
Counting Holes in the Universe

Master’s Thesis by Mikkel Stockmann

University of Copenhagen, Dark Cosmology Centre

September 15, 2014

Supervised by
Signe Riemer-Sørensen, University of Oslo (UiO)
Tamara M. Davis, University of Queensland (UQ)

Steen H. Hansen, University of Copenhagen, Dark Cosmology Centre





Abstract

The matter in the Universe is distributed in web-like filaments with large regions of
empty spaces in between, called voids. Recent N-body simulations by Villaescusa-
Navarro et al. (2011) show a relation between the number of voids and the currently
unknown mass of the neutrino, the lightest standard model particle. We were inspired
by the results to investigate whether this e�ect is measurable in observational data.
Since voids per definition contain very little matter, they are di�cult to measure and
can instead be classified from the empty regions between the patterns of the matter
distribution. The matter distribution can be established from hydrogen clouds shad-
owing quasars that are among the most luminous light sources in the Universe.

We investigate the possibility of counting the number of voids, in UVES (VLT) high
resolution quasar spectra (2 Æ z Æ 5), interpreted as the space between the Lyman-–
absorption lines, in order to perform the first void count on real quasar data. From
artificial mock spectra, I develop an automatic void counting method that enables us
to make a statistical void count. To avoid subjective bias we determine our coding
selection criteria from a subsample of 50 quasar spectra before running a blind anal-
ysis on the remaining quasar sample. We produce the to date first statistical void
count comparison between simulated and observed quasar spectra along line of sight.
We find an observed void count o�set from the number of voids in simulation but to
conclude any further we must increase our number statistics using the HIRES (Keck)
data sample.
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1 Introdution 1

1 Introdution
The distribution of galaxies from redshift surveys reveal a variety of large scale structures
in the Universe. Dense clusters (up to few Mpc in size) is connected by filaments (stretch-
ing up to tens of Mpc’s) that is sewn around the large under-dense voids (spanning from
tens to hundreds of Mpc’s).
These enormous structures described in Bond et al. (1996) are pictured in Figure 1, where
the galaxies (kpc size) are represented as yellow dots, which in large collections and strings
represent the clusters and filaments with the dark empty regions being the voids. This
cosmic web is believed to reflect an evolved state of the primordial density patterns of the
early Universe.

Figure 1: The Large Scale Structure (LSS) of the Universe from a dark matter simulation. The left
plot is a zoom of the right. The large empty regions are voids that barely contain any galaxies. Each
yellow dot is a galaxy, with a diameter of 100.000 light years. The collections of yellow dots are groups of
galaxies, and the big crossroad of filaments in the middle is a super cluster. The simulation was performed
in Garching, Germany by Springel et al. Boylan-Kolchin et al. (2009).

The traditional focus has been the easy observable structures, but in this project I focus
on the voids. The voids occupy the majority of the volume in the Universe and strongly
influence the growth of the large structures. The interior void mass a�ects how quickly
the matter is evacuated into the denser areas, and at which pace the large structures of
the Universe is formed. The statistics and dynamics of voids therefore provides possible
ways of testing todays model of structure formation.

Quasars, one of the most luminous objects observed, are visible out to large redshifts,
providing us with information from the early Universe. They are believed to be galaxies
hosting super massive black holes (M ≥ 108 M§) that send out jets of very energetic
light (Urry and Padovani, 1995). On its way towards us the light passes through neutral
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hydrogen clouds (galaxies and proto-galaxies), which leave absorption signatures in the
spectrum (see Figure 2). Counting the number of signatures in the Lyman-– forest di-
rectly determine the number of voids along line of sight (LOS).

We were motivated to count voids in observed spectra from recent simulations that il-
luminated the relationship between the sum of neutrino masses and the number of voids
along LOS (Villaescusa-Navarro et al., 2011). The aim of the project was to develop
an automatic code to count the number of voids along LOS in observed high resolution
quasar spectra (2 Æ z Æ 5) from the UVES spectrograph (King et al., 2012). I constructed
the code from artificial mock spectra to avoid subjective bias. A blind analysis was then
performed on the resulting quasar sample, to determine if the observed void count dis-
tribution match the number of voids in spectra from N-body simulations by Rossi et al.
(2014).

Figure 2: A quasar spectrum revealing a forest of absorption lines. The absorption occurs when the
emitted light from the quasar interacts with the neutral hydrogen distributed on cosmological scales on its
way to the observer. Credit: Michael Murphy and John Webb.
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The reader less familiar with cosmology can skip to section A for a historical and concep-
tual overview of astrophysics. Section 2 describes the cosmological background and the
e�ect neutrinos have on voids as the Universe evolves. The concept of the project can be
found in 3, and section 4 introduces the di�erent data types and how they are prepared
for the analysis. Section 5 explains the practical challenges and solutions occurring when
observing voids. A robust void count is developed in section 6, whereafter the uncertainty
from the quasar spectrum normalization is estimated (section 7).

We use the final quasar sample from section 4.3 to perform the first robust void count
on observed spectra in section 8. The statistical methods used throughout the analysis
are covered in Appendix B. We summarize the results in section 9, followed by ideas on
further work (section 9.1) before we briefly conclude in section 10. Appendix C, includes
a sample of extra figures also referred to throughout the thesis.



2 Cosmological Background 4

2 Cosmological Background
In this chapter I will cover the cosmological background that provides the basis of the
thesis as well as subsequent discussions. The first subsection will introduce the concor-
dance model, using the expanding Universe, the cosmological principle, and Friedmann’s
equation for accelerated expansion. Section 2.2 will address the formation of structure
from Big Bang up until the galaxies and clusters we observe today. I will especially focus
on the evolution and dynamics of voids and their interplay with cosmological neutrinos.

2.1 The Expansion of the Universe
When we look out in the Universe we observe enormous structures like galaxies (kpc size)
and galaxy clusters (Mpc size). They are linked into a cosmic web of filaments sewn around
the large empty regions called voids, as illustrated in Figure 1. We observe all extra-
galactic objects to increase their distance to us (as well as to each other), and we interpret
this as an expanding Universe (Hubble, 1929a). An expansion of the Universe implies that
at earlier times it was smaller, hotter, and denser. This fact lays the foundation of the
Big Bang paradigm (Lemâıtre, 1927).
The time of the Big Bang is defined to be, when the distance between all structures were
zero, about 13.7 billion years ago (Planck Collaboration, 2013). The Universe started in
the Big Bang, expanded, cooled, created atoms, and molecules which later condensed into
the planets, stars, galaxies, and clusters we see today.
Edwin Hubble was the first astronomer to observe the expansion of the Universe, by
measuring how the recession velocity of galaxies are related to the distance. This we call
Hubble’s law (Hubble, 1929b):

v = cz = H0D. (1)

Hubble found a linear relation between the recession velocity and the distance, described
by Hubble’s constant. The recession velocity, v of a galaxy can be found be measuring its
redshift,

z = ⁄obs

⁄em
≠ 1 (2)

where ⁄ is respectively the observed (obs) and emitted (em) wavelength. Hubble’s constant
describes the rate at which the Universe expands, and is usually presented like H0 =
100 h km s≠1 Mpc≠1 with the current value h being 0.6780±0.0077 (Planck Collaboration,
2013). Unless otherwise stated we adopt this value throughout the thesis.

2.1.1 The Cosmological Principle

In light of the Copernican principle we assume that our observation point in the Universe
is not privileged so we live in a so-called isotropic Universe. When we further observe that
the matter distribution, on scales larger than 100 Mpc/h, is roughly homogenous, we can
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exploit these symmetries to write down a metric that describes the relation between time
(dt) and space (d‰, d„) in an expanding Universe (Friedmann, 1922a).

ds2 = ≠c2dt2 + R(t)2
Ë
d‰2 + S2

k(‰)dÂ2
È

(3)

This metric is known as the Friedman-Lemâıtre-Robertson-Walker metric but often re-
ferred to as FLRW. The spatial part is subjected to a scaling factor, R(t), that ensures
isotropic treatment of the radial and angular expansion of the Universe. The Sk(‰)
describes how the angular part changes with di�erent geometrical curvature. Sk(‰) =
sin(‰), ‰, sinh(‰) for k = 1, 0, ≠1 corresponding to a closed, flat and open Universe
respectively. The size of the acoustic scales in CMB map suggest that we exist in a flat
Universe with k = 0. The time, dt, in the FLRW metric is cosmic time that is sliced so
the density is uniform for all observers at each time, t.

Einstein introduced, through his theory of general relativity, an equation describing the
relation between how space time curves (R) and the stress-energy in the space-time (T )
resulting from gravitation (G).

Rµ‹ ≠ 1
2gµ‹R = 8fiGTµ‹ , (4)

When we apply the symmetries of the FLRW metric and solve the Einstein equation we
obtain two equations describing the Universe as a fluid. The Friedmann equation and the
cosmic fluid equation.

H2 =
3

ȧ

a

42
= 8fiG

3 fl ≠ k

a2 (5)

H2 + Ḣ =
3

ä

a

4
= ≠4fiG

3 (fl + 3P ) (6)

These equations govern the relation between density (fl), pressure (P ), curvature (k)
and size of the Universe in terms of scale factor (a). Consequently we can describe the
evolution of the Universe purely from Einsteins theory of relativity and the assumptions
of homogeneity and isotropy. This will be addressed in more detail in the next section.

2.1.2 The Friedmann Equation for a Dark Universe

Recent observations of supernova Ia suggest that the expansion of the Universe is acceler-
ating (Perlmutter et al., 1999; Riess et al., 1998), and slowly increasing the rate at which
the intergalactic distances are growing. When this e�ect, referred to as dark energy or �,
is added to the Friedmann equation we can write it as follows

H2 =
3

ȧ

a

42
= 8fiG

3 fl ≠ k

a2 + �
3 . (7)
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Hence the dark energy density is defined as fl� = �/8fiG. We can write the total density
as a sum of the matter, radiation and dark energy:

fltot = flM + flrad + fl�. (8)

Introducing the energy density relative to the critical density we have

�i = fli

flcrit
, flcrit = 3H2

8fiG
. (9)

The critical density is the energy density of a flat Universe (k = 0) at present time. We
can rewrite the Friedmann equation in terms of the relative energy density.

�(a) ≠ 1 = k

H2a2 , �(a) = �M + �rad + �� (10)

This version of the Friedmann equation easily shows the relation between � and curvature
so k = (1, 0, ≠1) gives us respectively �(a) > 1 (closed), �(a) = 1 (flat), �(a) < 1 (open).
We can define the energy density of curvature, �k = k/H2a2 and write the Friedmann
equation in a intuitive form.

H(a)2 =
3

ȧ

a

42
= H2

0
Ë
�rad,0a≠4 + �M,0a≠3 + �ka≠2 + ��

È
(11)

Here we introduced �x = �x,0au, where u determines the rate at which the density of
x drops with expansion. �x,0 is the relative energy density today, when we use the def-
inition of a(ttoday) = 1. Today the Planck Collaboration (2013) measure the curvature
and radiation density to be very close to zero (�rad,0 ≥ �k ≥ 0) so often this equation is
written without these terms. In section 5.3 we show how to use the equation (rewritten)
to estimate void sizes in the Universe.

The �CDM model best fits the Universe with energy components, �M,0 = 26.8 % and
�� = 68.3 % (Planck Collaboration, 2013). It is the model that describes an accelerated
expansion, and have a dark matter to baryon (visible matter) ratio of, flDM /flb ≥ 5. If
we sum up the total energy densities, it means that dark matter and dark energy form
≥ 95 % of the density, leaving all the matter we can see, and describe with the Standard
Model of Particle Physics (Beringer, 2012), to constitute only ≥ 5 % of the total energy
density of the Universe.
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2.2 Formation of Structures
The growth of structure through the age of the Universe has become what we observe
as galaxies, clusters and voids today. The primordial density perturbations in the early
Universe left an imprint that evolved and became what we today refer to as the Large
Scale Structure (LSS) of clusters, filaments, and voids.

Figure 3: The evolution of matter densities and voids shown in a N-body simulation box from z = 6 æ 0.
Credit: Pearson Education 2008.

At 10≠36s after Big Bang the Universe entered the inflationary state that made it expand
at a rate faster than the speed of light, c, until t = 10≠32s. During this phase the tiny
quantum fluctuations were enlarged and seeded the primordial density perturbations that
gravitationally evolved into the LSS we see today.

While the Universe expanded, it cooled continually until the energy density of matter
was similar to that of radiation at t = 75.000 yr (radiation-matter equality) . From here
on the non-interacting dark matter started collapsing into the initial perturbations from
inflation, while a veil of photons and baryons, on top, was locked into a plasma (due to a
high interaction rate).

Not until the Universe had expanded and cooled su�ciently, did the electrons and pho-
tons decouple (≥ 378, 000 years after Big Bang) and were free to move into the already
created dark matter potentials. It was in these potentials the formation of stars and
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galaxies started (after ≥ 4, 000, 000 years). Over- and under-densities became respectively
the large clusters and empty voids we observe today. The shape and size of the LSS is
strongly related to the evolution of the initial density perturbations, as quickly sketched
above, through a complicated network of gravitational interactions and mergers. The for-
mation of structures is too complicated to determine analytically and is usually studied
via N-body simulations (Springel et al., 2005; Villaescusa-Navarro et al., 2011; Rossi et al.,
2014; Vogelsberger et al., 2014).

2.2.1 The interplay between Neutrinos and Voids

In the Standard Model of particle physics (Beringer, 2012) the neutrino species forms 3
out of the 12 fundamental particles that makes up ≥ 5% of the energy in the Universe
(see Figure 4).

Figure 4: A sketch of the 12 fundamental particles (green + purple), the 4 force carriers (red) and the
Higgs particle (yellow). The fundamental blocks consist of 6 quarks and 6 leptons that make up all the
luminous matter. Credit: Wikipedia.

The family of neutrinos are fermions (half integer spin) and consists of three di�erent
kinds, the electron (‹e), muon (‹µ) and tau (‹· ) neutrino (bottom three green particles in
Figure 4). Unlike the electron they are neutral and only interact via the electroweak and
gravitational force making them very di�cult to detect (see e.g. IceCube Collaboration
et al. (2013)). Both forces are weak at the subatomic scale, gravity being the weakest of
the two, and they mostly pass through normal matter unimpeded. The neutrino oscillate
between the di�erent species which requires it to have mass (Daya Bay Collaboration,
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2007). The cosmological neutrinos a�ect the evolution of the LSS. How is it possible for
the smallest particle (10≠24 m) of the Standard Model to a�ect voids (1015 m) the largest
structures in the Universe?
To answer the question we first need to understand the formation scenarios of cold dark
matter (CDM) and warm dark matter (WDM). Here cold and warm refers to the cluster-
ing properties of the dark matter determined by their temperature when decoupling from
the initial plasma.

In the previous section I mentioned that the large scale structures of the Universe formed
from initial over- and under-concentrations in the density field, leading to respectively
galaxy clusters and voids at present day. We believe this formation scenario occurred
from a bottom-up CDM scenario (Frenk and White, 2012), where small structures (pc -
kpc size) form first, and then larger (Mpc size) in due course. Dark matter must have
been dynamically cold to force a collapse that can create structures on the sizes we observe
today. Neutrinos on the other hand are warm (high velocities) and follow a top-down for-
mation scenario, where larger structures (Mpc size) form first and then later fragment into
smaller (kpc - pc size). They are a WDM candidate due to their complicated gravitational
e�ect in the non-linear regime.

Figure 5: The linear matter power spectrum from Villaescusa-Navarro et al. (2011). Two curves are
shown for respectively z = 0 and 3 (upper, lower). Each simulation was run with increasing neutrino
masses (

q
i
m‹i ) resulting in a damped power spectrum at small cosmological scales.
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The cosmological neutrinos, from the early Universe, are relativistic and redistribute
their mass on small scales. This results in a delay of the gravitational collapse of DM
structures, an e�ect that can be measured in the matter power spectrum that describes
the amount of clustering on di�erent scales. A cosmological power spectrum describes
the amplitude of the density fluctuations (y-axis) that is present at each scale size (x-
axis). In Figure 5, I have included the matter power spectrum from a simulation by
Villaescusa-Navarro et al. (2011). The red, blue and purple lines describe respectivelyq

i m‹,i = 0.0, 0.3, 0.6 eV , whereas the green line is an example of the red line with similar
initial conditions (‡8 = 0.877)1 but

q
i m‹,i = 0.6 eV . The peak in the power spectrum at

k = (1 ≠ 2) · 10≠2 represents the largest density amplitude in the Universe. In this figure
k describes the inverse scale, where small values correspond to large physical sizes, e.g.
k = 10≠2 hMpc≠1 represents a size of 100 Mpc/h. The cosmological neutrino suppresses
the power spectrum on small physical scales < Mpc size (large k) proportional to their
mass. This means they smooth out structures below their free streaming scale (v < c)
trying to equilibrate in the medium.

In voids the neutrinos contribute to the interior mass, and have contradictory to heavy DM
halos an important e�ect. The extra neutrino mass present, delay the rate at which CDM
is abandoning the under-dense regions and thereby increasing the void size. In Villaescusa-
Navarro et al. (2011) they solved the dynamical equations for an isolated spherical top-hat
under-dense perturbation, and found that their simulated neutrinos modify the evolution
of voids, making them smaller and denser. They find that this e�ect can be seen in the
relation between

q
i m‹i and number of voids along LOS.

1
The ‡8 parameter describes the mass fluctuation amplitude (amount of gravitational clumping) in a

sphere of 8 Mpc/h.



2 Cosmological Background 11

2.3 Quasars as Cosmological Probes
The Universe has on the largest scales been probed using the light from galaxies and galaxy
clusters. The intervening clouds leaves imprints in the spectra via the Lyman absorption
and can be used as tracers of structure, (see Seljak et al., 2006; Busca et al., 2013, and
references therein). Voids are almost empty regions incorporated into the matter distribu-
tion and it seems fair to assume that places without Lyman absorption are potential voids.

In Viel et al. (2008) they find the 1D empty flux regions (Lyman-– voids) to be related to
the 3D dark matter void distribution in simulations (see section 8.1), and we can safely
attempt a realistic void count in quasar spectra.

To gather information over the course of structure formation we are interested in ex-
tending the void search to high redshifts (2 Æ z Æ 5), but also find sources with a light
source luminous enough to reach us from these early times. The very luminous quasars are
one of the most energetic light sources in the Universe and extend out to high redshifts,
making them qualified candidates to detect voids.

Figure 6: M. Kornmesser’s (ESO) interpretation of a quasar. We see the distinct jet coming from the
center of the accretion disc. This is the emission we use as background light to study intervening gas and
voids.
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Quasars are an Active Galaxy Nuclei subclass, and was up until the 1980’s a controversial
subject but are now believed to be super massive black holes consuming gas in the centre
of galaxies (Urry and Padovani, 1995). By doing so they release a large amount of energy
into thin jets perpendicular to the in-falling gas disk (see Figure 6). The powerful jets
light up clouds of gas along the LOS that can be used as tracers of structures (see both
Figure 7 and 18). The Universe’s visible component mainly consists of neutral hydrogen
that produces, for each structure in the LOS, a Lyman signature in the spectra (Ryden
and Peterson, 2009).

Figure 7: I have made a simplified version of our Universe, with one source (yellow) e.g. a quasar, and
three gas clouds (e.g. galaxies) along the LOS to Earth. Each cloud leaves a Lyman – signature in the
spectrum, making it possible to determine the number of clouds in the LOS, and thereby the number of
voids, in this case four.

The signature occurs due to excitation jumps produced by the background quasar pho-
tons, and is known as the Lyman series when the electrons are excited from the ground
state. Each jump to the ground state releases a photon of discrete energy, starting from
the lowest energy photon; Lyman-–, -—, -“,... ending at the ionization level of hydrogen
(13.6 eV or 911 Å).

Counting each signature in a spectrum gives us the number of clouds along the LOS,
which is easy convertible to the number of voids (the empty regions between the clouds).
The light from galaxies and clouds in the Universe gets redshifted which can be seen in
the spectra when the absorption signatures are shifted towards higher wavelength, making
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it possible to distinguish individual clouds along the LOS. The redshift is defined as

z = ⁄obs ≠ ⁄em

⁄em
(12)

where ⁄obs, ⁄em are the observed, emitted wavelengths respectively. The redshift increases
with distance/look back time, and it is often used as a distance measure. In Figure 7 I
have made a simple Universe with three clouds along the LOS, and restricted the signature
to only exhibit –, —, “ Lyman absorption lines. The before mentioned redshift e�ect, can
be seen as a shift of the lines towards the blue (left) end of the spectrum with respect
to the quasar. In this example four voids are present in the spectrum. The real quasar
spectrum in Figure 8 are unfortunately not as easy to analyze as the simplified example
just mentioned. This challenge will be addressed in section 5.2.

Figure 8: The spectrum of the quasar with the complicated name, J112442-170517 located at z = 2.4.
The x-axis shows the observed wavelength in Ångstrøms and the y-axis shows the observed flux normalized
to the quasar emission flux so one can focus on the absorption features (standard procedure). Obtained
from the sample of quasar data by King et al. (2012).
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3 Project Outline
In this thesis I will explore the possibility of counting voids in high resolution quasar
spectra. Quasar spectra exhibit Lyman signatures, from each cloud of neutral hydrogen,
encountered along the LOS (see e.g. Figure 2). The number of signatures in the Lyman-–
forest is directly related to the number of voids.

I have developed an automated method that counts the number of voids following a strict
set of selection criteria. The number of voids in each spectrum depends on how we define
a void which again is a�ected by the quality of the data, flux density threshold, smoothing
scale, and the e�ect of gravitational clumping through line blending. We use artificial
mock spectra to determine the criteria and obtain a void count as independent of the
chosen parameter values as possible.

I run our method on a subsample of 50 quasar spectra to test if our mock selection criteria
are robust on real quasar spectra before running the analysis blindly on the remaining
sample. We currently have access to 413 high resolution quasar spectra observed with the
UVES2 spectrograph on the world’s largest telescope VLT3 (King et al., 2012).

We make a prime quasar sample selected from good S/N and a low number of data-less
pixels, to test possible systematic uncertainties. The aim is to produce a statistical void
count at di�erent redshifts, and use the simple void counting method to test if it matches
the number of voids from numerical simulations. In Figure 9, I have included a flow chart
showing the steps of my void counting code for the quasar and simulated spectra sample
leading up to the analysis. The red boxes show the di�erent code steps for the quasar
spectra. Each specific step can be found in section 5.1 (Lyman-– forest), 6.1.1 (data-less
pixel removal), and 6.1.2 (Fourier smoothing). The simulated spectra are assumed to be
a perfect no noise spectra with only one coding step, the gaussian smoothing (see section
6.3.1).
With the processed spectra we perform a comparison between the simulated and observed
void counts in section 8. We also reproduce the plots in Villaescusa-Navarro et al. (2011)
from observational data.

2
the Ultraviolet and Visual Echelle Spectrograph

3
Very Large Telescope
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Figure 9: A flow chart showing the important steps in the void counting code. The red colours indicate
the quasar code steps, the blue the simulations, and the purple is the final comparison of the observed and
simulated void count.
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4 Data Sample
In this chapter we introduce the artificial mock spectra, the simulated spectra, and the
quasar spectra including a set of steps preparing the sample for the analysis.

4.1 Artificial Mock Spectra
Mock spectra are synthesized spectra that looks like real data, where we can artificially
change di�erent properties such as noise, redshift and line distribution. The mock spectra
are constructed using the mock generator code from Liske et al. (2008).
We have investigated two types of mock spectra. The “perfect” spectra does not contain
any noise similar to observational noise and as such all fluctuations origin in physical
properties (void or matter). We compare the perfect spectra to identical spectra with
observational noise imposed.

4.2 Simulated spectra
Graziano Rossi and his group at CEA - Saclay have provided us with the gas density dis-
tribution from their numerical simulations (Rossi et al., 2014). The best guess simulation
is run with �CDM parameters from the Planck Collaboration (2013). They have used the
standard Boltzmann code CAMB4 to estimate the initial mass fluctuation amplitude, ‡8
(see footnote in section 2.2.1), at z = 49 where they kick-start their simulation.
The simulated spectra are produced by measuring optical depth of hydrogen (·HI) in the
Lyman-– forest along Random Line Of Sights (RLOS), which translate into the flux in
the following way,

F = e≠·HI . (13)

We have received 10.000 RLOS (arbitrarily positioned) in a 100 Mpc/h box with 7683

particles at respectively z = 2.2 and 4.0. In Villaescusa-Navarro et al. (2011) they use
z = 2.2 and 4.0 and we naturally adopted these choices, to construct a test of our results.
If our preliminary void count comparison allow for constraining the neutrino mass within
the errors, we have a grid of simulations with di�erent cosmological parameters such as a
varying neutrino mass (

q
i m‹i = 0.1, 0.2, 0.3, 0.4 and 0.8 eV) on which we can perform an

additional analysis.

4.3 Quasar sample
We have access to 413 high resolution quasar spectra from UVES (VLT) situated in Chile.
The raw quasar data have been reduced by the groups led by John Webb (University of
New South Wales) and Michael Murphy (Swinburne University of Technology) and are
accessible as normalized quasar emission spectra (King et al., 2012).

4http://camb.info/

http://camb.info/
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It is to date one of the largest sample of normalized high resolution (R ≥ 80.0005) optical
spectrum. The UVES detector spans a wavelength width of 3000 ≠ 11000 Å 6. The high
resolution spectra have S/N noise values from, 2 ≠ 128 with a average values of 23 (see
Appendix B.1). We have access to additional ≥ 150 HIRES (Keck) quasar spectra, which
apart from formatting issues can be directly implemented in a future analysis.

Below I will explain how we selected our quasar sample from the UVES (VLT), using
the ranges of the Lyman-– forest. Artificial and unnatural spectra are blacklisted from
the Lyman-– quasar sample (section 4.3.2) and from the resulting selection a prime sample
is chosen using the signal to noise (S/N) and data-less pixel removal (section 4.3.3).

4.3.1 Lyman-– Forest selection

The position of the Lyman-– forest in the spectra depends on the redshift at which the
quasar light was emitted. We select which of the spectra with their Lyman-– forest in
the UVES detector wavelength range. We calculate the minimum and maximum redshift
that a spectra can take before its Lyman-– forest is excluded by the detector range.

zlower = ⁄obs,cut

⁄—,em
≠ 1 = 3000 Å

1025.72 Å
≠ 1 = 1.93 (14)

zupper = ⁄obs,cut

⁄–,em
≠ 1 = 11000 Å

1215.67 Å
≠ 1 = 8.05 (15)

The UVES quasar sample have redshifts in the range between z = 0.014 ≠ 5.25. We can
unfortunately only use the spectra between 1.93 Æ z Æ 8.05 and must exclude a large
part of our sample because their Lyman-– regions fall outside the wavelength range of the
detector.

4.3.2 Unnatural spectra

A range of quasar spectra with S/N < 3 exhibited very artificial Fourier transformed
spectra while the flux spectra looked normal except for few very bad pixel values. I have
included an example in Figure 10 that clearly shows a supposedly normal spectrum with
a corresponding artificial Fourier frequency spectrum. These ”unnatural spectra“, may
be arising from incorrect normalization, and will be removed from the quasar sample.
These spectra need a manual re-reduction and continuum fitting before entering the void
counting sample, but that is out of the scope of this project.

5http://www.eso.org/sci/facilities/paranal/instruments/uves/inst.html
6http://www.eso.org/sci/facilities/paranal/instruments/uves/doc/VLT-MAN-ESO-13200-1825_

v94.1.pdf (section 3.1 Capabilities of the Instrument)

http://www.eso.org/sci/facilities/paranal/instruments/uves/inst.html
http://www.eso.org/sci/facilities/paranal/instruments/uves/doc/VLT-MAN-ESO-13200-1825_v94.1.pdf
http://www.eso.org/sci/facilities/paranal/instruments/uves/doc/VLT-MAN-ESO-13200-1825_v94.1.pdf
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Figure 10: An example of a unnatural spectrum (left) and the Fourier frequency spectrum (right). The
spectra have a few bad pixels but nothing that gives away its very artificial frequencies that can be seen in
the right plot. The functionality of the green and red line, in the right figure, will become clear in section
6.1.3.

The spectra were classified using the flux di�erence, �Fmax = Fmax ≠ Fmin, which for a
perfectly normalized spectrum is maximum 1. Based on this, spectra with �Fmax > 20
have been blacklisted from the total quasar sample. The �Fmax cut-o� is determined
from a set of spectra with artificial frequencies (this sample is also used in section 6.1.3).
We have reduced our total quasar sample, and will perform our blinded analysis on the
resulting (good) spectra. In Figure 11, I have plotted the �Fmax against S/N. We see
that most spectra with very low S/N values also have high �Fmax values.

4.3.3 Prime sample

We construct a prime sample, of the total quasar sample, from spectra with good S/N
and a low number of data-less pixels (D-LP), see section 6.1.1. It is done in order to test
if the bad S/N spectra and the data-less pixel removal introduce artificial voids that adds
a systematic error in the result. We choose the 50% best spectra with, S/N < S/N and
D ≠ LP < D ≠ LP . The prime sample will be used in the analysis of section 8.



4 Data Sample 19

Figure 11: �Fmax = Fmax ≠ Fmin plotted versus the S/N values. Spectra with high �Fmax values
clearly have unnatural pixel values and seem to be correlated with their S/N values. The �Fmax cut-o�
is determined looking at the Fourier transformed spectra.

Figure 12: The numbers of quasar spectra throughout the selections, such as redshift cut, �Fmax, the
total and prime and their consecutive redshift bins.
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4.3.4 Final sample

In Figure 12, I show an overview of the number of UVES quasars through the process of
each selection. Here the ”Lya cut“ refers to the redshift cut from the detector resolution
(section 4.3.1), the ”DFmax“ (�Fmax) to the removal of unnatural spectra (section 4.3.2),
followed by the numbers of the total and prime sample that in section 8 is splitted into
redshift bins. The Lyman-– forest represent only a part of the total quasar spectrum and
in order to make a statistical void count from our final sample we must ensure that we
have a continuous redshift sample with enough Lyman-– forest overlaps.

Figure 13: The left figure (a) shows each of the UVES quasar spectra (y-axis) with their corresponding
Lyman-– forest (grey section parallel to x-axis) shown in redshift space (x-axis). At the vertical blue
dashed line at z = 2.4 I have counted the number of spectra with overlapping Lyman-– forest. The
number of overlaps (#R ≠ O) as a function of redshift is shown in the right figure (b). E.g. at redshift at
z = 2.4 we have around 140 quasar spectra with overlapping Lyman-– forest. The cut-o� at z = 1.75 is
due to the detector sensitivity range.

I have in Figure 13 (a) plotted each of the UVES quasars Lyman-– range (y-axis) as a
function of redshift (x-axis). We are interested in knowing how many Lyman-– regions
overlap, and thus how many spectra can contribute with a void count at each redshift.
The number of quasars crossing the blue dashed line (the number of overlaps) in figure
(a) is shown in (b) as a function of redshift. This is a simplified test estimating that over
80 quasar spectra in the redshift range between [2 - 3.5] can participate in the statistical
void count. For the region above z = 3.5, the number of overlaps decrease drastically and
we will have to be more careful when using this range. This shows that we have enough
quasar data to perform a good statistical void count around z = 2 ≠ 3.5.
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5 Observing Voids in Quasar spectra
When counting voids in quasar spectra, one immediately encounters problems such as the
resolution of the signature near the Lyman forest and choice of flux density threshold.
This section contains a practical explanation of how to produce a robust and simple void
count using the Lyman-– forest (section 5.1). In section 5.2, I will address the importance
of choosing a proper flux density threshold. In the last section I use equation (3) to make
a back-of-the-envelope calculation of the relation between void sizes in spectra (Å) and
comoving real void sizes (Mpc/h).

5.1 Lyman-– forest
Electrons absorb photons at di�erent energies from neutral to ionized Hydrogen. The
transition towards the ionization of Hydrogen creates a range of absorption lines known as
the Lyman signatures (see Figure 14). They become increasingly close and indistinguish-
able when approaching the ionization level, and appear as a forest of lines, and so forth
the name “Lyman forest”. The forest complicates the void counting process and, in the
first robust attempt, we avoid this region by only counting voids in the Lyman-– forest.

Figure 14: A sketch of the Hydrogen quantum transitions. The Lyman series are the top green jump
from or to the ground state (n=1).

In wavelength, the Lyman-– forest ranges from the quasar’s first Lyman-– (equal to the
quasar’s Lyman-– emission) to its Lyman-— absorption lines. Figure 15 shows this cut in
the top panel (resized in the bottom panel). In this range, there will only be Lyman-–
lines each originating from the individual gas clouds along the line of sight. Additional
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Lyman-– lines can exist beyond the Lyman-— line, but focusing on the Lyman-– forest
simplifies the void counting process significantly. In section 9.1, I sketch how we can use
the Lyman-— forest to increase the void count statistics, but that is outside the scope of
this project.

Figure 15: The top panel is a normalized quasar spectrum with the black lines indicating the range of
the Lyman-– forest resized in the bottom panel. The x-axis is in units of Ångstrøm.
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5.2 Flux density threshold
The flux density describes the amount of light that is absorbed at a given wavelength. For
a normalized spectrum, the flux value F = 0 corresponds to maximum absorption contra
F = 1 where no absorption occurs. Structures in the LOS have di�erent column densities
and show a variety of deep to shallow absorption lines. As a result, it is a matter of choice
when deciding to count the number of voids for a certain flux density.

To clarify this further, I have in the upper panel of Figure 16, illustrated how di�er-
ent flux density thresholds, “, can exhibit very di�erent void counts. Low and high flux
density threshold corresponds to respectively looking at large and small densities of struc-
tures/absorption lines. Setting the flux density threshold at low values (large densities)
show few big voids and oppositely high threshold values (small densities) display many
small voids.

The free choice of “ means that no true void count exists and that the void count is
tightly connected to a specific density threshold. It resembles the fact that the circum-
ference of an object can increase when the resolution is enlarged to include all the small
scale cracks and peaks. It is not trivial to relate the real space density to the flux density,
and often simulations are needed (e.g. Viel et al., 2008). A thorough coverage of quasar
absorption line systems can be found in Petitjean (1998).

The void density is normally described like, ” = fl / < fl > ≠ 1. It ranges from
”(fl æ 0) = ≠1 all the way to ”(fl æ Œ) = Œ. In Figure 17, the void density profile
from Hamaus et al. (2014) is shown. The range of colours represents how voids, with dif-
ferent sizes, transitions from low to high density. Alas large voids automatically become
more empty as their matter evacuates with a quicker pace due to pull from the heavy
surrounding structures. We will return to this in section 8.1.
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Figure 16: The upper panel is a simplified spectrum with di�erent flux density thresholds (horizontal
lines). The interpretation of each threshold is shown in the lower panel (matching colors). Changing the
threshold will a�ect the definition of a void and thereby the number of voids, as shown on the right side
of the spectrum.
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Figure 17: The void density profile for a range of void sizes (Hamaus et al., 2014).
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5.3 Back-of-the-envelope void size calculation
We have, in the previous sections, introduced how to detect Lyman-– voids in quasar
spectra using a specific flux density threshold. We will, in this section, link the void
sizes, found in the spectra, with the real space comoving void sizes through a back-of-the-
envelope calculation. These equations will be used in later sections to test if we smooth
the spectra on the correct scales.

Figure 18: The setup used to calculate the distance between the galaxies/clouds which are positioned
around a void with redshift z1 and z2. Credit: Ed Janssen, ESO

The analytical void size can be found by equating the di�erence in distance between two
galaxies positioned at opposite sides of a void. I have sketched the setup in Figure 18. We
use the Robertson-Walker metric to calculate the comoving void size

D‰ = R0‰(z) = c

⁄ z2

z1

dz

H(z) , (16)
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where H(z) is the Hubble parameter. The comoving distance is obtained from eq. (3)
following geodesic lines (ds = 0) only using ‰ due to symmetry (dÂ = 0). We insert
a = 1/(1 + z) into equation 11 which gives us the Hubble parameter as a function of
redshift,

H(z) = H0(1 + z)
#
1 + �M z + ��(1/(1 + z)2 ≠ 1)

$1/2
. (17)

We will use the equation in the redshift range z = 2 ≠ 7 (see Figure 13) where �rad ≥
�k ≥ 0. We can now substitute H(z) into equation 16 and construct the comoving void
size,

Rvoid = D2 ≠ D1 = c

5 ⁄ z2

0

dz

H(z) ≠
⁄ z1

0

dz

H(z)

6
= c

⁄ z2

z1

dz

H(z) . (18)

The integral is non-analytic and we solve it numerically leading to the black dashed line
in figure 19. Di�erent orders of polynomials (blue, red) are fitted on top of this comoving

Figure 19: The normalized comoving void size as a function of redshift (black line). A 2nd (blue) and
4th (red) order polynomial are fitted to the black dashed line and showed with respect to that.
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void size, Rvoid (black). These polynomials are used to create semi-analytic expressions
describing Rvoid. I have used [c] = km s≠1 and [H] = km Mpc≠1 s≠1 which give us
[Rvoid] = Mpc.

Here, I list the best fit polynomials for the 2nd and 4th order:

Pol2(z) = ≠92z2 + 1482z + 2702 (19)
Pol4(z) = ≠2z4 + 55z3 ≠ 546z2 + 3007z + 958 (20)

In Figure 19, we clearly see that both the 2nd and 4th order polynomial describe the
comoving void size well in the range from z = [2 ≠ 7] equivalent to the quasar spectra
range.

5.3.1 A Comoving Void Size

I solve the 2nd order equation (19) to obtain an approximative relation between �z and
�⁄. The second order equation is solved in the range covered by our quasar sample,
z = [2 ≠ 7]. Solving the 4th order equation, which describes the comoving void size,
proved to be time consuming and the 2nd order solution was preferred.

The equation is now on the general form Rvoid = az2 + bz + c, where a,b, and c are
given in eq. (19)

Rvoid =
Ë
az2 + bz + c

Èz2

z1
= a(z2

2 ≠ z2
1) + b(z2 ≠ z1). (21)

We are interested in relating �z = z2 ≠z1 to �⁄ and we start by substituting z2 = �z+z1
into eq. (21)

Rvoid = a((�z + z1)2 ≠ z2
1) + b(�z + z1 ≠ z1) (22)

= a(�z2 + 2�zz1) + b�z = �z2a + �z(2az1 + b). (23)

We assume that Rvoid is roughly constant over the range z = [2 ≠ 7], and call it Cvoid. We
get the equation,

0 = �z2a + �z(2az1 + b) ≠ Cvoid. (24)

We can solve �z as a function of z1. This places the redshift of the void at z1, contra using
the middle of the void, but we neglect this e�ect. We can write the solution to equation
(24) like,

�z = ≠(2az1 + b) ±


(2az1 + b)2 + 4aCvoid

2a
. (25)

This equation relates the void size, Cv, in redshift size, �z, as a function of redshift, z1,
see Figure 20. In order to get a feel for the real space (Mpc/h) void sizes we find in
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Pan et al. (2012), that they range from 1 ≠ 100 Mpc/h. We continue the analysis with
Cv = 1, 10 and 100 Mpc/h. The upper limit on 100 Mpc/h is chosen in accordance with
Einasto et al. (1989), but we will focus on the choice of 1 Mpc/h in section 6.4.

The solution for both the positive and negative �z is plotted in the subplot of Figure
20. We expect a rise in �z for increasing z1 value, and to that extend the red (�z(+))
slope is clearly unphysical showing the opposite behavior. I have, in the same figure, made
a zoom on the blue (�z(≠)) slope (large frame) that shows a shallow increase as a function
of redshift.

Figure 20: The solutions to the 2nd order polynomial is represented by the positive (red) and negative
(blue) solutions (grey box). The large frame is a zoom of the positive slope (blue, negative solution) that
is our preferred solution showing a very shallow increase with redshift.
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5.3.2 Relating �z and �⁄

We now have a relation between �z and z1 (the blue line in Figure 20) that we wish to
relate to the wavelength width, �⁄ in our quasar spectra. The redshift, z = ⁄obs/⁄em ≠ 1
is substituted in the equation below to find the void width.

�z = z2 ≠ z1 =
3

⁄obs,2
⁄em,2

≠ 1
4

≠
3

⁄obs,1
⁄em,1

≠ 1
4

(26)

= ⁄obs,2
⁄em,2

≠ ⁄obs,1
⁄em,1

(27)

= ⁄≠1
Ly–(⁄obs,2 ≠ ⁄obs,1) (28)

∆ �z = ⁄≠1
Ly–�⁄. (29)

In eq. (28), I used the fact that we look at Lyman-– absorption lines to substitute
⁄em,2 = ⁄em,1 = ⁄Ly–. This provides us with a final equation based on the 2nd order
polynomial

�⁄(z1) = ⁄Ly–

C
≠(2az1 + b) ≠


(2az1 + b)2 + 4aCvoid

2a

D

. (30)

Here a = ≠92, b = 1482, and Cvoid = 1 Mpc h≠1 = 1.4 Mpc. In Figure 21, I have plotted
the wavelength range, �⁄, and redshift range, �z, as a function of redshift, z. The time
between two emitted photons increase as a function of redshift resulting in both higher
�z and �⁄ with z.

Figure 21: The wavelength width in quasar spectra (Å), �⁄, as a function of redshift, z1 (left) for a
minimum void size of respectively 1 (blue), 10 (red) and 100 Mpch≠1 (green). We see that increasing the
void size also increases �⁄ as expected. The redshift values in the legend refer to the redshift size of each
of the chosen void sizes at z = 0. The right plot is similar but is shown with �z instead.
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6 Improving the Void Count
Real quasar spectra are subjected to uncertainties in the form of noise, emission shape
normalization and gravitational clumping of gas clouds leading to absorption line blending.
In the following sections, we test the physical e�ects in order to quantify how much the
uncertainties a�ect the void count.

6.1 Quasar spectra
Normalized quasar spectra are produced through an automated pipeline reduction. Here,
instrumental noise (e.g. broken CCD pixels) can be reduced to artificially high flux val-
ues. Artificial lines give rise to a systematic error in the void count and, below (section
6.1.1), I will address how we treat these data-less pixels. When the artificial flux values
are removed, the spectra still exhibit gaussian noise from the natural uncertainty in the
detector. The noise in the spectra will add an unreal number of voids, and we prefer to
remove the noise using a Fourier smoothing technique (see section. 6.1.2 and 6.1.3). We
create a small sample of 50 real quasar spectra and, from these, define a set of selection
criteria based on the void count that is the least sensitive to the above e�ects. The final
void counting code will be fully automatic thus the criteria must be designed to work
without human intervention.

6.1.1 Data-less pixel removal

Pipeline reduction problems result in extremely large flux (F ) and error (‡F lux) pixel
values of ≥ 1030. In order to remove the artificial pixel values, I perform two cutting
techniques using respectively the error and flux values. The quasar spectra are usually
normalized to have F = [0; 1], and the cutting is based on this range. The first technique
removes pixel values using the errors: (0 ≠ 5 · ‡flux) < F < (1 + 5 · ‡flux). This removes
lines with artificially large errors. On top of this, I do a flux cut: ≠5 < Flux < 5, which
removes the large artificial flux values. In Figure 22, I have plotted an example of the error
(left column) and flux (right column) spectra before (top) and after (bottom) a data-less
pixel removal. In the right column of the figure is an example of how the data removal
slopes the flat regions. This token will be flattened out and the artificial extra void count
removed when we in the following section smooth the spectra.
When removing the data-less pixels, we construct artificial empty regions that resemble
voids. We take this e�ect into account when using the prime sample (section 4.3.3) in the
analysis of section 8.
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Figure 22: An example of the normalized flux errors and flux spectrum (left and right) shown before
and after (top and bottom) using the cutting method to remove the unrealistic errors (left side). Quasar
spectra: J000651-620803.

6.1.2 Fourier Smoothing

The level of noise (amount of artificial lines) a�ects the voids count in the spectra. Smooth-
ing the spectra to remove the noise and only counting the voids at cosmological scales are
therefore crucial. We choose to use a Fourier method that smoothes the spectra accord-
ing to the amount of noise it exhibits. In section 6.4 it is shown that the noise-lines are
narrower than real voids (> 1 Mpc/h) and is smoothed by the Fourier technique. A fre-
quency power spectrum can be constructed from Fourier transforming a normalized flux
spectrum. High frequencies resemble the small scale fluctuations and can be removed.
The initial spectrum, f(x) is Fourier transformed using the equation

F (p) =
⁄ Œ

≠Œ
f(x)e≠ipxdx. (31)

The low frequency signals can be inverse Fourier transformed with

f(x) = 1
2fi

⁄ Œ

≠Œ
F (p)eipxdp (32)

returning a smoothed spectrum. This process is demonstrated in Figure 23, that shows
each of the three steps (left to right) for three di�erent degrees of smoothing (top to bot-
tom) of a mock spectrum. The first column is the un-smoothed spectra, the second the
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frequency space and the last represents the smoothed spectra. The blue color in column
two shows the part of the frequency space that is reverse Fourier transformed into the
smoothed version in column three. Low cut values result in a high amount of smoothing.
The top row, with a cut value of 1750, is the strongest smoothed spectrum.

Figure 23: The plot shows three degrees of smoothing (rows). The first column is the initial spectra
before smoothing, then the frequency space and last the smoothed spectra. The smoothing is determined
by the frequency cutting value, and low cuts represent high amount of smoothing.

Smoothing sensitivity
I test the void count sensitivity to Fourier smoothing by counting the number of voids in
a mock spectrum as a function of threshold, “, for a range of smoothing scales. Figure
24 shows the void count as a function of threshold for fake1 (artificial mock spectrum) at
a range of Fourier smoothings, Cut(Hz) = [0, 1750, 6300, 18000]. On top of this is added
the void count of perfect1 (a no-noise version of fake1) showing the optimal smoothing.
Comparing perfect1 with the non-smoothed fake1 (Cut = 0) clearly shows that smoothing
the spectrum is crucial to remove the noise that otherwise would be counted as voids.
The line density increases when “ æ 1 and, as a result, the void count also increases. The
rise in void count, for small threshold values in Figure 24, appears due to the noise at
the bottom of saturated lines. The Fourier method smoothes lines below a certain size
and is in accordance with Figure 24 showing the number of voids dropping proportional
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to the smoothing scale. The void count changes significantly at low and high flux density
threshold, implying that these regions should be avoided when selecting our threshold
criteria.

Figure 24: The void count as a function of threshold for the perfect1 and fake1 mock spectra. The fake1
spectrum has been subjected to a range of Fourier smoothing scales.

Automatizing the Fourier Smoothing
In Figure 24 the void count of fake1 resembles perfect1 when a smoothing of ≥ 1750 Hz is
used. This cut occurs at the bend in the Fourier frequency spectrum and suggests a noise
dependent smoothing scale (see Figure 23). Based on this trend, we develop an automatic
smoothing technique that we, in section 6.1.3, will test on real quasar spectra.
We suspect that the steep (low frequency) and shallow (high frequency) slopes arise from
two kinds of frequencies: noise and cloud absorption lines. If this is correct, cutting the
shallow slope (high frequencies) away should smooth the spectra by only removing the
noise. To choose this cutting value consistently, we fitted lines to each of the slopes and
chose the crossing point to be our frequency cutting value. The method is shown in Figure
25 where the crossing between the magenta and green lines sets the limit of what is reverse
Fourier transformed into the smoothed spectrum.
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Figure 25: The automatic Fourier smoothing applied to the mock spectra fake1. The frequency space
shows a varying slope trend fitted by a magenta (slope) and green (flat) line to determine the smoothing
cut value. In this case the ranges was found using a pixel dependent function to be respectively [200, 400]

and [4000, 10000]. In Figure 49 in Appendix C we show how we calibrated the fitting ranges to estimate
the best fitting function.

6.1.3 50 QSO subsample

The noise in the mock spectra is purely Gaussian, which is not necessarily the case for real
observational noise that may have several sources. Consequently, testing if the frequency
bend is present in real quasar spectra, we have decided to create a 50 QSO subsample.
From this sample, we will determine our robust void count selection criteria including a
flux density threshold.

Fourier method
To produce a consistent smoothing scale, we construct a pixel dependent function that fits
the slope (magenta) and flat (green) part of the frequency spectrum (see Figure 25). We
use the trends from three randomly chosen quasar spectra (J193957 ≠ 100241, J000651 ≠
620803, J120523 ≠ 074232) in the 50 subsample to fix the inner values to [200, 400]. The
outer values ([Npix/5, Npix/2.5]) are determined from number of pixels (Npix) as the
quantity of removed data-less pixels changes the frequency range of the spectrum. In
Figure 49 in Appendix C are examples of how the ranges was altered.
One aim of the Fourier method was to develop a noise dependent smoothing scale. This
is tested in Figure 26 where we clearly see that the more noisy quasar J000651 ≠ 620803
is smoothed with a lower cut value (larger smoothing).
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Figure 26: The automatic Fourier smoothing method applied to the three noisy quasar spectra; J193957-
100241, J000651-620803, J120523-074232. The first column is the un-smoothed spectra, the second the
frequency space and last the smoothed spectra. The middle row is far more noisy than the top and bottom
rows, but is smoothed accordingly.

We have constructed a method that appears to smooth, according to the noise level, and
we will now test its robustness on our new 50 quasar sample. The 50 sample reduces to
39 when removing spectra with artificial frequency spectra (see section 4.3.1 + 4.3.2 for
quasar sample handling). I reproduce the frequency plots of each of the 39 quasar spectra
(Figure 50 in Appendix C) and checked visually that the frequency spectra, fitting ranges,
and smoothing scales look reasonable. Based on this, we conclude that our Fourier method
smoothes according to the noise level and also proves to be robust on larger samples.

A stable flux density threshold
We discussed in section 6.1.2, under the paragraph Smoothing Sensitivity, that the
void count changes significantly at low and high values of the flux density threshold (see
Figure 24). Naturally, we avoid these regions but also wish to maximize our void count
to improve the statistics. In Figure 27, I have included a single plot from Figure 51,
in Appendix C, that shows the void count sensitivity and void count as a function of
threshold, “ = [0.5 ≠ 0.7]. The original figure, from Appendix C, includes the larger range
“ = [0.4≠0.6], [0.5≠0.7], [0.6≠0.8]. The left plot estimates the relative void count change
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between the minimum and maximum count in the respective threshold range. The right
plot resembles Figure 24 showing the void count against threshold (limited range). Both
the left and right plot are color coded with respect to the S/N value (see section 4.3.3 for
definition). Our best threshold estimate is determined by the competing e�ects of a stable
void count and the wish of improving the statistics through maximizing the void count to
be “ = 0.6 with 0.5 and 0.7 as secondary candidates.

Figure 27: The void count sensitivity (left) and the respective void count as a function of “ of the resulting
39 quasar (from the 50 sample) is plotted for “ = [0.5 ≠ 0.7]. The void count sensitivity is constructed by
measuring the relative di�erence of the void count, (max(#void) ≠ min(#void)) · max(#void)

≠1.
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6.2 Mock spectra
The matter distribution in the Universe is governed by gravity and, consequently, the
matter tends to clump together resulting in a non-uniform distribution of clouds along
the line of sight. The absorption lines, in the spectra, will follow the same trend and we
are interested in how this a�ects both the Fourier method as well as the void count. To
quantify both e�ects, we have made a range of clumpy mock spectra from the same mock
generation code as used in Liske et al. (2008). We will focus the tests on the Fourier cut
and the void count’s sensitivity to line blending from gravitational clumping (clumpy1-5).

6.2.1 Gravitational Clumping

The e�ect of gravitational clumping can be seen in Figure 28, where the number of absorp-
tion lines from z = 4.0 æ 2.2 drops drastically. In Figure 29 we test if the gravitational
clumping have an e�ect on the Fourier method. The 5 artificial and a real quasar spectra
(top to bottom) are shown with each the original (non-smoothed) frequency and Fourier
smoothed spectra (left to right).
Clumpy5 is the spectrum with the highest clumping factor, and clumpy1 the lowest. The
quasar spectrum shown is J193957-100241, which we also used in Figure 26. The smooth-
ing scale appears the same when the clumping factor is increased between the individual
mock spectra as well as the included quasar spectrum. One thing to notice is that the
Fourier method still appears to be smoothing accordingly to the amount of noise in the
spectra, which is also why the smoothing scale vary slightly.

The gravitational clumping a�ects the void count through collapse of smaller structures
(many lines) into bigger (fewer lines). The question is how quickly does the void count’s
change under the influence of gravitational clumping? In order to test this, we count the
number of voids as a function of threshold for the same range of clumpy spectra (1-5).
The result can be seen in Figure 30, similar to Figure 24, where the void count against
flux density threshold is plotted for each of the clumpy mock spectra.The void count drops
drastically when a clumping equal to clumpy 5 is present in the spectrum, whereas clumpy
1-4 exhibit similar void count’s behaviour. I have chosen two quasar spectra with respec-
tively z = 2.2, 4.0 and plotted their flux spectrum, in Figure 28. Here, z = 2.2 shows the
largest clumping and resembles the clumpy 2 or 3, suggesting that 4 or 5 might be an
unrealistic amount of clumping for our quasar range.

The consequence of line blending is a natural e�ect of gravitational clumping that leads
to the void count drop for the clumpy5 spectrum. We have compared the number of voids
in the fake1 mock file (known exactly) with the number of voids counted using our code,
to show the blending e�ect visually. A random part of the spectrum (blue) is plotted in
Figure 31 where we have over-plotted the lines from the mock file (black) and the lines
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Figure 28: Quasar spectra J000344-232354 (top) and J024401-013403 (bottom) with respectively z =

2.2, 4.0. The fewer lines in J000344-232354 (z = 2.2) compared to J024401-013403 (z = 4.0) clearly shows
the e�ect of gravitational clumping of matter in the Universe.

counted by the code (red). The e�ect of blending lines is clear at e.g. ⁄ = 4140, where the
three black lines blend and are counted as one red line. This results in fewer number of red
lines compared to the known number of black lines (mock). This happens as lines that are
close blend due to their intrinsic width and appear as one line lowering the count of lines
in the spectra. The number of red lines in the spectra is also dependent on the void den-
sity threshold which is arbitrary set to “ = 0.94, and represented by the green dashed line.

The void count of clumpy 5 was significant lower than clumpy 1-4 (Figure 30) and we
conclude that not only was the clumpy 5 an unrealistic amount of clumping but also that
the void count is not sensitive to the realistic e�ect of line blending. When we later com-
pare quasar and simulated spectra, we will count the voids with the exact same method,
so a robust counting method based on our selection criteria is preferred to obtain a precise
void count. The test shows that we understand the relation between threshold, blending
of lines and the counted number of absorption lines in the spectra.
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Figure 29: The Fourier smoothing method is shown for the five clumpy spectra as well as a quasar
spectrum (bottom). The first column shows the original un-smoothed spectra, then the frequency space
and last the smoothed spectra. The top five rows are clumpy 1 to 5, and in the bottom we have included
a real quasar spectra for comparison.
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Figure 30: The void count as a function of threshold, “, for a range of clumpy spectra. The clumpyness
ranges from clumpy1 (low) to clumpy5 (high). The spectra have been automatically Fourier smoothed as
described in section 6.1.2.

Figure 31: An example of a mock spectrum (blue) where the underlying absorption lines are marked with
black vertical lines. The green dashed line is an arbitrary choice of threshold for which the red vertical
lines mark the counted lines. It is clear that where the black lines lie close/blend we only count one (red)
which leads to a lower count.
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6.3 Simulated spectra
In the simulated spectra we expect no detector noise, bad pixels or pipeline reduction
errors. This means that methods like data-less pixel removal and Fourier smoothing, nor-
mally used to improve the quasar spectra, will not be applied to the simulated spectra.
We smooth the simulated flux spectra on a scale of 1 Mpc/h, in accordance with Villaescusa-
Navarro et al. (2011), to remove substructure below the Jeans length like numerical res-
olution and astrophysical processes (e.g. feedback from galactic winds). I developed a
gaussian smoothing technique (see section 6.3.1) that allows us to set the smoothing scale
in [‡] = Å. Figure 21 (left), in section 5.3.2, shows the result of equation 30, that is a
relation between the wavelength width (Å) and redshift (z) for a comoving void size of
Cv = 1 Mpc/h. We use this equation to determine the wavelength width of 1 Mpc/h that
for di�erent redshifts becomes ‡(z = [2.2, 4.0]) = 1.58, 2.28 Å.

When running simulations it is customary to take snap shots of your simulation box
at specific redshift intervals. In our case we have a box at z = 2.2 and 4.0 with RLOS
extracting the column density from which the simulated flux spectra can be constructed.
When you look into the Universe the spectra show absorption lines at di�erent redshifts,
whereas the absorption lines in a simulated spectra all occurs at the same redshift. The
comparison between simulated (redshift space) and quasar spectra (real space) does not
a�ect the number count of voids when you compare spectra slices of 100 Mpc/h. Although,
if looking at the void sizes one should treat this bias with care. A good example of how to
circumvent the redshift space bias and produce more realistic simulated spectra is shown
in Viel et al. (2013) section IV. The Mock QSO Sample.

6.3.1 Gaussian Smoothing

The Gaussian smoothing method convolves the spectrum with a gaussian weighted func-
tion, which can be expressed as,

f(x0) =
q

i f(xi)g(xi)q
i g(xi)

, (33)

g(x) = 1Ô
2fi‡2

e
(x≠µ)2

2‡2 . (34)

Here g(x) is the gaussian function with mean µ and width ‡, f(x) is the function we
wish to smooth (in our case the simulated flux spectrum), and f(x0) being the smoothed
function value at x0. The ‡-parameter in g(x) determines the smoothing scale. In Figure
32, I have plotted the two simulated spectra before (full line) and after (dashed line) a
Gauss smoothing of ‡ = 1.58, 2.28 Å for respectively z = 2.2 (upper) and 4.0 (lower).
The di�erent smoothing scales arise from the redshift stretching e�ect that that occurs
as a result of the expanding space as well as the inertial frame transformation. The
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figure shows di�erent amounts of gravitational clumping, where the evolution of the dense
(F ≥ 0) areas merge together over time, from z = 4.0 (lower blue) æ 2.2 (upper red),
creating more empty areas, or under-dense voids (F ≥ 1) over time. The smoothing scale
do not remove physical structures in no noise simulated spectra, demonstrating that our
Fourier technique is calibrated correctly (more about this in section 6.4)

Figure 32: Two simulated spectra plotted before (full line) and after (dashed line) the Gaussian smoothing
of 1 Mpc/h for z = 2.2 (upper) and 4.0 (lower). The e�ect of gravitational clumping can be seen evolving
from z = 4.0 æ 2.2 showing less but denser structures at lower redshift.
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6.4 Comparison of smoothing scales
It is possible to test if our Fourier method smoothes the spectra on the correct scales and
do not accidentally remove or add real voids. I have, in Figure 33 plotted the void count
between a perfect mock spectrum (no noise) and a fake mock spectrum (noise added)
which is Gaussian smoothed with respectively ‡ = 0, 3 as well as a Fourier smoothing. We
see that the fake mock spectra need to be smoothed with ‡ = 3 or the Fourier method
in order to remove enough noise to resemble the perfect spectrum. This suggests that
the Fourier method is calibrated correctly. To support the above claim, I have in Figure

Figure 33: The void count of perfect (no noise) mock spectrum (blue) compared to the fake (noise
added) mock spectra smoothed by respectively a Gaussian smoothing with ‡ = 0 (yellow), 3 (green) and
the automatic Fourier method. We clearly see that the void count of the yellow line (‡ = 0) is very a�ected
by the noise in the spectra. The green line (‡ = 3) and the red line (Fourier smoothing) have, on the
contrary, been smoothed accordingly and resembles the no noise blue line.

34 plotted the void count as a function of threshold (“) for each of the spectra in the 50
quasar subsample. The red lines are Gaussian smoothed with ‡ = 1 (upper) and 3 (lower)
and the blue line represents the automatic Fourier smoothing for each of the 50 quasar
subsample mentioned in section 6.1.3. I have marked the spectra exhibiting �Fmax > 20
(see section 4.3.2) with black circles.
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I have chosen the Gaussian smoothing scale of 1 Mpc/h from Figure 21 (left) in the quasar
redshift range z = 2 ≠ 4 (see Figure 13) that results in a scale of ‡ = 1 ≠ 3 (see also 6.3
for comparison with the simulated smoothing scale). The figures without circles all have
a Fourier smoothing scale in the range of 1 Mpc/h (grey area), comparable to the simu-
lated smoothing in section 6.3 where no structures/voids are a�ected by similar smoothing
scale. We still prefer counting voids using the Fourier smoothing technique that takes the
noise level into account. Here, it is important to notice that we trust that a blind void
count between quasar and simulated spectra, using the same selection criteria, is the key
to produce a robust result.

Metal lines are expected to be present in quasar spectra, but they will appear narrower
than hydrogen lines due to larger atomic masses that lower the velocity distribution. In
section 4. Systematic Errors of Villaescusa-Navarro et al. (2011), the typical size of metal
lines is mention to be ≥ 0.05 Mpc/h, which is well below our smoothing scale used for
both quasar and simulated spectra. As a result, we conclude that metal lines of sizes
≥ 0.05 Mpc/h will not a�ect the void count.
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7 Quasar Normalization - Estimating the Void Count
Uncertainty

The light from a quasar is absorbed on its way to the Earth, and the spectrum’s background
emission shape is di�cult to determine with high precision. As a part of the pipeline pro-
cessing, the spectra are normalized by a rigid polynomial fitting (e.g. a Chebyshev or a
Lengendre polynomial)7. The normalization will mainly introduce an uncertainty in the
left (low wavelength) part of the spectra where the absorption lines of the Lyman forest
reside (see dip in the left side of top plot in Figure 15).

We wish to test how sensitive the void count is to the emission shape normalization
by simulating the pipeline process. The uncertainty that arises can be simulated by mul-
tiplying the spectra with di�erent variational functions and measuring how the void count
changes. To mimic the pipeline reduction in King et al. (2012) and Murphy et al. (2003)
we use a rigid Legendre polynomial to perturb the spectra. The aim is to perturb the
continuum of the spectra, and to do so we create an initial Legendre continuum fit using
the 3‡ cutting method (see section 7.1).

The continuum fit is randomly perturbed and multiplied onto the original spectra to
create a set of Random Continuum Perturbed (RCP) spectra (section 7.2). Each RCP
spectra is now compared with the original to find the relative void count di�erence,
(#Voriginal ≠ #Vpert)/#Voriginal as well as the relative change between the spectra, the
Kolmogorov-Smirnov (KS) D-value (see Appendix B.2). The D-value is a measure of the
relative di�erence between two spectra and will, plotted against the void count di�erence,
tell us how sensitive the void count is to the uncertainty of the normalization (section 7.3).

7
see http://mathworld.wolfram.com/LegendrePolynomial.html

http://mathworld.wolfram.com/LegendrePolynomial.html
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7.1 3‡ Fitting
To construct the continuum I start by fitting an N’th order Legendre polynomial to the
original spectrum. The points which are 3‡ below the polynomial are removed and a new
fit is made. Repeating this, results in a fit that converges towards the continuum. In
Figure 35 I have fitted a Legendre polynomial (blue) to a spectrum (red). The green line
shows the optimal fit after using the 3‡ cutting method. The subplot is an optimization
plot showing the convergence of the fit. The figure clearly shows that we can create a fit

Figure 35: The spectrum of QSO J193957-100241 (red), with the initial Legendre fit (blue). After 20
iterations of 3‡ fitting we obtain the green line. The grey region in the right side is added due to its strong
continuum around 1 that helps stabilize the continuum fit. An optimization curve is shown in the subplot
with the amount of data as a function of number of iterations.

that resembles the continuum of the spectrum using the 3‡ method. To produce a better
continuum fit I added an extra 100 Å on the right side of the Lyman-– forest (see grey
region). Here the continuum is particularly good and stabilizes the 3‡ fit (green line).
Figure 35 is reproduced for 10 random quasar spectra from the 50 subsample and shows
that the combination between rigidness and goodness of fit suggests using a 4th order
Legendre polynomial. The continuum is well fitted within 10 iterations of the 3‡ method.
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7.2 Random Perturbation of the spectra
The 3‡ constructed continuum fit is now used to construct the RCP spectra by multi-
plying each (randomly) perturbed continuum with the original spectrum. The continuum
perturbations are made from adding random numbers to each of the Legendre polynomial
constants according to their size. As a result the relative perturbation is dependent on
the Legendre continuum fit that is di�erent for each spectrum.

In the end, we use the KS D-value to measure the amount of perturbation in each spectra,
so the exact values of the constant (initial perturbation) are less important. In Figure
36 I show a comparison between the original (red) and 15 RCP spectra (blue). Here the
relative factor (denoted by Rel-pert - see legend) is set to 0.5.

Figure 36: Here I have plotted 15 randomly perturbed spectra (blue) compared to the original quasar
spectra (red). The relative factor that determines the amount of perturbation is set to 0.5. Each of these
RCP spectra will be used to test the normalization uncertainty.
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7.3 The Void Counts Sensitivity
The uncertainty of the normalization is a�ecting the void count in the spectra. I will
count the relative number of voids between each RCP spectra and its original spectrum
and compare this with their respective flux di�erences. The flux di�erence between two
spectra is defined by calculating the D-value that represents the relative di�erence between
the spectra.
In Figure 37, the relative void count di�erence, (#Voriginal ≠#Vpert)/#Voriginal is plotted
with the flux di�erence between the spectra which is described respectively by the �‰2

(left) and the D-value (right). The �‰2 cannot determine whether the perturbed spectrum
is above or below the original spectrum so the left figure fluctuates unnecessarily but serves
to support the trend of the right figure. The KS test is on the contrary a cumulative sum
that takes into account whether the RCP spectrum is raised or lowered, and appear more
smooth. We will base our systematic error estimation of the normalization on the D-
values.

Figure 37: The left plot shows the relative void count di�erence as a function of the �‰2 and the right
a function of the KS statistic’s D-value. In the right plot a steady void count change of maximum 5 % is
seen here when the normalization uncertainty is allowed to vary up to 10 %.
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The quasar spectrum in Figure 37 with a S/N = 28 shows in the right plot a maximum of
5 % void count change when the spectrum is perturbed up around 10 %. I have made this
analysis on 10 random quasar spectra from the 50 subsample. In Table 1 I have listed the
quasar spectra with their maximum void count uncertainty for variation of 10 % in the
normalization (D-value) as well as the S/N value. The average value in the table describes
the void count uncertainty as 17.5 %, when the normalization varies of the order of 10 %
(see Murphy, 2013). There is not a strong correlation between the void count change and
the S/N values when the D-value is fixed at 10 %, which suggest that factors other than
the S/N a�ects the systematic normalisation uncertainty.

�#Void/#Void (%) D-value (%) S/N
J011852+032049 0.2 0.1 6
J012403+004432 0.2 0.1 20
J025634-401300 0.4 0.1 11
J053007-250329 0.1 0.1 67
J091613+070224 0.1 0.1 51
J111350-153333 0.05 0.1 28
J121140+103002 0.1 0.1 14
J125316+114720 0.2 0.1 10
J132029-052335 0.2 0.1 36
J235702-004824 0.2 0.1 18

Average 0.175 0.1 25

Table 1: The relative void change (left column), the relative flux spectra change (middle column) and
the S/N values (right). In the bottom I have calculated the mean to estimate the statistical significant
systematic error.
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8 The Void Count Analysis
We have introduced the cosmological background, the project outline and how to observe
voids in quasar spectra followed by a range of improvements, testing, as well as a selection
of good criteria that makes the void count insensitive to small parameter variations. We
estimated the systematic uncertainty from the flux normalization and will below perform
the analysis and comparison of the void count from observed and simulated Universes.

8.1 The Flux Density of Voids
The spatial extend of voids depends on how the density transition between voids and
structures is defined. When observing voids in quasar spectra this transition is set by the
flux threshold (“). A high density transition level (similar to low flux density threshold)
corresponds to large voids, as only the densest parts are defined as cosmological structures.

In order to compare our void counts to other published papers we adopt the preferred
threshold convention from Viel et al. (2008). Here, they relate the voids found in 1D flux
spectra (LOS) with the actual 3D dark matter distribution in simulations and recover the
relation,

” + 1 = fl / < fl >= ≠0.9 F / < F > +1.9 . (35)

The equation relates the normalized density, fl / < fl > (3D matter distribution), and the
averaged flux, F / < F > (1D flux distribution) at z = 2.2. We redefine our flux density
threshold, “ to F / < F > that is related to the real matter distribution. In the same
article they also mention that the correlation between F and ” is strongest if only selecting
voids larger than 7 ≠ 10 Mpc/h.

8.1.1 A stable flux density threshold

We determine a new preferred averaged flux density threshold (F / < F >) for which the
void counts are robust and stable8. We use the simulated spectra to find a good threshold,
in redshift bins z = 2.2 and 4.0, as the 50 quasar subsample lack the required statistics.
We compare the void count from each redshift bin, and a common averaged flux threshold
is chosen.

8
We use stable to address a void count change as little as possible for a small variation in threshold.
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SIMULATED SPECTRA

(a) (b)

Figure 38: The void count as a function of the averaged threshold, F / < F > for z = 4.0 (b) and 2.2 (a).
The peak of the void count shifts towards higher threshold values because of the continually ongoing collapse
of structures. The void density are stable in the light purple shaded areas, with F / < F >= 0.2 ≠ 0.9 (a)
and 0.4 ≠ 1.0 (b), where (a) and (b) overlap in dark purple area of F / < F >= 0.4 ≠ 0.9.

In Figure 38 I show the void count of simulated spectra as a function of F / < F > for
z = 2.2 (left) and 4.0 (right) to find a threshold with a stable void count. We select a
threshold that can be used at both redshifts. The z = 2.2 and 4.0 plot in Figure 38 are
most stable in the respective range from F / < F > = 0.2 ≠ 0.9 and 0.4 ≠ 1.0 (see light
purple shaded areas). Given the overlap between 0.4 ≠ 0.9 (dark purple shaded area) the
clever choice of a robust threshold, one with a high void count that avoids the unsure high
and low ends, is selected to be

F / < F > = 0.65 (primary). (36)

Here F / < F > = 0.55 and 0.75 are chosen as secondary candidates, within the good
threshold limit. It should be noted that the newly selected threshold is restricted by
choosing a stable value covering void counts at both z = 2.2 and 4.0.



8 The Void Count Analysis 54

8.2 Mean number of voids
The number of voids decrease as the Universe grows older, joining each other as a result
of matter falling into over-dense areas. The interior mass of the voids plays a part in
how quickly the matter evacuates into the denser areas, relating the number of voids to
the void mass. The void mass in simulations depends on the initial parameters, so by
comparing the average void count between simulated and real quasar spectra we should
be able (with good quasar statistics) to test if the interior void mass from simulations
match the real Universe.

We perform our first statistical void count comparison between simulated and observed
quasar spectra, using the best guess simulation from Rossi et al. (2014) (see Table 5 in
Appendix C) and the large UVES quasar sample. The LOS from the simulated spectra of
z = 2.2 and 4.0 have a spatial extend of 100 Mpc/h. In order to compare the void count
between simulated and real spectra, we bin the quasar spectra on the same scale. The
wavelength width similar to a 100 Mpc/h spatial slice is calculated using equation (30)
setting the constant, Cvoid = 100 Mpc/h. The function then returns the wavelength width
as a function of redshift (green line in left plot of Figure 21). The resulting number of
quasar spectra after the binning, from the total and prime sample, can be seen in Figure 12.

In Figure 39 I have plotted the mean void count as a function of threshold for simu-
lated (green) and quasar (red) spectra LOS at z = 2.2 (a) and z = 4.0 (b). The red and
green error bars illustrate the spread, ‡, from a gaussian fit whereas the blue error bars
are the Standard Deviation On the Mean (SDOM), ”, determined from the normalisation
uncertainty of 17.5 % (the error calculation is covered in Appendix B.3). I have multiplied
the ”-error bars with 5 for it to be visual in the figure. The quasar void count error, ‡
(red), is larger than the simulated (green) because of the observational uncertainty and
low number of spectra.

The average number of voids drop from z = 4.0 æ 2.2 as the Universe grows older. This ef-
fect of the void count drop is largest for the low flux density threshold, (F / < F >) Æ 0.6
that corresponds to only observing the most empty voids. In order for a void to become
very under-dense it needs time and heavy structures surrounding it, pulling out the mat-
ter. Because of this, the emptiest voids are usually also the biggest and oldest. When
heavy structures merge, their absorption lines blend together and naturally as time passes
the void count (≥ number of absorption lines) will also drop.
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(a) (b)

Figure 39: The mean void count and the resulting spread of all quasar void counts at each threshold
value. The quasar and simulation data is represented by the red and green data points respectively. The
green and red error bars illustrate the spread, ‡, whereas the blue are the SDOM, ”.

I will now test how well the void count of the best guess �CDM simulated spectra match
the real number of voids in the Universe, using the two types of observational errors, ‡
and ”. In order to quantify this I calculated the ‰2 value (see Appendix B.4) between the
simulated and quasar void counts, using both types of errors. The ‰2 and ‰2

red (‰2/dof)
are calculated using ‡ (red) and ” (blue), for both redshift bins and listed in table 2.

When comparing the simulated and quasar void count using the SDOM, ”, as the ob-
served error value, we get a very poor ‰2

red value for both redshifts (see table 2). This
suggests that either the SDOM is underestimated (or we miss contributions from other
sources of errors) or that the quasar void count is not consistent with the number of voids
from simulations and their common distributions can be rejected with a high significance
level. Another explanation could be that the choice of cosmological parameters from the
simulation introduces a systematic shift in the void count (see section 9.1.4). On the
contrary if we calculate the di�erence using ‡ as the significant error, we get good ‰2

red
values (‰2

red ≥ 1), see table 2. The quasar void count slightly fits the number of voids from
simulated spectra too well, which can be due to overestimated errors, that makes the two
data sets appear very identical. The two datasets are consistent, given we use ‡ with a
significance of 99 % implying that the number of voids from simulation fits the void count
from quasar spectra in the real Universe.

The two error choices create two distinctive fits to the simulated spectra. The spread,
‡, takes all errors into account and is most likely overestimated. On the other side the
normalization uncertainty, ”, is estimated from a reliable perturbation method, which is



8 The Void Count Analysis 56

probably not the only source of error. I have combined the two errors, ‡ and ” into ‘ us-
ing equation (43) from Appendix B.3. The ‰2 results are listed in table 2 (purple) which
provide a more realistic guess of the similarity between the datasets. The ‰2

red mildly
suggests that it is unlikely that the two datasets are consistent (‰2

red,‘ Ø 1). In order to
determine if the simulated void counts are comparable with observed ones at a higher level
of significance, we need to increase the amount of data.

z ‰2
‡ ‰2

red,‡ ‰2
” ‰2

red,” ‰2
‘ ‰2

red,‘

2.2 60 0.59 22103 223 1476 14.91
4.0 27 0.26 1884 19 563 5.68

Table 2: The ‰2 and ‰2
red values colour coded to fit the red and blue errors in Figure 39 for both redshifts.

The blue colour, representing the ” error shows a poor ‰2
red > 1. The data is described by the ‡ error

having ‰2
red < 1, is on the contrary a good value. The purple shaded regions is the errors combined into

the best error estimate possible, suggesting a poor fit, ‰2
red,‘ Ø 1 between the data and the model.
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8.3 Void slices at uniform flux density
Voids are strange empty objects that slither and exist in-between the dense walls, fila-
ments, and clusters of matter. As we just experienced, their size and the number along
LOS change with the definition of the matter density transition. In our case, when ob-
serving the 1D spectra, this choice is set by the averaged flux density threshold. In section
8.1.1 we found a range of stable thresholds for which we now look at the distribution of
voids, again comparing the quasar and simulated spectra.

In Figure 40 I have shown the void count probability distribution function (PDF) for
the stable thresholds, 0.55, 0.65, 0.75 (horizontal) at z = 2.2 (upper) and 4.0 (lower). The
red, green and blue curves are respectively the simulated, prime and total spectra samples.

The e�ect of gravitational contraction, mentioned in section 8.2, results in a void number
decrease as the Universe evolves (decreasing z). This is also visible comparing the upper
and lower plots of Figure 40. The average void count drops, for both the simulated and
quasar spectra, as the Universe grows from z = 4.0 æ 2.2.

The plots in Figure 40 resemble threshold slices (parallel to the y-axis) of Figure 39 where
what before was the y-axis, have now become the x-axis. Similar the errors, ‡ and ”,
represent the uncertainty of the void count based on the spread and normalization again.
In Figure 40 it is clear that when including the spread, ‡, as the uncertainty, the void
count from the simulated (red) and total quasar sample (blue) easily overlaps and could
be consistent datasets. Oppositely, when the error is determined by the normalization, ”,
it appears unlikely that the void counts are from the same Universe.

I have included the prime sample from section 4.3.3 to test how the data-less pixel re-
moval and the S/N values a�ect the void count. Unfortunately, when the best spectra
were selected from the total sample, there were not enough spectra left at z = 4.0. The
void count from the prime sample overlaps the total number of voids within both, ‡ and
”. This suggests that the data-less pixel removal and the S/N values do not a�ect the
final void count, and cannot be a part of any systematic error.

The fact that the quasar void count distribution has a higher average value compared
to the simulation (within the ” errors), appears to be quite interesting when listing the
di�erent systematic uncertainties, see table 3. In table 3 is listed the possible systematic
uncertainties, their e�ect on the void count and the reasoning behind. Most of the cases
result in a decrease of void count and cannot explain the higher observed average void
count in observational spectra. Two cases can result in a increased void count: under-
smoothing the spectra with the Fourier method and a downwards shift of the flux spectra
(continuum) from incorrect normalization.
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Table 3: A list of possible systematic uncertainties, their e�ect on the void count and an explanation.
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Figure 40: The void count PDF as a function of the averaged threshold, F / < F >= 0.55, 0.65, 0.75 for
z = 2.2 (upper) and 4.0 (lower).

From Figure 33 and 34 in section 6.4 it should be clear that the Fourier smoothing scale
is correctly calibrated, and that a under-smoothing is unlikely. The larger observed void
count is unlikely to be from the downwards shift of the flux spectra. The e�ect is included
in the normalization uncertainty, ”, that is to small to describe a systematic void count
shift of that size.

The combination of the errors in section 8.2 supports the fact that more data is still
needed before drawing any further conclusions. So far it is di�cult to explain this discrep-
ancy with the systematic errors listed in table 3. Another possibility is that the systematic
error comes from the choice of cosmological parameters and/or conversion between density
and flux spectra arising from the N-body simulation.
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8.4 Neutrino Signatures on the High Transmission Regions of the
Lyman-– Forest

The idea to count voids along LOS in quasar spectra was inspired by Villaescusa-Navarro
et al. (2011). They found a relation between the sum of the neutrino masses,

q
i m‹,i

and the number of Lyman-– voids along LOS. The main result in their paper is shown in
Figure 41. Below I explain briefly what is seen in the plots.

Figure 3 (a)
In Figure 41 (a) they show the distribution of the most probable void count (PDF) at
z = 2.2 (upper) and 4.0 (lower). Increasing the neutrino (red, blue, purple) mass clearly
shifts the curve towards a lower void count peak. The green (

q
i mµi = 0.6 eV, ‡8 = 0.877)

curve is a remake of the red (
q

i mµi = 0.0 eV, ‡8 = 0.877) with the same ‡8 parameter
but di�erent sum of neutrino masses. This results in the peak moving towards a higher
void count.

Figure 4 (b)
Figure 41 (b) shows number of voids as a function of the averaged threshold (F / < F >)
again for z = 2.2 (upper) and 4.0 (lower). The subfigure in the upper plot shows the
curves divided by the red curve with zero neutrino mass. The figure sums up that the
e�ect of neutrinos mentioned in section 2.2.1 have a clear e�ect on the number of voids
along LOS.

We have reproduced Figure 41 (b) and (a), with observational quasar spectra in Figure 39
and 40 respectively. The trend of the decreasing void count as a function of F / < F > in
Figure 41 (b), resembles the void count decrease we also see in our Figure 39 in the ranges
F / < F >= 1.06 ≠ 1.15 (z = 2.2) and F / < F >= 1.2 ≠ 1.9 (z = 4.0). Although we have
been able to reproduce the figures, it is not possible for us to make any direct conclusions
as they have used a di�erent set of selection criteria. We defined our selection criteria
based on newer simulations (Rossi et al., 2014) for which a grid would be available if the
method was found to work. If we in the future obtain good enough statistics, and attempt
to constrain the neutrino mass the key ideas behind this paper is important. They have
optimized the observables to be most sensitive to neutrino mass di�erence.
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(a) (b)

Figure 41: Figure 3 (a) and 4 (b) from (Villaescusa-Navarro et al., 2011).
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8.5 Measuring the E�ect of Gravity
The complex pattern of the Large Scale Structure emerges when the force of gravity pulls
matter together as it evolves from an almost homogenous early Universe. Consequently a
gravitational pattern also emerges from the under dense regions, that at di�erent redshift
resemble di�erent stages of evolution. With time the voids “merge” and become bigger,
leading us to expect fewer bigger voids at lower redshifts.

With my automatic void counting code it is possible to test if and how the number of
voids decrease as the Universe grows older. We can do this by selecting quasar spectra
at di�erent redshifts and stacking their void count to produce an average void count over
redshift. To follow our convention we choose to count voids in a 100 Mpc/h slice of the
spectra centered at each of the given redshifts.

In Figure 42, I have plotted the average void count for the total (upper) and prime (lower)
quasar sample as a function of redshift, z. The colours green (prime), red and blue (sec-
ondary) represent the averaged threshold value of respectively F / < F >= 0.65, 0.55, 0.75
(see section 8.1.1).

From z = 1.8 ≠ 4 (1.8 ≠ 3.5 being the most significant region, see Figure 13) the number
of voids increase with redshift, showing the same trend for both total and prime samples,
and for each of the threshold choices (0.55, 0.65, 0.75). The higher number of voids for
increasing redshift is consistent with the expected (simple) picture that many small voids
occupy the early Universe, and as the Universe grows older evolves to fewer large voids.

In section 7 table 1 we estimated the normalization uncertainty on the void count to
be 17.5 %. To get the average void counts and their errors in Figure 42 we calculated
the mean and the SDOM (see Appendix B.3). One thing to notice is that the error bars
increase with redshift as a result of decreasing number statistics (see Figure 13). The
turquoise crosses from simulated spectra at z = 2.2 and 4.0 both have lower average void
count than what we found in the observed data, supporting the results from section 8.2
and 8.3.

We can compare the void count-redshift distribution to previous results from Petitjean
(1998) who introduces a relation between the number of Lyman-– lines and redshift,

N(z) = N0(1 + z)k . (37)

The number of lines is related to the number of voids like, (Nvoids = Nlines + 1). We
calculate the normal and ‰2

red to estimate how well the model (equation 37) fits the ob-
served data (see table 4). Focusing on the ‰2

red value it is clear that the prime sample
produces the best fit. It appears that both samples fit the data well up to z = 3.6. For
the total sample a peculiar rise in number of voids occur at z = 4.4, which worsen the
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‰2
red values. The outlying points are all more than 3‡ (standard deviations) away from

the model, which is very unlikely. Given that the data follows a normal distribution such
an event only occurs in 1/370 making the resulting probability for such and outlier in a
16 point sample 16/370 = 0.04 %. This is not good enough statistics to make a precise
conclusion regarding the outlier whereas increasing the amount of quasar spectra may
yield this possibility in the near future.

Sample F < F > N0 k ‰2 ‰2/dof
0.55 3.48 1.63 44.13 3.39
0.65 5.36 1.36 46.49 3.58QSO Total
0.75 8.83 1.05 46.91 3.61
0.55 4.33 1.47 12.16 0.94
0.65 5.87 1.3 6.22 0.48QSO Prime
0.75 8.93 1.05 7.88 0.61

Table 4: The table list the fit values of Figure 42 for the total (upper) and prime (lower) quasar sample.
I have colour coded each of the rows to fit the colour used in the figure for each sample, and list the
threshold (F / < F >), fit parameters (N0, k) and the ‰2 and ‰2/dof (‰2

red).
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9 Summary
I have developed a code, based on artificially created mock spectra, that can count Lyman-
– voids in the 1D quasar flux distribution. The number of voids can be stacked to produce
a statistical distribution as a function of redshift. To improve the robustness of the void
count we run a series of tests on mock spectra and a randomly chosen subsample of 50
quasar spectra (section 6).

We construct a set of spectral selection criteria that optimizes the stability of the void
count, which is a�ected by noise of di�erent origin, e.g. atmospherical lines, cosmic rays
or bad pixels. We remove the pipeline reduction errors which introduce data-less pixels
(section 6.1.1) and construct an automatic Fourier method that smoothes the spectra ac-
cording to the noise level, see section 6.1.2 and 6.4. The gravitational clumping of clouds
along the line of sight blend the absorption lines in the spectra and lowers the void count.
For realistic line blending the void counts on mock spectra are not a�ected, as shown in
section 6.2.1. In accordance with Villaescusa-Navarro et al. (2011) we smooth the no-noise
simulated spectra on a scale of ≥ 1 Mpc/h (section 6.3), that remove astrophysical e�ects
below the jeans scale but do not remove actual voids (> 1 Mpc).

A systematic error unfolds in the normalization of the quasar spectra and we quantify
this void count uncertainty to be of the order of 17.5 % in section 7. The void counting
method is also subjected to uncertainties, which are included in the spread of the proposed
statistical approach (≥ 30 ≠ 50%). A final UVES quasar sample, on which the analysis is
performed, is constructed from the usable spectra (properly reduced) as well as the range
of the detector sensitivity resulting in a sample of 201 quasar spectra (see Figure 12 in
section 4.3.4).

The stable flux density threshold was estimated to be “ = 0.6. We later discovered that
the real-space dark matter voids were conventionally related to the 1D flux voids counted
using a flux averaged threshold, F / < F >. The redefined prime values for z = 2.2
and 4.0 were found to be F / < F > = 0.65. With the selection criteria in place, the
systematic error estimated and the final quasar sample ready, we redshift bin our spectra
in chunks of 100 Mpc/h, resulting in a lower number of quasar spectra in each bin (see
Figure 12) but better overall exploitation of the data set.

In section 8 I present our preliminary results from the, as far as we know, first statis-
tical void count comparison between observed quasar and simulated spectra. The void
count in Figure 39 and 40 from observed quasars appears to be shifted towards a higher
average value compared to the number of voids in simulated spectra. When analyzing the
void count distribution with the stable threshold (F / < F > = 0.65) the before men-
tioned shift is also present. The significance of the discrepancy depends on the favoured
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error bar that either takes the form of the spread, ‡, between the di�erent LOS or the
normalization uncertainty, ”. When the large ‡ error is adopted, the discrepancy of the
void count (simulated vs. observed) becomes insignificant. Since the normalization un-
certainty is much smaller than the spread, better statistics will increase the precision and
will be able to tell whether the di�erence is real or not.
We attempt in section 8.2 to combine the errors, ‡ and ” (see table 2) to improve the
significance of the ‰2 analysis. We get better ‰2

red values but still need to increase the
amount of data to determine the origin of the di�erence.

In table 3 we list the possible systematic uncertainties and only the Fourier under-
smoothing seems to be a realistic, although still unlikely, way to increase the observed
void count. In section 8.4 we reproduce the two important figures from Villaescusa-
Navarro et al. (2011) from observational data, to show that when very large data samples
are available we can make a proper attempt at constraining the neutrino mass, (

q
i m‹,i)

using the grid of simulations provided by Rossi et al. (2014).

The e�ect of gravitational clumping that decreases the void count over time, can be seen
in all the important Figures, 39, 40, and 42, from section 8. The fact that the observations
behave as we expect, show that we trace real physical quantities. The void count as a
function of redshift in Figure 42 display one peculiar point (near z = 4.4) that we should
attend to when the statistics is increased. Currently the statistical uncertainty appears
to be the dominating limitation at the moment, but can be improved with existing data
from the Keck HIRES sample and possibly in the future with BOSS DR11 (see section
9.1.6).
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9.1 Further Work
Throughout the thesis I have come across ideas to improve the coding and void count
statistics, as well as applying new selection criteria for the smoothing scale, the redshift
binning size, and the data sample. Below I cover these approaches in more detail.

9.1.1 Smoothing with redshift

When the light is emitted from the source to the observer, the redshift stretches the
spectrum. A structure at z = 4 appears larger (wider in wavelength) than a similar
structure at z = 2. The current smoothing uses the same scale for all wavelength where
a better, or more precise, method would smooth the spectra with a scale that increases
with redshift. The wavelength change, between z = 2 and 5 is approximately �⁄ = 5 Å,
see Figure 21.

9.1.2 Size of redshift bins

I have constructed the redshift bins such that the width (scale) can change. This allows us
to increase our number statistics, e.g. using smaller ranges like 50 Mpc/h for both quasar
and simulated spectra. Such a scale is in accordance with 99.9 % of the void sizes being
< 40 ≠ 50 Mpc/h around z ≥ 2 Viel et al. (2008). We expect a similar trends at z = 4.0,
where the void sizes naturally are smaller. We can try a range of redshift bin sizes to test
how the number statistics of the void count changes and whether this technique is usable.

9.1.3 Lyman-— forest

Our void count statistics are limited by the void count per quasar spectrum. The challenge
is that beyond the Lyman-– forest range each signature is either a new lower redshift
structure or a higher order signature (Lyman —, ”, “) from a high redshift structure. It is
possible to determine the approximate location of the —-lines corresponding to the already
counted –-lines using the formula describing the Lyman series and remove them to count
the remaining –-lines in the Lyman-— forest. In principle this should apply to the entire
range of the Lyman series, but realistically it will probably only work for Lyman — because
of the increased probability of blending and the limited wavelength range of the detector.

9.1.4 Void count of a di�erent cosmology

We can test the void count sensitivity to the simulation input by counting voids with the
same criteria but for a slightly di�erent cosmology, e.g. a higher matter component. If the
void count is stable it implies that we can also compare our observed void count with void
counts from a grid of simulations with e.g. di�erent neutrino masses in order to constrain
the

q
i m‹i .

If a systematic error arises from the specific choice of cosmological parameters, this should
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also be clear when comparing void counts made from di�erent cosmologies with our cur-
rent quasar sample. In this case the void count may not be precise enough to provide
information about

q
i m‹i but can possibly help determine the standard cosmological pa-

rameters.

9.1.5 Counting Larger Voids

In Viel et al. (2008) they mention that the 1D flux follow the 3D dark matter distribution,
especially, when counting voids > 7 ≠ 10 Mpc/h. This opens a new and very easy way to
count voids in both quasar and simulated spectra. No noise and only large scale voids will
be present in the spectra after using a simple Gaussian smoothing, of ≥ 10 Mpc/h. This
also means that we do not need a Fourier smoothing that is slower. Such a void count
can be compared to 3D galaxy void distributions, see e.g. Pan et al. (2012). When this
is pursued we should keep in mind to check if the neutrino distinction still occurs at this
void scale.

9.1.6 BOSS DR11 Sample

A recent study by Delubac et al. (2014) uses 137,562 low resolution quasars spectra in the
redshift range 2.1 Æ z Æ 3.5 to probe the baryon acoustic oscillation using the Lyman-–
forest. Such a large sample of quasar spectra is especially interesting for a statistical void
count. When they are reduced and normalized they would be a obvious choice to increase
our void count significance.
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Figure 43: A plot of �⁄ = ⁄/R (Å) for three di�erent R-values, 2000, 10.000, 80.000. Large R (high
resolution) corresponds to small values of �⁄ the resolution width - and R ≥ 2000, 80.000 respectively
show a low and high resolution.

To test, if the low resolution BOSS sample is sensitive to the voids, we compare the high
and low resolutions with the corresponding wavelength scale. In Figure 43 I have plotted
the resolution scale, �⁄, for three di�erent resolutions as a function of the wavelength,
⁄. The typical UVES quasar spectra and BOSS sample have respectively a resolution of
R ≥ 80.000 (red) and R ≥ 20009 (blue). The blue line changes from �⁄ = 1.5 to 3.5
which roughly corresponds to 1 Mpc/h from z = 2 to 5 (equation 30). Thus it is possible
for us to detect voids in BOSS low resolution spectra, especially using the idea from the
previous section of counting voids > 7≠10 Mpc/h - drastically reducing the void counting
time.

9https://www.sdss3.org/instruments/boss_spectrograph.php

https://www.sdss3.org/instruments/boss_spectrograph.php
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10 Concluding Remarks
The thesis approaches the first attempt to count the number of voids along LOS in high
resolution quasar spectra, using the Lyman-– forest up to z = 5. I developed the code on
mock spectra, where certain parameters could be varied and tested resulting in a robust
void count. Using a 50 quasar subsample we made a range of improvements to produce
a robust void count, with the void count spread and flux normalization determining the
uncertainty. Determining the selection criteria from the 50 quasar sample allowed us to
make a blinded void count on the remaining sample. We compared the void count dis-
tribution between observed quasar and simulated spectra. Although, in order to make
further conclusions on their compatibility more data is needed.

We show that we can reproduce the figures from Villaescusa-Navarro et al. (2011) as
a test of the void counting method. On top of this we show the first void count as a func-
tion of redshift where especially the formation of voids is clearly visible while inconclusive
at the moment, the method carries some potential with an increase of data. The analysis
was performed only on the UVES quasar sample of 201 spectra (after unusable spectra
was removed), and we will within the nearest future add ≥ 150 HIRES (Keck) spectra to
the analysis. The code is constructed to run automatically, enabling future analysis of the
void count distribution in very large datasets.
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A Astronomy through the ages
Introductions to astronomy usually begins with the development of modern science by the
Greek and Babylonian astronomers. Today we will take yet another leap backwards and
begin by seeking answers to the questions of our existence in the first place.

The human curiosity has given us the means to learn and adapt in favour of survival
(Darwin, 1860). Exploiting the seasonal variation of crops or the hunting patterns of
predators gives us advantages in the natural selection. The world of today grants us the
luxury of a high survival rate increasing the possibility to channelize our curiosity towards
a deeper understanding of the world around us. One way of questioning our nature is to
look beyond the boundaries of the Earth. We call this study astronomy, and it describes
the motion of the celestial objects and their properties.

A.1 The First Astronomers
The first astronomers were priests that predicted the weather and the seasons that was
of great importance to the agriculture. The first recorded signs of modern astronomy
were found in Babylonian star catalogues from 1200 B.C., though it has been speculated
whether the Pyramids of Giza (≥2500 B.C.) had a celestial significance. The Ancient
Greeks developed astronomy using mathematics and deduction, which allowed them to
perform more advanced studies of the heavens. They were the first to describe the Cos-
mos in a three dimensional geo-centric picture, with Plato (428-348 BC) and Aristotle
(384-322 B.C.) introducing the symmetry of circles and spheres to explain the motion of
the celestial objects.

The first cosmological model was born. This Ptolemaic system was a geo-centric model,
that prevailed until the beginning of the 16th century, with only few extensions such as
the usage of apparent magnitude (distant objects appear fainter). Aristarchus of Samos
(≥ 310-230 BC) was the first to propose the idea of a helio-centric model in the 3rd cen-
tury B.C., but the idea failed to gain interest, maybe a�ected by Ptolemy of Alexandria’s
(90-168) publications at the same time favoring a geo-centric picture. The geo-centric
world view was not only present in the Hellenistic culture as the Mayan, Islamic, Indian
and Chinese cultures developed similar models (Aaboe, 2001; Krupp, 2003).

The new paradigm in astronomy came with Nicolaus Copernicus (1473-1543) who in-
troduced the helio-centric model with the Sun in the center. After Copernicus, the de-
velopment of the model was influenced by men such as Tycho Brahe, Galileo Galilei and
Johannes Kepler. Tycho Brahe (1546-1601) applied a comprehensive and accurate number
of observations to prove that the planets move in epi-cycles (circles on top of circles) to con-
firm the geo-centric model, which he believed to be correct. Among the first men to point
a telescope to the sky and perform more precise observations, was Galileo Galilei (1564-
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1642), supporting the Copernican model. Johannes Kepler (1571-1630), the assistant to
Tycho Brahe, used his supervisor’s extensive observations to calculate the eccentricity
of the planetary orbits and postulate the three laws of planetary motion describing the
planets’ motion around the Sun.

Figure 44: A picture showing the discovery of the helio-centric model, by looking out into the Universe
through the atmosphere of Earth. The picture is a digital remake of Camille Flammarion’s (French
astronomer) old wood engraving. Camille Flammarion (1888).

The time for the apple to hit Isaac Newton’s (1642-1727) head was up. This resulted
in the publication of his book Mathematical Principles of Natural Philosophy, known as
Newton’s Principia (Newton, 1687). The book contained what today is referred to as
Newton’s laws of motion, which includes a description of the gravitational force that is the
foundation of modern physics. Kepler’s laws of planetary motions could be derived from
Newton’s laws, and the last evidence towards a geo-centric model was rejected in favor of
the helio-centric Copernican picture (see Figure 44).

Here ends the first era of astronomy that was initiated by the Greek and Babylonian
astronomers, who were ahead of their time with deductive mathematical methods. The
geo-centric Ptolemaic model was followed and replaced by the Copernican helio-centric
idea, which supported by Newton’s laws became the concordant model. History shows that
humans have a basic instinct of curiosity which have shaped the contemporary knowledge
of the world around us. It is up to us to shape the knowledge of future generations.
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A.2 Modern Cosmology
The size of the known Universe slowly grew as astronomers started to use better telescopes
and discovered that the Sun was only one star among 10s of billions stars in our galaxy –
The Milky Way. In 1924 the first stars were found residing outside the Milky Way in new
galaxies (see Figure 45).

Observations revealed that the galaxies recedes from us, which was the first evidence
to support a Big Bang model, initially proposed by Georges Lemâıtre (1894-1966) (Van
den Bergh, 2011). After Hubble’s discovery, the view of the Milky Way being the en-
tire Universe was replaced by the Milky Way being one amongst many galaxies in an
expanding Universe. In 1915 a big leap in the understanding of space, time, and mat-

Figure 45: Our neighbor galaxy, Andromeda (M31). The picture is taken by the Hubble Space Telescope.

ter occurred as Albert Einstein (1879-1955) published his Theory of General Relativ-
ity (Einstein, 1916). A description of a space-time that warps around massive object,
and a clarification of the similarity between mass and energy. Einstein believed that
the Universe was neither expanding nor contracting i.e. static and unchanging. This
was contradictory to the prediction of relativity, thus he introduced a cosmological con-
stant that made the Universe eternally static. When Edwin Hubble (1889-1953) pub-
lished his findings in 1924 Einstein was forced to abandon his idea of a static Universe.
The first person to apply general relativity to describe cosmology was the russian physicist
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and mathematician Alexander Friedmann (1888-1925) (Friedmann, 1922b). He derived an
“expanding Universe” solution to the field equation of general relativity. This solution is
now known as the Friedmann equations (see also section 2.1.1). Later he contributed
to derive the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric that describes an
isotropic and homogenous Universe with spatial curvature.

In 1927, Lemâıtre proposed that an expanding Universe must have been hotter and
denser in the past, an event later named the Big Bang (Lemâıtre, 1927). Around 1930
the missing matter problem occurred while Fritz Zwicky (1898-1974) was investigating the
motion of galaxies in the Coma Cluster Zwicky (1937). Today gravitational lensing e�ects
among others imply a dark matter component (Frenk and White, 2012). Either Newton’s
laws are wrong, or there exists an invisible matter component, dubbed dark matter.

Figure 46: The temperature fluctuations in Cosmic Microwave Background, last observed by the Planck
surveyor. (Planck Collaboration, 2013).

In 1965, one year before Lemâıtre’s death, the Cosmic Microwave Background (CMB)
radiation, a leftover of the hot glow, from the Big Bang was discovered (Penzias and Wil-
son, 1965) (see Figure 46). This confirmed the Hot Big Bang model that George Gamow
(1904-1968) had developed and became the established cosmological model. To explain
the paradox of an infinitely dense Universe at t = 0, the general view was that the Uni-
verse expanded and contracted in a oscillatory state, and therefore never reached infinite
density. Stephen Hawking (1942-) among others (MacCallum, 2006) disproved the idea of
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an oscillatory Universe, in the 1960’s, by showing that singularities exist in the solutions
to Einstein’s field equation. The Big Bang model applied to observations of the CMB
gives a finite age of the Universe of 13.8 billion years (Planck Collaboration, 2013).

Figure 47: The history and evolution of the Universe from Big Bang until what we see today,
NASA/WMAP Science team.

Yakov B. Zel’dovich (1914-1987) noticed that the Universe was simply too big to be ho-
mogenous and unlikely to be flat. Alan Guth (1947-) proposed a solution ten years later,
in 1980, called the theory of inflation (Guth, 1981). This describes a blow up in the early
universe that explains the size and flatness of the Universe as well as the monopole prob-
lem.
This was the demise of the last opposing theories, and the Hot Big Bang model was set-
tled (Figure 47 sketches the Big Bang evolution). In 1990 the first measurements from the
COsmic Background Explorer (COBE) found the CMB radiation to be an almost perfect
black-body with a temperature of 2.725 K. This is supported by the Planck satellite, which
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made the latest CMB measurements (Figure 46). Small anisotropies in the CMB spectra
were consistent with the expected gravitational e�ect of dark matter in the early Universe
(Komatsu et al., 2011). 8 years later in 1998 an accelerated expansion was suggested by
Perlmutter et al. (1999); Riess et al. (1998) from a sample of fainter type Ia supernovae
which resulted in a larger distance than earlier expected. The increase in distance requires
a slower expansion in the past, and thereby mimics an acceleration of the expanding Uni-
verse, an e�ect we today refer to as Dark Energy, �. Hence the resulting model is called
� Cold Dark Matter (�CDM) cosmology. Recently the BICEP2 collaboration published
measurements that, despite of their trustworthiness, suggests the discovery of gravitational
waves supporting the inflationary theory mentioned above (BICEP2 Collaboration et al.,
2014).

Figure 48: The distribution of energy densities in the Universe today. (Planck Collaboration, 2013).

We describe the Universe with energy density parameters ��, �M , �b that respectively
describes dark energy, dark matter, and baryonic matter. The distribution of energy den-
sities can be seen in Figure 48. In an expanding Universe the galaxies get redshifted, which
is an e�ect of space stretching the light (Davis and Lineweaver, 2004; Davis, 2005)10. The
redshift can be used as a distance measure because light from distant objects gets red-
shifted more than light from nearby objects (see section 2.1).

We have now followed a century of great thinkers and innovators, which led us from
Einstein’s formulation of general relativity to Hubble’s discovery of the expansion, to
Friedmann’s cosmology, even onwards to the discovery of dark matter, the CMB radia-
tion, the inflationary model and last but not least the accelerated expansion.

10
See also the introduction to redshift and energy conservation for non-experts here: http://www.

dark-cosmology.dk/˜tamarad/papers/SciAm_BigBang.pdf

http://www.dark-cosmology.dk/~tamarad/papers/SciAm_BigBang.pdf
http://www.dark-cosmology.dk/~tamarad/papers/SciAm_BigBang.pdf
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B Statistical methods
I here introduce some of the statistical methods used throughout the thesis.

B.1 Signal to Noise
We calculate the signal to noise (S/N) value to estimate the amount of noise in the spectra.
It can be done using di�erent methods, but we choose to divide each flux value with its
associated error to create a S/N array. To obtain a single number we take the median of
the S/N array,

S/N = S/Narray =
3

Fluxarray

Errorarray

4
. (38)

This method is slightly uncertain as a spectra might exhibit both a good and a bad part.
With this in mind we still categorize the spectra using the S/N value shown above.

B.2 The Kolmogorov-Smirnov D-value
The KS test quantifies the di�erence between two datasets, using Cumulative Distribution
Functions (CDF). A CDF is a cumulative sum and is defined as

CDF (x) = 1
N

Nÿ

i=1
P (i < x). (39)

To calculate the D-value we find the largest absolute distance between the two CDF

D = max |CDF2(x) ≠ CDF1(x)|. (40)

For a thorough introduction I refer to Barlow (1999).

B.3 Mean & Standard Deviation
In a dataset consisting of {x1, x2, x3, ..., xN } the mean of x is

x̄ =
qN

i xi

N
. (41)

The resulting error on x̄, also known as the Standard Deviation Of Mean (SDOM) can be
expressed,

‡̄x =

ÒqN
i ‡2

err,i

N
. (42)

Here, ‡err,i describes the individual errors on xi. When adding individual errors the
formula below can be used,

”tot =

Ò
sumN

i ”2
i

N
. (43)

For examples I refer to Taylor (1997) book on error analysis.
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B.4 ‰2 Calculation
When comparing two data sets the ‰2 method can be used to quantify the di�erence. The
‰2 is the sum of the normalized di�erence between the data and a chosen model,

‰2 =
Nÿ

i

(xi ≠ f(xi))2

‡x,i
. (44)

Here, xi, ‡x,i, and f(xi) represents the i’th data point, error, and model. If we normalize
with the degrees of freedom, dof = N ≠ 1 ≠ Nvar we get a value quantifying the similarity,
called the reduced ‰2,

‰2
red = ‰2/dof = ‰2/(N ≠ 1 ≠ Nvar) . (45)

N is number of data points and Nvar is the number of variables used in the model. As
a rule of thumb ‰2

red ∫ 1 imply a poor model, whereas ‰2
red < 1 and ‰2

red > 1 indicates
over-fitting of the data (too large errors) and under-fitting the data (too small errors)
respectively. A ‰2

red ≥ 1 suggest that the model within the error is a good fit to the data.
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C Graphlist

Figure 49: An example of how we varied the fitting ranges using the pixel dependent function. Here is
shown the quasar spectrum, J000344-232355 that shows the same trends as the artificial mock spectra.
The least sensitive fitting values became: [200, 400] and [Npix/5, Npix/2.5].
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(a) (b)

(c)

Figure 51: The void count sensitivity (left) and the respective void count as a function of “ of the
resulting 39 quasar (from the 50 sample) is plotted in each of the three figures a,b,c for respectively
“ : [0.4 ≠ 0.6], [0.5 ≠ 0.7], [0.6 ≠ 0.8]. The void count sensitivity is constructed by measuring the relative
di�erence of the void count, (max(#void) ≠ min(#void)) · max(#void)

≠1 in the respective range of a,b,
and c.
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Table 5: The best guess cosmological parameters from Rossi et al. (2014).
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