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Abstract

In this thesis I study the system of 1-D and 2-D superconductors and it’s collective
mode excitation the plasmon. I study the system of a 1-D ferromagnet and it’s collective
mode excitation the magnon in a linearized regime where the Landau-Lifshitz equation
is analytically solvable. I verify the results of the magnon calculations using a numerical
approach. I study a superconducting system with spin-orbit coupling and a magnetic
exchange field. Using this last system as a method of coupling magnetization to current
I calculate the dispersion relation of a coupled plasmon/magnon system and solve for
its eigenstates and eigenvalues resulting in a gapped magnon/plasmon hybrid state. I
discuss potential implementation of this work in a magnon to plasmon converter that
would flip magnons into plasmons without the need for measurement devices or signal
creating devices.
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1 Introduction

The intention of this project was to investigate the properties of collective wave modes of
superconductor ferromagnetic hybrid materials.

Collective wave modes can be several things but the two pictures I draw the most from are
the phenomena of plasmons and magnons. Plasmons are the oscillation of electron density
inside a sea of electrons in a metal, or superconducting electrons in a superconductor.

The ground state of the electron gas is one of equal density of electrons everywhere, as
the electrons obtain minimal free energy by creating this state. If however a disturbance
in this state were to occur, causing a gathering of electrons that increase the density in a
particular area, that same repulsive force would force out a wave of electron density that
propagates through the material as the area of high density and low density changes.

Magnons in ferromagnets are also a collective mode I draw from. One can imagine a
ferromagnet as a collection of sites separated by equal distances which have a spin. Each
spin wishes to align with its neighbouring spin to minimize the free energy (just like the
electric density wished to be evenly distributed to minimize free energy). These sites make
up the lattice of a solid crystalline material. If one imagines a deviation in the lined up
spins happening spontaneously at a single site, what would happen is that it would affect
the adjacent sites and those adjacent sites would affect their adjacent sites thus cascading
through the material. This would again propagate a wave throughout the material as
all the sites would adjust due to the original disturbance. These phenomena are called
collective modes, because one can identify an energy and velocity associated with a given
wave propagating through the materials. It is an excited state of the system, but it is
not an excitation on an individual atom or electron, it is an excitation that requires the
consideration of the whole material to exist and describe, thus the collective.

A superconductor ferromagnet hybrid is a material that is on one side of an interface
ferromagnet, and on the other side superconductor. What happens in between is also of
consideration as any real material would have a transitional period from being magnet or
superconductor as magnetic fields are incompatible with superconduction. Superconduction
requires the expulsion (or penetration) of magnetic fields to not interfere with the Cooper
pairs that make up the superconducting electron sea.

1.1 Approach

We will split the analysis of the hybrid material into an analysis of 3 different parts explaining
and getting deep into the calculation and analysis of other researchers work on these 3 parts.
Then finally we will combine the results of these 3 parts in an original analysis.

In Ch. 2 we will explore the properties of the superconducting side of the hybrid material
and what properties, collective modes of the bulk superconductor have in 1 dimension and
to a lesser extent 2 dimensions. In this chapter we derive the plasmon dispersion relation
following the 1973 Kulik paper on plasmons [1]. We also outline an equation governing the
motion of the electric current to be used in Ch. 5. Additionally we expand the original
analysis of Kulik’s 1 dimensional system to one of 2 dimensions.

In Ch. 3 we will explore a system laid out by 2015 Pershoguba [2]. This system is a mixed
system of superconductor and ferromagnet. The system incorporates superconductivity and
spin-orbit coupling. The system consists of a 2-D metal plane with a macroscopic magnetic
impurity placed on top of it providing a magnetic exchange field. Inside this system we
derive the form of the current and see how it depends on the magnetization of the magnetic
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exchange term.
In Ch. 4 we will look at a completely ferromagnetic system with no superconductiv-

ity, thus completing the transition from superconductor to ferromagnet. Here we derive
equations for the dispersion of the magnons using a reasonable linearization of the magnons
assuming only small deviations of magnetization. We then use numerical simulations to
assess how accurate this dispersion relation is. The numerical part of this chapter follows
some of the numerical methods outlaid in Xiao-Ping 2001 [3], while the linearized analysis
is original. At the end we touch upon the non linear regime and how the dispersion relation
breaks down and becomes incompatible with the analytics.

In Ch. 5 we combine the free energy for the magnons with that of the mixed state
material that makes up the spin-orbit-magnetic exchange area and calculate a closed set of
equations for the current in the material (plasmons) based upon the pure superconductor
material and the magnetization of the material (magnons). The Pershoguba article [2]
and material deals with a constant macroscopic magnetic impurity which generates their
magnetic exchange field and we are dealing with a variable magnetization based upon a
ferromagnet in this section. We make the leap here to consider the magnetization to be
proportional to the magnetic exchange field and as such use their analysis of an external
ferromagnet on top of a superconductor to serve as our transition regime between magnon
and plasmon.

While the 3 different areas (superconductor, superconductor with magnetic exchange
field, ferromagnet) are analyzed employing different geometries for their respective systems,
we are looking towards using a 1D geometry taking the form of a wire in our final analysis
as this is the sort of material we are most interested in. As such we will be reducing the
dimensionality effectively down to 1D upon the combination of our equations from each
individual area. This geometry of a wire that starts off as superconductor, then eventually
turns into ferromagnet might be useful to keep in mind while reading the dissertation.
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2 Plasmons in 1-D and 2-D superconductors

In this section we wish to characterize the motion of the oscillatory modes of superconducting
electrons We do so by following the calculations of Kulik 1973 ”Surface-charge oscillations
in superconductors” [1]. We will first follow closely the derivation of Kulik in 1-D then
perform a quick 2-D derivation assuming a very low temperature superconductor, where it
can be assumed that the non superconducting part of the material is inactive.

We will start by outlining the equations of motion for 1-D and derive all further results
from this starting point. The goals are to derive the effective coulomb interaction in 1-D,
to acquire an equation for the current based on the electric field for further use in Ch. 5
where we will couple the plasmon and magnons through a unique current expression. This
part of the thesis thus creates the basis for our current equation that makes up the plasmon
part of our system. Additionally we will also derive the dispersion relation for a heavily
superconductive system and a less heavily superconducting one, which represents the tem-
perature regime where superconductivity starts to break down and mixed superconductor,
normal conductor dynamics come into play. The actual temperature dependence will not
be analyzed and will be left as and outside variable that affects our parameters, such as
conductivity and superconductive electron density.

2.1 Equations of motion

We start by examining the general equations for superconducting electrons motion inside a
superconducting 1D filament (3D wire with very small cross section). The filament will be
along the x-direction. The basic equations we will need are the following: The continuity
equation for charge, where I(x, t) is the current along the filament and Q(x, t) is the linear
charge density at a given position x. We ignore the possibility of charge escaping the
filament, so no further conservation equation is needed for the dimensions that make up
the cross section. We also ignore the possibility of charge circling around the wire creating
motion in the 2D layer that makes up the surface.

∂I(x, t)

∂x
+
∂Q(x, t)

∂t
= 0 (1)

The definition of the E-field as the only force (F ) present. Where p is the momentum, vs
is the superconducting electron velocity, m is the electron mass and e is the electron charge.
The sign is due to the particles in motion being negatively charged.

E = −1

e
F = −dp

dt

1

e
= −∂vs

∂t

m

e
(2)

Gauss’s law with δ(ρ) being a delta function that keeps us confined to the filament. This
term together with the linear charge density forms a density of charge in 3D

∇ ·E = 4πQ(x, t)δ(ρ). (3)

Additionally we need an expression for the current in the superconductor. This is the
normal current, applicable for charge in a normal metal with the addition of a supercurrent
term, with a modification that takes into account the existence of a critical current above
which no superconducting current exists [1]. vs is the velocity of the superconducting elec-
trons along the filament, while vc is the critical velocity of the superconducting electrons. σn
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is the normal conductivity of the material. Even while superconducting, part of the material
will be normal and be affected by ohms law, this part is proportional to the temperature
of the material. For T = 0 this term completely disappears but for any finite temperature
we would have normally conductive electrons that would contribute a term like this. Ns is
the density of superconducting electrons and S is the surface area that makes up the cross
section of the filament. In total this leaves our current as the following:

I =

(
Nsevs

(
1− v2

s

v2
c

)
+ σnE

)
S. (4)

We will use this equation for the current in our 1-D analysis but will assume to be in
a strongly superconducting temperature regime and low enough current regime for our 2-D
analysis so that we can ignore the effects of critical currents and normal electrons.

2.2 Calculating the potential φ(x)

We start from Gauss’s law written in Gaussian units

∇ ·E (r, t) = 4πQ(x, t)δ(ρ). (5)

We wish to calculate the potential φ(r) so we use the following equation for the calcula-
tion of the electric field based on the electric potential, as the electric force is a conservative
force:

E (r, t) = −∇φ (r, t) . (6)

Inserting this into Gauss law (Eq 3) we get the following:

−∇2φ (r, t) = 4πQ (x, t) δ (ρ) . (7)

We write φ(r, t), Q(x, t) and δ(ρ) as their Fourier transforms. Using convention:

f(r) =
1

2π

∫
dqf(q)eiqr (8)

for the Fourier transform. We will continue to use this same convention for the Fourier
transform throughout the thesis to stay consistent with the placement of 1

2π and the sign of
the exponentials eikx. This yields us

−∇2φ (r, t) = −∇2 1

(2π)
3

∫
d3kφ (k) eik·r =

1

(2π)
3

∫
d3k4πQ (kx) δ (κ) eik·r. (9)

Where the integral over d3k is over kx and κ, where κ is the wave vector in the y and z
direction. The Fourier transform of the delta function is easily computed

δ (κ) =

∫
d2ρeiκ·ρδ (ρ) = 1. (10)

Likewise the Laplacian of the exponential function is also easily computed and we end
up with the following expression:
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1

(2π)
3

∫
d3kφ (k) |k|2eik·r =

1

(2π)
3

∫
d3k4πQ (kx) eik·r. (11)

For this expression to hold true for all possible values of r, the integrands must be
identical. This can be seen by imagining a small value for r, such that each part of the
sum that makes up the integral has a different phase. By continuously making r arbitrarily
smaller and smaller, we can make sure that each term has a different phase and none of the
phases go above 2π. For such an expression, it is easy to see that the integrands in front of
the phases must be equal for the expression to be true. This gives us a much simpler set of
equations

φ (kx,κ) =
4πQ (kx)

kx
2 + κ2

. (12)

We can now calculate the potential in real space by taking the Fourier transform of
φ (kx,κ)

φ (r) =
1

(2π)
3

∫
dkx

∫
d2κ4πQ (kx) eikxx+iκ·ρ 1

kx
2 + κ2

. (13)

Writing Q (kx) as its Fourier transform, we get the following

φ (r) =
1

(2π)
3

∫
dkx

∫
d2κ4π

∫
dx′eikx(x−x

′)+iκ·ρQ (x′)
1

kx
2 + κ2

. (14)

Deciding to only consider ρ = 0 for φ(r, t) we get the following expression:

φ (x,ρ = 0) = φ (x) =
4π2

(2π)
2

∫
dx′Q (x′)

1

2π

∫
dkxe

ikx(x−x′)
(

1

π

∫
d2κ

1

kx
2 + κ2

)
. (15)

By limiting ourselves to ρ = 0 we cut ourselves off from all information about the E-field
in the y − z plane. We might have rotations on the outside or inside of the filament in this
plane, but we will no longer be able to analyze or detect them in our solutions.

We can define a function α(k) to simplify as the following:

α (kx) =
1

π

∫
d2κ

1

kx
2 + κ2

. (16)

Which yields the equation:

φ (x) =
4π2

(2π)
2

∫
dx′Q (x′)

1

2π

∫
dkxe

ikx(x−x′)α (kx.) (17)

Seeing that we have the Fourier transform of α (kx), we proceed to write the potential
in real space

φ (x) =

∫
dx′Q (x′)α (x− x′) . (18)

We see now that α(x) is a localizing function that serves much the same role as 1/r in
the coulomb potential. This function holds the sum knowledge of how charge affects the
electric potential in our system.
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2.3 Calculating α(x)

From the previous section we found a potential given in terms of α(x). We now take upon us
the task of calculating α(k) and from that inverse Fourier transforming and getting α(x) so
that we can understand how this potential looks in space and compare it to other potentials
such as the coulomb potential. The integral over the plane can easily be computed

α (k) =
1

π

∫
d2κ

1

k2 + κ2
=

1

π

∫ ∞
0

dκ

∫ 2π

0

dθ
κ

k2 + κ2
= 2

∫ ∞
0

dκ
κ

k2 + κ2
. (19)

We then perform a substitution κ′ = κ
k , such that we can integrate using only unitless

variables

α (k) = 2

∫ ∞
0

dκ
κ

k2 + κ2
= 2

∫ ∞
0

dκ

k

κ
k

1 + κ2

k2

= 2

∫ ∞
0

dκ′
κ′

1 + κ′2
. (20)

We then do a substitution u = 1 + κ′
2
. The integral becomes trivial, we solve it and

insert the old variables

α (k) =

∫ ∞
1

du
1

u
= ln

(
1 + κ′m

2
)

= ln

(
k2 + κm

2

k2

)
. (21)

In this case we have to evaluate ln (1 + κ′) at κ′ = ∞, to avoid this divergence we
implement a cutoff κm, which then goes on to define a length scale d = κ−1

m .
We can now go on to evaluate α(x)

α (x) =
1

2π

∫ ∞
−∞

dk ln

(
k2 + κm

2

k2

)
eikx. (22)

We use the property of the logarithm to split the equation into two terms

α (x) =
1

2π

∫ ∞
−∞

dk
(
−2 ln (k) + ln

(
k2 + κm

2
))
eikx. (23)

We then perform partial integration:

α (x) =
−1

2π

∫ ∞
−∞

dk

(
−2

1

k
+

2k

k2 + κm2

)
1

ix
eikx +

1

2π

[(
−2 ln (k) + ln

(
k2 + κm

2
))
eikx

]∞
−∞ .

(24)
Looking at the surface term we see that we get no contribution. Our original expression

contained k2, and by abusing the logarithm further and restoring it to its original form
we see that at −∞ and at ∞ we get the same value and both values are zero. Turning
ourselves back to the integral at hand, we rearrange the equation to clearly show the parts
dependent on k and then perform contour integration in the upper half of the imaginary
plane, assuming x to be positive [4]

α (x) =
1

π

1

ix

∫ ∞
−∞

dk

(
eikx

k
− eikxk

k2 + κm2

)
. (25)

Since eikx becomes zero as k → i∞, the contribution from the connecting contour is
zero and the resulting contour integration is equal to the integral along the real axis. Via
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the residue theorem we then know that α(x) is equal to the sum of the residues within the
contour multiplied by 2iπ

α (x) =
1

π

1

ix
2iπ

∑
i

a−1,i =
2

x

∑
i

a−1,i. (26)

There are two residues, one at k = 0 for the first term and one for k = iκm for the
second term. Since the k = 0 residue is on the contour line and it passes straight through
it, a common solution is to count half of its value as the residue inside the contour. This
gives the following residues

a−1,1 =
1

2
lim
k→0

eikx

k
k =

1

2
, (27)

a−1,2 = lim
k→iκm

eikxk

(k − iκm) (k + iκm)
(k − iκm) =

e−κmxiκm
2iκm

=
e−κmx

2
. (28)

Inserting this into Eq. 26 we get the following expression for α(x) for positive x. Re-
membering the length scale d = 1/κm

α (x) =
1− e−x/d

x
. (29)

We see that if one were to do the same calculation using the residues on the lower half,
one would get the following complete equation

α (x) =
1− e−|x|/d

|x|
. (30)

The length scale d which was incorporated as a neat math trick to help us complete an
infinite integral turn out to define a length scale proportional with the size of the the cross
section for our filament. As ρ→ 0 we have κ take on values κ ∼ 2π

ρ . We see then that the
maximum value of κ is defined by a length scale that is the total length of the material in
that direction. This ends up being proportional to d in our calculations.

2.4 Inverting the electric field equation

The task is to invert Equation 18. We wish to have the linear charge densityQ(x, t) expressed
in terms of E(x, t) and α(x) so that we can incorporate our knowledge of how the electric
field is being generated by our charges into the continuity equation (Eq. 1). We start from
the electric field along the filament, which is given as minus the gradient of the potential

E = −
∫ ∞
−∞

dx′∂xα(x− x′)Q(x′, t). (31)

We then rewrite both Q(x, t) and α(x) in the form of their Fourier transforms, so that
the differential of α(x) can easily be executed

E =
−1

(2π) 2

∫ ∞
−∞

dx′
∫ ∞
−∞

dk

∫ ∞
∞

dk′ei(k
′−k)x′eikxikα (k)Q (k′, t). (32)

We use the integral over x′ to create a delta function and compute one of the integrals
over k or k′ to simplify the expression. In this case we choose k′.
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E =
−1

2π

∫ ∞
−∞

dk

∫ ∞
−∞

dk′δ (k − k′) eikxikα (k)Q (k′, t) =
−1

2π

∫ ∞
−∞

dkα (k)Q (k, t) eikxik.

(33)
Next we integrate E(x′, t) over the x′ dimension while multiplying it with a yet to be

determined function λ(x− x′)

∫ ∞
−∞

dx′λ (x− x′)E (x′, t) =
−1

2π

∫ ∞
−∞

dk

∫ ∞
−∞

dx′λ (x− x′) eikx
′
ikα (k)Q (k, t) . (34)

Writing λ(x− x′) as its Fourier transform,

λ(x− x′) =
1

2π

∫ ∞
−∞

dk′λ(k′)eik
′(x−x′) (35)

and inserting it into Eq. 34 we get:

∫ ∞
−∞

dx′λ (x− x′)E (x′, t) =
−1

(2π)
2

∫ ∞
−∞

dk

∫ ∞
−∞

dk′
∫ ∞
−∞

dx′ei(k−k
′)x′eik

′xikλ (k′)α (k)Q (k, t) .

(36)
Using the integral over x′ we obtain another delta function and can simplify again to

the following:

=
−1

2π

∫ ∞
−∞

dk

∫ ∞
−∞

dk′δ (k − k′) eik
′xikλ (k′)α (k)Q (k, t) =

−1

2π

∫ ∞
−∞

dkeikxikλ (k)α (k)Q (k, t) .

(37)
We now choose λ(x− x′) such that its Fourier transform looks like the following:

λ(k) =
−1

ikα(k)
. (38)

Making our integral yield the following results∫ ∞
−∞

dx′λ (x− x′)E (x′, t) =

∫ ∞
−∞

dkeikxQ (k, t) = Q (x, t) . (39)

This is just the Fourier transform form of the linear charge density Q(x, t). The elegance
of this inversion is really that it is applicable for any α(x−x′). Even the functions that would
make the charge density otherwise unsolvable analytically, one could numerically solve for
λ(x) and still apply these mathematics to calculate Q(x, t). To sum up our final result, our
reversal of the integral leads us to the following expression

Q(x, t) =

∫ ∞
−∞

dx′λ(x− x′)E(x′, t). (40)

We would here like to draw attention to a deficit in our analysis that we were not able to
locate the origin of. Somewhere along the way a sign error was performed that still eludes
us. This sign can be remedied by taking
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λ(k)→ −λ(k) (41)

We suspect that this sign error is caused by a missed consideration of the charge being
negative somewhere but were unable to find the source.

2.5 Deriving the dispersion relation of the plasmon

We insert Eq. 40 for the charge into the continuity equation (Eq. 1) to get the following
equation:

∂I(x, t)

∂x
+
∂

∂t

∫ ∞
−∞

dx′λ (x− x′)E (x′, t) = 0. (42)

We could already work with an equation of current assuming it to take a plane wave form
here, but we choose to look at the form given by using Eq. 4 for the current. Thus yielding us
something nonlinear in vs that still includes the addition of the terms contributed by normal
conductive electrons and the critical supercurrent. The analysis is done in vs instead of I
and yields additional interesting results that while not relevant for our combined analysis
in Ch. 5 are independently interesting. We proceed by inserting the current as written in
Eq. 4 into Eq. 42

∂

∂x

(
Nsevs (x, t)

(
1− vs(x, t)

2

vc2

)
+ σnE (x, t)

)
S +

∂

∂t

∫ ∞
−∞

dx′λ (x− x′)E (x′, t) = 0.

(43)
All the dependencies on x and t are written out explicitly in this equation. Despite the

fact that we are looking for density waves, we keep Ns a constant, presuming it to vary
very little with space. We insert Eq. 2 for the force into this to get a closed expression for
vs (x, t)

∂

∂x

(
Ns

e2

m
vs (x, t)

(
1− vs(x, t)

2

vc2

)
+ σn

∂vs (x, t)

∂t

)
S− ∂

∂t

∫ ∞
−∞

dx′λ (x− x′) ∂vs (x′, t)

∂t
= 0.

(44)
From here on, we can insert particular solutions for vs (x, t). We attempt to insert the

following function:

vs (x, t) = v0 + weikx−iωt. (45)

Where v0 is a large macroscopic average speed and w is the amplitude of a small oscil-
lation. Inserting this into our closed expression and looking at the highest orders of w we
get the following equation:

wSeikx−iωt
(
ikNs

e2

m

(
1− v0

2

vm2

)
− iωikσn

)
− wω2e−iωt

∫ ∞
−∞

dx′λ (x− x′) eikx
′

= 0. (46)

Where we have defined a new constant vm = vc/
√

3. The factor of 3 comes from vs being
of third order but only the first order being considered significant. Using that
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∫ ∞
−∞

dx′λ (x− x′) eikx
′

= −eikx
∫ −∞
∞

duλ (u) e−iku = eikx
∫ ∞
−∞

duλ (u) e−iku = eikxλ (k) .

(47)
We can simplify the equation for our wave to the following dispersion relation

S

(
ikNs

e2

m

(
1− v0

2

vm2

)
+ ωkσn

)
− ω2λ (k) = 0. (48)

Defining

η = 1− v0
2

vm2
(49)

and using the definition of λ(k) we can write the dispersion relation as the following:

ω2 + k2α (k)

(
iωσn −Ns

e2

m
η

)
S = 0. (50)

2.6 Analyzing the frequency spectrum of the plasmon

We are now left with a dispersion relation that is related to the value of η(I0), which
controls whether our specimen remains superconductive or not, depending on the bulk
average velocity of our particles v0. Despite writing η as a function that can take negative
values, we have no intentions of letting it take on negative values. This was simply a case
of being imprecise in exchange for the ability to write our equations without cutoffs, fully
continuous and differentiable. Once v0 = vm we reach Ic, the critical current and we set
η = 0. Considering such a case where v0 > vm we get the following dispersion:

ω = −ik2α (k)σnS. (51)

Since α(k) is always positive this leaves us with a purely imaginary and negative fre-
quency. What this means can be clarified by inserting it into our original expression for
vs.

vs (x, t) = v0 + weikx−iωt = v0 + weikxeIm(ω)t (52)

We now see that Im{(ω)} < 0 corresponds to an exponential collapse of the fluctuations
with characteristic timescale comparable to the energy in those fluctuations ω. This leads
us to the conclusion that these fluctuations in vs are something intrinsically connected to
superconductive mediums as opposed to normal plasma oscillations in non superconductive
material, since they break down when superconductivity breaks down. We now wish to
investigate how these oscillations behave for v0 < vm. Doing this makes the frequency ω
complex, so we choose to write it as the following

ω = ω̄ − iγ, (53)

splitting the real and the imaginary part into two. Inserting this into our dispersion
relation gives us a real part and an imaginary part that both have to be equal to 0

(ω̄ − iγ)
2

+ k2α (k)

(
i (ω̄ − iγ)σn −Ns

e2

m
η

)
S = 0. (54)
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Written out explicitly it looks like the following:

(
ω̄2 − γ2 + k2α (k) γσnS − k2α (k)Ns

e2

m
ηS

)
+ i
(
k2α (k) ω̄σnS − 2γω̄

)
= 0. (55)

From this we can identify the imaginary part of ω (γ) and the real part of ω (ω̄) by
solving the two equation with two unknowns

ω̄2 = k2α (k)NsS
e2

m
η + k4α(k)

2
σn

2S2

2
(56)

and

γ =
k2α (k)σnS

2
. (57)

Looking closer at α(k), and limiting ourselves to small k to get the long wavelength,
large scale effects into play

α(k) = ln

(
1 +

1

k2d2

)
. (58)

For small values of k we have large arguments of the logarithm, the 1 in the function
α(k) becomes comparatively small, we can thus consider

α(k) ∼ ln

(
1

k2d2

)
= 2 ln

(
1

kd

)
. (59)

Considering that k in any physical system takes on a minimum size of 2π/L where L is
the size of the system in the x direction, we can write α(k) as the following

α(k) = 2 ln

(
L

d

1

2πn

)
(60)

Where n is the multiples of the minimum wave vector. Since d is considered minuscule
compared to L, the change in the value of α(k) is small under changing integer n because
the logarithm is such a slowly changing function at high values. Because of this we can at
small k regard α(k) = α to be a constant. Doing so gives us the following ω̄, ignoring higher
orders of k.

ω̄ = k

√
α (k)NsS

e2

m
η = vk (61)

So we see that at small k we get a linear spectrum with decay that is proportional to k2.
Since the frequency given by ω̄ is proportional to k and the decay given by γ is proportional
to k2, one could consider small enough k and the decay would be negligible. The same goes
for dirty systems with poor conductivity σn → 0 or small filaments with smaller surfaces
S → 0, since the decay scales with S more powerfully than ω̄.
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2.7 2D Plasmon

The same procedure can be completed in 2D with many of the same broad strokes. Since
many of our interests are in the lower number of dimensions understanding how our expres-
sion changes from 1D to 2D is of interest to us. There might be phenomena we are missing
in 1D but can be explained by expanding very subtlety to a 2D model with a limited scope in
the second dimension. Due to this we will in this section outline how to derive the plasmon
in 2D in a complimentary fashion as to the 1D approach shown previously in this chapter.
In 2D our continuity equation is the following:

∇ · j(x, t) +
∂ρ(x)

∂t
. (62)

Where we use x = (x, y) and r = (x, z) = (x, y, z). Equivalently we will in this section
use k = (κ, kz) = (kx, ky, kz) where κ spans the 2D plane which we are limiting ourselves
to. Our connective equation is:

E(x, t) = −m
ns

∂j(x, t)

∂t
. (63)

Gauss’s law tells us the following:

∇ ·E(r, t) = 4πρ(x, t)δ(z). (64)

In this approach we follow identically with what we did in 1D up to Eq. 12. Where we
get the following result for the Fourier transform of the electric potential:

φ(k) =
4πρ(κ)

k2
. (65)

We write the electric potential, but take the z component to be 0 as anything out of the
plane is irrelevant

φ(r) =
1

(2π)3

∫
dkz

∫
d2κ4πρ(κ)

1

k2
z + κ2

eiκ·xeikzz (66)

φ(x) = φ(x, z = 0) =
1

(2π)3

∫
d2κ4πρ(κ)eiκ·x

∫
dkz

1

k2
z + κ2

. (67)

We go on to examine the integral over kz∫ ∞
−∞

dkz
1

k2
z + κ2

=
1

κ

∫ ∞
−∞

dq
1

q2 + 1
=
π

κ
. (68)

By making the integral unitless using the variable change q = kz
κ we solve it.

Inserting this back into Eq. 67 and writing ρ(κ) as its Fourier transform we get:

φ(x) =

∫
d2x′ρ(x′)

1

(2π)2

∫
d2κ

2π

κ
eiκ·(x−x

′). (69)

Once again we take the last part of this term to be the function α2D(κ) = 2π
κ analogous

to the one dimension case and arrive at

φ(x) =

∫
d2x′ρ(x′)α2D(x− x′). (70)
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The derivation now follows exactly as it did for 1D but the function λ(k) → λ2D(κ) is
now a vector as it needs to fulfill the equation

ρ(x, t) =

∫
d2x′λ2D(x− x′) ·E(x′, t). (71)

It takes on the following form, again completely analogous to 1D but now simply directed
in the κ direction

λ2D(κ) =
−κ

iκ2α2D(κ)
. (72)

Inserting this into our continuity equation together with our connective equation we get
the following closed expression for the current

∇ · j(x, t)− m

ns

∂

∂t

∫
d2x′λ2D(x− x′) · ∂j(x, t)

∂t
= 0. (73)

We insert the following 2D plane wave to derive a dispersion relation, where j0 is a
constant vector

j(x, t) = j0e
iκ·x−iωt. (74)

This yields the following dispersion relation

ω = ±
√

2π
ns
m

√
κ (75)

.
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3 Spin-orbit interactions and coupling of supercurrents
to magnetic exchange field

In this section we will be looking at a superconductive system with spin orbit coupling in the
vicinity of a ferromagnet that generates a Zeeman term. We will be following the analysis of
the article ”Currents Induced by Magnetic Impurities in Superconductors with Spin-Orbit
Coupling” by Pershoguba et al [2]. Specifically we will be diving deeper into the calculations
covered in the supplemental material of the article and the calculations skipped in between
lines in this supplemental material. Justify the omission of terms left out of their calculations
and hopefully come to a precise formulation of how to perform analogous calculations. The
goal is to derive a Ginzburg-Landau free energy term that describes the energy associated
with the magnetic exchange field and the spin orbit coupling of the superconductor. We
also wish to derive a current expression using this same energy term.

Using this we will couple the area of magnon supporting material and the area of plasmon
supporting material, using this superconductive spin-orbit magnetic exchange area as a sort
of glue between the two. The hope is that a material that supports superconductivity while
being affected by a magnetic exchange field will act a lot like a material that would be the
transition between a pure ferromagnetic slowly turning into a full superconductor, this will
help us realize how a collective mode of a hybrid material of these two components would
need to act in order to be compatible.

In practice the focus is on the free energy and current because we need the current
expression to couple the plasmon equation which are based around current. And we need
the free energy to couple the magnon equations which are based around the effective local
field, derived from the free energy. The article that we draw from is dealing with a large
magnetic impurity applied directly to a 2-D superconductor. It is a macroscopic ferromagnet
in a hetero structure with the superconductor, not to be confused with impurity states that
are based around small single atom impurities.

We will first analyze the Hamiltonian presented in Pershoguba [2], then we will switch
the focus towards a more general formulation of the Hamiltonian that has yet to be written
in Nambu-formalism and apply minimal coupling, we do this with the aim of acquiring a
full Hamiltonian that contains information about the electromagnetic fields interaction with
the material and thus the current that flows in it. From this we go into the derivation of
the partition function Z, with the goal of using it to derive the free energy F and then
the current J . This section is long and cumbersome but also necessary. It requires the
calculation of several action terms, Matsubara frequency sums, gauge transformations and
traces. After this we finish off by finding the additional free energy terms generated by the
spin-orbit coupling and magnetic exchange field interactions (Fextra) and the current terms
those free energy contributions create (Jextra).

3.1 The Hamiltonian

The Hamiltonian for the system as written in [2] is the following:

H =
1

2

∫
d2rΨ†(r) [h(p)τz + τx∆− S(r) · σ] Ψ(r) (76)

h(p) =
p2

2m
+ λ(σ × p)z − µ, p = −i (∇x,∇y) . (77)

17



Where if we consider S(r) = 0 the system is translationally invariant in the x and
y direction and consists of a bulk material ranging infinitely in the x and y directions,
but ends at z = 0. We consider a system consisting of a bulk superconductor with small
magnetic impurity described by S(r) at z = 0 placed on top of the material, where there
would otherwise be vacuum. By only looking at the system at this top surface layer and
not further outside or inside the material we can consider the superconducting gap ∆ to
be finite both inside and outside the superconducting material. We thus consider a kind
of melding of magnetic and superconductive properties in this layer, where we consider the
superconducting terms of the Hamiltonian to exist even inside the magnetic impurity.
σ is a vector of Pauli-matrices representing the spin. τa is also a set of Pauli-matrices, but
in this case they describe the duality between the holes and the particles that exist as this
Hamiltonian has already been through a Hubert-Stratonovich transformation and exhibits
a Nambu-space structure.
The interaction term in the Hamiltonian should actually take the form

τx → τ+∆̄ + τ−∆. (78)

Where ∆̄ is the complex conjugate field of ∆ and τ+ =

(
0 1
0 0

)
, τ− =

(
0 0
1 0

)
. In the

article by Pershoguba they have chosen ∆ to be real and constant to make the calculations
easier. We will keep it as a variable field for a time more, letting it vary across space, but
impose restrictions when necessary.

Ψ(r) =
(
ψ↑, ψ↓, ψ

†
↓,−ψ

†
↑

)T

is a vector of the fermionic operators in second quantization.

They are the fermionic creation and annihilation operators for the electrons of spin up and
down. Looking at the Hamiltonian we can clearly see the hole particle duality when looking
at the single particle energy h (p). As τz takes on the value 1 or −1, we see that particles
and those particles corresponding holes have opposite energies as expected.

3.2 Minimal coupling with the electromagnetic field

We wish to minimally couple the Hamiltonian of our system with the electromagnetic field
by taking

−i∇ → −i∇− eA. (79)

We however cannot use Eq. 76 to perform this minimal coupling as certain manipulations
have been made upon the base Hamiltonian of the actual system before this equation was
reached. To accurately achieve the correct minimal coupling we need to apply it at the very
first step. We therefore start with the Hamiltonian of the uncoupled single particle system
with ~ = 1 for ease of reading

Hs =
∑
k

ψ†(k)

[
k2

2m
− µ+ λ(σ× k)z

]
ψ(k). (80)

This equation uses the right annihilation operator and the left creation operator to
preserve states that have particles of momentum k and output their energy. These are
vectors composed of both the up and down spin momentum annihilation fermionic operators

ψ†(k) =
[
ψ†↑(k) ψ†↓(k)

]
, ψ(k) =

[
ψ↑(k)
ψ↓(k)

]
. (81)
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We now do minimal coupling in momentum space and consider A to be constant in space

Hs =
∑
k

ψ†(k)

[
k2

2m
− µ+ λ(σ× k)z

]
ψ(k)+ψ†(k)

[
−{k, eA}

2m
− λe(σ×A)z +

e2A2

2m

]
ψ(k).

(82)
Setting e = 1 and rewriting this in terms of a 4x4 matrix and 1x4 Nambu-spinors we get

Hs =
∑
k

1

2


ψ†↑(k)

ψ†↓(k)

ψ↓(−k)
−ψ↑(−k)

(h(k) + C(A) + γ(k,A) 0
0 −h(k)− C(A) + γ(k,A)

)
ψ↑(k)
ψ↓(k)

ψ†↓(−k)

−ψ†↑(−k)


+

(
k2

2m
− µ− {k,A}

2m
+
A2

2m

)
(83)

where

h(k) =
k2

2m
− µ+ λ(σ× k)z, (84)

γ(k,A) = −
(
{k,A}

2m
+ λ(σ×A)z

)
, (85)

C(A) =
A2

2m
. (86)

This can be shown by explicit calculation of Eq. 83. The preferred approach to verify
this is by multiplying everything in Eq. 83 out and flipping the sign of the momentum for
the terms generated by the lower half of the matrix (k → −k) and exchanging position of
the fermionic operators. Doing so one can find that the expression for Hs in Eq. 82 and Eq.
83 are equal. The last term comes from the commutation of the annihilation operators and
can be simplified, if we consider what we are actually interested in. We wish to derive the
current in the material from these equations, which means we only care about the derivative
of Hs with regards to A. This leaves us with a term of the form

J0 =
−

2m

δ

δA

(
k ·A+A · k −A2

)
. (87)

Which summed over all values of p, gives us nothing from the first two terms. From the
last term we get the following current

J0 =
e2

m
A. (88)

This will become part of the term for our normal superconductive current, unrelated to
the spin-orbit coupling.

Defining the 4 by 1 vectors of fermionic operators as Ψ†(k) and Ψ(k)
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Ψ†(k) =
[
ψ†↑(k) ψ†↓(k) ψ↓(−k) −ψ↑(−k)

]
, Ψ(k) =


ψ↑(k)
ψ↓(k)

ψ†↓(−k)

−ψ†↑(−k)

 . (89)

We can write Hs as the following compact expression

Hs =
1

2

∑
k

Ψ†(k)

(
h(k) + C(A) + γ(k,A) 0

0 −h(k)− C(A) + γ(k,A)

)
Ψ(k). (90)

We can now inverse Fourier transform this back to space to insert it into the Hamiltonian
that also includes the interaction between particles and holes and the interaction with the
ferromagnet. Inserting the Fourier transform of Ψ(k) and its complex conjugate Ψ†(k) we
get the following expression

Hs =
1

2

∑
k

∫
dx′dxΨ†(x)eix·k (h(k)τz + C(A)τz + γ(k, eA))τI) Ψ(x′)e−ix

′·k. (91)

Where τI is the identity matrix in the hole-particle space. Performing the sum over k we
are granted a delta function which when integrated over x′ yields us the following equation
in realspace for the single particle energy:

Hs =
1

2

∫
dxΨ†(x) [h(i∇x)τz + C(A)τz + γ(i∇x, eA)τI ] Ψ(x). (92)

We are now able to plug this single particle energy back into the Hamiltonian. If we had
naively done minimal coupling on the modified Hamiltonian from Eq. 76 we would have
ended up with τz for both the γ term and the normal single particle energy.

3.3 Use of the Feynmann path integral formalism for the partition
function Z

We will attempt to calculate the free energy by using the Feynmann path integral formalism
for the partition function and then integrating out the fermions. After making suitable
approximations, we can arrive at an action which will serve as our free energy expression
using

F = − 1

β
lnZ. (93)

We will then calculate the current by taking the functional derivative with regards to
the vector potential and evaluating the result at A = 0, which means no magnetic fields
present

J =
δF

δA

∣∣∣∣
A=0

. (94)

We know this is technically wrong, as the presence of a current would create a magnetic
field, but we choose to ignore this and consider the generated current to be small enough
that we can safely ignore it.
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We start by writing the partition function Z [5]

Z =

∫
D
(
Ψ,Ψ†,∆, ∆̄

)
exp
{
−S

[
Ψ,Ψ†,∆, ∆̄

]}
. (95)

Where the action S is defined as the following

S
[
Ψ,Ψ†,∆, ∆̄

]
=

1

2

∫ β

0

dτ

∫
drΨ†(r)

[
∂τ + iφ+ h(−p)τz + C(A)τz + γ(−p,A) + τ+∆̄ + τ−∆− S(r) · σ

]
Ψ(r).

(96)
Where τ without the index is imaginary time and φ is the electric field introduced

through minimal coupling. It is important to keep in mind that in this equation p is still
given by p = −i (∇x,∇y) and is thus completely r = (x, y) dependant. As it stands this
nomenclature is needlessly confusing, as it obfuscates what is momentum dependant and
what is space dependant, nonetheless it serves to make the expression more readable and
is illustrative as we will eventually Fourier transform in all spacial dimensions that have
translational invariance.

Using our freedom of U(1) transformation

ψj → eiηψj , ψ†j → e−iηψ†j , φ→ φ− ∂τη, A→ A+∇η (97)

where η is an arbitrary space and time dependant phase configuration of the supercon-
ductive wave function.

By choosing the phase η to be the following:

η(r, τ) = θ(r, τ)/2. (98)

Where θ(r, τ) is the phase of the gap ∆̄ = |∆|eiθ, ∆ = |∆|e−iθ. We can eliminate
imaginary phase elements from the gap terms and make the coupling between holes and
particles completely real. While this phase transformation doesn’t include any physics it
does simplify our expression and calculations going forward and let us replace the vector
potential with the gauge invariant vector potential. Doing so we get the full action of the
following form

S
[
Ψ,Ψ†,∆, θ

]
=

1

2

∫ β

0

dτ

∫
drΨ†(r) [∂τ + iφ+ h(i∇)τz + C(A)τz + γ(i∇,A) + ∆τx − S(r) · σ] Ψ(r).

(99)
We wish to drag from this expression the inverse Greens function of the non interacting

holes and particles respectively, but to do so we must first analyze the Fourier transform of
the γ term.

Defining the gauge invariant vector potential A = A+∇θ/2, we can write the term that
includes γ as the following:

f1 = −
∫ β

0

dτ

∫
drΨ†(r)

[
(i∇)(A)

2m
+

(A)(i∇)

2m
+ λ(σ×A)z

]
Ψ(r). (100)

Treating Ψ† and Ψ as independent variables we can draw a general conclusion for all the
terms involving the single particle energy, whether they be holes or particles. Going forth
however we will need to use abbreviated nomenclature to fit the equations on the page
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∫ β

0

dτ

∫
dr
∑
ωp

∫
d̄p
∑
ωq

∫
d̄q
∑
ωκ

∫
d̄κ→

∫
r,p,q,κ

. (101)

We will also combine the time and space coordinates into one 3-vector (since we only
have 2 space dimensions), and reuse the label of the space dimension 2-vector to encompass
it

p · r − ωpτ → p · r. (102)

Doing this we can now work out the first part of f1, now dubbed f1,1 using the Fourier
transform of everything

f1,1 = −
∫
r,p,q,κ

Ψ†(p, ωp)e
−ip·r (i∇)(A(κ, ωκ)eiκ·r) + (A(κ, ωκ)eiκ·r)(i∇)

2m
Ψ(q, ωq)e

iq·r.

(103)
The only r dependence is in the exponentials which trivializes the evaluation of the nabla

operators giving us

f1,1 = −
∫
r,p,q,κ

Ψ†(p, ωp)e
−ip·r (−q − κ) · (A(κ, ωκ)eiκ·r) + (A(κ, ωκ)eiκ·r) · (−q)

2m
Ψ(q, ωq)e

iq·r.

(104)
Using the delta function provided to us by the complex exponential functions and the

integral of r and τ , we can simplify this to the following more compact form

f1,1 = −
∫
p,q,κ

Ψ†(p, ωp)
(−2q − κ) · (A(κ, ωκ)

2m
Ψ(q, ωq)δ(κ+ q − p)

=

∫
p,q

Ψ†(p)
(p+ q) ·A(p− q)

2m
Ψ(q).

(105)

Where in the last line we drop the frequency index and compress it into the momentum
variable. The second part of f1, f1,2 is easily calculated using the same method.

f1,2 = −
∫
p,q

Ψ†(p)λ(σ×A(p− q))zΨ(q) (106)

This gives us a combined expression for f1

f1 = f1,1 + f1,2 =

∫
p,q

Ψ†(p)

[
(p+ q) ·A(p− q)

2m
− λ(σ×A(p− q))z

]
Ψ(q). (107)

We now return to Eq. 99, now knowing what f1 is. Considering that our purpose is
to generate a free energy suitable for calculating the current in a system with no magnetic
or electric fields, we see that the term containing φ (the electric potential) can be safely
discarded due to the restriction on electric fields.

We thus have an action of the form
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S =
1

2

∫ β

0

dτ

∫
drΨ†(r) [∂τ + h(i∇)τz + C(A)τz + γ(i∇,A) + ∆τx − S(r) · σ] Ψ(r).

(108)
We now write the above action using the Fourier transform of above terms. We trivially

get Dirac delta functions from most terms as they contain no differential operators. We
have already evaluated the Fourier transform of the only term that proves to be complicated
yielding us the function f1. The action is thus:

S =
1

2

∫
p,q

Ψ†(p)

[
− iωqδ(q − p) + h(−q)δ(q − p)τz + ∆(p− q)τx

+
(p+ q) ·A(p− q)

2m
− λ(σ×A(p− q))z

− S(p− q) · σ

+

∫
k

A(k) ·A(p− q − k)

2m
τz

]
Ψ(q).

(109)

We now define the above four lines as four separate functions. One includes all the sin-
gle particle and superconductive action of the system. One includes all the electromagnetic
dependence of the action given by A to the first order. One includes all the ferromag-
netic effects given by the dependence on S and finally one includes all the second order A
dependence:

G−1
0 (q,p) = −iωqδ(q − p) + h(−q)δ(q − p)τz + ∆(p− q)τx,

γ(q,p) =
(p+ q) ·A(p− q)

2m
− λ(σ×A(p− q))z,

Sσ(q,p) = −S(p− q) · σ,

C(q,p) =

∫
k

A(k) ·A(p− q − k)

2m
τz.

(110)

This yields us a more clean looking action

S =
1

2

∫
p,q

Ψ†(p)
[
G−1

0 (q,p) + γ(q,p) + Sσ(q,p) + C(q,p)
]

Ψ(q). (111)

We are now ready to treat Ψ as a vector, where q and p are the generalization of the
indexes for the vector taken to infinitely large space and integrate out Ψ from our original
expression of the partition function given in equation 95

Z =

∫
D(θ,∆) det

(
G−1

0 (q,p) + γ(q,p) + Sσ(q,p) + C(q,p)
)−1

. (112)

Taking the exponential and the logarithm of this expression we can get it back on the
form of an action, now just over the fields θ and ∆ as Ψ has been removed through integration

Z =

∫
D(θ,∆) exp

{
− ln

(
det
(
G−1

0 (q,p) + γ(q,p) + Sσ(q,p) + C(q,p)
))}

. (113)
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We now use that ln det = Tr ln and we have the following action for the θ and ∆ field

S[θ,∆] =
1

2
Tr ln

(
G−1

0 (q,p) + γ(q,p) + Sσ(q,p) + C(q,p)
)
. (114)

Using the logarithm we split up the action and discard the component that has no A
dependence

S = Tr ln
(
G−1

0 (1 +G0(γ + Sσ + C))
)

= −Tr ln(G0) + Tr ln(1 +G0(γ + Sσ + C))

→ Tr ln(1 +G0(γ + Sσ + C)).
(115)

We now expand the logarithm to second order getting the following terms

S = Tr (G0(γ + Sσ + C))

− 1

2
Tr(G0γG0γ)− 1

2
Tr(G0SσG0Sσ)− 1

2
Tr(G0CG0C)− Tr(G0γG0Sσ)− Tr(G0γG0C)− Tr(G0CG0Sσ).

(116)

We see that the first trace term is the adjustment made by the electromagnetic field
and ferromagnet directly interfering with the unencumbered particles given by G0. The
second order term without γ or C can be ignored for the purposes of identifying terms that
contribute to the current.

We now name all of the above terms and later we will identify which are necessary to
calculate the added current that exists due to the spin-orbit coupling and magnetic exchange
field.

S1.1 = Tr(G0γ) (117)

S1.2 = Tr(G0Sσ) (118)

S1.3 = Tr(G0C) (119)

S2.1 = −Tr(G0γG0Sσ) (120)

S2.2 = −Tr(G0γG0C) (121)

S2.3 = −Tr(G0CG0Sσ) (122)

S2.4 = −1

2
Tr(G0γG0γ) (123)

S2.5 = −1

2
Tr(G0SσG0Sσ) (124)

S2.6 = −1

2
Tr(G0CG0C) (125)
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When evaluating the trace over our expression we remember that our frequency and
momentum integrals can simply be treated as sums over a vector space in which case we
treat functions like G0(q,p) as matrices being multiplied together as shown below for S2.1

S2.1 = −
∫
q,p,l,m,n

Trσ Trτ G0(q,p)γ(p, l)G0(l,m)Sσ(m,n)δ(q − n). (126)

The last delta function is equivalent to taking the last and first index of a set of multiplied
matrices and contracting them (Tr(ABCD) = Ai,jBj,kCk,lDl,i). In addition to the trace
over our momentum variables, we also have the trace over the spin space given by σj and
our particle hole Nambu-space given by τi.

3.4 Finding the Greens function

In the interest of actually calculating the current associated with the spin orbit coupling
terms we now choose to restrict ourselves to a constant gap parameter

∆(x) = ∆. (127)

Considering the gap constant in space gives us the following Fourier transform of the
gap energy

∆(q) = ∆δ(q). (128)

This simplifies our propagator to the following

G−1
0 (q,p) = (−iωq + h(−q)τz + ∆τx)δ(q − p). (129)

We see that the inverse Greens function is now only dependant on one momentum
variable and we can define that new function in front of the delta function as G−1

0 (q)

G−1
0 (q,p) = G−1

0 (q)δ(q − p). (130)

We now turn to the problem of identifying G0(q,p). This is the inverse of a term that
includes a delta function. Since the delta function is a distribution and not just another
function we have to be a bit careful about this inverse. It is also not just an inverse of the
function or matrices that comprise the spin and Nambu-space but also an inverse in terms
of the space created by the momentum variable. Due to these complications we need to
return to the root of what we have implicitly assumed about this function to find its form

Tr
(
G−1

0 G0f
)

= Tr(f). (131)

The above is the property we assumed when we so casually included G0 into our expres-
sions. We can now break both the RH and LH side down to see what this necessitates for
G0. Starting with the RHS:

Tr(f) =

∫
l,n

f(l,n)δ(l− n) =

∫
n

f(n,n). (132)

And then the LHS:
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Tr
(
G−1

0 G0f
)

=

∫
n,p,l

G−1
0 (n,p)G0(p, l)f(l,n) =

∫
n,p,l

G−1
0 (n)δ(n− p)G0(p, l)f(l,n).

(133)
From this we gather that

G−1
0 (n)G0(n, l) = δ(l− n). (134)

Since G−1
0 lacks any special properties of being a distribution, we can easily take the

inverse of it in regards to the Nambu-space. By doing so we get the following:

G0(n, l) = δ(l− n)
−iωn − [ξ(n)− λ(σ× n)z]τz −∆τx
(iωn)2 − [ξ(n)− λ(σ× n)z]2 −∆2

. (135)

We have here defined the following as ξ(p)

ξ(p) =
p2

2m
− µ. (136)

In the same vein as with G−1
0 we now define a G0

G0(n) =
−iωn − [ξ(n)− λ(σ× n)z]τz −∆τx
(iωn)2 − [ξ(n)− λ(σ× n)z]2 −∆2

− (137)

We simplify it further by defining two new functions:

ξ±(q) = ξ(q)± λ(σ× q)z, (138)

E±(q) =
√
ξ±(q)2 + ∆2 (139)

.
This allows us to write G0(q) as the following

G0(q) =
−iωq − ξ−(q)τz −∆τx

(iωq)2 − E−(q)2
(140)

With a well defined G0 in hand we can return to our action S and calculate most of the
terms without any further problems.

3.5 Evaluating S
We start by looking at our terms from equations 117 to 125. We are not going to calculate
the term that normally appears when dealing with a pure superconductor with no spin orbit
coupling or magnetic exchange field as we know it to take the form

js =
ns
2m
A. (141)

Instead we are going to focus on the lowest order term that incorporates both the spin
orbit coupling term γ and the magnetic exchange term Sσ.

We immediately see that the two terms S1.2 and S2.5 have no contribution to the current
as they have no factors of A. Terms such as S1.3 and S2.6 include only C and are therefore
terms relating to normal superconductors, we refrain from calculating this addition.
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Since we are going to take a functional derivative with regards to A and then evaluate
the current for A = 0, every order ofA will give us current terms. The difference will be the
degree of ∇θ that they are proportional to. First order A terms are proportional to (∇θ)0,
second order A terms are proportional to (∇θ)1 and third order A terms are proportional
to (∇θ)2 and so on. Since ∇θ is taken to be rather small, we will disregard higher orders of
A on this pretense.

Due to this we ignore S2.2 which is of third order, S2.3 which is of second order and
has no spin orbit coupling and S2.4 which is of second order and has no magnetic exchange
coupling.

The terms S1.1 and S2.1 are first order in A and are therefore of great interest as they
will be proportional to the current directly. The term S2.1 is of particularly high interest
as it is the lowest order term with both spin orbit coupling and magnetic exchange effects.
If this term happens to be 0 we must go to higher orders, fortunately we will spoil that it
happens to be finite.

We start off by calculating the spin orbit correction to the action given by S1.1

S1.1 =
1

2
Trσ,τ

∫
q,p

G0(q)δ(q − p)γ(p, q) = Trσ,τ

∫
p

G0(p)γ(p,p). (142)

Inserting γ(p,p) we get the following:

S1.1 =
1

2
Trσ,τ

∫
p

−iωp
(iωp)2 − E−(p)2

( p
m
·A(0)− λ(σ×A(0))z

)
, (143)

where the trace over the τ domain eliminates the τx and τz dependant part of G0.
Writing out the shorthand formalism inside the integral explicitly we see that the Matsubara
frequency sum over iωp goes from −∞ to ∞ and that S1.1 is linear in iωp

S1.1 = Trσ

∞∑
iωp=−∞

∫
dp

−iωp
(iωp)2 − E−(p)2

( p
m
·A(0)− λ(σ×A(0))z

)
= 0. (144)

We see that there is no first order spin orbit correction and turn our attention to S2.1

immediately. Writing it out and evaluating the delta functions:

S2.1 =
1

2
Trσ,τ

∫
q,p,l,m,n

G0(q)δ(q − p)γ(p, l)G0(l)δ(l−m)S(−m− n) · σδ(q − n)

=
1

2
Trσ,τ

∫
q,m

G0(q)γ(q,m)G0(m)S(−m− q) · σ,
(145)

switching to a Einstein summation notation for the dot product of S and σ and inserting
γ we get the following equation:

S2.1 = Trσ,τ

∫
q,m

G0(q)

[
(−m+ q) ·A(m+ q)

2m
− λ(σ×A(m+ q))z

]
τzG0(−m)Sa(−m−q)σa.

(146)
Where Sa is the component of the S(q) vector. One can play around with variable

transformations and eventually get the following expression:
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S2.1 =
1

2
Trσ,τ

∫
n,k

−G0(−k − n
2

)

[
k

m
·A(−n) + λ(σ×A(−n))z

]
τzG0(−k +

n

2
)Sa(n)σa.

(147)
Defining the following velocity operator which is equal to p

m with a spin-orbit correction

v =
p

m
+ λ(ẑ× σ), (148)

we can write the action as the following:

S2.1 =

∫
q

Sa(q)Kab(q)Ab(−q)

Kab(q) =
1

2

∫
p

Trσ,τ σaG0(−p− q
2

)vbτzG0(−p+
q

2
).

(149)

To simplify our expression we define the following function

gn = −G0(−n) =
iωn + [ξ(n) + λ(σ× n)z]τz + ∆τx
(iωn)2 − [ξ(n) + λ(σ× n)z]2 −∆2

, (150)

which gives us the following short and neat expression for Kab:

Kab(q) =
1

2

∫
p

Trσ,τ σagp+ q
2
vbτzgp− q2 . (151)

One can trivially show that the term λ(σ × n)z takes on the eigenvalues of ±λn. We
thus introduce a set of polarizers Π±:

Π± =
1

2
[1± (σ × p̂)z] , p̂ =

p

p
. (152)

These polarizers sum to 1 and split a state into the two polarizations that yield eigen-
states ±n

λ(σ× n)zΠ± |ψ〉 = λ(σ× n)zc± |ψ±〉 = ±λnc± |ψ±〉 . (153)

By multiplying from the right side by identity in the form of two polarizers to our Greens
function gn we can simply write the eigenvalues in place of λ(σ×n)z as the polarizers will
make sure that no component goes through that does not yield that value from the matrix

gn =
iωn + [ξ(n) + λn]τz + ∆τx
(iωn)2 − [ξ(n) + λn]2 −∆2

Π+ +
iωn + [ξ(n)− λn]τz + ∆τx
(iωn)2 − [ξ(n)− λn]2 −∆2

Π−. (154)

This makes the task at hand a lot more direct. There are no more matrix elements inside
denominators and the calculation of S2.1 ∝ Fextra is a matter of solving integrals and taking
traces.

The approach from here is to expand Kab(q) in powers of q and select the lowest ones
to incorporate

Kab(q) = Kab(0) + qc∂qcKab(0) +O(q2). (155)

28



This will yield both a first order q term and a zeroth order q term. We will only be
covering the derivation of the zeroth order term as in our geometry it will be the only one
that matters in Ch 5. We will add the first order term at the end and showcase later on
how it does not affect our selected problem. If you wish to see the derivation of the first
order term it can be found elsewhere in the Pershoguba articles supplemental material [2].

3.6 Calculating Kab(0)

To zeroth order the equation for Kab is as following

Kab(0) =
1

2

∫
p

Trσ,τ [σagpvbgp]. (156)

We start by completing the trace over the spin matrices

Kab(0) =
1

2

∫
p

Trτ Trσ[σa (gp+Π+ + gp−Π−) vb (gp+Π+ + gp−Π−)]. (157)

Where gp+ and gp− refer to the spin up or down Greens function in the basis created by
λ(σ × p̂)z

gp± =
iωn + [ξ(n)± λn]τz + ∆τx
(iωn)2 − [ξ(n)± λn]2 −∆2

. (158)

Since Π polarizers include 2 terms and vb does the same, there are collectively 32 terms
of which the trace needs to be calculated for all variations of a and b but our work can be
made a bit easier. If we only consider terms with the spin orbit coupling λ of order 1 or
less then we can limit ourselves to only needing to analyze 16 terms of which 4 are of zeroth
order in λ, these zeroth order terms trivially have trace 0 as they include only the σa matrix
in the spin domain.

By writing out the polarizers we get

1

4
Trσ[σa(gp+(1+(σ×p̂)z)+gp−(1−(σ×p̂)z))vb(gp+(1+(σ×p̂)z)+gp−(1−(σ×p̂)z), )]. (159)

and can go through it from the lowest order up.
We start with the easiest term, the one that includes only the unity part of the polarizers

and the λ term from vb:

vTr =
1

4
Trσ [σa(gp+ + gp−)λ(ẑ × σ)b(gp+ + gp−)] . (160)

This trivially solves to the following

vTr = (gp+ + gp−)2λ

2
εabz. (161)

Where εabc is the antisymmetric symbol. The trace over the other terms ends up giving
8 terms that can be ordered as 2 terms with a sum over 4 states. These 4 states will be
distinguished between using the indexes ±f and ±l which are plus or minus respectively but
independently. This would give us a state such as (+f ,+l) or (+f ,−l), while the notation
is not ideal it serves the purpose of distinguishing these states and it is short lived
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ΠTr = Trσ

∑
±f±l

σa
4
g±fλ(±f )(σ × p̂)z

pb
m
g±l +

σa
4
g±l

pb
m
g±fλ(±l)(σ × p̂)z

 . (162)

Collecting the two terms together and using that gp± only has one object τ that is
position sensitive inside it and this term can be circularly shifted due to the trace

ΠTr =
λ

4

pxpy
mp

εabz
∑
±f ,±l

±fgp±f gp±l ±l gp±lgp±f =
λ

2

pxpy
mp

εabz(gp+gp+ − gp−gp−). (163)

Doing the momentum integration over this we find that the ΠTr term is 0 due to the
angular momentum integral over px and py∫ 2π

0

dθ

∫ ∞
0

dp(...)pxpy =

∫ 2π

0

sin(θ) cos(θ)

∫ ∞
0

dp(...) = 0. (164)

We thus need only worry about the terms from vTr

Kab(0) =
λεabz

4

∫
p

Trτ [(gp+ + gp−)2]. (165)

We will start by showcasing how the integral over g2
p+ and g2

p− are both zero. The
Matsubara frequency sum will be enough to showcase this with complete freedom in values
of E+/− as long as they remain real. As E+/− are energies they are of course also real. The
following is the Matsubara frequency sum of g2

p+ the proof for g2
p− is identical:

S++ =
∑
iωn

Trτ{ iωn + ξ+(p)τz + ∆τx} { iωn + ξ+(p)τz + ∆τx}
(iωn + E+(p)2(iωn − E+(p)2

. (166)

This can be simplified to be written in terms of only E+(p)

S++ = 2
∑
iωn

(iωn)2 + E+(p)2

(iωn + E+(p)2(iωn − E+(p)2
. (167)

Motivated by our knowledge of complex plane integrals [4], we start elsewhere by looking
at the following integral over the complex plane denounced by z

0 =

∮
dz

2πi

z2 + E2
+

(z − E+)2(z + E+)2
nf (z)eηz. (168)

Where the integral over z takes the path as shown in Fig. 1 and η takes on a minute
positive value infinitesimally close to 0

0 < η < β,

η = 0+.
(169)

We let η go to 0 after we evaluate the result of the integral. nf (z) is the Fermi-Dirac
distribution function
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Figure 1: The integral path in the complex plane follows the circle along a positive trajectory.
It extends practically all the way to infinity and encompasses all residues. There are an
infinite number of residues along the imaginary-axis and 2 on the real-axis at ±E+.

nf (z) =
1

eβz + 1
. (170)

At z →∞ the Fermi function suppresses the integrand and makes it 0. At z → −∞ the
eηz suppresses the integrand making it 0. We thus know that the integral in total must be
equal to 0

lim
z→∞

eηz

eβz + 1
= e(η−β)z = 0,

lim
z→−∞

eηz

eβz + 1
= eηz = 0.

(171)

We can compute the integral in Eq. 167 using the residue theorem, which dictates that
the value of a closed line integral in the complex plane is equal to the sum of the residues
enclosed within the closed integral multiplied by 2πi

0 = 2πi
∑
N

Res(N). (172)

The Fermi function takes on simple poles at exactly z = iωn for all values of n. Addi-
tionally there are 2 poles located at ±E+

iωn = i
(2n+ 1)π

β
,

nf (iωn) =
1

e2πi+iπ + 1
=

1

−1 + 1
.

(173)
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This means that the the complicated Matsubara frequency sum is equal to the sum of
the 2 poles at residues ±E+

∑
iωn

(iωn)2 + E+(p)2

(iωn + E+(p)2(iωn − E+(p)2
eηiωn = −2πi

∑
Res(E+) +Res(−E+). (174)

Residues at E+ and −E+ are calculated to be the following:

Res(E+) = − 1

2πi

β

2
nf (E+)2eβE+ ,

Res(−E+) = − 1

2πi

β

2
nf (−E+)2e−βE+ .

(175)

Adding up the two results we get the following value for S++ :

S++ =
−1

2

(
nf (E+)2eβE+ + nf (−E+)e−βE+

)
. (176)

Letting β →∞ we see what the result is if E+ is negative or positive. If β is infinite then
the Fermi-Dirac distribution function turns into a Heaviside step function that is either 1
if the argument is below 0 and 0 if the argument is above 0. We see that whether E+ is
positive or negative the remainder is an exponentially suppressed function, suppressed with
the power of β. This thus leaves us with the result that

S++/−− =
∑
iωn

g2
+/− = 0. (177)

We are thus left only with the cross term:

S+− = 2
∑
iωn

Trτ{ iωn + ξ+τz + ∆τx} { iωn + ξ−τz + ∆τx}
(iωn − E+)(iωn + E+)(iωn − E−)(iωn + E−)

. (178)

We go through the same procedure as before but this time use the following contour
integral

0 =

∮
dz

2πi

z2 + ξ+ξ− + ∆2

(z − E+)(z + E+)(z − E−)(z + E−)
nf (z)eηz. (179)

We find the residues at E+, −E+, E− and −E− to be the following:

Res(E+) =
(E2

+ + ξ+ξ− + ∆2)

E+(E+ − E−)(E+ + E−)

nf (E+)

2
,

Res(−E+) =
(E2

+ + ξ+ξ− + ∆2)

E+(E+ − E−)(E+ + E−)

−nf (−E+)

2
,

Res(E−) =
(E2
− + ξ+ξ− + ∆2)

E−(E+ − E−)(E+ + E−)

−nf (E−)

2
,

Res(−E−) =
(E2
− + ξ+ξ− + ∆2)

E−(E+ − E−)(E+ + E−)

nf (−E−)

2
.

(180)
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Summing these up we find that the Matsubara frequency sum is equal to

∑
iωn

(iωn)2 + ξ+ξ− + ∆2

(iωn − E+)(iωn + E+)(iωn − E−)(iωn + E−)
=

1

2

E+E− − ξ+ξ− −∆2

E+E−(E+ + E−)
+ u(p), (181)

where u(p) is equal to

u(p) =
−(ξ+ξ− + ∆2 + E2

+)E−nf (E+) + (ξ+ξ− + ∆2 + E2
−)E+nf (E−)

4E+E−ξλp
. (182)

Neglecting the function u(p) as for λ very small compared to ξ the two terms of the
numerator are opposite and cancel out. Kab(0) takes the following form

Kab(0) =
λεabz

2

∫
dp
E+E− − ξ+ξ− −∆2

E+E−(E+ + E−)
. (183)

Completing this integral in the limit of λpf � mλ2 � ∆ we get

Kab(0) = εzba
λm

2π
= εzbaα, (184)

where

α =
λm

2π
. (185)

Completing this integral is a nontrivial and unfortunately not one we were able to get a
satisfying result for.

3.7 Results for Free energy and Current

Finally we will get to the fruits of our labor, we now seek to find the additional free energy
term and current term spawning from the spin-orbit and magnetic exchange field interaction.
Inserting the results of Eq. 184 back into Eq. 149 and then inserting that into Eq. 113 we
get:

Z =

∫
D(θ,∆)e

∫
q
Sa(q)εzbaαAb(−q). (186)

As this expression is completely independent of ∆ and not directly dependant on θ but
only on its derivative ∇θ through A we can reduce the integral to a single term

Z = exp

{∫
q

Sa(q)εzbaαAb(−q)

}
. (187)

Inserting the Fourier transform for Sa(q) and Ab(−q) we can produce a delta function
by taking the integral over q

Z = exp

{∫
q,x,l

Sa(x)εzbaαAb(−q)eiq·(l−x)

}
. (188)

This leaves us with a real space integral for Z
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Z = exp

{∫ β

0

dτ

∫
d2xSa(x)εzbaαAb(x)

}
. (189)

Going all the way back to Eq. 93. We find the free energy to be

Fextra = − 1

β

∫ β

0

dτ

∫
d2xSa(x)εzbaαAb(x). (190)

SaεzbaAb can be written as −(ẑ×S(x)) ·A. The term is independant of τ so the integral
over imaginary time simply gives β

Fextra = α

∫
d2x(ẑ × S) ·A. (191)

From there one can easily calculate the extra contributing term to the current

Jextra =
δ

δA
F = α(ẑ × S). (192)

The total current includes a term that was ignored in this derivation as it had nothing to
do with either spin orbit coupling or the impurity and exists in regular superconductors. It
also includes a second order Kab(q) term which we will add here but will not derive. When
it is time to use this current in Ch 5. we will show that this term proves irrelevant in our
setup

J =
ns
2m
∇θ + α(ẑ × S) + β(∇Sz × ẑ). (193)

For a in depth derivation of the β term consult the supplementary material of [2].
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4 Magnons derived from linearized Landau-Lifshitz equa-
tion

The final system we wish to examine independently is the magnon system. A magnon is
a quasiparticle made out of the collective spin of electrons across a magnetic lattice. To
get a simply intuition for magnons, imagine a 1-D or 2-D material on a set of sites that
make up a line (1-D) or a square (2-D) lattice. Each site has one electron bound that has
freedom in its spin. Each site is affected by a effective magnetic field from its neighbours
dependent upon their spin which results in a net effective local magnetic field affecting each
site. The question is now how this material would evolve over time and what kind of low
energy excitations it would hold.

If we zoom out from the microscopic site by site view and look at the system on a larger
scale we can no longer see the spin of each individual electron. What we can however see and
measure is the magnetization at a given point. Consider an experimentalist measuring the
collective magnetic field generated by a small area of a magnetic material or the response of
the material to a magnetic field. While it would encompass 1000’s of individual spins we get
a single reading for its collectively generated magnetic field inside this area. By examining
such areas side by side we can consider the sum of the electron spins after normalization as a
fluid measurable parameter called the magnetization. If we are to limit ourselves to systems
where the magnetic spins of electrons is not rapidly changing from one site to another
then this becomes a useful parameter to characterize the whole system as no important
information is lost by summing over several very similar areas of magnetic spins. We call
this the magnetization and it measures the average spin polarization inside an area when
seen from a macroscopic point of view.

The system we are trying to characterize is a ferromagnet, this means that the spins find
themselves in a minimum energy configuration when aligned with their neighbours. We wish
to understand the excitations that might exist in such a material when the magnetization
deviates from being the same across the entire material.

We will start off by explaining what the Landau Lifshitz equation is and what goes
into it. Then we will shortly discuss anisotropy and why one would expect a ferromagnet
to have the ground state be a polarization in one direction, this also builds the basis for
why linearization is justified. We will then linearize the Landau Lifshitz equation (LLE)
to make it analytically solvable and then solve it. We will then compare our results in the
linear regime to a numerical approach inspired by the methods presented in ”A Gauss–Seidel
Projection Method for Micromagnetics Simulations” by Xiao-Ping Wang, Carlos J. Garćıa-
Cerveria and Weinan E [3]. using a implicit Gauss-Seidal projection scheme for simulating
the magnetic system instead of a straightforward Euler scheme. Lastly we will look at the
breakdown of the linearized model and how the numerics fail to take the same form as the
analytics in the extremely non linearized domain.

4.1 Landau Lifshitz Equation

The equation that governs the evolution of the magnetization in time is called the Landau-
Lifshitz equation [6] and looks like the following:

dm

dt
= −γm×H− γε

ms
m× (m×H). (194)

Where m = m(x, t) is the magnetization at a given time and place in the system.
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H = H(x, t) is effective local field. γ is the gyromagnetic ratio. ε is a dimensionless
damping coefficient. The effective local field is calculated from the free energy of the system
as the following:

H = − δF
δm

. (195)

Without considering the fact that the effective local field H can be dependent on the
magnetization m it is already clear from the Landau-Lifshitz equation that these equations
are non linear and cannot be solved analytically. This serves as the motivation for following
through both with a linearization of the magnetization around a presumed ground state of
constant magnetization and also a numerical simulation approach using the full machinery
of the Landau-Lifshitz equation.

To begin solving for the magnetization we first need a free energy to compute the local
field H. The free energy terms that are dependent upon the magnetization are the only
relevant ones to our analysis of the ferromagnets magnons. So we will not be concerning
ourselves with terms that have no dependence on the magnetization m. The following is
our free energy for the ferromagnet when only including m dependent terms

Fmagnon =
1

2

∫
Ω

{Φ
(
m

ms

)
+
A′

m2
s

|∇m|2 − 2µ0B ·m}dx. (196)

The integral over Ω is an integral over the whole system, whether it be 1, 2 or 3 di-
mensional and whether it be infinite or limited. Φ is the anisotropic energy that might be
present due to a particular preference of magnetization by the material. A′ is the exchange
constant and serves to modulate the strength of the interaction between neighboring spins.
µ0 is the vacuum permeability and B is proportional to the applied magnetic field onto the
material. ms is the saturated magnetization and is given by ms = |m|.

4.2 Anisotropy of the ferromagnet

We will not be covering a complete description of all anisotropy terms here but will briefly
touch on the two that are most important to us. This being systems that showcase easy-axis
or easy-plane anisotropy [7].

Easy axis and easy plane are names for anisotropy schemes that promote either magne-
tization along the axis or plane. This is the simplest kind of anisotropy that differs only in
either 1 plane or along one axis. Given that we consider only this form of anisotropy we can

take the anisotropy term Φ
(
m
ms

)
to look like the following:

Φ

(
m

ms

)
= Φzm

2
z + Φxy(m2

x +m2
y) = m2

z(Φz − Φxy) + Φxym
2
s. (197)

Where Φx/y is the cost of magnetization along the x − y plane and Φz is the cost of
magnetization along the z-axis. Both these energy costs can be collected into a single
parameter Φxyz, ignoring the constant contribution:

Φ

(
m

ms

)
= m2

zΦxyz. (198)

The sign of Φxyz now governs whether it is an easy plane or easy axis anisotropy in the
system. If Φxyz is negative then it is easy-axis and promotes magnetization along the z-axis,
correspondingly if positive it is easy plane.
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This yields a free energy of the form

Fmagnon =
1

2

∫
Ω

{m2
zΦxyz +

A′

m2
s

|∇m|2 − 2µ0B ·m}dx. (199)

4.3 Analytical linearized treatment of magnons

While we can already tell that the Lindau-Lifshifz equation will not yield us a linear answer,
we can go forward with the equation and see how far we can get before needing to make
approximations or delve into numerical solutions. We start by calculating the local field H
as given by Eq. 195 and Eq. 199:

H = − δ

δm

(
1

2

∫
Ω

{Φxyzm2
z +

A′

m2
s

|∇m|2 − 2µ0B ·m}dx
)
. (200)

Treating |∇m|2 as ∇m ·∇m, we can perform partial integration and discard the surface
term due to the functional integral. Keep in mind here that m is a real physical observable
and must be real. When we consider it a complex wave later on, it is done with the
implication that only the real part of the final result is physical

H = − δ

δm

(
1

2

∫
Ω

{Φxyzm2
z −

A′

m2
s

∇2m ·m− 2µ0B ·m}dx
)
. (201)

Evaluating this we find the following effective field:

H = −Φxyzmzẑ +
A′

2m2
s

∇2m+ µ0B. (202)

We see now that H is of linear order of m and therefore all our terms with the exception
of the applied magnetic field Zeeman term is nonlinear. To sidestep this issue and still find
analytical solutions, even if it is inside a smaller regime, we linearize m around m = msẑ.
This is in accordance with what would be expected of the ground state of an easy axis
system along the z-axis where the energy contribution from the interaction term is zero and
energy is minimized purely based upon the anisotropy term and the applied magnetic field
is considered small or non existent. This mirrors what in the real world the material would
look like if we put a piece of it in a cooler and just let it be and as such is a good starting
condition for the material to start exploring excitations from. We consider m the following
in our linearized approximation:

m(x, t) =

mx(x, t)
my(x, t)
mz(x, t)

 =

mx(x, t)
my(x, t)
ms

 . (203)

Now that we have acquired the local field H we dive into the calculation of the Landau-
Lifshitz equation. First we calculate what m × H is equal to as it shows up twice in the
Landau-Lifshitz equation:

m×H = (myHz −msHy)x̂+ (msHx −mxHz)ŷ + (mxHy −myHx)ẑ. (204)

To first order in mx or my the only remaining terms in m× (m×H) are the following:
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m×(m×H) = ms(mxHz−msHx)x̂+ms(myHz−msHy)ŷ+ms(mxHx+myHy)ẑ. (205)

Combining the two we find the Landau-Lifshitz equation to take the following form:

dm

dt
=− γ(myHz −msHy)x̂− γε(mxHz −msHx)x̂

− γ(msHx −mxHz)ŷ − γε(myHz −msHy)ŷ

− γ(mxHy −myHx)ẑ − γε(mxHx +myHy)ẑ.

(206)

We now have 3 equations to solve and the first one we look at is the simplest. The
equation for the ẑ direction:

0 = −γ(mxHy −myHx)− γε(mxHx +myHy). (207)

Inserting our function for the local field H and simplifying we get the following equation:

0 = mx(Bxε+By) +my(Byε−Bx). (208)

A solution with mx = 0 or my = 0 would naturally lead us to the other being 0 as well
as our freedom to adjust Bx, By, ε is preserved. This would be a trivial solution. This
means that both the terms in the parenthesis must be 0 simultaneously. Since ε and B
are independent parameters that can be adjusted independently, the only way to make the
equation true consistently for non-zero values of ε is by having Bx = By = 0.

Moving onto the two equations pertaining to the time derivative of mx and my narrowing
our search to magnetic fields B = Bzẑ, we see that every term in the equation is linear in
mx and my. We insert plane waves for both functions as we are looking for collective modes

mx = δmxe
ik·x−iωt

my = δmye
ik·x−iωt.

(209)

Inserting into Eq. 206 we get the following two equations:

δmx

(
−iω + γεHz + γε

A′

2ms
k2

)
= δmy

(
−γHz − γ

A′

2ms
k2

)
,

δmy

(
−iω + γεHz + γε

A′

2ms
k2

)
= δmx

(
γHz + γ

A′

2ms
k2

)
.

(210)

Substituting one equation into the other and cancelling the factor of the magnitude
δmx/δmy on either side gives the following equation relating ω and k = |k|

ω2 + ω2iγε

(
Hz +

A′

2ms
k2

)
− (1 + ε2)γ2

[
Hz +

A′

2ms
k2

]2

= 0. (211)

Solving for ω in Eq. 211 gives us the following dispersion relation for the magnons:

ω = −iγε
(
Hz +

A′

2ms
k2

)
± γ

(
Hz +

A′

2ms
k2

)
. (212)
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We see that Hz

Hz = −Φxyzms + µ0Bz (213)

is the effective magnetic field in the z-direction. Given that Φxyz is negative due to the
easy axis assumption, it is also fair to assume that Bz would be positive or at least that
the net effect of the two would be positive to such a degree that we can still consider the
system in an easy axis state.

This creates a dispersion that is parabolic and gapped. Since the plasmon dispersion
relation found in the plasmon chapter was linear these two are highly distinguishable which
will be handy when we try to mix the two states in Ch 5.

As expected the imaginary part creates a decay function

e
−γε

(
Hz+ A′

2ms
k2
)
t

(214)

that scales with the damping coefficient ε.

4.4 Numerical dispersion relation

As our analytical approach is only skin deep requiring heavy modification in the form of
linearization, we also approach using a numerical approach. The simulation will be one that
takes an input magnetization on a one dimensional finite lattice with periodic boundary
conditions and simulates forward in time using the Landau-Lifshitz equation.

We will input into it a plane wave with a given wavenumber k and see how it simulates
forward in time. By Fourier transform of the magnetization data over the course of the
simulation, we can identify a frequency spectrum for the wave. Picking out the top frequency
we can plot the dispersion.

The specifics of the simulation are covered in Appendix A. We will only touch on the
method by which we obtain the dispersion relation from the simulation, the results of the
simulation and how they compare to the analytical linearized approach in this section.

The simulation yields after each iteration over all the time steps a data set of magneti-
zations in each spacial direction on each site for each time step.

By numerical Fourier transformation at any given time step we can determine what
wavenumber k the function inhabits beyond what we originally inserted. Doing so we
find that k varies very little and is stable over the entire simulation, this tells us that the
simulation does indeed showcase eigenstates as a function of k.

The above procedure can be done for any one of the 3 spacial directions. As we are
looking for spin-waves that live in the x− y plane we naturally choose to look at either the
x magnetization or the y magnetization.

To find the dispersion relation we Fourier transform the y magnetization across time on a
arbitrary site. Since we have already confirmed that we have stable wave vector k, we know
that the simulation correctly incorporates translational invariance and the site we choose is
thus not relevant. For the purposes of calculating the dispersion relation, we choose a site in
the middle of our simulations chain and the magnetization in the y-direction. After this we
search through the ω spectrum created by our Fourier transform in time and pick out the
value of ω that has the highest amplitude. This predictably turns out to be a very spiked
value thus ensuring us that a single frequency indeed can be linked to a single wavevector.

Plotting ω as a function of input wave vector k with an applied effective field of 10 in
the natural units of the system, we get the graph seen on Fig. 2. The first thing to note
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Figure 2: Dispersion relation in the natural units of 1/L where L is the length of the
system and 1/T where T is the total time period the system ran through. The blue dots
are numerical results for mz = 0.95ms, while the green line is the theoretical results derived
from our linearization previously in this chapter. We have cut off the linearized result at
1/3 of the spectrum as the result is only appropriate for low k. In both cases there is an
effective applied magnetic field of 10 natural energy units of the system.

is that the numerical dispersion relation knows about the total system size and periodic
boundary conditions of the system and therefore provides a dispersion relation across all
k. The theoretical result is based of the local Hamiltonian that has no knowledge about
periodic boundary conditions. The theoretical results are therefor only applicable for low
values of k and has graphically been cut off for higher values in the plot for clarity sake. It
obviously follows Eq. 212 and continues upwards with a k2 growth.

We see that the low k results match rather well, giving us the k2 dispersion relation we
had expected with an offset equal to the magnetic field. This confirms that in the linear
regime our magnon simulation is accurate. Emboldened by this confirmation of the validity
of our simulation we now explore a non linear regime in Fig. 4. In this regime instead of
having mz = 0.95ms we have mz = 0.23ms resulting in a plot that looks a bit troublesome.
The reason for this has to do with the capture method for the dispersion relation and the
actual spectrum. The dispersion relation was derived by capturing the value of ω that had
the highest amplitude in a Fourier transform, assuming there to be only one dominant value
of ω. Inside the non linear regime this however is not the case anymore. On Fig. 3 one
can see a Fourier transform picked out for k = 1.73/L and one for k = 1.75/L in the non
linear simulation. One can clearly see that there is more than one spike inside the Fourier
spectrum and the ideal one k to one ω assumption breaks down. Additionally because of
the wild fluctuation of the maximum amplitude of ω in this regime, not even the dominant
frequency is stable.

In fact even inside the ”well behaved” areas of Fig. 4, such as right in the middle of it
at k = π, we see that there are multiple values of ω with high representation in the Fourier
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(a) Non linearized Fourier spectrum showing the
splitting of the ω spectrum at k = 1.73/L.

(b) Non linearized Fourier spectrum showing the
splitting of the ω spectrum at k = 1.75/L.

Figure 3: Even with small variance in k we see a significant deviation in the Fourier spectrum
in the non linearized simulation, showcasing the instability of the solutions in this area of k
values.

spectrum. A Fourier spectrum at k = π for the non linear simulation can be seen on Fig. 5.
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Figure 4: This simulation showcases what happens to the ”dispersion” with an applied mag-
netic field in the z-direction outside the linearized regime. The simulation is done with initial
conditions having mz = 0.23ms and equal amplitude in waves propagating in x-y directions.

5 Plasmon-Magnon hybrid modes in superconductor-
ferromagnet heterostructure

From our previous investigation of the ferromagnetic system that is inhabited by magnon
collective modes and the superconductor system that is inhabited by plasmon collective
modes we now wish to use the free energy and current equations from the spin-orbit-magnetic
exchange interaction system to couple these systems equations. This will be done with the
goal of finding a dispersion relation that agrees with all the restrictions of each environment.

We will do this by first listing the relevant results of the past three sections. These will
be the basis for the analysis. From them we will derive a set of coupled equations for my,
mx and I. This will require us to couple the current equation to the magnetization through
the electric field and the calculation of a new effective local field H stemming from the new
terms in the free energy that our spin-orbit-magnetic exchange analysis adds. Finally we
will solve the coupled equations using an eigenvalue equation. As this turns out to be a
fourth order polynomial root equation we will do so numerically and analyze it graphically.

5.1 Derivation of coupled equations

We start from the continuity equation as presented in Eq. 42 in Ch. 2 on plasmons

∂I

∂x
+
∂

∂t

∫ ∞
−∞

dx′λ (x− x′)E (x′, t) = 0. (215)

We have here set e the electron charge to unity as is done in the calculations pertaining
to the spin-orbit magnetic exchange system, as we will be using both equations in tan-
dem. Additionally the electron mass m∗ now carries an asterisk to differentiate it from the
magnetization.
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Figure 5: Fourier transform of mz = 0.23ms simulation for k = π.

The current will be dictated by the result that was derived in Eq. 193 in Ch 3. on the
spin-orbit magnetic exchange coupling[2]

j =
ns
m∗
A+ α(ẑ ×m) + β(∇mz × ẑ), (216)

where A is the gauge invariant vector potential

A = A+
θ

2
. (217)

We have here extended the magnetic exchange field to be the magnetization and absorbed
any relevant factors between the two into the constants α and β.

The equation governing the evolution of the magnetization is still the Landau–Lifshitz
equation, but our free energy is governed by the free energy of the magnon system with the
addition of the terms provided from the spin-orbit magnetic exchange system, thus coupling
the current to the magnetization in the resulting local field H. This results in the equations
of motion for the magnetization being the following:

dm

dt
= −γm×H− γε

ms
m× (m×H) H = − δF

δm
, (218)

Fcoupling =

∫
d2r

ns
2m∗
A2 + α(ẑ ×m) ·A+ β(∇mz × ẑ) ·A, (219)

Fmagnon =
1

2

∫
Ω

{Φ
(
m

ms

)
+
A′

m2
s

|∇m|2 − 2µ0B ·m}dx. (220)

The ferromagnetic, spin-orbit magnetic exchange, and plasmon system we investigated
prior were of different dimension number. To unify all these systems into one we consider
the 1-dimensional geometry of a wire as was done in the Ch 2. This restricts our current
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to only flow along the x-axis j = jx̂. Additionally we drop the inclusion of any applied
external magnetic field, removing the last term from Fmagnon. The combined free energy of
our system is the following:

F =

∫ ∞
−∞

dx
ns

2m∗
A2 + α(ẑ ×m) ·A+ β

(
∂mz

∂x
x̂× ẑ

)
·A+

1

2
Φ

(
m

ms

)
+

A′

2m2
s

(
∂

∂x
m

)2

.

(221)
In limiting ourselves to this one dimensional geometry we trap the current to fit inside

our wire of cross section S thus making the equation for the current the following:

I

S
= j · x̂ =

ns
m∗
Ax + α(ẑ ×m) · x̂+ β(∂xmzx̂× ẑ) · x̂. (222)

Using these equations as our starting point will yield us a set of coupled equations. The
equations will be the equations that governs the evolution of magnetization with regards to
time based upon the Landau-Lifshitz equation and the equation that govern the evolution of
current with regards to time based upon the continuity equation. Inserting plane waves into
these equations leads us to a set of solutions where we can identify the dispersion relation
of the plasmons and magnons of the system.

5.1.1 Relating E to I and m

We start by connecting the electric field E to the gauge invariant vector potential A. The
logic goes as following, consider the electric potential on a small scale, where it can be
thought to be approximately linear, such that ∇φ is a constant

φ = φ0 +∇φx. (223)

The phase of a wave function would evolve with the energy

ψe−iEt = ψe−i
θ
2 . (224)

Since there are no other sources of energy than the electric potential the energy would
be given by the potential at a given position

−θ
2

= −φ0t−∇φxt. (225)

Taking the derivative and adding the vector potential A to make the left side gauge
invariant

−∇θ
2
−A = −∇φt−A. (226)

Then taking the time derivative and using that E = −∇φ − ∂A
∂t per definition of the

vector potential and electric potential and we get

− ∂

∂t

(
A+

θ

2

)
= E = −∂A

∂t
. (227)

In Eq. 215 we have only the E-field in the x direction due to our limiting geometry.
Inserting our findings we find the following continuity equation
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∂I

∂x
−
∫ ∞
−∞

dx′λ (x− x′) ∂
2Ax
∂t2

(x′, t) = 0. (228)

We now simplify the equation for the current in our 1D system as shown in Eq. 222.
Using that the triple products appearing in the equation can be circularly shifted we can
manipulate it into a simpler form

I

S
=

ns
m∗
Ax + α(x̂× ẑ) ·m+ β∂xmz(x̂× x̂) · ẑ =

ns
m∗
Ax − αmy. (229)

Inserting this into Eq. 228 we can eliminate the dependence onAx and make the equation
one that only relates to the magnetization m and the current I

∂I

∂x
−
∫ ∞
−∞

dx′λ(x− x′)m
∗

ns

(
1

S

∂2I

∂t2
+ α

∂2my

∂t2

)
= 0. (230)

5.1.2 Derivation of H

To bring the Landau–Lifshitz equation into a solvable form we first need to derive the local
field H. We will obtain terms from both the coupled part of the free energy Fcoupled and the
magnon part Fmagnon. We will split these into two different contributions to H. Hcoupled
and Hmagnon.

Hmagnon =
A′

2m2
s

∂2m

∂x2
− 1

2

δΦ

δm
(231)

is the magnon part of the effective local field and it is the same as in the magnon system,
except the explicitly applied B-field is set to 0.

Given the geometry of the spin-orbit magnetic exchange system which has a bias towards
the ẑ direction, as in that system the magnetism comes from a macroscopic impurity in the
z-direction, our anisotropy term would take on the form:

Φ

(
m

ms

)
= Φzm

2
z + Φxy(m2

x +m2
y) = m2

z(Φz − Φxy) + Φxym
2
s. (232)

This would yield a effective magnetic field Hmagnon:

Hmagnon =
A′

2m2
s

∂2m

∂x2
−mzẑΦxyz, (233)

where the microscopic nature of the anisotropy can be collected into a single parameter
Φxyz. This retroactively justifies our use of an easy axis scheme. The coupled term is given
by the following:

Hcoupled = − δ

δm

(∫ ∞
−∞

dx
ns

2m∗
A2 + α(ẑ ×m) ·A+ β

(
∂mz

∂x
x̂× ẑ

)
·A
)
. (234)

Just like before the functional derivative will pick out the function m at the matching
variable x from the integral. This equation can be simplified by circularly shifting the triple
product as to make m the vector that is dotted onto the cross product. Additionally since
A is independent of m, it is considered a constant with regards to the functional derivative
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Hcoupled =
δ

δm

(
−α(A× ẑ) ·m+ β

∂mz

∂x
Ay
)
. (235)

Performing partial integration on ∂xmz we get the following:

Hcoupled = −α(A× ẑ)− β ∂Ay
∂x

ẑ = −α(A× ẑ) = αAxŷ, (236)

where the last two equalities are given by the restriction to the one dimensional material

Hcoupled = α
m∗

ns

(
I

S
+ αmy

)
ŷ. (237)

This yields us a combined H field of the following form and will let us write the Lan-
dau–Lifshitz equation in a form only dependant on I and m

H =
A′

2m2
s

∂2m

∂x2
−mzẑΦxyz + α

m∗

ns

(
I

S
+ αmy

)
ŷ. (238)

5.2 Solving the coupled equations for the magnons and plasmons

By inserting H into Eq. 218 and linearizing in mz assuming an easy axis system we can
arrive at a first order differential equation that together with the coupled equation for I will
yield us the dispersion for the magnons and plasmons.

First we calculate what m × H is equal to as it shows up twice in the Lindau-Lifshitz
equation

m×H = (myHz −msHy)x̂+ (msHx −mxHz)ŷ + (mxHy −myHx)ẑ. (239)

Given that Hz is proportional with unity and that Hx and Hy are proportional with
I/mx/my the cross product can be simplified to first order as:

m×H = (myHz −msHy)x̂+ (msHx −mxHz)ŷ. (240)

To first order the only remaining terms in m× (m×H) are the following:

m× (m×H) = −ms(msHx −mxHz)x̂+ms(myHz −msHy)ŷ. (241)

Combining the two we find the Landau-Lifshitz equation to take the following form:

dm

dt
=− γ(myHz −msHy)x̂− γ(msHx −mxHz)ŷ

− γε(mxHz −msHx)x̂− γε(myHz −msHy)ŷ.
(242)

Inserting the the relevant component of H we get the following two equations for mx

and my:

dmx

dt
=γ

{
mymsΦxyz +ms

[
−A′

2m2
s

k2my + α
m∗

ns

(
I

S
+ αmy

)]}
+ γε

{
mxmsΦxyz +ms

[
−A′

2m2
s

k2mx

]}
,

(243)
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dmy

dt
=γ

{
−ms

[
−A′

2m2
s

k2mx

]
−mxmsΦxyz

}
+ γε

{
mymsΦxyz +ms

[
−A′

2m2
s

k2my + α
m∗

ns

(
I

S
+ αmy

)]}
.

(244)

Inserting plane waves for I, mx, my, and completing the Fourier transform of λ(x− x′)
we get a third equation of the form:

ikI − m∗

ns
λ(k)

∂2

∂t2

(
I

S
+ αmy

)
= 0. (245)

We resolve the differentials with regards to x as we have already used a plane wave form
of I in completing the Fourier transform of λ(x − x′), there is therefore no choice in what
form with regards to x that I, mx, my must take.

We solve this problem by creating a matrix that can represent all our coupled equations
as a single eigenvalue equation. Assuming now an exponential form of I, mx, my with the
notation as following:

mx = δmxe
ikx−iωt,

my = δmye
ikx−iωt,

I = δIeikx−iωt.

(246)

The eigenvalue equation we seek looks like the following:

∂

∂t
V = −iωV = MV . (247)

Our set of equations unfortunately carry second order derivatives with regards to time,
thus not being directly compatible with an eigenvalue equation matrix representation of this
form. We also notice that the term I + Sαmy shows up more often than I itself and thus
serves as a better basis for our eigenvalue equation. We solve this issue by choosing a basis
of mx, my, g and h, with g and h being the following:

g = I + Sαmy

h =
∂g

∂t
.

(248)

The eigenvalue equation can now be written with all time derivatives on the left side,
with all mentions of second order derivatives being instead first order derivatives of h:

−iω


mx

my

g
h

 =


γεmsΦxyz − γεΠk2 γmsΦxyz − γΠk2 γmsα

m∗

nsS
0

−γmsΦxyz + γΠk2 γεmsΦxyz − γεΠk2 γεmsα
m∗

nsS
0

0 0 0 1
0 ns

m∗S
2v′αk2 − ns

m∗Sv
′k2 0



mx

my

g
h

 .

(249)
Introducing the following shorthand for the spin to spin coupling
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Π =
A′

2ms
, (250)

and writing the function λ(k) as

λ(k) =
1

ikv′
. (251)

Where v′ is equal to the approximately constant Fourier transform of the localizing
function that makes up the potential function of the 1D wire from Ch. 2, for low k values
(Eq. 58). In that section it was called α(x), but since we found it to be proportional to the
velocity of the plasmon we here call it v′.

Solving this eigenvalue equation numerically we get the graph found in Fig. 6. Compar-
ing this to the same eigenvalue equation but with α = 0, seen on Fig. 7 making the magnon
and plasmon modes not coupled to each other we see a distinct repelling of plasmon and
magnon dispersion relations at the crossover points creating a gap. The states are unmarked
in Fig. 6 due to the mixing of the states near the crossing point. The green solution for
example starts out as a clearly plasmon solution that then evolves into a mixture and finally
ends up becoming the magnon dispersion.

Figure 6: Numerical solution for ω for Eq. 249. The real part of ω is plotted against the
value of k. A small offset offset from ω = 0 is given via an anisotropy term which affects
the parabolic magnon modes. The plasmon mode is unaffected and linear. This plot has
ε = 0 so that the magnon mode does not decay naturally, this also results in no decay as ω
remains real. A small coupling is present, melding the plasmon with the magnon when the
dispersion relations cross.

48



Figure 7: Magnon/Plasmon dispersion relation without without coupling α = 0 and without
decay ε = 0

6 Conclusions and Outlook

We started by looking at plasmons independently, then plasmons interacting with a magnetic
exchange field via spin-orbit coupling, then magnons independently and finally a combined
system that showcases both plasmon and magnon behaviour and their coupling between
each. The result culminating in the results of the eigenvalue equation given by Eq. 249.

From this eigenvalue equation we solve for the eigenstates of the coupled system and
find Fig. 6. We see by this figure that a gap forms between the magnons and plasmon
states where they would have crossed in their dispersion relation. We keep the magnon and
plasmon properties for low values of k and high values of k, where the plasmons and magnons
are relatively unaffected by the coupling and the eigenstates remain pure magnons and
plasmons, however close to their crossing point, where the splitting appears the eigenstates
take on that of magnon/plasmon hybrid modes.

This has interesting applications. If one were to create for example a magnon at a
momentum close to the crossing point and send it into the material we would find that it
would no longer be an eigenstate of the system. Due to this the magnon would not be
conserved over time as it would be compromised of different eigenstates that would evolve
at different rates in time. One could imagine sending in a magnon and by engineering
the material to have a specific length and as such a specific exposure time for the wave
packet to this areas modified Hamiltonian. One could flip the magnon into a plasmon. This
would require precise knowledge of the energy of the different eigenstates of the coupled
systems and also of their composition in the basis of plasmons/magnons. This however is
exactly what our analysis in the final chapter of this thesis provides. Analytical form for
the composition and energy of plasmon/magnon hybridized eigenstates.

One would have to take into consideration that the group velocity for the different
parts of the input wave packet would differ based upon which eigenstate they belong to as
the dispersion relations are different. This knowledge however helps us understand what
kind of drift we would see of the wave packet as it passes through the medium and help
us understand what fidelity our magnon to plasmon converter would have. If the states
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inside the material move away from each other to a large extent we would obviously have
a breakdown of our methods as we could no longer ensure a cancellation of magnon on the
output side by addition of multiple eigenstates. This would leave the magnon to plasmon
converter flawed. Thankfully the knowledge needed to further work on this issue is at hand
as it is included in the dispersion relation. For each eigenstate the group velocity at any
given wavevector k can be computed and from it we would understand how to tweak the
parameters of our system to optimize for this issue and increase fidelity.

In fact with this knowledge one could even send in multiple packets with the express
goal of matching up different ones at the end of the material to get the desired output.

There is however still further work to be done. Without even considering the work of
explicitly working out the calculations for magnon to plasmon flopping or the spreading of
wave packets there is one glaring issue that has yet to be addressed. In the consideration
of a magnon to plasmon converter that starts off with a ferromagnetic domain then turns
into a superconducting domain one would obviously have to consider scattering. When the
collective modes reach borders we would have parts of the packet reflect back and parts of
the wave transfer through. No calculations or estimates of this has been made in this thesis
and much work could still be done on this subject. In fact it would probably prove vital
to the application of this work. Both analytical and numerical methods could be used to
provide results in this department yet there was not time to do either in this work.
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Appendices

A Numerical Treatment of Magnons

The most straightfoward approach to simulating the magnetization would be one that sim-
ulates the next term based upon the previous one as following.

mn+1 = mn + ∆t
dmn

dt
(252)

Where dmn

dt would be sourced from the Landau-Lifshitz equation as written in 194.
Using the effective local field as found in Eq. 202. This approach is called the forward Euler
scheme and has been shown to lack ”stability” (what does that mean?) [3]. Due to this we
will be using a implicit Gauss-Seidel scheme as presented in Xiao-Ping 2001 [3].

The easiest way to showcase the principal of this scheme is to do it for a simple differential
equation for the magnetization with regards to time. So an example using the following
undamped application of just a B-field will be used.

dm

dt
= a×m (253)

The implicit Gauss-Seidel scheme would in this case look like the followingmn+1
1

mn+2
2

mn+3
3

 =

 mn
1 + ∆t(aym

n
3 − azmn

2 )
mn

2 + ∆t(azm
n+1
x − axmn

3 )
mn

3 + ∆t(axm
n+1
2 − aymn+1

1 )

 (254)

As you can see at the heart of the scheme is the use of the newly calculated x magnetiza-
tion to calculate the y magnetization and the newly calculated y magnetization to calculate
the z magnetization. This procedure has been shown to lead to more precise results that
is less sensitive to larger time steps ∆t [3]. Because of this we will be using this implicit
Gauss-Seidal scheme instead of the straightforward forward Euler scheme.

A.1 Numerical Laplacian

In our equation for H we have to deal with more complicated terms than constant mag-
netic fields. One of these terms that is trivial in analytical calculations but not quite so
straight forward in numerics is the laplacian ∇2. In our calculations we follow the five point
approximation making the laplacian out to be a matrix of the following form.

∇2m(x) =
1

12h2
(−m(x− 2h) + 16m(x− h)− 30m(x) + 16m(x+ h)−m(x+ 2h)) (255)

Where h is lattice distance by which the points are spaced. Since we set this lattice
distance to be 1 our laplacian is as following

∇2m(x) =
1

12
(−m(x− 2) + 16m(x− 1)− 30m(x) + 16m(x+ 1)−m(x+ 2)) (256)

When written as a matrix that takes the laplacian of an entire set of magnetizations
defined at all the lattice points it takes the form seen in Fig. 8.
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Figure 8: The Laplacian matrix

Additionally we will take advantage of a fractional step procedure to handle the term

dm

dt
= −m×∇2m (257)

We consider a middle step m∗ that follows the following.

m∗ −mn

∆t
= ∇2m∗ (258)

and let our scheme take the following form

mn+1 = mn −mn ×m∗ (259)

Reverse engineering we get the following for m∗

gn = (I −∆t∇2)−1mn (260)

Taking on an implicit Gauss-Seidel form this looks like the followingmn+1
1

mn+2
2

mn+3
3

 =

 mn
1 − (mn

2 g
n
3 −mn

3 g
n
2 )

mn
2 − (mn

3 g
n+1
1 −mn+1

1 gn3 )
mn

3 − (mn+1
1 gn+1

2 −mn+1
2 gn+1

1 )

 (261)

Substituting this with H from our analytics we get the following for the local field in our
simulation. Incorporating the time step into it and updating it component wise after every
component of mn has been calculated

Hn = Agn −∆tB + ∆tΦxyzmzẑ (262)

Where A and B absorb all the physical constants required. The total scheme is thus the
following mn+1

1

mn+2
2

mn+3
3

 =

 mn
1 − (mn

2Hn3 −mn
3Hn2 )

mn
2 − (mn

3Hn+1
1 −mn+1

1 Hn3 )
mn

3 − (mn+1
1 Hn+1

2 −mn+1
2 Hn+1

1 )

 (263)

Using the same numerical H we also calculate decay after every component is calculated
and subtract decay component wise. We run a low value for ε such that we have decay to
1/10 over hundreds of oscillations.

52



A.2 variable time step procedure

We initialize the simulation with a given k across the sites, trying to follow inline with our
analytics as best. This simulation is able to work for any values of m but since we can only
compare it to the linearized model we try to run it in a regime where the linearized model
works so that the two can be compared.

mz(l) = 1

my(l) = 0.05 cos(kl)

mx(l) = 0.05 sin(kl)

m(l) =
m(l)

|m(l)|

(264)

We initialize with the large majority of the magnetization in the z-direction and small
amounts rotated around as we go along the sites denounced by l here with a wavevector k.
Finally we normalize the magnetization at each site.

To decrease runtime of the simulation we vary the timestep ∆t after each iteration of k
we initialized it with. We want to run it over a spectrum of initial k plane waves to grab
a full dispersion relation. After each iteration we measure the dispersion relation and then
tune the timestep to optimize the runtime of the next k value. We do this inversely so that
∆tk+1 ∝ 1

ωk
. The reasoning being that if the frequency is high we need a smaller timestep

to get the granularity in the time domain to measure variances in the magnetization.
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