decay fidelity for a GHZ state with η⊥ =
0.001, η‖ = 0.025 and βfs = 0.02

.
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6.3 Phonon Induced Pure Dephasing

The last imperfection we will study for the time-bin entanglement protocol is pure
dephasing of the trion induced by scattering phonons as shown in fig. 6.11. While the
spin is excited, phonons can scatter upon the trion and thereby inducing a random
phase γd.

Figure 6.11: Effective level diagram showing an incoming phonon
with wavenumber k′ scatter upon the trio and an outgoing phonon
with wavenumber k. Only two energy levels, |↑〉 and |⇑〉, are included
as they are sufficient to describe the scattered phonons and the subse-

quent decay.

The outline of this section is as follows: the Hamiltonian (4.9) and the wavefunction
(4.10) is rewritten to describe the system shown in fig. 6.11. To simplify the equations
of motion, the free propagation of the phonons is removed by changing to an appro-
priate rotating frame before solving the Schrödinger equation. Lastly, the fidelity is
calculated for a GHZ state quantifying the effect of phonon induced pure dephasing.
This fidelity is refereed to as the dephasing fidelity.

6.3.1 Hamiltonian and Wavefunction

We go back to the Hamiltonian (4.9) describing a four-level system in an external
magnetic field and rewrite it to a two-level system

Ĥtwo−level = Ĥtwo−level
0 + Ĥtwo−level

Zeeman + Ĥtwo−level
field + Ĥtwo−level

int , (6.47)

where

Ĥtwo−level
0 = ω0 |⇑〉 〈⇑| (6.48)

Ĥtwo−level
Zeeman =

δg
2
|↑〉 〈↑| (6.49)

Ĥtwo−level
field = ivg

∫
dz
∂â†(z)

∂t
â(z) (6.50)

Ĥtwo−level
int = g

∫
dzδ(z)

(
e−ik0z(|↑〉 〈⇑| â†(z) + eik0z |⇑〉 〈↑| â(z)

)
(6.51)

Ĥphonon =
∑
k′

ωk′ b̂
†
k′ b̂k′ +

∑
k,k′

gkk′ b̂
†
k b̂k′ |⇑〉 〈⇑| . (6.52)
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Furthermore we add to (6.47) a term containing the phonon bath and a term contain-
ing the trion-phonon interaction. The total Hamiltonian is then

Ĥ = Ĥtwo−level + Ĥphonon, (6.53)

where

Ĥphonon =
∑
k′

ωk′ b̂
†
k′ b̂k′ +

∑
k,k′

gkk′ b̂
†
k b̂k′ |⇑〉 〈⇑| . (6.54)

The ladder operator b̂k (b̂†k) annihilates (creates) a phonon with wavevector k. The
first term in ĤPhonon is the energy of the phonon bath, where ω′k is the energy of
phonon with wavenumber k′ and the second term is the phonon coupling to the trion
state, where gkk′ is the coupling constant.

The wavefunction (4.10) must also be rewritten. Assuming the decay rate is suffi-
ciently fast compared to the phonon scattering rate, the probability of having more
than one phonon scattering on the exciton is zero. The wave function can then be
defined as a superposition of the case where no phonon is scattered and the case where
a single phonon is scattered, which gives:

|ψ(t)〉 = c⇑(t)e
−ω0t |⇑, 0, 0〉 ⊗ {bk′}+

∑
k

c
(k)
⇑ (t)e−ωktb̂†k |⇑, 0, 0〉 ⊗ {bk′}

+
√
vg

∫
dtec↑(t, te)â

†(z0) |↑, 0, 0〉 ⊗ {bk′} (6.55)

+
√
vg

∫
dte
∑
k

c
(k)
↑ (t, te)e

−iωktâ†(z0)b̂†k |↑, 0, 0〉 ⊗ {bk′}.

with the short-hand notation |⇑, 0, 0〉 ≡ |⇑〉 ⊗ |0〉photon ⊗ |0〉phonon, where |0〉photon
(|0〉phonon) is the vacuum state of emitted photons (scattered phonons). The absolute
square of c⇑(t) is the probability that no phonons is scattered upon the trion, c↑(t, te)
is the probability that no phonon was scattered upon the trion and a photon was
emitted at time te, c

(k)
⇑ (t) is the probability that a single phonon was scattered upon

the trion and c(k)
↑ (t, te) is the probability that a single phonon was scattered upon the

trion and a photon was emitted at time te. Lastly, {bk′} is the phonon bath which we
shall assume to be in a coherent state and write it as a displaced vacuum state. In
appendix D it is argued that the spin bath can indeed be written as a coherent state
and the properties of the displacement operator needed in the calculations below are
listed. The wavefuncion (6.55) becomes

|ψ(t)〉 = c⇑(t)e
−ω0t |⇑, 0, 0〉 ⊗

∑
k′

D(βk′){0}

+
∑
k

c
(k)
⇑ (t)e−ωktb̂†k |⇑, 0, 0〉 ⊗

∑
k′

D(βk′){0}

+
√
vg

∫
dtec↑(t, te)â

†(z0) |↑, 0, 0〉 ⊗
∑
k′

D(βk′){0} (6.56)

+
√
vg

∫
dte
∑
k

c
(k)
↑ (t, te)e

−iωktâ†(z0)b̂†k |↑, 0, 0〉 ⊗
∑
k′

D(βk′){0}.

In the next section, we change to the rotating frame.
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6.3.2 Rotating Frame

Transforming (6.56) as

|ψ(t)〉 →
∑
k′

D†(βk′) |ψ(t)〉 , (6.57)

changes to a rotating frame which can be understood as a phononic interaction picture
since it removes the free propagation of the phonons. The Schrödinger equation
becomes

i
∑
k′

∂D†(βk′) |ψ(t)〉
∂t

= i
∑
k′

∂D†(βk′)

∂t
|ψ(t)〉+ i

∑
k′

D†(βk′)
∂ |ψ(t)〉
∂t

(6.58)

= i
∑
k′

∂D†(βk′)

∂t
|ψ(t)〉+

∑
k′

D†(βk′)Ĥ |ψ(t)〉 , (6.59)

where Ĥ is defined as in (6.53). To proceed we define the wavefunction (6.56) with
the phonon bath in the vacuum state as

|ψ̄(t)〉 = c⇑(t)e
−ω0t |⇑, 0, 0〉 ⊗ {0}

+
∑
k

c
(k)
⇑ (t)e−ωktb̂†k |⇑, 0, 0〉 ⊗ {0}

+
√
vg

∫
dtec↑(t, te)â

†(z0) |↑, 0, 0〉 ⊗ {0} (6.61)

+
√
vg

∫
dte
∑
k

c
(k)
↑ (t, te)e

−iωktâ†(z0)b̂†k |↑, 0, 0〉 ⊗ {0}.

Thus (6.59) can be written as

i
∑
k′

∂D†(βk′)

∂t
|ψ(t)〉+

∑
k′

D†(βk′)Ĥ |ψ(t)〉

= i
∑
k′

∂D†(βk′)

∂t
D(βk′) |ψ̄(t)〉+

∑
k′

D†(βk′)ĤD(βk′) |ψ̄(t)〉 . (6.62)

Using (6.61) and (6.62), we find

i
∂ |ψ̄(t)〉
∂t

= i
∑
k′

∂D†(βk′)

∂t
D(βk′) |ψ̄(t)〉+

∑
k′

D†(βk′)ĤD(βk′) |ψ̄(t)〉 , (6.63)
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which is the phononic interaction picture Schrödinger equation which we now proceed
to solve starting with the time-derivative of the conjugate transpose of the displace-
ment operator

dD†(βk′)

dt
=

d

dt

(
e−βk′ (t)b̂

†
k′eβ

∗
k′ (t)b̂k′e−

1
2
|βk′ |2

)
(6.64)

=
∂e−βk′ (t)b̂

†
k′

∂t
eβ
∗
k′ (t)b̂k′e−

1
2
|βk′ |2 + e−βk′ (t)b̂

†
k′
∂eβ

∗
k′ (t)b̂k′

∂t
e−

1
2
|βk′ |2 (6.65)

= −β̇k′(t)b̂†k′e
−βk′ (t)b̂

†
k′eβ

∗
k′ (t)b̂k′e−

1
2
|βk′ |2

+ e−βk′ (t)b̂
†
k′ β̇∗k′(t)b̂k′e

β∗
k′ (t)b̂k′e−

1
2
|βk′ |2 (6.66)

= −β̇k′(t)b̂†k′D
†(βk′) + e−βk′ (t)b̂

†
k′ β̇∗k′(t)b̂k′e

βk′ (t)b̂
†
k′

e−βk′ (t)b̂
†
k′eβ

∗
k′ (t)b̂k′e−

1
2
|βk′ |2 (6.67)

= −β̇k′(t)b̂†k′D
†(βk′) + β̇∗k′(t)e

−βk′ (t)b̂
†
k′ b̂k′e

βk′ (t)b̂
†
k′D†(βk′) (6.68)

=
(
− β̇k′(t)b̂†k′ + β̇∗k′(t)e

−βk′ (t)b̂
†
k′ b̂k′e

βk′ (t)b̂
†
k′
)
D†(βk′) (6.69)

=
(
− β̇k′(t)b̂†k′ + β̇∗k′(t)

(
b̂k′ + βk′(t)

))
D†(βk′) (6.70)

=
(
− β̇k′(t)b̂†k′ + β̇∗k′(t)b̂k′ + β̇∗k′(t)βk′(t)

)
D†(βk′) (6.71)

=
(
iωk′βk′(t)b̂

†
k′ + iωk′β

∗
k′(t)b̂k′ + iωk′ |βk′ |2

)
D†(βk′). (6.72)

where (D.5) is applied in (6.66) and the first term in (6.67) and (D.6) is applied
in (6.70). Inserting (6.72) into the photonic interaction Hamiltonian Schrödinger
equation (6.63) yields

i
∂ |ψ̄(t)〉
∂t

=−
∑
k′

(
ωk′βk′(t)b̂

†
k′ + ωk′β

∗
k′(t)b̂k′ + ωk′ |βk′ |2

))
|ψ̄(t)〉

+
∑
k′

D†(βk′)ĤD(βk′) |ψ̄(t)〉 . (6.73)

Before evaluating the second term on the right hand side of (6.73), we note that the
only part of Ĥ which is affected by the displacement operator is Ĥphonon, since it is
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the only part with non-commuting operators. Therefore, it is sufficient to evaluate

D†(βk′)ĤphononD(βk′) =
∑
k,k′

D†(βk′)
(
ωk′b

†
k′ b̂k′ + gkk′ b̂

†
k b̂k′ |⇑〉 〈⇑|

)
D(βk′) (6.74)

=
∑
k,k′

ωk′D
†(βk′)b̂

†
k′ b̂k′D(βk′)

+ gkk′D
†(βk′)b̂

†
k b̂k′D(βk′) |⇑〉 〈⇑| (6.75)

=
∑
k,k′

ωk′D
†(βk′)b̂

†
k′D(βk′)

(
b̂k′ + βk′(t)

)
+ gkk′D

†(βk′)b̂
†
kD(βk′)

(
b̂k′ + βk′(t)

)
|⇑〉 〈⇑| (6.76)

=
∑
k,k′

ωk′
(
b̂†k′ + β∗k′(t)

)(
b̂k′ + βk′(t)

)
+ gkk′

(
b̂†k + β∗k′(t)

)(
b̂k′ + βk′(t)

)
|⇑〉 〈⇑| (6.77)

=
∑
k,k′

ωk′
(
b†k′ b̂k′ + b̂†k′βk′(t) + β∗k′(t)b̂k′ + |βk′ |2

)
+ gkk′

(
b̂†k b̂k′ + b̂†kβk′(t) + β∗k′(t)b̂k′ + |βk′ |2

)
|⇑〉 〈⇑| . (6.78)

In (6.76) and (6.77) we have used (D.6).
Inserting the expression derived in (6.78) into (6.73) yields

i
∂ |ψ̄(t)〉
∂t

= −
∑
k′

(
ωk′βk′(t)b̂

†
k′ + ωk′β

∗
k′(t)b̂k′ + ωk′ |βk′ |2

))
|ψ̄(t)〉

+
(
Ĥ0 + ĤZeeman + ĤPhoton

)∑
k′

D†(βk′)ĤphononD(βk′) |ψ̄(t)〉 (6.79)

= −
∑
k′

(
ωk′βk′(t)b̂

†
k′ + ωk′β

∗
k′(t)b̂k′ + ωk′ |βk′ |2

))
|ψ̄(t)〉

+
(
Ĥ0 + ĤZeeman + ĤPhoton

)
|ψ̄(t)〉

+
∑
k′

ωk′
(
b†k′ b̂k′ + b̂†k′βk′(t) + β∗k′(t)b̂k′ + |βk′ |2

)
|ψ̄(t)〉 (6.80)

+
∑
k,k′

gkk′
(
b†k b̂k′ + b̂†kβk′(t) + β∗k′(t)b̂k′ + |βk′ |2

)
|⇑〉 〈⇑| |ψ̄(t)〉

=
(
Ĥ0 + ĤZeeman + ĤPhoton

)
|ψ̄(t)〉+

∑
k′

ωk′ b̂
†
k′ b̂k′ |ψ̄(t)〉

+
∑
k,k′

gkk′
(
b†k b̂k′ + b̂†kβk′(t) + β∗k′(t)b̂k′ + |βk′ |2

)
|⇑〉 〈⇑| |ψ̄(t)〉 . (6.81)

The first three terms in (6.81) contain no information about the phonon induced pure
dephasing: Ĥ0 couples the excited states (c⇑(t) and c(k)

⇑ (t)) to themselves, ĤZeeman

couples the ground states (c↑(t, te) and c(k)
↑ (t, te)) to themselves and ĤPhoton couples

c⇑(t) to c↑(t, te) and c
(k)
⇑ (t) to c(k)

↑ (t, te) via absorption and emission of a photon. The
calculations necessary to evaluate these three terms are similar to those performed in
section 4.3 and will, for this reason, not be shown explicitly.
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The remaining terms will however be calculated explicitly:∑
k′

ωk′ b̂
†
k′ b̂k′ |ψ̄(t)〉+

∑
k,k′

gkk′
(
b̂†k b̂k′ + b̂†kβk′(t) + β∗k′(t)b̂k′ + |βk′ |2

)
|⇑〉 〈⇑| |ψ̄(t)〉

=
(∑
k′

ωk′ b̂
†
k′ b̂k′ +

∑
k,k′

gkk′
(
b̂†k b̂k′ + b̂†kβk′(t) + β∗k′(t)b̂k′ + |βk′ |2

)
|⇑〉 〈⇑|

)
(
c⇑(t)e

−ω0t |⇑, 0, 0〉+
∑
k

c
(k)
⇑ (t)e−ωktb̂†k |⇑, 0, 0〉

+
√
vg

∫
dtec↑(t, te)â

†(z0) |↑, 0, 0〉 (6.82)

+
√
vg

∫
dte
∑
k

c
(k)
↑ (t, te)e

−iωktâ†(z0)b̂†k |↑, 0, 0〉
)

= c⇑(t)e
−iω0t

∑
k,k′

gkk′βk′(t) |⇑, 0, 0〉+
∑
k

ωkc
k
⇑(t)e

−iωktb̂†k |⇑, 0, 0〉

+
∑
k,k′

gkk′c
k
⇑(t)e

−iωktβ∗k′(t)b̂
†
k |⇑, 0, 0〉 (6.83)

+
√
vg

∫
dte
∑
k

ωkc
(k)
↑ (t, te)e

−iωktâ†(z0)b̂†k |↑, 0, 0〉 .

By inserting the expression in (6.83) back into (6.81), the Schrödinger equation yields

i
∂ |ψ̄(t)〉
∂t

=
(
Ĥ0 + ĤZeeman + ĤPhoton

)
|ψ̄(t)〉

+ c⇑(t)e
−iω0t

∑
k,k′

gkk′βk′(t) |⇑, 0, 0〉

+
∑
k

ωkc
k
⇑(t)e

−iωktb̂†k |⇑, 0, 0〉 (6.84)

+
∑
k,k′

gkk′c
k
⇑(t)e

−iωktβ∗k′(t)b̂
†
k |⇑, 0, 0〉

+
√
vg

∫
dte
∑
k

ωkc
(k)
↑ (t, te)e

−iωktâ†(z0)b̂†k |↑, 0, 0〉 .

We can now obtain four coupled differential equations by multiplying (6.84) with
〈⇑, 0, 0|, 〈⇑, 0, 0| b̂k, 〈↑, 0, 0| â(z) and 〈⇑, 0, 0| â(z)b̂k, respectively

ċ⇑(t) = −i g
√
vg
c↑(t, te)− i

∑
k,k′

gkk′c
(k)
⇑ (t)e−i(ωk−ω0)tβ∗k′(t) (6.85)

∑
k

ċ
(k)
⇑ (t) = −i g

√
vg

∑
k

c
(k)
↑ (t, te)− i

∑
k,k′

gkk′c⇑(t)e
i(ωk−ω0)tβk′(t) (6.86)

ċ↑(t, te) = −iδg
2
c↑(t, te)− i

g
√
vg
δ(t− te)c⇑(t) (6.87)∑

k

ċ
(k)
↑ (t, te) = −iδg

2

∑
k

c
(k)
↑ (t, te)− i

g
√
vg
δ(t− te)

∑
k

c
(k)
⇑ (t). (6.88)

Imposing the boundary conditions c↑(t = 0) = 1 and c
(k)
⇑ (t = 0) = c↑(t = 0, te) =

c
(k)
↑ (t = 0, te) = 0, integrating (6.86) and (6.87) and inserting c↑(t, te) and c(k)

⇑ (t) into
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(6.85) yields

ċ⇑(t) = −g
2

vg
c⇑(t)−

∑
k,k′,k′′

gkk′gkk′′βk′′(t)e
−iωkt

t∫
0

dt′c⇑(t
′)βk′(t

′)eiωkt
′
. (6.89)

Averaging over the displacement coefficients in (6.89) sets k′ = k′′, and (6.89) becomes

˙̄c⇑(t) = −g
2

vg
c⇑(t)−

∑
k,k′

|gkk′ |2|β̄k′ |2
t∫

0

dt′c⇑(t
′)e−i(ωk−ωk′ )(t−t

′). (6.90)

To proceed, we perform the Weisskopf-Wigner approximation: assuming c⇑(t′) varies
little in the time interval t ∼ t′, where the integral has a non-zero value, we may
replace c⇑(t′) with c⇑(t). This approximation can be recognised as Markovian, since
it effectively states that the dynamics of c⇑(t) is independent of time t > t′, i.e. the
system has no memory of the past. Applying the Weisskopf-Wigner approximation to
(6.90) yields

˙̄c⇑(t) = −g
2

vg
c⇑(t)−

∑
k,k′

|gkk′ |2|β̄k′ |2c⇑(t)
t∫

0

dt′e−i(ωk−ωk′ )(t−t
′) (6.91)

= −g
2

vg
c⇑(t)−

∑
k,k′

|gkk′ |2|β̄k′ |2c⇑(t)πδ(ωk − ωk′), (6.92)

where the Cauchy principal part has been omitted in (6.92). The solution to (6.92) is

c̄⇑(t) = e−
γ
2
t−γdt, (6.93)

where γ ≡ g2

2vg
and γd ≡ π

∑
k,k′ |gkk′ |2|β̄k′ |2δ(ωk − ωk′).

From (6.86), the coefficient c(k)
⇑ (t) is seen to be

c
(k)
⇑ (t) = −ie−

γ
2
t−iω0t

∑
k′

gkk′

t∫
0

dt′βk′(t
′)eiωkt

′
(6.94)

To solve (6.94), we take the absolute square, average and include the sum of k, ob-
taining

∑
k

|c̄(k)
⇑ (t)|2 =

∑
k,k′

|gkk′ |2|β̄k′ |2e−γt
t∫

0

dt′
t∫

0

dt′′ei(ωk+iωk′ )(t
′−t′′)−γd(t′+t′′). (6.95)
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Defining the new parameters τ = t−t′′ and s = t′+t′′ allows us to perform integration
by substitution in (6.95)

∑
k

|c̄(k)
⇑ (t)|2 =

1

2

∑
k,k′

|gkk′ |2|β̄k′ |2e−γt
2t∫

0

dτ

∞∫
−∞

ds ei(ωk+iωk′ )τ−γds (6.96)

=
∑
k,k′

|gkk′ |2|β̄k′ |2e−γtπδ(ωk − ωk′)
2t∫

0

dτe−γds (6.97)

= π
∑
k,k′

|gkk′ |2|β̄k′ |2e−γtδ(ωk − ωk′)
1

γd
(1− e−2γd) (6.98)

= e−γt(1− e−2γd). (6.99)

Note that the coefficients (6.92) and (6.99) for the two excited states satisfy

|c̄⇑(t)|2 +
∑
k

|c̄(k)
⇑ (t)|2 = e−γt−2γdt + e−γt(1− e−2γd) (6.100)

= e−γt (6.101)

as expected.

The two ground state coefficients can be determined using a Laplace transformation,
for which the calculation is similar to the one performed in section 4.3, yielding

c̄↑(t, te) =
√
γe−i

δg
2

(t−te)− γ2 te−γdteθ(t− te) (6.102)∑
k

|c̄(k)
↑ (t, te)|2 = γe−γte(1− e−2γdte)θ(t− te). (6.103)

In the next section, we define the ideal state and output state from the coefficients
(6.102) and (6.103) and in section 6.3.4 we calculate the dephasing fidelity using these
states.

6.3.3 Ideal State and Output State

Ideally, the probability of a phonon scattering upon the trion is zero, corresponding
to evaluating (6.102) at γd = 0, which gives

c̄↓(t, te)
∣∣∣
γd=0

=
√
γe−i

δg
2

(t−te)− γ2 teθ(t− te) (6.104)

The ideal GHZ state can now be defined by inserting the coefficient in (6.104) into
the wavefunction (6.55) and generalising to N/2 photons. The ideal GHZ state is:

|ψdephasingideal,GHZ〉 =
1√
2

( N−1∏
j′=1,3

c̄↑(t, te,j′)
∣∣∣
γd=0

|↓, e′, 0〉⊗N/2

+

N∏
i′=2,4

c̄↑(t, te,i′)
∣∣∣
γd=0

|↑, l′, 0〉⊗N/2
)
, (6.105)

where the prime symbols are included such that the photon states in (6.105) can be
distinguished from the photon states in the output state defined below. In the output
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state, the probability of a photon to scatter and not scatter are both included and the
GHZ output state is defined from (6.102), (6.103) and (6.55) as

|ψdephasingoutput,GHZ〉 =
1

2

N−1∏
j=1,3

(
c̄↓(t, te,j) |↓, e, 0〉⊗N/2

+
∑
k

c̄
(k)
↓ (t, te,j) |↓, e, 1k〉⊗N/2

)
+

1

2

N∏
i=2,4

(
c̄↑(t, te,j) |↑, l, 0〉⊗N/2 (6.106)

+
∑
k

c̄
(k)
↑ (t, te,j) |↓, l, 1k〉⊗N/2

)

6.3.4 Dephasing Fidelity

Before calculating the fidelity, we perform a partial trace of the output density matrix
to remove the phononic subsystem, since the phonons are not measured. The output
density matrix is

ρ̂output = |ψdephasingoutput,GHZ〉 〈ψ
dephasing
output,GHZ | (6.107)

The reduced output density matrix, where the phononic subsystem is removed, is

ρ̂′output = Trphonon
[
ρ̂output

]
(6.108)

= 〈0| ρ̂output |0〉+
∑
k

〈1k| ρ̂output |1k〉 (6.109)

=
1

4

(
|↓, e〉⊗N/2 〈e, ↓|⊗N/2

N−1∏
j=1,3

(
|c̄↓(t, te,j)|2 +

∑
k

|c̄(k)
↓ (t, te,j)|2

)
+ |↑, l〉⊗N/2 〈l, ↑|⊗N/2

N∏
i=2,4

(
|c̄↑(t, te,i)|2 +

∑
k

|c̄(k)
↑ (t, te,i)|2

)
+ |↑, l〉⊗N/2 〈e, ↓|⊗N/2

N∏
i=2,4

N−1∏
j=1,3

c̄↑(t, te,i)c̄
∗
↓(t, te,j) (6.110)

+ |e, ↓〉⊗N/2 〈↑, l|⊗N/2
N∏

i=2,4

N−1∏
j=1,3

c̄↓(t, te,j)c̄
∗
↑(t, te,i)

+ |↑, l〉⊗N/2 〈e, ↓|⊗N/2
N∏

i=2,4

N−1∏
j=1,3

∑
k

c̄
(k)
↑ (t, te,i)c̄

∗(k)
↓ (t, te,j)

+ |e, ↓〉⊗N/2 〈↑, l|⊗N/2
N∏

i=2,4

N−1∏
j=1,3

∑
k

c̄
(k)
↓ (t, te,j)c̄

∗(k)
↑ (t, te,i),
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where the last two terms in (6.110) are removed by the Markov approximation. The
fidelity is from (6.105) and (6.110) defined as

Fdephasing = 〈ψdephasingideal,GHZ | ρ̂
′
output |ψ

dephasing
ideal,GHZ〉 (6.111)

=
1

8

((
| 〈e|e′〉 |2

)⊗N/2 N−1∏
j=1,3
j′=1,3

|c̄↓(t, te,j)|2|c̄↓(t, te,j′)|2
∣∣∣
γd=0

(6.112)

+
(
| 〈e|e′〉 |2

)⊗N/2 N−1∏
j=1,3
j′=1,3

∑
k

|c̄(k)
↓ (t, te,j)|2

)
|c̄↓(t, te,j′)|2

∣∣∣
γd=0

+
(
| 〈l|l′〉 |2

)⊗N/2 N∏
i=2,4
i′=2,4

|c̄↑(t, te,i)|2|c̄↑(t, te,i′)|2
∣∣∣
γd=0

(6.113)

+
(
| 〈l|l′〉 |2

)⊗N/2 N∏
i=2,4
i′=2,4

∑
k

|c̄(k)
↑ (t, te,i)|2|c̄↑(t, te,i′)|2

∣∣∣
γd=0

+
(
〈′l|l〉 〈e|e′〉

)⊗N/2 N∏
i=2,4
i′=2,4

N−1∏
j=1,3
j′=1,3

c̄↑(t, te,i)c̄
∗
↓(t, te,j)

(
c̄∗↑(t, te,i′)c̄↑(t, te,j′)

)∣∣∣
γd=0

+
(
〈′e|e〉 〈l|l′〉

)⊗N/2 N∏
i=2,4
i′=2,4

N−1∏
j=1,3
j′=1,3

c̄∗↑(t, te,i)c̄↓(t, te,j)
(
c̄↑(t, te,i′)c̄

∗
↑(t, te,j′)

)∣∣∣
γd=0

.

Solving (6.113) is simply a matter of integrating exponential functions. Plugging
(6.92),(6.99),(6.102),(6.103) and (6.104) into (6.113) and performing the integrals
yields Fdephasing and the result of this section:

Fdephasing =
1

2
+

1

2

( γ

γ + 2γd

)N
. (6.114)

As a final remark, a typical value of the dephasing rate γd is introduced. The dephasing
rate depends on the temperate of the system and the dimensionality of the structure
surrounding the quantum dot. For a 1 dimensional waveguide at 5 K, a parameter
value of 2γd ≈ 0.12 ns−1 is realistic [48].
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Figure 6.12: Each contour line corresponds to a change in the de-
phasing fidelity Fdephasing of 0.01.

Purcell enhancing to γ = 5.7 ns−1 and assuming a dephansing rate of 2γd =
0.12 ns−1 yields 2γd/γ ≈ 0.02. Fig. 6.12 shows that these parameter values achieve a
dephasing fidelity of Fdephasing ≈ 0.98 for a Bell state. A 4 photon GHZ state with
similar parameter values achieves a dephasing fidelity of Fdephasing ≈ 0.92. It is seen
in fig. 6.12 that further Purcell enhancement will be beneficial, since an increased
value of γ leads to an increased dephasing fidelity.

6.4 Combined Fidelity

To conclude the discussion of imperfections in the time-bin spin-photon entanglement
protocol, the combined fidelity is defined as:

FGHZcombined = F̄visibilityFdecayFdephasing. (6.115)

The value of the combined fidelity as a function of the number of photons is shown in
fig. 6.13. The parameter values applied in fig. 6.13 are shown in table 6.1.
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Figure 6.13: The combined fidelity defined as in (6.115) for a hole
and an electron with the realistic parameters values shown in 6.1.

The hole is in fig. 6.13 seen to be superior to the electron when aiming at achieving a
high combined fidelity. This is due to the long coherence time T ∗2 of the hole compared
to the electron. In the case of a hole, a combined fidelity of FGHZcombined ≈ 0.97 is
achieved for a Bell state and FGHZcombined ≈ 0.9 for a 4 photon GHZ state. In the case
of an electron, a combined fidelity of FGHZcombined ≈ 0.95 is achieved for a Bell state and
FGHZcombined ≈ 0.82 for a 4 photon GHZ state.

γ [ns−1] 2γd [ns−1] T ∗2 [ns] βfs β⊥,QD/β‖,QD η⊥ η‖
Electron: 5.7 0.12 2.0 0.02 0.05 0.001 0.05
Hole: 5.7 0.12 20.2 0.02 0.05 0.001 0.05

Table 6.1: Realistic parameter values used in fig. 6.13. The only
difference between a hole and an electron is the coherence time T ∗2 .

As a last remark, the perturbative expansion of FGHZcombined in the limit FGHZcombined ≈ 1
is shown:

FGHZcombined ≈1− n
(

2
σ2

γ2
+

1

2

(
β′⊥,QD + β⊥,QDη⊥(1− η⊥) +

β⊥,QD
β‖,QD

(1 + 2β′⊥,QD

+ 2β⊥,QDη⊥(1− η⊥) + β′‖,QD + β‖,QDη‖(1− η‖))
)

+ 2
γd
γ

)
, (6.116)

where n = N/2 is the number of photons in the GHZ state. Ideally, the combined
fidelity is FGHZcombined = 1 but the creation of each photon subtracts the term in the big
parentheses in (6.116). Purcell enhancing reduces the contribution of F̄visibility and
Fdephasing and lowering the free space coupling and implementing a frequency filter in
in the experimental setup reduce the contribution from Fdecay.
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Chapter 7

Conclusion and Outlook

The results of this thesis are summarised in the conclusion and the need for further
theoretical analysis of the protocols are discussed in the outlook.

7.1 Conclusion

In this thesis, imperfections of two different spin-photon entanglement protocols re-
alised by quantum dots embedded in waveguides have been studied. These imper-
fections arise from unwanted interactions between the system creating the entangled
spin-photon states and the environment and from limited performance of experimen-
tal equipment. The first protocol creates frequency entangled spin-photon Bell states
and two imperfections were studied: the first imperfection is caused by insufficient
separation of the ground states, which can lead to sub-maximal entanglement, and
the second imperfection is imperfect visibility caused partly by the nuclear Over-
hauser field and partly by time-jitter of the photon detector. These two imperfections
where quantified by the fidelities Fstate and F̄visibility, respectively. Considering both
imperfections, quantified by the combined fidelity Fcombined = FstateF̄visibility, an op-
timisation problem occurred which was examined using the perturbative expansion of
the combined fidelity

Fcombined ≈ 1− (δgε)
2

4
− γ2

4δ2
g

+
ε2γ2

8
− 2σ2

γ2
, (7.1)

with the following values of the external magnetic field and the decay rate optimising
the fidelity

Boptimal =

√
γ

ε(gµB/~))2
, γoptimal =

3

√
4σ2

ε
. (7.2)

In table 7.1, the main results of the study of imperfections in the frequency entangle-
ment protocol are summarised. It is found that the system applying a hole instead
of an electron is superior when comparing the performance based on the combined
fidelity for realistic parameter values.

ε [ns] T ∗2 [ns] ge/h γoptimal [ns−1] Boptimal [T] Fcombined
Electron: 0.03 2.0 0.5 4.0 0.26 ≈ 0.92
Hole: 0.03 20.2 0.08 0.87 0.76 ≈ 0.98

Table 7.1: The achieved combined fidelity Fcombined for the system
applying an electron or a hole. Realistic values are used for the time-
jitter ε, the coherence time T ∗2 , and the g factors ge/h. Optimal values
are used for the decay rate γ and the magnetic field B, which are

determined using the expressions in (7.2)
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The second protocol creates time-bin entangled spin-photon states for which three
imperfections were studied. The first imperfection involves sub-maximal visibility
caused by the nuclear Overhauser field. Due to the long coherence time of the hole
and utilising Purcell enhancement, it was shown that achieving a close-to-unitary
visibility fidelity is possible even for extremely large GHZ states. For an electron,
a close-to-unitary visibility fidelity is possible for a Bell state and four photon GHZ
state yielding a visibility fidelity of Fvisibility ≈ 0.97. The second imperfection involves
imperfect branching ratio of the spontaneous decay and photon loss. Assuming a free
space coupling of βfs = 0.02 and a branching ratio of β⊥,QD/β‖,QD = 0.05, a decay
fidelity of Fdecay ≈ 0.955 for a four photon GHZ state was achieved under the condi-
tion that all unwanted high energy photons are filtered out. The third imperfection
is phonon induced pure dephasing of the trion which was shown to be the most sig-
nificant imperfection in the time-bin entanglement protocol. Realistic values of decay
rate γ = 5.7 ns−1 and dephasing rate 2γd = 0.12 ns−1 yields a dephasing fidelity of
Fdephasing ≈ 0.98 for a Bell state and a dephasing fidelity of Fdephasing ≈ 0.92 of for a
4 photon GHZ state.
The combined effect of the three imperfections was shown in section 6.4. In the case
of a hole, a combined fidelity of FGHZcombined ≈ 0.97 is achieved for a Bell state and
FGHZcombined ≈ 0.9 for a 4 photon GHZ state. The applied parameter values are shown in
table 6.1. In the case of an electron, a combined fidelity of FGHZcombined ≈ 0.95 is achieved
for a Bell state and FGHZcombined ≈ 0.82 for a 4 photon GHZ state with the parameter
values likewise shown in table 6.1.

The results in this thesis show that the two studied protocols are promising and
likely to perform well if applied in the laboratory to create highly entangled states.

7.2 Outlook

In this section, the need for further theoretical investigation of the imperfections in two
protocols is discussed. Two different investigations should be considered: the possible
effect of imperfections which are not considered in this thesis and the limitations of the
combined fidelities defined in this thesis. An additional imperfection, which should
be considered, is the effect of inhomogeneous broadening [49]. The combined fidelities
applied in this thesis are defined in (5.50) and (6.115). The fidelities quantifying
the effect of imperfections studied in this thesis were calculated separately and simply
multiplied to obtained the combined fidelities. This method of obtaining an expression
for the combined imperfections is expected to be accurate if the effects of the individual
imperfections are small. In cases where the effects of the individual imperfections
become increasingly significant, the definitions of the combined fidelity (5.50) and
(6.115) can seem naive. In a further study, the possible correlations between the
different imperfection effects should be exploited and it should be studied whether
several imperfections can be simultaneously evaluated using alternative definitions of
the combined fidelity.
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Appendix A

Photon basis

A.1 Normalised Orthogonal Photon Basis

We start by explicitly showing that φ = −arc 〈ω+ |ω−〉 indeed orthogonalizes the
photon basis

〈θ+ | θ−〉 =
1

2
(e−iφ/2 〈ω+|+ eiφ/2 〈ω−|)(eiφ/2 |ω+〉+ e−iφ/2 |ω−〉) (A.1)

=
1

2
(eiφ 〈ω− |ω+〉 − e−iφ 〈ω+ |ω−〉). (A.2)

It is seen that the two terms in (A.2) becomes identical when φ = −arc 〈ω+ |ω−〉,
making |θ+〉 and θ− orthogonal.

To obtain the normalisation coefficients, we calculate

〈θ± | θ±〉 =
1

2
(e−iφ/2 〈ω+| ± eiφ/2 〈ω−|)(eiφ/2 |ω+〉 ± e−iφ/2 |ω−〉) (A.3)

= 1± 1

2
(eiφ 〈ω− |ω+〉+ e−iφ 〈ω+ |ω−〉) (A.4)

= 1± | 〈ω+ |ω−〉 |, (A.5)

where in the last line the orthogonalisation condition φ = −arc 〈ω+ |ω−〉 is applied.
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Appendix B

Coherence time

The definition of the coherence time T ∗2 is derived from the time evolution of the total
angular momentum along the x-direction Jx using the Heisenberg equation which in
general can be written as

d

dt
A(t) = i

[
Ĥ, A(t)

]
(B.1)

Using the Hamiltonian Ĥ = ∆δgJz and the commutator relations
[
Ji, Jj

]
= iεijkJk,

the time evolution of the in-plane total angular momenta is from the Heisenberg
equation derived as

J̇x = −∆δgJy (B.2)

J̇y = ∆δgJx, (B.3)

with the solution of the x-component

Jx = Jx(t = 0)
(

cos(∆δgt)− Jz(t = 0) sin ∆δgt
)
. (B.4)

We now average over Jx using the definition of the Overhauser field (5.33). We find

〈Jx〉 =
1√
2πσ

∞∫
−∞

d∆δgJx(t = 0)
(

cos(∆δgt)− Jz(t = 0) sin ∆δgt
)
e−

∆δ2g

2σ2 (B.5)

=
1√
2πσ
〈Jx(t = 0)〉

√
2πσe−

−t2σ2

2 (B.6)

= 〈Jx(t = 0)〉 e−
−t2σ2

2 . (B.7)

It is seen from (B.7) that σ characterises the time evolution of Jx and we define the
coherence time as

T ∗2 ≡
√

2

σ
(B.8)
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Appendix C

Combined Fidelity

C.1 Validity of the combined fidelity perturbative expres-
sion

Figure C.1: The orange curve is the exact combined fidelity
Fcombined = FstateF̄visibility and the blue curve is the perturbative ex-
pansion of the combined fidelity 5.62. Chosen values are σ = 0.07 ns−1,

gh = 0.08, ε = 0.03 ns and γ = 1 ns−1

The exact combined fidelity and the perturbative expansion is in excellent agreement,
especially in the area where fidelity reaches its maximal value, as expected.
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Appendix D

Phonons

D.1 Phonon Coherent State

To argue that the phonons can be written as a coherent state, we use the Glauber-
Sudarshan P representation which is a quasi probability distribution able to tell if a
system can be written as a coherent state. More specifically, the P representation is
the function P (β) which diagonalizes the density matrix ρ̂ in the basis of coherent
states {|β〉},

ρ̂ =

∫
P (β) |β〉 〈β| d2β. (D.1)

Assuming the quantum dot to be a black body, the P representation is

P
(
{βk}

)
=
∏
k

1

π〈n̂k〉
e−|β|

2/〈n̂k〉,

where

〈n̂k〉 =
1

e~ω/kBT − 1
(D.2)

which is know as Planck distribution or Bose-Einstein distribution.
If the quantum system has a classic analogue, in our case a coherent state, then P is
all ways non-negative. Hence, as long the Boltzmann factor e~ω/kBT is not below one,
we may assume the phonons to be in a coherent state. At sufficient low temperatures,
where only acoustic phonons need to be considered, this is indeed the case.

D.2 Displaced Vacuum

Since the phonons are in a coherent state, we may express them as displaced vacuum
states ∑

k

D(βk){0} = {βk}, (D.3)

where

D(βk) = eβk(t)b̂†k−β
∗
k(t)b̂k (D.4)
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is the displacement operator for a phonon with wavenumber k.
The following properties of the displacement operator will be needed:

D̂k(βk) = eβk(t)b̂†k−β
∗
k(t)b̂k = e−

1
2
|βk|2eβk(t)b̂†ke−β

∗
k(t)b̂k , (D.5)

and

D̂†(βk)b̂D̂(βk) = b̂+ βk (D.6)

D̂(βk)b̂D̂
†(βk) = b̂− βk. (D.7)
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