
 
U N I V E R S I T Y  O F  C O P E N H A G E N  
 

 

 

MSc in Physics

The Need for Speed
An Investigation of bottlenecks towards optimization of

EC-Earth3-HR (on CRAY XC50)

Nga Ying Lo

Supervised by Jens Hesselbjerg Christensen, Shuting Yang,

Cosmin Eugene Oancea and Marianne Sloth Madsen

Handed in: 05/09/2022



 

Nga Ying Lo

The Need for Speed: An Investigation of bottlenecks towards optimization of EC-Earth3-

HR (on CRAY XC50)

MSc in Physics, Handed in: 05/09/2022

Internal Supervisors: Jens Hesselbjerg Christensen (primary, KU-NBI) and Cosmin

Eugene Oancea (KU-DIKU)

External Supervisors: Shuting Yang (DMI) and Marianne Sloth Madsen (DMI)

University of Copenhagen

Faculty of Science

Niels Bohr Institute

Blegdamsvej 17

2100 Copenhagen



Preface

This master thesis project was carried out in collaboration between the Niels

Bohr Institute (NBI) and the Department of Computer Science (DIKU) at the

University of Copenhagen, and the Danish Meteorological Institute (DMI). The

following thesis report was submitted for the degree of Master of Science in

Physics with a specialization in Computational Physics at the University of

Copenhagen in September 2022.

Course: Physics Thesis, 60 ECTS (NFYK10020E)

Internal supervisors: Jens Hesselbjerg Christensen (primary, NBI) and Cosmin

Eugene Oancea (DIKU)

External Supervisors: Shuting Yang (DMI) and Marianne Sloth Madsen (DMI)

Censor: Peter Aakjær

iii





Acknowledgements

First and foremost, I would like to thank all of my supervisors for the continu-

ous supports and guidance they have shown me throughout this thesis project.

Their encouraging words and insights are much appreciated every time I have

doubts on my progress and capabilities.

I also owe thanks to Jacob Weismann Poulsen and Stephen Reiner at DMI,

Philippe Le Sager at the Royal Dutch Meteorological Institute, and Miguel

Castrillo at the Barcelona Supercomputing Center, who provided help with any

technical difficulties I have encountered with the EC-Earth3 model.

Thank you to my family, friends and the scientists at DMI’s Climate Department

for the emotional and moral support. A special gratitude to my friends Dana

Sarah Ludemann, Johanne Dorothea Hauser and Emily Madeleine Wilbur for

all that you have done for me.

Last but not least, an immense thank you to Christine Schøtt Hvidberg (NBI)

for her suggestion of this thesis collaboration with DMI.

v





Abstract

Earth system models are state-of-the-art tools that climate physicists use to

understand climate feedbacks, attribute changes to specific drivers, and make

projections for the future. With more fine resolution, models would be able to

account for fine scale transient processes that are crucial for improving results’

fidelity. The drawback is decrease in the model’s performance efficiency due

to requirement of long computation to extract signals of climate change. Thus,

optimization of these models is most necessary to study climate evolution.

Currently, the global high-resolution coupled climate model EC-Earth3-HR can

simulate about 1.31 years of climate evolution per day on the high performance

computing platform (CRAY XC50) at the Danish Meteorological Institute.

Meanwhile the standard-resolution of this model’s efficiency is 10.07 simulated

years per day. In order to improve efficiency of EC-Earth3-HR, scalability and

performance analysis are performed to diagnose the bottlenecks of the model.

And, various optimization methods are considered in order to address these

bottlenecks. With the tools available on CRAY XC50, the optimal load balance

was not obtained, due to incompatibility between performance analysis tool

with the ocean component of EC-Earth3-HR. From scalability analysis, the

ocean component shows to be performing worse compared to the atmosphere

component. The least optimal subroutine within the ocean component is

identified to be one handling the computation of sea-ice dynamics. Specifically,

the computation for sea-ice rheology and velocities using the EVP framework.

Potential optimization via vectorization is then identified by the Intel compiler

v18.0.0 on the HPC platform. Following these results, a vectorization method

is designed specifically to optimize the computation for shear strain rates.

Implementation of the vectorization method is reserved for future work.
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1Introduction

This thesis aims to profile the performance of the atmosphere-ocean global

circulation core model in the Earth system model EC-Earth3, in high resolution

configuration, on the Cray machine CRAY XC50 at the Danish Meteorological

Institute (DMI). Using available tools on the high performance computing

(HPC) platform, areas of potential optimization within the model will be

investigated for possible implementation in the future, which may lead to

better simulation efficiency.

1.1 What is an Earth System Model?

To better our understanding of how Earth’s climate system evolves over time,

all physical and biogeochemistry processes must be taken into account. An

Earth system model (ESM) is a state-of-the-art tool which tries to simulate

these relevant aspects of Earth (“World Climate Research Programme Strategic

Plan 2019-2028” 2019). It provides climate physicists the necessary tools

to understand climate feedback, attribute changes to specific drivers, and

make projections for the future (IPCC Sixth Assessment Report 2021, Eyring

et al., 2016, Döscher et al., 2021). All of these, in turn, support international

development policies such as the Paris Accord, which calls for limiting rise of

global temperature to "well below 2°C" and pursuing "the effort to limit the

increase to 1.5°C" (UNFCCC, 2015).

The core of an ESM model is the atmosphere-ocean global circulation model

(AOGCM), which simulate the dynamic aspects of atmospheric and oceanic

processes. They are modeled using the hydrostatic primitive equations (Temam

and Zaine, 2005). These equations are then solved numerically on supercom-

puters, in which the equations are discretized spatially and temporally.

In general, ESMs are known for being one of the most computationally inten-

sive scientific challenges (Flato, 2011). Extremely long integration is needed
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to extract signals of climate change because the underlying climate system

is physically characterized by sensitive dependence and natural stochastic

variability (Balaji et al., 2017). Thus, an experiment’s simulation period has

to be long enough to extract these crucial signals. As the resolution becomes

more fine, the global map will be discretized into more number of grid points

with smaller time step, which leads to increase in a model’s execution time.

More fine spatial and temporal resolution leads to greater fidelity in a model’s

results. When simulating at finer granulated resolution, small-scale transient

processes that play a crucial role in energy and momentum transfer can be

better accounted for. In the atmosphere, fine resolution provides answers

to climate sensitivity questions by giving better representation of probability

distribution associated with climatology of certain weather regimes (Haarsma

et al., 2016, Dawson et al., 2012). In the ocean, increase in resolution is

particularly crucial towards improvement in prediction skill by resolving fine

scale features of boundary currents and simulated mesoscale eddies1 (Hewitt

et al., 2017). In coarse resolution simulation, these processes are not resolved

and need to be parameterized. Hence, the fidelity of a climate model’s results is

highly dependent on the resolution scale at which simulations are performed.

The computing resources consumed by ESMs can be categorized into three

groups. Complexity (to account for all feedback internal to the climate system)

and resolution (to capture small scale and transient processes) are already

discussed. The last one is the ensemble size to sample uncertainty across the

chaotic nonlinear dynamics that underlie climate systems. The performance of

an ESM would then have to be measured in regards to these three categories

which means that traditional measurement of computing power such as FLOPS

(floating point operations per second) would be insufficient (Balaji, 2015).

Balaji et al. (2017) proposed a new metric system for measuring ESMs’ perfor-

mance called the computational performance model intercomparison project

(CPMIP) metrics, designed to address issues specifically related to ESMs.2

Following this metric system, performance efficiencies of ESMs such as EC-

Earth3 have been studied (Döscher et al., 2021) and used for further opti-

1Appears as swirls of fluid. Transient and small scale processes that are important to be
accounted for in nature as they are responsible for momentum and energy transfer in the
climate system. Due to the chaotic nature of turbulence, it is difficult to resolve eddies of
all spatial scales in a numerical model.

2A complete list of these issues can also be found in the same paper, Balaji et al. (2017).
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mization. Haarsma et al. (2020) investigated the scalability and bottlenecks

of the high resolution configuration of EC-Earth3, which will be referred to

as EC-Earth3-HR for the rest of the thesis, on the MareNostrum4 computer

at the Barcelona Supercomputing Center (BSC). Specifically, they studied the

scalability of EC-Earth3-HR AOGCM core model. A few optimizations they

have implemented are dedicated to enhance data interpolation and exchange

between the atmosphere and ocean components. Others include determin-

ing optimal load balance, finding the optimal domain decomposition, and

programming I/O in ocean model to run in parallel with the experiment.

However, these implemented optimizations are not specific to the HPC hard-

ware, but general features of EC-Earth3-HR that will allow it to run on some

type of parallelization regardless of the HPC hardware. To exploit the full

capability of EC-Earth3-HR on DMI’s Cray system, its performance has to be

further analyzed in order to tailor optimization methods that are appropriate

for this specific HPC platform.

With these motivations introduced, an investigation towards optimization of

EC-Earth3-HR AOGCM configuration and its component models on DMI’s

CRAY XC50 is carried out in this thesis project.

1.2 Overview

Chapter 2 gives the rationale for this explorative thesis to investigate potential

aspects of optimizing EC-Earth3-HR on DMI’s HPC. General optimization that

are implemented on EC-Earth3-HR by Haarsma et al. (2020) and Tintó Prims

et al. (2019) are summarized to give inspiration to the investigative approach

this thesis takes on. The research questions and respective hypotheses are then

stated.

Chapter 3 presents the methodolgy of this investigation. Concepts relevant

for performing scalability and performance analysis are described. Data and

loop dependencies that must be considered for implementation of low level

optimization methods, such as vectorization, are also presented.
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Chapter 4 describes the EC-Earth3 model. Description of each model configu-

ration: AOGCM and its component models (atmosphere and ocean) are given

along with details of available resolution configuration. This is followed by an

in-depth presentation of the EVP framework used to solve for sea-ice rheology

and velocities in the sea-ice model. It also contains a succinct description of

the parallelism employed within the ocean model.

The detailed experiment designed to investigate potential optimization ap-

proach is given in Chapter 5. Here, the models’ simulation parameters used

for each simulation/experiment are also described.

Chapter 6 presents the results from the investigation of each model’s scala-

bility and profiling of the model’s efficiency. Results which require further

investigation are discussed in Chapter 7. These include: minimum amount of

processors required for EC-Earth3-HR AOGCM to complete a simulation suc-

cessfully; inconclusive results on optimal load balance due to incompatibility

between performance analysis tool CrayPat and the ocean model; profiling of

the sea-ice subroutine limrhg; and, tackling the possibly false "dependency"

detected by the Intel compiler v18.0.0 on CRAY XC50.

Chapter 8 summarizes the findings of this thesis and recap the importance

of optimizing Earth system models to achieve satisfactory efficiency. This is

followed by suggestions of implementing vectorization method, studied in this

thesis, to test for speedup in future work.

Chapter 9 is the appendix where Fortran90 script of the subroutine limrhg is

presented along with the shortened version of the optimization report returned

by the compiler. Additional tables and plots can also be found here.
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2Rationale & Research
Questions

In this chapter, a revisit of Haarsma et al. (2020)’s work will be described

to introduce the method that they have used for general optimization of EC-

Earth3-HR, which will inspire my investigation aiming to optimize the model’s

efficiency on the current HPC platform at the Danish Meoterological Institute

(DMI). In turn, this will introduce the research questions to be answered in this

thesis. A brief background on the environment of DMI’s HPC Cray machine is

also given in between to understand the capacity of this supercomputer.

In general, EC-Earth3-HR has been optimized with respect to scalability, per-

formance, data storage and post-processing by Haarsma et al. (2020). These

implementation, however, is not specific to the HPC platform and does not

utilize the advantages that a specific platform’s hardware offers. Haarsma et al.
(2020) began the investigation to optimal load balance by studying the scala-

bility of EC-Earth3-HR AOGCM and its components on the HPC platform at the

Barcelona Supercomputing Center. They have found that the ocean component

is performing less efficiently than the atmosphere component. Bottlenecks

were also diagnosed by using performance analysis tools that were developed

at the Computer Science Department of the Barcelona Supercomputing Center

(Tintó Prims et al., 2019). Some of the bottlenecks are Meassage Passing

Interface (MPI) communication, expensive cost of atmosphere output and

non-optimized domain decomposition in NEMO, among others.(Haarsma et al.,
2020). General optimizations addressing these issues were then implemented

and tested on other HPC platforms (Tintó Prims et al., 2019, Haarsma et al.,
2020).

Motivated by the work of Tintó Prims et al. (2019) and Haarsma et al. (2020),

this explorative thesis aims to investigate potential optimization of EC-Earth3-

HR AOGCM on the HPC platform CRAY XC50 at DMI via the following ap-

proach:
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• determining the optimal load balance by studying the scalability of the

model and its components, and

• using performance analysis tool available on the Cray machine to diag-

nose bottlenecks within the model

On DMI’s HPC platform, two resolution configurations are available for AOGCM

simulations. In the first configuration, referred to as the standard resolution

configuration, the atmosphere and ocean components have a resolution of

∼ 80 km and 1.0°, respectively. In the second option, atmosphere and ocean

components have a resolution of ∼ 40 km and 0.25°, respectively.1 This is

referred as the high resolution configuration or EC-Earth3-HR to be concise.

All experiments are executed on the supercomputer CRAY XC50. It consists

of two identical clusters, one of which is available for scientific research and

development. One cluster has 152 nodes dedicated for high performance

computing jobs. One node has 36 computer processing unit (CPU), specifically

the Intel(R) Xeon(R) CPU E5-2695, and 64 GB of shared memory. Each CPU

has four level of cache which totals to 46,400 kilobytes.

With all that stated, the following questions are addressed in thesis project by

making deductions from EC-Earth3-HR simulations on CRAY XC50:

• What is the optimal load balance for EC-Earth3-HR AOGCM? Between

the atmosphere and ocean component, which is performing worse?

• What are the bottlenecks in EC-Earth3-HR AOGCM and the least optimal

component?

• What are some low level optimizations that can be safely implemented,

without affecting currently implemented interaction between compo-

nents that may lead to failed or inaccurate experiments?

Hypotheses

Given that this was already determined in Haarsma et al. (2020), the ocean

component will observe to be performing worse than the atmosphere com-

ponent in EC-Earth3-HR AOGCM via scalability analysis. The atmosphere

1More information about the resolution configuration is available in Chapter 4.
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component should perform relatively better given that it is adopted from a

weather prediction model used, maintained, and governed by the intergov-

ernmental organization European Center for Medium-Range Weather Forecast

(ECMWF); whereas the ocean model is developed and governed by a consor-

tium of five institutes2.

For EC-Earth3-HR AOGCM, overhead from communications between proces-

sors should contribute significantly to the model’s decrease in efficiency. As

the resolution increases, so does the number of grid points that span across

the mesh that makes up the global map. This would require more computer

resources for intensive calculation to be carried out on additional number of

grid points. Using more processors will require more communications for data

exchanges. This general bottleneck may also be applied to the ocean model.

Another bottleneck specific toward ocean model may stem from subroutines

dedicated to handling boundary conditions. As the number of processors in-

crease, the global domain will be divided into higher number of local domains.

These local domains might not be optimal for handling boundary conditions.

For instance, grid points representing a river mouth could possibly be separated

into different local domains, which will require additional MPI communication

and execution time to handle these cumbersome aspects of an Earth system

model.

Last but not least, intensive computation is always a factor to be considered

in poor efficiency. With limited knowledge on Cray XC50 at DMI3 and layout

of EC-Earth3-HR, it is conjectured that intensive computation would also

contribute significantly to the ocean model’s execution. An attainable approach

that can potentially optimize the subroutine’s computation is using low level

optimization such as vectorization.

The methodology and experiment set-up designed to answer these research

questions are detailed in Chapter 3 and 5.

2Centro Euro-Mediterraneo Sui Cambiamenti Climatici (CMCC), Centre National De La
Recherche Scientifique (CNRS-INSU), Mercator Ocean International, Met Office, Natural
Environmental Research Council (NERC-NOC)

3Detailed understanding of the HPC platform is outside of the scope of this thesis
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3Methodology

The brief methodology described in this chapter is inspired by the one proposed

in Tintó Prims et al. (2019). It begins by studying the scalability of EC-Earth3-

HR AOGCM and its components to understand how fast they can perform with

different number of resources. A widely used metric, in the CPMIP metric

system for Earth system model (Balaji et al., 2017), is the Simulated Years per

Day (SYPD). This metric indicates the number of simulation years that can be

completed in one day of wall clock time. To identify the code regions that do

not scale properly with increasing number of resources, scalabilities in terms of

CPU and wall clock time are also studied for the subroutines of a model. Other

bottlenecks such as overhead from MPI communication is determined via

performance tool available on DMI’s Cray HPC system. Once the problematic

code regions are identified, potential low level optimization is investigated by

the compiler. According to results of this investigation, different optimization

methods are considered after data and loop dependency analyses are carried

out.

Below, the general concepts of several components that are necessary in the

methodology are introduced. These include scalability analysis in terms of

wall clock and CPU time; various dependencies that would prevent low level

optimization such as vectorization from being implemented; and available

tools on DMI’s CRAY XC50 for optimization and performance analysis.

3.1 Scalability analysis

Ideally, the speedup S of a model scales linearly with the number of processors

that it is given. For example, the model’s execution time reduces by a factor

of two when one doubles the amount of computer resources assigned to the

model. It can be easily computed with the following expression

S = ts

tN

(3.1)
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where ts is the measured model’s execution time when it’s running sequentially

(using one processor) and tN is measured execution time when it’s running in

parallel with N processors. In practice, the number of processors and speedup

does not scale linearly due to built-up of overhead from communications

between processors and some necessary synchronization between model’s

components.

The execution time of a model can also be measured in terms of wall clock

and CPU time. Wall clock time is the time measured between the beginning of

a process’s execution and at any point of the execution. For instance, one can

measure the wall clock time of a specific computation within the model and the

wall clock of the model. The wall clock time includes the time when processors

are idle while the model is running. CPU time, on the other hand, measures

the amount of time a process is actively running, not the time when a process

is suspended. Both wall clock and CPU time are measured in seconds.

In this thesis, the scalability of the model is studied in terms of SYPD and wall

clock time. Scalabilities of a model’s subroutines are measured in both wall

clock and CPU time. The wall clock time is measured using MPI_Wtime() from

the Message Parallel Interface (MPI) available on the Cray system, and the

CPU time is measured using the Fortran90 function CPU_TIME().

Instead of measuring speedup or scalability with respect to execution time

from running the model sequentially, it is measured with respect to the optimal

load balance of EC-Earth3 in the standard resolution configuration on CRAY

XC50. Since the models in standard resolution have an optimal performance

using N processors, then the high resolution configuration should require at

least N processors to carry out simulations of the same computation but with

a bigger problem size due to finer granulated resolution.

3.2 Parallelization of loops via
vectorization

Two kinds of parallelism can be implemented on a program: task parallelism

and data parallelism. The first allows the different operations within a program

to perform simultaneously. These operations do not necessarily have to work
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on different pieces of the same data set. The latter allows the same set of

operations to perform simultaneously on different pieces of the same data

set.

A low level optimization of data parallelism is vectorization. Vectorization

is the process of rewriting a loop so that multiple pieces of data in an ar-

ray are processed simultaneously instead of processing one element at a

time. Today, high performance computing (HPC) systems have compilers that

can implement auto-vectorization of loops using compiling options such as

-guide-vec[=<level>, provided by the Intel compiler (Intel (2017)). This

auto-vectorization instructs the compiler to analyze loops in the code with

operations that can be executed in parallel and transforms them into vector

operations. The compiler can also return reports pinpoint where optimization

is applicable or not in the loops. This is done by using the compiling option

-qopt-report=<level> -qopt-report-phase=<option>. These information

are extremely helpful in identifying potential potential methods that can be

implemented for optimizing performance of a subroutine.

3.2.1 Dependencies

To implement vectorization, one must identify dependencies in operations on

data that prevent such optimization. Below are brief introduction to several

types of such dependencies.

FLOW dependency: When an instruction depends on the results from the pre-

vious iteration, this leads to a "read-after-write" (RAW) dependency between

the current and previous variables. This also shows loop-carried dependency

in which the current iteration result depends on the previous iteration result.

DO i = 1, N
b[i] = b[i-1] + c[i]

END DO

ANTI dependency: When an instruction depends on a result that is later up-

dated in the next iteration, this leads to a "write-after-read" (WAR) dependency

between the current and future variables.
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DO i = 1, N
a[i] = a[i+1]

END DO

OUTPUT dependency: Also known as "write-after-write" (WAW) dependency,

in which data at the same memory address is written to twice by two instruc-

tions, one after another.

DO i = 1, N
d[i] = i
d[i+1] = 3

END DO

Control dependency: These can typically be introduced using an if-statement,

which can disrupt the flow of an iteration. Using the example in OUTPUT

dependency, a write-after-write dependency can also be introduced using an

if-statement that specifies a condition for d[i] to be written to again.

Cross iteration dependency: Given a set of instructions where array A has to

be computed in a (nested-)loop first in order to compute array C in another

(nested-)loop. Then a dependency is introduced between the two loops, known

as cross iteration dependency.

3.3 Performance analysis tool: CrayPat

Performance tool such as the Cray Performance Measurement and Analysis

Tool (CrayPat) is a powerful software, available on CRAY XC50, that enables

users to analyze how well a parallelized program is performing on a Cray

supercomputer, and how to optimize it further (Hewlett-Packard, n.d.).

It details information on timing and performance of individual application pro-

cedures. From these information, one can determine the top time consuming

routines, load balance across processes and threads, parallel overhead, etc.

(ECMWF, n.d.). It also directly incorporates information from the hardware
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performance counters available on the Intel Xeon processors (ECMWF, 2015),

the same processors used in DMI’s Cray machine.

By instrumenting CrayPat with EC-Earth3-HR AOGCM, one can then analyze

the current performance of the model and identify areas of bottlenecks. For

example, if parallel overhead is reported to be the cause of the model’s unsat-

isfactory efficiency, then one should investigate how to optimize the current

methods implemented for communication between processors.

Details on how the software can be instrumented to programs are not provided

in this thesis as it is well-documented in other manuals such as ECMWF (2015),

Hewlett-Packard (n.d.) and ECMWF (n.d.).
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4
Climate Model

EC-Earth is a global coupled climate model (Hazeleger et al., 2012) that

has been developed by a consortium of 27 European research institutes. It

combines and couples existing models that describe the atmosphere, ocean,

sea ice, land surface, dynamic vegetation, atmospheric composition, ocean

biogeochemistry and the Greenland ice sheet, to give a state-of-the-art tool for

simulating climate evolution. EC-Earth3, the third version of EC-Earth, has

been developed in preparation for the Coupled Model Intercomparison Project

phase 6 (CMIP6) (Eyring et al., 2016). The specific version of EC-Earth3 that

is studied in this thesis is the published EC-Earth3-v3.3.3.2 high resolution

configuration model.

4.1 Model Configuration Option

In this thesis, performance of three model configurations are investigated: the

atmosphere-coupled global circulation model (AOGCM), the atmosphere only

model, and the ocean only model. The atmosphere and ocean components of

the climate model are simulated using the European Centre of Medium-Range

Weather Forecasts’ Integrated Forecasting System (IFS) and the Nucleus for

European Modelling of the Ocean (NEMO), respectively. For the rest of the

thesis, these model configurations will simply be referred to as model.

In both standalone models, feedbacks from the missing atmosphere or ocean

component are supplied by forcing data sets following the CMIP6 protocol

(Eyring et al. (2016)). A full description of all model configurations and forcing

data are presented in Döscher et al., 2021.
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Figure 4.1: The IFS-standalone configuration in EC-Earth3 taken from Ludemann
(2022). Within the IFS component, the standard resolution and accom-
panying time step are shown in blue parentheses. The supplement of
oceanic observational data from AMIP to IFS through OASIS3-MCT is
delineated by the red arrow.

4.1.1 Atmospheric (IFS) only

The atmospheric component of EC-Earth3 is adopted from IFS CY36R4, part

of ECMWF’s operational seasonal forecast system Since IFS is designed for the

purpose of numerical weather forecast, many modifications (e.g. conservation

of mass and energy, sea-ice albedo, time stepping scheme, etc.) have to be

made for running long climate simulations or simulations under different

climate conditions. It includes HTESSEL, a submodule that handles energy

and moisture exchange between land and atmosphere.

In the IFS-only model, feedback that would have been otherwise simulated

by the ocean model is replaced by the interface Atmospheric Model Inter-

comparison Project (AMIP) reader. Forcing data sets of monthly sea surface

temperature and sea ice concentration fields from CMIP6 are taken and inter-

polated into daily fields by AMIP reader (Ludemann, 2022). The results are

then sent to IFS for simulation via the OASIS3-MCT coupling library (Craig

et al., 2017).

Many resolution configurations are available from ECMWF’s IFS, and three

options are adopted into EC-Earth3 as listed in Table (4.1). As per to principle

in an atmospheric model, these are spectral resolutions with a linear reduced

Gaussian grid. The corresponding global horizontal and vertical resolutions

are also given for each three configuration.
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Resolution T159L62 T255L91 T511L91
Horizontal (km) ∼ 125 ∼ 80 ∼ 40
Vertical (levels) 62 91 91
no. of horizontal grid points 35,718 88,838 348,528
Total no. of grid points 2,214,516 8,084,258 31,716,048

Table 4.1: IFS spectral resolution options available on EC-Earth3. Each resolution
corresponds to a grid cell that has a specific land area coverage and
number of vertical levels that the atmosphere is divided into.

Figure 4.2: Typical variable distribution on an Arakawa C-type grid. T indicates
where scalar variables are defined. This includes temperature, salinity,
density and pressure. (u,v,w) indicates the velocity points. Finally, f
indicates both the relative and planetary vorticities.

4.1.2 Ocean (NEMO) only

The ocean component of EC-Earth3 is modeled using NEMO3.6, developed

by consortium of five institutes: Centro Euro-Mediterraneo Sui Cambiamenti

Climatici (CMCC), Centre National De La Recherche Scientifique (CNRS-INSU),

Mercator Ocean International, Met Office and the Natural Environmental

Research Council (NERC-NOC).

It is a framework consisting of three engines: the Océan PArallélisé (OPA), the

Louvain-La-Nueve3.6 (LIM3.6), and PISCES. Whereas the first two engines

models the dynamics and thermodynamics of ocean and sea ice, the third

accounts for the ocean biogeochemistry. These engines exchange data directly

via shared data structures. Several combinations of these three engines are

available for the EC-Earth3 ocean configuration. In this thesis, we focus on the

standard configuration of NEMO which simulates using the ocean and sea-ice

engines only.
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NEMO simulates the dynamics and thermodynamics of the ocean by solving the

primitive hydrostatic equations of ocean circulation using the classic, centered

second-order finite difference approximation. The distribution of variables

is given by a 3D Arakawa-C-type grid (Arakawa and Lamb, 1977). Whereas

scalar variables are defined at the center of each 3D cell, vector variables are

defined in the center of each face of the cells. At the center of each vertical

edge is defined the relative and planetary vorticities (Madec and NEMO team,

2016). This arrangement is shown in Figure 4.2.

Resolution ORCA1L75 ORCA025L75
Horizontal (°) 1 0.25
Vertical (jpkdta) 75 levels 75 levels
jpiglo 362 1,442
jpjglo 292 1,050
jpiglo× jpjglo 105,704 1,514,100
jpiglo× jpjglo× jpkdta 7,927,800 113,557,500

Table 4.2: NEMO resolution configurations available in EC-Earth3. Each grid cell
in NEMO’s global ocean tripolar grid can cover either 1 × 1°2 or 0.25 ×
0.25°2 area. The depth of the ocean is divided into 75 levels for both
configuration. The number of grid points along the three axes are given
by jpiglo (i-axis), jpjglo (j-axis) and jpkdta (k-axis). These variables also
represent the number of grid points spanning across the global domain.

Unlike IFS-only where the ocean’s forcing data sets are supplied by OASIS3-

MCT, atmospheric forcing data sets are handled by NEMO’s internal modules.

The forcing data fields, not necessarily in model grid type, are then interpolated

onto NEMO model grid via either bicubic or bilinear interpolation, depending

on the variables.

At the sea ice-ocean interface, heat, salinity, fresh water and momentum are

exchanged and directly evaluated within the NEMO model. At this boundary,

the sea surface temperature is constrained to be at the freezing point, and

sea ice salinity is restricted to ∼ 4 − 6psu compared to the ocean’s salinity

of ∼ 34psu. The boundary conditions at this interface are updated every

(ocean/sea ice) time step to compute for the heat, salt, momentum and

freshwater fluxes. Simultaneously, ocean surface stresses due to sea ice is also

re-evaluated within a sea ice module.

In EC-Earth3, the NEMO-standalone configuration has two resolution configu-

rations available, where the ocean and sea ice time steps are the same in each

of them. From Table (4.2), the options, with corresponding horizontal and
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Figure 4.3: The IFS-NEMO coupled model configuration in EC-Earth3. This basic
atmospheric-ocean model also includes the HTESSEL module and sea ice
engine. Exchanges between land and ocean are handled by the runoff
mapper.

vertical resolutions, are given in terms of degrees in a tripolar grid (Madec

and Imbard (1996)) and levels, respectively.

Lastly, the input/output (I/O) of data in NEMO is handled by XML Input/Ouput

Server (XIOS), developed by Yann Meurdesoif from IPSL. It is an asynchronous

Message Passing Interface (MPI) I/O server designed for handling climate data

files. In EC-Earth3 models involving the ocean, XIOS can be configured to

run as a "detached" server (an external executable with some number of CPUs

assigned to it) or as an "attached" library of the NEMO model (Madec and

NEMO team, 2016) On CRAY XC50, XIOS is generally used as a detached

external server to optimize I/O in simulations.

4.1.3 Atmosphere-ocean global circulation model
(AOGCM)

The AOGCM model is the standard configuration offered by EC-Earth3 and the

two components, IFS and NEMO, are coupled via the OASIS3-MCT coupling

library. This coupling library ensures conservation of momentum, energy,

evaporation and precipitation fluxes along with conservative remapping in this
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atmosphere-ocean environment (Döscher et al., 2021). A configuration of the

coupled model is presented in Figure (4.3).

The atmosphere-ocean interface is defined such that the ocean provides state

variables to the atmospheric model whilst the atmosphere sends fluxes to

the ocean. The fluxes sent from the atmosphere are computed following the

formulations provided in the IFS CY36R1 documentation (ECMWF, 2010).

Exchanges between the atmosphere and ocean occur every 10,800 seconds for

low resolution and every 2700 seconds for both standard and high resolution

configuration.

Meanwhile, exchange of freshwater runoff from land to ocean is handled by

a runoff mapper that interpolate runoff and calving, from the atmosphere

and surface model HTESSEL, onto drainage basins on a mapper grid and

distributed along the ocean coastal points (Döscher et al., 2021).1

From the available resolutions in IFS-standalone and NEMO-standalone mod-

els, three resolution configurations are created for coupled model simulations,

as shown in Table (4.3). The time steps of each model (and sea ice sub-model)

for the three different configurations are also listed along with the coupling

frequency, which denotes how often data are exchanged between the atmo-

sphere and ocean. For a low resolution configuration, data are exchanged

every second IFS time step or every third NEMO time step. In the standard

resolution configuration, data are exchanged every (IFS/NEMO/LIM3.6) time

step. Finally, data are exchanged every third time step in the high resolution

configuration.

4.2 Sea ice component: LIM3.6

As mentioned in the previous section, LIM3.6 is an integrated engine in NEMO

that models the dynamics and thermodynamics of sea ice. It is based on the

Artic Ice Dynamics Joint Experiment framework which accounts for varia-

tion in ice thickness using a distribution function; conservation of horizontal

1For details of variables and fluxes exchanged between the different components in the
coupled model, refer to Tables 3 and 4 in Döscher et al. (2021).
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Resolution option Low resolution Standard resolution High resolution
IFS T159L62 T255L91 T511L91
NEMO ORCA1L75 ORCA1L75 ORCA025L75
IFS time step (s) 3,600 2,700 900
NEMO time step (s) 2,700 2,700 900
LIM3.6 time step (s) 2,700 2,700 900
Coupling frequency (s) 10,800 2,700 2,700

Table 4.3: Resolution configurations available on EC-Earth3 with corresponding time
step. For standard and high resolution, the time steps are the same among
all components. The couple frequency tells the model how often data
is exchanged between the atmosphere, ocean and sea-ice components.
At low resolution, data is exchanged every third NEMO time step. At
standard resolution, data is exchanged every time step. At high resolution,
data is also expressed every third time step.

momentum; energy-conservation halo-thermodynamics; and ice rheology by

assuming that it’s an elastic-viscous plastic (EVP) (Rousset et al. (2015)).

The rest of this section is dedicated to describe the EVP framework for calculat-

ing sea-ice deformation term ∆ · σ. This algorithm is found to be a signficant

run-time contributor in the least scalable subroutine of NEMO2

4.2.1 Sea Ice Dynamics

Like the ocean engine in NEMO, LIM3.6 uses an Arakawa C grid for variable

distribution and models the following horizontal momentum equation for sea

ice dynamics:

m
∂u

∂t
= A(τa + τw)−mf(k × u)−mg∇η +∇ · σ (4.1)

where m is the ice mass per unit area, A is sea-ice concentration, τa and τw are

the air-ice and ocean-ice stresses, −mf(k × u) is the Coriolis force, −mg∇η is

the pressure force due to horizontal sea surface tilt, and ∇ · σ is the sea-ice

internal forces arising in response to deformation. By assuming sea ice to be an

EVP material, this equation can be solved explicitly in time in Arakawa C-grid.

This regularizes the original viscous plastic (VP) formulation (Hibler, 1979)

that is solved implicitly and assumes that sea ice’s resistance to deformation

depends on its instantaneous state of motion and several large-scale scalar

properties such as ice thickness and lead fractional area (Bouillon et al., 2009).

2To be discussed from results presented in Chapter 6.
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The assumption of either EVP or VP leads to different formulations for the

internal forces ∇ · σ (the last term in Eq. (4.1)). In the next section, the key

elements of the EVP framework is highlighted. Descriptions of the general

framework of either formulation are presented in Hunke and Dukowicz (2002)

and Hunke and Lipscomb (2006).

4.2.2 EVP framework

To begin with the calculation of the sea ice internal forces, the internal stress

tensor σ can be further decomposed into σ11, σ22 and σ12, and defined by the

following:
σ1 = σ11 + σ22

σ2 = σ11 − σ22

DD = 1
h1h2

(
∂

∂ξ1
(h2u) + ∂

∂ξ2
(h1v)

)

DT = 1
h1h2

(h2
2

∂

∂ξ1
(u/h2)− h2

1
∂

∂ξ2
(v/h1))

DS = 1
h1h2

(h2
2

∂

∂ξ1
(v/h2) + h2

1
∂

∂ξ2
(u/h1))

(4.2)

where DD, DT and DS are divergence, horizontal tension and shearing strain

rates, respectively; ξ1 and ξ2 are generalized orthogonal coordinates; and h1

and h2 are the associated scale factors. The internal stress tensor components

can then by rewritten in these terms to be:

σ1 =
(

DD

∆ − 1
)

P

σ2 =
(

DT

e2∆

)
P

σ12 =
(

DS

2e2∆

)
P

(4.3)

where P is the ice compressive strength, e is the ratio of principal axes of the

elliptical yield curve, and the invariant ∆ is a measure of the deformation rate

defined as followed:

∆ =
√

D2
D + 1

e2 (D2
T + D2

S) (4.4)
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Whereas σ1 represents the compressive stress, σ2 and σ12 together give the

shearing stress σs such that σs =
√

σ2
2 + 4σ2

12. The rheology of sea ice defor-

mation is thus given by these terms and expressed in the form of an elliptical

yield curve

1 =
(

σ1

P
+ 1

)2
+ e2

(
σs

P

)2
(4.5)

The ice compressive strength P is empirically related to the ice thickness per

unit area h and ice concentration A by the relation P = P he−C(1−A). (P and

C are empirical constants.)

As ∆ approaches zero, regularization is needed for numerical solution and the

method proposed by Hunke and Dukowicz (1997) gives the following EVP

formulation which introduces time dependence and an artificial elastic term:

2Tσ1,t + σ1 =
(

DD

∆ − 1
)

P

2T

e2 σ2,t + σ2 = DT

e2∆P

2T

e2 σ12,t + σ12 = DS

2e2∆P

(4.6)

In this formulation, T is a time scale that controls damping rate of elastic

waves. Based on this framework, the components of the internal forces ∇ · σ
are (Hunke and Dukowicz, 2002):

2F1 = 1
h1

∂σ1

∂ξ1
+ 1

h1h2
2

∂(h2
2σ2)

∂ξ1
+ 2

h2
1h2

∂(h2
1σ12)

∂ξ2

2F2 = 1
h2

∂σ1

∂ξ2
− 1

h2
1h2

∂(h2
1σ2

∂ξ2
+ 2

h1h2
2

∂(h2
2σ12

∂ξ1

(4.7)

4.2.3 EVP framework: discretized

A type of centered finite difference method is used for the sea ice dynamics

with a twist of predictor-corrector scheme. Starting from a solution at time t,

an intermediate solution is determined at time t + ∆t/2. Then, the solution at

the next full time step t+∆t is determined using the internal stress’s non-linear

terms and ice-ocean stress terms centered at t + ∆t/2. This scheme is iterated

n times with a sub-cycling time step ∆t/n to improve accuracy of results.
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Figure 4.4: 2D Arakawa C grid taken from the middle plane of the 3D grid cell in
Figure (4.2). The indices of each points on the grid cell represented by
(i, j). The center of the cell is denoted by ⊗ where the components DD,
DT , σ1 and σ2 are located, whilst DS and σ12 are located at the corners
represented by solid-filled circles. Lastly, deformation rate ∆ is calculated
at both the center and corners.

An example of Arakawa C grid is already given in Figure. (4.2). Consider now,

only the middle plane where the variables T and (u,v) reside, as shown in

Figure (4.4). Whilst the components DS and σ12 are defined at the corners,

DD, DT , σ1 and σ2 are all defined at the cell centers with T. The internal stress

force components F1 and F2 are defined on the u and v points, respectively,

which are indicated by the open circles. Since the deformation rate ∆ (in Eq.

(4.3)) is needed to determine components of internal stress tensor σ, and it is

determined from the three strain rates (DD,T,S) as defined in Eq. (4.4), this

means that strain rates not defined on other grid points have to be interpolated

from cell centers to the corners or vice-versa.

Here, we begin the presentation for the discretized versions of the above

continuous expressions. For details, please refer to Hunke and Dukowicz

(2002). Defining grid elements e1 = h1∆ξ1 and e2 = h2∆ξ2, such that ∆ξ1 and

∆ξ2 are the spatial steps in the two orthogonal directions, the components

of the strain rates introduced in Eq. (4.2) are discretized and given by the

following:

e1(i,j)e2(i,j)DD(i,j) = e2(i+1/2,j)u(i+1/2,j) − e2(i−1/2,j)u(i−1/2,j)

+ e1(i,j+1/2)v(1,j+1/2) − e1(i,j−1/2)v(i,j−1/2)
(4.8)

24 Chapter 4 Climate Model



e1(i,j)e2(i,j)DT (i,j) = e2
2(i,j)

(
u(i+1/2,j)

e2(i+1/2,j)
−

u(i−1/2,j)

e2(i−1/2,j)

)

− e2
1(i,j)

(
v(i,j+1/2)

e1(i,j+1/2)
−

v(i,j−1/2)

e1(i,j−1/2)

) (4.9)

e1(i+1/2,j+1/2)e2(i+1/2,j+1/2)DS(i+1/2,j+1/2) =

e2
1(i+1/2),j+1/2

(
u(i+1/2,j+1)

e1(i+1/2,j+1)
−

ui+1/2,j

e1(i+1/2,j)

)

+ e2
2(i+1/2,j+1/2)

(
v(i+1,j+1/2)

e2(i+1,j+1/2)
−

v(i,j+1/2)

e2(i,j+1/2)

) (4.10)

Next, the variables’ interpolation onto cell centers and corners are performed.

The interpolation expressions can be found in in Bouillon et. al. (2009).

The discretization of Eq.(4.6) follows as thus (Hunke and Lipscomb, 2006):

2T

(
σk+1

1 − σk
1

∆t

)
+ σk+1

1 =
(

Dk
D

∆k
− 1

)
P

2T

e2

(
σk+1

2 − σk
2

∆t

)
+ σk+1

2 =
(

Dk
T

e2∆k

)
P

2T

e2

(
σk+1

12 − σk
12

∆t

)
+ σk+1

12 =
(

Dk
S

2e2∆k

)
P

(4.11)

where ∆t is the dynamic time step. Here, the superscripts k denotes variables

evaluated at times k∆t and k + 1 for (k + 1)∆t. P is the compressive strength

and it is updated every thermodynamic and ice transport time step.

Once discretized, the internal stress force expressions in Eq. (4.7) become

2e1(i+1/2,j)e2(i+1/2,j)F1(i+1/2,j) =

e2(i+1/2,j)(σ1(i+1,j) − σ1(i,j)) + 1
e2(i+1/2,j)

(e2
2(i+1,j)σ2(i+1,j) − e2

2(i,j)σ2(i,j))

+ 2
e1(i+1/2,j)

(e2
1(i+1/2,j+1/2)σ12(i+1/2,j+1/2) − e2

1(i+1/2,j−1/2)σ12(i+1/2,j−1/2))

(4.12)

2e1(i,j+1/2)e2(i,j+1/2)F2(i,j+1/2) =

e1(i,j+1/2)(σ1(i,j+1) − σ1(i,j))−
1

e1(i,j+1/2)
(e2

1(i,j+1)σ2(i,j+1) − e2
1(i,j)σ2(i,j))

+ 2
e2(i,j+1/2)

(e2
2(i+1/2,j+1/2)σ12(i+1/2,j+1/2) − e2

2(i−1/2,j+1/2)σ12(i−1/2,j+1/2))

(4.13)
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Finally, the discretized momentum equation is given by:

mu

(
uk+1 − uk

∆t

)
= F k+1

1 + Au

[
τσ1 + cDρ0

∣∣∣u0 − uk
∣∣∣
u

(u0 − uk+1)
]

+ mufuvk+δ
u − mug

h1

∂η

∂ξ1

(4.14)

mv

(
vk+1 − vk

∆t

)
= F k+1

2 + Av

[
τσ2 + cDρ0

∣∣∣u0 − uk
∣∣∣
v

(v0 − vk+1)
]

+ mvfvuk+1−δ
v − mvg

h2

∂η

∂ξ2

(4.15)

where the subscripts u and v denote a variable defined on or interpolated onto

the corresponding u and v points, cD is the ice-ocean drag coefficient, ρ0 is the

reference seawater density, u0 ≡ (u0, v0) is the surface oceanic current, and δ

is either 0 for odd iterations or 1 for even iterations.

The order in which Eq. (4.14) and (4.15) are solved depends on δ. For δ = 0,

odd iterations, Eq. (4.14) is solved first. Variable uk+1 is then interpolated

onto v points and used to solve Eq. (4.15). For δ + 1, even iterations, Eq.

(4.15) is solved first and the updated value of v is interpolated onto u points

to compute for the Coriolis term mufuvk+δ
u in Eq. (4.14). This is equivalent to

solving the Coriolis term semi-implicitly, which means that this term would

require the simultaneous solution of both Eq. (4.14) and (4.15).

4.2.4 Implementation of EVP framework in limrhg

A complete script of limrhg is available in Appendix (Chapter 9). Here, a brief

overview of what is being done in the EVP section is presented.

The EVP algorithm officially begins at L365 and ends at L603 where the entire

process is iterated nn_nevp120 times to achieve some degree of accuracy and

convergence in our solution. At the beginning of every iteration, a "convergence

test" is available by setting ln_ctl=.TRUE.. Next, the divergence, tension

and shearing strain rates defined in Eq. (4.2) are being computed at their

designated grid points, as explained in Section 4.2.3. These terms are then

used to compute for the sea ice internal stress tensor components σ1, σ2 and σ12,
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which contribute to the sea ice internal stress forces (F1 and F2) calculation.

This is followed by the interpolation of sea ice velocities (u, v) (defined on

U and V points, respectively) onto V and U grid points in preparation for

the computation of sea ice velocities (uk+1, vk+1) after one time step at time

(k + 1)∆t.

4.3 Implemented parallelism on
EC-Earth3

NEMO is built such that data are exchanged between the ocean and sea-ice

models via shared data structures. This inspired EC-Earth3 to be imple-

mented centering around the same idea of data exchange by following a

multi-executable MPMD (mutliple programs, multiple data) approach. In the

AOGCM model, IFS and NEMO run concurrently on the supercomputer and

data exchanges are handled by MPI communications from Message Passing

Interface (MPI). The atmosphere and ocean models are each given a number of

processors, and then each model’s global domain is divided into local domains

which are then assigned to the processors. In the next section, we detailed the

procedure of domain decomposition in the ocean model NEMO.

4.3.1 Domain decomposition in NEMO

The computational domain in NEMO, of course, covers the global ocean, and

the total size is given by the parameters jpiglo, jpjglo and jpkdta. These

denote the number of grid/mesh points that span across the i- and j- axes

horizontally and k-axis vertically. Domain decomposition is used for massively

parallel processing (mpp) by splitting the global domain horizontally whilst

preserving the number of grid points vertically. Each processor solves the

ocean dynamic primitive equations over its local domain, and compute its

own surface and bottom boundary conditions. The local domain boundary

conditions are applied via communications between processors that specify

how data at the boundaries are handled.
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Figure 4.5: Positioning of local domain with respect to the global domain when
OpenMPI is used.

The local domain size is given by jpi × jpj × jpk, with jpk = jpjdta = 75,

whilst the other two are determined following these expressions:

jpi = (jpiglo− 2jpreci + (jpni− 1))/jpni + 2jpreci

jpj = (jpjglo− 2jprecj + (jpnj − 1))/jpnj + 2jprecj
(4.16)

where jpni, jpnj are the number of processors dedicated along the i- and j-

axes, and jprei, jprecj are number of rows and columns to be exchanged (usu-

ally set to 1). The number of processors allocated for the axes are determined

for a number of processors jpnij most often equal to jpni× jpnj.

By defining (nimpp, njmpp) to be the global position corresponding to a lo-

cal domain’s grid point (1, 1), we can use the following expression to relate

elements in a local domain Tl to their position in the global domain Tg:

Tg(i + nimpp− 1, j + njmpp− 1, k) = Tl(i, j, k) (4.17)

with 1 ≤ i ≤ jpi, 1 ≤ j ≤ jpj, and 1 ≤ k ≤ jpk. An example of what this

would look like is shown in Figure (4.5). At each edge of a local domain,

28 Chapter 4 Climate Model



Figure 4.6: Data exchanges between neighboring processors in NEMO to update
values at each edges of the local domain.

there is a row/column of data, labeled as "halo area", that is to be exchanged

with neighboring processors. Meanwhile, data in the gray "inner local domain

area" is not exchanged with exchanged. This halo area is exchanged with

neighboring processor so that values at the edges of each local domain can

be updated. An example of what this would look like is shown in 4.6. From

processor 1, its top row of data (indigo) is exchanged with processor 3 and

stored in an array called "ghost zone" so that the processor can continue

computations in order to update the values in the bottom row of processor

3 (maroon). The same is done vice versa from processor 3 to processor 1.

Exchanges of column data between processor 1 and 2 also follow the same

principle.

4.3 Implemented parallelism on EC-Earth3 29





5Experiment Design

As a means to study the scalability of EC-Earth3-HR AOGCM on CRAY XC50

and investigate subroutines for potential optimization, simulations using the

model configurations described in Chapter 4.1 are set up. Each configuration is

run in both standard and high resolution with the same experiment start date

on 01/01/1990 and runs for 10 simulation days with no results output. The

initial model states of the simulations are the default set-up for EC-Earth3 on

CRAY XC50. The ocean states are taken from a long spin-up run using a present

day forcing, while the state of the atmosphere is from the ECMWF reanalysis

data (ERA-Interim). Simulations are performed 5x or 10x in an attempt

to achieve some degree of statistical average to account for the systematic

variation within the supercomputer.

Following the methodology presented in Chapter 3, below details the investi-

gation of EC-Earth3-HR AOGCM and its components’ performance on CRAY

XC50.

5.1 Determining optimal load balance

Before scalability analysis is performed, a comparison of the models’ perfor-

mance efficiency is carried out between the standard and high rseolutoin

configuration.

Comparing wall clock run-time & SYPD between EC-Earth-HR and stanard

resolution configuration.

The optimal load balance, or optimal number of processors for each model

configuration, in the standard resolution is already determined. In the standard

resolution configuration, IFS is given 252 CPUs whilst NEMO is given 144

CPUs. The sum of these then gives the optimal number of processors for

AOGCM. Using the same numbers of CPUs for all three model configurations in
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high resolution, the average wall clock run-times and SYPD are measured get

an idea of how EC-Earth3’s performance efficiency changes with resolution.

Measuring scalability of IFS-only, NEMO-only & AOGCM in high resolution.

The speedup of teh models are determined with respect to the optimal load

balance of the standard resolution configuration. Multiples of 252 and 144

CPUs are assigned to the IFS- and NEMO component model. SYPD and wall

clock run-times are then measured from these standalone simulation.

The total number of grid points in each component has to be taken into

consideration when allocating CPUs for AOGCM simulation. These numbers

are presented in Table 4.1 and 4.2. Whilst IFS has a total of 31,716,048

grid points at a resolution of T511L91, NEMO has 113,557,500 grid points at

resolution ORCA025L75; that’s a factor of ∼ 3.6 more than IFS. This allows

us to make an initial conservative guess that the number of processors NEMO

needs in AOGCM at high resolution might be a factor of 3 more than that of

IFS. Trials of running EC-Earth3-HR AOGCM begin by assigning 252 CPUs to

IFS and 756 CPUs to NEMO. The ratio of CPUs for AOGCM in high resolution

is then adjusted with more experiments performed.

Performance profiling using CRAYPAT

The general idea of CrayPat is already presented in Chapter 3 and instruc-

tions on how to instrument it to executable files are given by the following

manuals ECMWF (2015), ECMWF, n.d. and Hewlett-Packard, n.d. However,

it is important to note this one feature of CrayPat that may have caused in-

compatibility with the NEMO model (discussed in Chapter 6.1.1. The way

CrayPat is instrumented to the model is by rebuilding the model’s executable

file and instrumenting itself on every object file and linked libraries during a

"second compilation". This method can become problematic if intermediate

files or linked libraries generated during the model’s first compilation is later

deleted. Then, CrayPat cannot be instrumented to the model following the

simple instruction in the manuals.

This is indeed the case for the NEMO model. During re-compilation with

CrayPat, linked libraries in a temporary directory are reported to be missing

when it was only the temporary directory that was deleted. Two methods

of how to bypass this compilation error are detailed in the jupyter note-
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book NEMO-XIOS-CrayPat-error.ipynb1. Thus, CrayPat was instrumented to

NEMO successfully.

5.2 Studying scalability of NEMO
subroutines

Identifying least scalable subroutine.

From the scalability investigation, the model configuration observed to be

less optimized is chosen for further examination to identify the least scalable

subroutine within the model. From the results in Chapter 6, NEMO is found to

be the less optimized component within EC-Earth3-HR. Using NEMO’s built-in

timer module timing (Benshila, 2001), the wall clock and CPU time of each

subroutine during a simulation are determined. NEMO experiments are then

repeated using [72, 144, 216, 288, 360, 432, 504, 576]2 CPUs to study the

scalability of each subroutines.

A linear least-squares regression (LLSR) curve is fitted to each subroutine’s

scalability data. Subroutines with a LLSR slope less than 0.5 (slope of the

theoretical speedup) are plotted against the cumulative time percentages

to identify the least scalable subroutine that also consumes a substantial

percentage of NEMO-only simulation time. Results are presented in Chapter

6 and the subroutine limdyn, designed to initialize the process of solving for

the sea-ice velocities, is identified to be the least scalable subroutine. In which,

another subroutine limrhg, dedicated to compute for the sea-ice rheology and

sea-ice velocities using the EVP framework3, is determined to be the main

contributor to limdyn’s run-time.

Profiling run-time of the identified subroutine.

Another timer module tasks_timer4, written in Fortran90, is created to de-

termine how much time limrhg spends on various tasks such as defining and

1Available on https://github.com/ylo0803/KU_thesis_2022
2Subroutines’ scalabilities are studied using a smaller range of computer resources in order

to prevent long waiting times for available resources. There was ongoing supercomputer
maintenance which limited access to the supercomputer.

3Presented in Chapter 4.2.2
4Available on https://github.com/ylo0803/KU_thesis_2022. The structure and code of

this timer is written inspired by NEMO’s built-in module timing
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initializing variables, MPI communications, solving dynamical equation in

iterations, etc.. Six aspects are accessed within limrhg:

• creation of sea-ice "masks" at the corners of Arakawa C grid to represent

sea-ice location on ocean grid

• computation for wind/ocean stress and Coriolis force terms in the mo-

mentum equation (Eq. (4.1))

• computation for sea-ice internal stress term and solving for the sea-ice

velocities using the EVP framework

• recompute invariant ∆ of the strain rate tensor

• getting diagnostics on sea-ice variables

• MPI communications

Each aspect is measured in CPU and wall clock time.

Identifying potential area for vectorization optimization.

Using the Intel Fortran compiling option -qopt-report=2 -qopt-report-
phase=vec, a report of potential optimization is returned. It documents the

areas in the code where vectorization is employed and not employed, along

with reasons as to why vectorization is not recommended at certain areas. It

also provides information such as detected data dependency, and suggested

other tools that may be used for optimizing the subroutine’s performance.

A shortened version of the complete report on limrhg.f90 is available in Ap-

pendix 9.3, which contains only relevant information on the EVP algorithm and

details on all non-optimizable loops within the script. A level 5 report is also

obtained for further investigation into some "assumed OUTPUT dependency"

that the compiler has reported.5

5Available on https://github.com/ylo0803/KU_thesis_2022
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6Results

The results of this thesis project are presented in three main sections. The

first is dedicated to results from attempting to determining the optimal load

balance for EC-Earth3-HR AOGCM model. This includes a brief comparison of

each model’s (AOGCM and its components IFS & NEMO) run-time efficiency

between standard and high resolution configuration. This is followed by

scalability analysis of the components’ standalone model and results from

instrumenting CrayPat on both the IFS- and NEMO-only models.

Next, the scalability analysis of NEMO-only high-resolution model’s subrou-

tines are presented. Additional results from measuring run-time in a specific

sea-ice subroutine that is identified to be contributing the most to NEMO-only

high-resolution model run-time.

Finally, results from vectorization optimization reports returned by the Intel

compiler are presented with further discussion in Chapter 7.

6.1 Optimal load balance for
EC-Earth3-HR AOGCM

The following results are obtained from samples of five 10-day simulation

performed in each model configuration: IFS-only, NEMO-only and AOGCM, as

described at the beginning of Chapter 5.

6.1.1 Comparison of models’ efficiency at high and
standard resolution

First, a trivial comparison of execution efficiency between the two resolu-

tion configuration is performed for EC-Earth3 AOGCM and its components’
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Model configuration
Resolution

Metric
(Average) IFS-only NEMO-only AOGCM
SYPD 12.33±0.60 19.80±0.45 10.07±0.49Standard

(T255L91, ORCA1L75) Run-time (s) 192±10 120±3 235±11
SYPD 1.43±0.03 0.44±0.01 –High

(T551l91, ORCA025L75) Run-time (s) 1654±41 5363±125 –
Table 6.1: SYPD and run-time comparison between standard and high resolution

configuration for each model using the same number of CPUs. The av-
erages are computed over samples of five 10-day simulation performed
using each model. Resolution of IFS and NEMO are given in parentheses
under the first column. The uncertainties are given by the one-standard
deviation value.

standalone models. Comparing the wall clock run time and measured SYPD

in either resolution configuration would shed light on how resolution scales

with EC-Earth3’s efficiency on CRAY XC50. Each model is assigned the same

number of CPUs at both resolution configurations: 252 for atmosphere and

144 for ocean. A sample of five simulations over a 10-day period is gathered

for each model and the averages are reported in Table 6.1 along with their

respective 1-standard deviation uncertainties.

The exact relationship between resolution and run-time efficiency is model

dependent. The relationship is even harder to decipher for state-of-the-art

tools such as ESM, since it involves complexity of running several components

in parallel and uses MPI to enhance parallelism. However, we can still get a

sense of how SYPD and wall clock run-time scale with increasing resolution

via simulations.

For IFS-only, the number of grid points increases by a factor of ∼ 4 from

8,084,258 to 31,716,048 when the resolution becomes more fine from ∼ 80
km to ∼ 40 km. Both SYPD and wall clock run-time changes by a factor of

∼ 8.6, with SYPD decreasing and run-time increasing. It may appear as if the

number of grid points quadruples while run-time efficiency decreases by a

factor of 8, and that implies a linear relationship between the two elements.

But this should not be assumed to be the case from a small sample of two

measurements.

For NEMO-only, the number of grid points increases by a factor of ∼ 14.3
from 7,927,800 at 1° resolution to 113,557,500 at 0.25° resolution. Both

SYPD and run-time changes by a factor of ∼ 45.0. The exact relationship
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between resolution and model’s run-time efficiency cannot be determined

for NEMO-only in EC-Earth3 on CRAY XC50 for the same reason stated for

IFS-only.

Nevertheless, measuring the SYPD and run-time of these component models

in high resolution using the same number of computer resources as they do

in standard resolution gives an intuition of how well each model performs on

CRAY XC50. In terms of SYPD, following the CPMIP metrics guidelines for

ESM (Balaji et al., 2017), the NEMO component seems to be performing worse

compared to IFS as it cannot even simulate half a year (0.44 years = 5.28

months) of climate evolution per day1. Meanwhile, the IFS component can

simulate almost 1.5 years (1.43 SYPD) of climate evolution per day.

As for AOGCM, SYPD and wall clock run-time are not measurable in high

resolution configuration using the same number of processors in standard

resolution due to insufficient computer resources. Thus, this leads to the

investigation of the minimum number of CPUs needed for EC-Earth3-HR

AOGCM to complete successfully, which will be discussed next.

6.1.2 Load balance: scalability & performance
analysis

The SYPD scalability results of high resolution IFS- and NEMO-only models,

with respect to optimal load balance of AOGCM in standard resolution, are

plotted in Figure 6.1. The ideal scalability of each model is presented as a

dashed linear curve in blue or orange. IFS-only model’s ideal scalability is

given by the equation f(x) = 5.67e−3x whilst the NEMO-only model’s is given

by f(x) = 3.06e−3x.2

From Figure 6.1, IFS-only appears to be scaling worse with increasing number

of resources compared to NEMO-only. Looking at the ideal scalability of each

component model, however, shows that ideal NEMO is still performing worse

than ideal IFS. This can be explained by the result that NEMO has an ideal

scalability slope of 3.06e−3, which is less than IFS’ 5.67e−3. As the number of

1Real time
2The slope of each ideal scalability curve is computed by taking the average SYPD reported

in the first row of Table 6.2 and divide it by the corresponding number of CPUs.
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Figure 6.1: IFS-only (blue) and NEMO-only (orange) scalabilities in EC-Earth3-HR
on CRAY XC50. The scalabilities are measured in terms of SYPD. The
average SYPD and the corresponding 1-standard deviation uncertainties
are attained from samples of five 10-day simulations performed using
different numbers of CPUs. The exact numbers are presented in Table 6.2

CPUs increases to 800, an increase in SYPD difference between NEMO and IFS

is observed. This is a significant increase compared to the SYPD difference at

around 250 CPUs. This shows that, in high resolution configuration, the NEMO

component is still performing worse than IFS in terms of run-time efficiency

even though it is more scalable than IFS on the CRAY XC50 platform.

Scalabilities in terms of wall clock time is also studied and the results (Figure

9.1 and 9.2) are given in the Appendix (Chapter 9). These results show that

NEMO-only is actually scaling more efficiently in terms of wall clock time. In

accordance with CPMIP metrics, this thesis continues with its investigation in

the scalability of NEMO’s subroutines based on the results of SYPD scalability.

Further investigation into this discrepancy between SYPD and wall clock

scalabilities of each component should be revisited.

The scalability of EC-Earth3-HR AOGCM on CRAY XC50 is inconclusive due

to its demand for large amount of computer resources. Further discussion on

determining the minimum number of processors needed for the simulation to

complete is presented in Chapter 7
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IFS no. of CPUs Average SYPD NEMO no. of CPUs Average SYPD

252 1.43±0.03 144 0.44±0.01
504 2.53±0.06 288 0.81±0.03
756 3.23±0.14 432 1.12±0.05

1008 3.626±0.37 576 1.39±0.06
720 1.48±0.14
864 1.74±0.11

Table 6.2: Average SYPD and 1-standard deviation uncertainties data plotted in
Figure 6.1.

Performance analysis of EC-Earth3-HR AOGCM was also attempted by bench-

marking the components (IFS & NEMO) using the CrayPat software available

on CRAY XC50. IFS-only simulation with CrayPat instrumented is performed

and completed successfully. Simulations of NEMO-only with CrayPat instru-

mented, however, failed. An example of the returned error messages are shown

below in the standard output file np01.out.001 of a NEMO-only simulation:

*II* nemo original domain decomposition ( not using ELPiN )
/usr/bin/time −p aprun −n 1 . / xios_server . exe+pat : −n 144 . / nemo . exe+pat
CrayPat/X : Version 7 .0 .0 Revision 5c29ce2 12/11/17 15:26:24
Rank 0 [ Mon Nov 15 10:55:17 2021] [c0−0c1s4n0 ] Fatal error in ←↩

PMPI_Group_translate_ranks : Invalid rank , error stack :
PMPI_Group_translate_ranks (220) : MPI_Group_translate_ranks ( group=0x88000001 , n=1,←↩

ranks1=0x7fffffff60ec , group=0x88000000 , ranks2=0x7fffffff60fc ) failed
PMPI_Group_translate_ranks (191) : Invalid rank has value 10652570 but must be ←↩

nonnegative and less than 1
forrtl : error (76) : Abort trap signal

Stack trace terminated abnormally .
_pmiu_daemon ( SIGCHLD ) : [ NID 00080] [c0−0c1s4n0 ] [ Mon Nov 15 10:55:17 2021] PE ←↩

RANK 0 e x i t signal Aborted
[ NID 00080] 2021−11−15 10:55:17 Apid 35427172: initiated application termination
Application 35427172 e x i t codes : 134
Application 35427172 e x i t signals : Killed
Application 35427172 resources : utime ~1s , stime ~9s , Rss ~47520, inblocks ~0, ←↩

outblocks ~64880
r e a l 5.42
user 0.99
sys 0.20

From the above message, a fatal error in PMPI_Group_translate_ranks is

detected in Rank 0 with an additional message of "invalid rank" reported. This

led to the exit of the process and the simulation is killed.
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Since NEMO is unable to run successfully with CrayPat, performance analysis

of AOGCM is incomplete and the optimal load balance between the IFS and

NEMO components cannot be determined with the CrayPat software on the

HPC platform CRAY XC50.
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(a) Top 60 subroutines in NEMO-only high-resolution model that consumes the most CPU
time during a 10-day simulation. The top 10 subroutines with the highest CPU time are
presented in the upper-left plot with limdyn consuming the most CPU time and ldf_slp
consuming the least CPU time out of the top 10.
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(b) CPU scalabilites of the remaining subroutines in NEMO model.

Figure 6.2: CPU scalability of all subroutines in NEMO-only model at resolution
ORCA025. The subroutines are plotted in order of decreasing CPU time.
Figure 6.2a shows the top 60 subroutines and 6.2b shows the remaining
subroutines. Please read the plot in the following order: upper-left,
upper right, middle left, middle right, lower-left and lower-right. The
subroutines in each legend are also listed in order of decreasing CPU time.
An example is given in the caption of Figure 6.2a.
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(a) Top 60 subroutines in NEMO-only high-resolution model that consumes the most wall
clock time during a 10-day simulation. The top 10 subroutines with the highest wall clock
time are presented in the upper-left plot with limdyn consuming the most wall clock time
and ldf_slp consuming the least wall clock time out of the top 10.
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(b) Wall clock scalabilites of the remaining subroutines in NEMO model.

Figure 6.3: Wall clock scalability of all subroutines in NEMO-only model at resolution
ORCA025. The subroutines are plotted in order of decreasing wall clock
time. Figure 6.3a shows the top 60 subroutines and 6.3b shows the
remaining subroutines. Please read the plot in the following order: upper-
left, upper right, middle left, middle right, lower-left and lower-right.
The subroutines in each legend are also listed in order of decreasing CPU
time. An example is given in the caption of Figure 6.3a.
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6.2 Scalability analysis of subroutines in
NEMO-only high-resolution model

The following results are obtained from samples of ten 10-day NEMO-only

high-resolution simulation. The average CPU and wall clock time for each sub-

routine is calculated and, in turn, used to compute for the average scalability

or speedup.

6.2.1 Least scalable subroutine limdyn

Using NEMO’s built-in timer module timing.f90, the CPU and wall clock

time consumption of each subroutine are determined for simulations assigned

with [72, 144, 216, 288, 360, 432, 504, 576] CPUs. The results of all NEMO

subroutines’ scalabilities in CPU and wall clock time are plotted in Figure 6.2

and 6.3. In each subplot of Figure 6.2 and 6.3, scalabilites of ten subroutines

are plotted. Subroutines in different subplots sharing the same notation in the

legends are completely unrelated3.

The upper-left plot in Figure 6.2a and 6.3a shows the top ten subroutines that

are most time-consuming, with limdyn ranked the highest and ldf_slp ranked

the lowest among the top ten. The scalability of limdyn is represented by the

dark blue dashed curve, which lays below the ideal speedup represented by

the black solid curve. A few subroutines with odd scalabilites are shown in the

middle-left plot of Figure 6.2b. A scalability of 106 is measured for subroutines

ldf_slp_init (using 10 nodes and more), dia_ar5_init (using 14 nodes

and more) and tra_qsr_init (using 16 nodes). This is because the CPU time

measured for these subroutines using certain number of computer nodes are

significantly larger than the measured CPU time using only 2 nodes.4 Thus,

the computed scalabilities of 106 for these subroutines are inconsequential.

Linear least-squares regression lines are fitted to all subroutines’ scalabilities

data5 and those with slopes less than 0.5, the ideal scalability slope, are plotted

3The sharing of same color and line style is simply for facilitating the plotting process of so
many subroutines in the NEMO model.

4lima→0
b
a =∞ where b is a constant.

5Using the linregress function from the python library scipy.stats.
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in Figure 6.4. The cumulative time percentage of these subroutines are plotted

against the computed slopes. In both figures, the red triangle represents

the biggest increase in cumulative time and it corresponds to the subroutine

limdyn with a slope of 0.396. Using 144 CPUs, limdyn takes up 9.69% and

9.41% of the total NEMO-only high-resolution 10-day simulation CPU and

wall clock time, respectively.

Further inspection into the code of limdyn reveals that an important sub-

routine of LIM3.6 related to sea-ice dynamics is not evaluated by NEMO’s

built-in timer module. This is the limrhg.f90 subroutine which is dedicated

to compute for the sea-ice rheology and solving for the sea-ice velocities using

the EVP framework described in Chapter 4.2.2. Applying the built-in mod-

ule to this subroutine to measure its CPU and wall clock time, the CPU and

wall clock time percentages for limrhg are measured to be 9.69% and 9.41%

Meanwhile, a drastic decrease of 9.66% and 9.38% in limdyn’s CPU and wall

clock time percentage is observed. Since the built-in module timer is designed

to exclude child-subroutine’s run-time from parent-subroutine’s run-time, this

demonstrates that limrhg contributes significantly to limdyn’s run-time. And,

this result leads to the profiling of run-time consumption within limrhg in the

next section. 6

Thus, limdyn is identified as the least scalable subroutine in NEMO-only high-

resolution model with limrhg being the actual time-consuming factor. Next,

the results of investigating CPU and wall clock execution time of various tasks

performed in limrhg. And, further details on how limdyn is identified are

discussed in Chapter 7.2.

6The built-in timer module is designed such that the simulation time (CPU or wall clock) of
a child-subroutine is not included in simulation time of the parent-subroutine.
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(a) Cumulative wall clock time percentage of all subroutines with scalability slope less than
0.5. The red triangle indicates the subroutine limdyn has a slope of 0.369 and takes up
9.409% of the simulation wall clock time.

(b) Cumulative CPU time percentage of all subroutines with scalability slope less than 0.5.
The red triangle indicates the subroutine limdyn has a slope of 0.369 and takes up 9.690%
of the simulation CPU time.

Figure 6.4: A linear least-squares regression line is fitted to the scalability data of each
subroutine in the NEMO-only model at resolution ORCA025. Subroutines
with a slope less than 0.5 are plotted above on the x-axis. The time
percentage each corresponding subroutine takes of the simulation are
measured and the cumulative time percentages are plotted on the y-axis.
The red triangle in both legends indicates the subroutine limdyn.
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6.2.2 Run-time consumption within limrhg

Applying the second timer module tasks_timer to limrhg, the CPU and wall

clock time of tasks in the following categories7 are measured:

• mask: creation of sea-ice "masks" at the corners of Arakawa C grid to

represent sea-ice location on ocean grid

• preC: computation for wind/ocean stress and Coriolis force terms in the

momentum equation (Eq. (4.1))

• EVP: computation for sea-ice internal stress term and solving for the

sea-ice velocities in 120 iterations

• C: recompute invariant ∆ of the strain rate tensor

• diagnostic: getting diagnostics of sea-ice variables after EVP iteration

• MPI, MPIinEVP, MPIdiag: MPI communications (split into three parts)

• Other: other tasks (defining variables, initialization of arrays, arrays

allocation and deallocation, etc.)

The results are presented in Figure 6.5 in terms of percentages of the sub-

routine limrhg’s run-time (CPU and wall clock) that is reported from timing
module. CPU time percentages are plotted in Figure 6.5b and wall clock time

percentages are plotted in Figure 6.5a.8. The percentages are labeled at the

top of each bar. The time percentages labeled EVP is corrected such that the

overhead from timing MPI communications within the EVP iteration, and I/O

for these measurements, is not included. The time percentages of carrying out

these MPI communications within the EVP iterations, however, is included in

the timer percentages of the EVP iterations.

In both bar plots, the iteration for computing the sea-ice internal stress term

and sea-ice velocities, using the EVP framework, is shown to be the most time

7The categories given the same labels as the ones in the timer tasks_timer
8Note that the timing of MPI communications is split into three sub-categories for easy

application of tasks_timer module

48 Chapter 6 Results



(a) Average percentage of wall clock time
each group of tasks takes in limrhg.f90.

(b) Average percentage of CPU time each
group of tasks takes in limrhg.f90.

Figure 6.5: Measured wall clock and CPU time of all tasks performed within the
subroutine limrhg.f90. The tasks are grouped into seven categories with
MPI communications having three subcategories. Average percentage of
wall clock and CPU time of each category in the subroutine. The averages
are computed from a sample of ten 10-day simulations with 144 CPUs
assigned to NEMO-only ORCA025.

consuming task in limrhg with 87.60% in wall clock time and 87.19% in CPU

time. The second highest-ranked task is MPI communications called within this

process, with a wall clock time percentage of 7.80% and CPU time percentage

of 8.21%. From high to low percentages, the rest of the measured categories

are ordered as thus: other tasks with 2.61% wall clock time and 2.60% CPU

time; MPI communications called for exchanging calculated diagnostic of

sea-ice variables with 0.91% for both wall clock and CPU time; calculating

diagnostic of sea-ice variables with 0.40% for both wall clock and CPU time;

computation for external stress and force with 0.36% for both wall clock and

CPU time; re-computation of strain rate tensor invariant with 0.21% wall clock

time and 0.22% CPU time; MPI communication of sea-ice masks with 0.06%

wall clock and CPU time; and, creation of sea-ice masks with 0.05% wall clock

and CPU time.

The result of computation for sea-ice internal stress and sea-ice velocities

being the most time-consuming is expected since these tasks are iterated 120

times within the subroutine. In addition, Bouillon et al. (2009) also reported
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that this framework is known to be computationally expensive. Among the

MPI communication categories, the same can be argued for MPIinEVP which

represents MPI communications called within this 120-iteration process.

6.3 Vectorization optimization report on
limrhg

A vectorization optimization report on limrhg is returned by the compiler to

diagnose potential vectorization implementation in the subroutine. A short-

ened version of this report is available in the Appendix 9.3. From the results

presented in Section 6.2.2 where the EVP framework (used to solve for the

sea-ice internal stress tensor and velocities) is measured to be the most time-

consuming tasks in limrhg, analysis of potential vectoriztion optimization

within this process is chosen to be the focus of this section. Identified op-

timizable and non-optimizable loops related to the EVP framework will be

presented here.

6.3.1 Optimizable loops in EVP framework

Implemented vectorization in single do-loop are reported on L369, L370, L596.

The first two lines concern with saving the sea-ice velocities of a previous

time steps to zu_ice and zv_ice. However, this instruction is only carried

out ln_ctl=.TRUE.. Under an actual global climate experiment, this option

is usually set to .FALSE.; thus, we can disregard any further investigation

into this. The vectorization on L596 instructs the differences between sea ice

velocities at the previous and current time steps to be determined. Like the

instructions at L369 and L370, this can also be disregarded since it is carried

out under the conditional statement at L594 with ln_ctl=.FALSE..

First vector dependence found within the EVP algorithm is reported at L376

where the inner do-loop for calculating the shear strain rates at the corners of

Arakawa C grid. An OUTPUT dependency is assumed between the shear strain

rate zds and the u-component of the sea ice velocity u_ice.
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Another assumed OUTPUT dependence is reported at the inner do-loop on

L422 where the terms P/∆ and σ12 (both from Eq. (4.3)) at the corners of

Arakawa C grid are calculated. A clear dependence of the latter on the first

is shown in L428 where the stress rate is being computed. Furthermore, the

calculation for P/∆ at the corners zp_delf on L425 depends on the same term

at T points on the Arakawa C grid, which must be computed beforehand (as

it does at L411 in the previous nested do-loops). The outer do-loop at L421,

however, may be further optimized using SIMD directive.

This SIMD directive is also suggested by the report on L598 when determining

the maximum value of array zresm. Since this instruction is carried out under

the if-statement with ln_ctl on L594, we may disregard further investigation

here also for ln_ctl=.FALSE..

Vectorization that is already implemented within interfaces lbc_lnk for MPI

communication on L385 and L419 is also reported. A quick investigation

into building of lbc_lnk interface and the subroutines used within reveals

the complexity of how MPI communications are carried out in NEMO. Any

potential optimization in regards to MPI communication will have to be fur-

ther investigated by studying the scalability of MPI communication within

limrhg.

6.3.2 Non-optimizable loops in EVP framework

As for the non-optimizable loops found within the implementation of EVP al-

gorithm, they can be explained by either compilation constraints or prevention

of outer loop vectorization due to inner loop throttling.

The first reasoning is used for nested loops ending on the following lines:

• L384: begins at L375 to calculate for the shear strain rates at grid’s

corners.

• L418: begins at L387 to calculate for the D2
S, DD, DT , ∆, P/∆, σ1 and

σ2 at T points.
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• L463: begins at L435 to calculate for the sea-ice internal stress forces,

and the interpolated velocities v_iceU and u_iceV at u and v points,

respectively.

• L494: begins at L470 to calculate for sea-ice velocity v_ice first in even

iterations

• L524: begins at L500 to calculate for sea-ice velocity u_ice after in even

iterations

• L556: begins at L532 to calculate for sea-ice velocity v_ice first in odd

iterations.

• L586: begins at L562 to calculate for sea-ice velocity u_ice after in odd

iterations.

The compilation constraints are also reported to be the cause of non-optimizable

loops ended on L371 and L597. Theses are disregarded, however, because they

are only carried out under the IF statement with ln_ctl. For ln_ctl=.FALSE.
in NEMO, these loops are not performed.

The second reasoning is reported for non-optimizable procedures related to

lbc_lnk interfaces. Specifically, it was reported at the position where the

arrays to be exchanges are stated at L385,24 and L419,24, as shown below:

! Ca l cu l a t e shear at F po in t s ( corners of Arakawa C gr id )
CALL lbc_lnk ( zds , ' F ' , 1 . ) ! (L385 ,24)
! . . .
! Ca l cu l a t i on of v a r i a b l e s a t T po in t s ( cente r of Arakawa C gr id
! . . .
CALL lbc_lnk ( zp_delt , ' T ' , 1 . ) ! (L419 ,24)

where 24 indicates the position of arrays zds and zp_delt. Further investiga-

tion in this might be beneficial for considering potential optimization in MPI

aspects of the NEMO model.
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7Discussion

Further discussion on some of the results, shown in Chapter 6, is presented

here. First, discussion of results from attempting to determine optimal load

balance using scalability and performance analysis of EC-Earth3-HR AOGCM

is presented. This is followed by details on the process of identifying limdyn
as the least optimal subroutine in NEMO. After that, a brief recap of profiling

run-time within limrhg, the main execution time contributor to limdyn, is

mentioned before a small anomaly in the time measurement of MPI communi-

cation within EVP framework is addressed. Finally, a detailed discussion on

potential vectorization in computation for the shear strain rates is presented.

7.1 Optimal load balance for AOGCM in
EC-Earth3-HR

Recall from Chapter 6.1.2 that the execution time of the coupled model in

high resolution configuration cannot be compared with that in the standard

resolution configuration because of lack of computer resources. Here, trial sim-

ulations are carried out to determine the least amount of computer resources

EC-Earth3-HR AOGCM needs to complete successfully. Afterward, we will dive

into the cause of failed ocean simulation when the model is instrumented with

the performance analysis tool CrayPat.

7.1.1 CPU resources for EC-Earth3-HR AOGCM

With a more refined map, there exist a higher number of grid points which

demands for more computation to be carried out in order for a simulation

to complete. More computation means more operation to be performed and,

in turn, demands for more CPUs for sufficient memory space and computer

power. Following the detailed approach described in Chapter 5.1, the minimum
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computer resources needed for EC-Earth3-HR AOGCM to run successfully on

CRAY XC50 is determined. Therefore, this must be taken into consideration

when CPU resources are being allocated to the components of AOGCM.

A minimum of 1263 CPUs are required for an EC-Earth3-HR AOGCM simula-

tion to complete successfully. Of the 1263 CPUs, 1008 CPUs are allocated for

NEMO component, 252 for IFS component, and the remainder is dedicated

to I/O server and the runoff mapper to handle exchanges of freshwater. This

remains the case with I/O turned off for simulation. In order to analyze the

scalability of AOGCM, measurements from samples of simulation performing

with multiples of 1008 and 252 CPUs are required. This was a challenging task

to acheive during times when resources on CRAY XC50 were in high demands

and constant maintenance was carried out on the supercomputer platform.

Thus, scalability analysis of EC-Earth3-HR AOGCM is inconclusive. Never-

theless, the minimum computer power for running EC-Earth3-HR AOGCM is

determined.

Using this set of CPU resources, EC-Earth3-HR AOGCM’s performance effi-

ciency is measured over a sample of five 10-day simulations. It is measured to

have an average 1.31±0.05 SYPD and an average wall clock time of 1801±63

seconds.

7.1.2 CrayPat Instrumentation on NEMO3.6

As mentioned previously, the performance analysis of AOGCM in high reso-

lution on CRAY XC50 was unsuccessful due to failed simulations from the

NEMO component when it is instrumented with CrayPat. An example of the

error message is shown in Chapter 6.1.2 where a fatal error is detected in

PMPI_Group_translate_ranks. More simulations were performed to locate

the source of this error by using different combination of NEMO and XIOS with

and without CrayPat instrumented, and varying the number of CPUs allocated

to either executable. It is concluded that the error stems from some unidenti-

fied incompatibility between CrayPat and the NEMO model, particularly the

XIOS external server for I/O. Both of the executable files have to be instru-

mented in order for CrayPat to profile the entire ocean model’s performance.

When more processors are assigned to XIOS a similar error message is returned

as stated below:
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*II* nemo original domain decomposition ( not using ELPiN )
/usr/bin/time −p aprun −n 2 . / xios_server . exe+pat : −n 144 . / nemo . exe+pat
CrayPat/X : Version 7 .0 .0 Revision 5c29ce2 12/11/17 15:26:24
Rank 1 [ Mon Nov 15 12:16:10 2021] [c0−0c0s15n1 ] Fatal error in ←↩

PMPI_Group_translate_ranks : Invalid rank , error stack :
PMPI_Group_translate_ranks (220) : MPI_Group_translate_ranks ( group=0x88000001 , n=1,←↩

ranks1=0x7fffffff61bc , group=0x88000000 , ranks2=0x7fffffff61cc ) failed
PMPI_Group_translate_ranks (191) : Invalid rank has value 32767 but must be ←↩

nonnegative and less than 2
Rank 0 [ Mon Nov 15 12:16:10 2021] [c0−0c0s15n1 ] Fatal error in ←↩

PMPI_Group_translate_ranks : Invalid rank , error stack :
PMPI_Group_translate_ranks (220) : MPI_Group_translate_ranks ( group=0x88000001 , n=1,←↩

ranks1=0x7fffffff616c , group=0x88000000 , ranks2=0x7fffffff617c ) failed
PMPI_Group_translate_ranks (191) : Invalid rank has value 10652570 but must be ←↩

nonnegative and less than 2
forrtl : error (76) : Abort trap signal

Stack trace terminated abnormally .
forrtl : error (76) : Abort trap signal

Stack trace terminated abnormally .
_pmiu_daemon ( SIGCHLD ) : [ NID 00061] [c0−0c0s15n1 ] [ Mon Nov 15 12:16:11 2021] PE ←↩

RANK 0 e x i t signal Aborted
[ NID 00061] 2021−11−15 12:16:11 Apid 35430693: initiated application termination
Application 35430693 e x i t codes : 134
Application 35430693 e x i t signals : Killed
Application 35430693 resources : utime ~0s , stime ~9s , Rss ~46768, inblocks ~0, ←↩

outblocks ~16
r e a l 4.84
user 1.02
sys 0.12

Comparing this error message to the one presented in Chapter 6.1.2, the

additional message beginning with Rank 1 is returned when two CPUs are

assigned to XIOS instead of one. Again, the message states that there is a fatal

error in PMPI_Group_translate_ranks. An invalid rank is also present when

the ranks of processes in a MPI group is translated to another using the MPI

function. It is suspected that a mistake is developed in the numbering of ranks

in different groups, and a rank is assigned a number significantly bigger than

the number of CPUs allocated for XIOS.

Due to the MPI complication caused by CrayPat instrumented to NEMO and

XIOS, performance analysis of AOGCM is incomplete and the optimal load

balance for AOGCM in EC-Earth3-HR on CRAY XC50 cannot be determined

using CrayPat.
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7.2 Scalability analysis of NEMO
subroutines

From Figure 6.2 and 6.3, NEMO subroutines with less-than-ideal scalabilities

are clearly identified as they lay below the ideal speedup represented by the

black solid curves. Some of these subroutines, however, take up less than 1%

of the model simulation time. This must be taken into consideration in order

to find the least optimal subroutine where further optimization can be carried

out and potentially lead to a substantial impact on NEMO simulation time.

To do so, linear least-squares regression (LLSR) are fitted to the scalabilities

data to determine the corresponding slopes for each subroutine. Those with

a LLSR slope less than the ideal scalability slope of 0.5 are candidates for

identifying the least optimal subroutine. Using the measured CPU and wall

clock time percentages of a simulation using 4 nodes, provided by the NEMO

built-in timer, the cumulative percentages of the corresponding subroutines

are computed. By analyzing the cumulative timer percentage against the LLSR

slope, the least optimal subroutine that also takes up a significant percentage

of the NEMO model simulation can be identified. As shown in Figure 6.4,

we see a significant increase in cumulative time percentage represented by

the red triangle. This corresponds to the subroutine limdyn which initializes

the process for solving the sea-ice momentum equation. It has a LLSR slope

of 0.396, less than the ideal slope 0.5, and takes up almost 10% of the a

NEMO simulation time. Thus, limdyn is identified to be the least optimal

subroutine.

7.3 Profiled time consumption within
limrhg

The detail profiling of limrhg is performed using the timer module tasks_timer.

Tasks within limrhg were grouped in the seven categories listed in Chapter

6.2.2. From the results presented in Figure 6.5, the EVP iterations is measured

to be the most time-consuming task of limrhg.f90 as it takes up 87.60% of

the subroutine’s wall clock time and 87.19% of the subroutine’s CPU time.
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These measurements also include the time spent on MPI communications

(MPIinEVP) within EVP iterations. From the measurements of EVP and MPI-

inEVP in CPU and wall clock time, as shown in Table 9.1, proportion of MPI

communication in the EVP framework can be computed. It is determined that

MPI communications take up only about 9.42% and 8.90% of the EVP itera-

tions’ CPU and wall clock time. This means majority of the subroutine limrhg
run-time is still spent on the performing intensive computation within the EVP

framework. Moreover, MPI communication does not contribute significantly

to the subroutine’s total execution time; the total wall clock time of all MPI

processes within limrhg amounts to only 8.77% of the subroutine’s total wall

clock run-time.

A difference of 0.41% in the percentages of CPU and wall clock time of MPI

processes within the EVP iterations is noted. With respect to the CPU and

wall clock run-time of limrhg, which are both approximately 324.0 s1, 0.41%

corresponds to about 1.0 s. A 1-second difference between CPU time and

wall-clock time is tolerable and does not reflect on any obvious and alarming

timing issues within the model.

From this basic profiling of limrhg, it is concluded that the iterative EVP

framework used to compute sea-ice rheology and velocities, is the most time-

consuming task within the subroutine. In turn, it also contributes to the

computational cost of limdyn, the least optimal subroutine in the NEMO

model.

7.4 Potential optimization in EVP
implementation

Summarized results from the vectorization optimization report in Chapter 6.3

details information about loops that are already vectorized, potential loops for

vectorization and non-optimizable loops. Here, an analysis one of the reported

optimizable loops, as listed in Chapter 6.3 is discussed. Specifically, we will

focus on the nested do-loops for calculating the shear strain rates.

1Measured by NEMO’s built-in timer module.
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7.4.1 Analysis of "assumed OUTPUT dependency"
in optimizable loops

An OUTPUT dependency was assumed at L376, under the nested loops starting

at L375, and specifically between arrays zds and u_ice. Whilst zds is an array

and a pointer declared in limrhg, u_ice is an array declared in ice, a module

consisting of all diagnostics variables relevant to the sea-ice model LIM3.6.

Recall that an OUTPUT dependency means that a variable at a memory address

is being written to more than once in (nested) loops. This means that the

compiler interprets zds and u_ice to have the same memory address, and data

at this memory address can be accessed via either variables. This is known as

aliasing, and the two arrays would be aliased arrays.

This would, indeed, be the case if zds, a pointer, is associated with u_ice in

the subroutine limrhg.f90 via the following:

zds => u_ice
u_ice = zds

In the first statement, the array/pointer zds is associated to the target array

u_ice. In the second statement, the values of u_ice is changed to be the same

as the target that zds "points" to, which is u_ice itself . These statements

were not executed in any subroutines within the sea-ice model LIM3.6, an

indication that aliasing memory between the two was not initiated via these

statements.

Another cause of aliasing memory between the two arrays could stem from

the method used to allocate memory for these arrays. For the array u_ice,

it is allocated in the module ice using the fundamental Fortran90 function

ALLOCATE(). Array/pointer zds is allocated using an interface wrk_alloc
consisting of several subroutines that are dedicated to allocate work space

for arrays of different dimension. For 2D arrays like zds, they are handled by

subroutines wrk_alloc_2dr and wrk_alloc_2di, which in return uses other

subroutines (wrk_alloc_xd and wrk_allocbase) to specify multiple conditions

before an array is allocated. An investigation into these subroutines would be

challenging as the details of the subroutines’ methods are not documented in
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Madec and NEMO team (2016), which is a manual intended for users of the

NEMO model.

A trivial approach to test if aliasing memory between the arrays is resulted

due to some complexity of wrk_alloc is to use another fundamental Fortran90

function ALLOCATE() to allocate space for zds instead. Since the dimension

of the array zds is known2, the complication of using the interface wrk_alloc
can be bypassed with following changes in the subroutine limrhg:

! Keep every th ing e l s e the same
! Using ALLOCATE() in s tead fo r zds
! Take out zds from the wrk_al loc () on L202 and add the fo l lowing l i n e
ALLOCATE( zds (jpi , jpj ) )

. . .

! Take out zds from wrk_deal loc () on L879 and add the fo l lowing l i n e
DEALLOCATE( zds )

The subroutine is then compiled again using the same compilation flags men-

tioned in Chapter 5 to generate a new vectorization optimization report. If

wrk_alloc is the cause for aliased arrays, then replacing it with ALLOCATE()
should not result in an "assumed OUTPUT dependency". This is not the case

however when the new report also returns an "assumed OUTPUT depen-

dency":

LOOP BEGIN at /home/ngyilo/ec_earth3/xio−parlib/sources/nemo −3.6/CONFIG/←↩

ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (410 ,13)
remark #15344: loop was not vectorized : vector dependence prevents ←↩

vectorization . First dependence is shown below . Use level 5 report ←↩

for details
remark #15346: vector dependence : assumed OUTPUT dependence between c a l l :←↩

for_emit_diagnostic (413:33) and c a l l : for_emit_diagnostic (413:16)
LOOP END

The compiler’s detection of this dependency would require further investiga-

tion.

This "assumed OUTPUT dependency" can be bypassed using Intel’s directive

IVDEP to instruct the compiler to ignore assumed vector dependencies in

2From the subroutine in which limrhg is called, the dimension of the array is set to be the
dimension of the local domains (ji, jj).

7.4 Potential optimization in EVP implementation 59



a particular loop. This can be done because, from my investigation and

understanding of the code, no executable statements are written that would

obviously result in aliasing memory between zds and u_ice. Based on this

reasoning, the IVDEP directive is used such as follows:

. . .
! −−− divergence , tens ion & shear ( Appendix B of Hunke & Dukowicz , 2002) −−− !

DO jj = k_j1 , k_jpj−1 ! loops s t a r t a t 1 s ince there i s no boundary ←↩

cond i t ion ( lbc_ lnk ) at i=1 and j=1 fo r F po in t s
! DIR$ IVDEP ! IGNORE ASSUMED DEPENDENCY
DO ji = 1 , jpim1

! shear at F po in t s
zds (ji , jj ) = ( ( u_ice (ji , jj+1) * r1_e1u (ji , jj+1) − u_ice (ji , jj ) * ←↩

r1_e1u (ji , jj ) ) * e1f (ji , jj ) * e1f (ji , jj ) &
& + ( v_ice (ji+1,jj ) * r1_e2v (ji+1,jj ) − v_ice (ji , jj ) * ←↩

r1_e2v (ji , jj ) ) * e2f (ji , jj ) * e2f (ji , jj ) &
& ) * r1_e12f (ji , jj ) * zfmask (ji , jj )

END DO
END DO

The subroutine limrhg.f90 is compiled again and the "assumed OUTPUT

dependency" is no longer returned in the vectorization optimization report.

However, it is replaced by the following remark:

remark #15527: loop was not vectorized : func t ion c a l l to for_emit_diagnostic ←↩

cannot be vectorized [ /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 /←↩

sources/nemo −3.6/CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg .←↩

f90 (380 ,33) ]

The Intel library function for_emit_diagnostic is raised when an error is

detected by tests in the code during compilation, such as array bounds violation

and unassociated pointers3 (Intel (2016), University (2022)). Additionally,

potential vectorization optimization might not be reported if there are too

many manipulation in indexing (e.g. a[i+1] where a is an array) (University

(2022)).

Studying the code of the nested do-loops again from L375 to L384, two

pointers/arrays are involved and also not associated to a target. They are

the array/pointer zds and array/pointer zfmask, of which the latter is the

sea-ice mask at the corners of Arakawa C grid. For these pointers are simply

used memory allocation in Fortran90. Furthermore, manipulation in indexing
3In Fortran, pointers are associated to a target variable via the pointer association operator

"=>". An example was given at the beginning of this section 7.4.
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is also used where the computation for zds often requires data of variables,

such as u_ice and v_ice, at the next jj and ji indices (u_ice[ji,jj+1] and

v_ice[ji+1,jj]). These reasoning could explain why the message,

function call to for_emit_diagnostic cannot be vectorized

, is returned when the compiler is trying to test the code for vectorization

optimization.

7.4.2 Potential vectorization for computing shear
strain rates

Based on on these information presented in the last section, it is reasoned

that the returned message may be insubstantial. Thus, vectorization may be

applied in the nested do-loops where the shear strain rate is computed (from

L375 to L384).

Looking into the operation of this nested do-loops, one can see that the compu-

tation can be separated into two parts using simple algebraic distribution. The

first part of the computation requires data at indices (ji,jj) and (ji,jj+1).

Meanwhile, the second part requires data at indices (ji+1,jj) and (ji+1,jj).

We can thus, split the nested do-loops into two single loops in which they both

loop over one index only. The first part, which uses array u_ice, will loop

over the jj index only since all other variables in the computation access the

same index ji as the do-loop instructed4. Similarly, the second part, which

uses array v_ice, will loop over the ji index only with the same reasoning

previously stated for the index jj of u_ice.

Hence, the nested do-loops for calculating the shear strain rate at the corners

of an Arakawa C grid can be vectorized as shown below:

REAL(wp ) , POINTER , DIMENSION ( : , : ) : : zds_i ! shear , i t e r a t i n g over i
REAL(wp ) , POINTER , DIMENSION ( : , : ) : : zds_j ! shear , i t e r a t i n g over j

! A l l o c a t e memory fo r temporary a r ray s zds_i , zd s_ j to have the same dimension as←↩

zds

4During iteration ji = 1, data of u_ice(ji=1,jj=*)
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! Ca l cu l a t e us ing column v e c t o r i z a t i o n s ince i t never depends on j+1
DO ji = 1 , jpim1

zds_i (ji , : ) = ( ( v_ice (ji+1 ,:) * r1_e2v (ji+1 ,:) − v_ice (ji , : ) * r1_e2v (ji , : )←↩

) * e2f (ji , : ) * e2f (ji , : ) ) * r1_e12f (ji , : ) * zfmask (ji , : )
END DO

! Ca l cu l a t e us ing row v e c t o r i z a t i o n s ince i t never depends on i+1
DO jj = k_j1 , k_jpj−1

zds_j ( : , jj ) = ( ( u_ice ( : , jj+1) * r1_e1u ( : , jj+1) − u_ice ( : , jj ) * r1_e1u ( : , jj )←↩

) * e1f ( : , jj ) * e1f ( : , jj ) ) * r1_e12f ( : , jj ) * zfmask ( : , jj )
END DO

! zds = ( zds_ i + zds_ j )
zds = zds_i + zds_j

! Dea l loca te these a r ray s l a t e r when they ' re not needed anymore

Other areas where "assumed OUTPUT dependency" are reported by the com-

piler may also be vectorized if the code semantics imply no variable depen-

dency, and similar trivial messages, such as for_emit_diagnostic, are re-

turned.
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8Conclusion & Outlook

In this thesis, the optimal load balance of AOGCM in EC-Earth3-HR and

potential optimization of the NEMO component of DMI’s HPC platform CRAY

XC50 are investigated.

Determining the optimal load balance is crucial to optimizing AOGCM’s perfor-

mance by guaranteeing that both the atmosphere and ocean components are

given the optimal number of processors that can give the most reduction in

execution time of the coupled model. Of the two components, the ocean model

NEMO is chosen to be the focus of this study based on the assumption that it’s

less robust than the atmosphere model IFS, which is developed, maintained

and used by the intergovernmental organization ECMWF. Optimizing ocean

model in high resolution configuration is important to study climate evolution

because refined resolution can resolve fine scale features and benefit coupled

model predictions (Hewitt et al., 2017).

Attempts to determine the optimal load balance of EC-Earth3-HR AOGCM were

made by studying the scalability of each component, and using software tool

CrayPat to profile the model’s performance. From scalability analysis, NEMO

is concluded to be performing worse than IFS in EC-Earth3-HR. Performance

analysis of AOGCM is incomplete due to incompatibility of CrayPat with

NEMO’s external server XIOS that is dedicated for I/O purposes.

Scalability analysis was also carried out for all of NEMO’s subroutines to

determine which is the least scalable. limdyn is identified to be the least

scalable subroutine with limrhg.f90 found to be contributing most to limdyn’s

execution time. Furthermore, the EVP implementation used to solve for sea-ice

rheology and velocities is measured to be the most time-consuming task within

limrhg.f90. Nested do-loops of computation for variables such as shear strain

rates may be vectorized and lead to potential reduction in NEMO’s run-time.

63



8.1 Outlook

Recall that an interesting result was mentioned when comparing SYPD and

wall clock scalabilities of the IFS- and NEMO-only models. Whilst we see

that NEMO is performing less efficiently in terms of SYPD, it shows to be the

opposite in terms of wall clock time (Figure 9.1 and 9.2). This "discrepancy"

between the two metrics is of most interest and should be further analyzed in

furture work.

Another "assumed OUTPUT dependency" was detected by the vectorization

report where the terms P/∆ (zp_delf) and σ12 (zs12) from Eq. (4.7 are

calculated to determine the components of internal stress tensor σ. These

computation directly follows that of zds, which was discussed that it may have

a false detection of "OUTPUT dependency". For this follow-up computation,

data and loop dependency analyses must be carried out in the same fashion as

that for array/pointer zds before one may consider any potential vectorization

implementation.

Other vectorization implementation suggested by the report include using

SIMD directive for some outer do-loop, iterating over the jj index, such as the

one for computing zs12. As for most of the non-optimizable loops reported

in Chapter 6.3, further investigation can easily be carried out by compiling

limrhg with different option which will allow the compiler to test for more

loops that can be potentially optimized.

Overall, the next step to this thesis project would be to design and implement

different vectorization methods within limrhg following the results from the

optimization report. Ocean simulations in the high resolution configuration

can then be carried out to observe if there is an increase in efficiency and

scalability for the subroutines limdyn and limrhg.
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9Appendix

9.1 Additional plots

Figure 9.1: Wall clock time scalability of IFS- and NEMO-only simulation. The plot-
ted scalabilities are averages computered from a sample of five 10-day
simulation. The scalabilities are measured with respect to execution time
using 252 (IFs-only) and 144 CPUs (NEMO-only). In terms of wall clock
time, NEMO-only is observed to be scaling more efficiently than IFs-only.
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Figure 9.2: Comparing wall clock time scalability of IFs- and NEMO-only on the same
plot. Measurements of IFS are labeled in blue whilst those of NEMO are
labeled in orange. In these plots, it is clear that NEMO is observed to be
scaling better than IFS in terms of wall clock time.
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9.2 Additional tables

Tasks Wall clock time (%) CPU time (%)

Create sea-ice masks 4.81542098e-02 4.99141235e-02
MPI communication 5.80963600e-02 6.40500088e-02
Compute for τa

& τw
3.58018069e-01 3.59027628e-01

Iterating EVP algorithm 8.76040085e+01 8.71896374e+01
MPI communications
w/in EVP 7.79607150e+00 8.21338259e+00

Recompute ∆ 2.13091231e-01 2.16830343e-01
Gather diagnostics 3.97022167e-01 3.97641081e-01
MPI communication in
gathering diagnostics 9.11134942e-01 9.09126754e-01

Others 2.61440306e+00 2.60039003e+00
Table 9.1: Measured average CPU and wall clock time percentage of each group of

tasks in limrhg.f90. The averages are calculated over a sample of ten
10-day NEMO-standalone simulations in high resolution configuration.
This is the data set plotted in Figure 6.5 in Chapter 6.2.2.
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Section slope (m) intercept (b) slope error 4n-elap.time(%)

limdyn 0.3688807349618543 0.48903444041116106 0.03027120872756227 9.409
tra_adv_tvd 0.4080740308847504 0.2266793898645334 0.02919325364059388 3.586
zdf_tmx 0.46531866978775144 0.10026616418017742 0.0066527520371656435 3.311
limthd 0.45006027675451366 0.17030791225563746 0.007490085906125674 3.286
nonosc 0.45010645655457293 0.19183318973212682 0.021014948677265367 3.024
ldf_slp 0.4490010087653073 0.19903620163766167 0.023531409192176472 2.760
dom_vvl_interpol 0.41941330879197974 0.19154888449681362 0.01869101557649952 2.707
dom_vvl_sf_swp 0.4714823536934848 0.24252790351512665 0.0391814530599681 2.274
dyn_nxt 0.40514140735128396 0.13673471828551298 0.036182971595338904 2.234
zdf_ddm 0.4065562755962135 0.3259698984250523 0.014904315953617922 1.613
tke_avn 0.44556266320605575 0.09495907171661155 0.01826976086315192 1.599
dom_vvl_sf_nxt 0.424928889320912 0.2220436528925851 0.013512790423633736 1.395
dia_ar5 0.40296892641711857 0.3360388285730229 0.011458632831667438 1.014
limupdate2 0.4645228239033432 0.23938535906989333 0.016130969611116708 0.954
tra_nxt 0.3236263326876192 0.20180989703675012 0.08546381720991837 0.954
zdf_evd 0.3237108070397244 0.4404740074509155 0.03972942578817702 0.569
rab_3d 0.4357741997117707 0.1869512553447743 0.016006236528277516 0.447
eos-pot 0.46695587063196653 0.08906753383161092 0.0032293135661365926 0.438
wzv 0.4816009630550083 0.08052152610617291 0.003760542624464019 0.412
sbc 0.152210046573115 1.8551005087562613 0.10452036373068674 0.255
zps_hde 0.349736434041953 0.5529365278758616 0.08726650278464375 0.197
tra_bbl 0.37238117718370173 0.34333901113574505 0.061294876100033154 0.200
ldf_eiv 0.4088206381806604 0.39911396367583274 0.015071237765119717 0.182
eos-insitu 0.4351906434301559 0.1803059608753168 0.01874209769926132 0.136
eos_pt_from_ct_3d 0.48835922940851634 0.006235964362717894 0.004665854374558751 0.120
ldf_slp_mxl 0.2834943544400375 0.6351040105752506 0.022414262194953384 0.110
zdf_mxl 0.4582138744712392 0.12245465911561038 0.00822355246016425 0.102
limwri 0.3677612125958831 0.5726508610167111 0.017658279145124106 0.058
dta_tsd 0.049042318918080516 2.1392309881614406 0.06621948276865824 0.062
blk_oce_core 0.40079647945532376 0.3897722458419661 0.0712909104979446 0.056
lim_diahsb 0.1514005890240254 0.9068832367188191 0.014716864927607093 0.050
dom_hgr 0.04297883300990102 2.1542013013858368 0.06843426595060499 0.043
eos2d 0.07878263983275065 0.8584107020654218 0.03248113312389073 0.020
bbl 0.4391087020369736 0.14606135826219724 0.006772638434543726 0.010
zdf_bfr 0.2344704173505147 0.06897524429694357 0.04978750233593961 0.011
dyn_bfr 0.4665728818919912 0.07294142625372224 0.009515103197088462 0.010
sbc_dcy 0.440710415601966 0.11891534818876481 0.0046454491800585 0.010
blk_ice_core_tau 0.15055849925524473 0.5597914463601898 0.036656546901904744 0.010
tra_sbc 0.29371372679898855 0.5580137478049525 0.012147999169492052 0.009
sbc_fwb 0.1357708356061614 1.43613228478576 0.10346802092884534 0.000
rab_2d 0.34602622306343206 0.4994850425276973 0.02036092125409238 0.002
dom_ngb -0.03542077992514939 1.3883649909829991 0.03341477014141735 0.000
istate_init 0.46081296017327056 0.1500789313509463 0.006848357821904733 0.000
zgr_zps 0.20671470050341728 1.1037043441990475 0.04926464530921187 0.001
eos_pt_from_ct_2d 0.4649208822506542 -0.18907090176311359 0.01651322865661005 0.000
dyn_adv 0.01030327415510345 0.9470008085166807 0.003715844532913308 0.000
dom_msk 0.2003058294252502 0.7524131997481383 0.06706867360323954 0.000
dyn_vor 0.022811336048011506 1.0344698758223898 0.004792837616722159 0.000
dyn_zdf 0.012397115914752708 0.9831604185678158 0.0013570720804919085 0.000
dom_vvl_init 0.43337633027277095 0.2613757595541366 0.009910851675815359 0.000
dyn_ldf 0.008214649664105374 0.9598989132259559 0.005208306313965356 0.000
dom_init 0.08874859801097083 2.0704427585346803 0.08501030568455553 0.000
dyn_spg 0.01688624115297397 0.974611870975622 0.003968583349821347 0.000
tra_qsr_init 0.43169771364744314 0.22886100734187131 0.008787492015827505 0.000
day -0.03915145970369992 0.8745638632800291 0.027670429315816748 0.000
tra_bbl_init -0.023545881049454532 1.0670138011373116 0.026893528362743883 0.000
ldf_slp_init 0.47938349306163663 0.04016145134858551 0.009945839084364073 0.000
dia_ar5_init 0.3776630776755514 -0.14801371341273528 0.06762360166871728 0.000
zgr_bat_ctl -0.016052984707233677 6.3910819968827886 0.24235972336085862 0.000
zdf_bfr_init 0.07802812619625149 0.5289137324888178 0.050834058227277636 0.000
dyn_spg_init -0.012500346988890096 0.9211499632814194 0.033274721006477485 0.000
zgr_top_level 0.0654741006863068 1.0772909792083132 0.09222939038625987 0.000
ice_lim_flx 0.08531922373404187 0.9034484519347666 0.009180277840116064 0.000
zgr_bot_level 0.07697877920436491 0.9815535537918522 0.0821038228173318 0.000
dta_tsd_init 0.014115282949239213 1.0613994815526113 0.004221910366257674 0.000
dom_zgr -0.00527104369403528 0.9644433966879677 0.005920212427468085 0.000
zgr_z 0.031969508163829014 0.9812462268378234 0.010525627576497555 0.000
dom_cfg 0.24503958414832777 0.673873594822318 0.014924571294851745 0.000

Table 9.2: NEMO subroutines with wall clock scalability slope of less than 0.5. The
subroutines are ordered from high to low wall clock time percentage each
subroutine takes up of the a NEMO-ORCA025 standalone simulation. Data
provided here is plotted in Figure 6.4a.
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Section slope (m) intercept (b) slope error 4n-cputime(%)

limdyn 0.3688635401887801 0.48907296418317436 0.030269566195719275 9.690
tra_adv_tvd 0.40813076310406915 0.2264688018902583 0.029203156718795087 3.693
zdf_tmx 0.4652968445997492 0.1003423289950689 0.006654714620784975 3.411
limthd 0.45002750083581783 0.1703958462342161 0.00748870385108864 3.384
nonosc 0.44998747520836785 0.19224090609883326 0.02100476811994398 3.118
ldf_slp 0.4490685959209471 0.1987252811540623 0.023526554818372424 2.844
dom_vvl_interpol 0.41844570762605704 0.19505276837287866 0.018579847185964057 2.789
dom_vvl_sf_swp 0.48426020663049113 0.0970649147772642 0.0038404692080961766 2.341
dyn_nxt 0.4050705950858999 0.13704839126544544 0.03616161994874835 2.302
zdf_ddm 0.4064827400745136 0.3261935692731983 0.014917686323673742 1.659
tke_avn 0.4455325324834473 0.09496917446928776 0.0182796040090466 1.646
dom_vvl_sf_nxt 0.42476127563138855 0.22259069776417695 0.013509670463814669 1.435
tra_qsr 0.4860271194153389 -0.003809544773058171 0.010190091179242456 1.306
dia_ar5 0.40310736608072695 0.33554742601180276 0.011462554721737631 1.043
limupdate2 0.46440435574860683 0.23968192161502788 0.01613252108614412 0.983
tra_nxt 0.32350294184965545 0.20240972762165743 0.0854272366778598 0.982
sbc_ice_lim 0.49850825862874565 -0.3931184381720323 0.07102949761092796 0.440
zdf_evd 0.3233011014514409 0.44217508349252377 0.03969465129882691 0.588
rab_3d 0.43517836160724516 0.189052609891474 0.015981247300462735 0.458
eos-pot 0.46616298172852355 0.09165673728360524 0.0031603831061132984 0.451
wzv 0.48078515059049337 0.08328693290234046 0.0038308494117456535 0.425
sbc 0.23170232662883944 0.36502775752778405 0.03335097816348135 0.262
zps_hde 0.34997617374774903 0.552049773591746 0.08737602092828141 0.205
tra_bbl 0.3726294436268529 0.3428895905746816 0.061361302829702084 0.208
ldf_eiv 0.4085146418806407 0.4004042113068964 0.01507208014539027 0.186
eos-insitu 0.43429967293053257 0.1843507252955945 0.01878361319649657 0.139
eos_pt_from_ct_3d 0.4856741471489371 0.017384342092753968 0.004233876915474066 0.124
ldf_slp_mxl 0.2825401970019426 0.6381676472938733 0.022282589975981506 0.117
zdf_mxl 0.4575105003785958 0.12290107022667751 0.007976189824759533 0.108
limwri 0.3661363816108928 0.5772492545592018 0.01756621162433836 0.060
dta_tsd 0.098797209884286 1.275537744267317 0.023664657161216004 0.063
blk_oce_core 0.40130527343188804 0.38427437890949845 0.07102362601163008 0.057
lim_diahsb 0.15296987288535113 0.9244020013433958 0.017424202062268256 0.050
dom_hgr 0.047883253290406186 1.5257487762392499 0.04665279872355748 0.043
zdf_tmx_init 0.098023867864261 0.9195013116641073 0.067230205145723 0.020
eos2d 0.0784282874114051 0.8601672679878029 0.03229214238326283 0.020
bbl 0.43967706380395843 0.14495556135752263 0.00727235588289295 0.012
zdf_bfr 0.2340693626082678 0.06939176471236363 0.04975071082565362 0.011
dyn_bfr 0.45165720952992383 0.13740060769307139 0.009576285349054577 0.010
sbc_dcy 0.430024596786778 0.15360558645766442 0.004181744199008306 0.010
blk_ice_core_tau 0.149190927883186 0.5605627841395806 0.03618657018127851 0.010
tra_sbc 0.28793138526432904 0.5616981846664197 0.012592332183397769 0.002
sbc_fwb 0.30942802868146396 0.9239698431504535 0.1775484313872046 0.000
rab_2d 0.33864412602909094 0.48984544834853505 0.0266359382782776 0.001
dom_ngb -0.03603319547055498 1.3960515708185808 0.03342285944027699 0.000
istate_init 0.4640052816901408 0.0971302816901396 0.0352138280319078 0.000
zgr_zps 0.20638872230130487 1.1096823341750577 0.047990460286614356 0.001
eos_pt_from_ct_2d 0.41167371553884713 0.06015459321380323 0.032501075811424016 0.000
dyn_adv 0.013790524249015041 0.9324851606824917 0.004306009860964851 0.000
dom_msk 0.15987886382623223 1.0325814536340854 0.05793060612614594 0.000
dyn_vor 0.018099877250278073 1.0336883619310184 0.006954586999981552 0.000
dyn_zdf 0.017054512967053792 0.9535263360557726 0.0021892484877831814 0.000
dom_vvl_init 0.398809523809524 0.5357142857142847 0.06420114955302948 0.000
dyn_ldf 0.0030083507762079234 0.9919839089481949 0.0013712354510533303 0.000
dom_init 0.06547619047619054 2.285714285714285 0.08618970884513286 0.000
dyn_spg 0.016042780748663072 1.0276292335115862 0.003825370231619843 0.000
zgr_bat 0.20446593337218338 3.7123171620046627 0.16147339364487548 0.000
day 0.02258125472411185 0.9614512471655329 0.01863872180000812 0.000
tra_bbl_init -0.0185806108801517 1.059982428968653 0.028337845756879025 0.000
zgr_bat_ctl -0.01668719211822665 7.214408866995075 0.30077792707318624 0.000
zdf_bfr_init 0.0 0.0 0.0 0.000
dyn_spg_init 0.0 0.0 0.0 0.000
zgr_top_level 0.0 0.0 0.0 0.000
ice_lim_flx 0.0 0.0 0.0 0.000
zgr_bot_level 0.0 0.0 0.0 0.000
dta_tsd_init 0.0 0.0 0.0 0.000
dom_zgr 0.0 0.0 0.0 0.000
zgr_z 0.0 0.0 0.0 0.000
dom_cfg 0.0 0.0 0.0 0.000

Table 9.3: NEMO subroutines with CPU time scalability slope of less than 0.5. The
subroutines are ordered from high to low CPU time percentage each
subroutine takes up of the a NEMO-ORCA025 standalone simulation.
Data provided here is plotted in Figure 6.4b.
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9.3 Vectorization optimization report:
limrhg.optrpt (shortened)

Here is the shortened vectorization optimization report presented in Chapter

6.3.1 and discussed in Chapter 7.4. Only information related to the EVP

framework in limrhg.f90 and details on all detected non-optimizable loops

are presented here.

Intel (R ) Advisor can now assist with vectorization and show optimization
report messages with your source code .

See " h t tp s : // sof tware . i n t e l . com/en−us/ i n t e l −advisor−xe " for details .

Begin optimization report for : LIMRHG : : LIM_RHG

Report from : Vector optimizations [ vec ]

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (369 ,16)
<Peeled loop for vectorization , Multiversioned v1>
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (369 ,16)
<Multiversioned v1>

remark #15300: LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (369 ,16)
<Remainder loop for vectorization , Multiversioned v1>
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (369 ,16)
<Peeled loop for vectorization , Multiversioned v2>
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (369 ,16)
<Multiversioned v2>

remark #15300: LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (369 ,16)
<Remainder loop for vectorization , Multiversioned v2>
LOOP END
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LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (370 ,16)
<Peeled loop for vectorization , Multiversioned v1>
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (370 ,16)
<Multiversioned v1>

remark #15300: LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (370 ,16)
<Remainder loop for vectorization , Multiversioned v1>
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (370 ,16)
<Peeled loop for vectorization , Multiversioned v2>
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (370 ,16)
<Multiversioned v2>

remark #15300: LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (370 ,16)
<Remainder loop for vectorization , Multiversioned v2>
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (376 ,13)
remark #15344: loop was not vectorized : vector dependence prevents ←↩

vectorization . First dependence is shown below . Use level 5 report for ←↩

details
remark #15346: vector dependence : assumed OUTPUT dependence between c a l l :←↩

for_emit_diagnostic (379:33) and c a l l : for_emit_diagnostic (379:16)
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (385 ,15)
remark #15542: loop was not vectorized : inner loop was already vectorized

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (385 ,15)
<Peeled loop for vectorization , Multiversioned v1>
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (385 ,15)
<Multiversioned v1>

remark #15300: LOOP WAS VECTORIZED
LOOP END
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LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (385 ,15)
<Remainder loop for vectorization , Multiversioned v1>
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (385 ,15)
<Peeled loop for vectorization , Multiversioned v2>
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (385 ,15)
<Multiversioned v2>

remark #15300: LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (385 ,15)
<Remainder loop for vectorization , Multiversioned v2>
LOOP END

LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (419 ,15)
remark #15542: loop was not vectorized : inner loop was already vectorized

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (419 ,15)
<Peeled loop for vectorization , Multiversioned v1>
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (419 ,15)
<Multiversioned v1>

remark #15300: LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (419 ,15)
<Remainder loop for vectorization , Multiversioned v1>
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (419 ,15)
<Peeled loop for vectorization , Multiversioned v2>
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (419 ,15)
<Multiversioned v2>

remark #15300: LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (419 ,15)
<Remainder loop for vectorization , Multiversioned v2>
LOOP END
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LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (421 ,10)
remark #15541: outer loop was not auto−vectorized : consider using SIMD ←↩

directive

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (422 ,13)
remark #15344: loop was not vectorized : vector dependence prevents ←↩

vectorization . First dependence is shown below . Use level 5 report for ←↩

details
remark #15346: vector dependence : assumed OUTPUT dependence between c a l l :←↩

for_emit_diagnostic (425:38) and c a l l : for_emit_diagnostic (428:16)
LOOP END

LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (596 ,16)
<Multiversioned v1>

remark #15300: LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (596 ,16)
<Remainder loop for vectorization , Multiversioned v1>

remark #15301: REMAINDER LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (596 ,16)
<Remainder loop for vectorization , Multiversioned v1>
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (596 ,16)
<Multiversioned v2>

remark #15300: LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (596 ,16)
<Remainder loop for vectorization , Multiversioned v2>
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (596 ,16)
<Multiversioned v1>

remark #15300: LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (596 ,16)
<Remainder loop for vectorization , Multiversioned v1>
LOOP END
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LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (596 ,16)
<Multiversioned v2>

remark #15300: LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (596 ,16)
<Remainder loop for vectorization , Multiversioned v2>
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (598 ,21)
remark #15541: outer loop was not auto−vectorized : consider using SIMD ←↩

directive

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (598 ,21)
remark #15331: loop was not vectorized : precise FP model implied by the ←↩

command line or a directive prevents vectorization . Consider using fast←↩

FP model
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (598 ,21)
<Remainder>
LOOP END

LOOP END

Non−optimizable loops :

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (222 ,21)
remark #15536: loop was not vectorized : inner loop throttling prevents ←↩

vectorization of this outer loop . Refer to inner loop message for more ←↩

details . [ /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo←↩

−3.6/CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (222 ,21) ]

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (222 ,21)
remark #15523: loop was not vectorized : loop control variable ? was found , ←↩

but loop iteration count cannot be computed before executing the loop
LOOP END

LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (249 ,21)
remark #15536: loop was not vectorized : inner loop throttling prevents ←↩

vectorization of this outer loop . Refer to inner loop message for more ←↩

details . [ /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo←↩

−3.6/CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (249 ,21) ]

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (249 ,21)

74 Chapter 9 Appendix



remark #15523: loop was not vectorized : loop control variable ? was found , ←↩

but loop iteration count cannot be computed before executing the loop
LOOP END

LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (356 ,7)
remark #15532: loop was not vectorized : compile time constraints prevent loop ←↩

optimization . Consider using −O3 .

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (355 ,10)
remark #15532: loop was not vectorized : compile time constraints prevent ←↩

loop optimization . Consider using −O3 .
LOOP END

LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (358 ,21)
remark #15536: loop was not vectorized : inner loop throttling prevents ←↩

vectorization of this outer loop . Refer to inner loop message for more ←↩

details . [ /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo←↩

−3.6/CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (358 ,21) ]

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (358 ,21)
remark #15523: loop was not vectorized : loop control variable ? was found , ←↩

but loop iteration count cannot be computed before executing the loop
LOOP END

LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (603 ,7)
remark #15543: loop was not vectorized : loop with func t ion c a l l not considered←↩

an optimization candidate .

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (371 ,13)
remark #15532: loop was not vectorized : compile time constraints prevent ←↩

loop optimization . Consider using −O3 .
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (384 ,10)
remark #15532: loop was not vectorized : compile time constraints prevent ←↩

loop optimization . Consider using −O3 .
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (385 ,24)
remark #15536: loop was not vectorized : inner loop throttling prevents ←↩

vectorization of this outer loop . Refer to inner loop message for more ←↩

details . [ /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/←↩

nemo −3.6/CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90←↩

(385 ,24) ]
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LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo←↩

−3.6/CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90←↩

(385 ,24)
remark #15523: loop was not vectorized : loop control variable ? was ←↩

found , but loop iteration count cannot be computed before executing ←↩

the loop
LOOP END

LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (418 ,10)
remark #15532: loop was not vectorized : compile time constraints prevent ←↩

loop optimization . Consider using −O3 .

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo←↩

−3.6/CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90←↩

(417 ,13)
remark #15532: loop was not vectorized : compile time constraints prevent←↩

loop optimization . Consider using −O3 .
LOOP END

LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (419 ,24)
remark #15536: loop was not vectorized : inner loop throttling prevents ←↩

vectorization of this outer loop . Refer to inner loop message for more ←↩

details . [ /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/←↩

nemo −3.6/CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90←↩

(419 ,24) ]

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo←↩

−3.6/CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90←↩

(419 ,24)
remark #15523: loop was not vectorized : loop control variable ? was ←↩

found , but loop iteration count cannot be computed before executing ←↩

the loop
LOOP END

LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (463 ,10)
remark #15532: loop was not vectorized : compile time constraints prevent ←↩

loop optimization . Consider using −O3 .

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo←↩

−3.6/CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90←↩

(462 ,13)
remark #15532: loop was not vectorized : compile time constraints prevent←↩

loop optimization . Consider using −O3 .
LOOP END

LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (494 ,13)
remark #15532: loop was not vectorized : compile time constraints prevent ←↩

loop optimization . Consider using −O3 .
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LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo←↩

−3.6/CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90←↩

(493 ,16)
remark #15532: loop was not vectorized : compile time constraints prevent←↩

loop optimization . Consider using −O3 .
LOOP END

LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (524 ,13)
remark #15532: loop was not vectorized : compile time constraints prevent ←↩

loop optimization . Consider using −O3 .

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo←↩

−3.6/CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90←↩

(523 ,16)
remark #15532: loop was not vectorized : compile time constraints prevent←↩

loop optimization . Consider using −O3 .
LOOP END

LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (556 ,13)
remark #15532: loop was not vectorized : compile time constraints prevent ←↩

loop optimization . Consider using −O3 .

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo←↩

−3.6/CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90←↩

(555 ,16)
remark #15532: loop was not vectorized : compile time constraints prevent←↩

loop optimization . Consider using −O3 .
LOOP END

LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (586 ,13)
remark #15532: loop was not vectorized : compile time constraints prevent ←↩

loop optimization . Consider using −O3 .

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo←↩

−3.6/CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90←↩

(585 ,16)
remark #15532: loop was not vectorized : compile time constraints prevent←↩

loop optimization . Consider using −O3 .
LOOP END

LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (597 ,13)
remark #15532: loop was not vectorized : compile time constraints prevent ←↩

loop optimization . Consider using −O3 .
LOOP END

LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (618 ,7)
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remark #15532: loop was not vectorized : compile time constraints prevent loop ←↩

optimization . Consider using −O3 .
LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (619 ,21)
remark #15536: loop was not vectorized : inner loop throttling prevents ←↩

vectorization of this outer loop . Refer to inner loop message for more ←↩

details . [ /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo←↩

−3.6/CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (619 ,21) ]

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (619 ,21)
remark #15523: loop was not vectorized : loop control variable ? was found , ←↩

but loop iteration count cannot be computed before executing the loop
LOOP END

LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (649 ,7)
remark #15532: loop was not vectorized : compile time constraints prevent loop ←↩

optimization . Consider using −O3 .

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (648 ,10)
remark #15532: loop was not vectorized : compile time constraints prevent ←↩

loop optimization . Consider using −O3 .
LOOP END

LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (703 ,7)
remark #15532: loop was not vectorized : compile time constraints prevent loop ←↩

optimization . Consider using −O3 .

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (702 ,10)
remark #15532: loop was not vectorized : compile time constraints prevent ←↩

loop optimization . Consider using −O3 .
LOOP END

LOOP END

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (774 ,13)
remark #15543: loop was not vectorized : loop with func t ion c a l l not considered←↩

an optimization candidate .

LOOP BEGIN at /home/ngyilo/ec_earth3/nocray−compile−v3 . 3 . 3 . 2 / sources/nemo −3.6/←↩

CONFIG/ORCA025L75_LIM3_standalone/BLD/ppsrc/nemo/limrhg . f90 (773 ,16)
remark #15543: loop was not vectorized : loop with func t ion c a l l not ←↩

considered an optimization candidate .
LOOP END

LOOP END
Optimization ' PRE ' reduced : func t ion s i z e or variable count limit exceeded : use −←↩

override_limits / −Qoverride_limits to override
===========================================================================
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9.4 Sea ice velocity subroutine:
limrhg.f90

Full script of the subroutine limrhg.f90 in NEMO3.6 used to compute for

the sea-ice rheology and velocities using the Elastic Viscous Plastic (EVP)

framework (Bouillon et al., 2009).

morecommentmorecomment morecomment1 MODULE limrhg
morecommentmorecomment morecomment2 !←↩

morecommentmorecomment morecomment!======================================================================←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment3 !! *** MODULE limrhg ***
morecommentmorecomment morecomment4 !! Ice rheology : sea ice rheology
morecommentmorecomment morecomment5 !←↩

morecommentmorecomment morecomment!======================================================================←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment6 !! History : - ! 2007 -03 (M.A. Morales Maqueda←↩

morecommentmorecomment morecomment, S. Bouillon ) Original code
morecommentmorecomment morecomment7 !! 3.0 ! 2008 -03 (M. Vancoppenolle ) ←↩

morecommentmorecomment morecommentLIM3
morecommentmorecomment morecomment8 !! - ! 2008 -11 (M. Vancoppenolle , S.←↩

morecommentmorecomment morecommentBouillon , Y. Aksenov ) add surface tilt in ice ←↩

morecommentmorecomment morecommentrheolohy
morecommentmorecomment morecomment9 !! 3.3 ! 2009 -05 (G.Garric) addition ←↩

morecommentmorecomment morecommentof the lim2_evp cas
morecommentmorecomment morecomment10 !! 3.4 ! 2011 -01 (A. Porter) ←↩

morecommentmorecomment morecommentdynamical allocation
morecommentmorecomment morecomment11 !! 3.5 ! 2012 -08 (R. Benshila ) AGRIF
morecommentmorecomment morecomment12 !! 3.6 ! 2016 -06 (C. Rousset ) ←↩

morecommentmorecomment morecommentRewriting ( conserves energy)
morecommentmorecomment morecomment13 !←↩

morecommentmorecomment morecomment!----------------------------------------------------------------------←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment14
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morecommentmorecomment morecomment15 !←↩

morecommentmorecomment morecomment!----------------------------------------------------------------------←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment16 !! 'key_lim3 ' OR ←↩

morecommentmorecomment morecommentLIM -3 sea -ice model
morecommentmorecomment morecomment17 !! 'key_lim2 ' AND NOT 'key_lim2_vp ' EVP←↩

morecommentmorecomment morecommentLIM -2 sea -ice model
morecommentmorecomment morecomment18 !←↩

morecommentmorecomment morecomment!----------------------------------------------------------------------←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment19 !! lim_rhg : computes ice velocities
morecommentmorecomment morecomment20 !←↩

morecommentmorecomment morecomment!----------------------------------------------------------------------←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment21 USE phycst ! Physical constant
morecommentmorecomment morecomment22 USE oce , ONLY : snwice_mass , snwice_mass_b
morecommentmorecomment morecomment23 USE par_oce ! Ocean parameters
morecommentmorecomment morecomment24 USE dom_oce ! Ocean domain
morecommentmorecomment morecomment25 USE sbc_oce ! Surface boundary condition : ←↩

morecommentmorecomment morecommentocean fields
morecommentmorecomment morecomment26 USE sbc_ice ! Surface boundary condition : ←↩

morecommentmorecomment morecommentice fields
morecommentmorecomment morecomment27

morecommentmorecomment morecomment28 USE ice ! LIM -3: ice variables
morecommentmorecomment morecomment29 USE dom_ice ! LIM -3: ice domain
morecommentmorecomment morecomment30 USE limitd_me ! LIM -3:
morecommentmorecomment morecomment31

morecommentmorecomment morecomment32 USE lbclnk ! Lateral Boundary Condition /←↩

morecommentmorecomment morecommentMPP link
morecommentmorecomment morecomment33 USE lib_mpp ! MPP library
morecommentmorecomment morecomment34 USE wrk_nemo ! work arrays
morecommentmorecomment morecomment35 USE in_out_manager ! I/O manager
morecommentmorecomment morecomment36 USE prtctl ! Print control
morecommentmorecomment morecomment37 USE iom
morecommentmorecomment morecomment38 USE lib_fortran ! Fortran utilities (allows no←↩

morecommentmorecomment morecommentsigned zero when 'key_nosignedzero ' defined )
morecommentmorecomment morecomment39

morecommentmorecomment morecomment40
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morecommentmorecomment morecomment41

morecommentmorecomment morecomment42 IMPLICIT NONE
morecommentmorecomment morecomment43 PRIVATE
morecommentmorecomment morecomment44

morecommentmorecomment morecomment45 PUBLIC lim_rhg ! routine called by ←↩

morecommentmorecomment morecommentlim_dyn (or lim_dyn_2 )
morecommentmorecomment morecomment46

morecommentmorecomment morecomment47 !! * Substitutions
morecommentmorecomment morecomment48 !←↩

morecommentmorecomment morecomment!----------------------------------------------------------------------←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment49 !! *** vectopt_loop_substitute ←↩

morecommentmorecomment morecomment***
morecommentmorecomment morecomment50 !←↩

morecommentmorecomment morecomment!----------------------------------------------------------------------←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment51 !! ** purpose : substitute the inner loop start/←↩

morecommentmorecomment morecommentend indices with CPP macro
morecommentmorecomment morecomment52 !! allow unrolling of do -loop (useful←↩

morecommentmorecomment morecommentwith vector processors )
morecommentmorecomment morecomment53 !←↩

morecommentmorecomment morecomment!----------------------------------------------------------------------←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment54 !←↩

morecommentmorecomment morecomment!----------------------------------------------------------------------←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment55 !! NEMO/OPA 3.7 , NEMO Consortium (2014)
morecommentmorecomment morecomment56 !! $Id: vectopt_loop_substitute .h90 4990 2014 -12 -15 ←↩

morecommentmorecomment morecomment16:42:49 Z timgraham $
morecommentmorecomment morecomment57 !! Software governed by the CeCILL licence ( NEMOGCM /←↩

morecommentmorecomment morecommentNEMO_CeCILL .txt)
morecommentmorecomment morecomment58 !←↩

morecommentmorecomment morecomment!----------------------------------------------------------------------←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment59

morecommentmorecomment morecomment60

morecommentmorecomment morecomment61

morecommentmorecomment morecomment62
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morecommentmorecomment morecomment63 !←↩

morecommentmorecomment morecomment!----------------------------------------------------------------------←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment64 !! NEMO/LIM3 4.0 , UCL - NEMO Consortium (2011)
morecommentmorecomment morecomment65 !! $Id: limrhg.F90 8285 2017 -07 -06 06:40:51 Z vancop ←↩

morecommentmorecomment morecomment$
morecommentmorecomment morecomment66 !! Software governed by the CeCILL licence (←↩

morecommentmorecomment morecommentNEMOGCM / NEMO_CeCILL .txt)
morecommentmorecomment morecomment67 !←↩

morecommentmorecomment morecomment!----------------------------------------------------------------------←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment68 CONTAINS
morecommentmorecomment morecomment69

morecommentmorecomment morecomment70 SUBROUTINE lim_rhg ( k_j1 , k_jpj )
morecommentmorecomment morecomment71 !←↩

morecommentmorecomment morecomment!-------------------------------------------------------------------←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment72 !! *** SUBROUTINE lim_rhg ***
morecommentmorecomment morecomment73 !! EVP -C-grid
morecommentmorecomment morecomment74 !!
morecommentmorecomment morecomment75 !! ** purpose : determines sea ice drift from wind ←↩

morecommentmorecomment morecommentstress , ice -ocean
morecommentmorecomment morecomment76 !! stress and sea - surface slope. Ice -ice ←↩

morecommentmorecomment morecommentinteraction is described by
morecommentmorecomment morecomment77 !! a non -linear elasto -viscous - plastic (EVP) law ←↩

morecommentmorecomment morecommentincluding shear
morecommentmorecomment morecomment78 !! strength and a bulk rheology (Hunke and Dukowicz←↩

morecommentmorecomment morecomment, 2002).
morecommentmorecomment morecomment79 !!
morecommentmorecomment morecomment80 !! The points in the C-grid look like this , dear ←↩

morecommentmorecomment morecommentreader
morecommentmorecomment morecomment81 !!
morecommentmorecomment morecomment82 !! (ji ,jj)
morecommentmorecomment morecomment83 !! |
morecommentmorecomment morecomment84 !! |
morecommentmorecomment morecomment85 !! (ji -1,jj) | (ji ,jj)
morecommentmorecomment morecomment86 !! ---------
morecommentmorecomment morecomment87 !! | |
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morecommentmorecomment morecomment88 !! | (ji ,jj) |------(ji ,←↩

morecommentmorecomment morecommentjj)
morecommentmorecomment morecomment89 !! | |
morecommentmorecomment morecomment90 !! ---------
morecommentmorecomment morecomment91 !! (ji -1,jj -1) (ji ,jj -1)
morecommentmorecomment morecomment92 !!
morecommentmorecomment morecomment93 !! ** Inputs : - wind forcing (stress), oceanic ←↩

morecommentmorecomment morecommentcurrents
morecommentmorecomment morecomment94 !! ice total volume (vt_i) per unit ←↩

morecommentmorecomment morecommentarea
morecommentmorecomment morecomment95 !! snow total volume (vt_s) per unit ←↩

morecommentmorecomment morecommentarea
morecommentmorecomment morecomment96 !!
morecommentmorecomment morecomment97 !! ** Action : - compute u_ice , v_ice : the ←↩

morecommentmorecomment morecommentcomponents of the
morecommentmorecomment morecomment98 !! sea -ice velocity vector
morecommentmorecomment morecomment99 !! - compute delta_i , shear_i , divu_i , ←↩

morecommentmorecomment morecommentwhich are inputs
morecommentmorecomment morecomment100 !! of the ice thickness distribution
morecommentmorecomment morecomment101 !!
morecommentmorecomment morecomment102 !! ** Steps : 1) Compute ice snow mass , ice ←↩

morecommentmorecomment morecommentstrength
morecommentmorecomment morecomment103 !! 2) Compute wind , oceanic stresses , ←↩

morecommentmorecomment morecommentmass terms and
morecommentmorecomment morecomment104 !! coriolis terms of the momentum ←↩

morecommentmorecomment morecommentequation
morecommentmorecomment morecomment105 !! 3) Solve the momentum equation (←↩

morecommentmorecomment morecommentiterative procedure )
morecommentmorecomment morecomment106 !! 4) Recompute invariants of the ←↩

morecommentmorecomment morecommentstrain rate tensor
morecommentmorecomment morecomment107 !! which are inputs of the ITD , ←↩

morecommentmorecomment morecommentstore stress
morecommentmorecomment morecomment108 !! for the next time step
morecommentmorecomment morecomment109 !! 5) Control prints of residual (←↩

morecommentmorecomment morecommentconvergence )
morecommentmorecomment morecomment110 !! and charge ellipse .
morecommentmorecomment morecomment111 !! The user should make sure that ←↩

morecommentmorecomment morecommentthe parameters
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morecommentmorecomment morecomment112 !! nn_nevp , elastic time scale and ←↩

morecommentmorecomment morecommentrn_creepl maintain stress state
morecommentmorecomment morecomment113 !! on the charge ellipse for plastic←↩

morecommentmorecomment morecommentflow
morecommentmorecomment morecomment114 !! e.g. in the Canadian Archipelago
morecommentmorecomment morecomment115 !!
morecommentmorecomment morecomment116 !! ** Notes : Boundary condition for ice is chosen←↩

morecommentmorecomment morecommentno -slip
morecommentmorecomment morecomment117 !! but can be adjusted with param ←↩

morecommentmorecomment morecommentrn_shlat
morecommentmorecomment morecomment118 !!
morecommentmorecomment morecomment119 !! References : Hunke and Dukowicz , JPO97
morecommentmorecomment morecomment120 !! Bouillon et al., Ocean Modelling ←↩

morecommentmorecomment morecomment2009
morecommentmorecomment morecomment121 !←↩

morecommentmorecomment morecomment!-------------------------------------------------------------------←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment122 INTEGER , INTENT(in) :: k_j1 ! southern j-←↩

morecommentmorecomment morecommentindex for ice computation
morecommentmorecomment morecomment123 INTEGER , INTENT(in) :: k_jpj ! northern j-←↩

morecommentmorecomment morecommentindex for ice computation
morecommentmorecomment morecomment124 !!
morecommentmorecomment morecomment125 INTEGER :: ji , jj ! dummy loop indices
morecommentmorecomment morecomment126 INTEGER :: jter ! local integers
morecommentmorecomment morecomment127 CHARACTER (len =50) :: charout
morecommentmorecomment morecomment128

morecommentmorecomment morecomment129 REAL(wp) :: zdtevp , z1_dtevp ←↩

morecommentmorecomment morecomment! ←↩

morecommentmorecomment morecommenttime step for subcycling
morecommentmorecomment morecomment130 REAL(wp) :: ecc2 , z1_ecc2 ←↩

morecommentmorecomment morecomment←↩

morecommentmorecomment morecomment! square of yield ellipse eccenticity
morecommentmorecomment morecomment131 REAL(wp) :: zbeta , zalph1 , z1_alph1 , zalph2 ,←↩

morecommentmorecomment morecommentz1_alph2 ! alpha and beta ←↩

morecommentmorecomment morecommentfrom Bouillon 2009 and 2013
morecommentmorecomment morecomment132 REAL(wp) :: zm1 , zm2 , zm3 , zmassU , zmassV ←↩

morecommentmorecomment morecomment! ice/snow mass

84 Chapter 9 Appendix



morecommentmorecomment morecomment133 REAL(wp) :: zdelta , zp_delf , zds2 , zdt , zdt2←↩

morecommentmorecomment morecomment, zdiv , zdiv2 ! temporary ←↩

morecommentmorecomment morecommentscalars
morecommentmorecomment morecomment134 REAL(wp) :: zTauO , zTauE ←↩

morecommentmorecomment morecomment←↩

morecommentmorecomment morecomment! temporary scalars
morecommentmorecomment morecomment135

morecommentmorecomment morecomment136 REAL(wp) :: zsig1 , zsig2 ←↩

morecommentmorecomment morecomment←↩

morecommentmorecomment morecomment! internal ice stress
morecommentmorecomment morecomment137 REAL(wp) :: zresm ←↩

morecommentmorecomment morecomment←↩

morecommentmorecomment morecomment! Maximal error on ice velocity
morecommentmorecomment morecomment138 REAL(wp) :: zintb , zintn ←↩

morecommentmorecomment morecomment←↩

morecommentmorecomment morecomment! dummy argument
morecommentmorecomment morecomment139 REAL(wp) :: zfac_x , zfac_y
morecommentmorecomment morecomment140

morecommentmorecomment morecomment141 REAL(wp), POINTER , DIMENSION (: ,:) :: zpresh ←↩

morecommentmorecomment morecomment! temporary array ←↩

morecommentmorecomment morecommentfor ice strength
morecommentmorecomment morecomment142 REAL(wp), POINTER , DIMENSION (: ,:) :: z1_e1t0←↩

morecommentmorecomment morecomment, z1_e2t0 ! scale factors
morecommentmorecomment morecomment143 REAL(wp), POINTER , DIMENSION (: ,:) :: zp_delt←↩

morecommentmorecomment morecomment! P/delta at T ←↩

morecommentmorecomment morecommentpoints
morecommentmorecomment morecomment144 !
morecommentmorecomment morecomment145 REAL(wp), POINTER , DIMENSION (: ,:) :: zaU ,←↩

morecommentmorecomment morecommentzaV ! ice fraction on ←↩

morecommentmorecomment morecommentU/V points
morecommentmorecomment morecomment146 REAL(wp), POINTER , DIMENSION (: ,:) :: zmU_t , ←↩

morecommentmorecomment morecommentzmV_t ! ice/snow mass/dt←↩

morecommentmorecomment morecommenton U/V points
morecommentmorecomment morecomment147 REAL(wp), POINTER , DIMENSION (: ,:) :: zmf ←↩

morecommentmorecomment morecomment! coriolis ←↩

morecommentmorecomment morecommentparameter at T points
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morecommentmorecomment morecomment148 REAL(wp), POINTER , DIMENSION (: ,:) :: ←↩

morecommentmorecomment morecommentzTauU_ia , ztauV_ia ! ice -atm. ←↩

morecommentmorecomment morecommentstress at U-V points
morecommentmorecomment morecomment149 REAL(wp), POINTER , DIMENSION (: ,:) :: zspgU ,←↩

morecommentmorecomment morecommentzspgV ! surface pressure←↩

morecommentmorecomment morecommentgradient at U/V points
morecommentmorecomment morecomment150 REAL(wp), POINTER , DIMENSION (: ,:) :: v_oceU ,←↩

morecommentmorecomment morecommentu_oceV , v_iceU , u_iceV ! ocean/ice u/v ←↩

morecommentmorecomment morecommentcomponent on V/U points
morecommentmorecomment morecomment151 REAL(wp), POINTER , DIMENSION (: ,:) :: zfU ,←↩

morecommentmorecomment morecommentzfV ! internal ←↩

morecommentmorecomment morecommentstresses
morecommentmorecomment morecomment152

morecommentmorecomment morecomment153 REAL(wp), POINTER , DIMENSION (: ,:) :: zds ←↩

morecommentmorecomment morecomment! shear
morecommentmorecomment morecomment154 REAL(wp), POINTER , DIMENSION (: ,:) :: zs1 , ←↩

morecommentmorecomment morecommentzs2 , zs12 ! stress tensor ←↩

morecommentmorecomment morecommentcomponents
morecommentmorecomment morecomment155 REAL(wp), POINTER , DIMENSION (: ,:) :: zu_ice ,←↩

morecommentmorecomment morecommentzv_ice , zresr ! check ←↩

morecommentmorecomment morecommentconvergence
morecommentmorecomment morecomment156 REAL(wp), POINTER , DIMENSION (: ,:) :: zpice ←↩

morecommentmorecomment morecomment! array used for ←↩

morecommentmorecomment morecommentthe calculation of ice surface slope:
morecommentmorecomment morecomment157 ! ocean surface (ssh_m) if ice is not embedded
morecommentmorecomment morecomment158 ! ice top surface if ice is embedded
morecommentmorecomment morecomment159 REAL(wp), POINTER , DIMENSION (: ,:) :: zCorx , ←↩

morecommentmorecomment morecommentzCory ! Coriolis stress ←↩

morecommentmorecomment morecommentarray
morecommentmorecomment morecomment160 REAL(wp), POINTER , DIMENSION (: ,:) :: ←↩

morecommentmorecomment morecommentztaux_oi , ztauy_oi ! Ocean -to -←↩

morecommentmorecomment morecommentice stress array
morecommentmorecomment morecomment161

morecommentmorecomment morecomment162 REAL(wp), POINTER , DIMENSION (: ,:) :: ←↩

morecommentmorecomment morecommentzswitchU , zswitchV ! dummy ←↩

morecommentmorecomment morecommentarrays
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morecommentmorecomment morecomment163 REAL(wp), POINTER , DIMENSION (: ,:) :: zmaskU ,←↩

morecommentmorecomment morecommentzmaskV ! mask for ice ←↩

morecommentmorecomment morecommentpresence
morecommentmorecomment morecomment164 REAL(wp), POINTER , DIMENSION (: ,:) :: zfmask ,←↩

morecommentmorecomment morecommentzwf ! mask at F points←↩

morecommentmorecomment morecommentfor the ice
morecommentmorecomment morecomment165

morecommentmorecomment morecomment166 REAL(wp), POINTER , DIMENSION (: ,:) :: ←↩

morecommentmorecomment morecommentzdiag_xmtrp_ice ! X-←↩

morecommentmorecomment morecommentcomponent of ice mass transport (kg/s)
morecommentmorecomment morecomment167 REAL(wp), POINTER , DIMENSION (: ,:) :: ←↩

morecommentmorecomment morecommentzdiag_ymtrp_ice ! Y-←↩

morecommentmorecomment morecommentcomponent of ice mass transport (kg/s)
morecommentmorecomment morecomment168 REAL(wp), POINTER , DIMENSION (: ,:) :: ←↩

morecommentmorecomment morecommentzdiag_xmtrp_snw ! X-←↩

morecommentmorecomment morecommentcomponent of snow mass transport (kg/s)
morecommentmorecomment morecomment169 REAL(wp), POINTER , DIMENSION (: ,:) :: ←↩

morecommentmorecomment morecommentzdiag_ymtrp_snw ! Y-←↩

morecommentmorecomment morecommentcomponent of snow mass transport (kg/s)
morecommentmorecomment morecomment170 REAL(wp), POINTER , DIMENSION (: ,:) :: ←↩

morecommentmorecomment morecommentzdiag_xatrp ! X-←↩

morecommentmorecomment morecommentcomponent of area transport (m2/s)
morecommentmorecomment morecomment171 REAL(wp), POINTER , DIMENSION (: ,:) :: ←↩

morecommentmorecomment morecommentzdiag_yatrp ! Y-←↩

morecommentmorecomment morecommentcomponent of area transport (m2/s)
morecommentmorecomment morecomment172 REAL(wp), POINTER , DIMENSION (: ,:) :: ←↩

morecommentmorecomment morecommentzdiag_utau_oi ! X-←↩

morecommentmorecomment morecommentdirection ocean -ice stress
morecommentmorecomment morecomment173 REAL(wp), POINTER , DIMENSION (: ,:) :: ←↩

morecommentmorecomment morecommentzdiag_vtau_oi ! Y-←↩

morecommentmorecomment morecommentdirection ocean -ice stress
morecommentmorecomment morecomment174 REAL(wp), POINTER , DIMENSION (: ,:) :: ←↩

morecommentmorecomment morecommentzdiag_dssh_dx ! X-←↩

morecommentmorecomment morecommentdirection sea - surface tilt term (N/m2)
morecommentmorecomment morecomment175 REAL(wp), POINTER , DIMENSION (: ,:) :: ←↩

morecommentmorecomment morecommentzdiag_dssh_dy ! X-←↩

morecommentmorecomment morecommentdirection sea - surface tilt term (N/m2)
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morecommentmorecomment morecomment176 REAL(wp), POINTER , DIMENSION (: ,:) :: ←↩

morecommentmorecomment morecommentzdiag_corstrx ! X-←↩

morecommentmorecomment morecommentdirection coriolis stress (N/m2)
morecommentmorecomment morecomment177 REAL(wp), POINTER , DIMENSION (: ,:) :: ←↩

morecommentmorecomment morecommentzdiag_corstry ! Y-←↩

morecommentmorecomment morecommentdirection coriolis stress (N/m2)
morecommentmorecomment morecomment178 REAL(wp), POINTER , DIMENSION (: ,:) :: ←↩

morecommentmorecomment morecommentzdiag_intstrx ! X-←↩

morecommentmorecomment morecommentdirection internal stress (N/m2)
morecommentmorecomment morecomment179 REAL(wp), POINTER , DIMENSION (: ,:) :: ←↩

morecommentmorecomment morecommentzdiag_intstry ! Y-←↩

morecommentmorecomment morecommentdirection internal stress (N/m2)
morecommentmorecomment morecomment180 REAL(wp), POINTER , DIMENSION (: ,:) :: ←↩

morecommentmorecomment morecommentzdiag_sig1 ! Average ←↩

morecommentmorecomment morecommentnormal stress in sea ice
morecommentmorecomment morecomment181 REAL(wp), POINTER , DIMENSION (: ,:) :: ←↩

morecommentmorecomment morecommentzdiag_sig2 ! Maximum ←↩

morecommentmorecomment morecommentshear stress in sea ice
morecommentmorecomment morecomment182

morecommentmorecomment morecomment183 REAL(wp), POINTER , DIMENSION (: ,:) :: zswi , ←↩

morecommentmorecomment morecommentzmiss ! Switch & ←↩

morecommentmorecomment morecommentmissing value array
morecommentmorecomment morecomment184

morecommentmorecomment morecomment185 REAL(wp), PARAMETER :: zepsi ←↩

morecommentmorecomment morecomment= 1.0e -20 _wp ! tolerance ←↩

morecommentmorecomment morecommentparameter
morecommentmorecomment morecomment186 REAL(wp), PARAMETER :: zmmin ←↩

morecommentmorecomment morecomment= 1. _wp ! ice mass (kg/m2)←↩

morecommentmorecomment morecommentbelow which ice velocity equals ocean ←↩

morecommentmorecomment morecommentvelocity
morecommentmorecomment morecomment187 REAL(wp), PARAMETER :: zshlat ←↩

morecommentmorecomment morecomment= 2. _wp ! boundary ←↩

morecommentmorecomment morecommentcondition for sea -ice velocity (2= no slip ;←↩

morecommentmorecomment morecomment0= free slip)
morecommentmorecomment morecomment188 REAL(wp), PARAMETER :: ←↩

morecommentmorecomment morecommentzmiss_val = 1.0e+20 ! missing ←↩

morecommentmorecomment morecommentvalue for outputs
morecommentmorecomment morecomment189
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morecommentmorecomment morecomment190 !←↩

morecommentmorecomment morecomment!-------------------------------------------------------------------←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment191

morecommentmorecomment morecomment192 CALL wrk_alloc ( jpi ,jpj , zpresh , z1_e1t0 , ←↩

morecommentmorecomment morecommentz1_e2t0 , zp_delt )
morecommentmorecomment morecomment193 CALL wrk_alloc ( jpi ,jpj , zaU , zaV , zmU_t , ←↩

morecommentmorecomment morecommentzmV_t , zmf , zTauU_ia , ztauV_ia )
morecommentmorecomment morecomment194 CALL wrk_alloc ( jpi ,jpj , zspgU , zspgV , v_oceU ,←↩

morecommentmorecomment morecommentu_oceV , v_iceU , u_iceV , zfU , zfV )
morecommentmorecomment morecomment195 CALL wrk_alloc ( jpi ,jpj , zds , zs1 , zs2 , zs12 , ←↩

morecommentmorecomment morecommentzu_ice , zv_ice , zresr , zpice )
morecommentmorecomment morecomment196 CALL wrk_alloc ( jpi ,jpj , zswitchU , zswitchV , ←↩

morecommentmorecomment morecommentzmaskU , zmaskV , zfmask , zwf )
morecommentmorecomment morecomment197 CALL wrk_alloc ( jpi ,jpj , zCorx , zCory)
morecommentmorecomment morecomment198 CALL wrk_alloc ( jpi ,jpj , ztaux_oi , ztauy_oi )
morecommentmorecomment morecomment199

morecommentmorecomment morecomment200 CALL wrk_alloc ( jpi ,jpj , zdiag_xmtrp_ice , ←↩

morecommentmorecomment morecommentzdiag_ymtrp_ice )
morecommentmorecomment morecomment201 CALL wrk_alloc ( jpi ,jpj , zdiag_xmtrp_snw , ←↩

morecommentmorecomment morecommentzdiag_ymtrp_snw )
morecommentmorecomment morecomment202 CALL wrk_alloc ( jpi ,jpj , zdiag_xatrp , ←↩

morecommentmorecomment morecommentzdiag_yatrp )
morecommentmorecomment morecomment203 CALL wrk_alloc ( jpi ,jpj , zdiag_utau_oi , ←↩

morecommentmorecomment morecommentzdiag_vtau_oi )
morecommentmorecomment morecomment204 CALL wrk_alloc ( jpi ,jpj , zdiag_dssh_dx , ←↩

morecommentmorecomment morecommentzdiag_dssh_dy )
morecommentmorecomment morecomment205 CALL wrk_alloc ( jpi ,jpj , zdiag_corstrx , ←↩

morecommentmorecomment morecommentzdiag_corstry )
morecommentmorecomment morecomment206 CALL wrk_alloc ( jpi ,jpj , zdiag_intstrx , ←↩

morecommentmorecomment morecommentzdiag_intstry )
morecommentmorecomment morecomment207 CALL wrk_alloc ( jpi ,jpj , zdiag_sig1 , ←↩

morecommentmorecomment morecommentzdiag_sig2 )
morecommentmorecomment morecomment208 CALL wrk_alloc ( jpi ,jpj , zswi , ←↩

morecommentmorecomment morecommentzmiss )
morecommentmorecomment morecomment209

morecommentmorecomment morecomment210

morecommentmorecomment morecomment211
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morecommentmorecomment morecomment212 !
morecommentmorecomment morecomment213 !←↩

morecommentmorecomment morecomment------------------------------------------------------------------------------!←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment214 ! 0) mask at F points for the ice (on the whole ←↩

morecommentmorecomment morecommentdomain , not only k_j1 ,k_jpj)
morecommentmorecomment morecomment215 !←↩

morecommentmorecomment morecomment------------------------------------------------------------------------------!←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment216 ! ocean/land mask
morecommentmorecomment morecomment217 DO jj = 1, jpjm1
morecommentmorecomment morecomment218 DO ji = 1, jpim1 ! NO vector opt.
morecommentmorecomment morecomment219 zfmask(ji ,jj) = tmask(ji ,jj ,1) * tmask(←↩

morecommentmorecomment morecommentji+1,jj ,1) * tmask(ji ,jj +1 ,1) * tmask←↩

morecommentmorecomment morecomment(ji+1,jj +1 ,1)
morecommentmorecomment morecomment220 END DO
morecommentmorecomment morecomment221 END DO
morecommentmorecomment morecomment222 CALL lbc_lnk ( zfmask , 'F', 1. _wp )
morecommentmorecomment morecomment223

morecommentmorecomment morecomment224 ! Lateral boundary conditions on velocity (modify ←↩

morecommentmorecomment morecommentzfmask)
morecommentmorecomment morecomment225 zwf (: ,:) = zfmask (: ,:)
morecommentmorecomment morecomment226 DO jj = 2, jpjm1
morecommentmorecomment morecomment227 DO ji = 2, jpim1 ! vector opt.
morecommentmorecomment morecomment228 IF( zfmask(ji ,jj) == 0. _wp ) THEN
morecommentmorecomment morecomment229 zfmask(ji ,jj) = zshlat * MIN( 1. _wp ,←↩

morecommentmorecomment morecommentMAX( zwf(ji+1,jj), zwf(ji ,jj +1) , ←↩

morecommentmorecomment morecommentzwf(ji -1,jj), zwf(ji ,jj -1) ) )
morecommentmorecomment morecomment230 ENDIF
morecommentmorecomment morecomment231 END DO
morecommentmorecomment morecomment232 END DO
morecommentmorecomment morecomment233 DO jj = 2, jpjm1
morecommentmorecomment morecomment234 IF( zfmask (1,jj) == 0. _wp ) THEN
morecommentmorecomment morecomment235 zfmask (1 ,jj) = zshlat * MIN( 1. _wp , ←↩

morecommentmorecomment morecommentMAX( zwf(2,jj), zwf(1,jj +1) , zwf(1,jj←↩

morecommentmorecomment morecomment-1) ) )
morecommentmorecomment morecomment236 ENDIF
morecommentmorecomment morecomment237 IF( zfmask(jpi ,jj) == 0. _wp ) THEN

90 Chapter 9 Appendix



morecommentmorecomment morecomment238 zfmask(jpi ,jj) = zshlat * MIN( 1. _wp , ←↩

morecommentmorecomment morecommentMAX( zwf(jpi ,jj +1) , zwf(jpim1 ,jj), ←↩

morecommentmorecomment morecommentzwf(jpi ,jj -1) ) )
morecommentmorecomment morecomment239 ENDIF
morecommentmorecomment morecomment240 END DO
morecommentmorecomment morecomment241 DO ji = 2, jpim1
morecommentmorecomment morecomment242 IF( zfmask(ji ,1) == 0. _wp ) THEN
morecommentmorecomment morecomment243 zfmask(ji ,1 ) = zshlat * MIN( 1. _wp , ←↩

morecommentmorecomment morecommentMAX( zwf(ji +1 ,1) , zwf(ji ,2) , zwf(ji←↩

morecommentmorecomment morecomment-1 ,1) ) )
morecommentmorecomment morecomment244 ENDIF
morecommentmorecomment morecomment245 IF( zfmask(ji ,jpj) == 0. _wp ) THEN
morecommentmorecomment morecomment246 zfmask(ji ,jpj) = zshlat * MIN( 1. _wp , ←↩

morecommentmorecomment morecommentMAX( zwf(ji+1,jpj), zwf(ji -1,jpj), ←↩

morecommentmorecomment morecommentzwf(ji ,jpjm1) ) )
morecommentmorecomment morecomment247 ENDIF
morecommentmorecomment morecomment248 END DO
morecommentmorecomment morecomment249 CALL lbc_lnk ( zfmask , 'F', 1. _wp )
morecommentmorecomment morecomment250

morecommentmorecomment morecomment251 !←↩

morecommentmorecomment morecomment------------------------------------------------------------------------------!←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment252 ! 1) define some variables and initialize arrays
morecommentmorecomment morecomment253 !←↩

morecommentmorecomment morecomment------------------------------------------------------------------------------!←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment254 ! ecc2: square of yield ellipse eccenticrity
morecommentmorecomment morecomment255 ecc2 = rn_ecc * rn_ecc
morecommentmorecomment morecomment256 z1_ecc2 = 1. _wp / ecc2
morecommentmorecomment morecomment257

morecommentmorecomment morecomment258 ! Time step for subcycling
morecommentmorecomment morecomment259 zdtevp = rdt_ice / REAL( nn_nevp )
morecommentmorecomment morecomment260 z1_dtevp = 1. _wp / zdtevp
morecommentmorecomment morecomment261

morecommentmorecomment morecomment262 ! alpha parameters ( Bouillon 2009)
morecommentmorecomment morecomment263

morecommentmorecomment morecomment264 zalph1 = ( 2. _wp * rn_relast * rdt_ice ) * ←↩

morecommentmorecomment morecommentz1_dtevp
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morecommentmorecomment morecomment265

morecommentmorecomment morecomment266 zalph2 = zalph1 * z1_ecc2
morecommentmorecomment morecomment267

morecommentmorecomment morecomment268 z1_alph1 = 1. _wp / ( zalph1 + 1. _wp )
morecommentmorecomment morecomment269 z1_alph2 = 1. _wp / ( zalph2 + 1. _wp )
morecommentmorecomment morecomment270

morecommentmorecomment morecomment271 ! Initialise stress tensor
morecommentmorecomment morecomment272 zs1 (: ,:) = stress1_i (: ,:)
morecommentmorecomment morecomment273 zs2 (: ,:) = stress2_i (: ,:)
morecommentmorecomment morecomment274 zs12 (: ,:) = stress12_i (: ,:)
morecommentmorecomment morecomment275

morecommentmorecomment morecomment276 ! Ice strength
morecommentmorecomment morecomment277

morecommentmorecomment morecomment278 CALL lim_itd_me_icestrength ( nn_icestr )
morecommentmorecomment morecomment279 zpresh (: ,:) = tmask (: ,: ,1) * strength (: ,:)
morecommentmorecomment morecomment280

morecommentmorecomment morecomment281

morecommentmorecomment morecomment282 ! scale factors
morecommentmorecomment morecomment283 DO jj = k_j1 +1, k_jpj -1
morecommentmorecomment morecomment284 DO ji = 2, jpim1
morecommentmorecomment morecomment285 z1_e1t0 (ji ,jj) = 1. _wp / ( e1t(ji+1,jj ←↩

morecommentmorecomment morecomment) + e1t(ji ,jj ) )
morecommentmorecomment morecomment286 z1_e2t0 (ji ,jj) = 1. _wp / ( e2t(ji ,jj←↩

morecommentmorecomment morecomment+1) + e2t(ji ,jj ) )
morecommentmorecomment morecomment287 END DO
morecommentmorecomment morecomment288 END DO
morecommentmorecomment morecomment289

morecommentmorecomment morecomment290 !
morecommentmorecomment morecomment291 !←↩

morecommentmorecomment morecomment------------------------------------------------------------------------------!←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment292 ! 2) Wind / ocean stress , mass terms , coriolis terms
morecommentmorecomment morecomment293 !←↩

morecommentmorecomment morecomment------------------------------------------------------------------------------!←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment294
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morecommentmorecomment morecomment295 IF( nn_ice_embd == 2 ) THEN !== ←↩

morecommentmorecomment morecommentembedded sea ice: compute representative ←↩

morecommentmorecomment morecommentice top surface ==!
morecommentmorecomment morecomment296 !
morecommentmorecomment morecomment297 ! average interpolation coeff as used in dynspg = ←↩

morecommentmorecomment morecomment(1/ nn_fsbc ) * {SUM[n/ nn_fsbc ], n=0, nn_fsbc -1}
morecommentmorecomment morecomment298 ! = ←↩

morecommentmorecomment morecomment(1/ nn_fsbc )^2 * {SUM[n], n=0, nn_fsbc -1}
morecommentmorecomment morecomment299 zintn = REAL( nn_fsbc - 1 ) / REAL( nn_fsbc←↩

morecommentmorecomment morecomment) * 0.5 _wp
morecommentmorecomment morecomment300 !
morecommentmorecomment morecomment301 ! average interpolation coeff as used in dynspg = ←↩

morecommentmorecomment morecomment(1/ nn_fsbc ) * {SUM[1-n/ nn_fsbc ], n=0, nn_fsbc -1}
morecommentmorecomment morecomment302 ! = ←↩

morecommentmorecomment morecomment(1/ nn_fsbc )^2 * ( nn_fsbc ^2 - {SUM[n], n=0, nn_fsbc←↩

morecommentmorecomment morecomment-1})
morecommentmorecomment morecomment303 zintb = REAL( nn_fsbc + 1 ) / REAL( nn_fsbc←↩

morecommentmorecomment morecomment) * 0.5 _wp
morecommentmorecomment morecomment304 !
morecommentmorecomment morecomment305 zpice (: ,:) = ssh_m (: ,:) + ( zintn * ←↩

morecommentmorecomment morecommentsnwice_mass (: ,:) + zintb * snwice_mass_b←↩

morecommentmorecomment morecomment(: ,:) ) * r1_rau0
morecommentmorecomment morecomment306 !
morecommentmorecomment morecomment307 ELSE !== ←↩

morecommentmorecomment morecommentnon - embedded sea ice: use ocean surface for←↩

morecommentmorecomment morecommentslope calculation ==!
morecommentmorecomment morecomment308 zpice (: ,:) = ssh_m (: ,:)
morecommentmorecomment morecomment309 ENDIF
morecommentmorecomment morecomment310

morecommentmorecomment morecomment311 DO jj = k_j1 +1, k_jpj -1
morecommentmorecomment morecomment312 DO ji = 2, jpim1
morecommentmorecomment morecomment313

morecommentmorecomment morecomment314 ! ice fraction at U-V points
morecommentmorecomment morecomment315 zaU(ji ,jj) = 0.5 _wp * ( at_i(ji ,jj) * ←↩

morecommentmorecomment morecommente12t(ji ,jj) + at_i(ji+1,jj) * e12t(ji←↩

morecommentmorecomment morecomment+1,jj) ) * r1_e12u (ji ,jj) * umask(ji ,←↩

morecommentmorecomment morecommentjj ,1)
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morecommentmorecomment morecomment316 zaV(ji ,jj) = 0.5 _wp * ( at_i(ji ,jj) * ←↩

morecommentmorecomment morecommente12t(ji ,jj) + at_i(ji ,jj +1) * e12t(ji←↩

morecommentmorecomment morecomment,jj +1) ) * r1_e12v (ji ,jj) * vmask(ji ,←↩

morecommentmorecomment morecommentjj ,1)
morecommentmorecomment morecomment317

morecommentmorecomment morecomment318 ! Ice/snow mass at U-V points
morecommentmorecomment morecomment319 zm1 = ( rhosn * vt_s(ji ,jj ) + rhoic ←↩

morecommentmorecomment morecomment* vt_i(ji ,jj ) )
morecommentmorecomment morecomment320 zm2 = ( rhosn * vt_s(ji+1,jj ) + rhoic ←↩

morecommentmorecomment morecomment* vt_i(ji+1,jj ) )
morecommentmorecomment morecomment321 zm3 = ( rhosn * vt_s(ji ,jj +1) + rhoic ←↩

morecommentmorecomment morecomment* vt_i(ji ,jj +1) )
morecommentmorecomment morecomment322 zmassU = 0.5 _wp * ( zm1 * e12t(ji ,jj) + ←↩

morecommentmorecomment morecommentzm2 * e12t(ji+1,jj) ) * r1_e12u (ji ,jj←↩

morecommentmorecomment morecomment) * umask(ji ,jj ,1)
morecommentmorecomment morecomment323 zmassV = 0.5 _wp * ( zm1 * e12t(ji ,jj) + ←↩

morecommentmorecomment morecommentzm3 * e12t(ji ,jj +1) ) * r1_e12v (ji ,jj←↩

morecommentmorecomment morecomment) * vmask(ji ,jj ,1)
morecommentmorecomment morecomment324

morecommentmorecomment morecomment325 ! Ocean currents at U-V points
morecommentmorecomment morecomment326 v_oceU(ji ,jj) = 0.5 _wp * ( ( v_oce(ji ←↩

morecommentmorecomment morecomment,jj) + v_oce(ji ,jj -1) ) * e1t(ji←↩

morecommentmorecomment morecomment+1,jj) &
morecommentmorecomment morecomment327 & + ( v_oce(ji←↩

morecommentmorecomment morecomment+1,jj) + v_oce(ji+1,jj -1) ) * e1t(←↩

morecommentmorecomment morecommentji ,jj) ) * z1_e1t0 (ji ,jj) * ←↩

morecommentmorecomment morecommentumask(ji ,jj ,1)
morecommentmorecomment morecomment328

morecommentmorecomment morecomment329 u_oceV(ji ,jj) = 0.5 _wp * ( ( u_oce(ji ,←↩

morecommentmorecomment morecommentjj ) + u_oce(ji -1,jj ) ) * e2t(ji ,←↩

morecommentmorecomment morecommentjj +1) &
morecommentmorecomment morecomment330 & + ( u_oce(ji ,←↩

morecommentmorecomment morecommentjj +1) + u_oce(ji -1,jj +1) ) * e2t(←↩

morecommentmorecomment morecommentji ,jj ) ) * z1_e2t0 (ji ,jj) * ←↩

morecommentmorecomment morecommentvmask(ji ,jj ,1)
morecommentmorecomment morecomment331

morecommentmorecomment morecomment332 ! Coriolis at T points (m*f)
morecommentmorecomment morecomment333 zmf(ji ,jj) = zm1 * fcor(ji ,jj)
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morecommentmorecomment morecomment334

morecommentmorecomment morecomment335 ! m/dt
morecommentmorecomment morecomment336 zmU_t(ji ,jj) = zmassU * z1_dtevp
morecommentmorecomment morecomment337 zmV_t(ji ,jj) = zmassV * z1_dtevp
morecommentmorecomment morecomment338

morecommentmorecomment morecomment339 ! Drag ice -atm.
morecommentmorecomment morecomment340 zTauU_ia (ji ,jj) = zaU(ji ,jj) * utau_ice (←↩

morecommentmorecomment morecommentji ,jj)
morecommentmorecomment morecomment341 zTauV_ia (ji ,jj) = zaV(ji ,jj) * vtau_ice (←↩

morecommentmorecomment morecommentji ,jj)
morecommentmorecomment morecomment342

morecommentmorecomment morecomment343 ! Surface pressure gradient (- m*g*GRAD(ssh)) at U-V←↩

morecommentmorecomment morecommentpoints
morecommentmorecomment morecomment344 zspgU(ji ,jj) = - zmassU * grav * ( ←↩

morecommentmorecomment morecommentzpice(ji+1,jj) - zpice(ji ,jj) ) * ←↩

morecommentmorecomment morecommentr1_e1u(ji ,jj)
morecommentmorecomment morecomment345 zspgV(ji ,jj) = - zmassV * grav * ( ←↩

morecommentmorecomment morecommentzpice(ji ,jj +1) - zpice(ji ,jj) ) * ←↩

morecommentmorecomment morecommentr1_e2v(ji ,jj)
morecommentmorecomment morecomment346

morecommentmorecomment morecomment347 ! masks
morecommentmorecomment morecomment348 zmaskU(ji ,jj) = 1. _wp - MAX( 0._wp , SIGN←↩

morecommentmorecomment morecomment( 1._wp , -zmassU ) ) ! 0 if no ice
morecommentmorecomment morecomment349 zmaskV(ji ,jj) = 1. _wp - MAX( 0._wp , SIGN←↩

morecommentmorecomment morecomment( 1._wp , -zmassV ) ) ! 0 if no ice
morecommentmorecomment morecomment350

morecommentmorecomment morecomment351 ! switches
morecommentmorecomment morecomment352 zswitchU (ji ,jj) = MAX( 0._wp , SIGN( 1.←↩

morecommentmorecomment morecomment_wp , zmassU - zmmin ) ) ! 0 if ice ←↩

morecommentmorecomment morecommentmass < zmmin
morecommentmorecomment morecomment353 zswitchV (ji ,jj) = MAX( 0._wp , SIGN( 1.←↩

morecommentmorecomment morecomment_wp , zmassV - zmmin ) ) ! 0 if ice ←↩

morecommentmorecomment morecommentmass < zmmin
morecommentmorecomment morecomment354

morecommentmorecomment morecomment355 END DO
morecommentmorecomment morecomment356 END DO
morecommentmorecomment morecomment357

morecommentmorecomment morecomment358 CALL lbc_lnk ( zmf , 'T', 1. )
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morecommentmorecomment morecomment359 !
morecommentmorecomment morecomment360 !←↩

morecommentmorecomment morecomment------------------------------------------------------------------------------!←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment361 ! 3) Solution of the momentum equation , iterative ←↩

morecommentmorecomment morecommentprocedure
morecommentmorecomment morecomment362 !←↩

morecommentmorecomment morecomment------------------------------------------------------------------------------!←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment363 !
morecommentmorecomment morecomment364 ! ←↩

morecommentmorecomment morecomment!----------------------!
morecommentmorecomment morecomment365 DO jter = 1 , nn_nevp ←↩

morecommentmorecomment morecomment! loop over ←↩

morecommentmorecomment morecommentjter !
morecommentmorecomment morecomment366 ! ←↩

morecommentmorecomment morecomment!----------------------!
morecommentmorecomment morecomment367 IF(ln_ctl) THEN ! Convergence test
morecommentmorecomment morecomment368 DO jj = k_j1 , k_jpj -1
morecommentmorecomment morecomment369 zu_ice (:,jj) = u_ice (:,jj) ! velocity←↩

morecommentmorecomment morecommentat previous time step
morecommentmorecomment morecomment370 zv_ice (:,jj) = v_ice (:,jj)
morecommentmorecomment morecomment371 END DO
morecommentmorecomment morecomment372 ENDIF
morecommentmorecomment morecomment373

morecommentmorecomment morecomment374 ! --- divergence , tension & shear ( Appendix B of ←↩

morecommentmorecomment morecommentHunke & Dukowicz , 2002) --- !
morecommentmorecomment morecomment375 DO jj = k_j1 , k_jpj -1 ! loops start←↩

morecommentmorecomment morecommentat 1 since there is no boundary ←↩

morecommentmorecomment morecommentcondition ( lbc_lnk ) at i=1 and j=1 for F←↩

morecommentmorecomment morecommentpoints
morecommentmorecomment morecomment376 DO ji = 1, jpim1
morecommentmorecomment morecomment377

morecommentmorecomment morecomment378 ! shear at F points
morecommentmorecomment morecomment379 zds(ji ,jj) = ( ( u_ice(ji ,jj +1) * ←↩

morecommentmorecomment morecommentr1_e1u(ji ,jj +1) - u_ice(ji ,jj) * ←↩

morecommentmorecomment morecommentr1_e1u(ji ,jj) ) * e1f(ji ,jj) * e1f←↩

morecommentmorecomment morecomment(ji ,jj) &
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morecommentmorecomment morecomment380 & + ( v_ice(ji+1,jj) * ←↩

morecommentmorecomment morecommentr1_e2v(ji+1,jj) - v_ice(ji ,jj) ←↩

morecommentmorecomment morecomment* r1_e2v(ji ,jj) ) * e2f(ji ,jj) ←↩

morecommentmorecomment morecomment* e2f(ji ,jj) &
morecommentmorecomment morecomment381 & ) * r1_e12f (ji ,jj) * ←↩

morecommentmorecomment morecommentzfmask(ji ,jj)
morecommentmorecomment morecomment382

morecommentmorecomment morecomment383 END DO
morecommentmorecomment morecomment384 END DO
morecommentmorecomment morecomment385 CALL lbc_lnk ( zds , 'F', 1. )
morecommentmorecomment morecomment386

morecommentmorecomment morecomment387 DO jj = k_j1 +1, k_jpj -1
morecommentmorecomment morecomment388 DO ji = 2, jpim1 ! no vector loop
morecommentmorecomment morecomment389

morecommentmorecomment morecomment390 ! shear **2 at T points (doc eq. A16)
morecommentmorecomment morecomment391 zds2 = ( zds(ji ,jj ) * zds(ji ,jj ) ←↩

morecommentmorecomment morecomment* e12f(ji ,jj ) + zds(ji -1,jj ) *←↩

morecommentmorecomment morecommentzds(ji -1,jj ) * e12f(ji -1,jj ) ←↩

morecommentmorecomment morecomment&
morecommentmorecomment morecomment392 & + zds(ji ,jj -1) * zds(ji ,jj -1) ←↩

morecommentmorecomment morecomment* e12f(ji ,jj -1) + zds(ji -1,jj←↩

morecommentmorecomment morecomment-1) * zds(ji -1,jj -1) * e12f(ji←↩

morecommentmorecomment morecomment-1,jj -1) &
morecommentmorecomment morecomment393 & ) * 0.25 _wp * r1_e12t (ji ,jj)
morecommentmorecomment morecomment394

morecommentmorecomment morecomment395 ! divergence at T points
morecommentmorecomment morecomment396 zdiv = ( e2u(ji ,jj) * u_ice(ji ,jj) -←↩

morecommentmorecomment morecommente2u(ji -1,jj) * u_ice(ji -1,jj) &
morecommentmorecomment morecomment397 & + e1v(ji ,jj) * v_ice(ji ,jj) -←↩

morecommentmorecomment morecommente1v(ji ,jj -1) * v_ice(ji ,jj -1) ←↩

morecommentmorecomment morecomment&
morecommentmorecomment morecomment398 & ) * r1_e12t (ji ,jj)
morecommentmorecomment morecomment399 zdiv2 = zdiv * zdiv
morecommentmorecomment morecomment400

morecommentmorecomment morecomment401 ! tension at T points
morecommentmorecomment morecomment402 zdt = ( ( u_ice(ji ,jj) * r1_e2u(ji ,←↩

morecommentmorecomment morecommentjj) - u_ice(ji -1,jj) * r1_e2u(ji←↩
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morecommentmorecomment morecomment-1,jj) ) * e2t(ji ,jj) * e2t(ji ,jj)←↩

morecommentmorecomment morecomment&
morecommentmorecomment morecomment403 & - ( v_ice(ji ,jj) * r1_e1v(ji ,←↩

morecommentmorecomment morecommentjj) - v_ice(ji ,jj -1) * r1_e1v(←↩

morecommentmorecomment morecommentji ,jj -1) ) * e1t(ji ,jj) * e1t(←↩

morecommentmorecomment morecommentji ,jj) &
morecommentmorecomment morecomment404 & ) * r1_e12t (ji ,jj)
morecommentmorecomment morecomment405 zdt2 = zdt * zdt
morecommentmorecomment morecomment406

morecommentmorecomment morecomment407 ! delta at T points
morecommentmorecomment morecomment408 zdelta = SQRT( zdiv2 + ( zdt2 + zds2 ←↩

morecommentmorecomment morecomment) * usecc2 )
morecommentmorecomment morecomment409

morecommentmorecomment morecomment410 ! P/delta at T points
morecommentmorecomment morecomment411 zp_delt (ji ,jj) = zpresh(ji ,jj) / ( ←↩

morecommentmorecomment morecommentzdelta + rn_creepl )
morecommentmorecomment morecomment412

morecommentmorecomment morecomment413 ! stress at T points
morecommentmorecomment morecomment414 zs1(ji ,jj) = ( zs1(ji ,jj) * zalph1 + ←↩

morecommentmorecomment morecommentzp_delt (ji ,jj) * ( zdiv - zdelta )←↩

morecommentmorecomment morecomment) * z1_alph1
morecommentmorecomment morecomment415 zs2(ji ,jj) = ( zs2(ji ,jj) * zalph2 + ←↩

morecommentmorecomment morecommentzp_delt (ji ,jj) * ( zdt * z1_ecc2 )←↩

morecommentmorecomment morecomment) * z1_alph2
morecommentmorecomment morecomment416

morecommentmorecomment morecomment417 END DO
morecommentmorecomment morecomment418 END DO
morecommentmorecomment morecomment419 CALL lbc_lnk ( zp_delt , 'T', 1. )
morecommentmorecomment morecomment420

morecommentmorecomment morecomment421 DO jj = k_j1 , k_jpj -1
morecommentmorecomment morecomment422 DO ji = 1, jpim1
morecommentmorecomment morecomment423

morecommentmorecomment morecomment424 ! P/delta at F points
morecommentmorecomment morecomment425 zp_delf = 0.25 _wp * ( zp_delt (ji ,jj) ←↩

morecommentmorecomment morecomment+ zp_delt (ji+1,jj) + zp_delt (ji ,jj←↩

morecommentmorecomment morecomment+1) + zp_delt (ji+1,jj +1) )
morecommentmorecomment morecomment426

morecommentmorecomment morecomment427 ! stress at F points
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morecommentmorecomment morecomment428 zs12(ji ,jj)= ( zs12(ji ,jj) * zalph2 +←↩

morecommentmorecomment morecommentzp_delf * ( zds(ji ,jj) * z1_ecc2 ←↩

morecommentmorecomment morecomment) * 0.5 _wp ) * z1_alph2
morecommentmorecomment morecomment429

morecommentmorecomment morecomment430 END DO
morecommentmorecomment morecomment431 END DO
morecommentmorecomment morecomment432 CALL lbc_lnk_multi ( zs1 , 'T', 1., zs2 , 'T',←↩

morecommentmorecomment morecomment1., zs12 , 'F', 1. )
morecommentmorecomment morecomment433

morecommentmorecomment morecomment434 ! --- Ice internal stresses ( Appendix C of Hunke and←↩

morecommentmorecomment morecommentDukowicz , 2002) --- !
morecommentmorecomment morecomment435 DO jj = k_j1 +1, k_jpj -1
morecommentmorecomment morecomment436 DO ji = 2, jpim1
morecommentmorecomment morecomment437

morecommentmorecomment morecomment438 ! U points
morecommentmorecomment morecomment439 zfU(ji ,jj) = 0.5 _wp * ( ( zs1(ji+1,jj←↩

morecommentmorecomment morecomment) - zs1(ji ,jj) ) * e2u(ji ,jj) ←↩

morecommentmorecomment morecomment←↩

morecommentmorecomment morecomment&
morecommentmorecomment morecomment440 & + ( zs2(ji+1,jj←↩

morecommentmorecomment morecomment) * e2t(ji+1,jj) * e2t(ji+1,jj)←↩

morecommentmorecomment morecomment- zs2(ji ,jj) * e2t(ji ,jj) * ←↩

morecommentmorecomment morecommente2t(ji ,jj) &
morecommentmorecomment morecomment441 & ) * r1_e2u(ji←↩

morecommentmorecomment morecomment,jj) ←↩

morecommentmorecomment morecomment ←↩

morecommentmorecomment morecomment&
morecommentmorecomment morecomment442 & + ( zs12(ji ,jj)←↩

morecommentmorecomment morecomment* e1f(ji ,jj) * e1f(ji ,jj) - ←↩

morecommentmorecomment morecommentzs12(ji ,jj -1) * e1f(ji ,jj -1) * ←↩

morecommentmorecomment morecommente1f(ji ,jj -1) &
morecommentmorecomment morecomment443 & ) * 2. _wp * ←↩

morecommentmorecomment morecommentr1_e1u(ji ,jj) ←↩

morecommentmorecomment morecomment ←↩

morecommentmorecomment morecomment&
morecommentmorecomment morecomment444 & ) * r1_e12u (ji ,←↩

morecommentmorecomment morecommentjj)
morecommentmorecomment morecomment445
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morecommentmorecomment morecomment446 ! V points
morecommentmorecomment morecomment447 zfV(ji ,jj) = 0.5 _wp * ( ( zs1(ji ,jj←↩

morecommentmorecomment morecomment+1) - zs1(ji ,jj) ) * e1v(ji ,jj) ←↩

morecommentmorecomment morecomment←↩

morecommentmorecomment morecomment&
morecommentmorecomment morecomment448 & - ( zs2(ji ,jj←↩

morecommentmorecomment morecomment+1) * e1t(ji ,jj +1) * e1t(ji ,jj←↩

morecommentmorecomment morecomment+1) - zs2(ji ,jj) * e1t(ji ,jj) *←↩

morecommentmorecomment morecommente1t(ji ,jj) &
morecommentmorecomment morecomment449 & ) * r1_e1v(ji←↩

morecommentmorecomment morecomment,jj) ←↩

morecommentmorecomment morecomment ←↩

morecommentmorecomment morecomment&
morecommentmorecomment morecomment450 & + ( zs12(ji ,jj)←↩

morecommentmorecomment morecomment* e2f(ji ,jj) * e2f(ji ,jj) - ←↩

morecommentmorecomment morecommentzs12(ji -1,jj) * e2f(ji -1,jj) * ←↩

morecommentmorecomment morecommente2f(ji -1,jj) &
morecommentmorecomment morecomment451 & ) * 2. _wp * ←↩

morecommentmorecomment morecommentr1_e2v(ji ,jj) ←↩

morecommentmorecomment morecomment ←↩

morecommentmorecomment morecomment&
morecommentmorecomment morecomment452 & ) * r1_e12v (ji ,←↩

morecommentmorecomment morecommentjj)
morecommentmorecomment morecomment453

morecommentmorecomment morecomment454 ! u_ice at V point
morecommentmorecomment morecomment455 u_iceV(ji ,jj) = 0.5 _wp * ( ( u_ice(ji←↩

morecommentmorecomment morecomment,jj ) + u_ice(ji -1,jj ) ) * e2t(←↩

morecommentmorecomment morecommentji ,jj +1) &
morecommentmorecomment morecomment456 & + ( u_ice(ji←↩

morecommentmorecomment morecomment,jj +1) + u_ice(ji -1,jj +1) ) * ←↩

morecommentmorecomment morecommente2t(ji ,jj ) ) * z1_e2t0 (ji ,jj)←↩

morecommentmorecomment morecomment* vmask(ji ,jj ,1)
morecommentmorecomment morecomment457

morecommentmorecomment morecomment458 ! v_ice at U point
morecommentmorecomment morecomment459 v_iceU(ji ,jj) = 0.5 _wp * ( ( v_ice(ji←↩

morecommentmorecomment morecomment,jj) + v_ice(ji ,jj -1) ) * e1t(←↩

morecommentmorecomment morecommentji+1,jj) &
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morecommentmorecomment morecomment460 & + ( v_ice(ji←↩

morecommentmorecomment morecomment+1,jj) + v_ice(ji+1,jj -1) ) * ←↩

morecommentmorecomment morecommente1t(ji ,jj) ) * z1_e1t0 (ji ,jj)←↩

morecommentmorecomment morecomment* umask(ji ,jj ,1)
morecommentmorecomment morecomment461

morecommentmorecomment morecomment462 END DO
morecommentmorecomment morecomment463 END DO
morecommentmorecomment morecomment464 !
morecommentmorecomment morecomment465 ! --- Computation of ice velocity --- !
morecommentmorecomment morecomment466 ! Bouillon et al. 2013 (eq 47 -48) => unstable ←↩

morecommentmorecomment morecommentunless alpha , beta are chosen wisely and large ←↩

morecommentmorecomment morecommentnn_nevp
morecommentmorecomment morecomment467 ! Bouillon et al. 2009 (eq 34 -35) => stable
morecommentmorecomment morecomment468 IF( MOD(jter ,2) .EQ. 0 ) THEN ! even ←↩

morecommentmorecomment morecommentiterations
morecommentmorecomment morecomment469

morecommentmorecomment morecomment470 DO jj = k_j1 +1, k_jpj -1
morecommentmorecomment morecomment471 DO ji = 2, jpim1
morecommentmorecomment morecomment472

morecommentmorecomment morecomment473 ! tau_io /( v_oce - v_ice)
morecommentmorecomment morecomment474 zTauO = zaV(ji ,jj) * rhoco * SQRT(←↩

morecommentmorecomment morecomment( v_ice (ji ,jj) - v_oce (ji ,jj←↩

morecommentmorecomment morecomment) ) * ( v_ice (ji ,jj) - v_oce (←↩

morecommentmorecomment morecommentji ,jj) ) &
morecommentmorecomment morecomment475 & +←↩

morecommentmorecomment morecomment( u_iceV(ji ,jj) - u_oceV(ji←↩

morecommentmorecomment morecomment,jj) ) * ( u_iceV(ji ,jj) - ←↩

morecommentmorecomment morecommentu_oceV(ji ,jj) ) )
morecommentmorecomment morecomment476

morecommentmorecomment morecomment477 ! Ocean -to -Ice stress
morecommentmorecomment morecomment478 ztauy_oi (ji ,jj) = zTauO * ( v_oce(←↩

morecommentmorecomment morecommentji ,jj) - v_ice(ji ,jj) )
morecommentmorecomment morecomment479

morecommentmorecomment morecomment480 ! Coriolis at V-points (energy conserving ←↩

morecommentmorecomment morecommentformulation )
morecommentmorecomment morecomment481 zCory(ji ,jj) = - 0.25 _wp * r1_e2v←↩

morecommentmorecomment morecomment(ji ,jj) * &
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morecommentmorecomment morecomment482 & ( zmf(ji ,jj ) * ( e2u(ji ,←↩

morecommentmorecomment morecommentjj ) * u_ice(ji ,jj ) + e2u←↩

morecommentmorecomment morecomment(ji -1,jj ) * u_ice(ji -1,jj ←↩

morecommentmorecomment morecomment) ) &
morecommentmorecomment morecomment483 & + zmf(ji ,jj +1) * ( e2u(ji ,←↩

morecommentmorecomment morecommentjj +1) * u_ice(ji ,jj +1) + e2u←↩

morecommentmorecomment morecomment(ji -1,jj +1) * u_ice(ji -1,jj←↩

morecommentmorecomment morecomment+1) ) )
morecommentmorecomment morecomment484

morecommentmorecomment morecomment485 ! Sum of external forces ( explicit solution ) = F + ←↩

morecommentmorecomment morecommenttau_ia + Coriolis + spg + tau_io
morecommentmorecomment morecomment486 zTauE = zfV(ji ,jj) + zTauV_ia (ji ,←↩

morecommentmorecomment morecommentjj) + zCory(ji ,jj) + zspgV(ji ,←↩

morecommentmorecomment morecommentjj) + ztauy_oi (ji ,jj)
morecommentmorecomment morecomment487

morecommentmorecomment morecomment488 ! ice velocity using implicit formulation (cf Madec ←↩

morecommentmorecomment morecommentdoc & Bouillon 2009)
morecommentmorecomment morecomment489 v_ice(ji ,jj) = ( ( zmV_t(ji ,jj) * ←↩

morecommentmorecomment morecommentv_ice(ji ,jj) + zTauE + zTauO * ←↩

morecommentmorecomment morecommentv_ice(ji ,jj) & ! F + tau_ia +←↩

morecommentmorecomment morecommentCoriolis + spg + tau_io(only ←↩

morecommentmorecomment morecommentocean part)
morecommentmorecomment morecomment490 & ) / MAX( zepsi , ←↩

morecommentmorecomment morecommentzmV_t(ji ,jj) + zTauO ) * ←↩

morecommentmorecomment morecommentzswitchV (ji ,jj) & ! m/←↩

morecommentmorecomment morecommentdt + tau_io(only ice part)
morecommentmorecomment morecomment491 & + v_oce(ji ,jj) * ←↩

morecommentmorecomment morecomment( 1. _wp - zswitchV (ji ,jj) ) ←↩

morecommentmorecomment morecomment& ! v_ice ←↩

morecommentmorecomment morecomment= v_oce if mass < zmmin
morecommentmorecomment morecomment492 & ) * zmaskV(ji ,jj)
morecommentmorecomment morecomment493 END DO
morecommentmorecomment morecomment494 END DO
morecommentmorecomment morecomment495 CALL lbc_lnk ( v_ice , 'V', -1. )
morecommentmorecomment morecomment496

morecommentmorecomment morecomment497

morecommentmorecomment morecomment498

morecommentmorecomment morecomment499
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morecommentmorecomment morecomment500 DO jj = k_j1 +1, k_jpj -1
morecommentmorecomment morecomment501 DO ji = 2, jpim1
morecommentmorecomment morecomment502

morecommentmorecomment morecomment503 ! tau_io /( u_oce - u_ice)
morecommentmorecomment morecomment504 zTauO = zaU(ji ,jj) * rhoco * SQRT(←↩

morecommentmorecomment morecomment( u_ice (ji ,jj) - u_oce (ji ,jj←↩

morecommentmorecomment morecomment) ) * ( u_ice (ji ,jj) - u_oce (←↩

morecommentmorecomment morecommentji ,jj) ) &
morecommentmorecomment morecomment505 & +←↩

morecommentmorecomment morecomment( v_iceU(ji ,jj) - v_oceU(ji←↩

morecommentmorecomment morecomment,jj) ) * ( v_iceU(ji ,jj) - ←↩

morecommentmorecomment morecommentv_oceU(ji ,jj) ) )
morecommentmorecomment morecomment506

morecommentmorecomment morecomment507 ! Ocean -to -Ice stress
morecommentmorecomment morecomment508 ztaux_oi (ji ,jj) = zTauO * ( u_oce(←↩

morecommentmorecomment morecommentji ,jj) - u_ice(ji ,jj) )
morecommentmorecomment morecomment509

morecommentmorecomment morecomment510 ! Coriolis at U-points (energy conserving ←↩

morecommentmorecomment morecommentformulation )
morecommentmorecomment morecomment511 zCorx(ji ,jj) = 0.25 _wp * r1_e1u←↩

morecommentmorecomment morecomment(ji ,jj) * &
morecommentmorecomment morecomment512 & ( zmf(ji ,jj) * ( e1v(ji ←↩

morecommentmorecomment morecomment,jj) * v_ice(ji ,jj) + e1v←↩

morecommentmorecomment morecomment(ji ,jj -1) * v_ice(ji ,jj←↩

morecommentmorecomment morecomment-1) ) &
morecommentmorecomment morecomment513 & + zmf(ji+1,jj) * ( e1v(ji←↩

morecommentmorecomment morecomment+1,jj) * v_ice(ji+1,jj) + ←↩

morecommentmorecomment morecommente1v(ji+1,jj -1) * v_ice(ji+1,←↩

morecommentmorecomment morecommentjj -1) ) )
morecommentmorecomment morecomment514

morecommentmorecomment morecomment515 ! Sum of external forces ( explicit solution ) = F + ←↩

morecommentmorecomment morecommenttau_ia + Coriolis + spg + tau_io
morecommentmorecomment morecomment516 zTauE = zfU(ji ,jj) + zTauU_ia (ji ,←↩

morecommentmorecomment morecommentjj) + zCorx(ji ,jj) + zspgU(ji ,←↩

morecommentmorecomment morecommentjj) + ztaux_oi (ji ,jj)
morecommentmorecomment morecomment517

morecommentmorecomment morecomment518 ! ice velocity using implicit formulation (cf Madec ←↩

morecommentmorecomment morecommentdoc & Bouillon 2009)
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morecommentmorecomment morecomment519 u_ice(ji ,jj) = ( ( zmU_t(ji ,jj) * ←↩

morecommentmorecomment morecommentu_ice(ji ,jj) + zTauE + zTauO * ←↩

morecommentmorecomment morecommentu_ice(ji ,jj) & ! F + tau_ia +←↩

morecommentmorecomment morecommentCoriolis + spg + tau_io(only ←↩

morecommentmorecomment morecommentocean part)
morecommentmorecomment morecomment520 & ) / MAX( zepsi , ←↩

morecommentmorecomment morecommentzmU_t(ji ,jj) + zTauO ) * ←↩

morecommentmorecomment morecommentzswitchU (ji ,jj) & ! m/←↩

morecommentmorecomment morecommentdt + tau_io(only ice part)
morecommentmorecomment morecomment521 & + u_oce(ji ,jj) * ←↩

morecommentmorecomment morecomment( 1. _wp - zswitchU (ji ,jj) ) ←↩

morecommentmorecomment morecomment& ! v_ice ←↩

morecommentmorecomment morecomment= v_oce if mass < zmmin
morecommentmorecomment morecomment522 & ) * zmaskU(ji ,jj)
morecommentmorecomment morecomment523 END DO
morecommentmorecomment morecomment524 END DO
morecommentmorecomment morecomment525 CALL lbc_lnk ( u_ice , 'U', -1. )
morecommentmorecomment morecomment526

morecommentmorecomment morecomment527

morecommentmorecomment morecomment528

morecommentmorecomment morecomment529

morecommentmorecomment morecomment530 ELSE ! odd iterations
morecommentmorecomment morecomment531

morecommentmorecomment morecomment532 DO jj = k_j1 +1, k_jpj -1
morecommentmorecomment morecomment533 DO ji = 2, jpim1
morecommentmorecomment morecomment534

morecommentmorecomment morecomment535 ! tau_io /( u_oce - u_ice)
morecommentmorecomment morecomment536 zTauO = zaU(ji ,jj) * rhoco * SQRT(←↩

morecommentmorecomment morecomment( u_ice (ji ,jj) - u_oce (ji ,jj←↩

morecommentmorecomment morecomment) ) * ( u_ice (ji ,jj) - u_oce (←↩

morecommentmorecomment morecommentji ,jj) ) &
morecommentmorecomment morecomment537 & +←↩

morecommentmorecomment morecomment( v_iceU(ji ,jj) - v_oceU(ji←↩

morecommentmorecomment morecomment,jj) ) * ( v_iceU(ji ,jj) - ←↩

morecommentmorecomment morecommentv_oceU(ji ,jj) ) )
morecommentmorecomment morecomment538

morecommentmorecomment morecomment539 ! Ocean -to -Ice stress
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morecommentmorecomment morecomment540 ztaux_oi (ji ,jj) = zTauO * ( u_oce(←↩

morecommentmorecomment morecommentji ,jj) - u_ice(ji ,jj) )
morecommentmorecomment morecomment541

morecommentmorecomment morecomment542 ! Coriolis at U-points (energy conserving ←↩

morecommentmorecomment morecommentformulation )
morecommentmorecomment morecomment543 zCorx(ji ,jj) = 0.25 _wp * r1_e1u←↩

morecommentmorecomment morecomment(ji ,jj) * &
morecommentmorecomment morecomment544 & ( zmf(ji ,jj) * ( e1v(ji ←↩

morecommentmorecomment morecomment,jj) * v_ice(ji ,jj) + e1v←↩

morecommentmorecomment morecomment(ji ,jj -1) * v_ice(ji ,jj←↩

morecommentmorecomment morecomment-1) ) &
morecommentmorecomment morecomment545 & + zmf(ji+1,jj) * ( e1v(ji←↩

morecommentmorecomment morecomment+1,jj) * v_ice(ji+1,jj) + ←↩

morecommentmorecomment morecommente1v(ji+1,jj -1) * v_ice(ji+1,←↩

morecommentmorecomment morecommentjj -1) ) )
morecommentmorecomment morecomment546

morecommentmorecomment morecomment547 ! Sum of external forces ( explicit solution ) = F + ←↩

morecommentmorecomment morecommenttau_ia + Coriolis + spg + tau_io
morecommentmorecomment morecomment548 zTauE = zfU(ji ,jj) + zTauU_ia (ji ,←↩

morecommentmorecomment morecommentjj) + zCorx(ji ,jj) + zspgU(ji ,←↩

morecommentmorecomment morecommentjj) + ztaux_oi (ji ,jj)
morecommentmorecomment morecomment549

morecommentmorecomment morecomment550 ! ice velocity using implicit formulation (cf Madec ←↩

morecommentmorecomment morecommentdoc & Bouillon 2009)
morecommentmorecomment morecomment551 u_ice(ji ,jj) = ( ( zmU_t(ji ,jj) * ←↩

morecommentmorecomment morecommentu_ice(ji ,jj) + zTauE + zTauO * ←↩

morecommentmorecomment morecommentu_ice(ji ,jj) & ! F + tau_ia +←↩

morecommentmorecomment morecommentCoriolis + spg + tau_io(only ←↩

morecommentmorecomment morecommentocean part)
morecommentmorecomment morecomment552 & ) / MAX( zepsi , ←↩

morecommentmorecomment morecommentzmU_t(ji ,jj) + zTauO ) * ←↩

morecommentmorecomment morecommentzswitchU (ji ,jj) & ! m/←↩

morecommentmorecomment morecommentdt + tau_io(only ice part)
morecommentmorecomment morecomment553 & + u_oce(ji ,jj) * ←↩

morecommentmorecomment morecomment( 1. _wp - zswitchU (ji ,jj) ) ←↩

morecommentmorecomment morecomment& ! v_ice ←↩

morecommentmorecomment morecomment= v_oce if mass < zmmin
morecommentmorecomment morecomment554 & ) * zmaskU(ji ,jj)
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morecommentmorecomment morecomment555 END DO
morecommentmorecomment morecomment556 END DO
morecommentmorecomment morecomment557 CALL lbc_lnk ( u_ice , 'U', -1. )
morecommentmorecomment morecomment558

morecommentmorecomment morecomment559

morecommentmorecomment morecomment560

morecommentmorecomment morecomment561

morecommentmorecomment morecomment562 DO jj = k_j1 +1, k_jpj -1
morecommentmorecomment morecomment563 DO ji = 2, jpim1
morecommentmorecomment morecomment564

morecommentmorecomment morecomment565 ! tau_io /( v_oce - v_ice)
morecommentmorecomment morecomment566 zTauO = zaV(ji ,jj) * rhoco * SQRT(←↩

morecommentmorecomment morecomment( v_ice (ji ,jj) - v_oce (ji ,jj←↩

morecommentmorecomment morecomment) ) * ( v_ice (ji ,jj) - v_oce (←↩

morecommentmorecomment morecommentji ,jj) ) &
morecommentmorecomment morecomment567 & +←↩

morecommentmorecomment morecomment( u_iceV(ji ,jj) - u_oceV(ji←↩

morecommentmorecomment morecomment,jj) ) * ( u_iceV(ji ,jj) - ←↩

morecommentmorecomment morecommentu_oceV(ji ,jj) ) )
morecommentmorecomment morecomment568

morecommentmorecomment morecomment569 ! Ocean -to -Ice stress
morecommentmorecomment morecomment570 ztauy_oi (ji ,jj) = zTauO * ( v_oce(←↩

morecommentmorecomment morecommentji ,jj) - v_ice(ji ,jj) )
morecommentmorecomment morecomment571

morecommentmorecomment morecomment572 ! Coriolis at V-points (energy conserving ←↩

morecommentmorecomment morecommentformulation )
morecommentmorecomment morecomment573 zCory(ji ,jj) = - 0.25 _wp * r1_e2v←↩

morecommentmorecomment morecomment(ji ,jj) * &
morecommentmorecomment morecomment574 & ( zmf(ji ,jj ) * ( e2u(ji ,←↩

morecommentmorecomment morecommentjj ) * u_ice(ji ,jj ) + e2u←↩

morecommentmorecomment morecomment(ji -1,jj ) * u_ice(ji -1,jj ←↩

morecommentmorecomment morecomment) ) &
morecommentmorecomment morecomment575 & + zmf(ji ,jj +1) * ( e2u(ji ,←↩

morecommentmorecomment morecommentjj +1) * u_ice(ji ,jj +1) + e2u←↩

morecommentmorecomment morecomment(ji -1,jj +1) * u_ice(ji -1,jj←↩

morecommentmorecomment morecomment+1) ) )
morecommentmorecomment morecomment576
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morecommentmorecomment morecomment577 ! Sum of external forces ( explicit solution ) = F + ←↩

morecommentmorecomment morecommenttau_ia + Coriolis + spg + tau_io
morecommentmorecomment morecomment578 zTauE = zfV(ji ,jj) + zTauV_ia (ji ,←↩

morecommentmorecomment morecommentjj) + zCory(ji ,jj) + zspgV(ji ,←↩

morecommentmorecomment morecommentjj) + ztauy_oi (ji ,jj)
morecommentmorecomment morecomment579

morecommentmorecomment morecomment580 ! ice velocity using implicit formulation (cf Madec ←↩

morecommentmorecomment morecommentdoc & Bouillon 2009)
morecommentmorecomment morecomment581 v_ice(ji ,jj) = ( ( zmV_t(ji ,jj) * ←↩

morecommentmorecomment morecommentv_ice(ji ,jj) + zTauE + zTauO * ←↩

morecommentmorecomment morecommentv_ice(ji ,jj) & ! F + tau_ia +←↩

morecommentmorecomment morecommentCoriolis + spg + tau_io(only ←↩

morecommentmorecomment morecommentocean part)
morecommentmorecomment morecomment582 & ) / MAX( zepsi , ←↩

morecommentmorecomment morecommentzmV_t(ji ,jj) + zTauO ) * ←↩

morecommentmorecomment morecommentzswitchV (ji ,jj) & ! m/←↩

morecommentmorecomment morecommentdt + tau_io(only ice part)
morecommentmorecomment morecomment583 & + v_oce(ji ,jj) * ←↩

morecommentmorecomment morecomment( 1. _wp - zswitchV (ji ,jj) ) ←↩

morecommentmorecomment morecomment& ! v_ice ←↩

morecommentmorecomment morecomment= v_oce if mass < zmmin
morecommentmorecomment morecomment584 & ) * zmaskV(ji ,jj)
morecommentmorecomment morecomment585 END DO
morecommentmorecomment morecomment586 END DO
morecommentmorecomment morecomment587 CALL lbc_lnk ( v_ice , 'V', -1. )
morecommentmorecomment morecomment588

morecommentmorecomment morecomment589

morecommentmorecomment morecomment590

morecommentmorecomment morecomment591

morecommentmorecomment morecomment592 ENDIF
morecommentmorecomment morecomment593

morecommentmorecomment morecomment594 IF(ln_ctl) THEN ! Convergence test
morecommentmorecomment morecomment595 DO jj = k_j1 +1, k_jpj -1
morecommentmorecomment morecomment596 zresr (:,jj) = MAX( ABS( u_ice (:,jj) -←↩

morecommentmorecomment morecommentzu_ice (:,jj) ), ABS( v_ice (:,jj) ←↩

morecommentmorecomment morecomment- zv_ice (:,jj) ) )
morecommentmorecomment morecomment597 END DO
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morecommentmorecomment morecomment598 zresm = MAXVAL( zresr( 1:jpi , k_j1 +1:←↩

morecommentmorecomment morecommentk_jpj -1 ) )
morecommentmorecomment morecomment599 IF( lk_mpp ) CALL mpp_max ( zresm ) !←↩

morecommentmorecomment morecommentmax over the global domain
morecommentmorecomment morecomment600 ENDIF
morecommentmorecomment morecomment601 !
morecommentmorecomment morecomment602 ! ! ←↩

morecommentmorecomment morecomment==================== !
morecommentmorecomment morecomment603 END DO ←↩

morecommentmorecomment morecomment←↩

morecommentmorecomment morecomment! end loop over jter !
morecommentmorecomment morecomment604 ! ←↩

morecommentmorecomment morecomment! ==================== !
morecommentmorecomment morecomment605 !
morecommentmorecomment morecomment606 !←↩

morecommentmorecomment morecomment------------------------------------------------------------------------------!←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment607 ! 4) Recompute delta , shear and div (inputs for ←↩

morecommentmorecomment morecommentmechanical redistribution )
morecommentmorecomment morecomment608 !←↩

morecommentmorecomment morecomment------------------------------------------------------------------------------!←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment609 DO jj = k_j1 , k_jpj -1
morecommentmorecomment morecomment610 DO ji = 1, jpim1
morecommentmorecomment morecomment611

morecommentmorecomment morecomment612 ! shear at F points
morecommentmorecomment morecomment613 zds(ji ,jj) = ( ( u_ice(ji ,jj +1) * r1_e1u←↩

morecommentmorecomment morecomment(ji ,jj +1) - u_ice(ji ,jj) * r1_e1u(ji ,←↩

morecommentmorecomment morecommentjj) ) * e1f(ji ,jj) * e1f(ji ,jj) &
morecommentmorecomment morecomment614 & + ( v_ice(ji+1,jj) * r1_e2v←↩

morecommentmorecomment morecomment(ji+1,jj) - v_ice(ji ,jj) * r1_e2v(←↩

morecommentmorecomment morecommentji ,jj) ) * e2f(ji ,jj) * e2f(ji ,jj)←↩

morecommentmorecomment morecomment&
morecommentmorecomment morecomment615 & ) * r1_e12f (ji ,jj) * zfmask←↩

morecommentmorecomment morecomment(ji ,jj)
morecommentmorecomment morecomment616

morecommentmorecomment morecomment617 END DO
morecommentmorecomment morecomment618 END DO
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morecommentmorecomment morecomment619 CALL lbc_lnk ( zds , 'F', 1. )
morecommentmorecomment morecomment620

morecommentmorecomment morecomment621 DO jj = k_j1 +1, k_jpj -1
morecommentmorecomment morecomment622 DO ji = 2, jpim1 ! no vector loop
morecommentmorecomment morecomment623

morecommentmorecomment morecomment624 ! tension **2 at T points
morecommentmorecomment morecomment625 zdt = ( ( u_ice(ji ,jj) * r1_e2u(ji ,jj) ←↩

morecommentmorecomment morecomment- u_ice(ji -1,jj) * r1_e2u(ji -1,jj) ) ←↩

morecommentmorecomment morecomment* e2t(ji ,jj) * e2t(ji ,jj) &
morecommentmorecomment morecomment626 & - ( v_ice(ji ,jj) * r1_e1v(ji ,jj) ←↩

morecommentmorecomment morecomment- v_ice(ji ,jj -1) * r1_e1v(ji ,jj -1)←↩

morecommentmorecomment morecomment) * e1t(ji ,jj) * e1t(ji ,jj) &
morecommentmorecomment morecomment627 & ) * r1_e12t (ji ,jj)
morecommentmorecomment morecomment628 zdt2 = zdt * zdt
morecommentmorecomment morecomment629

morecommentmorecomment morecomment630 ! shear **2 at T points (doc eq. A16)
morecommentmorecomment morecomment631 zds2 = ( zds(ji ,jj ) * zds(ji ,jj ) * ←↩

morecommentmorecomment morecommente12f(ji ,jj ) + zds(ji -1,jj ) * zds(←↩

morecommentmorecomment morecommentji -1,jj ) * e12f(ji -1,jj ) &
morecommentmorecomment morecomment632 & + zds(ji ,jj -1) * zds(ji ,jj -1) * ←↩

morecommentmorecomment morecommente12f(ji ,jj -1) + zds(ji -1,jj -1) * ←↩

morecommentmorecomment morecommentzds(ji -1,jj -1) * e12f(ji -1,jj -1) ←↩

morecommentmorecomment morecomment&
morecommentmorecomment morecomment633 & ) * 0.25 _wp * r1_e12t (ji ,jj)
morecommentmorecomment morecomment634

morecommentmorecomment morecomment635 ! shear at T points
morecommentmorecomment morecomment636 shear_i (ji ,jj) = SQRT( zdt2 + zds2 )
morecommentmorecomment morecomment637

morecommentmorecomment morecomment638 ! divergence at T points
morecommentmorecomment morecomment639 divu_i(ji ,jj) = ( e2u(ji ,jj) * u_ice(ji ,←↩

morecommentmorecomment morecommentjj) - e2u(ji -1,jj) * u_ice(ji -1,jj) ←↩

morecommentmorecomment morecomment&
morecommentmorecomment morecomment640 & + e1v(ji ,jj) * v_ice(ji ,←↩

morecommentmorecomment morecommentjj) - e1v(ji ,jj -1) * v_ice(ji ,jj←↩

morecommentmorecomment morecomment-1) &
morecommentmorecomment morecomment641 & ) * r1_e12t (ji ,jj)
morecommentmorecomment morecomment642

morecommentmorecomment morecomment643 ! delta at T points
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morecommentmorecomment morecomment644 zdelta = SQRT( divu_i(ji ,jj) * ←↩

morecommentmorecomment morecommentdivu_i(ji ,jj) + ( zdt2 + zds2 ) * ←↩

morecommentmorecomment morecommentusecc2 )
morecommentmorecomment morecomment645 rswitch = 1. _wp - MAX( 0._wp , ←↩

morecommentmorecomment morecommentSIGN( 1._wp , -zdelta ) ) ! 0 if delta←↩

morecommentmorecomment morecomment=0
morecommentmorecomment morecomment646 delta_i (ji ,jj) = zdelta + rn_creepl * ←↩

morecommentmorecomment morecommentrswitch
morecommentmorecomment morecomment647

morecommentmorecomment morecomment648 END DO
morecommentmorecomment morecomment649 END DO
morecommentmorecomment morecomment650 CALL lbc_lnk_multi ( shear_i , 'T', 1., divu_i , ←↩

morecommentmorecomment morecomment'T', 1., delta_i , 'T', 1. )
morecommentmorecomment morecomment651

morecommentmorecomment morecomment652 ! --- Store the stress tensor for the next time step←↩

morecommentmorecomment morecomment--- !
morecommentmorecomment morecomment653 stress1_i (: ,:) = zs1 (: ,:)
morecommentmorecomment morecomment654 stress2_i (: ,:) = zs2 (: ,:)
morecommentmorecomment morecomment655 stress12_i (: ,:) = zs12 (: ,:)
morecommentmorecomment morecomment656

morecommentmorecomment morecomment657 !←↩

morecommentmorecomment morecomment------------------------------------------------------------------------------!←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment658 ! 5) SIMIP diagnostics
morecommentmorecomment morecomment659 !←↩

morecommentmorecomment morecomment------------------------------------------------------------------------------!←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment660

morecommentmorecomment morecomment661 DO jj = 1, jpj
morecommentmorecomment morecomment662 DO ji = 1, jpi
morecommentmorecomment morecomment663 zswi(ji ,jj) = MAX( 0. _wp , SIGN( 1. _wp ←↩

morecommentmorecomment morecomment, at_i(ji ,jj) - epsi06 ) ) ! 1 if ice←↩

morecommentmorecomment morecomment, 0 if no ice
morecommentmorecomment morecomment664 END DO
morecommentmorecomment morecomment665 END DO
morecommentmorecomment morecomment666

morecommentmorecomment morecomment667 zmiss (: ,:) = zmiss_val * ( 1. - zswi←↩

morecommentmorecomment morecomment(: ,:) )
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morecommentmorecomment morecomment668

morecommentmorecomment morecomment669 DO jj = k_j1 +1, k_jpj -1
morecommentmorecomment morecomment670 DO ji = 2, jpim1
morecommentmorecomment morecomment671

morecommentmorecomment morecomment672 ! Stress tensor invariants (normal and shear stress ←↩

morecommentmorecomment morecommentN/m)
morecommentmorecomment morecomment673 zdiag_sig1 (ji ,jj) = ( zs1(ji ,jj) + zs2(←↩

morecommentmorecomment morecommentji ,jj) ) * zswi(ji ,jj) ←↩

morecommentmorecomment morecomment! ←↩

morecommentmorecomment morecommentnormal stress
morecommentmorecomment morecomment674 zdiag_sig2 (ji ,jj) = SQRT( ( zs1(ji ,jj) ←↩

morecommentmorecomment morecomment- zs2(ji ,jj) )**2 + 4* zs12(ji ,jj)**2←↩

morecommentmorecomment morecomment) * zswi(ji ,jj) ! shear stress
morecommentmorecomment morecomment675

morecommentmorecomment morecomment676 ! Stress terms of the momentum equation (N/m2)
morecommentmorecomment morecomment677 zdiag_dssh_dx (ji ,jj) = zspgU(ji ,jj) * ←↩

morecommentmorecomment morecommentzswi(ji ,jj) ! sea surface slope ←↩

morecommentmorecomment morecommentstress term
morecommentmorecomment morecomment678 zdiag_dssh_dy (ji ,jj) = zspgV(ji ,jj) * ←↩

morecommentmorecomment morecommentzswi(ji ,jj)
morecommentmorecomment morecomment679

morecommentmorecomment morecomment680 zdiag_corstrx (ji ,jj) = zCorx(ji ,jj) * ←↩

morecommentmorecomment morecommentzswi(ji ,jj) ! Coriolis stress ←↩

morecommentmorecomment morecommentterm
morecommentmorecomment morecomment681 zdiag_corstry (ji ,jj) = zCory(ji ,jj) * ←↩

morecommentmorecomment morecommentzswi(ji ,jj)
morecommentmorecomment morecomment682

morecommentmorecomment morecomment683 zdiag_intstrx (ji ,jj) = zfU(ji ,jj) * ←↩

morecommentmorecomment morecommentzswi(ji ,jj) ! internal stress ←↩

morecommentmorecomment morecommentterm
morecommentmorecomment morecomment684 zdiag_intstry (ji ,jj) = zfV(ji ,jj) * ←↩

morecommentmorecomment morecommentzswi(ji ,jj)
morecommentmorecomment morecomment685

morecommentmorecomment morecomment686 zdiag_utau_oi (ji ,jj) = ztaux_oi (ji ,jj) ←↩

morecommentmorecomment morecomment* zswi(ji ,jj) ! oceanic stress
morecommentmorecomment morecomment687 zdiag_vtau_oi (ji ,jj) = ztauy_oi (ji ,jj) ←↩

morecommentmorecomment morecomment* zswi(ji ,jj)
morecommentmorecomment morecomment688
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morecommentmorecomment morecomment689 ! 2D ice mass , snow mass , area transport arrays (X, ←↩

morecommentmorecomment morecommentY)
morecommentmorecomment morecomment690 zfac_x = 0.5 * u_ice(ji ,jj) * e2u(ji ,jj←↩

morecommentmorecomment morecomment) * zswi(ji ,jj)
morecommentmorecomment morecomment691 zfac_y = 0.5 * v_ice(ji ,jj) * e1v(ji ,jj←↩

morecommentmorecomment morecomment) * zswi(ji ,jj)
morecommentmorecomment morecomment692

morecommentmorecomment morecomment693 zdiag_xmtrp_ice (ji ,jj) = rhoic * zfac_x←↩

morecommentmorecomment morecomment* ( vt_i(ji+1,jj) + vt_i(ji ,jj) ) !←↩

morecommentmorecomment morecommentice mass transport , X- component (kg←↩

morecommentmorecomment morecomment/s)
morecommentmorecomment morecomment694 zdiag_ymtrp_ice (ji ,jj) = rhoic * zfac_y←↩

morecommentmorecomment morecomment* ( vt_i(ji ,jj +1) + vt_i(ji ,jj) ) !←↩

morecommentmorecomment morecomment'' Y- ''
morecommentmorecomment morecomment695

morecommentmorecomment morecomment696 zdiag_xmtrp_snw (ji ,jj) = rhosn * zfac_x←↩

morecommentmorecomment morecomment* ( vt_s(ji+1,jj) + vt_s(ji ,jj) ) !←↩

morecommentmorecomment morecommentsnow mass transport , X- component
morecommentmorecomment morecomment697 zdiag_ymtrp_snw (ji ,jj) = rhosn * zfac_y←↩

morecommentmorecomment morecomment* ( vt_s(ji ,jj +1) + vt_s(ji ,jj) ) !←↩

morecommentmorecomment morecomment'' Y- ''
morecommentmorecomment morecomment698

morecommentmorecomment morecomment699 zdiag_xatrp (ji ,jj) = zfac_x ←↩

morecommentmorecomment morecomment* ( at_i(ji+1,jj) + at_i(ji ,←↩

morecommentmorecomment morecommentjj) ) ! area transport , X-←↩

morecommentmorecomment morecommentcomponent (m2/s)
morecommentmorecomment morecomment700 zdiag_yatrp (ji ,jj) = zfac_y ←↩

morecommentmorecomment morecomment* ( at_i(ji ,jj +1) + at_i(ji ,←↩

morecommentmorecomment morecommentjj) ) ! '' Y- ''
morecommentmorecomment morecomment701

morecommentmorecomment morecomment702 END DO
morecommentmorecomment morecomment703 END DO
morecommentmorecomment morecomment704

morecommentmorecomment morecomment705 CALL lbc_lnk_multi ( zdiag_sig1 , 'T', 1.,←↩

morecommentmorecomment morecommentzdiag_sig2 , 'T', 1., &
morecommentmorecomment morecomment706 & zdiag_dssh_dx , 'U', -1.,←↩

morecommentmorecomment morecommentzdiag_dssh_dy , 'V', -1., &
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morecommentmorecomment morecomment707 & zdiag_corstrx , 'U', -1.,←↩

morecommentmorecomment morecommentzdiag_corstry , 'V', -1., &
morecommentmorecomment morecomment708 & zdiag_intstrx , 'U', -1.,←↩

morecommentmorecomment morecommentzdiag_intstry , 'V', -1. )
morecommentmorecomment morecomment709

morecommentmorecomment morecomment710 CALL lbc_lnk_multi ( zdiag_utau_oi , 'U', -1.,←↩

morecommentmorecomment morecommentzdiag_vtau_oi , 'V', -1. )
morecommentmorecomment morecomment711

morecommentmorecomment morecomment712 CALL lbc_lnk_multi ( zdiag_xmtrp_ice , 'U', ←↩

morecommentmorecomment morecomment-1., zdiag_xmtrp_snw , 'U', -1., &
morecommentmorecomment morecomment713 & zdiag_xatrp , 'U', ←↩

morecommentmorecomment morecomment-1., zdiag_ymtrp_ice , 'V', -1., ←↩

morecommentmorecomment morecomment&
morecommentmorecomment morecomment714 & zdiag_ymtrp_snw , 'V', ←↩

morecommentmorecomment morecomment-1., zdiag_yatrp , 'V', -1. ←↩

morecommentmorecomment morecomment)
morecommentmorecomment morecomment715

morecommentmorecomment morecomment716 IF ( iom_use ( " xmtrpice " ) ) CALL iom_put ( "←↩

morecommentmorecomment morecommentxmtrpice " , zdiag_xmtrp_ice (: ,:) ←↩

morecommentmorecomment morecomment) ! X- component ←↩

morecommentmorecomment morecommentof sea -ice mass transport (kg/s)
morecommentmorecomment morecomment717 IF ( iom_use ( " ymtrpice " ) ) CALL iom_put ( "←↩

morecommentmorecomment morecommentymtrpice " , zdiag_ymtrp_ice (: ,:) ←↩

morecommentmorecomment morecomment) ! Y- component ←↩

morecommentmorecomment morecommentof sea -ice mass transport
morecommentmorecomment morecomment718

morecommentmorecomment morecomment719 IF ( iom_use ( " xmtrpsnw " ) ) CALL iom_put ( "←↩

morecommentmorecomment morecommentxmtrpsnw " , zdiag_xmtrp_snw (: ,:) ←↩

morecommentmorecomment morecomment) ! X- component ←↩

morecommentmorecomment morecommentof snow mass transport (kg/s)
morecommentmorecomment morecomment720 IF ( iom_use ( " ymtrpsnw " ) ) CALL iom_put ( "←↩

morecommentmorecomment morecommentymtrpsnw " , zdiag_ymtrp_snw (: ,:) ←↩

morecommentmorecomment morecomment) ! Y- component ←↩

morecommentmorecomment morecommentof snow mass transport
morecommentmorecomment morecomment721

morecommentmorecomment morecomment722 IF ( iom_use ( "xatrp" ) ) CALL iom_put ( "←↩

morecommentmorecomment morecommentxatrp" , zdiag_xatrp (: ,:) ←↩
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morecommentmorecomment morecomment) ! X- component ←↩

morecommentmorecomment morecommentof ice area transport
morecommentmorecomment morecomment723 IF ( iom_use ( "yatrp" ) ) CALL iom_put ( "←↩

morecommentmorecomment morecommentyatrp" , zdiag_yatrp (: ,:) ←↩

morecommentmorecomment morecomment) ! Y- component ←↩

morecommentmorecomment morecommentof ice area transport
morecommentmorecomment morecomment724

morecommentmorecomment morecomment725 IF ( iom_use ( " utau_ice " ) ) CALL iom_put ( "←↩

morecommentmorecomment morecommentutau_ice " , utau_ice (: ,:) * zswi←↩

morecommentmorecomment morecomment(: ,:) + zmiss (: ,:) ) ! Wind stress←↩

morecommentmorecomment morecommentterm in force balance (x)
morecommentmorecomment morecomment726 IF ( iom_use ( " vtau_ice " ) ) CALL iom_put ( "←↩

morecommentmorecomment morecommentvtau_ice " , vtau_ice (: ,:) * zswi←↩

morecommentmorecomment morecomment(: ,:) + zmiss (: ,:) ) ! Wind stress←↩

morecommentmorecomment morecommentterm in force balance (y)
morecommentmorecomment morecomment727

morecommentmorecomment morecomment728 IF ( iom_use ( " utau_oi " ) ) CALL iom_put ( "←↩

morecommentmorecomment morecommentutau_oi " , zdiag_utau_oi (: ,:) * zswi←↩

morecommentmorecomment morecomment(: ,:) + zmiss (: ,:) ) ! Ocean ←↩

morecommentmorecomment morecommentstress term in force balance (x)
morecommentmorecomment morecomment729 IF ( iom_use ( " vtau_oi " ) ) CALL iom_put ( "←↩

morecommentmorecomment morecommentvtau_oi " , zdiag_vtau_oi (: ,:) * zswi←↩

morecommentmorecomment morecomment(: ,:) + zmiss (: ,:) ) ! Ocean ←↩

morecommentmorecomment morecommentstress term in force balance (y)
morecommentmorecomment morecomment730

morecommentmorecomment morecomment731 IF ( iom_use ( " dssh_dx " ) ) CALL iom_put ( "←↩

morecommentmorecomment morecommentdssh_dx " , zdiag_dssh_dx (: ,:) * zswi←↩

morecommentmorecomment morecomment(: ,:) + zmiss (: ,:) ) ! Sea - surface←↩

morecommentmorecomment morecommenttilt term in force balance (x)
morecommentmorecomment morecomment732 IF ( iom_use ( " dssh_dy " ) ) CALL iom_put ( "←↩

morecommentmorecomment morecommentdssh_dy " , zdiag_dssh_dy (: ,:) * zswi←↩

morecommentmorecomment morecomment(: ,:) + zmiss (: ,:) ) ! Sea - surface←↩

morecommentmorecomment morecommenttilt term in force balance (y)
morecommentmorecomment morecomment733

morecommentmorecomment morecomment734 IF ( iom_use ( " corstrx " ) ) CALL iom_put ( "←↩

morecommentmorecomment morecommentcorstrx " , zdiag_corstrx (: ,:) * zswi←↩

morecommentmorecomment morecomment(: ,:) + zmiss (: ,:) ) ! Coriolis ←↩

morecommentmorecomment morecommentforce term in force balance (x)

114 Chapter 9 Appendix



morecommentmorecomment morecomment735 IF ( iom_use ( " corstry " ) ) CALL iom_put ( "←↩

morecommentmorecomment morecommentcorstry " , zdiag_corstry (: ,:) * zswi←↩

morecommentmorecomment morecomment(: ,:) + zmiss (: ,:) ) ! Coriolis ←↩

morecommentmorecomment morecommentforce term in force balance (y)
morecommentmorecomment morecomment736

morecommentmorecomment morecomment737 IF ( iom_use ( " intstrx " ) ) CALL iom_put ( "←↩

morecommentmorecomment morecommentintstrx " , zdiag_intstrx (: ,:) * zswi←↩

morecommentmorecomment morecomment(: ,:) + zmiss (: ,:) ) ! Internal ←↩

morecommentmorecomment morecommentforce term in force balance (x)
morecommentmorecomment morecomment738 IF ( iom_use ( " intstry " ) ) CALL iom_put ( "←↩

morecommentmorecomment morecommentintstry " , zdiag_intstry (: ,:) * zswi←↩

morecommentmorecomment morecomment(: ,:) + zmiss (: ,:) ) ! Internal ←↩

morecommentmorecomment morecommentforce term in force balance (y)
morecommentmorecomment morecomment739

morecommentmorecomment morecomment740 IF ( iom_use ( " normstr " ) ) CALL iom_put ( "←↩

morecommentmorecomment morecommentnormstr " , zdiag_sig1 (: ,:) * zswi←↩

morecommentmorecomment morecomment(: ,:) + zmiss (: ,:) ) ! Normal ←↩

morecommentmorecomment morecommentstress
morecommentmorecomment morecomment741 IF ( iom_use ( " sheastr " ) ) CALL iom_put ( "←↩

morecommentmorecomment morecommentsheastr " , zdiag_sig2 (: ,:) * zswi←↩

morecommentmorecomment morecomment(: ,:) + zmiss (: ,:) ) ! Shear ←↩

morecommentmorecomment morecommentstress
morecommentmorecomment morecomment742

morecommentmorecomment morecomment743 !
morecommentmorecomment morecomment744 !←↩

morecommentmorecomment morecomment------------------------------------------------------------------------------!←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment745 ! 6) Control prints of residual and charge ellipse
morecommentmorecomment morecomment746 !←↩

morecommentmorecomment morecomment------------------------------------------------------------------------------!←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment747 !
morecommentmorecomment morecomment748 ! print the residual for convergence
morecommentmorecomment morecomment749 IF(ln_ctl) THEN
morecommentmorecomment morecomment750 WRITE(charout ,FMT="(' lim_rhg : res =',D23←↩

morecommentmorecomment morecomment.16, ' iter =',I4)") zresm , jter
morecommentmorecomment morecomment751 CALL prt_ctl_info ( charout )
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morecommentmorecomment morecomment752 CALL prt_ctl ( tab2d_1 =u_ice , clinfo1 =' ←↩

morecommentmorecomment morecommentlim_rhg : u_ice :', tab2d_2 =v_ice , ←↩

morecommentmorecomment morecommentclinfo2 =' v_ice :')
morecommentmorecomment morecomment753 ENDIF
morecommentmorecomment morecomment754

morecommentmorecomment morecomment755 ! print charge ellipse
morecommentmorecomment morecomment756 ! This can be desactivated once the user is sure ←↩

morecommentmorecomment morecommentthat the stress state
morecommentmorecomment morecomment757 ! lie on the charge ellipse . See Bouillon et al. 08 ←↩

morecommentmorecomment morecommentfor more details
morecommentmorecomment morecomment758 IF(ln_ctl) THEN
morecommentmorecomment morecomment759 CALL prt_ctl_info ('lim_rhg : numit :',←↩

morecommentmorecomment morecommentivar1=numit)
morecommentmorecomment morecomment760 CALL prt_ctl_info ('lim_rhg : nwrite :',←↩

morecommentmorecomment morecommentivar1=nwrite)
morecommentmorecomment morecomment761 CALL prt_ctl_info ('lim_rhg : MOD :',←↩

morecommentmorecomment morecommentivar1=MOD(numit ,nwrite))
morecommentmorecomment morecomment762 IF( MOD(numit ,nwrite) .EQ. 0 ) THEN
morecommentmorecomment morecomment763 WRITE(charout ,FMT="(' lim_rhg :', I4 , I6←↩

morecommentmorecomment morecomment, I1 , I1 , A10)") 1000 , numit , 0, 0, '←↩

morecommentmorecomment morecommentch. ell. '
morecommentmorecomment morecomment764 CALL prt_ctl_info ( charout )
morecommentmorecomment morecomment765 DO jj = k_j1 +1, k_jpj -1
morecommentmorecomment morecomment766 DO ji = 2, jpim1
morecommentmorecomment morecomment767 IF (zpresh(ji ,jj) > 1.0) THEN
morecommentmorecomment morecomment768 zsig1 = ( zs1(ji ,jj) + (zs2(ji ,←↩

morecommentmorecomment morecommentjj)**2 + 4* zs12(ji ,jj)**2 )←↩

morecommentmorecomment morecomment**0.5 ) / ( 2* zpresh(ji ,jj) ←↩

morecommentmorecomment morecomment)
morecommentmorecomment morecomment769 zsig2 = ( zs1(ji ,jj) - (zs2(ji ,←↩

morecommentmorecomment morecommentjj)**2 + 4* zs12(ji ,jj)**2 )←↩

morecommentmorecomment morecomment**0.5 ) / ( 2* zpresh(ji ,jj) ←↩

morecommentmorecomment morecomment)
morecommentmorecomment morecomment770 WRITE(charout ,FMT="(' lim_rhg ←↩

morecommentmorecomment morecomment:', I4 , I4 , D23 .16, D23 .16, ←↩

morecommentmorecomment morecommentD23 .16, D23 .16, A10)")
morecommentmorecomment morecomment771 CALL prt_ctl_info ( charout )
morecommentmorecomment morecomment772 ENDIF
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morecommentmorecomment morecomment773 END DO
morecommentmorecomment morecomment774 END DO
morecommentmorecomment morecomment775 WRITE(charout ,FMT="(' lim_rhg :', I4 , I6←↩

morecommentmorecomment morecomment, I1 , I1 , A10)") 2000 , numit , 0, 0, '←↩

morecommentmorecomment morecommentch. ell. '
morecommentmorecomment morecomment776 CALL prt_ctl_info ( charout )
morecommentmorecomment morecomment777 ENDIF
morecommentmorecomment morecomment778 ENDIF
morecommentmorecomment morecomment779

morecommentmorecomment morecomment780 !
morecommentmorecomment morecomment781 CALL wrk_dealloc ( jpi ,jpj , zpresh , z1_e1t0 , ←↩

morecommentmorecomment morecommentz1_e2t0 , zp_delt )
morecommentmorecomment morecomment782 CALL wrk_dealloc ( jpi ,jpj , zaU , zaV , zmU_t , ←↩

morecommentmorecomment morecommentzmV_t , zmf , zTauU_ia , ztauV_ia )
morecommentmorecomment morecomment783 CALL wrk_dealloc ( jpi ,jpj , zspgU , zspgV , ←↩

morecommentmorecomment morecommentv_oceU , u_oceV , v_iceU , u_iceV , zfU , zfV )
morecommentmorecomment morecomment784 CALL wrk_dealloc ( jpi ,jpj , zds , zs1 , zs2 , zs12←↩

morecommentmorecomment morecomment, zu_ice , zv_ice , zresr , zpice )
morecommentmorecomment morecomment785 CALL wrk_dealloc ( jpi ,jpj , zswitchU , zswitchV ,←↩

morecommentmorecomment morecommentzmaskU , zmaskV , zfmask , zwf )
morecommentmorecomment morecomment786 CALL wrk_dealloc ( jpi ,jpj , zCorx , zCory )
morecommentmorecomment morecomment787 CALL wrk_dealloc ( jpi ,jpj , ztaux_oi , ztauy_oi ←↩

morecommentmorecomment morecomment)
morecommentmorecomment morecomment788

morecommentmorecomment morecomment789 CALL wrk_dealloc ( jpi ,jpj , zdiag_xmtrp_ice , ←↩

morecommentmorecomment morecommentzdiag_ymtrp_ice )
morecommentmorecomment morecomment790 CALL wrk_dealloc ( jpi ,jpj , zdiag_xmtrp_snw , ←↩

morecommentmorecomment morecommentzdiag_ymtrp_snw )
morecommentmorecomment morecomment791 CALL wrk_dealloc ( jpi ,jpj , zdiag_xatrp , ←↩

morecommentmorecomment morecommentzdiag_yatrp )
morecommentmorecomment morecomment792 CALL wrk_dealloc ( jpi ,jpj , zdiag_utau_oi , ←↩

morecommentmorecomment morecommentzdiag_vtau_oi )
morecommentmorecomment morecomment793 CALL wrk_dealloc ( jpi ,jpj , zdiag_dssh_dx , ←↩

morecommentmorecomment morecommentzdiag_dssh_dy )
morecommentmorecomment morecomment794 CALL wrk_dealloc ( jpi ,jpj , zdiag_corstrx , ←↩

morecommentmorecomment morecommentzdiag_corstry )
morecommentmorecomment morecomment795 CALL wrk_dealloc ( jpi ,jpj , zdiag_intstrx , ←↩

morecommentmorecomment morecommentzdiag_intstry )

9.4 Sea ice velocity subroutine: limrhg.f90 117



morecommentmorecomment morecomment796 CALL wrk_dealloc ( jpi ,jpj , zdiag_sig1 , ←↩

morecommentmorecomment morecommentzdiag_sig2 )
morecommentmorecomment morecomment797 CALL wrk_dealloc ( jpi ,jpj , zswi , ←↩

morecommentmorecomment morecommentzmiss )
morecommentmorecomment morecomment798

morecommentmorecomment morecomment799 END SUBROUTINE lim_rhg
morecommentmorecomment morecomment800

morecommentmorecomment morecomment801

morecommentmorecomment morecomment802

morecommentmorecomment morecomment803 !←↩

morecommentmorecomment morecomment!==============================================================================←↩

morecommentmorecomment morecomment
morecommentmorecomment morecomment804 END MODULE limrhg
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