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Abstract

Neutrino oscillations were discovered two decades ago and the theory have since been
able to describe neutrino data accurately. The increase in detector capabilities coming
with advances in technology delivers oscillation parameter measurements with increasing
precision, which requires analyses of potential sub-leading effects to ensure that the data
is not misinterpreted.

Quantum decoherence of neutrinos has the potential to be such an effect, and is
motivated by certain quantum gravity models. It acts as a damping effect on neutrino
oscillation probabilities. In decoherence theory the neutrinos are coupled to the envi-
ronment, in which they propagate. This coupling can be described by a parameter, Γ,
that characterizes the frequency and magnitude of perturbations caused by "interactions"
with the environment. The coupling could depend on the neutrino energy, and models
where the energy dependence follows a power law with Γ = Γ0

(
Eν
GeV

)n
are investigated

in this thesis.
The existence of decoherence can be detected or limited by using the IceCube

detector located at the geographic South Pole. IceCube is one of the best detectors for
probing decoherence effects, due to the many different distances neutrinos generated in
the Earth’s atmosphere travel before detection. The potential to discover decoherence is
calculated by using pseudodata. IceCube has an expected sensitivity down to Γ = 1.6
feV at 90% confidence, when considering the energy independent decoherence case.
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1Introduction

This work includes the description of a theory of neutrinos propagating in an environment
to which they are coupled, and how this leads to an effect known as decoherence. A
prerequisite for this has been the understanding of how particles can be described with a
density matrix formalism. The decoherence effect can be defined by the three parameters
Γ21, Γ31, and Γ32, which arise from the Lindblad equation.

Neutrino oscillations are revisited in the decoherence framework, which required
investigation of various topics including the impact on oscillations, degeneracy of pa-
rameters, bounds on decoherence parameter space, implementation in software, and
dependence on energy.

The original motivation for the project was a tension in results from two separate
neutrino accelerator experiments, which could potentially be explained with decoherence.
The tension has been resolved since, but decoherence remains interesting as a probe for
certain quantum gravity models, which predicts the effect.

1.1 Brief history of neutrinos
Neutrinos were originally proposed by Wolfgang Pauli in 1930 [1] to explain why

the energies of electrons produced in β-decay were distributed over a range, rather than
having a single value, as expected in a two body decay due to conservation of energy.
This could be explained by characterizing β-decay as a three body problem. The electron
energies would then vary depending on how much of the energy went to the momentum
of the third particle. This new particle had to be neutral to conserve charge in the β-decay.

The neutrino wasn’t experimentally confirmed until 26 years later, when Cowan and
Reines detected the antielectron neutrino via inverse β-decay ν̄e + p→ n+ e+ [2]. In
the experiment, an antielectron neutrino interacts with a proton in a mixture of water and
cadmium chloride to create a neutron and a positron. The positron annihilates with an
electron in the medium shortly after creation and emits two γ-rays. After a delay, the
neutron is captured in cadmium, releasing more γ-rays. The neutrino is then detected
indirectly by observing this delayed light signature.

During the 1960’s the solar neutrino problem arose from results of the Homestake
experiment [3]. This experiment was only sensitive to the neutrino flavor created in the
sun, namely electron neutrinos. The neutrino flux observed at Homestake was about
1/3 of the expected flux predicted by solar fusion models. Neutrino oscillations were
proposed as a solution to the problem, but were not confirmed until the early 2000’s by
the Sudbury Neutrino Observatory (SNO) and Super Kamiokande experiments. This
explained the deficit in flux and resolved the issue. The neutrinos had changed flavor
along the way of propagation through oscillations. The Nobel prize in physics was
awarded to Arthur B. McDonald and Takaaki Kajita in 2015 for the discovery of neutrino
oscillations.
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Chapter 1 Introduction

1.2 Neutrinos and the Standard model
The Standard Model in physics has been widely successful in its predictions and

descriptions of elementary particle physics. It contains the description of three funda-
mental forces; electromagnetic, weak, and strong nuclear force, and how elementary
particles interact via these. One of the many reasons why the Standard Model has been
so successful is its predictive ability. Many of the known particles were theorized by
the Standard Model prior to their discovery, which enhances its credibility. One of the
only deviations observed so far is the fact that neutrinos are not massless, as predicted
in the model. Neutrinos are now known to oscillate, which is not possible if they were
massless.

The Standard Model particles displayed on figure 1.1, are grouped into two subgroups
called fermions and bosons. The fermions are spin-half particles and come in three
generations ranked from light to heavy. They are divided into two additional groups
called quarks and leptons. Quarks come in six different flavors, and are the constituents
of hadrons, such as protons, neutrons, and pions. Quark interactions occur via all
fundamental forces. The leptons include both charged and neutral particles. Charged
leptons interact electromagnetically, weakly, and gravitationally. Combined with baryons,
the lightest charged lepton, the electron, make up most of the visible matter in the
universe.

Figure 1.1. – Visualization of the Standard Model of particle physics. Taken from [4]

2



Chapter 1 Introduction

Neutral leptons, also called neutrinos, only interact weakly and gravitationally.
Neutrinos are the second most abundant particle in the universe, only outnumbered by
photons. They are extremely hard to detect due to the weakness of the weak force and
their small mass.

Bosons on the other hand, are particles of integer spin. The gauge bosons (all bosons
except the Higgs) mediate the force between interacting particles. Each force has its own
force carrier(s). The strong nuclear force is mediated by gluons, and has the strongest
coupling constant of all fundamental force, hence the name. The strength of the force
increases with distance, as opposed to the other forces. For this reason quarks can never
be observed alone. At large enough distances it is simply energetically favorable to create
a new pair of quarks instead of further increasing the force. This phenomenon is also
know as color confinement.

The weak nuclear force includes a charged current and a neutral current interaction.
The mediators are massive withmW ∼ 81GeV andmZ ∼ 90GeV [5]. Weak interactions
are caused by an exchange of a W or Z boson, which have extremely short lifetimes,
under 10−24 seconds. This limits the range of the force to subatomic scales.

Photons are the carriers of electromagnetic force. Unlike the nuclear forces elec-
tromagnetism has a macroscopic range, which makes it important at all scales in the
presence of charge. All charged particles can interact electromagnetically.

1.2.1 Beyond the Standard Model
There are still a variety of phenomena that can not be explained by the Standard

Model. Gravitational attraction is not included, which is hypothesized to be governed
by a particle called the graviton. It would be an intuitive extension to the Standard
Model, since every other force can be described by the exchange of a particle. However,
the scenario where some other mechanism would govern gravitational attraction is also
plausible. Dark matter has been observed indirectly, by looking at the motion galaxies
in galaxy clusters. The galaxies are moving at velocities that are greater than expected
from gravitational attraction caused by the visible matter [6]. This is explained by
attributing the excess in gravitational pull to a "dark" particle, that does not interact with
electromagnetic radiation. There is no particle in the Standard Model that could explain
what the dark matter observed in the universe consists of. Neutrinos are the only particles
that do not interact with photons, but they do not fit the observed properties of dark
matter. Dark energy is an even bigger mystery, and there is currently no evidence for
what causes the accelerated expansion of the universe.

3



2Neutrino oscillations

With the experimentally established fact that neutrinos oscillate [7], a theory is required to
explain how the effect appears. This section covers the basic parts of neutrino oscillations
theory. Neutrinos have a mismatch between flavor eigenstates in which they interact,
and the mass eigenstates in which they propagate, meaning that each neutrino flavor
eigenstate is a superposition of the mass eigenstates and vice versa. It will be shown how
this mixing gives rise to a time-dependent oscillatory term in the equation for neutrino
propagation. An introduction to density matrices is also needed in order to more easily
understand and describe open quantum systems, which will be of interest later in this
work.

2.1 Density matrix formalism
Usually, the wave function is used when describing a quantum system. This is

sufficient when solving quantum systems in a pure state, i.e described by a single wave
function. The density matrix formalism can be used to describe mixed states, which
are statistical ensembles of pure states. They can describe quantum systems where the
properties of the individual state is unknown, but the probability of being in each state
is known. Throughout this work neutrino mass eigenstates will have a Latin subscript
i, j, k etc. and flavor eigenstates a Greek subscript α, β, γ etc.

The density matrix for a pure state [8] is given by

ρ = |ψ〉 〈ψ| . (2.1)

A density matrix can be used to calculate the probability of finding a specific state, in the
same way as with the wave function:

P (vα → vβ) =
∣∣∣∣ 〈ψβ|ψα〉 ∣∣∣∣2 = 〈ψβ|ψα〉 〈ψα|ψβ〉 = 〈ψβ| ρ |ψβ〉 . (2.2)

The probability of finding a specific flavor is thus given by the diagonal elements of the
density matrix expressed in the flavor basis. In eq. 2.2 〈ψβ| ρ |ψβ〉 simply accesses the
diagonal element that corresponds to flavor β. It is required that Tr(ρ) = 1 to preserve
unitary probabilities, as the sum of finding some neutrino flavor should always be one,
otherwise neutrinos will have some chance of oscillating into something that is not one
of the considered flavors.

The density matrix for a mixed state can be expressed as a weighted sum over pure
state density matrices [8, 9]

ρmix =
∑
n

pn |ψn〉 〈ψn| , (2.3)

where pn gives the probability of finding a specific state, and n denotes the individual
pure states that contributes to ρmix.

4



Chapter 2 Neutrino oscillations

So far the density matrix has been expressed in the flavor basis of the system. It can
also be expressed in the mass basis. The two bases are related by a rotation matrix U , of
which the details are described in section 2.4. The rotation of a density matrix from one
basis to another is equivalent to rotating the wave functions it consists of (which is given
by eq. 2.26)

ρm = U |ψα〉 〈ψα|U † = UρfU
†, (2.4)

where the subscripts m and f denote the mass and flavor bases respectively.

2.1.1 Time evolution of density matrices
To describe the propagation of a particle one has to know how the system evolves in

time. The time evolution of a wave function [8] is given by the Schrödinger equation:

i~
∂

∂t
|ψ〉 = H |ψ〉 , −i~ ∂

∂t
〈ψ| = 〈ψ|H. (2.5)

This can also be applied to a density matrix using the product rule:

i~
∂

∂t
ρ = i~

 ∂

∂t
|ψ〉 〈ψ|+ |ψ〉 ∂

∂t
〈ψ|

 = i~

H
i~
|ψ〉 〈ψ|+ |ψ〉 〈ψ| −H

i~


= Hρ− ρH = [H, ρ].

(2.6)

An expression for the time dependent density matrix ρ(t) is then found by integrating
both sides of the equation from 0 to t:

i~
∫ t

0

∂

∂t
ρ(t)dt =

∫ t

0
Hρ(t)− ρ(t)Hdt ⇒

i~[ρ(t)− ρ(0)] =
∫ t

0
Hρ(t)− ρ(t)Hdt ⇒

ρ(t) = ρ(0)− i

~

∫ t

0
Hρ(t)− ρ(t)Hdt.

(2.7)

Solving this differential equation gives ρ(t). The solution for neutrino oscillations in
vacuum is given by applying the time shift operator [10] Q(t):

Q(t) = e
−i
~ Ht. (2.8)

Then the time evolution of the density matrix becomes:

ρ(t) = Q(t)ρ(0)Q(t)†. (2.9)

5



Chapter 2 Neutrino oscillations

For more advanced models it might be impractical to find an analytic solution. Time
evolution of the density matrix would then be found by numerically solving the matrix
differential equation that gives ρ(t).

2.2 The neutrino Hamiltonian
To get the time evolution of a quantum system given by the shrödinger equation (eq

2.5) one needs to know the Hamiltonian, which accounts for the total energy. The time
evolution is added to the wave function in the mass basis as particles propagate as mass
eigenstates. For a specific state this is given by

|ψ(t)〉 = e−iHt |ψ(0)〉 = e−iEt |ψ(0)〉 , (2.10)

where E is the energy of the particle given by the formula E =
√
m2c4 + p2c2 and t is

time. In natural units c = 1 and the energy becomes:

E =
√
m2 + p2. (2.11)

This can be expanded using the binomial expansion:

(x+ y)n =
∑
k

[
n

k

]
xn−kyk ,

[
n

k

]
= n!

k!(n− k)! . (2.12)

An approximation can be made by only using the first few terms in the expansion:

E = (p2 +m2)1/2 = p+ m2

2p −
m4

4p3 + ... ' p+ m2

2p .
(2.13)

Since m� p the m2/2p term in the expansion is small and m4/4p3 is negligible. The
remaining terms will be even smaller than the third since p appears in an increasingly
negative power.

In the final Hamiltonian the term that only includes p is often left out, since this
cancels out anyways when calculating the probability of finding a specific flavor. How
this happens can be seen in the example in section 2.3:

E = m2

2p .
(2.14)

The ultra-relativistic approximation p ' E can be made due to the low mass of the
neutrinos. The Hamiltonian can be expressed in matrix form with the shape NxN , where
N is the number of neutrinos:

H =
n∑
i=1

E |νi〉 〈νi| =
n∑
i=1

m2
i

2E |νi〉 〈νi| . (2.15)

6



Chapter 2 Neutrino oscillations

2.3 A two neutrino example
The following depicts how density matrix formalism and the Hamiltonian found in

eq. 2.15 can be used to calculate standard neutrino oscillation probabilities. This also
illustrates how the mixing between flavor and mass states gives rise to oscillations. In this
example the focus will be on calculating the survival probability of an electron neutrino,
considering an approximation where only two neutrino flavors νe and νµ propagate in
vacuum. Natural units will be used throughout the section.

The density matrix for an electron neutrino expressed in the flavor basis is given by
eq. 2.1:

ρf = |νe〉 〈νe| =
[
1
0

]
.
[
1 0

]
=

[
1 0
0 0

]
. (2.16)

This can be rotated into the mass basis by using eq. 2.4

ρm = UρfU
† =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
1 0
0 0

] [
cos(θ) − sin(θ)
sin(θ) cos(θ)

]

=
[

cos2(θ) − cos(θ) sin(θ)
− cos(θ) sin(θ) sin2(θ)

]
,

(2.17)

where U is the two-flavor mixing matrix that is characterized by the angle θ. It is
the standard matrix describing a rotation of coordinates in two dimensions. Using the
convention cos(θ) = c, sin(θ) = s for simplicity:

ρm =
[
c2 −cs
−cs s2

]
. (2.18)

The time evolution of the density matrix in the mass basis is expressed by using eq. 2.9

ρm(t) = Q(t)ρmQ(t)† = e−iHt
[
c2 −cs
−cs s2

]
eiHt, (2.19)

where H is the Hamiltonian projected on to the mass basis given by eq. 2.15. The p
from eq. 2.13 is included here to display how it cancels out, and the ultra relativistic
approximation p ' E is used:

H =
2∑
i=1

E + m2
i

2E |νi〉 〈νi| =
E + m2

1
2E

[1
0

] [
1 0

]
+
E + m2

2
2E

[0
1

] [
0 1

]

=
E + m2

1
2E 0

0 E + m2
2

2E

 .
(2.20)
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Chapter 2 Neutrino oscillations

ρm(t) then takes the form

ρm(t) =

e−i(E+
m2

1
2E )t 0

0 e−i(E+
m2

2
2E )t

 [ c2 −cs
−cs s2

] ei(E+
m2

1
2E )t 0

0 ei(E+
m2

2
2E )t


=

 c2 −cse
−i(m2

1−m2
2)t

2E + −i(E−E)t
2E

−cse
i(m2

1−m2
2)t

2E + i(E−E)t
2E s2


=

 c2 −cse
−i(m2

1−m2
2)t

2E

−cse
i(m2

1−m2
2)t

2E s2

 .
(2.21)

A transformation back to the flavor basis is needed, to get the probability of finding a
specific flavor at a time t:

ρf (t) = U †ρm(t)U

=
[
c −s
s c

]  c2 −cse
−i(m2

1−m2
2)t

2E

−cse
i(m2

1−m2
2)t

2E s2

 [ c s

−s c

]
.

(2.22)

Index (1, 1) in ρf (t), ρ11
f (t), gives the probability of finding the election neutrino at time

t (eq. 2.2), or equivalently 1 − ρ22
f (t) if assuming unitarity of the mixing matrix and

conservation of probability, i.e. (Tr[ρf (t)] = 1)

P (νe → νe) = 1− 〈νµ| ρf (t) |νµ〉

= 1−
[
0 1

]
ρf (t)

[
0
1

]
= 1− ρ22

f (t).
(2.23)

I will focus on the term ρ22
f (t) because the entire expression for ρf (t) is lengthy and

complicated:

ρ22
f (t) = s2c2

e im2
1t

2E − e
im2

2t
2E

e−im2
1t

2E − e
−im2

2t
2E


= s2c2

2− 2 cos
t(m2

1 −m2
2)

2E

 = sin2(2θ) sin2

t(m2
1 −m2

2)
4E

.
(2.24)

This is the standard solution for P (νe → νµ) when using this two-flavor approximation,
which can also be found by approaching the problem with a standard wave function
treatment. P (νe → νe) is then:

P (νe → νe) = 1− sin2(2θ) sin2

t(m2
1 −m2

2)
4E

. (2.25)
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Chapter 2 Neutrino oscillations

Equation 2.25 consists of two sin2 terms. The first term depends on the mixing angle
and has no time dependence. This is just a constant, that determines the amplitude of the
oscillation probability function. The second sin2 term is time-dependent. The difference
in neutrino masses squared (m2

1 −m2
2) along with the energy of the particle E controls

the frequency of oscillation. If there was no difference in mass, this term would just be
equal to 1 and there would be no oscillation.

2.4 Mixing matrix and mass splittings
Neutrino mixing was proposed in 1957 by Bruno Pontecorvo [11], who suggested

after the discovery of K0 mixing, that neutrinos could behave in a similar fashion. The
theory describing this phenomenon was formulated a few years later in 1962 [12].

In the Standard Model there are three neutrino flavors, named after the corresponding
charged leptons that participate in their interactions. The three neutrino flavor states
have been experimentally observed to not match the mass states in which the neutrinos
propagate. The relation between flavor and mass states is described by a mixing matrix
U . It represents the coordinate rotation one has to make, to go from one basis to another.
When considering the three known flavors νe, νµ, and ντ , and the corresponding mass
states ν1, ν2 and ν3 the rotation is given by

νe
νµ
ντ

 = U


ν1

ν2

ν3

 ,


ν1

ν2

ν3

 = U †


νe
νµ
ντ

 . (2.26)

In a three neutrino framework this matrix is called the PMNS (Pontecorvo-Maki-
Nakagawa-Sakata) matrix. This is a unitary matrix, assuming there is no mixing into
other presently undiscovered neutrinos:

UPMNS =


Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



=


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23

 .
(2.27)

The convention cos(θij) = cij and sin(θij) = sij has been used here. The PMNS matrix
has four free parameters: the three mixing angles, θ12, θ13, θ23, and the Charge-Parity
(CP) violating phase δ. This can be separated into three different matrices, one for each
mixing angle:

UPMNS =


1 0 0
0 c23 s23

0 −s23 c23




c13 0 s13e
−iδcp

0 1 0
−s13e

iδcp 0 c13



c12 s12 0
−s12 c12 0

0 0 1

 . (2.28)
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Chapter 2 Neutrino oscillations

The mixing angles define how much a neutrino mixes with the other flavors. There
are two special values for mixing angles, namely 0◦ and 45◦. When considering an
approximate model with only two neutrinos (two-flavor approximation), an angle of 0◦
means no mixing between the two flavors, i.e a neutrino initially created as an electron
neutrino will not oscillate into a muon neutrino. When the mixing angle is 45◦, the
flavors are maximally mixed and in this case the initially created flavor will oscillate
back and forth between entirely being one of the two flavors.

The three-flavor case is more complex, as the oscillation probability depends on
multiple angles. If θ12 = 0, θ13 6= 0 and θ23 6= 0 for example, the probability of a
neutrino initially created as νe oscillating into νµ is non-zero because νe mixes with ντ
which mixes with νµ. In essence the mixing angles determine the amplitude of the wave
function describing the probability of finding a given flavor. The angles are sometimes
labeled differently, depending on the type of experiment that is sensitive to a specific
angle. Solar neutrino experiments are mainly sensitive to θ12 and for this reason θ12

is also called θsol. Similarly, atmospheric neutrino experiments are mainly sensitive to
θ23 = θatm.

Neutrino oscillations in vacuum are fully described in terms of the three mixing
angles, the mass splittings ∆m2

ij = m2
i −m2

j , the CP-violating phase δcp and the energy
of the neutrino. As with the mixing angles, mass splittings can also be labeled according
to the type of experiments that are sensitive to a given parameter. The current best fit
values for the parameters are listed in table 2.1. There are two best fit values for each

Parameter Best fit ±1σ (NO) Best fit ±1σ (IO)

θ12 33.62+0.78
−0.76 33.62+0.78

−0.76

θ13 8.54+0.15
−0.15 8.58+0.14

−0.14

θ23 47.2+1.9
−3.9 48.1+1.4

−1.9
∆m2

21
10−5eV 2 7.40+0.21

−0.20 7.40+0.21
−0.20

∆m2
3i

10−3eV 2 2.494+0.033
−0.031 −2.465+0.032

−0.031

δcp 234+43
−31 278+26

−29

Table 2.1. – Best fit values for oscillation parameters and their 1σ uncertainty, in the case of a
normal (NO) and inverted (IO) mass ordering. Note that ∆m2

31 and ∆m2
32 has the

same best fit values, both given as ∆m2
3i. Table values taken from Ref. [13]

oscillation parameter due to the undetermined mass ordering of neutrinos. It is unknown
whether the mass ordering is normal, where m1 < m2 < m3 as with quarks and charged
leptons, or inverted, where m3 < m1 < m2. This remains one of the big questions left in
neutrino physics.

Oscillations occur because the neutrinos have non-zero masses. This gives rise to an
oscillatory term in the probability of finding a neutrino flavor at a given time after it has

10



Chapter 2 Neutrino oscillations

been created, as seen in the example in section 2.3. In the two-flavor approximation the
probability of finding the initially created neutrino after a time t is given by eq. 2.25

P (νe → νe) = 1− sin2(2θ) sin2

t(m2
1 −m2

2)
4E

. (2.29)

The second sin2 term depends on the difference in squared masses, and along with
the energy this defines the frequency of oscillation. The sign of m2

1 − m2
2 cannot be

determined from this equation alone since sin2 is an even function. As a consequence the
two mass orderings give the same oscillation probability. The value of ∆m2

21 has been
determined to be positive by solar neutrino experiments [14] implying that m1 < m2,
and thus only the sign of ∆m2

32 and ∆m2
31 is unknown.

Figure 2.1. – Illustration of the possible orderings of the neutrino masses. (Taken from Ref.
[15])

As seen in table 2.1, ∆m2
21 has a value comparable to 2σ of ∆m2

3i. A more precise
measurement of ∆m2

3i is needed to determine the mass ordering.
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3IceCube neutrino
observatory

The IceCube neutrino observatory is the largest neutrino detector in the world. It consists
of one cubic kilometer of instrumented ice located at the geographic South Pole. A
sketch of the detector is shown in figure 3.1. The ice contains vertical 86 strings situated
approximately 125 meters apart in a hexagonal grid, each with 60 Digital Optical Modules
(DOMs) attached. The DOMs are located between 1450 and 2450 meters below the
surface, where the ice is very clear and devoid of sunlight.

50 m

1450 m

2450 m 

2820 m

IceCube Array
 86 strings including

5160 optical sensors

DeepCore 
8 strings-spacing optimized

480 optical sensors

Eiffel Tower
324 m 

IceCube Lab
IceTop
81 Stations
324 optical sensors

Bedrock

for lower energies

8 DeepCore strings 

Figure 3.1. – Sketch of IceCube neutrino observatory with DeepCore. The top of each string is
color coded according to which season they were deployed [16].

The ice is more densely instrumented in the central region of IceCube, known as
DeepCore [17] (highlighted in red on figure 3.1). This enables DeepCore to probe lower
energies than rest of the detector. DeepCore is sensitive to neutrinos with energies
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Chapter 3 IceCube neutrino observatory

down to around 5GeV , and is more efficient at detecting neutrinos below 150GeV than
IceCube.

3.1 Digital optical modules
The detection units in IceCube are known as DOMs [18]. They consist of a 10-inch

Photo Multiplier Tube (PMT) situated inside a glass sphere along with the electronics
main board, and a flasher board with diodes located around the edge. An overview of
the DOM can be seen in figure 3.2. The PMTs have a quantum efficiency of around 25
percent, which makes them sensitive to single photons. The ones situated on DeepCore
strings have a higher quantum efficiency of approximately 35 percent, which increases
the sensitivity of DeepCore further. The signal from a photon hitting the PMT is amplified
by a factor of 107 to convert a single electron into a measurable current.

PMT 
Photocathode

Main 
electronics 

board

Flasher 
board

Power 
cable

Figure 3.2. – Digital optical module and the most important components.

The DOM is launched, meaning that its starts "recording", when a signal correspond-
ing to more than 0.25 photoelectrons is received. This starts digitization of the signal in
two different waveform digitizers, the Analog Transient Waveform Digitizer (ATWD)
and the fast Analog-to-Digital Converter (fADC). The ATWD is recording with a binning
of approximately 3.3ns, with a total of 128 bins. This recording is only kept if the nearest
or next-to-nearest DOM is launched within 1µs of the original hit. Such a coincidence is
know as a Hard Local Coincidence (HLC) pair. It is more likely that an event launching
multiple DOMs is not caused by noise. The fine binning is required to more accurately
reconstruct the number of photons received in such events. Each DOM has two ATWDs
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Chapter 3 IceCube neutrino observatory

in case another HLC event occurs within the readout time of the ATWD digitizing the
initial event.

The fADC provides a continuous readout with a lower resolution to capture the
basics of Soft Local Coincidence (SLC) hits. Only a time stamp and minimal information
about the charge is kept for these events.

Each DOM also contains a flasher board with 12 light-emitting diodes that can be
remotely activated. They are used to send out light pulses for studying the optical ice
properties. By using flashers, an estimation for scattering and absorption length can be
made as a function of depth in the ice, which is important for reconstructing neutrino
events more precisely. Furthermore, other effects like cables blocking the light from
certain directions, or DOMs being slightly tilted can be investigated.

3.2 Neutrino sources
The neutrinos detected by IceCube/DeepCore come primarily from two sources;

cosmic ray interactions in the atmosphere, and astrophysical neutrino sources which are
currently unknown, although recent find of correlation between astrophysical neutrinos
and a blazar [19] is the first step towards characterizing these sources. The two types are
known as atmospheric and astrophysical neutrinos respectively.

Atmospheric neutrinos have the advantage that the point of creation, and thus
distance traveled before reaching the detector, is somewhat known. The incoming angle
in the detector reveals from where on the Earth they originate, and the distance traveled
can be estimated as length of a direct path between that point and IceCube. The known
distance to the point where the neutrinos are created is important for this analysis, for
reasons that will be clarified in section 4.3.

3.3 Neutrino detection
Neutrinos have an extremely small cross section compared to all other Standard

Model particles. Most of them go right through IceCube/DeepCore and the rest of the
Earth without interacting. Occasionally a neutrino interacts with one of the nucleons
or electrons in the ice. The probability for this happening is highly dependent on
the neutrinos energy, which can be seen in figure 3.3. Note that the y-axis displays

cross section
neutrino energy ; interaction probability rises with energy.

Neutrinos interact via different processes at different energies. The dominant interac-
tion type at the energies IceCube is sensitive to is Deep Inelastic Scattering (DIS), where
the neutrino interacts with a quark inside a nucleon. This interaction always results in
a hadronic shower. The two other interaction types, Quasi-Elastic scattering (QE) and
Resonant Scattering (RES), are heavily suppressed with energy as seen in figure 3.3.
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(a) (b)

Figure 3.3. – Different components contributing to the neutrino (left) and anti-neutrino (right)
cross section. The total cross section is dominated by DIS above 10GeV . Taken
from [20].

Neutrinos only interact via the weak nuclear force, which limits the interactions to
two types: the charged current (CC) interaction where a W+ or W− boson is exchanged,
and the neutral current (NC) with the exchange of a Z boson. Feynman diagrams of the
two interaction types can be seen in figure 3.4

νl

Nucleon
Hadronic shower

W±

lνl

Nucleon
Hadronic shower

Z

νl

Figure 3.4. – Feynman diagrams of a neutral current (left) and charged current (right) neutrino
DIS interaction.

The neutrino interacts primarily with the quarks inside protons and neutrons at the
energies IceCube/DeepCore is sensitive to, in both NC and CC interactions. The energy
transfer is large enough to break the nucleon apart, forcing the creation of additional
particles due to color confinement, which results in a hadronic shower. A lepton with its
flavor corresponding to the neutrino interacting is created in CC interactions. The lepton
travels faster than the speed of light in ice at the energies IceCube is sensitive to. This
releases a super-luminal boom, also know as Cherenkov radiation.
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IceCube events are divided into two types called tracks and cascades. The difference
between the two event types can be seen in figure 3.5. In practice, all interactions except
the νµ CC interaction have the light signature known as a cascade.

Figure 3.5. – A cascade event (left) and a track event (right) displayed in the IceCube event
display. Each DOM is marked by a small white dot. The size of each colored
ball indicates how much light a DOM has received. The color displays when that
DOM was hit by photons, red being earlier and green/blue later.

When an electron is created in a νe CC interaction it deposes most of its energy via
bremsstrahlung, emitting photons in all direction. Some of these are energetic enough to
produce additional electron-positron pairs, which undergo the same process. Taus from
ντ CC interactions decay before traveling far enough to look like a track. This releases
two inseparable cascades very close to each other, one from the neutrino interaction and
one from the tau decay. In principle very energetic tau neutrino events with E > PeV

should have a so-called "double bang" light signature where the cascades are separated
due to the prolonged lifetime of the tau.

Only muons created in νµ CC interactions live long, and interact infrequently enough
to make the track-like light signature. It should be noted that the taus created in ντ CC
interactions decay into muons 17% of the time, which can make them look like muon
neutrinos.

Neutrinos are never observed directly in IceCube: only the charged particles resulting
from neutrino interactions in the ice.

3.3.1 Event reconstruction
The translation from number of photons received by each DOM to the particle

quantities vertex position, energy, direction in azimuth and zenith angle, track length,
and time, is known as event reconstruction. It happens in a minimization process, where
the parameters that gives the highest probability for photons hitting the launched DOMs
are chosen.

The separation into the two event types, tracks and cascades, happens with a cut
on reconstructed track length at 50m, everything below being cascades. The ability to
distinguish between the two scales with energy, as the recognition of something as a
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track or cascade is more precisely done when more DOMs are hit by photons during an
event.

Event reconstruction is vital for the analysis, due to the separation of neutrinos into
different event categories, which makes the distinction between different neutrino flavors
clearer.

3.4 Detector backgrounds
The detection of neutrinos is complicated by the presence of other light sources

launching the DOMs. These must be characterized in order to separate them from the
signal caused by neutrinos. Among the most important unwanted sources are muons
created when cosmic rays interact with the atmosphere, and intrinsic noise in the DOMs.
The two have distinctive signatures in the detector, which can be used to discriminate
them from neutrinos.

3.4.1 Detector noise
Noise originating from within the DOMs have three primary components [21];

thermal noise, correlated noise, and after-pulsing. Each of the three has a distinct
timescale and shape that defines the individual characteristics, visualized in figure 3.6.
The plot is made using Hitspool data, which consists of local hard drives on the South
Pole storing every hit in a buffer for 16 hours [21]. This data storage was implemented
for supernova alerts, but is also useful for studying the detector noise, while normal data
is triggered and thus already "cleaned" from some of the noise hits.

Thermal noise, also known as uncorrelated noise, is poisson distributed and tempera-
ture dependent. It is caused by the random motion of electrons in the electronics. The
rate is estimated for each individual DOM, as the temperature varies depending on depth.

Correlated noise is of unknown origin, and has the counter-intuitive property that its
frequency increases with decreasing temperature. A burst of photons is released within a
short time span, hence the name "correlated". It has been hypothesized that the origin
might be radioactive decays in the glass of the DOM and PMT.

After-pulsing is caused by electrons bouncing backwards on one of the dynodes
inside a PMT before continuing forwards. This creates a delay in the arrival time between
the original electron bunch, and the electrons coming with the one that has bounced
backwards once. As a consequence a small signal will be received with a delay with
respect to the initial electrons arrival.
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Figure 3.6. – The different components of noise plotted on top of HitSpool data from a single
DOM. Taken from [22].

3.4.2 Cosmic ray muons
The Earth’s atmosphere is constantly bombarded from space by cosmic rays. Cosmic

rays consist of a variety of particles ranging from single electrons to heavy nuclei, but are
mainly protons and alpha particles. These have kept their original (but misleading) name
"rays", from an era where they were thought to be electromagnetic radiation. Muons
are one of the products created in interactions between cosmic rays and the Earth’s
atmosphere. The ones that reach the detector will create a track like light signature, just
like muons coming from νµ CC interactions.

Cosmic-ray muons can be identified in a number of ways. A muon cannot penetrate
very far through the Earth due to its short lifetime and large cross section (compared to
neutrinos). For this reason, their track signatures will always be down-going or close to
horizontal. If a muon is created from a neutrino interaction in the ice above the detector
it cannot be distinguished from a comic-ray muon, since the same particle is seen in
both cases. However if the track starts inside the detector or is up-going, the muon must
come from a neutrino interaction. In this case the muon cannot have been created in the
atmosphere above, as the track would be down-going and connected to the edge of the
detector.

The flux of cosmic rays (and thus muons) depends on energy. The cosmic ray
spectrum for high energy cosmic rays can be seen in figure 3.7.
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Figure 3.7. – The flux of cosmic rays as function of energy per nucleus. Taken from [23].

The flux of cosmic ray muons and atmospheric neutrinos should have approximately
the same energy dependence, since they both come from the same source, namely pions
created in cosmic ray interactions. There should be roughly two muon neutrinos and one
electron neutrino for each cosmic ray muon, as all three particles come primarily from
pion decays.
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4Decoherence

Quantum systems are often idealized and treated as isolated from its surroundings when
calculating their properties, but this is rarely true in nature. In reality, they exist and
propagate in a sea of other particles, such as photons, electrons, nuclei, or microscopic
black holes. This gives a non-zero probability of undergoing some interaction with
the surrounding environment, either via one of the force carriers, or by some other
mechanism [24]. The knowledge about how the initial system was prepared is partially
or fully lost by this interaction, as the system is modified or "measured" at this point.
This causes a loss of information about its state, also known as decoherence.

The idea that neutrinos may decohere has been around for almost as long as neutrino
oscillations, and has been considered an alternative hypothesis for explaining the previ-
ously unknown cause of missing neutrinos in the solar neutrino problem described in
section 1.1. It has since been established that neutrinos do in fact oscillate, but this does
not rule out that decoherence could still be present as a sub-leading effect.

Throughout this project a decoherence caused by some coupling to the environment
is considered. There are other effects that could cause decoherence, e.g. separation of
neutrino wave packets in space due to the difference in masses. While this is also very
interesting, it will not be discussed in this work.

The following is meant to give a basic understanding of how decoherence effects
could arise, before diving into the derivation of an equation describing the phenomenon.

4.1 Decoherence toy model
Neutrino decoherence can be understood as one or more "interactions" along the way

of propagation. The particular origin of this contact with the environment is not assumed
in this project, but examples include quantum gravity models in which particles can
interact with vacuum fluctuations [25], or longer travel distance caused by propagating
close to microscopic black holes. It is however assumed that this interaction is of beyond
Standard Model origin, and is thus not governed by the weak force. Since particles are
propagating as their mass states, an interaction caused by a beyond Standard Model
mechanism is assumed to affect the propagating states, and would be in the system’s
mass basis.

An interaction leading to decoherence effects could be in the flavor basis, but this
has a lack of motivation. Interactions in the flavor basis are already characterized by
the weak nuclear force, and the impact these have on neutrino oscillations are largely
known. With that said it is still important to state that the interactions happening in the
mass basis is an analysis choice.

The mass basis interaction causes a phase shift in the wave function describing the
probability of finding the initially created neutrino after a given length of propagation, in
a similar way as an interaction in the flavor basis would. When a neutrino interacts via
the weak force, a "measurement" is made, and the flavor of the interacting particle is then
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known. This shifts the phase such that the probability of finding the interacting neutrino
flavor is one (since we just "measured" it as that flavor). An interaction in the mass basis
could shift the phase differently, and the probability of finding a specific flavor or mass
eigenstate after the interaction does not necessarily have to be one or zero.

A two-flavor toy model with a neutrino initially created as νe is shown in figure
4.1. The neutrino interacts in the mass basis at a random distance seen in the figure as a
vertical jump. The phase relation with standard neutrino oscillations is then lost, since
both the point of interaction and size of the perturbation is unknown.

0 20000 40000 60000 80000 100000
Distance travelled [arbitrary units]

0.0

0.2

0.4

0.6

0.8

1.0

P(
e

e)

Probability : 
Standard osc

Figure 4.1. – Two-flavor toy model of neutrino decoherence with θ = 45◦. The neutrino να loses
its phase relation with standard oscillations after the wave function is perturbed
by a beyond Standard Model interaction with the environment (vertical jump).

It is easier to see the impact this has on the overall probability of detecting individual
flavors when considering more than one neutrino. Figure 4.2 shows an example where
three propagating neutrinos are subject to the same mechanisms as before, namely
perturbations caused by an interaction in the mass basis. The average probability of
finding an electron neutrino is the same as in the standard oscillation picture, until one of
the three neutrinos "interacts" and the phase relation with standard oscillations is lost.
The combined effect of individual neutrinos interacting at different distances makes the
average probability of finding a neutrino as an electron neutrino tend towards 0.5.
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Figure 4.2. – Two-flavor toy model of neutrino decoherence with θ = 45◦. This model considers
three individual neutrinos νI , νII , and νIII that start as electron neutrinos and
interact in the mass basis while propagating. The points of interaction are where
the individual neutrino wave functions are discontinuous (vertical jumps).

When considering many neutrinos it becomes clear that decoherence acts as a
damping effect on the average oscillation probability. The average probability for finding
one of the two flavors goes to the mean of the wave function. The strength of the damping
effect results from a combination of mean free path between mass basis interactions,
and the size of perturbation that the neutrino wave function undergoes by interacting.
This might be a larger change in phase if the interactions collapse the wave function in
a similar fashion as when neutrinos interact weakly, or small if the interaction in the
mass basis corresponds to one neutrino traveling slightly longer because of a density
fluctuation on its path of propagation.

Neutrinos have to interact multiple times to fully decohere if the perturbation is
small, because each interaction does not remove all information about the phase relation
with standard neutrino oscillations. The phase relation could also be completely lost
after a few interactions, if they perturb the wave function by a larger amount. Figure 4.3
displays how many interactions, each of which perturb the wave function by an arbitrarily
large amount, make the average probability of detecting an electron neutrino go to 0.5
when considering many neutrinos.

22



Chapter 4 Decoherence

0 20000 40000 60000 80000 100000
Distance travelled [arbitrary units]

0.0

0.2

0.4

0.6

0.8

1.0
P(

e
e)

Individual  
Standard osc
Average probability

Figure 4.3. – Two-flavor toy model of neutrino decoherence with θ = 45◦. The green lines show
wave functions for 1000 different neutrinos, which have some probability of being
perturbed while propagating.

It should be noted that the average probability of finding a neutrino flavor only tend
to 0.5 in the maximally mixed case.

4.2 A phenomenological model of neutrino
decoherence

The theoretical treatment of neutrinos in an open quantum system gives rise to an
extra term in the equation for a time dependent density matrix (compared to standard
neutrino oscillations described by eq. 2.7), known as the decoherence term. The Lindblad
equation [26] is considered the most general way of describing the time evolution of
an open quantum system using density matrix formalism while preserving trace and
complete positivity. It takes into consideration that a quantum system is never fully
isolated. The trace of ρ has to be preserved, otherwise a neutrino can oscillate from
a specific flavor into something that is not one of the known flavors, meaning that
probability vanishes from the system. This could be the case in neutrino decay models,
which are not considered here. Complete positivity ensures that the probability given
by using this equation is physically interpretable and positive. This is a justifiable
assumption as it is hard to interpret negative or imaginary probabilities.
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The Lindblad equation describing an N -dimensional system [27], with N being the
number of neutrino flavors, can be written as

∂

∂t
ρ(t) = − i

~
[H, ρ(t)] +

N2−1∑
n

hn

(
Anρ(t)A†n −

1
2{AnA

†
n, ρ(t)}

)
= − i

~
[H, ρ(t)] +D[ρ(t)],

(4.1)

where the first term accounts for standard oscillation, and the second term is the deco-
herence part, with {AnA†n, ρ(t)} being the anticommutator of AnA†n and ρ(t). Here, hn
is some positive coefficient and An is an N by N matrix that accounts for decoherence
effects.

It is assumed that average energy of the system is conserved, which is enforced by
making An commute with H , and the diagonality of H requires An to be diagonal as
well. When considering three neutrino flavors An takes the form:

An =


an,1 0 0
0 an,2 0
0 0 an,3

 . (4.2)

hn and An can be absorbed into the a new variable Dn to simplify the equation. We also
have N2 − 1 = 8 for three flavors:

Dn =


dn,1 0 0
0 dn,2 0
0 0 dn,3

 =
√
hn√
2
An ⇒

D[ρ(t)] = −
8∑

n=1

(
{DnD

†
n, ρ(t)} − 2Dnρ(t)D†n

)
.

(4.3)

Another assumption is that von Neumann entropy increases which requires Dn to be
hermitian (Dn = D†n). This also implies that DnD

†
n = D2

n which can be used to simplify
the equation:

D[ρ(t)] = −
8∑

n=1

(
D2
nρ(t) + ρ(t)D2

n − 2Dnρ(t)Dn

)
. (4.4)

The decoherence term in the Lindblad equation now only depends on 8 diagonal Dn

matrices and the time dependent density matrix. In matrix form this term becomes:

D[ρ(t)] =

−
8∑

n=1


0 (dn,1 − dn,2)2ρ12(t) (dn,1 − dn,3)2ρ13(t)

(dn,2 − dn,1)2ρ21(t) 0 (dn,2 − dn,3)2ρ23(t)
(dn,3 − dn,1)2ρ31(t) (dn,3 − dn,2)2ρ32(t) 0

 . (4.5)
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∑8
n=1(dn,i − dn,j)2 can be defined as Γij . Furthermore (dn,i − dn,j)2 = (dn,j − dn,i)2

and this leaves us with three free decoherence parameters Γ21,Γ31, and Γ32, which are
damping parameters between each pair of mass states:

D[ρ(t)] = −


0 Γ21ρ12(t) Γ31ρ13(t)

Γ21ρ21(t) 0 Γ32ρ23(t)
Γ31ρ31(t) Γ32ρ32(t) 0

 . (4.6)

Expressing D[ρ(t)] in this way has some advantages. The diagonal elements are zero,
meaning that total probability of finding a neutrino as one of the three flavors is conserved.
This investigation is not sensitive to the individual underlying parameters dn,i, which
makes it advantageous to have a model with three free decoherence parameters instead
of 24 (8 matrices with three diagonal elements in each). The three parameters have some
interdependence, as they come from the same underlying parameters. As an example,
Γ21 and Γ31 both depend on the underlying parameters dn,1. If one or more of these
are changed, both Γ21 and Γ31 are impacted. This gives a constraint on the values each
Γij can take. This constraint can be visualized by assigning random values to each of
the 24 underlying parameters and then plotting the values that the three Γ parameters take.

Figure 4.4. – Values that Γ21, Γ31, and Γ32 take when the underlying parameters are randomized
(blue dots).
Left: Only one of the eight Dn matrices contains non-zero values. All of the
points generated are on the surface of the cone defining the Γ parameters bound.
Right: All of the eight Dn matrices contain non-zero values. Every point lies
within the conical bound.

As seen on figure 4.4 all valid combinations of the three Γ parameters, meaning
Γij-values that can be generated when the underlying parameters are real (dn,i ∈ R), lie
within a cone, that is defined by a central line lc characterized by all points that fulfill

25



Chapter 4 Decoherence

Γ21 = Γ31 = Γ32 (black line on figure 4.4), and an angle between lc and a line on the
surface ls. ls can be taken as one of the lines defined by the three special cases where
Γ21 = Γ31,Γ32 = 0, Γ21 = Γ32,Γ31 = 0, or Γ31 = Γ32,Γ21 = 0 (colored lines on figure
4.4). It should be noted that the special case where two of the Γ parameters are equal to
zero and the third takes a non-zero value is unphysical, because it corresponds to a point
outside the conical bound.

4.2.1 Energy-dependent decoherence
The possibility exists for decoherence to be energy dependent, in a similar way as

the neutrino weak interaction cross section. The shape of the energy dependence could
be anything and thus a simple model is considered here, where a power law characterizes
it:

Γij = Γ0,ij

(
Eν
E0

)n
, E0 = 1GeV (4.7)

The exponent n determines the shape of the function. Setting n = 0 restores the
decoherence model without energy dependence. E0 is set to 1GeV , as this is comparable
to the neutrino energies considered in this analysis. The scale can be chosen arbitrarily
as the purpose is just to characterize the shape of energy dependence.

Another assumption is that the three decoherence parameters have the same energy
dependence. This gives the simplest form without introducing more than one extra degree
of freedom, and allows energy dependence to be added to the decoherence term as a
scalar:

∂

∂t
ρ(t) = − i

~
[H, ρ(t)] +D[ρ(t)]

(
Eν
E0

)n
. (4.8)

The value of Γij depends on energy when n 6= 0. When n is positive the strength of
decoherence increases with energy. It is important to differentiate between Γij and Γ0,ij

when considering energy dependent cases. Γ0,ij is the absolute value of the decoherence
parameter of which a measurement can be made. Γij is the energy dependent parameter
that varies. It is the effective strength of decoherence at a certain energy.

Figure 4.5 shows the value of Γij as a function of neutrino energy for different n.
The value of Γ0,ij is set to 1feV , as this value is comparable to but below current limits
of neutrino decoherence [28].
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Figure 4.5. – The effective Γij value as function of n when using Γ0,ij = 1feV .

The decoherence model without energy dependence will be used for illustrative
purposes throughout the rest of this chapter, where Γij = Γ0,ij . Γ parameters will be
listed without the subscript 0 whenever the decoherence model considered is not energy
dependent.

4.3 Impacts on neutrino oscillations
The following section will assume a model where Γ21 = Γ31 = Γ32 = Γ for

visualizing the impact of adding decoherence to neutrino oscillations. It will be discussed
later whether or not decoherence is sufficiently described by a single effective parameter.

The effects are shown on oscillations of neutrinos initially created as νµ, while
this is where decoherence has its biggest impact. Muon neutrinos are also the most
distinguishable neutrinos in IceCube. The distance traveled for a muon neutrino can
be more accurately reconstructed, due to its track like light signature that gives a good
pointing resolution, and the fact that the majority of muon neutrinos are of atmospheric
origin. Furthermore θ23 ' 45◦ and has the biggest uncertainty of the three mixing angles,
making muon neutrinos a good candidate for probing sub-leading oscillation effects as
decoherence. The neutrino energy is generally set to 25GeV , while νµ has its oscillation
maximum around a distance comparable to the Earth’s diameter at this energy.

Adding decoherence to the time evolution of neutrinos damps oscillations, as seen
in section 4.1. The effect is more complex when considering three neutrinos, instead
of two. The probabilities of finding a given flavor at a distance, L, are damped to
their average value. How quickly this happens depends on the strength of decoherence
parameters. Figure 4.6 shows how this affects a muon neutrino’s oscillation probability.
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The minimum probability of finding a muon neutrino around 13000km is changed in the
decoherence model to around 20% instead of 0%.
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Figure 4.6. – Three-flavor model of neutrino decoherence in vacuum using current best fit values
of oscillation parameters from table 2.1 and Eν = 25GeV . The decoherence
parameters have been set to Γ21 = Γ31 = Γ32 = 10feV .

The L range shown in figure 4.6 is insufficient to see the fully damped "averaged"
oscillation probability. The same models are shown in figure 4.7 to highlight that
probabilities tend to the average at large L. The solid blue line displaying νµ → νµ is
damped to the average of the dashed blue, the solid red to the average of the dashed
red and so forth. This is an important cross check of the understanding of decoherence
effects.

In section 4.1, decoherence is implemented as random perturbations of the oscillation
probabilities. The phenomenological model should be able to reproduce the same effect,
if the implementation of decoherence is correct. The distances considered here are not
relevant for atmospheric neutrinos used in the analysis, but are included for illustration
and as a sanity check.
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Figure 4.7. – Three-flavor model of neutrino decoherence in vacuum using current best fit values
of oscillation parameters from table 2.1 and Eν = 25GeV . The decoherence
parameters have been set to Γ21 = Γ31 = Γ32 = 10feV .

In reality, atmospheric neutrinos come from at variety of distances and with different
energies. Figure 4.8 shows the effects of standard oscillations and decoherence on
atmospheric neutrinos at energies and zenith angles relevant to DeepCore, as a function
of energy and incoming angle. The direction relates to the cosine of the zenith angle
θz, where cos(θz) = −1 is an up-going neutrino, meaning that it is coming from the
north pole and thus emerges from below the detector travelling upwards. cos(θz) = 0
is a neutrino propagating horizontally with respect to the detector, and cos(θz) = 1 is a
down-going neutrino coming from directly above the South Pole (appearing from the
south with respect to Earth). The zenith angle is directly related the distance that a
neutrino has traveled before interacting.

Two regions of this parameter space are of major interest. Above 50GeV , muon
neutrinos start disappearing in the presence of decoherence. This gives an overall
decrease in νµ events, correspond to receiving less track-like events in the detector at
these energies. The region is in the first oscillations maximum which lies around 25GeV
at cos(θz) = −1 (widest disappearance band), where muon neutrinos disappearance is
weakened compared to the standard oscillation case.

The only difference between a normal or inverted mass ordering is the wiggles
appearing at long baselines below 10GeV . These are created by interactions between
electron neutrinos scattering off electrons inside the Earth, known as the Mikheyev-
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Smirnov-Wolfenstein (MSW) effect [29]. The MSW effect is sensitive to ∆2
m, which

gets the opposite sign in an inverted mass ordering.

Figure 4.8. – Oscillograms showing the difference between standard oscillations and decoher-
ence for a normal and inverted mass ordering, as a function of incoming angle and
energy.

The oscillograms for νµ → νµ shown here as this is the dominant channel for
atmospheric neutrinos. The energy dependence (n = 0) is included for consistency.
Other oscillograms are displayed in appendix A
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5Measuring decoherence with
IceCube/DeepCore

With the theoretical framework in place, measuring decoherence can be considered. The
analysis technique used is known as a forward folding parameter estimation, in which a
template is generated according to different hypotheses and then compared to pseudodata.
A truth model is generated from simulation and applied detector response, oscillations,
flux corrections, and statistical fluctuations. It is then compared to the data observed
by the detector, or in this case pseudodata generated from simulation. Sensitivity to a
physics parameter (Γ0 here) can be calculated by fitting the pseudodata with templates
containing various values for the physics parameter, and comparing the fit result to a fit
where the physics parameter is allowed to float freely. The details will be explained in
section 5.6.

The energy range explored has been chosen to match a realistic analysis with
IceCube/DeepCore. For this reason it has been limited to 200GeV , as this energy range
has the best data to monte carlo agreement. The analysis will assume that neutrinos have
a normal mass ordering, but could be done for both mass orderings.

5.1 The optimal detector
Luckily, cosmic rays are the cause of more than just noise in the detector. The

cosmic ray interactions in the atmosphere also create neutrinos. In fact, most of the
muon neutrinos observed in IceCube are the product of these. The benefit of looking at
neutrinos coming from cosmic rays is that the distance traveled is known, and depends on
the incoming angle of the particle detected. This is a huge advantage, as the decoherence
effect becomes increasingly visible with distance traveled, as a longer path means passing
through more "environment" and thus increases the probability for a perturbation of the
wave function. It can be seen in figure 5.1 how a neutrino created near the north pole
has a different incoming angle, and for that reason travels longer before reaching the
detector, than a neutrino created close to the equator.

It is tempting to use neutrinos of astrophysical origin for the decoherence search, as
the distance they travel far exceeds atmospheric neutrinos. But astrophysical neutrinos
have some unknowns that make them unqualified for decoherence searches. The precise
creation point, and thus the distance traveled before reaching Earth is unknown. This
makes us unable to calculate the probability of detecting a specific flavor. Furthermore
the flux of astrophysical neutrinos is not known accurately. This limits the ability to
estimate how many neutrinos that are expected at certain energies and incoming angles.
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Figure 5.1. – Illustration of how different incoming angles in the detector leads to a difference
in distance traveled. One of the neutrinos have oscillated into another flavor along
the way.

IceCube has the longest possible baseline achievable on Earth when neutrinos are
directly upgoing in the detector. The variety of possible baselines gives an advantage
over experiments with a fixed baseline, such as reactor and accelerator experiments.
This gives the opportunity to test for an increase in decoherence with distance traveled,
whereas only a set increase or decrease in flux can be measured if the baseline is fixed.
In the case of a fixed baseline a potential decoherence signal is more easily absorbed in
other parameters, or confused with other beyond Standard Model effects, that could have
a similar impact.

5.2 Hypothesis testing
The investigation of how well decoherence can be measured with IceCube/DeepCore,

happens through hypothesis testing, which is a measure for how much better or worse the
data is fitted by a new model, compared to the existing one. The data can be described
by a hypothesis that depends on a variety of free parameters, which in this case are fit
to match the data with the maximum likelihood method. The likelihood of a function
F (xi, ~p) [30] depending on the data xi and the parameters ~p is given by

L(x, ~p) =
∏
i

F (xi, ~p), (5.1)

where
∏
i is the product of all data points in the data a hypothesis is fitted to. The better

fit is then given by the hypothesis that maximizes the likelihood value. The product in
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eq. 5.1 will often be a very tiny number when considering many data points. It can
be advantageous to take the natural logarithm on both sides of the equation, to avoid
computational issues:

lnL(x, ~p) = ln
∏
i

F (xi, ~p) =
∑
i

lnF (xi, ~p) (5.2)

This is known as the Log Likelihood (LLH). The maximum likelihood only tells you
which function fits the data better, not how good the fit is. In principle two hypotheses
that do not describe the data very well could be tested, and one would still have a higher
LLH value.

It can be beneficial to apply a binned LLH comparison when working with large data
sets, to decrease the computational time. This is typically done by using the probability
mass function of the Poisson distribution

lnL(λ, k)binned =
∑
i

lnF (λ, k) , F (λ, k) = λk

k! e
−λ, (5.3)

which gives the probability of observing k number of events in a bin where the truth
hypothesis has λ events.

5.2.1 Wilks’ theorem
The LLH value can be directly used to get the goodness of fit for an alternative

hypothesis compared to the null hypothesis with Wilks’ theorem, if the null hypothesis is
nested in the alternative model. A nested model is the simpler, containing a subset of the
parameters of the alternative. The theorem states that the test statistic

−2∆LLH = −2 ln L(x, ~p0)
L(x, ~p1) (5.4)

is χ2 distributed, with the Degrees of Freedom (DoF) being the difference in number of
parameters in p0 and p1, when the number of tested hypotheses approaches infinity. The
difference in DoFs account for the fact that a superset hypothesis containing more free
parameters will always fit the data equally well or better.

The advantage of relating −2∆LLH to the χ2-value is that it allows the conversion
to a p-value by using the χ2 cumulative distribution function (CDF). Evaluating χ2-CDF
with DoF equal to the difference in number of free parameters in the two hypotheses at
the value of −2∆LLH , gives the probability of correctly rejecting the null hypothesis.
The conversion from −2∆LLH to χ2 allows the interpretation of how confidently this
can be done in terms of 1σ, 90% etc. Figure 5.2 illustrates how a difference in χ2 can be
translated into the probability of correctly rejecting the null hypothesis.
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Figure 5.2. – p-value as a function of χ2 for different degrees of freedom.

5.3 Simulation
The usage of random generated simulation known as Monte Carlo (MC) simulation

has become important in modern physics, and has major benefits. One is that a determi-
nation of how well we understand the underlying physics of the particles we observe can
be made, if it is possible to generate a Probability Distribution Function (PDF) of events
from basic assumptions about how likely a neutrino is to interact at different energies,
how well the energy and incoming angle is reconstructed, and what the flux is. That must
be somewhat understood if simulation agrees with data.

Another benefit is that the analyses can be done "blindly", meaning that the model
can be tested on simulation before applying it to real data. In this way results that deviate
from the expectation will not affect the analyses, because it is not applied to data until
the analyses are completed and checked for errors on simulation. As a result, the final
analyses should be less biased due to the lack of knowledge on how changing analyses
techniques influence the final results.

In this project MC is used to get an estimated sensitivity to decoherence with
IceCube/DeepCore.

5.3.1 Event sample
A sample of neutrino events is required in order to test the decoherence model.

This analysis uses pseudodata corresponding to six years of data taking with Ice-
Cube/DeepCore. An event sample is selected to maintain the maximum number of
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neutrinos while getting rid of as much background as possible. The two most important
background sources are muons and detector noise, as mentioned in section 3.4.

The event selection used is known as the GeV Reconstructed Events with Con-
tainment for Oscillations (GRECO) sample. It is a selection created for a tau neutrino
appearance analysis by Michael J. Larson [31]. The selection happens on top of the
Simple Multiplicity Trigger, SMT3, which requires 3 HLC hits to occur in DeepCore
within a time span of 2.5µs. An event ratio of around 70000 muons per neutrino remains
after the SMT3, plus additional background events from noise randomly fulfilling the
SMT3 criteria, both of which has to be filtered to get a purer neutrino sample.

A number of different cuts are applied before arriving at the final sample of events.
After all cuts are applied the sample is predominantly consisting of atmospheric muon
neutrinos. The number of neutrinos compared to muons have been increased by a factor
of 7 · 105 to around ten neutrinos per muon, with a total number of approximately 105

neutrinos left when using six years of (pseudo) data.

5.4 Degeneracy in Γ parameters
This section continues to use energy independent decoherence where Γ = Γ0 as an

example.
In section 4.3, a decoherence model with only one effective parameter Γ = Γ21 =

Γ31 = Γ32 was used to display the impact expected by due to decoherence. However the
three parameters do not necessarily have to take the same value, and can in principle
be anything within the surface of the cone defining the physical region of parameter
space shown in figure 4.4. Naturally, the following question arise: How well can possible
decoherence models be described by the single Γ model where Γ21 = Γ31 = Γ32? If the
answer is ’not well’, then which parts of the decoherence parameter phase space can we
differentiate from each other, when applying the different models?

The three special cases Γ21 = Γ31,Γ32 = 0, Γ21 = Γ32,Γ31 = 0, and Γ31 =
Γ32,Γ21 = 0 are compared to the single Γ model and standard oscillations in figure
5.3. Oscillations are never fully damped when one of the three Γij parameters have a
value of zero. This can be understood from eq. 4.6 and noting that the off-diagonal
terms of the density matrix expressed in the mass basis account for oscillations. The
off-diagonal elements are where the time-dependent terms are added when calculating
oscillation probabilities (see section 2.3). When one Γij parameter takes the value of
zero, the two off-diagonal terms in the density matrix that are subtracted that parameter
will never vanish because the subtracted term is proportional to Γij where Γij = 0, and
thus some oscillation remains from those two terms being non-zero in the density matrix.
The oscillations of the three special cases where one Γij parameter is equal to zero is
displayed in figure 5.3.
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Figure 5.3. – Three-flavor model of neutrino decoherence in vacuum using current best fit
values of oscillation parameters from table 2.1 and Eν = 25GeV . The three
special decoherence cases impact on oscillations are shown.

The three cases where one of the Γij parameters is set to zero have different impacts
on oscillations and are clearly distinguishable at large L. However, this analysis is only
sensitive to distances L . 12800km (since this is the diameter of the Earth), meaning it
can be more difficult to tell the difference between models, as the functions describing
oscillation probabilities are approximately still in phase.

Figure 5.4 shows the same oscillation probability curves as figure 5.3, but in the
distance range relevant for atmospheric neutrinos. The different decoherence models
resemble scalable versions of each other. The models described by the blue and purple
lines are already qualitatively similar, even without changing any of the parameters. As
another example, the model Γ21 = Γ32 and Γ31 = 0 (blue line) could be well described
by the single Γ model, if the decoherence parameter of the latter took a smaller value.
The dashed cyan line displays an alternative model, where the parameters have been
tuned to mimic the effect of the model characterized by the solid blue line. The parameter
tuning could be done in similar fashion for the other models.
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Figure 5.4. – Three-flavor model of neutrino decoherence in vacuum using current best fit
values of oscillation parameters from table 2.1 and Eν = 25GeV . The different
decoherence models can give a similar probability due to the degeneracy of Γ
parameters.

This suggest that a wide range of decoherence parameter space could potentially
be well described by a single effective Γ parameter, in a search limited to atmospheric
neutrinos. In other words, there seems to be some degeneracy in the decoherence
parameter space.

An estimation of how well different models can be describe by the single Γ model is
visualized in figure 5.5. Random decoherence models have been generated within the
allowed Γ parameter space and then fitted with a Γ = Γ21 = Γ31 = Γ32 hypothesis. Each
point is color-coded according to how well that model can be described by the single Γ
hypothesis, in terms of σ. The purpose of this test is to visualize the degeneracy between
the Γij parameters themselves, and every other parameter/systematic is fixed in the fitting
for that reason. In a realistic scenario, the uncertainty in other oscillation parameters, as
well as systematic uncertainty, would reduce the ability to differentiate between different
decoherence models, if these are freely floating variables in the fitting process. This
would increase the degeneracy and thus further motivates the use of a single effective
decoherence parameter. The pull of free parameters during the fit of decoherence models
will be discussed further in 5.7.1.
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(a) (b)

Figure 5.5. – Different decoherence models plotted in decoherence parameter phase space. The
color shows how well they are described by a single Γ hypothesis. The same plot
is shown at two different rotations.

Figure 5.5 reveals the fact that the degeneracy does not fall off as a function of
distance to the single Γ hypothesis. Instead, the degenerate models are distributed in a
band around the plane where Γ21 = Γ32. If all of the Γij parameters are below 5feV ,
every model can be described well by the single Γ hypothesis when fitting.

The models have also been compared to a hypothesis without decoherence to explore
the discriminating power for decoherence in any form. As seen in figure 5.6, every
decoherence model is more distinguishable from standard oscillations already at a few
feV , than from the single Γ hypothesis. IceCube is able to differentiate between the
decoherence and standard oscillations, if decoherence is a real effect with parameter
values larger than a few feV , just by applying the single Γ model. For this reason the
applied model will be one containing a single Γ parameter in the rest of this project.
The concern about which model is the correct one can be reconsidered, if a decoherence
signal is eventually discovered.
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Figure 5.6. – Difference in σ when fitting a no decoherence hypothesis with a random (but
allowed) decoherence model.

5.5 Event templates
The oscillograms displayed in figure 4.8 show how a decoherence effect looks in

an idealized world without considering statistical fluctuations, event misidentification,
imperfect reconstruction, noise, and systematic uncertainties. But the real world is always
more complicated. Figure 5.7 shows how the difference between standard oscillations
and decoherence would look in number of tracks and cascades detected, as a function
of incoming angle and energy. What is seen in the templates depends not only on the
parameters listed in section 5.7, but also on how the neutrino flux varies with energy and
incoming angle, efficiency of the detector at different energies and angles, and the cross
section of different neutrino flavors.

The comparison of standard oscillations and decoherence is stated as statistical
significance in terms of the difference in bin content in such templates.
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Figure 5.7. – Number of events per bin as function of reconstructed energy and zenith angle. The
decoherence model used is the single Γ model with Γ0 = 4feV , corresponding to
the strength required for a 5σ discovery potential when using IceCube/DeepCore.

5.6 Sensitivity test for energy independent
decoherence

Determining the estimated sensitivity to decoherence in IceCube/DeepCore is done
by comparing the event templates described in the previous section, which are generated
according to different hypotheses. The estimated sensitivity to decoherence is obtained
in the following way:

Pseudodata is generated according to some hypothesis. The could be either one
without decoherence (Γ = 0) or with an injected signal (Γ = const). The generated
pseudodata is then fit using the binned maximum likelihood method, with a template
where the physics parameter, Γ, is allowed to float.
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A number of alternative hypotheses are generated for the sensitivity scan, with Γ
fixed to different values, each of which are minimized to fit the pseudodata as well as
possible. The difference in LLH between the free fit with Γ floating and the scanned
point (where Γ is fixed to the scanned value) is then calculated. The −2∆LLH can then
be translated to the significance at which the scanned point can be excluded using Wilks’
theorem. Note again that Γ0 = Γ when the model is energy independent (n = 0 , see
eq. 4.7), and Γ will be used throughout this section. The plots in figure 5.8 and 5.9 are
generated using asimov pseudodata, meaning without statistical fluctuations.

Figure 5.8. – Asimov sensitivity test using pseudodata with Γtrue = 0 and n = 0.

Figure 5.9. – Asimov sensitivity test using pseudodata with Γtrue = 10feV and n = 0.
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Figure 5.8 shows the sensitivity in IceCube in the case of the pseudodata being
generated without decoherence (Γtrue = 0). The −2∆LLH value and the corresponding
significance in standard deviations is displayed as a function of the value that the physics
parameter Γ takes. A case with pseudodata including decoherence at a strength of
Γtrue = 10feV is displayed in figure 5.9.

The case of a decoherence measurement is included here to display how it compares
to making an upper limit. The rest of the project will take the slightly pessimistic
approach where decoherence is not currently measurable with IceCube/DeepCore, and
thus only display the estimated upper limits (no more injections of decoherence signal).

A real measurement would be subject to statistical fluctuations in data. For this reason
the sensitivity test in figure 5.10 has been repeated 200 times, each with fluctuations
applied to the pseudodata. The figure displays confidence intervals; that is the intervals
within which the −2∆LLH took a value in 68% and 90% of the tests.

The scan points around 0 take a negative −2∆LLH value, implying that points with
Γ 6= 0 fit the pseudodata better than the test where Γ was floating freely. This can happen
in cases where the minimizer does not find the global minimum in the free fit, because
the extra free parameter has complicated the LLH space.
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Figure 5.10. – Sensitivity to decoherence, using pseudodata generated with Γtrue = 0 and
n = 0. The confidence intervals are made by displaying the area that 68% and
90% of the trials fit within.
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The sensitivity to decoherence characterized by a single energy independent Γ
parameter is found, by evaluating the median at desired statistical significances. Using
IceCube/DeepCore Γ can be limited to

Γ ≤ 1.4(1.6)[feV ] at 68%(90%) CL, (5.5)

in the case of energy independent decoherence.

5.7 Fit parameters
The Minimization process in the sensitivity test is performed with a number of

free parameters, which are fitted to minimize the difference in likelihood between the
hypotheses with various fixed Γ, and the one where Γ is floating freely. The free
parameters in the fit are listed in table 5.1.

Parameter Description

νe
νµ

Flux ratio of νe and νµ with respect to nominal value

Barr uphor ratio Flux ratio of horizontal and upgoing neutrinos

Barr ν
ν̄

Flux ratio of neutrinos and anti-neutrinos

δ index Correction to spectral index of neutrino the flux: Φν ∝ E−k+δ

δγµ Correction to spectral index of the muon flux: Φµ ∝ E−k+δ

θ23 Atmospheric mixing angle

∆m2
31 ν1 and ν3 mass difference squared

GENIE Ma QE Cross section parameter for QE

GENIE Ma RES Cross section parameter for RES

Effective scale Scaling parameter for the total neutrino rate

Weight scale Scaling parameter for the total muon rate

ντ normalization Scaling parameter for the ντ and ν̄τ rates

νNC normalization Scaling parameter for the NC rates

Table 5.1. – Free parameters in the fits performed during sensitivity tests. Some flux uncer-
tainties are named Barr after the author of a flux uncertainty paper from 2006
[32].

There are a few benefits to implementing some of the flux parameters as ratios: The
minimizer has less free parameters which makes the process faster, and some of the
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uncertainties cancel when the ratio is taken. An example of this is illustrated in the
Barr paper [32], where the uncertainty of νe

νµ
is generally a factor 3 to 5 lower than the

uncertainty of νe
ν̄e

or νµ
ν̄µ

.
Some parameters are fixed in the fitting process, due to the lack of importance to the

analysis, for example ∆m2
21 and the distance above earth that neutrinos are generated.

The impact that the fixed parameters has on the analysis have been checked in a fit where
they were allowed to float freely. Parameters that have little or no impact are fixed to
lower computational time and reduce complexity of the LLH-space, making it easier for
the minimizer to find the correct global minimum.

5.7.1 Parameter pulls
The parameters that are floating freely during the fitting process are not always

fit back to the values that the pseudodata is generated from. The free parameters in a
sensitivity test can pull in certain directions, to compensate for the fact that an incorrect
hypothesis is fitted. The parameters can take different values to make the decoherence
template more similar to the truth template. The pull of individual parameters can be
seen in figure 5.11.

Six parameters are significantly different from their value in the truth template; νe
νµ

,
Barr ν

ν̄
, Effective scale, ντ normalization, νNC normalization, and Weight scale. The

effect of a combined parameter pull is non-trivial. As an example, the νe
νµ

moves towards
higher values with increasing Γ0, which increases the overall number of cascades. On
the other hand the νNC normalization is pulled to lower values, decreasing the number of
cascades. The two parameters could have slightly different impacts in distinct regions of
the template, making the combined effect of all the parameter pulls lower the impact that
a decoherence parameter has on the template.

It is also worth noting that θ23 increasingly favors a value above 45◦ with larger Γ0

values.
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Figure 5.11. – The value that each free parameter is fitted to, as a function of Γ0. The contours
are made from 200 trials of statistically fluctuated templates
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5.8 Energy dependent decoherence
The possibility for decoherence to be energy dependent is motivated by some quan-

tum gravity models [33], which predicts that Γ ∝ Γ0E
2. Even without the motivation

quantum gravity models, one could imagine that the probability of interacting in the
neutrino mass basis scales with energy, just like it does with weak interactions. Energy
dependent decoherence follows the formulation from section 4.2.1, where n is the index
of a power law describing the energy dependence. It is important to remember the
difference between Γ and Γ0 in the energy dependent cases, which can be reviewed in
section 4.2.1.

5.8.1 n = 2

Figure 5.12. – Oscillograms showing the difference between standard oscillations and decoher-
ence for a normal and inverted mass ordering, as a function of incoming angle
and energy. The oscillograms are generated using Γ0 = 200zeV the n = 2
energy dependence.
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The energy dependent decoherence model with n = 2 will be considered here as
an example, but the same analysis was also done for models with n = −2,−1, and 1,
to get the upper limits in each case. The impacts that decoherence have on neutrino
oscillations are different, when applying an energy dependent model. Figure 5.12 shows
the oscillogram when considering the n = 2 case. A value of Γ0 = 200zeV is used
here (which corresponds to the estimation of where a 5σ discovery potential would be
using IceCube/DeepCore in the n = 2 case), as the decoherence effect becomes more
significant when considering an energy dependence with a positive n.

The effective Γ parameter now take a much higher value at large Eν , and increases
with energy from 200zeV for neutrinos with Eν = 1GeV to 200feV for neutrinos with
Eν = 1TeV .
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Figure 5.13. – Number of events per bin as function of reconstructed energy and zenith an-
gle. The decoherence model used is the single Γ model with Γ0 = 200zeV ,
corresponding to the strength required for a 5σ discovery potential when using
IceCube/DeepCore.
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The MC templates displayed in figure 5.13 are only affected at higher energies in
this case, as the effective Γ value is below 1feV at energies below ∼ 70GeV .

The sensitivity to different energy dependent decoherence models can be estimated
in the same way as with the energy independent decoherence model considered in section
5.6. This gives an upper limit for the strength of Γ0 that is dependent on n. The sensitivity
to Γ0 for n = 2 can be seen on figure 5.14
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Figure 5.14. – Sensitivity to decoherence using pseudodata generated with Γ0 = 0 and n = 2.
The confidence intervals are made by displaying the area that 68% and 90% of
the trials fit within.

5.8.2 Upper limits for different n
The upper limits to five different energy dependent decoherence models where

n ∈ [−2,−1, 0, 1, 2] have be calculated with sensitivity tests. The sensitivity curves for
n cases that have not been displayed previously are shown in appendix B. Figure 5.15
displays the upper limits on Γ0 for different cases of energy dependency. The values of
each limit are also displayed in table 5.2.

The upper limits on Γ0 determined for positive n decrease rapidly with n because all
of the decoherence signal appears in a region that is not complicated by oscillations. The
opposite is true for negative n, because the signal appears in a region with oscillations.
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n 68% 90%

−2 47.4 feV 77.9 feV

−1 9.8 feV 18.2 feV

0 1.4 feV 1.6 feV

1 6.0 aeV 10.3 aeV

2 23.8 zeV 44.4 zeV

Table 5.2. – The 68% and 90% upper limits on Γ0 in five different energy dependent decoherence
models.
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Figure 5.15. – 68% and 90% Confidence levels for five different cases of energy dependence
ranging from n = −2 to n = 2.

5.9 Previous decoherence searches
The original motivation for this project was a disagreement in the measurement of θ23

between the two long baseline accelerator experiments NOvA and T2K [35]. The mea-
surement from T2K was favoring maximal mixing (θ23 = 45◦), whereas NOvA measured
θ23 to be non-maximal. One of the main difference between the two experiments is their
difference in baseline, being 295km and 810km for T2K and NOvA respectively. It was
proposed that the difference in measurements could be caused by neutrino decoherence
[34], as it can mimic the effect of less effective mixing. The strength of this decoherence
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effect would have to be in the order ∼ 20feV to account fully for the discrepancy. The
tension was however resolved when the new result from NOvA came out in the beginning
of 2018. Both experiments now have maximal mixing included in their 90% confidence
level.

A search for decoherence using one year of public IceCube data was carried out in
the first half of 2018 [36]. The three special cases where one decoherence parameter take
the value of zero are examined in the paper.

A search for decoherence was carried out almost two decades ago, using the Super
Kamiokande detector [28]. A two neutrino flavor approximation was used in this analysis,
which makes the result hard to interpret in a framework using three flavors. However the
study gives a rough idea of the range of Γ values a search should investigate.

It was proposed in [37] that decoherence could resolve the LSND anomaly, in which
the experiment detected an excess in neutrino events at low energies. The decoherence
strength required to explain the anomaly is Γ0 ∼ 1.2 · 1011feV . For this reason a energy
dependent model that makes the signal peak in the desired region is used, as a model
without energy dependence would be excluded already.

This study covers a parameter space that has not been explored in previous searches
with the exception of [36]. In comparison to [36], a larger statistics sample of IceCube
data is used and the parameter space is explored in a different manner. This leaves
neutrino decoherence as an open topic with plenty of room for improved searches.
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6Summary and concluding
remarks

The theory and phenomenology of a neutrino oscillations model including decoherence as
a sub-leading effect is presented in this thesis. Neutrino decoherence arises when treating
neutrinos as propagating in an open quantum system, in which they are coupled to the
surrounding environment. The implementation of a model containing the combined
effects of neutrino oscillations and decoherence has enabled the study of how this
dampens oscillations, which alters the probability of observing the different neutrino
flavors as a function of energy/distance traveled. The potential for observing decoherence
with IceCube is visualized, and both a decoherence toy model and a complete three-flavor
model containing the presently known neutrino physics have been investigated.

Neutrino decoherence can be characterized by three parameters; Γ21, Γ31, and Γ32,
each of which are limited within a range depending on the values of the other two.
The work shown in this thesis support that a model with a single parameter where
Γ21 = Γ31 = Γ32 = Γ is sufficient to search for a decoherence signal, while models
where the three parameters take different values are almost indistinguishable in IceCube.

Neutrino decoherence has been implemented in an IceCube analysis framework
to investigate how it would impact the observed data. Estimations of the sensitivity
to decoherence with different energy dependencies, where Γ = Γ0

(
Eν
GeV

)n
, have been

calculated using a Monte Carlo simulation of IceCube data. IceCube/DeepCore is
sensitive to energy independent decoherence down to Γ ≤ 1.6feV (90% CL).

The presented analysis will be applied to real data at a later time, when final checks
and implementations have been carried out, and the analysis methods have been reviewed
and approved by the IceCube collaboration. Using the IceCube detector for a decoherence
analysis can produce world leading upper limits on the decoherence parameters.

6.1 Future work
A couple of tasks need to be carried out before the analysis is ready to be applied to

real data. The most important is the inclusion of IceCube detector systematic uncertain-
ties, which includes photon scattering and absorption uncertainties of the ice, and DOM
efficiency. The inclusion will allow for a more realistic limit to decoherence. The impact
of using detector systematic uncertainties needs to be investigated before the analysis
can be carried out in a satisfactory way.

The upper limits to decoherence can be improved by including data at higher energies
than Eν > 200GeV . This region has the advantage of better angular resolution for tracks,
and the benefit of no oscillations. Extending the search to this regions could have other
complications though, such as less knowledge of the neutrino origin (atmospheric or
astrophysical) and a smaller neutrino flux.

A correlation between decoherence and matter effects for Γ > 1000feV was discov-
ered but not mentioned in this thesis, due to the lack of understand of whether it is a real
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effect or an effect of incorrect software implementation. This was discovered recently,
and needs further investigation.
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AOscillograms for energy
independent decoherence

Oscillograms for different initial and final flavors using both standard oscillations and
decoherence models with no energy dependence.
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Figure B.1. – Number of events per bin as function of reconstructed energy and zenith an-
gle. The decoherence model used is the single Γ model with Γ0 = 1peV ,
corresponding to the strength required for a 5σ discovery potential when using
IceCube/DeepCore.
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Figure B.2. – Sensitivity to decoherence using pseudodata generated with Γ0 = 0 and n = −2.
The confidence intervals are made by displaying the area that 68% and 90% of
the trials fit within.
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Figure B.3. – Number of events per bin as function of reconstructed energy and zenith an-
gle. The decoherence model used is the single Γ model with Γ0 = 77feV ,
corresponding to the strength required for a 5σ discovery potential when using
IceCube/DeepCore.
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Figure B.4. – Sensitivity to decoherence using pseudodata generated with Γ0 = 0 and n = −1.
The confidence intervals are made by displaying the area that 68% and 90% of
the trials fit within.
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Figure B.5. – Number of events per bin as function of reconstructed energy and zenith an-
gle. The decoherence model used is the single Γ model with Γ0 = 36aeV ,
corresponding to the strength required for a 5σ discovery potential when using
IceCube/DeepCore.
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Appendix B Templates and sensitivity for different energy dependences
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Figure B.6. – Sensitivity to decoherence using pseudodata generated with Γ0 = 0 and n = 1.
The confidence intervals are made by displaying the area that 68% and 90% of
the trials fit within.
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