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Abstract

Motivated by the mean sea level rise as described in IPCC [2013] and the de-
clining trend in storm surges for Eastern England as described in Menéndez and
Woodworth [2010], this paper aims to examine the distribution of storm surges
on the West Coast of Denmark and test for non-stationary behavior. Only data
from the stations facing the Wadden Sea has been acquired.
The peak over threshold method is used, the peaks modelled as a Generalized
Pareto distribution and the rate of occurrences as a Poisson distribution. Through
teleconnection analysis a connection is found with the 3rd EOF of the SST over the
Northern Hemisphere, which Osborn [2010] identifies as a proxy for the NAO, al-
though this is questioned at the end of the paper.
A range of different models, stationary and non-stationary, and predictors, such
as NAO and the Global Temperature Anomaly, are fitted with Markov Chain
Monte Carlo simulations and their performance intercompared with Bayes fac-
tors.
No evidence is found in favor of a non-stationary model for the Generalized
Pareto distribution, but there is very strong evidence that the rate parameter of
the Poisson distribution is dependent on the predictor identified in the telecon-
nection analysis.
The coefficient of this dependency is found to be negative, and by extrapolation
with the CMIP5 ensemble, the rate of storm surges is found to be declining for all
of the four emission scenarios, RCP2.6, 4.5, 6 and 8.5.



Abbreviations
AIC Akaike Information Criterion, a measurement of the rel-

ative quality of statistical models
CI Confidence interval. If nothing else is noted then it is set

to 66%.
CMIP5 Coupled Model Intercomparisson Project 5. A frame-

work for climate models allowing them to be used as an
ensemble.

DIC Deviance information Criterion. A generalization of
AIC.

EOF Empirical Orthogonal Function. Can both be referring to
the method and the vectors. Introduced in Section 2.3.

GPD Generalized Pareto Distribution. Introduced in Sec-
tion 2.1.

KDI Kystdirektoratet. The Danish coastal protection agency.
GDP Gross Domestic Product.
GEV Generalized Extreme Value. A distribution used to

model block maxima.
MCMC Markov Chain Monte Carlo. Introduced in Section 2.1.3.
ML Maximum Likelihood. Introduced in Section 2.1.3.
MLE Maximum Likelihood Estimate. The estimated parame-

ter with ML.
NOAA National Oceanic and Atmospheric Administration.
NAO North Atlantic Oscillation. A climatic index defined in

Section 3.3.
PC Principal component. The temporal component of the

EOF-analysis. Introduced in 2.3.
POT Peak over threshold. An approach to modelling extreme

events. Introduced in Section 2.1.
RCP Representative Concentration Pathways. Four green

house gas concentration scenarios used by IPCC [2013].
SLP Sea Level Pressure.
SST Sea Surface Temperature.
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Chapter 1

Introduction

The climate is changing. IPCC [2013] predicts many and adverse changes in the
climate of our earth due to the effects of increased concentrations of greenhouse
gasses in our atmosphere. For Denmark, as a coastal nation, especially the change
in mean sea level is of great interest as much of our land is not high above sea level
and as such at risk of being flooded.
In the high emission scenario, RCP8.5, the IPCC predicts a mean sea level rise
of 0.7 m for the West Coast of Denmark between now and 2100, with smaller
changes for the rest of the country. 0.7 m in itself might not sound like much, but
when added on top of storms and tidal effects the results can be devastating. It is
assessed that Denmark is one of the countries in Europe that will see the greatest
costs compared to their GDP because of the rising sea level [Christensen et al.,
2014].
To put it into perspective the sea level in Esbjerg during the December Hurricane
of 1999, the most devastating hurricane recorded in Denmark, was at 3.98 m. This
corresponds to a 100-year event according to Sørensen et al. [2013]. If the pro-
jected mean sea level rise of 0.7 m is added to the return level then the 3.98 m will
be equal to a 5-year event in 2100. In other words such high sea levels would
occur at a rate 20 times higher than today.
That is the naive extrapolation, based on the assumption that the statistics of
storm surges remain stationary over the span of the next century. In Menéndez
and Woodworth [2010] the trend in the distribution of yearly maxima is examined
through a 40-year period, and it is shown that for the East Coast of England there
is a statistically significant negative trend in the maxima once the tidal effects and
mean sea level rise has been removed from the signal. No statistically significant
trend is identified for any of the stations on the West Coast of Denmark or in the
German Blight, but since they face the same sea as Eastern England, it does not
seem unlikely that a trend exists of either the same sign, if it is caused by a calmer
North Sea, or of opposite sign if it is due to stronger eastern winds.
In Figure 1.1 the number of storm surges over different heights/thresholds is
plotted for each year. There is no clear trend for the low thresholds, but as they
rise above 200 cm more events seem to happen in the first half of the period. In
Figure 1.2 the total number of storm surges pre-1994 is compared with the same
for post-1994. For low thresholds there seem to be slightly more events in the
post-1994 era, though no statistically significant difference can be seen. As the
threshold rises above 200 there appears to be a significantly higher number of
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events in the pre-1994 era, indicating that there is a change in the dynamics of the
storm surges.
This is the motivation for further examining the statistics of the storm surges on
the West Coast and to try to set up a model that can explain the trend if any is
found.

Figure 1.1: The number of yearly observations over a given threshold in centimeters. The data is
processed to remove tidal effects and rising sea level.

Figure 1.2: The total number of events above a given threshold in centimeters for the period 1973–
1994 and the period 1994–2015. The error bars indicate 95%-CI.
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Chapter 2

Theory

This chapter aims to lay the basic foundation on which to build the analysis of
the storm surges as well as give some justifications for the choices made when
multiple models or methods were available. The aim is not to give a thorough
presentation of everything but to give an overview and references for further
clarifications. Some sections in this chapter might as well has been placed in
Section 3.2 and vice versa, so if something seems to be missing here, look there.

2.1 Model choice

When modelling the extreme events there were two approaches that was consid-
ered: The block maxima and the peak over threshold. Below they are both listed
with their pros and their cons.
Block Maxima (BM)
The data is separated into blocks of a given size (e.g. one year) and the maximum
values of these blocks are stored. If the data is drawn from the same distribution
the maxima have one possible limiting distribution as the block-size grows. This
distribution is known as the Generalized Extreme Value Distribution (GEV).
Pros: The main benefit of this approach is that there is no need to specify a thresh-
old. This eliminates an otherwise problematic step (see sec 3.2.5) and thus de-
creases the bias that may have been introduced.
Cons: Separating the data into blocks allows for two or more events, that could
rightly be considered extreme, to be pooled together. As only the maxima of each
block is kept, some extreme events may be discarded when using this method.
This introduces the problem of choosing the right block size. A too large block
size increases the chance of two extreme events being pooled together and a too
low block size might break the asymptotic assumption of the GEV.
Peak Over Threshold (POT)
Each data point is compared to some threshold and, if the data point exceeds the
threshold, it is stored as an extreme event. These events can be shown to have one
possible limiting distribution as the threshold rises. This distribution is called the
Generalized Pareto Distribution (GPD).
Pros: The main benefit of this approach is that it is less wasteful of the data. If two
or more extreme events happen within the same block (as defined in the Block
Maxima-method), they are both kept and thus more data is potentially available
to fit the model.
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Cons: The choice of the threshold is not a simple procedure as it is a balancing act
between bias and variance. A low threshold will break the asymptotic assump-
tion of the GPD introducing a bias, and a high value will give less exceedances
and thus a higer variance of the estimates.

The benefit of no threshold value in the BM was compared with the benefit of
no specified block size in POT. Although the first one is considered to be slightly
more problematic, the efficiency of the use of data is a decisive factor in this paper,
due to the inherent data scarcity of extreme values and therefore POT is chosen.

2.1.1 Generalized Pareto Distribution

Parameter Range

Scale σ (0,∞)
Shape ξ (−∞,∞)
Location µ (−∞,∞)

Table 2.1: The parameters
of the GPD.

The Generalized Pareto Distribution (GPD) is a
family of distributions that is often used to model
the tails of unknown distributions. An outline
of the justification for this can be found in Coles
[2001].
The probability density function of the GPD can
be seen in Equation 2.1. It has a limiting form as
the shape parameter ξ → 0, where it simply be-
comes the exponential distribution. When ξ ≥ 0
the only support for the GPD is µ ≤ x, this means
that the distribution has no upper bound. If ξ < 0 the support changes to
µ ≤ x ≤ µ− σ

ξ
. This means that the distribution gets an upper bound.

P (x) =


1
σ

(
1 + ξ

(
x−µ
σ

) ) −(1+ 1
ξ ) ξ 6= 0

1
σ
e−

x−µ
σ ξ = 0

(2.1)

Equation 2.1 is used to make inference about the extreme events and their distri-
bution.

As can be seen from Figure 2.1 a lower value of ξ means a shorter tail on the
distribution and likewise for the σ parameter. Noticeably would a ξ < −1 result
in a distribution with a positive slope. In the case of water level this seems highly
questionable, as that would make the most extreme water levels the most likely,
and therefore we will expect that ξ > −1.

2.1.2 Non-stationary Modelling

A classical stationary approach to modelling would be to estimate the parame-
ters of Equation 2.1 and 2.15 and assume that these parameters were fixed for all
observations x. This would make sense if the observations were drawn from a
stable distribution or the time span in which the observations were made were
very short, but given the climatic changes as described in the introduction and
the length of time series needed to assure enough extreme events, it seems rea-
sonable to doubt these assumptions, and therefore non-stationary modelling is
applied alongside the stationary.
There is no formal basis for modelling non-stationary processes [Coles, 2001], it
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(a) The GPD for σ = 50 and for varying
values of ξ.

(b) The GPD for σ = 90 and for varying
values of ξ.

Figure 2.1: Two figures illustrating the influence of the parameters σ and ξ on the PDF of the
GPD. µ = 110 which is the threshold used for the rest of the paper.

is more a pragmatic approach where the parameters are allowed to vary between
observations. This is implemented by letting σ(t) = eaσH(t)+bσ . Here H(t) is the
value of the predictorH(t) at time t. The predictor could for instance be the global
temperature. So the observation at time x(t) would have a coupled predictorH(t)
which would be included in Equation 2.1:

P (x(t), H(t)) =
1

eaσH(t)+bσ

(
1 + ξ

(
xi − µ

eaσH(t)+bσ

))
−(1+ 1

ξ ) (2.2)

A similar substitution can be made for ξ and for the parameters introduced in
Equation 2.15.
In theory any function can be chosen for the relationship between the parameters
and the predictor, e.g. constant, linear, polynomial and exponential. For σ it was
natural to choose an exponential relation so that σ > 0, as required by constraints
of the GPD, but for ξ the linear relation ξ(t) = aξH(t) + bξ would be an option.
Higher order dependencies are also possible but not considered in this paper as
to keep the model as simple as possible.

2.1.3 Methods of parameter estimation

Once the model has been set up as in the previous sections, a method is needed
to make inferences about the true parameters based on the observations. Given
a set of n exceedances of some threshold, µ, x = (x1, . . . , xn) one can set up a
likelihood function based on Equation 2.1:

P (ξ, σ|x) =
n∏
i=1

1

σ

(
1 + ξ

(
xi − µ
σ

))
−(1+ 1

ξ ) (2.3)

Often it is more convenient to look at the log-likelihood-function (LLH). This con-
verts the product into a sum and also makes it more convenient to manipulate
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very small probabilities numerially.

L (ξ, σ|x) =
n∑
i=1

− log (σ)−
(

1 +
1

ξ

)
log

(
1 + ξ

xi − µ
σ

)
(2.4)

A similar transformation is made for the case ξ = 0 as in Equation 2.1.
Additional parameters and predictors can be added as described in Section 2.1.2.
Two methods will be used to make inference about the parameters: Maximum
Likelihood (ML) and Markov Chain Monte Carlo (MCMC).

Maximum Likelihood

The ML-method is simply an optimisation of Equation 2.4 with regards to the pa-
rameters σ and ξ or their sub parameters (aσ, bσ) and (aξ,bξ). There is a plethora
of methods to do this optimization and the one chosen is the MIGRAD fitting
method, which uses a variable-metric method with inexact linear search[Hanlon,
2008]. A more full explanation of the method can be seen in James [2004]. Im-
portantly it is heavily dependant on the first derivative and will likely be very
inaccurate when this does not behave properly and like all other numerical min-
imizers it is never certain whether it locates a global or a local minima.
The first derivatives of the LLH can be calculated analytically and have no appar-
ent problematic areas in the appropriate range of the parameters. To examine the
LLH-landscape and check whether it seems feasible that there is only one local
minimum a raster scan is made as can be seen in Figure 2.2.
When looking at the scans there are big parts of the parameter space that is in-
valid. This is due to the constraint x ≤ µ− σ

ξ
∀ξ < 0. Apart from this constraint the

landscape looks smooth and unimodal, and it seems reasonable to assume that
only one maximum exists.
The parameters that maximize the LLH-function are called the Maximum Like-
lihood Estimates (MLE) of the parameters. The notation is to put a hat on the
parameter, so the MLE of ξ is ξ̂. The approach can be quite fast, but does in its
simple form only give the MLE and no inference about the uncertainty. By use
of Wilks’ theorem a confidence interval of arbitrary size can be created and thus
inference about the uncertainty of the MLE can be made [Wilks, 1938].

Markov Chain Monte Carlo

The MCMC method is a more exploratory approach. The main principle is to
sample the posterior distribution by creating a Markov Chain that has the de-
sired distribution as its equilibrium distribution. The step-function of the Markov
Chain is chosen to be the Metropolis-Hastings due to technical limitations. More
sophisticated methods exist but the resulting distribution should be the same as
the length of the chain becomes large enough.
Uninformative uniform priors have been chosen for the parameters as no knowl-
edge about their distribution has been derived. The range of the parameters have
been chosen based on prior MCMC runs so that the sampled posterior is at a
comfortable distance from the upper and lower bounds. The convergence of the
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Figure 2.2: Two plots of the LLH-landscape of the Ballum data. The plot on the right shows a
macroscopic picture of what is deemed to be the realistic parameter landscape. The black area
is invalid parameter-combinations. The plot on the left is a zoom into the more likely area of
parameters.

chains is assured by inspecting the chains and a burn of 5000 steps was chosen.
The total length of the chains were 20000 and 4 chains were made. More stringent
convergence criteria could have been chosen but the chains were deemed to be
sufficiently well behaved to choose a fixed burn.
This method is a lot slower than ML at getting a good estimate of the parameters,
but in return it gives an approximation of the posterior distribution, which makes
it easy to get an estimate of the distribution and covariance of the parameters. It
also makes it simpler to propagate the uncertainty of the parameters numerically
to other calculations as you can make the calculation for the entire ensemble.

So the ML is a lot faster but gives close to no information about the posterior
distribution compared to MCMC. Therefore the ML-method is well suited for
superficially exploring large amount of data, where only a basic understanding
is needed (as in the teleconnection analysis) while the MCMC is preferred when
in-depth analysis is the goal.

2.1.4 Model comparison

As described in Section 2.1.2 a set of different models can be created by using dif-
ferent functions to express the relation between the predictor and the parameters.
When there is several models to choose from a method to decide which model
performs best is needed. There is a lot of different methods for this. Different
variations of the likelihood-ratio test which compares L̂ for the different models.
Information Criterion, such as DIC, AIC, WAIC which aims to penalize model
complexity in different ways. Various Cross-Validation-techniques that quanti-
fies the predictive ability of the model. Bayes factor which is based on sampling
the posterior distribution. This is just to illustrate that there is no single way to
do it.
The likelihood-ratio tests is for nested models. The leave-one-out cross-validation
and WAIC technique were tried but they were overly to be sensitive to the out-
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liers of the data1. The Bayes factor were chosen as a method as it is both simple
and flexible.
The Bayes factor is simply the ratio between the probability of the observed data
given one modelH1 and the probability of the observed data given another model
H2:

B12 =
P (D|H1)

P (D|H2)
(2.5)

→ lnB12 = lnP (D|H1)− lnP (D|H2) (2.6)

The probability P (D|H) can be approximated as:

P̂ (D|H) =

(
1

m

m∑
i=1

(P (D|θi) −1
)
−1 (2.7)

→ ln P̂ (D|H) = lnm+ lnP (D|θ0)− ln

(
1 +

m∑
i=1

elnP (D|θ0)−lnP (D|θi)

)
(2.8)

Here θi is drawn from the posterior distribution P (θi|D) which is simulated with
MCMC for each model as described in Section 2.1.3 and P (D|θ0) = maxP (D|θi).
A more elaborate derivation of these relations can be seen in Kass and Raftery
[1995].
The factor B12 can then be used to determine how much faith is put into H1 com-
pared to H2. The factor can then be interpreted according to the table 2.2. Note
that these are just guidelines and one can weight in prior faith in one model over
the other when interpreting the results.

2ln (B12) B12 Evidence against H2

0 to 2 1 to 3 Not worth more than a mention
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
> 10 > 150 Very strong

Table 2.2: Bayes factors and their interpretations as described in Kass and Raftery [1995]

When comparing n different models to one basis-model H1 the fraction of belief
in one model out of all models can be expressed as:

P (Hk|D) =
Bk1∑n
i=1Bi1

(2.9)

→ lnP (Hk|D) = lnBk1 − lnBi1 − ln

(
1 +

n∑
j 6=i

elnBj1−lnBi1

)
(2.10)

Where Bi1 = maxBj1.
This approach can be used to quantify model uncertainty and would allow to
make hybrid-estimations of parameters shared by the models, but in this paper it
is only used as a convenient way to show how much faith there should be put in
one model compared to the others.

1such as the December storm of 1999
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2.1.5 Return levels

When interpreting the model it is often more illustrative to look at return levels
than the estimated parameter-values. Return levels is a way of inferring how
likely an event of a certain magnitude is. The return level can be calculated from
the tail distribution of the GPD:

P (X > x|x > µ) =

(
1 + ξ

(
x− µ
σ

))
−1
ξ (2.11)

The conditional probability P (X > x|x > µ) can be rewritten as P (X>x)
P (x>µ)

. Since
P (x > µ) is simply the probability of an exceedance occurring, λ, in one time
step, τ , the equation can be rewritten:

P (X > x) = λ

(
1 + ξ

(
x− µ
σ

))
−1
ξ (2.12)

So if a water level xm is expected to be exceeded every m’th time step it must
follow that the probability for it to be exceeded at every time step is P (X > xm) =
1
m

.

1

m
= λ

(
1 + ξ

(
xm − µ
σ

))
−1
ξ (2.13)

⇒ xm = u+
σ

ξ

(
(mλ) ξ − 1

)
(2.14)

Parameter Range

Occurrences k (0,∞)
Rate λ (0,∞)
Interval τ (k,∞)

Table 2.3: The parameters of the
PD.

This value is called the m-period return level
The model for the exceedance rate λ is chosen to
be the Poisson distribution (PD). The probabil-
ity mass function of the PD can be seen in Equa-
tion 2.15. τ is chosen to be the number of observa-
tions in a month and k is then the number of ex-
ceedances in the given month. Thus we can make
inference about the rate parameter λ and use it
when calculating the return level.

P (k, λ, τ) =
(λτ) ke−k

k!
(2.15)

Notice that λ is required to be positive so a natural choice when making a non-
stationary model is to model λ as an exponential function of the predictor:

λ(t) = eaλH(t)+bλ (2.16)

2.2 Teleconnection

Teleconnections are the discipline of linking together climate anomalies over large
distance, sometimes thousands of kilometers. This is done by looking at the cor-
relation between 2 different climatic variables, for instance the water level on the
West Coast of Denmark and the sea surface temperature on the east coast of North
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America. By looking at long time series one can get a good estimate of how cor-
related the variables are [Schneider et al., 2011].
Normally one would determine the correlation coefficient for the two time se-
ries, but in this paper the GPD- and POI-distribution is fitted instead using the
water level as the primary time series and the other variable as the predictor, as
described in Section 2.1.2. If for instance the water level in Ballum and the sea
surface temperature is chosen, one could look at a grid of temperatures all over
the world and generate a map of fitted values as in Figure 4.1a. Here the aλ is
plotted and it shows which areas the fit returns a non-zero dependency, which
can be interpreted as a good correlation.
This approach has the downside that it assumes the chosen model is correct or
at least a good approximation, which is not necessarily true. But as the further
analysis assumes that the model is a good approximation it was deemed more
informative to fit the distributions than to calculate the correlation coefficients.
Teleconnection analysis are used as a tool to locate patterns that are believable,
but it is important to be critical, for instance could simple seasonal residuals in the
variables lead to unwarranted correlations. If a feasible pattern is located it is also
worth investigating whether it might be a proxy for another pattern, for instance
in Section 5.1 a teleconnection pattern is identified as a proxy for the NAO. This
does not necessarily invalidate the pattern, but it should be considered before
declaring that a new pattern has been found.

2.3 Empirical Orthogonal Functions

Once a teleconnection analysis has been made it is desirable to isolate the signal
that caused the correlation. One approach to do this is through Empirical Orthog-
onal Function-analysis (EOF-analysis). The main idea is to take a temporal-spatial
field and dissolve its covariance matrix into eigenvectors. Each eigenvector (an
EOF) has a corresponding time series, called a principal component (PC), and to-
gether they form a temporal-spatial field. Each of these fields explains a fraction
of the variance of the original field, and any major patterns in the original field is
therefore expected to be represented in one or more of the EOFs. This makes it
possible to isolate the patterns without background noise.
A thorough derivation and explanation of its application can be found in Navarra
and Simoncini [2010], but a short summary of how the method is applied in this
project will be given here.
Given a set of n time series x forming a grid around the world2, one can create
the matrix X = [x1,x2, . . . ,xn].
From here the covariance-matrix, R = XtX, is created and one solves the eigen-
value problem:

RC = CΛ (2.17)

Here the diagonal of Λ is the eigenvalues [λ1, λ2, . . . , λn] and the rows of C is the
corresponding eigenvectors. By normalizing the eigenvectors the magnitude of

2Each time series is for instance the observations from one observational post, or as in HadCrut
a mix between interpolations and observations
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the eigenvalues will represent how dominant the eigenvector is in the composi-
tion of the covariance-matrix, and thus the variance in the field X. By ranking
the eigenvectors by the magnitude of their corresponding eigenvalues one gets a
sequence [c1, c2, . . . , cn]. The vector c1 is referred to as the first EOF and so on.
An example of the first 3 EOFs of the SST can be seen in Figure 4.6
By projecting the EOFs back unto the original field a sequence of time series (PCs)
is acquired [a1, a2, . . . , an], an example of such can be seen in Figure 5.2.
If the pattern from the teleconnection analysis matches one of the EOFs well, then
the PC of that EOF can be used as the predictor. Alternatively one can reconstruct
the original field:

Fi =
n∑
j=1

cjaji (2.18)

Here Fi is the reconstructed field at time i, aji is the i’th value of aj and n is the
number of EOFs used in the reconstruction. The choice of n can be used to filter
out the less important components and thus simplify the signal, resulting in a
simplified predictor.
Another application of the EOFs is to extrapolate the predictors derived from
them. If a series of EOFs is derived from for instance the HadCRUT (see Sec-
tion 3.3) they run up until today. But by projecting model runs for future SST
(see Section 5.4) unto the EOFs, a series of pseudo-PCs can be generated that can
be used to reconstruct a field that has been extrapolated in time, and thus make
inference about how the climate is expected to evolve if the model is correct.
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Chapter 3

Data

This chapter introduces the data and the explains the pre-processing of the data
before it is used for statistical inference. They are separated into two categories:
Water level measurements and predictors.

3.1 Water level

Figure 3.1: The location of the four tide gauges
from which the water level measurements in this
paper originate

The water level data is the basis of the
analysis. The data is gathered from
tide gauges on the southern part of the
West Coast of Denmark. In Figure 3.1
the location of the four tide gauges can
be seen. They are all placed in the
same area and as such will only give
an idea about the behaviour of the wa-
ter level here. The ambition was to in-
clude tide gauges along all of the West
Coast, but no success was had in ac-
quiring the data.
In Table 3.1 the meta-data for the wa-
ter level measurements can be seen.
It is worth noting the relatively high
amount of missing data from Bal-
lum. This should be weighted in when
analysing results based on this station.
Curiously enough the number of events is the second highest in spite of the miss-
ing data. This could either indicate that Ballum has more storm surges than the
other stations or that the missing data is not masking many storm surges. Since
all the stations are placed in the same region, and therefore expected to have sim-
ilar water level, the latter seems more likely.
The station at Højer was moved in 1980 from Højer Sluse to the front of the
levee [Sørensen et al., 2013], so it seems likely that there is some different dynam-
ics in the first 8 years of the time series. This should also be taken into account
when analysing the results.
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City Coordinates Period Range/cm Missing data Events Source

Esbjerg N55◦46′ 05/12/1972 to -294 to 9.6% 271 KDI
E8◦45′ 23/02/2016 409 (1.73%)

Ballum N55◦13′ 05/12/1972 to -49 to 25.9% 298 KDI
E8◦69′ 23/09/2016 430 (1.91%)

Havneby N55◦9′ 05/12/1972 to -296 to 13.3% 253 KDI
E8◦69′ 18/05/2016 437 (1.62%)

Højer N54◦96′ 05/12/1972 to -191 to 12.5% 354 KDI
E8◦66′ 18/05/2016 472 (2.26%)

Table 3.1: Meta-data for the water level measurements. The range is for the preprocessed data
while the missing data and events is for the post-processed data. Missing data indicates how big a
fraction of the days that do not have any observations in them. Events is number of surges above
110 cm, and the percentage is how big a fraction of the days contain an event.

3.2 Processing of water level measurements

Before further analyzing the data it is needed to define exactly which trends of the
water level that are desired in the analysis. For instance is it desirable to include
tidal effects or should they be filtered out pre-analysis? In the case of tidal effects,
they are well understood and complicates the analysis unnecessarily. In general
all predictable trends should be removed, so that we are only left with a signal
that is mostly unpredictable by common methods. In the following sections dif-
ferent pre-analytic considerations on how to prepare the data for later modelling
are presented.

3.2.1 Data quality

The data that was acquired from KDI had anomalies in them, presumably due to
errors in the sensors. There were both obvious and less obvious anomalies in the
dataset. Four categories of these can be seen in figure 3.2.
The extreme signal as seen in figure 3.2a where a 600 m high surge appeared is
obviously an artifact of instrumental malfunction. It is easy to detect both visu-
ally and algorithmically by looking for the flat signal preceding or following the
peak, which is easily found by looking at the variance of the signal, which drops
to 0.
The second kind is dubbed ”signal cutoff” as seen in figure 3.2b. This could be
due to a floating device getting stuck and thus setting an upper limit. It could
potentially mask extreme events, but the artifact is not in itself problematic for
the analysis, as there is no fallouts that could be mistaken as an extreme event.
The artifacts as seen in figure 3.2c is the more common in the dataset and can
vary in size from a few hours to a few days as here. They are characterized by
a stepwise change in the data and clearly doesn’t follow the expected tidal be-
haviour. In the case of the Ballum dataset there is around 150 of these artifacts,
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but in this paper it has been decided to (in most cases) ignore them, as they are
in the low register and therefore will not mask any extreme highs included in the
analysis. They will have an influence on the analysis of tidal effects though, but
it is assumed that this is negligible as they only account for a miniscule fraction
of the time series.
The last type of artifact as seen in figure 3.2d is a bit more problematic. The signal
flattens at a high water level and then start again after some time. This makes
them easy to detect as the variance is 0 when the signal is flat lining. These arti-
facts seem to coincide with a rising water level as seen in the figure, and rightly
so there was a storm on the 28th Nov. 2011. So there is a high risk that the missing
data masks an extreme event. Since the anomaly is suspected to mask an extreme
event it is not feasible to make any sort of interpolation or estimation of the water
level based on the rest of the time series. Data from other nearby stations may be
used to make an estimate of the highest water level during these anomalies but
that has not been done in this analysis.

(a) An extreme anomaly in the signal (b) A cutoff of the high register

(c) Step-like signal in the low register (d) Signal dropout in the high register

Figure 3.2: Four examples of anomalies in the data.
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3.2.2 Tidal effects

The tidal effects are estimated by doing a least squares regression of Equation 3.1
with regards to the observed data, here ai is the angular speeds predefined by es-
tablished tidal constituents (i), and thus the fitted components are the amplitude
(Di) and the phase (θi)[Foreman, 1977].

F (t) = F0 +
n∑
i=1

Di · cos (ai · t+ θi) (3.1)

The tidal constituents used are the ones used by the NOAA[Hicks, 2006], as op-
posed to choosing from the full spectrum of constituents. This is done for conve-
nience and speed. The resulting tidal filter seems reasonably good.
An example of the data and the corresponding tidal fit can be seen in figure 3.3a
and the resulting residual after subtracting the tidal model from the data can be
seen in figure 3.3b.

3.2.3 Changing sea level

This paper does not aim to do any inference about the change in mean sea level,
as that is examined in other papers in greater detail. To negate the changing sea
level a rolling average of some interval is subtracted from the data. This also
serves to remove any seasonal variation in the water level still left over from the
tidal filter.
One unwanted effect from this is that it compress the dynamic range slightly. A
great surge in water level is not paired with an equal low, and as such a month
with one or more surges will likely have a higher mean than one without any,
thus after removing the mean the peak values will be closer to the ground level.
A balance between catching seasonal and other temporal change in the mean sea
level and keeping the peaks as distinct features as possible is sought.
As can be seen in figure 3.4 three fitted parameters is plotted against the size of
the rolling mean. There is a clear effect in both ξ and aλ up until an interval of 30
days, but in aσ there’s an influence up until around 50 days. It seems reasonable
to assume that the sea level change and seasonal change is constant through a 50
day period, so that is the interval chosen for this paper.

3.2.4 Declustering

Storminess is the primary driver for storm surges in Denmark and they can have
durations of several days [Sørensen et al., 2013], thus raising the sea level for a
prolonged amount of time. This means that peaks have a tendency to cluster. As
one of the criteria for the GPD is independent data points, some declustering has
to be done. This is done by setting up a rule for what is considered a cluster and
then discard all threshold-exceedances except the cluster-maxima[Coles, 2001].
A simple way to do it is to decide on a minimum interval that has to separate
two events. In figure 3.5 three fitted parameters are plotted against the minimum
interval seperating two events.
The uncertainty on the MLEs is too big to pinpoint a value for which the cluster
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(a) The original data (red) and the fitted tidal model (yellow)

(b) The residual after subtracting the tidal model

Figure 3.3: The signal at Esbjerg being treated with the tidal filter proposed in this section. Im-
portantly the peaks of the original signal is still clearly distinguished in the residual.

(a) The MLE of aσ plotted
against the boxcarsize.

(b) The MLE of aλ plotted
against the boxcarsize.

(c) The MLE of ξ plotted
against the boxcarsize.

Figure 3.4: Three MLE’s and their dependency on the boxcarsize.
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size does not influence the MLEs. A choice of 5 days is made as it seems from
figure 3.5b that this is past the initial drop.

(a) The MLE of aσ plot-
ted against the minimum dis-
tance between extremes.

(b) The MLE of aλ plot-
ted against the minimum dis-
tance between extremes.

(c) The MLE of ξ plotted
against the minimum dis-
tance between extremes.

Figure 3.5: Three MLE’s and their dependency on the minimum distance between extremes.

3.2.5 Threshold selection

Selecting the threshold µ in (2.1) is a balancing act between bias and variance. A
too low threshold will break the asymptotic behaviour of the GPD introducing a
bias into the estimate and a too high threshold will lead to incorrectly discarding
data and thus decreasing the quality of the estimate, leading to a higher variance.
One way do decide on a suitable threshold value is to look at the Mean Residual
Life (MRL) which will be a linear function of µ when a suitable threshold has
been chosen[Coles, 2001]. This has been done in 3.6a, where it can be seen that
for µ ∈ (50; 90) there is an approximate linear behaviour. Then the line breaks but
gets linear again for µ ≥ 110.
Another complimentary method is to plot the MLE of ξ against the threshold.
When a suitable threshold has been chosen, ξ should be independent of the choice
of threshold[Coles, 2001]. This has been done in figures 3.6b and 3.6c. Since the
model is non-stationary the free variables aξ and bξ has been plotted instead, but
they are expected to be constant as well. As can be seen there is a clear depen-
dence in bξ up until µ ' 65, where after the value is approximately stable until it
drops off at around µ = 120. For aξ the value varies steadily around 0 and does
not show any dependency.
In figure 3.6d the percentage of events exceeding a given threshold. As can be
seen the amount of exceedances for µ = 65 is 7% which is approximately twice
per month, comparatively if µ = 110 the amount of exceedences is 2%, which is
approximately once every second month. It seems a bit excessive to have two ex-
treme events per month and therefore a threshold of 110 has been chosen in this
paper.
A similar analysis has been done for the other stations and predictors and the
value is stable across the datasets.
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(a) (u,MRL)-plot Ballum. The shaded areas are the σ uncertainties.

(b) The fitted ax against the thresh-
old for the Ballum dataset against the
NAO-indicator. The vertical lines
show u = 65 and u = 110.

(c) The fitted bx against the thresh-
old for the Ballum dataset against the
NAO-indicator. The vertical lines
show u = 65 and u = 110.

(d) The percentage of events above a certain threshold. The vertical lines show
u = 65 and u = 110.

Figure 3.6: Threshold plots.
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3.3 Predictors

This section introduces the different predictors used.

3.3.1 Single time series

The single time series are used directly as predictors in the MCMC-simulations
with only minor adjustments such as rescaling, or converting to anomalies.

North Atlantic Oscillation

Period 01/1950 - 08/2016

Range -2.6 to 2.6

Source National Oceanic and
Atmospheric Admin-
istration

The NAO as defined in this paper is the
one used by the NOAA. It is calculated
as the first Rotated Empirical Orthogonal
Function of the SLP of the Northern Hemi-
sphere north of N20◦ as defined in Barnston
and Livezey [1987]. The Rotated EOF is a
more advanced form of the EOFs used in
this paper, where the constraint of orthogonality between the EOFs is loosened.
The NAO is expected to be one of the best predictors as it has been shown to
have a strong influence on the weather in Europe especially during the winter.
One problem is that it is difficult to predict. Therefore no extrapolation of the
results will be based on the NAO.

Global Mean Temperature

Period 01/1850 - 07/2016

Range/C◦ -0.9 to 1.2

Source Met Office Hadley
Center

The Global Mean Temperature is de-
rived from the SST-field described in Sec-
tion 3.3.2, by taking the mean of the field.
Since the grid is not evenly spaced each grid
point is weighted with the cosine of its lat-
itude. This indicator is the only predictor
based on a global dataset. Thus it is expected to represent a wide range of weather
patterns both relevant and irrelevant, and therefore it will be used as our baseline
predictor, for when we compare predictors in Section 5.2.

Noise from Global Mean Temperature

Period 01/1850 - 07/2016

Range/C◦ -0.9 to 0.9

Source Met Office Hadley
Center

This predictor is used as a check for the
validity of the predictors. The noise is gen-
erated so that it has the same power spec-
trum as the Global Mean Temperature, as
described in Ebisuzaki [1997]. Only one
time series of noise is generated, so it is not
going to be used as a tool of estimating statistical significance, but only as an in-
dicator of the validity of the other predictors when comparing the Bayes factors.

EOFs

The EOFs that are identified as relevant through the teleconnections, are trans-
formed into single time series in three different ways.
For the SST a simple weighted mean of the area is done for the reconstructed
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field.
For the SLP a weighted average of the area is done for the reconstructed field and
it is then it is transformed into monthly anomalies with base in 1961-1991.
For the third EOF of the SST the PC of the EOF is used as the predictor with no
further modifications.

3.3.2 Field of time series

The fields of time series are used for making teleconnection analyses to explore
potential teleconnection patterns. On the basis of the teleconnection some sub-
fields can be subjected to EOF-analysis and through either a mean of the EOFs
or simply by the PCs, the fields are reduced to a single time series, used for the
MCMC-simulations.

Sea Level Pressure

The HadSLP2r(Low variance) is a
global field of monthly mean sea level
pressure (MSLP) released by the
Hadley Center in the UK. It is based
on historical data dating back to 1850
up till 2012, and the grid is made
complete by interpolation of the data.
A near-real-time product exists,
HadSLP2r, which goes up until today,
but it is not consistent in mean and
variance with the pre-2012 data and
therefore not suitable for the long-term
analysis of this paper. Further
information can be found in Allan and
Ansell [2006].

Grid A 5◦ latitude by 5◦

longitude grid cover-
ing the entire globe.

Period 01/1850 - 12/2012

Range/hPa -26.1 to 34.9

Name HadSLP2rLowVar

Source Met Office Hadley
Center

Sea Surface Temperature Anomaly

The HadCRUT4 is a field of
temperature anomalies with basis in
1961-1991 monthly medians. The
original dataset is a 100 member
ensemble based on observations with
different bias-adjustments, here the
median of the ensemble is used. The
version used in this paper is one where
interpolation has been used to fill in
time slices with no observations as
described in Cowtan and Way [2014].
Further information about the original
HadCRUT4 can be found in Morice
et al. [2012].

Grid A 5◦ latitude by 5◦

longitude grid cover-
ing the entire globe.

Period 01/1850 - 07/2016

Range/C◦ -20.4 to 17.2

Name HadCRUT4

Source Met Office Hadley
Center
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Results

In this chapter the results of the different fits and comparisons is presented. There
are 3 different kinds of models that are used in this chapter:

Full: In this model all the parameters are dependent on the predictor H. The re-
lations are as follows:

σ(t) = aσ ·H(t) + bσ
ξ(t) = eaξ·H(t)+bξ

λ(t) = eaλ·H(t)+bλ

Fixed X : Here X is one of the parameters. This is equivalent to the Full model except
that the parameter X is kept as a constant.

Fixed: In this model all of the parameters are kept as constants, equivalent to no
dependence on the predictor.

The models for the Poisson-distribution and the Generalized Pareto-distribution
are kept separate so the dependence for the two can be analyzed separately. Since
the two models are independent this does not have any influence on the results.

4.1 Teleconnection

The results of teleconnection analysis as described in Section 2.2 is presented here
in this section. As the amount of graphs is large, only a fraction will be included
to highlight tendencies and other considerations, the rest can be found in Ap-
pendix A.1.
The plots are all for the Full model as described in the introduction of this chapter
and only the predictor coefficients, (aλ, aσ and aξ), are presented as they are the
values used later in the analysis.
Additionally the teleconnection-analysis has also been done for the seasons sep-
arately to both highlight seasonal dependence and the stability of the patterns in
the teleconnection plots. The map plots of the teleconnection have been dotted
with a black dot at every grid point where the MLE of the 66%-confidence interval
contains 0, so as to not make highly unpredictable areas appear more convincing
than they are.
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4.1.1 Sea Surface Temperature

The SST is the HadCRUT4 as described in Section 3.3. They are monthly anoma-
lies. In Figure 4.1 is the teleconnection map for the entire series of Ballum and the
SST. They have a overlap from 1972 – 2015 (43 years).
To check for seasonal dependency of the parameter the fit has also been done for
each of the four quarters (JFM, AMJ, JAS, OND) which can be seen in Figure 4.2.

(a) Teleconnection plot of âλ (b) Teleconnection plot of âσ

(c) Teleconnection plot of âξ

Figure 4.1: Teleconnection plots of the MLE of the predictor coefficients for Ballum and the SST.
The black dots indicate areas where the 66%-CI spans over 0, which is interpreted as the sign of
the coefficient being dubious in that area.

4.1.2 Sea Level Pressure

The SLP is the HadSLP2r as described in Section 3.3. Unlike the SST, these are not
monthly anomalies by default. As can be seen in In Figure 4.3 if the analysis is
done with the unprocessed field the analysis is dominated by a signal that is only
located over equatorial sea-zones with alternating sign between north and south.
This indicates a dominant seasonal mode and therefore the SLP is changed into
monthly anomalies for the rest of the teleconnection analysis.
The Figure 4.4 is the teleconnection plot for the entire series of Ballum and the
SLP. They have a overlap from 1972 – 2012 (40 years).
To check for seasonal dependency of the parameter the fit has also been done for
each of the four quarters (JFM, AMJ, JAS, OND) as can be seen in Figure 4.5.
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(a) Teleconnection plot of âλ for JFM (b) Teleconnection plot of âλ for AMJ

(c) Teleconnection plot of âλ for JAS (d) Teleconnection plot of âλ for OND

Figure 4.2: Seasonal teleconnection plots of âλ for Ballum and the SST. The black dots indicate
areas where the 66%-CI spans over 0, which is interpreted as the sign of the coefficient being
dubious in that area.

Figure 4.3: Teleconnection plot for âλ for Ballum and SLP without shifting to monthly anomalies.
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(a) Teleconnection plot of âλ (b) Teleconnection plot of âσ

(c) Teleconnection plot of âξ

Figure 4.4: Teleconnection plots of the MLE of the predictor coefficients for Ballum and the SLP.
The black dots indicate areas where the 66%-CI spans over 0, which is interpreted as the sign of
the coefficient being dubious in that area.

(a) Teleconnection plot of âλ for JFM (b) Teleconnection plot of âλ for AMJ

(c) Teleconnection plot of âλ for JAS (d) Teleconnection plot of âλ for OND

Figure 4.5: Seasonal teleconnection plots of âλ for Ballum and the SLP. The black dots indicate
areas where the 66%-CI spans over 0, which is interpreted as the sign of the coefficient being
dubious in that area.
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4.2 Empirical Orthogonal Functions

This section presents the 3 leading EOFs for the SLP and the SST. They are gen-
erated from the datasets described in Section 3.3.2 with the method described in
Section 2.3.

(a) First EOF of SST of Northern Hemisphere. Explains 15.7% of the total variance.

(b) Second EOF of SST of Northern Hemisphere. Explains 8.5% of the total variance.

(c) Third EOF of SST of Northern Hemisphere. Explains 6.5% of the total variance.

Figure 4.6: First three EOFs of SST over Northern Hemisphere. Combined they explain 30.6% of
the total variance of the field. Notice the similarities between the third EOF and the teleconnection
with SST.
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(a) First EOF of SLP. Explains 14.6% of the
total variance.

(b) Second EOF of SLP. Explains 7.7% of
the total variance.

(c) Third EOF of SLP. Explains 6.8% of the
total variance.

Figure 4.7: First three EOFs of the SLP for the entire world. Combined they explain 29.1% of the
total variance of the field.

4.3 Bayes factors

This section presents the results of the model and predictor comparisons as de-
scribed in Section 2.1.4. The percentages shown are the fraction of belief in that
model compared to the rest of the models in the row. For instance in Table 4.1 the
first row shows that there is an overwhelming belief in the Full Poisson compared
to the Fixed. The ratio between the percentages is > 100 indicating very strong
evidence in favor of the Full model according to Table 2.2. For the Generalized
Pareto the belief is strongest in the Fixed model. Compared to the Full model
there is a factor 10, which corresponds to a positive evidence, but compared to
the Fixed ξ there is only a factor 2 corresponding to very little evidence.
It should be kept in mind that there needs to be a factor of three or more between
the Bayes factors before it can be considered positive evidence.
In this table there are predictors based on EOFs which have not yet been pre-
sented. They are defined in Section 5.1.
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Poisson Generalized Pareto
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Ballum

NAO 100% 0% 5% 22% 23% 50%

Global Temperature 30% 70% 7% 17% 26% 50%

3rd PC of SST 100% 0% 1% 29% 10% 60%

EOF of SLP – NA 25% 75% 6% 16% 10% 68%

EOF of SST – NA 27% 73% 10% 19% 11% 60%

Esbjerg

NAO 100% 0% 18% 7% 36% 39%

Global Temperature 1% 99% 12% 14% 21% 53%

3rd PC of SST 100% 0% 5% 44% 12% 39%

EOF of SLP – NA 10% 90% 7% 27% 19% 47%

EOF of SST – NA 22% 78% 23% 6% 30% 41%

Havneby

NAO 99% 1% 52% 15% 5% 28%

Global Temperature 7% 93% 5% 1% 18% 76%

3rd PC of SST 100% 0% 12% 19% 40% 29%

EOF of SLP – NA 36% 64% 6% 5% 18% 71%

EOF of SST – NA 24% 76% 4% 21% 21% 54%

Højer

NAO 38% 62% 20% 10% 43% 27%

Global Temperature 38% 62% 10% 15% 21% 54%

3rd PC of SST 100% 0% 2% 13% 45% 40%

EOF of SLP – NA 14% 86% 11% 29% 15% 45%

EOF of SST – NA 28% 72% 9% 18% 15% 58%

Table 4.1: Relative Bayes factors for the different stations for the different models. The green cell
is the model with the highest Bayes factor.
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Ballum

Poisson 0% 0% 100% 0% 0% 0%

GPD 12% 13% 5% 14% 25% 31%

Esbjerg

Poisson 0% 0% 100% 0% 0% 0%

GPD 25% 18% 9% 3% 35% 10%

Havneby

Poisson 0% 0% 100% 0% 0% 0%

GPD 69% 2% 13% 2% 3% 11%

Højer

Poisson 0% 0% 100% 0% 0% 0%

GPD 51% 11% 3% 17% 8% 10%

Table 4.2: Relative Bayes factors for the different stations for the different predictors. For all
predictors the ”Full Model” is used for both the GPD and the POI. There is a slight bias in favor
of SLP. The green cell is the predictor with the highest Bayes factor.
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4.4 Parameter estimates

In Table 4.3 the predictor coefficient-estimates from the MCMC-simulations are
presented. They are calculated as the mean of the ensemble. Only the results
from the Full models are included, since the other models are submodels, and
thus included if the coefficients is 0. The coefficients where the 66%-CI does not
span 0 are highlighted in colors to indicate that there is significant evidence in
favor of the sign of the coefficient.
In Figure 4.8 a cornerplot of the parameters are shown. This shows the combined
Markov Chains and their distributions projected unto 2D-spaces pairwise. Only
two plots are shown out of the 40 possible, since they represent the two categories
that the plots fall into: Strongly correlated parameters and weakly correlated pa-
rameters.
If the parameters were independent we would assume them to be normally dis-
tributed around their mean and thus generate circular contour plots. If the con-
tour plots are eliptic it means that there is a non-zero covariance betweenn the
two parameters. There is a general tendency in the plots that the more belief there
is in a certain station-predictor combination, the less covariance there is between
the parameters. This is clear in the referenced figure where there is approximately
double the belief in NAO compared to the Global Temperatue and the contours
for the Global Temperatue is more elliptic.
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aλ aσ aξ

Ballum

NAO 2.80× 10−1 7.76× 10−2 1.12× 10−3

Global Temperature 7.47× 10−2 −8.08× 10−2 −2.69× 10−2

3rd PC of SST −4.21× 10−2 3.54× 10−3 4.67× 10−3

EOF of SLP – NA 9.73× 10−2 −1.10× 10−1 1.82× 10−1

EOF of SST – NA −1.81× 10−2 1.77× 10−2 −2.39× 10−2

Esbjerg

NAO 2.78× 10−1 9.81× 10−2 1.84× 10−2

Global Temperature −7.57× 10−2 5.86× 10−1 −3.91× 10−1

3rd PC of SST −4.17× 10−2 5.88× 10−3 −3.33× 10−3

EOF of SLP – NA 2.96× 10−1 6.94× 10−3 9.82× 10−3

EOF of SST – NA −1.43× 10−1 3.72× 10−1 −2.08× 10−1

Havneby

NAO 2.56× 10−1 2.78× 10−2 −1.04× 10−1

Global Temperature 7.72× 10−2 1.88× 10−1 −1.89× 10−1

3rd PC of SST −4.20× 10−2 −9.95× 10−3 1.22× 10−3

EOF of SLP – NA 2.27× 10−1 −2.52× 10−1 2.83× 10−1

EOF of SST – NA −6.71× 10−2 1.71× 10−2 −1.25× 10−2

Højer

NAO 2.13× 10−1 1.96× 10−1 −4.83× 10−2

Global Temperature 2.64× 10−1 1.30× 10−1 −1.34× 10−1

3rd PC of SST −3.75× 10−2 −9.70× 10−3 1.76× 10−3

EOF of SLP – NA 1.15× 10−1 4.77× 10−2 1.70× 10−1

EOF of SST – NA 8.25× 10−2 1.27× 10−1 −8.24× 10−2

Table 4.3: The mean parameter values of the MCMC-chains. Only the time dependent parameters
for the ”Full” models are shown. Cells marked with a color indicates that the 66%-confidence
interval did not span over 0, strengthening the belief in the sign of the parameter. Green indicates
a positive parameter while red indicates a negative.
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(a) The corner plot for Esbjerg and the Global Temperature.

(b) The corner plot for Esbjerg and NAO.

Figure 4.8: Corner plots illustrating the distribution and covariance of the GPD-parameters for
Esbjerg and the two predictors. The general trend is that the stronger the predictor the smaller the
covariance of the parameters.
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Chapter 5

Analysis

5.1 Teleconnection and EOF

From looking at the teleconnection analysis it becomes clear that there is a cor-
relation between aσ and aξ. Their respective teleconnection plots, for instance
Figures 4.4b and 4.4c, are near complete opposites, and the same pattern is seen
for all other stations and for SST-teleconnection too. This indicates that as one
rise, we would expect the other to drop.
Figure 5.1 is an excerpt from Figure 4.6c and Figure 4.1 that show the resemblance
between the teleconnection pattern of Ballum against the SST and the 3rd EOF of
the SST. As can be seen there is some striking similarities but they are inverted.
A high/low over the North Americas stretching into the Atlantic over to Europe
and reaches Western Russia. From the Caribbean a low/high reaches across the
Atlantic to Northern Africa and stretches east to the Middle East. Similarly a
low/high hovers over the North Atlantic Ocean. There is no obvious correlation
outside of these regions.
For the teleconnection there is a clear low over Iceland and a high over the Azores.
This corresponds with the two centers of the NAO and hints that this might also
be an influential predictor, although it is not clear why it shows up in the telecon-
nection of the SST and not the SLP.
The patterns described above is also described in Osborn [2010] where it is iden-
tified as ”the slope of the least-squares simple linear regression between monthly
CRUTEM3 land/HadSST2 sea temperature anomalies and monthly NAO index
values (normalised to have unit variance).” So it may just be an indirect NAO-
index, which would show in later analysis if true.
In Figure 5.2 the principal component of the third EOF can be seen.

From Figure 4.4 it can be seen that both âλ and âσ has has some correlation
with the South Atlantic/South America/South Eastern Pacific and some over the
Northern Indian Ocean.
The correlation in the Atlantic and South America can be seen to be similar to the
pattern shown in Figure 4.3, and is thus assumed to just be seasonal residual.
The link to the Indian ocean is not intuitively meaningful, but as shown in Li
et al. [2010] there is a correlation between the warming of the Indian Ocean and
an increase in the Arctic Oscillation which is closely related to the NAO. Due to
the missing physical link these areas are considered to be proxies for the NAO in
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Figure 5.1: Comparison of the teleconnection for the SST and the 3rd EOF of the SST over the
Northern Hemisphere.

Figure 5.2: Principal component of the 3rd EOF of the SST.
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this study.
There are no indications of correlation with the North Atlantic SLP, which is the
source of the NAO. As the teleconnection of the SST indicates that the NAO
has a significant influence, this is surprising, and draws into question whether
the anomalisation of the SLP was a meaningful approach. The influence of SLP
might be more based on gradients than absolute values. That would explain why
no significant pattern shows up on the teleconnection.
The North Atlantic is the nearest ocean and as such the climate in and around
this ocean is assumed to be the most important. Therefore a mean of the first 80%
EOFs of the area N40◦ − N70◦ and W60◦ − E20◦ is also suggested as a predictor
(EOF of SST – NA and EOF of SLP – NA).

5.2 Bayes factors

In Table 4.1 the relational Bayes factors for the different station/predictor com-
binations and models can be seen. It is important to emphasize that the values
are with a rather large uncertainty and should mostly be interpreted in relation to
each other. Referring to Table 2.2 there need to be a factor of at least 3 between the
percentages before any evidence for or against the models can be inferred. Never
the less the table can be read as a hint of how much faith should be put into one
model over another, and patterns that are consistent between the stations can also
be identified.
For the Poisson distribution there is a clear pattern where the NAO and the 3rd
PC of SST (3PC) has very strong evidence in support of the Full model. One
exception is for Højer where there is minor evidence against the Full model for
NAO. It is not immediately clear why Højer stands out, though it might be caused
by the move of the tide gauge as described in Section 3.1 but it seems odd that the
other Poisson Bayes factors fall in line with the rest if that was the case. The rest
of the values for Højer does not deviate significantly. For the Global temperature
as a predictor there is about a factor of 4–10 in favor of the fixed model. Using
Table 2.2 as reference this means a positive belief in the stationary model. As such
the global temperature is not considered to be a good predictor for the frequency
of events, at least given the exponential relation used. The factors for the two
EOFs are around 2–4 in favor of the Fixed model. This is too little to claim any
evidence in favor of either model.
For the Generalized Pareto almost all of the combination have evidence in favor
of a Fixed model over the Full model, though it is minor for NAO.
The 3rd PC of SST does have minor evidence for partially Fixed models over the
fully Fixed for 3 of the stations indicating some dependence on this predictor
though not strong.
This reinforces the belief that the NAO is an important driver for the storm surges.
Since the 3rd PC of SST was identified as a proxy for the NAO it makes good
sense that these two predictors are linked together and both show similar predic-
tive skills.
In Table 4.2 the belief in each predictor is compared. It is the Full model that has
been used for the comparison, which should not induce a bias as the Fixed mod-
els are nested in the Full models.
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The factors have all been calculated against the Global Temperature before con-
verting them into fractions. This resulted in a problem with the SLP because it
ends 3 years before the water level measurements, and thus the Global Temper-
ature had to be cut off there too to make a fair comparison, thus decreasing the
number of fitted events. This likely introduce a bias in favor of the SLP-based
model but as it does not dominate any of the comparisons this does not make a
difference to the conclusions.
For the Poisson-distribution there is very strong evidence in favor of the 3rd PC
of SST over all other predictors, indicating a very strong correlation. Interestingly
enough it is also heavily favored over the NAO of which it was assumed to be a
proxy. This could indicate that it should be viewed as an independent pattern.
For the GPD the NAO is favored by Havneby and Højer, while Esbjerg have no
strong evidence in favor of any one predictor. In Ballum the evidence is in favor
of the noise which highly reduces the credibility of the predictors for this station.
The 3rd PC of SST scores consequently low in this comparison compared to the
NAO further enforcing the belief that it might be considered a separate pattern.
In summary of this section it is concluded that the only predictors that have evi-
dence in favor of a non-stationary model are the NAO and the 3rd PC of SST, the
rest have minor to strong evidence in favor of a Fixed model. When comparing
the Bayes factors of the different predictors there is very strong evidence in favor
of the 3rd PC of SST for the Poisson distribution, while there is no clear preferred
predictor for the GPD although a positive evidence in favor of the NAO can be
seen for Havneby and Højer.

5.3 Parameter estimates

In Table 4.3 the parameter estimates of the predictor coefficients can be seen. The
magnitude of the parameters should not be compared in between the models as
they have not been normalized in any way and as such of different magnitudes
themselves, see Section 3.3.1 for the range of the predictors.
Therefore it is the sign of the parameters that are highlighted in the table. The
estimates where the sign is consistent within the 66%-CI is colored with green for
positive and red for negative to clearly present the important patterns.
The only two estimates that retain their color over all 4 stations is aλ for the NAO
and the 3rd PC of SST. This is not surprising as it was shown in the previous sec-
tion that there was significant evidence for these two predictors for the Poisson
distribution. It should also be noted that they have opposite sign of each other.
The same two predictors are also the only ones to have the same sign between
two stations for the aσ, and also here are they opposites. For aξ there is no
station/predictor-combination that has a consistent sign between stations. This
could be interpreted as though there is a general tendency towards a ξ that is not
dependent on the predictors. Referring back to Table 4.1 this is emphasized by
the Fixed ξ model being the second most ”popular” after the Fixed model.
It should also be noticed that for all estimates where the sign of aσ an/or aξ is
significant, the corresponding aξ/aσ is of opposite sign. This indicates that the
two parameters are not independent of each other. This is further emphasized
by Figure 4.8, where the covariance between aσ and aξ is clearly visualized in the
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elliptic contour plots.
This is could be due to the constraint µ ≤ x ≤ µ− σ

ξ
for ξ < 0 which makes some

areas of the parameter space invalid. If this were the case we would expect that
there was a stronger covariance for predictors where ξ < 0 most of the time since
they would be more constrained. Referring back to Figure 4.8 again it is clear that
the estimates are much more interdependent for the Global Temperature that for
the NAO, but the calculating the percentages of ξ < 0 it is 20% for the Global
Temperature and 50% for the NAO, making it unlikely that it is the constraint
that is the cause of the covariance. It is unclear what the cause could otherwise
be.
In summary of this section there is a clear evidence for the sign of aλ for NAO and
the 3rd PC of SST, and to a lesser degree for aσ for the same two predictors. None
of the other predictors showed consistency in the sign of the estimates. This re-
inforces the conclusion from the last section that the NAO and the 3rd PC of SST
are the best predictors for the Poisson.
It was also found that the aσ and aξ are likely to have opposite signs, though the
cause of this interdependence is unknown.

5.4 Predictions

Both Section 5.2 and 5.3 present arguments for NAO and the 3rd PC of SST as
the best predictors. There is strong evidence for a non-stationary model for the
Poisson-distribution while there is weak evidence for a stationary model for the
GPD.
In other words there is found no evidence in favor of the distribution of extreme
storm surges changing over the last four decades. There is strong evidence for a
change in the rate at which these surges happen.
The goal of this section is to extrapolate these changes to make inference about
how the statistics of storm surges might change in the near future. The procedure
is explained for the 3rd PC of SST.

Figure 5.3: The 3rd PC of SST and a fitted linear
trend with a = 5× 10−4 yr−1

As seen in Figure 5.3 there is a mi-
nor positive linear trend in the predic-
tor and the variance rises dramatically
at the turn of the 20th century. If we
assume that there is a positive trend
what would that mean for the distri-
bution extreme events?
The coefficient aλ is negative meaning
that the rate at which the events hap-
pen would fall as the predictor rises.
As the rate falls so would the return
level described in Section 2.1.5.
There is some evidence that the sign
of aσ is negative. This would mean σ
would fall as the predictor rises. Referring back to Figure 2.1 and the constraints
of the GPD this would make the tail of the distribution shorter, shifting the dis-
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tribution towards the threshold. This would decrease the return level for high
return periods, as these events become more rare.
There is no evidence for the sign of aξ, but as pointed out in Section 5.3 there is a
tendency towards it have the opposite sign of aσ, which would be positive. This
would mean a rising ξ opposing the effects of a falling σ. From this analysis it
is not clear what will happen as the predictor changes, except that the rate of ex-
ceedances should fall.

5.4.1 Extrapolation

Figure 5.4: The 3rd PC of SST extrapolated with
the CMIP5-ensemble for the RCP8.5 scenario.

To do inference about the future the
CMIP5-ensemble1 is used. Each model
in the ensemble runs from 1850 to 2100
with a temporal resolution of 1 month.
They each consist of a 5◦ by 5◦-grid
which can be projected unto the EOFs
of the original grid and then used to
extrapolate, as briefly described in Sec-
tion 2.3. On the figure to the right the
3rd PC of the SST is extrapolated using
the CMIP5 ensemble. Notice that the
line has been smoothed as only trends
on a larger scale are desired in the pre-
diction.
The CMIP5 works with 4 different scenarios: The RCP2.6, RCP4.5, RCP6 and
RCP8.5. Each corresponding to a different scenarios the concentration of green-
house gases in our atmosphere, the latter being the one with the highest concen-
tration and vice versa.
The extrapolation is calculated like this:

• Pick a scenario

• For each member of the ensemble of models corresponding to the chosen
scenario calculate a smoothed time series by projecting the member unto
the EOFs, and manipulating the resulting PCs

• For each member calculate a time series of ensembles of return levels for
a given return period and convert them into ratios with basis in the return
level January 2000

• Pool the ratio together and calculate the median, quartiles and 66%-CI.

The reason that ratios are used instead of absolute values are the inherent uncer-
tainty in the climate models. By reducing the predictions to ratios it is easier to
compare the extremes of the models as they are scaled to the same magnitude.
The results can be seen in Figure ?? and ??.
As can be seen there is a general trend towards a fall in the return level for both

1The CMIP5 is a ensemble of climate models from different climate modelling groups around
the world.
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(a) Scenario RCP2.6 (b) Scenario RCP4.5

(c) Scenario RCP6 (d) Scenario RCP8.5

Figure 5.5: Prediction of the 50-year return level presented as a ratio of the 50-year return level in
2000. The station is Esbjerg and the predictor is the 3rd PC of SST

(a) Scenario RCP2.6 (b) Scenario RCP4.5

(c) Scenario RCP6 (d) Scenario RCP8.5

Figure 5.6: Prediction of the 100-year return level presented as a ratio of the 100-year return level
in 2000. The station is Esbjerg and the predictor is the 3rd PC of SST
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the 50-year and the 100-year return level, though the fall is greatest for the 50-year
return level.The general fall in the return level is well in line with the conclusion
from the previous section, where it was predicted that the overall rate of storm
surges would be falling. The bigger fall in the 50-year return level could indi-
cate that the ξ-dependence is dominant over the σ, but the difference is not large
enough to conclude anything with statistical significance.
The plots are very similar for the other stations which can be found in Appendix A.2.
It is problematic that the data only has a time span of 40 years, as that makes the
extrapolation less credible.
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Conclussion

In the previous chapters the validity of a range of different models and predic-
tors have been assessed. There has been no conclusive evidence in favor of a
non-stationary model for the GPD, though some station/predictor combinations
showed weak evidence against the completely stationary model. This indicates
that the distribution of storm surges is not expected to change significantly in the
immediate future, though it is possible that the right model/predictor combina-
tion simply has not been found.

Figure 6.1: The empirical return level
for Esbjerg (red dots) and a fitted sta-
tionary GPD (black line). The error
bars and the shaded grey area indicates
66%-CI.

Very strong evidence has been found in fa-
vor of the non-stationary model for the rate
parameter λ. Especially the 3rd PC of SST
was found to outperform the other predic-
tors overwhelmingly. The 3rd PC of SST
was initially identified as ”the slope of the
least-squares simple linear regression between
monthly CRUTEM3 land/HadSST2 sea tem-
perature anomalies and monthly NAO in-
dex values (normalised to have unit vari-
ance)” [Osborn, 2010], but since there was very
strong evidence in favor of it over the NAO it
seems likely that it contains additional uniden-
tified climatic information with great signifi-
cance for the storm surge rate. This could be
worth investigating in subsequent research.
The coefficient of aλ for the 3rd PC of SST was
found to be negative with a 33% significance
level. Extrapolation of the predictor shows that it is expected to rise over the next
century thus resulting in an expected lower rate of storm surges.
In Figure 5.5 and 5.6 it is shown that this would result in a drop in the expected
50- and 100-year return levels, much in line with the predictions in Menéndez
and Woodworth [2010].
One should be vary though as the time period used for calibration of the model
is relatively short compared to the extrapolated period. It is a good indicator that
none of the ratios diverge making the result more believable, but a goal for fur-
ther research would be to acquire longer data series.
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Scenario MSLR

RCP2.6 0.4 m
RCP4.5 0.5 m
RCP6 0.6 m
RCP8.5 0.7 m

Table 6.1: Best guess projected relative sea level rise between 1986–2005 and 2081–2100 in the
German Blight. Source: [IPCC, 2013]

Referring back to the naive prediction from the introduction, that the 100-year
event of today would be equal to the 5-year event of 2100, it would be interesting
to examine what influence the results of this paper would have on this prediction.
In Figure 6.1 the empirical return plot for Esbjerg with basis in 1972-2015 is pre-

sented as well as a fitted stationary model. Even though the evidence is strong in
favor of a non-stationary model it looks as though the stationary approximation
is reasonably good in this case.
For each return period the predicted mean ratio for the period 2081–2100 over
1986–2005 is calculated and multiplied by the corresponding fitted return levels
from Figure 6.1. This is done for each of the four emission scenarios adding the
corresponding predicted mean sea level rise as seen in Table 6.1. The resulting
return level plot can be seen in Figure 6.2. The 100-year return event for today is
roughly equal to the 45-year event of 2100 for all scenarios, a much less gruesome
prediction than the naive prediction of a return period of 5 years.
The high emission scenarios seems to have slightly higher return levels for the
short return periods than the low emission scenarios. Conversely the low emis-
sion scenarios have higher expected return level for the longer return periods
although the uncertainty makes it impossible to draw any conclusion.
Interestingly this is in line with the findings from Figure 1.2, where the post-1994
period has more low storm surges but fewer high ones than the pre-1994 period.
So according to the findings in this paper there is some evidence that, in spite of
the higher projected sea level rise, the high emission scenario might be the one
that results in the lowest extreme surges, making the predicted future for the West
Coast of Denmark a little less bleak.
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Figure 6.2: Predictions of the return level in Esbjerg for the four different scenarios. The black
line is the baseline return levels from 1986–2005. The green line is predicted return levels for
the period 2081–2100. The red solid line indicates the 100-year return level of today and the red
dashed line indicates the expected return period for the same event in 2100.
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Appendix A

Plots

A.1 Teleconnection-plots

(a) Teleconnection plot of âλ (b) Teleconnection plot of âσ

(c) Teleconnection plot of âξ

Figure A.1: Teleconnection plots of the MLE of the predictor coefficients for Ballum and the SST
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(a) Teleconnection plot of âλ (b) Teleconnection plot of âσ

(c) Teleconnection plot of âξ

Figure A.2: Teleconnection plots of the MLE of the predictor coefficients for Esbjerg and the SST

(a) Teleconnection plot of âλ (b) Teleconnection plot of âσ

(c) Teleconnection plot of âξ

Figure A.3: Teleconnection plots of the MLE of the predictor coefficients for Havneby and the SST

49



Morten Hallas Chapter A

(a) Teleconnection plot of âλ (b) Teleconnection plot of âσ

(c) Teleconnection plot of âξ

Figure A.4: Teleconnection plots of the MLE of the predictor coefficients for Højer and the SST

(a) Teleconnection plot of âλ (b) Teleconnection plot of âσ

(c) Teleconnection plot of âξ

Figure A.5: Teleconnection plots of the MLE of the predictor coefficients for Ballum and the SLP
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(a) Teleconnection plot of âλ (b) Teleconnection plot of âσ

(c) Teleconnection plot of âξ

Figure A.6: Teleconnection plots of the MLE of the predictor coefficients for Esbjerg and the SLP

(a) Teleconnection plot of âλ (b) Teleconnection plot of âσ

(c) Teleconnection plot of âξ

Figure A.7: Teleconnection plots of the MLE of the predictor coefficients for Havneby and the SLP
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(a) Teleconnection plot of âλ (b) Teleconnection plot of âσ

(c) Teleconnection plot of âξ

Figure A.8: Teleconnection plots of the MLE of the predictor coefficients for Højer and the SLP
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A.2 Predictions

(a) Scenario RCP2.6 (b) Scenario RCP4.5

(c) Scenario RCP6 (d) Scenario RCP8.5

Figure A.9: Prediction of the 50-year return level presented as a ratio of the 50-year return level
in 2000. The station is Ballum and the predictor is the 3rd PC of SST
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(a) Scenario RCP2.6 (b) Scenario RCP4.5

(c) Scenario RCP6 (d) Scenario RCP8.5

Figure A.10: Prediction of the 100-year return level presented as a ratio of the 100-year return
level in 2000. The station is Ballum and the predictor is the 3rd PC of SST

(a) Scenario RCP2.6 (b) Scenario RCP4.5

(c) Scenario RCP6 (d) Scenario RCP8.5

Figure A.11: Prediction of the 50-year return level presented as a ratio of the 50-year return level
in 2000. The station is Havneby and the predictor is the 3rd PC of SST
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(a) Scenario RCP2.6 (b) Scenario RCP4.5

(c) Scenario RCP6 (d) Scenario RCP8.5

Figure A.12: Prediction of the 100-year return level presented as a ratio of the 100-year return
level in 2000. The station is Havneby and the predictor is the 3rd PC of SST

(a) Scenario RCP2.6 (b) Scenario RCP4.5

(c) Scenario RCP6 (d) Scenario RCP8.5

Figure A.13: Prediction of the 50-year return level presented as a ratio of the 50-year return level
in 2000. The station is Højer and the predictor is the 3rd PC of SST
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(a) Scenario RCP2.6 (b) Scenario RCP4.5

(c) Scenario RCP6 (d) Scenario RCP8.5

Figure A.14: Prediction of the 100-year return level presented as a ratio of the 100-year return
level in 2000. The station is Højer and the predictor is the 3rd PC of SST
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