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Abstract

The abundance of chemical elements in the Sun is a metric and a stan-
dard used in many aspects of astronomy, and as one of the most abundant
metals, silicon is often used as an anchor point between the abundance
scales corresponding to the solar photosphere and chondritic meteorites.
Moreover, as one of the most important elements in solar evolution mod-
els, an accurate measurement of the silicon abundance is important in
solving the solar abundance problem, a discrepancy between the canon-
ical abundances and inferences from helioseimsology. A calculation of
the photospheric solar silicon abundance using the MULTI3D radiative
transfer code is thus presented, with description of the spectroscopic
methods, 1D MARCS and 3D STAGGER model atmospheres and model
atom data, and new observational data from Schäfer et al. (2020) em-
ployed. A comparison is made of the behaviour in spectral line produc-
tion in 1D and 3D model atmospheres, and under local thermodynamic
equilibrium (LTE) and non-local thermodynamic equilibrium (non-LTE)
radiation transfer models terms of their equivalent widths, waveshifts,
and asymmetry via bisectors. We present an original investigation of
abundance calculations across the solar disk, in which we find challenges
to the accuracy of simulations of the solar limb, and of the spatially re-
solved solar observations, nevertheless, we see remarkable consistency
in line equivalent widths between 3D non-LTE modelling and observa-
tional data. Two sources of atomic transition probabilities are used to
calculate the photospheric silicon abundance; values from the Kurucz
database (Kurucz 2016) yield A(Si) = 7.61 dex, while new experimental
values from Rhodin et al. (2018) produce A(Si) = 7.53 dex. It is shown
that the calculated abundances are consistent across the solar disc. The
compatibility of these results with recent studies is discussed, in the con-
text of the impact of chemical abundances on astronomy and planetary
science.
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1 Introduction

1.1 Motivation
Accurate measurement of solar abundances is a very important compo-
nent in several astrophysical fields, as these abundances are a benchmark
in the models which describe evolution and behaviour of planetary, stel-
lar and galactic formation.

When we discuss the abundance of an element, it is common to use a
logarithmic scale :

A(E) = 12 + log10
n(E)
n(H)

where E is the chemical element, and n(E) is the number of atoms of that
element. The scale is relative to n(H) = 1012 atoms of hydrogen, the pre-
dominant element in the Sun (and the universe). In this work we often
refer to the abundance in terms of ‘dex’, which are decadic logarithmic
units, i.e., a factor of 2 dex is equal to a factor of 102 (Lodders 2019).
There are a number of sources from which to estimate the relative abun-
dance of elements, but there are few which have a representative mixture
of the Sun. Here, we talk about ‘CI chondritic meteorites’, which are
a variety of meteorite which have not ‘differentiated’, i.e., melted and
separated into silicate and metal parts. These meteorites are dated to the
early Solar System, and their chemical integrity means that the relative
proportion of their metals is preserved, and assumed to match that of the
outer layers of the present day Sun. It is from these outer layers that the
evidence of solar abundances used in this study emanate, in the form of
spectral radiation. The Sun’s photosphere, which is the upper layer of
the Sun’s convective envelope, contains the ‘surface’ of the star, and it is
from here that most of the light that leaves the Sun, escapes. This light is
affected by the composition of the material through which it travels, and
from which it is emitted, meaning that we may infer the proportion of
chemicals present in the material by way of examining the emitted radia-
tive spectrum. Abundances inferred from these spectroscopic methods
are known as photospheric, or solar abundances.
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Silicon is often used as a reference point to connect the chemical
abundances of chondritic meteorites with the relative abundances asso-
ciated with the solar photosphere (eg. Asplund et al. (2009)); these pro-
portions are referred to as element/Si ratios (Lodders et al. (2009)), or
the cosmochemical abundance scale, where atomic abundances are nor-
malised to the number of silicon atoms, N(Si) = 106 (Lodders (2019)).
A more practical reference element than more abundant but volatile el-
ements such as hydrogen and oxygen, the condensation behaviour of
silicon means that it is often present in meteorites and interstellar dust
grains and as such, normalisation with Si was introduced by Goldschmidt
(1937). The chemical abundances in CI chondrites have been considered
to be largely consistent with that of the solar photosphere (Palme et al.
(2014) report better than ±10% agreement for the majority of elements),
which suggests that these two environments have preserved the ‘primi-
tive’ composition of the early Solar System. This is in contrast to the
chemical abundances in the Earth’s crust, where melting of the mantle
has separated its composite chemicals into local distributions unrepresen-
tative of the early solar system. The use of mass spectrometry has allowed
for the highly precise direct measurement of solar abundances, meaning
that uncertainties in abundances stem primarily from photospheric calcu-
lations. For silicon, (Lodders et al. (2009)) quote 0.06 dex and 0.01 dex
uncertainties for solar photospheric and CI chondrite abundances respec-
tively. The use of both methods is necessary, partly due to the deficit of
volatile elements in meteorites, and the depletion of lithium in the solar
photosphere due to burning in the stellar interior, an abundance difference
of a factor of 150 to that of meteorites Lodders et al. (2009), Asplund
et al. (2009). Indeed, Asplund et al. (2021) lately report a correlation
between the photospheric-chondritic abundance difference and conden-
sation temperature, meaning that CI chondrites do not perfectly match
with the composition of the Sun, and hence suggest that it is unwise to
rely on the long-standing assumption that the abundances of CI chon-
drites are consistent with the photospheric abundance.
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In the core accretion theory of planet formation, silicate grains with
icy mantles form much of the solid material in the core of giant planets
(Robinson et al. 2006). In a study on the relationship between Si abun-
dance in stars and their likelihood to be giant planet hosts, Brugamyer
et al. (2010) conclude that silicon (over oxygen) is the limiting reagent for
grain nucleation, meaning that accurate knowledge of silicon abundance
in stars is highly important to understanding the structure of their plan-
etary systems. Brugamyer et al. (2010) calculate a relative, differential
Si abundance between their sample stars, which are independent of exact
solar silicon abundance calculations. However their abundance analysis
follow solar studies such as Shi et al. (2008), which suggest that non-local
thermodynamic equilibrium (non-LTE) effects in the stars are negligible
for Si I abundance. It is important to follow up on these assumptions with
more accurate atomic and 3D atmospheric models; if recent work shows
that these non-LTE effects are in fact significant, then there is a knock-on
effect to planetary research.

The findings of Brugamyer et al. (2010) concerning giant planets are
corroborated by Adibekyan et al. (2012) via calculation of abundances
of a number of elements including Si in a survey of 1111 FGK dwarf
stars; they also find an enhancement in the [Si/Fe] ratio in host stars in
the low-iron regime. A subset of this same sample was then used by
Adibekyan et al. (2015) in a study focussed on the [Mg/Si] ratio, includ-
ing only the dwarf stars with both effective temperature within 500K of
the Sun, and estimated abundance uncertainty for Si, Mg and Fe less than
0.2 dex. They not only conclude that low-mass planets are more common
around stars with a high [Mg/Si], but also that the relationship between
the [Mg/Si] ratio and the metallicity of the star has an influence on the
internal structure of terrestrial planets. The location and era of the forma-
tion of these stars is hence connected to the the composition of the their
corresponding planets via the [Mg/Si] ratio, due to the placement of sites
of Si production mechanisms in the galaxy. In particular, Adibekyan et al.
(2015) and Haywood (2008) find that terrestrial planet-host stars are more
common in the galactic thick disc than the thin disc, where the thick disc
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contains stars with higher [Mg/Si] ratio. This ratio controls the distribu-
tion of silicates in rocky planets, influencing the characteristics of a large
proportion of the mantle and crust of planets such as Earth, Venus and
Mars, as detailed by Thiabaud et al. (2014). The consequences of inclu-
sion of non-LTE effects in the calculation of [Mg/Si] may be of particular
importance due to the difference in behaviour of the synthesised spec-
tral lines from such studies. In an investigation into the Mg abundances
in six Gaia stars via LTE and non-LTE model atmospheres, Bergemann
et al. (2017) show that the stronger lines are brighter in LTE than non-
LTE, in spatially averaged 3D (⟨3D⟩) model atmospheres. This contrasts
with the findings of Amarsi & Asplund (2017), where there is strengthen-
ing of spectral lines under non-LTE. Hence, development of 3D non-LTE
model atmospheres may have a pronounced effect on studies which use
[Mg/Si] as a diagnostic, such as those mentioned above.

Silicon is produced primarily through hydrostatic oxygen burning in
massive stars and is then ejected in core-collapse supernovae. (Woosley
(1995)). At the end of the carbon and oxygen burning phases, 28Si is
one of the dominant nuclei in the massive star, along with 32S (Clay-
ton (1983)). In the explosive stages of core-collapse, the so-called α-
elements (O, Mg, Si, S, Ca) accept α particles, permitting the formation
of a ladder of heavier elements up to the iron group. 28Si nuclei are
tightly bound, and their slow rate of photodisintegration and the abun-
dance of 28Si control the rate of the production of the iron group; this rate
is also highly temperature dependent (Clayton (1983)). The different but
interdependent production mechanisms of Si and Fe lead us to use the ra-
tio of Si to Fe abundance to infer constraints on the physical structure of
exploding massive stars. The ratio of α-elements to Fe also is indicative
of the process of stellar evolution, i.e. the type of, and how many super-
novae lead to the formation of present day stars in the Milky Way and
other galaxies (Kobayashi (2016)). For example, Kobayashi et al. (2020)
show through observations that the [Si/Fe] ratio is almost constant across
stars of different ages and metallicities in the Milky Way.
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Stars of different metallicities are expected to be distributed non-
uniformly in the galaxy; old, metal-poor stars have a higher probability of
being found in the inner galactic bulge, the oldest part of the galaxy. Stud-
ies into the chemical abundances of silicon and the other α-elements in
these stars such as Howes et al. (2016), have helped confirm their metal-
poor status, and investigate the chemical differences between similar stars
in the galactic halo. Incorporating stars in surviving dwarf galaxies into
the comparison between inner bulge and halo metal-poor stars, Reggiani
et al. (2020) carry out a comparable study, relating abundances to differ-
ences in chemical evolution. They suggest that this may provide clues
to answer some questions in galactic archaeology; the presence of metal-
poor stars in regions of the galaxy where there is thought to have been
rapid star formation in the formation of the bulge itself, and the presence
of relatively rare types of supernovae enabled by this same process are
linked by factors which should be deductible via abundance comparison
studies. For example, they suggest that the relatively high [Si/Fe] ∼ +0.7
dex for their most metal-poor giant star is indicative of an oxygen-rich
environment during nucleosynthesis. The authors also compare their cal-
culated Si abundances between the halo dwarfs and giant stars in terms of
the necessity of non-LTE abundance corrections; as the stellar parameters
dictate the importance of these corrections in either case, their accurate
calculation is key to proper comparisons between star classes in such
cases.

Considering metal-poor stars which do happen to be found in the
galactic halo, abundance analysis such as that by Yong et al. (2012) look
at the relationships: [X/Fe] versus [Fe/H], mean abundance for relative
elements, and [X/Fe] versus effective temperature, for relevant elements
X (including Si). They compare these relations for dwarf and giant metal-
poor stars, identifying some ‘abundance peculiarities’ (such as a star with
an unusually high [Si/Fe] ratio) and, again, adding insight to the nature
of the star’s formation and progenitors.

With the physical parameters of the Sun, one can form standard solar
models (SSMs), which are used to predict and describe various aspects
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of the Sun’s behaviour, properties and evolution. One example of this is
the solar neutrino flux. In the Sun and other stars, silicon plays an impor-
tant role in governing the radiative opacity in the stellar interior which
in turn directly influences the local temperature. This temperature is a
component in the rates of pp-chain and CNO-cycle fusion, mechanisms
which are some of the sources of neutrino flux observed on Earth (in
experiments such as Hosaka et al. (2006)). Publications of solar abun-
dances through photospheric and meteoric analyses (such as Asplund
et al. (2009), Caffau et al. (2010) and Scott et al. (2014)) have direct influ-
ence on the solar models with which the solar neutrino flux is compared.
In Serenelli (2016) the author compares the stellar temperatures consis-
tent with SSMs which correspond to these three solar abundance studies.
Stellar temperature dictates which of the pp-chain branches, describing
different fusion reactions with associated cross-sections, is dominant in
the star (Adelberger et al. (2011)). The changes in the estimates of the
abundance of the refractory elements and hence the metallicity of the Sun
affect the agreement between helioseismology data and the solar models
which depend partly on the photospheric and meteoric abundances. This
issue has been dubbed the solar abundance problem (Serenelli (2016)) or
the solar modelling problem, and is discussed in detail by Asplund et al.
(2021).

For silicon in particular, the solar abundance has changed with the
emergence of new data and methods of analysis. Grevesse & Sauval
(1998) reported the value of A(Si) = 7.55 dex based on their methods
with 1D LTE, but the canonical value was revised downwards to A(Si) =
7.51 dex with the introduction of 3D models (Asplund 2000). This value
survives through to Amarsi & Asplund (2017), who use a full 3D hy-
drodynamic model atmosphere and updated atomic data. More recently
however, new atomic and observational data have prompted a trend of
slight increases in relative abundance of multiple elements, such as in
oxygen (Bergemann et al. 2021); the latest photospheric silicon abun-
dance is A(Si) = 7.59 dex from Magg et al. (2022).

When observing the Sun, it is possible to record spectra emitted from
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certain parts of the solar surface. The spectral lines from these spatially
resolved intensities vary as one looks across the solar disc, behaviour we
would wish to replicate accurately in synthesised spectra. We have seen
centre-to-limb solar abundance studies of some chemicals, such as iron
Lind et al. (2017) and oxygen Bergemann et al. (2021), but none, as yet,
for silicon with full 3D non-LTE modelling.

1.2 Aims of this work
Following recent developments, we wish to investigate the photospheric
silicon abundance with the latest atomic and observational data and with
a modern 3D hydrodynamic model atmosphere. We will use MULTI3D
Leenaarts & Carlsson (2009) to solve the radiative transfer and statistical
equilibrium equations in LTE and non-LTE, and to synthesis spectra with
the calculated level populations. The spectra produced in a 1D model at-
mosphere (Gustafsson et al. 2008) will be compared to modelling in full
3D (Magic et al. 2013). With the availability of spatially resolved solar
data from Schäfer et al. (2020), we will for the first time investigate the
distribution of calculated Si abundances across the solar disc, and with
this assess the performance of the spectral synthesis methods at the solar
limb. At the conclusion of this work, we will address the findings of the
study in terms of the solar abundance problem, and in the context of sim-
ilar studies.
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2 LTE and Non-LTE radiative transfer
In order to perform abundance analysis, one requires synthesised radi-
ation spectra with which to compare the observed data. An element of
this synthesis is based on the assumption known as local thermodynamic
equilibrium, a theory to simplify complex radiative transfer to a more
computationally tractable problem. This is a simplification it was nec-
essary to take for many years, before advances in computation made it
possible to model radiation transfer in more accurate detail, so called
non-LTE. There are still some situations in which LTE is a reasonable
assumption, and due to its modest computational economy we perform
our analysis in both regimes. Here we present some of the theory under-
pinning the simulations of radiative transfer and then LTE and non-LTE
in particular.

2.1 Radiative transfer and line formation
Understanding of the physical processes through which electromagnetic
radiation travels through the upper regions of a star is required not only
to be able to model the processes computationally, but also to be able to
understand the radiation which we observe from the ground, or via satel-
lite telescopes. These processes are described by the theory of radiative
transfer; the formalism here follows that of Mihalas (1978) and Rutten
et al. (1995).

The first quantity to define is the specific intensity, Iν, which is the
amount of energy at frequency ν which passes through an area perpen-
dicular to the direction of travel of the beam, per unit time per solid angle.
As wish to understand the passage of light through the atmosphere, we
are interested in the equation of radiative transfer, which describes the
evolution of the radiation field Iν along its path through the medium. The
time-dependent radiative transfer equation is:

1
c

dIv

dt
+

dIν
ds
= jνρ − κνρIν (1)

where κν and jν are the absorption coefficient and emission coefficient of
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the propagation medium, both per unit mass, and ρ is the mass density
of the medium. ds is the geometric path length in the same direction as
the beam, t is time, and c is the speed of light. At the time scales of the
processes here, the photon interactions and that of the movement of the
medium, are far removed, meaning that we do not expect the radiation
field to vary over time, so we may assume that the dynamics is quasi-
static and ignore the time dependent term.

If we approximate a plane-parallel atmosphere, the atmosphere is
considered to be a set of parallel layers, wherein the conditions in each
individual layer are constant, so that the physical properties only vary
in the vertical direction. As this ignores the curvature of the body, the
plane-parallel approximation requires that the atmosphere is a relatively
thin layer around the body. For the solar photosphere this is not too far a
stretch, as it makes up just 0.014% the radius of the Sun. A consequence
of this is that the path length of the beam can be written as

ds = −
dz
µ
= −

dτ
µκρ

(2)

where z defines the vertical depth perpendicular to the plane, µ the cosine
of the angle between z and s, κ the opacity, ρ the matter density and τ is
a quantity called the optical depth. The negative sign in Eqn. 2 defines
the optical depth as increasing towards the centre of the star, such that
τν ∼ 1 corresponds to the ‘surface’, the point at which the matter becomes
opaque to radiation of frequency ν. This point varies significantly with
frequency, meaning that the place of origin in the star of a spectral line
varies from line to line, and even within the elements of a single line.

A form of the radiative transfer equation with this angular dependence
is:

µ
dIν
dτ
= Iν − S ν (3)

S ν is the source function, which is characteristic of the stellar atmo-
sphere. In the simple LTE case it can be considered equal to the Planck
function Bν(T ) (Equation 10), and if scattering is not considered it is the
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ratio of the emissivity and absorption coefficients. Following Kirchoff’s
law of thermal emission we have:

S ν = Bν(T ) =
jν
κν

(4)

If instead we do include the extinction due to scattering rate κs, then the
source function is

S ν =
κνBν(T ) + κνJν
κν + κs

(5)

where Jν is the mean intensity averaged over all solid angles:

Jν =
1

4π

∫
Ω

Iν dΩ. (6)

The radiative transfer equation can also be written for the specific
intensity, by integrating over the optical depth (Bergemann & Nordlander
2014) as:

Iν(τν = 0) =
∫ ∞

0
S ν (τν) e−τνdτν (7)

If one again assumes a plain parallel atmosphere, then the angle spe-
cific intensity is:

Iν (τν = 0, µ) =
∫ ∞

0
S ν (τν) e−τν/µ

dτν
µ

(8)

In many studies, particularly in those concerning unresolvable non-
Sun stars, the next step is to integrate over µ to generate the apparent flux
of the star. Instead, due to the proximity of the Sun, we are in a position to
calculate the intensities specific to arbitrary angles on the Sun, and com-
pare these with the corresponding measurements of the observed spectra.

There are four main sources of opacity in stellar atmospheres, which are:

Bound-bound transitions are transitions between the energy levels of
an atom which correspond to discrete absorption or emission of radiation.
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Bound-free absorption, or photoionisation, involves the absorption of
a photon by an atom in a bound state, causing the emission of an electron
into the continuum. The emitted electron has energy equal to the differ-
ence between its ionisation potential and the incident photon.

Free-free absorption is the process in which a photon is absorbed by
a free electron and a free ion, which subsequently radiate.

The latter two of these processes are continuous, as they contribute
opacity over large frequency ranges, relative to the absorption lines, and
thus form a continuum intensity. The opacity contributed by each atom
species through the continuum processes is weighted by the abundance
of the atoms in the atmosphere, giving a frequency dependent continuum
absorption coefficient κCv.

One can form the synthesised spectra with the source functions, and
the opacities, or absorption coefficients, κν. This frequency specific ab-
sorption coefficient is a combination of the all contributions of absorption
coefficients corresponding to spectra lines which have significant inten-
sity at the observed frequency, κL, and the absorption coefficient of the
continuous processes, κC. If each line corresponds to a transition be-
tween lower level i and upper level j, then the total opacity is given by:

κν =
∑

i j

κLν(i j) + κC (9)
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2.2 LTE
In LTE, the state of the matter in the gas is dependent wholly on the
local temperature and the total particle density. The particles exist in
thermal equilibrium in their own local region, and the local temperature,
T , is general in that it applies in the calculation spectral radiance, particle
velocity distribution and atomic excitation and ionisation levels.

In LTE, the source function S ν is given by the black-body Planck
function Bν, meaning that the inter-particle interactions are not coupled
with the intensity field, thus the spectral radiance is determined only by
the temperature, T :

Bν =
2hν3

c2

1
ehν/kT − 1

(10)

where k is Boltzmann’s constant and h is Planck’s constant.

In order to compute the collisonal rates, one must first learn the veloc-
ities of the colliding particles in the material. In equilibrium, the veloc-
ities of the matter particles in the gas relax to a predictable distribution,
with disregard of course to non-elastic collisons, van der Waals interac-
tions, and other effects. This is described by the Maxwell-Boltzmann
distribution:

N(V)dV =
( M
2πkT

)3/2

e−
MV2
2kT dV (11)

for N, the number of particles of mass M moving between speeds of V
and dV . The Boltzmann equation describes the distribution of species
of atoms in different ionisation stages relative to their ground state. This
fraction is:

Nn

N
=

gn

Z
e−En/kT (12)

where n denotes the excitation level with corresponding energy En given
relative to the ground state energy and gn is the statistical weight corre-
sponding to this level. Z is the partition function, and acts as a normali-
sation factor:
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Z =
∑

i

gie−Ei/kT (13)

If instead we are interested in the fraction between the populations of
two consecutive ionisation levels, we use Saha’s equation:

Nn+1

Nn
=

1
Ne

2Zn+1

Zn

(
2πmekT

h2

)3/2

e−I/kT (14)

where Ne is the number density of electrons and me is the electron mass.
I is the ionisation potential i.e., the energy needed to move from ionisa-
tion state n to state n + 1. Finally, the Boltzmann equation and the Saha
equation can be combined into the Saha-Boltzmann distribution:

nc

ni
=

1
Ne

2gc

gi

(
2πmekT

h2

)3/2

e−Eci/kT (15)

which gives the ratio of ni, the number density of the population at level i,
to nc, the number of ions at ionisation state c. Eci is the ionisation energy
separating these two states.

2.3 Transitions and Non-LTE
We have considered the situation where LTE is a reasonable assump-
tion; when the radiation field and the matter through which it passes are
strongly thermally coupled, such as in the dense interior of a star. On the
other hand, we may consider a location in which there is a much lower
coupling; where the mean free path of a photon is sufficiently large, larger
than the scale height of the material, such as at the stellar surface. One
must consider non-LTE effects in order to realistically model radiative
energy transfer in such situations, as in the solar photosphere.

If one reaches a situation where LTE can no longer be assumed, then
the Planck function, Boltzmann equation, and Saha’s equation can no
longer be taken to accurately describe the radiation field, excitation dis-
tribution and ionisation state distribution. Instead, we use the Statistical
Equilibrium (SE) equations, also known as rate or population equations,
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which give a microscopic description of the interaction between the ra-
diation field and the stellar gas. They imply that there is no change over
time in these three distributions, and describe the rate at which, through
some process, there is a transition from level i to level j per unit time.

In general, we have Ci j as the rate of transitions due to collisions and
Ri j as the rate due to radiation. The total rate is then:

Pi j = Ci j + Ri j (16)

and the number of transitions per unit volume is niPi j, if ni is again the
level i particle number density. We can write the equilibrium equations
as:

dni

dt
=

∑
j,i

n jP ji − ni

∑
j,i

Pi j = 0 (17)

with which we also have particle conservation for nt the total number of
particles:

nl∑
j=1

n j = nt (18)

Such an equilibrium equation exists for each level i for every ion in
the atmosphere, and each is solved simultaneously in a radiative transfer
code such as MULTI3D.

2.3.1 Radiative rates

The radiative rates are controlled by probabilities related to the processes
which describe transition between states i and j. These three probabilities
are the Einstein coefficients:

The Einstein coefficient for spontaneous emission A ji is the probabil-
ity per second of a spontaneous de-excitation of an atom from state j→ i
with the emission of a photon of energy E ji = hν ji. Then, the rate of
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spontaneous decays per unit volume is n jA ji.

The Einstein coefficient for radiative absorption Bi j is the probability
of atomic absorption of a photon corresponding to a transition of atomic
states i → j. The probability of radiative absorption for an atom in the
radiation field Iν is Bi jIνdΩ for solid angle dΩ.

The Einstein coefficient for stimulated emission B ji is the probability
of decay of an atom from state j → i, stimulated by the presence of an-
other photon, and the probability of stimulated emission in the field Iν is
similarly defined as Bi jIνdΩ. Again the emitted photon has the energy
E ji.

There exist quantum mechanical relationships between these coeffi-
cients, as:

A ji =
8πhν3

c2 B ji (19)

Bi j =
g j

gi
B ji (20)

The general radiative rates can be given by the compact unified rela-
tions (Rutten et al. 1995) which account for the rates per particle of both
the bound-bound (b-b) and bound-free (b-f) transitions.:

Ri j =

∫ ∞

0

4π
hν
σi j(ν)Jνdν (21)

and

R ji =

∫ ∞

0

4π
hν

Gi jσi j(ν)
(
2hν3

c2 + Jν

)
dν (22)

σi j and Gi j are defined for bound-bound and bound-free transitions as
follows:
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Gi j =


[

ni

nc

]
LT E

exp
(
−

hν
kT

)
(b-f)

gi/g j (b-b)
(23)

and

σi j =


σic(ν) (b-f)
hνi j

4π
Bi jφν (b-b)

(24)

where σic(ν) is the monochromatic bound-free extinction coefficient per
particle and φν is the normalised absorption profile at the frequency ν.

2.3.2 Collisional rates

The transition rates due to collisions depend on the local electron temper-
ature and of the density of the particular species to be excited (ne(v)dv).
Therefore, we have the excitation rate:

Ci j =

∫ ∞

v0

ncσi j(v)v f (v)dv (25)

and de-excitation rate:

Ci j = ne

∫ ∞

0
ncσ ji(v)v f (v)dv (26)

where f (v) is the Maxwellian velocity distribution, σ is the collisional
cross-section and v0 is the the threshold velocity given by

1/2mv2
0 = hν

with m the reduced mass of the colliding particle.
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2.3.3 Line formation

In the cases where non-LTE is important and must be included in the ra-
diation transfer models to accurately describe the stellar atmosphere, it is
common that a small number of processes dominate the effects. We may
focus on these channels to access the contribution of non-LTE effects.
This is done quantitatively using level departure coefficients, bi, which
are simply ratios of the level populations in LTE and non-LTE in terms
of their number densities (Bergemann et al. 2017):

bi = n(non−LT E)
i /n(LT E)

i (27)

We may use this ratio to define some terms for the particular levels
in LTE and non-LTE conditions ie. bi = 1 in LTE, and we may say that
the level i is thermalised, and obeys the Saha-Boltzmann statistics. In
non-LTE, one can say that the level i is overpopulated when bi > 1 and
is underpopulated when bi < 1.

We may now examine the major channels through which we may ob-
tain values for the departure coefficients (Bergemann 2014):

Over-recombination: In the case that the mean intensity is smaller
than the Planck function, Jν < Bν, the upper levels experience a over-
recombination due to the lack of ionisation.

Photoionisation and photon pumping: In the case that the mean in-
tensity is larger than the Planck function, Jν > Bν, then we see over-
ionisation and over-excitation, which is also known as photon pumping.

Photon loss: In the parts of the atmospheric layers where the opti-
cal depth is below unity, there is escape of photons beyond the boundary
of the stellar atmosphere, causing a deficit in the levels of radiative ex-
citation (in terms of the statistical equilibrium equations). This leads to
over-population of the lower energy levels, also because of spontaneous
de-excitations from the upper levels.
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Photon suction: In layers where the optical depth is below unity, pho-
ton suction describes a succession of de-excitations via spontaneous tran-
sitions due to photon loss in near-infrared lines (Rutten et al. 1995). The
succession of transitions in this process connect the upper and lower en-
ergy levels of the atom.

In nature these processes are not usually easy to parse, but we can
further reduce our view on the dominant channels by dividing atoms
into either photoionisation dominated atoms or collision-dominated ions
(Bergemann (2014), Gehren et al. (2001)). Si I belongs to the former
group, meaning that the leading cause of non-LTE is over-ionisation, the
resulting underpopulated levels lead one to expect departure coefficients
bi < 1.

In non-LTE the atomic level and ionisation stage populations in the
medium influence and are influenced by the non local radiative field,
meaning that the radiative transfer equations and statistical equilibrium
equations must be solved simultaneously. The emission coefficient is de-
fined with the Einstein coefficients as:

jlν =
hν
4π

n jA jiφν (28)

The extinction coefficient of a given spectral line depends on the pop-
ulations and statistical weights corresponding to the transition with fre-
quency ν:

κlνρ = ni

(
1 −

n jgi

nig j

)
hν (29)

Due to historical reasons, in astronomical spectroscopy the Einstein
coefficients are often replaced by a parameter known as f-value, or os-
cillator strength. This is related to the Einstein absorption coefficient as:

niBi j = ni
1
hν

πe2

4πϵ0mec
f =

∫
κlνρ dνφν (30)

with the electron mass me and vacuum permittivity ϵ0.
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To calculate the intensity at each frequency with Eqn. 8, the line
source function in non-LTE can now be used, which reduces to the Planck
function when bi = 1. We can use the the level populations to calculate
S l
ν with the equation:

S l
ν =
κlν

jlν
=

2hν3

c2

1
nig j

n jgi
− 1
. (31)

Due to its discrete nature, one may expect the spectral line corresponding
to an atomic transition to be a δ-function. However, there are a series
of phenomena which broaden the lines, forming the line profiles we ob-
serve. The first of these is Doppler broadening, which is caused by the
relative velocity of a radiating particle in the line of sight, due to thermal
motion, or small scale motion due oscillations and streaming motions
(Emerson 1998), known as microturbulence. The Gaussian distribution
of Doppler shifted frequencies around the central transition frequency ν0,
is:

φ(ν) =
1

√
π∆νD

e−(∆ν/∆νD)2
(32)

where ∆νD is the Doppler width, defined as:

∆νD =
ν0
c

√
2kT
m
+ ξ2t . (33)

The parameter ξt is non-zero when microturbulence is specified. There
exists an intrinsic width in a spectral line, which is called natural line
broadening. This is due to the spread in the energy of an exited atomic
state following Heisenberg’s uncertainty principle, ∆E∆t ∼ h/(2π), where
t is the lifetime of the state. A further source of line broadening is due to
collisions of the radiating particle with other particles, such as electrons.
The distribution of frequencies due to these effects is a Lorentzian profile:

φ(ν) =
Γ

4π2

1
(∆ν)2 + (Γ/4π)2 (34)

where Γ is the sum of the natural and collisional line widths. Combin-
ing the sources of line broadening involves convolving the corresponding
Gaussian and Lorentzian profiles. The result is known as a Voigt profile.
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3 Model atmospheres
In order to simulate the radiative transfer behaviour in the atmosphere in
the Sun, we require a model describing the physical nature of the matter
through which the radiation travels. This is in general a picture of the
stellar structure; a map of the relevant physical parameters in a represen-
tative space corresponding to our choice of geometry. For reasons leaning
on computational demands explained later, it is necessary for us to obtain
a model of the stellar atmosphere in both a one-dimensional format, as
well as the more complex and physically accurate ‘full’ 3D picture.

3.1 1D Models
In the case of the 1D atmosphere, we selected an iteration of the MARCS
grid of stellar models (Gustafsson et al. (2008), Henyey et al. (1965)). In
MARCS atmospheres, LTE, hydrostatic equilibrium and flux constancy
are assumed to hold. Further, they incorporate the Mixing-Length Theory
(MLT), wherein turbulent convection is involved in energy transfer in the
solar convective zone via a parameter ℓ, the mixing length (Nordlund
et al. (2009)). This describes the characteristic distance which a ‘parcel’
of fluid moves in an up- or down-flow, before its characteristics match
those of its surroundings. The convective flux is given by the ratio of the
mixing-length parameter αMLT to the pressure scale height Hp: Fcon ∼
αMLT

Hp
. The total stellar energy flux is this convective flux added to the

radiative flux :
F = Fcon + Frad =

L
4πr2 (35)

which influences our synthetic spectra through the luminosity L, which
controls the star’s effective temperature. However, MLT is no longer ac-
cepted as an accurate model, and in the description of 3D atmospheres
we will see how this approach to energy transfer is replaced.

There are a number of key equations relating to hydrostatic equilib-
rium radiation transfer which must are solved when computing MARCS
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solar atmosphere models, a selection of which are discussed in the follow-
ing section; we follow some of the formalism from Bergemann (2014),
Rutten et al. (1995), Emerson (1998) and Gustafsson et al. (2008).
The equation of hydrostatic equilibrium is given by:

∇Ptot = −ρ
GMr

r2 (36)

where G is the Newtonian constant of gravitation, Mr is the mass con-
tained within the radius r and Ptot is the total pressure. This is made up
of:

∇Ptot = ∇Prad + ∇Pgas + ∇Pturb (37)

where ∇Prad is the force exerted on the stellar material by the radiation
field and can be written as:

∇Prad = −
1
c

∫ ∞

0
(κν + σν) Fνdν (38)

with κν and σν the absorption and scattering coefficients, and Fν the
monochromatic flux. ∇Prad and the ∇Pgas balance the force due to the
star’s self-gravitation, while the turbulent pressure is due to the turbulent
or convective movements of the gas. It may be modelled as∇Pturb = βρv2,
where β is a parameter of the order unity, and v is a characteristic velocity.
This velocity is difficult to ascertain, and in MARCS, various approxima-
tions are used to arrive at a method which mirrors the effects of the tur-
bulent and radiative pressures by adapting the local surface gravity, g(r),
where g(r) = GMr

r2 (Gustafsson et al. 2008).

MARCS uses the LTE equations described earlier to calculate the
populations of atomic levels and excitation states in the atmosphere. Deep
in the atmosphere much of the energy transfer is due to convective flux,
but often Fconv = 0 in upper layers of the model (Gustafsson et al. 2008).
When under the assumption that radiation is the only mechanism for en-
ergy transport in the atmosphere, it is necessary to describe the equilib-
rium between the ‘sinks’ and ‘sources’ of radiation in our system. These
are namely the mean intensity and source functions as just described, as
shown in the radiative equilibrium equation:
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∫ ∞

0
κvJv(τ)dv =

∫ ∞

0
κvS v(τ)dv. (39)

In the description of MLT we saw that the total stellar flux is a com-
bination of the radiative and convective fluxes. We also know that the
emergent flux obeys the Stefan-Boltzmann law, which is linked to the
flux in the equation for flux constancy:

F =
L

4πR2 = σT 4
eff (40)

where Teff is the effective temperature and σ is the Stefan-Boltzmann
constant. In this approach the Sun is approximated to radiate like a black
body.

With the physics discussed above, Gustafsson et al. (2008) produced
a grid of 1D stellar atmosphere models covering an array of parameter
ranges. We select such a ‘snapshot’ with those parameters which match
the Sun, and reuse this as input for all the 1D spectrum synthesis, without
needing to simulate the atmosphere as a step in our analysis, which would
be extremely computationally expensive. The MARCS snapshot consists
of a list describing a 1D column which is vertical in the atmosphere, and
denotes the temperature, pressure and optical depth. In order to work
with inclined viewing angles through the atmosphere, it is necessary to
extend this model a plane-parallel structure with homogeneous ‘slabs’.

The MARCS atmosphere used in this study is the same as used in
Bergemann et al. (2019) and Bergemann et al. (2021), with microturbu-
lence parameter ξt = 1km s−1 and αMLT = 0.5.

3.2 3D Models
Due to progression in numerical modelling, it is relatively recently that
stellar modelling in 3D and radiative hydrodynamics (RHD) has been
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deemed feasible for this variety of analysis. This family of models largely
moves away from some of the simplifications discussed in the previous
section, such as MLT and hydrostaticity. Instead, these models incorpo-
rate complex convective and turbulent behaviour in the stellar interior,
phenomena which are not introduced manually to the model but arise
naturally from the time-dependent hydrodynamic equations (Magic et al.
2013).

The second model atmosphere we use is one in the STAGGER-grid,
built with the STAGGER-code, a 3D radiation magneto-hydrodynamics
FORTRAN code which includes convective motions and turbulent flows
(Nordlund et al. 2009). It aims to achieve a more realistic approximation
of radiative transfer (Magic et al. 2013) than the corresponding 1D mod-
els, in cool late-type stars. The STAGGER-code was written to be highly
parallelisable, allowing for use on modern high performance compute
clusters. The grid covers a wide range of stellar parameters including
effective temperature, metallicity, and surface gravity. We use the same
snapshot as Bergemann et al. (2021), which covers 8× 8 Mm in the hori-
zontal, and runs from ∼ 3 Mm below the optical surface to 9 Mm above.
The snapshot has a resolution of 240 × 240 × 230, which was reduced
in the horizontal axes to 30 × 30 × 230, following tests by Bergemann
et al. (2021) that show the effect of this down-scaling is negligible. For
illustration, we show part of our snapshot represented for parameters gas
temperature (Fig. 2) and vertical velocity (Fig. 3). In some studies a
so-called ⟨3D⟩ model atmosphere is used, which is a temporally and spa-
tially averaged 3D model and decreases the radiation transfer computa-
tional time, but is a less realistic picture, and was not used in this study;
instead we use a snapshot in ‘full 3D’.

The code solves numerically the radiative-hydrodynamic (RHD) equa-
tions, that is, the time evolution of the hydrodynamical macroscopic prop-
erties of fluids, and additionally their extension to include the optical
properties of the plasma, and incorporates modelling of subsurface con-
vection. These are the equations for the mass conservation (continuity
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Figure 2: Snapshot of STAGGER model atmosphere showing the dis-
tribution of temperature. The upper bound is the optical depth where
logτ500 ≈ 0. Reproduced with permission from Bergemann et al. (2021).

equation), momentum conservation and energy conservation.

∂ρ

∂t
+ ∇ · (ρv) = 0 (41)

∂ρv
∂t
+ ∇ · (ρvv + τvisc) + ∇P − ρg = 0 (42)

∂ϵ

∂t
+ ∇ · (ϵv) + P(∇ · v) − Qrad − Qvisc (43)

where Qrad is the heating or cooling per unit volume, solved from the
radiative transfer equation (Magic et al. 2013):
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Figure 3: Snapshot of STAGGER model atmosphere showing the distri-
bution of vertical velocity. The upper bound is the optical depth where
logτ500 ≈ 0. Reproduced with permission from Bergemann et al. (2021).

Qrad = 4πρ
∫
ν

κν(Jν − S ν) dν (44)

and Qvisc is the viscous dissipation

Qvisc =
∑

i j

τi j
∂vi

∂x j
(45)

In the equations above, ρ is the mass density, v is the velocity field,
τvisc is the viscous stress tensor, P is the thermodynamic pressure, g is
the acceleration due to gravity, ϵ is the internal energy per unit volume,
κλ the opacity specific to wavelength λ, S λ the source function, and Jλ is
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the mean specific intensity averaged over the total solid angle.

Figure 4: Histogram of temperature structure of the 3D STAGGER atmo-
sphere snapshot, against the logarithm of optical depth of the material at
500nm.
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4 Observational Data
We use observations of the Sun provided by Schäfer et al. (2020) as part
of their solar flux atlas, taken at the Institut für Astrophysik, Göttingen
(IAG) using a 50cm siderostat with a Vertical Vacuum Telescope and
Fourier Transform Spectrograph (FTS). The FTS has a very high resolv-
ing power of up to R = 925,000 at 6000Å while taking solar observations
in its double-sided mode. The observation apparatus incorporates a Laser
Frequency Comb which ensures high precision and accurate frequency
calibration (< 10 cm/s).

In order to investigate the centre-to-limb variation of calculated abun-
dance, we require that the observed spectrum be spatially resolved, that
is, we have an individual spectrum which corresponds to each contour on
the solar disc representing angular distance from the centre of the disc
(Fig. 6). We can consider θ, the angle with which radiation is emitted
from the solar surface, relative to the normal of the surface. By conven-
tion we use the cosine of this angle, cos θ ≡ µ, where µ = 1 refers to
radiation emitted from the centre of the solar disc µ = 0 as the very edge,
or limb.

Many individual spectra were recorded on quiet regions of the Sun for
∼10 minutes each, then co-added, after correcting for barycentric motion
and solar rotation. This enabled the combinations of observations of the
same µ-angle. The spectra used in this study correspond to solar obser-
vations at µ-angles: 1.0, 0.9, 0.8, 0.6, 0.4, and 0.2 (Fig. 6), and cover the
wavelength range 5500Å - 7100Å. Of the eight Si lines included in this
range, two were not available due to telluric contamination. The process-
ing of the remaining diagnostic lines is described in successive sections.
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Figure 5: A section of the IAG spectra corresponding to observational
angles µ = 1 and µ = 0.2, centred around the first diagnostic silicon line
at 5645Å, highlighted in red.

Figure 6: Representation of the µ angle on the solar sphere used in the
centre-to-limb analysis. The 4 nodes per contour represent the coordi-
nates of the corresponding modelled spectra.
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5 Atomic model
The atomic silicon model used in this study is largely the same as that pre-
sented by Bergemann et al. (2013), more recently updated (Magg et al.
2022). It comprises values for the excitation energy and statistical weight
corresponding to 289 Si I, and 49 Si II ionisation energy levels. It in-
corporates fine structure splitting in the levels with energies lower than
7.45eV and 6.2eV for Si I and Si II levels, respectively.

For the spectral lines, the model includes information on the cor-
responding transition levels, the f-values (oscillator strengths), and the
damping constants: GA, the inverse lifetime of the upper level, GVW
the van der Waals broadening parameter, and GS the Starck broadening
parameter.

The model covers 2826 Si I transitions sourced from the NIST database
(Kramida et al. 2019) and Kurucz database (Kurucz 2016), and 130 Si
II transitions, from NIST. Also detailed in the model atom are photo-
ionisation cross-sections and rate coefficients for inelastic collisions taken
from Belyaev et al. (2014).

The model atom includes the rate coefficients for a large number of
transitions which result from bound-bound excitation transitions in neu-
tral species mediated by free electrons, bound-bound transitions mediated
by neutral hydrogen, bound-free ionisation transitions mediated by free
electrons, and charge transfer with neutral hydrogen. For each transition
the rate coefficient is specified for a range of temperatures.

In order to perform our abundance analysis, we focus on five of the
strongest absorption lines in the silicon spectrum to use as diagnostic
lines. These were further reduced to three lines, due to issues with pro-
cessing the corresponding lines in the observed spectra. The parameters
for the diagnostic lines are shown in Table 1. Two other strong lines, at
5793.073Å and 5690.425Å, were considered for analysis and are used in
other similar studies (such as Amarsi & Asplund (2017)) but are omitted
from this study due to gaps due to telluric contamination in the IAG ob-
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served spectrum. In addition, we include the new oscillator strengths cal-
culated by Rhodin et al. (2018), via a combination of theoretical lifetimes,
and experimental branching fractions using their Fourier transform spec-
trometer at Lund University. Oscillator strengths from Kurucz (2016) and
Rhodin et al. (2018) are used to calculate the Si abundance.

Figure 7: Grotrian diagram showing the energy levels of the model silicon
atoms with the bound-bound transitions in black. Red lines correspond
to the diagnostic absorption lines used in the abundance analysis. Repro-
duced with permission from Magg et al. (2022).
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λ (Å) Eupper (cm−1) Elower (cm−1) gupper glower log g f

5645.613 57468.238 39760.285 5 3
-2.140[1]

-2.067[2]

5684.484 57541.918 39955.055 3 5
-1.420[1]

-1.607[2]

5701.104 57295.883 39760.285 1 3
-2.050[1]

-1.981[2]

5772.146 58311.660 40991.883 1 3
-1.750[1]

-1.643[2]

7034.901 61563.305 47351.555 16 5
-3.714[1]

-0.78[2]

Table 1: Atomic parameters for the diagnostic Si I lines from the model
atom. We include the wavelength of the spectral line, the upper and lower
energy levels of the transition corresponding to the line, g the statistical
weight for these levels, and log g f where f is the oscillator strength.
Source: [1] - Kurucz (2016), [2] - Rhodin et al. (2018).
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6 Methods
With the model atmospheres produced by the Gustafsson et al. (2008)
and Magic et al. (2013) groups, we simulate radiative transfer in the at-
mosphere with MULTI3D. These spectra were analysed to interpret the
behaviour of the models, and to compare with the observed data, to cal-
culate abundance estimates. In this methods section we outline the pro-
cesses by which such calculations were made.

6.1 Calculation of equivalent widths
The equivalent width (EW) is one of the characteristics of a spectral line
designed to describe its ‘strength’, without requiring knowledge or expla-
nation of its detailed shape, and is our primary metric for comparison of
the different synthesised spectra and of these with the observed spectra.
The width in question is that of the rectangle along the wavelength axis,
which is formed with equal area to the spectral line relative to its adja-
cent continuum, and with height equal to the level of continuum intensity
measured from a zero intensity. The equivalent width rectangle and its
spectral line absorb the same volume of photon flux. This width can be
defined symbolically as:

Wλ =
∫

(Ic − Is)
Ic

dλ (46)

with I the intensity at c, the continuum; and s, the spectral combina-
tion of both the line and the continuum. A graphical representation can
be seen in Fig. 8. The EW serves as a useful measure of spectral fea-
ture strength, as it is not sensitive to the effects of phenomena which may
change the shape of the line, such as Doppler broadening (Collins et al.
1989).

In practice, the EW of each of our diagnostic spectral lines was cal-
culated by selecting a point on either side of the normalised peak, where
the line intensity returns to the continuum, and finding the area between
the peak and the continuum, bounded by these points, with Simpson’s
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Figure 8: Diagram explaining the equivalent width of a spectra line.

integration method. The width can then be found using this area in each
case using the procedure detailed above.
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6.2 Observed spectrum processing
The observational data is made up of a normalised intensity spectrum
spanning the frequency range covered by our diagnostic lines for each
of the 6 µ observation angles which were syntheised by MULTI3D. For
each diagnostic line we then attempt to isolate the corresponding peak
by choosing the limits of its wings, where we consider the intensity to
return to the continuum value. This is made difficult by the presence of
contaminating spectral lines which form at wavelengths close to that of
the diagnostic line and thus overlap to some degree with the line of in-
terest. We call these lines ‘blended’, and as the neighbouring lines are
usually correlate to different atomic transitions, to that of the diagnostic
lines, they are not relevant to the analysis, and must be removed.

To de-blend a diagnostic line, we take representations of line features
in the form of Voigt profiles. We therefore make a fit with a non-linear
least-squares optimiser, with σ, the standard deviation of the Gaussian
part, and γ, the half-width at half-maximum (HWHM) of the Lorentzian
part, as free parameters. The contaminating features are thus fitted as
Voigt profiles, and these are masked from the processed spectra, leaving
an approximation the desired spectral line as if it was formed without the
presence of the contaminants.

For example, we show the deblending of line at 5645.6Å due to a
smaller line at 5645.8Å in Fig. 9. Deblending is performed at the re-
quired lines for each µ angle spectrum.

Subsequently, the intensities corresponding to each line are normalised
to the continuum intensity, using the limits discussed above. The re-
sulting renormalised line is shown in the lower panel of Fig. 9. In this
situation there is very little difference before and after renormalisation,
however this is not the case for each of the other lines.
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Figure 9: Top: Observed profile of silicon diagnostic line at 5645Å in the
µ = 1, and the fit to the neighbouring smaller line. Bottom: Profiles with
the blend removed, and subsequently renormalised to the continuum. The
vertical lines denote the limits of the line, where the continuum normali-
sation is applied.
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6.3 Abundance Differences and Abundance Calculations
The method by which we compare the observed spectra and computa-
tionally synthesised spectra is known as the curve of growth (CoG). This
involves forming a relationship, corresponding to each µ angle and each
diagnostic line, which describes the change in EW as the relative abun-
dance of the chemical species in question is changed. Essentially, this is
a fitting of the model to the observed data with the curve, which is this
relationship of EW vs chemical abundance.

As 1D LTE simulations are typically much faster to compute than 3D
non-LTE simulations, it is common to build the array of simulated val-
ues with differing abundance, to which the data must be fitted, with these
1D LTE simulations. However, we wish to use 3D non-LTE simulated
spectra for comparison with the observed data, as this is assumed to be
most accurate. We resolve this with the well established method of using
abundance differences, commonly called abundance corrections, which
describe the difference in abundance between that calculated with a par-
ticular 3D non-LTE line, and that corresponding to a line produced with
a different simulation method. It is well established that that this abun-
dance difference procedure is an accurate and robust way of inferring the
calculated abundance corresponding to a 3D non-LTE line, without re-
quiring the expensive simulation of a 3D non-LTE CoG.

In practice, we use a range of 9 relative solar silicon abundances
evenly spaced between 7.36 and 7.76 dex, and synthesise spectra un-
der 1D LTE conditions for each abundance. For a given Si line and µ, the
EW corresponding to each 1D LTE simulation is then calculated. We then
approximate the EW-relative abundance relationship with a quadratic in-
terpolation using the CoG points. This is used to estimate the relative
abundance of a 1D LTE simulation with the same EW as that of the 3D
non-LTE simulated line. The abundance difference in each case is thus
the difference between this interpolated abundance and the initial abun-
dance used to simulate the 3D non-LTE spectrum, 7.56 dex.

To find the estimated relative abundance of the observed spectra, we
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Figure 10: Abundance Difference example for the 3D non-LTE simula-
tions for the 5645Å line.

now compare these lines with those of the 1D LTE synthesised spec-
tra. We use the array of 1D LTE simulated spectral lines, with different
relative abundance of silicon, to again interpolate to find a relationship
between the EW and relative abundance of the 1D LTE CoG, and thus
estimate the relative abundance of each of the lines of the observed spec-
trum. We now apply the 3D non-LTE abundance differences (or 1D non-
LTE / 3D LTE differences) to these 1D LTE relative abundances, to find a
more accurate approximation of the silicon abundance corresponding to
the observed solar spectral lines. In this study we calculate the estimated
abundances for 1D non-LTE, 3D LTE and 3D non-LTE, which permits us
to compare the performance of each model.
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7 Results

7.1 Comparative analysis of 1D non-LTE and 3D non-
LTE abundance differences

Shown in Tables 2, 3 and 4 are the calculated centre-to-limb abundance
differences for the 1D non-LTE , 3D LTE and 3D non-LTE simulations,
respectively, in dex. The abundance differences refer to the difference
in relative abundance of the 1D LTE curve of growth at the equivalent
width of the other simulations at the starting abundance for each line, µ
pair. Therefore, according to the calculations in this study, a negative
abundance difference denotes a case where the equivalent width of the
line is greater in the corrected calculation than in 1D LTE, while for a
positive abundance difference the reverse is true.

µ Line λ (Å)

5645.613 5772.146 7034.901

1.0 0.019 0.018 0.014

0.9 0.018 0.017 0.013

0.8 0.017 0.015 0.011

0.6 0.012 0.009 0.004

0.4 0.000 -0.007 -0.011

0.2 -0.049 -0.068 -0.060

Table 2: Abundance differences for 1D non-LTE.

In Fig. 11 we plot the abundance difference relationship with µ for
the 1D and 3D non-LTE simulations, for the line at 5645.61Å. In both
cases the abundance difference becomes more negative as we move from
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µ Line λ (Å)

5645.613 5772.146 7034.901

1.0 0.045 0.045 0.063

0.9 0.026 0.013 0.008

0.8 0.026 0.013 0.010

0.6 0.009 -0.009 -0.023

0.4 -0.034 -0.061 -0.083

0.2 -0.117 -0.155 -0.178

Table 3: Abundance differences for 3D LTE.

the disc centre to the limb, with this appearing more pronounced in the
3D non-LTE case. The difference in line strength can be seen in Fig. 12.
Here it is shown that there is a large weakening of the 1D non-LTE line
between the disc centre (µ = 1) and the limb (µ = 0.2). Relative to the
1D LTE line, the 3D non-LTE line is weaker in the centre and stronger in
the limb, which is the reverse of the 1D non-LTE line’s behaviour. This
follows the trend that is shown in Fig. 11.

In each of the diagnostic lines there are positive abundance differ-
ences at the disc centre, and negative differences at the limb, with the
transition falling somewhere between µ = 0.8 and µ = 0.2. If we com-
pare 1D non-LTE and 3D non-LTE at each line and µ (Tables 2 and 4),
then in 3D non-LTE we see a more negative abundance difference at ev-
ery individual point.

Taking the line in Fig. 12 as an illustrative example, one can see the
cause of the large negative 3D non-LTE abundance difference at the limb
by comparing the EWs. Relative to the 1D LTE line, the 3D non-LTE
line is significantly stronger at the limb, and somewhat weaker in the disc
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µ Line λ (Å)

5645.613 5772.146 7034.901

1.0 0.070 0.068 0.081

0.9 0.051 0.036 0.026

0.8 0.049 0.034 0.025

0.6 0.026 0.004 -0.016

0.4 -0.031 -0.067 -0.095

0.2 -0.171 -0.233 -0.247

Table 4: Abundance differences 3D non-LTE.

centre. The 1D non-LTE behaviour mirrors this trend, but to a smaller
degree - reflected in the less steep change in abundance difference seen
in Fig. 11.
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Figure 11: Centre-to-limb Abundance Differences for the 1D and 3D
non-LTE simulations for the 5645Å line
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Figure 12: Normalised line profiles at the disc centre and limb for the
1D LTE, 1D non-LTE, and 3D non-LTE simulations for the 5645Å line.
Equivalent widths are given in mÅ.
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7.1.1 Centre-limb comparison of lines in 1D LTE

In order to explain the difference in equivalent widths of the 1D LTE line
between the disc centre and the limb, we must consider both the influence
of the line formation at each angle, and the difference in the continuum
across the disc. By plotting the unnormalised intensity profiles of the
line at 5645Å (Fig. 13) it can be seen that there is a significantly lower
continuum intensity at the limb than at the disc centre in the spectrum
synthesised by MULTI3D.

Figure 13: Unnormalised line profiles at the disc centre and limb
for the 1D LTE simulations for the 5645Å line, with intensity units
erg cm−2s−1Hz−1Ω−110−5.

The cause of this difference in continuum intensities is due to the
geometry of the atmosphere and the difference in the path which the ver-
tical rays and inclined rays follow. As the models discussed in this study
are plane parallel atmospheres, we extend the 1D model by building a
heterogeneous 2D ‘slab’ at each depth point (Fig. 14). One may view
the temperature structure experienced by an angled ray by tracing a line
along a µ angle, beginning from an arbitrary location on the surface of the
atmosphere, and interpolating the temperature at regular intervals along
the line. For µ = 1 this is simply the temperature along a vertical 1D
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column, but for µ = 0.2 the geometry of the simulated box means that the
line exits from the side of the ‘slab’ before reaching the bottom, requiring
that periodic boundary conditions are used to re-enter the ‘slab’ from the
opposite boundary.

The two paths traverse the same vertical temperature gradient (dz) in
the box, but the distance covered by the rays differs; the inclined path,
corresponding to µ = 0.2, covers a distance ∼ 5x larger than the vertical
path, in real space.

In general, the difference in path length in a plane parallel atmo-
sphere, which corresponds to different µmay be expressed by calculating
the the optical depth, and is given by

dτµ =
dτµ=1

µ
(47)

meaning that the ratio of optical depth corresponding to an emergent an-
gle θ relative to the vertical direction is simply 1/µ (see Fig. 14).

One may extend this geometrical approach (such as by Sánchez-Bajo
et al. (2002)) to arrive at a limb-darkening law, such as:

Iλ(µ) = Iλ(0)
[
1 − uλ(1 − µ)

]
(48)

where a linear source function leads to a description of the intensity
along an emergent angle θ and uλ, a limb darkening coefficient.

It is also instructive to consider the temperature profiles correspond-
ing to the optical depth in the simulated space. For this we choose the
optical depth at a so-called standard wavelength at 500nm, which is situ-
ated in the visual range and is fairly representative of the the optical depth
of the stellar continuum. Seen in Fig. 15, these profiles show that there
is a marked difference in the temperature structure along the geometrical
paths corresponding to these two lines of sight. At the position along the
line of sight in the µ = 0.2 case where the medium becomes optically thin
(τ = 1, or log(τ) = 0), the temperature change is very rapid over optical
depth, and here the temperature is ∼2000K lower than its counterpart in
the disc centre.
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Figure 14: Diagram of a plane parallel atmosphere which shows a line
of sight through the atmosphere inclined to the vertical at an angle of θ,
and illustrates the difference in optical depth along the vertical (dτ) and
inclined (dτµ) paths, over the same period of radial depth (dz).

In LTE we expect the Planck function to describe the intensity of the
material similar to that of a blackbody, defined by its frequency and tem-
perature, as in Equation 10. With the temperature disparity shown in Fig.
15 and the Planck equation, we see the explanation for the difference seen
in continuum intensity in Fig. 13.

It must be remembered that the effects discussed above are not arte-
facts of the 1D model atmosphere, but instead a physical phenomenon
present in the Sun, and reproduced by any simulation with this geometry.
Situations in which a photon remains for longer in the medium before es-
caping from the solar surface suggest a higher probability of the photon
being absorbed by the continuum. At the limb the longer path distance
induces this longer travel time, in turn suggesting a lower photon flux, a
pattern observed at the limb.
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Figure 15: Horizontally averaged temperature structure of the 1D
MARCS model atmospheres, corresponding to the logarithm of optical
depth at 5000Å at both the limb and disc centre. The structure is shown
for both the centre and limb viewing angle paths. The optical depth in
this figure is calculated for the specific path geometry, as τµ in Equation
47.
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7.1.2 Centre-limb comparison of 3D lines

Referring back to Figs. 11 and Fig. 12, we see the distribution of the
the abundance differences and equivalent width for an example diagnos-
tic line, from the centre-to-limb. We saw that for lines synthesised in
non-LTE in the STAGGER 3D model atmosphere, there is very little differ-
ence in equivalent width across the limb, meaning that we see significant
abundance differences due to the large change in EW across the limb for
the 1D LTE lines, as explained in the preceding subsection. For the 3D
LTE synthesised line, we see a smaller change in EW than that of the 1D
lines, yet still larger than that produced in 3D non-LTE. (Figs. 16).

When calculating emergent intensities in 3D, MULTI3D traces mul-
tiple ‘rays’ through the simulation volume from the bottom to the top,
along the µ angles specified. At each depth point (ie. at the vertical
depths which have layers of grid points), the radiative transfer equation
is solved using physical parameters which are interpolated based on the
local grid points. As µ decreases from 1, the longer path length due to the
geometry described earlier also applies, meaning that we should expect
to see lower EW at lower µ. In contrast to the simulations that use the 1D
MARCS model, we now also consider the influence of convection in the
3D STAGGER model.

Fig. 17 shows the temperature profile with depth of the 3D STAGGER
model atmosphere snapshot which we have used for the analysis in this
work. For the vertical ray (µ = 1), there is a steep increase of temper-
ature with depth, as seen in the 1D model. However, at the limb, we
see a markedly different pattern to that seen in the 1D model, with a sig-
nificantly less smooth increase in temperature, and instead a modulated
trend, with even non-monotonic behaviour at smaller scales. We attribute
this behaviour to the convection cells, which feature regions of alternat-
ing hot and cold regions in the horizontal axis (discussed further in the
next section). As a ray is traced though a series of these cells, it experi-
ences a variation in the local effective temperature, causing an effective
averaging of temperature with depth due to the mixing of matter in the
atmosphere.
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Figure 16: Unnormalised line profiles at the disc centre and limb for the
3D LTE (top) and 3D non-LTE (bottom) simulations for the 5645Å line,
with intensity units erg cm−2s−1Hz−1Ω−110−5.

We thus assume that the lesser difference in EW across the limb in
3D, as compared to 1D, is due to the effect of the convection cells to push
the temperature profile of the inclined ray closer to that of the vertical ray.
The effect of this non linear behaviour is difficult to explain, as the conse-
quences of this modulated temperature and density profile are combined
with the non-linear radiative transfer dynamics, creating a very complex
situation.
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Figure 17: Horizontally averaged temperature (left) and density (right)
profiles of the 3D STAGGER model atmosphere. In the left-hand plot the
inclined ray labelled (a) shows the vertical optical depth, this is, the op-
tical depth through which the inclined ’ray’ passes defined for a vertical
path. The line labelled (b) shows the specific optical depth along the in-
clined ray, such as τµ in Equation 47.
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7.2 Waveshift and asymmetry of the line profiles
The waveshift of a spectral line and its asymmetry are evidence of 3D
effects in the line formation medium, and can be illustrated by using the
method of line bisectors. These are formed by finding the midpoint wave-
length of the line profile across its depth. These midpoints are plotted,
and the resulting line shows the bisector of the profile. In practice, this
was performed by fitting cubic splines to the intensity data points of the
lines, and finding midpoints of the intersections between the fit and a se-
ries of horizontal lines spanning the intensity range. Bisectors have been
widely used to investigate the effect of stellar parameters on line struc-
ture, such as effective temperature and luminosity (Gray 2005), and on
centre-to-limb variation on line profiles (Dravins & Nordlund 1990).

Figure 18 illustrates the line asymmetries in the 1D LTE, 3D non-
LTE, and 3D LTE simulated lines at 5645.61Å, and the observed line
from the IAG spectrum at the same wavelength, all normalised to the
continuum intensity. Again we can compare the behaviour at the solar
disc centre to that that the limb, and see the behaviour due to the different
models.

Line asymmetries are present in the 3D simulations, but not the the
1D simulations, which was expected, due to the lack of convection in the
1D MARCS models. This can be seen by the lack of any Dopper shifts in
the 1D LTE plot, and the curvature in the others. In panel (b) of Fig. 18 it
can be seen that in 3D non-LTE there is in general limited asymmetry, but
convective blueshift is present, and blueshifting increases from the centre
to the limb, with the exception of the behaviour of the µ = 0.2 bisector.
This line appears to be less blueshifted than expected along its length,
but with higher blueshifting at the line’s maximum than at its minimum
(peak) which is the reverse of the trend seen in the other bisectors.

Asymmetry is also present in the observed spectrum (Fig. 18 (d), and
we see again convective blueshift for µ = 1 to µ = 0.4, but we see a
less well defined trend of blueshifting from the centre to the limb as that
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produced by the 3D non-LTE simulations. Again, the µ = 0.2 bisector
exhibits more distinct behaviour with a red shift of ∼200m/s relative to
the bisectors from the rest of the disc. There is more slightly more pro-
nounced asymmetry here; with a shift of ∼ 200m/s along the depth of the
line.

The reason for the presence of asymmetry in the line profiles of the
3D synthesised and observed spectra is that in 3D STAGGER atmospheres
exhibit convection, a phenomena emergent from the equations of time-
dependent hydrodynamics, and present in the real Sun. Convection can

Figure 18: Bisectors of line profiles at 5645Å, for each µ. (a) 1D LTE,
(b) 3D non-LTE, (c) 3D LTE, (d) IAG spectrum.
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be considered a type of macroturbulence, involving movement of matter
in an area larger than the formation regions, in contrast to microturbu-
lence which takes place over a smaller region. The influence on the line
profiles is explained by, taking in the first case of the normal line of sight,
the movement of stellar matter in a convective cell towards and away
from the observer. This convective velocity produces a Doppler broad-
ening effect, shifting the line to higher frequencies for oncoming matter
and lower frequencies for receding matter. The strength of the lines is
not affected by convection velocity, as each line is entirely formed in-
side regions of comoving matter (Emerson 1998). Instead, the total effect
is of the combination of many such regions, with different velocities in
different convection cells contributing to a single line.

In the Sun, we are able to observe so-called granules, seen in Fig.
19, which exhibit dark granular lines of cooler falling matter surround-
ing bright central granules of rising matter. Thus, we have in this picture
regions of receding, red Doppler shifted matter which is also cooler and
thus dimmer, and the opposite regions of hotter, rising, blue shifted mat-
ter. The asymmetric nature here stems from the difference in line forma-
tion at different temperatures. The microphysical effects detailed earlier,
which give rise to, and control the strength of spectral lines, are depen-
dent on this temperature. In the case of silicon, the lines are strengthened
at higher temperature, meaning that the blue shifted radiation from rising
regions contributes more to the composite line than the weaker, falling el-
ement. Moreover, effects such as ionisation and excitation do not have a
linear variation with temperature, leading to non-linear effects, and asym-
metric behaviour in the line profiles.

Emerson (1998) argue that there ought to be a lesser degree of asym-
metry at the limb, due to the orientation of the convection cells. The
matter in the cells always rotate as approximate rectangles with rounded
corners, with the rising and falling velocities parallel to the star’s radius.
As the line of sight moves from the centre of the star toward the limb,
the component parallel to the rising/falling velocity falls, until, at the
very limb, the line of sight is parallel to the tangential flow at the top
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of the convection cells. The length of this cell face is typically much
smaller than the radial component, suggesting that we observe a dimin-
ished asymmetric effect.

However, we actually observe a more prominent lineshift at the limb
in both the 3D simulations and the observed spectrum, a pattern also re-
ported by Dravins & Nordlund (1990); the explanation there lays cause
on the high horizontal velocities in the upper atmosphere. As for the
difference in behaviour between the 3D simulations and the IAG obser-
vations, particularly at the limb, it is difficult at this point to determine
the degree to which either is more ‘accurate’ than the other, as there is
certainly an array of simplifications and processing techniques for each
method, which introduce errors and uncertainty. Nevertheless, the au-
thors of the IAG solar atlas (Reiners et al. 2016) quote accuracy to ±10
m/s, a scale significantly smaller than the magnitude of the effects seen
here. If the discrepancy of the bisectors at the limb between the observed
and 3D non-LTE synthesised lines is not due to observational issue, then
this points to a problem with the modelling at the limb. As the spectrum
originating at the solar limb features lines which are, due to geometry,
formed higher in the atmosphere, the accuracy of the 3D model at these
depths may place a limitation on the agreement between the observational
and modelled lines, perhaps due to inaccurate temperatures in the upper
atmosphere. Unlike the real Sun, our model atmospheres do not feature
the chromosphere, a hotter region which sits above the photosphere. It
may be interesting to use a whole atmosphere code (e.g. Gudiksen et al.
(2011)) to assess the limb behaviour.

The unusual shape of the limb bisector may be explained by the pas-
sage of the ‘ray’ through multiple regions of up- and down-flow, in a
similar mode as the temperature-depth profile of the 3D model discussed
earlier. Also in agreement with the Dravins & Nordlund (1990) study of
Fe I lines, we see very little influence of non-LTE on the line asymmetry,
ie. between panels (b) and (c) there is little difference.
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Figure 19: Image of solar granules taken at the wavelength 789nm by the
Daniel K. Inouye Solar Telescope. The brighter granules and darker in-
tergranular lanes cover the extent of the Sun’s surface; this image covers
35000km x 35000km. Credit: NSO/NSF/AURA.
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7.3 Centre to limb abundance variation
Figures 20 and 21 show the relative abundances of solar silicon which
have been calculated as described in the Methods section, for the spectral
lines at 5645Å, 5701Å and 5772Å. In each case we show the abundance
calculated in 1D LTE, and additionally the abundances which correspond
to these 1D LTE values with applied 1D non-LTE, 3D LTE and 3D non-
LTE abundance differences, using the observed IAG solar spectra. In
each figure the abundance is given at each of the six µ angles which were
chosen in order to investigate the variance across the solar centre-to-limb.

To analyse the behaviour seen in these figures, it is important to con-
sider that one would expect a ‘flat’ distribution of relative abundances
across the disc, following the prediction from literature (Lodders 2019)
that homogenous mixing ensures a constant chemical abundance across
the solar surface.

In each of the three diagnostic lines the 1D LTE abundance shows a
similar trend - the abundance is calculated to be significantly higher at
the limb than at the solar disc centre. For each of the lines, the abundance
exhibits a plateau at the angles approaching the disc centre; at the 5645Å
line (Fig. 20 top) the abundance at µ angles 0.6, 0.8, 0.9 and 1.0 is close
to constant, and the difference in abundance between the limb (µ = 0.2)
and this plateau is ∼ 0.2 dex. We see a similar trend in the behaviour of
the line at 5701 Å (Fig. 20 top), with a smaller centre-limb difference of
∼ 0.19 dex.

In the line at 5772Å (Fig. 21) the 1D LTE abundance does not plateau
until between µ = 0.8 and the centre, with a difference of ∼ 0.23 dex.

Returning again to the line at 5645Å, we see see the effect of the cal-
culated 3D non-LTE abundance differences by looking at the calculated
values of abundance which are the sum of these differences and the 1D
LTE relative abundance. For this first diagnostic line there is very little
variation from centre-to-limb, with just a small increase of ∼ 0.01 dex at
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the centre. The µ averaged abundance for this line is 7.698 dex.

At 5701Å and 5772Å, we again see an approximately flat distribution
across the disc, albeit with a larger increase than the 5645Å case, from
limb to centre, of ∼ 0.05 dex. The µ averaged abundances for are 7.592
dex and 7.599 dex, respectively.

For all lines, the behaviour of the abundances calculated using the
1D non-LTE differences is more similar to the 1D LTE calculations, but
the trend is shallower in each case. For the line at 5645Å, moving from
µ = 0.2 to the disc centre, it can be seen that there is a negative trend in
calculated relative abundance. From µ = 0.6 to µ = 1 the corrected 1D
non-LTE abundances are almost constant, at around 7.65 dex. However,
the high abundances in LTE at µ = 0.2 and 0.4 are not corrected to this
lower level, as their corresponding abundance differences are not large
enough. We see similar trends in the other two lines.

The abundances corresponding to 3D LTE simulations tend to fall be-
tween 1D non-LTE and 3D non-LTE values, exhibiting good agreement
from centre-to-limb. We can see that in each of the lines, the calculated
abundance at the limb is higher in 3D LTE than in 3D non-LTE, and vice
versa at the centre. They are ‘corrected’ less strongly than the 3D non-
LTE lines, and in the 5772Å line, exhibit a more ‘flat’ distribution across
the disc than even the 3D non-LTE abundances.

These three figures help us to compare the performance of the three
simulation methods in calculating the centre-to-limb silicon abundance
in terms of the variation across the disc. It is clear to see in each of the
diagnostic lines that the 1D LTE simulations produce abundances which
vary significantly across the disc, an obvious issue when faced with our
prediction that the abundances be constant over the Sun. The addition
of 1D non-LTE abundance differences reduces the variation somewhat,
but is still obviously lacking, with a large decreasing trend of abundances
when moving from limb to centre. However, the large 3D non-LTE abun-
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dance differences serve to convincingly correct the angular bias of the 1D
LTE abundances, to produce a largely constant value, particularly in the
5645Å and 5772Å lines.

It is now simpler to understand how the negative to positive transition
of abundance differences seen earlier in Fig. 11 are relevant to calculating
more accurate final abundances. Indeed, this same transition can be seen
when comparing the 1D LTE and 3D non-LTE trends in e.g. Fig 20.

Figure 20: Centre-to-limb variation of Si relative abundance for 1D LTE,
1D non-LTE, 3D LTE and 3D non-LTE corresponds to the line at 5645Å.
Also plotted is a least squares linear fit for each set of calculations.
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Figure 21: Centre-to-limb variation of Si relative abundance for 1D LTE,
1D non-LTE, 3D LTE and 3D non-LTE, corresponding to the lines at
5701Å (top), 5772Å (bottom). Also plotted is a least squares linear fit for
each set of calculations.
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7.4 Final abundance estimate
As previously discussed, it is well established that the abundance of a
chemical in the solar atmosphere is homogeneous, and we should there-
fore consolidate the calculations to a single estimate for the whole Sun.
To this end, we take a simple mean of the abundances calculated over the
6 µ angles. This gives us a single relative abundance value corresponding
to each of our four simulations methods, ie. 1D LTE, 1D non-LTE, 3D
LTE and 3D non-LTE for each of the 3 diagnostic line frequencies. A
consequence of the µ averaging of abundances is that there is to some de-
gree a dampening of more extreme estimates across the limb, especially
in the case of 1D LTE.

Unlike in 1D LTE, 1D non-LTE, and 3D LTE, in 3D non-LTE the cal-
culated abundances are consistent across the solar disc. The µ averaged
abundance estimates for the three diagnostic lines are shown in Table 9,
alongside the corresponding values from Amarsi & Asplund (2017). The
final, line averaged abundance estimate is compared to that of other stud-
ies in Table 10. Also shown in Tables 9 and 10 are the abundance values
renormalised to the oscillator strengths from Rhodin et al. (2018).

In the analysis of first Scott et al. (2014) and then Amarsi & Asplund
(2017), the observed diagnostic lines are given a weight based on their
estimated uncertainty, by studying the shape and width of the lines for
blends. These weights, shown in Table 9 for the three lines in this study,
correlate well with the quality of the line profiles shown in Figs. 23
and 26 (especially with regard to the line at 5645Å, which maintains a
noticeable smaller blend even after removal of the larger one). The solar
silicon abundance estimate, which is the weighted mean of the abundance
calculated at the 6 µ angles and the diagnostic lines at 5645Å, 5772Å and
7034Å is 7.61 dex, with f-values of Kurucz (2016) and 7.53 dex with f-
values from Rhodin et al. (2018). The former figure is ∼0.1 dex higher
than the standard of the last 20 years (Asplund et al. 2021), but is in good
agreement with the recently published study by Magg et al. (2022). The
latter abundance value of 7.53 dex is ∼0.08 dex lower than the former;
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µ Line λ (Å)

5645.613 5701.104 5772.146

1.0 7.643 7.538 7.556
0.9 7.646 7.552 7.550
0.8 7.648 7.548 7.565
0.6 7.661 7.567 7.603
0.4 7.729 7.638 7.668
0.2 7.864 7.724 7.790

Mean 7.699 7.595 7.622

Table 5: Centre-to-limb and mean 1D LTE calculated abundances in dex.

this difference reflects the difference between the log g f values shown in
Table 1.

Overall, the 3D LTE abundance values are very similar to the non-
LTE values; the LTE abundance is on average 0.004 dex lower than NLTE
across the three lines. The observation that that non-LTE effects are not
very significant in Si I lines was also made by Shi et al. (2008), Amarsi
& Asplund (2017) and Magg et al. (2022).
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µ Line λ (Å)

5645.613 5701.104 5772.146

1.0 7.662 7.557 7.574
0.9 7.664 7.570 7.567
0.8 7.665 7.565 7.580
0.6 7.674 7.579 7.612
0.4 7.729 7.637 7.662
0.2 7.814 7.673 7.724

Mean 7.702 7.597 7.620

Table 6: Centre-to-limb and mean 1D non-LTE calculated relative Si
abundances in dex.

µ Line λ (Å)

5645.613 5701.104 5772.146

1.0 7.688 7.584 7.601
0.9 7.673 7.579 7.564
0.8 7.674 7.574 7.580
0.6 7.670 7.575 7.596
0.4 7.695 7.603 7.610
0.2 7.746 7.606 7.638

Mean 7.691 7.587 7.598

Table 7: Centre-to-limb and mean 3D LTE calculated relative Si abun-
dances in dex.
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µ Line λ (Å)

5645.613 5701.104 5772.146

1.0 7.713 7.608 7.624
0.9 7.698 7.603 7.588
0.8 7.697 7.596 7.601
0.6 7.687 7.592 7.610
0.4 7.698 7.605 7.605
0.2 7.693 7.550 7.564

Mean 7.698 7.592 7.599

Table 8: Centre-to-limb and mean 3D non-LTE calculated relative Si
abundances in dex.

A(Si)

λ (Å) [1] [2] Amarsi & Asplund (2017) Weight

5645.613 7.698 7.625 7.499 1

5701.104 7.592 7.523 7.482 3

5772.146 7.599 7.492 7.553 2

Table 9: Comparison of µ averaged solar silicon abundance estimates
in dex for diagnostic lines compared with those of Amarsi & Asplund
(2017). [1] - abundances calculated with oscillator strengths from Kurucz
(2016), [2] - abundances calculated with oscillator strengths from Rhodin
et al. (2018). The suggested weight is based on the quality the line due to
blends, as assessed by Scott et al. (2014).
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Study A(Si)

This study 7.61[1], 7.53[2]

Magg et al. (2022) 7.59 ± 0.07

Mashonkina (2020) 7.60

Amarsi & Asplund (2017) 7.51 ± 0.03

Shi et al. (2008) 7.52 ± 0.06

Grevesse & Sauval (1998) 7.55 ± 0.05

Table 10: Line averaged A(Si) estimates in dex from this and previous
studies. [1] - abundances calculated with oscillator strengths from Kurucz
(2016), [2] - abundances calculated with oscillator strengths from Rhodin
et al. (2018).

7.4.1 Plotting lines with the final abundance estimate

With the abundance estimate of A(Si) = 7.61 dex, we compare the line
profiles and EWs of a 1D LTE and a 3D non-LTE simulation, illustrated
in Figs. 22 and 23. The agreement between the observed and 3D non-LTE
lines are very good, despite the small discrepancy at the limb discussed
in the section on bisectors, where the observed line is more blueshifted
than the simulation.
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Figure 22: Centre-to-limb variation of line EWs for the observed, 1D LTE
and 3D non-LTE spectra, simulated with the estimated solar abundance
A(Si) = 7.61 dex. 68
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Figure 23: Normalised intensity plots of Si I diagnostic spectral lines:
processed IAG solar spectrum, 1D LTE MARCS simulation, 3D non-
LTE STAGGER simulation, with A(Si) = 7.61 dex.

69



8 Discussion
In this discussion section, a number of recent studies which have at-
tempted to estimate the solar silicon abundance are described and com-
pared with this work, both in the results and the details of the investiga-
tions. The discussion highlights and elucidates the reasons for the range
of solar silicon values which have been calculated in the past few decades.

The first investigation of solar silicon abundance with full 3D non-
LTE calculations was Amarsi & Asplund (2017), who found a final abun-
dance estimation of 7.51 ± 0.03 dex., which is the same figure found ear-
lier by Scott et al. (2014), who estimate abundances in 3D LTE. These
two studies share the same experimental data; the equivalent widths for
the lines used were averages of those measured using the disc centre in-
tensities of the solar atlases Jungfraujoch (Delbouille & Roland 1995)
and Kitt Peak (Neckel et al. 1984). Regarding the model atomic data,
Amarsi & Asplund (2017) employ a technique in which statistical equi-
librium is calculated with reduced model atom of 56 Si I atomic levels and
634 bound-bound transitions. This was achieved by collapsing the fine
structure levels of their ‘comprehensive’ model atom into single levels.
They then redistribute the populations on to a more complete model atom
with resolved fine structure, and calculate the emergent spectra with this
model. In tests on a ⟨3D⟩model, they report errors in the vertical intensity
of less than 0.001 dex when using the reduced model. The comprehensive
model atom was made with transitional probabilities from Garz (1973),
subsequently renormalised, and with rate coefficients from Belyaev et al.
(2014). In their more recent paper (Asplund et al. 2021) the authors con-
sider using the modern g f -values computed by Rhodin et al. (2018), and
report that using these values and their original method there would be an
upward revision of Si abundance to 7.53 ± 0.03 dex. They do not however
choose to keep the Rhodin et al. (2018) f-values, as they claim that these
imply an ionisation imbalance between Si I and Si II. The authors of this
paper use a similar version of the MULTI3D code as used in this work,
but without the alterations detailed in Bergemann et al. (2019). Amarsi
& Asplund (2017) perform their calculations on six solar snapshots, each
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a Cartesian mesh of 240×240×230, then reduced to 120×120×101 for
non-LTE calculations for computational reasons. They compute radiative
transfer and line formation in full 3D.

The most recent investigation into the solar silicon abundance is that
by Magg et al. (2022), who report A(Si) = 7.59 ± 0.07. The data and
techniques used in this study are similar to that used in this work, but
with some notable differences. MARCS is used for 1D simulation, and
STAGGER for 3D, but in their study ⟨3D⟩ is used in place of full 3D mod-
elling, due to considerations of comparison with future wide-range spec-
troscopic surveys. Magg et al. (2022) use observations from a 2016 In-
stitute of Astrophysics Göttingen (IAG) solar atlas (Reiners et al. 2016),
and for the same reason of compatibility, do not employ spatially re-
solved intensities on the solar disc, as in this work or by Bergemann
et al. (2021). Radiative transfer and statistical equilibrium were calcu-
lated with MULTI2.3 which uses accelerated lambda iteration and a long
characteristics solver, and spectra synthesised with Turbospectrum. For
abundance analysis, they do not compute equivalent widths, but instead
fit a grid of model spectra with χ2 minimisation, as in Bergemann et al.
(2021). The model Si atom used by Magg et al. (2022) was similar to
that used in this study. However, the f-values used in the calculation of
statistical equilibrium were different than those used in the line synthe-
sis. Magg et al. (2022) use values from Kurucz (2016) for the former, and
values from Rhodin et al. (2018) for the latter.

The other recent non-LTE study of stellar silicon abundances, includ-
ing the Sun’s, is Mashonkina (2020). They use a 1D MARCS atmosphere
and the Kitt Peak observational data. Their Si I atomic data consists of
95 levels from NIST (Kramida et al. 2019) and 23 from Kurucz (2016),
with f-values also from Kurucz (2016). This group do not report a ‘final’
solar silicon abundance, and do not share the same diagnostic lines as
us. However, Magg et al. (2022) calculate A(Si) = 7.60 for Mashonkina
(2020), using their common lines.
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Our radiative transfer and statistical equilibrium calculations are com-
puted in full 3D model atmospheres with MULTI3D, a short characteris-
tics solver, like Amarsi & Asplund (2017), but unlike Magg et al. (2022).
We use only a single solar snapshot instead of an average across multiple
as by Amarsi & Asplund (2017). In their Figure 13, Bergemann et al.
(2019) show that there is very little difference between spectral lines pro-
duced in five different STAGGER snapshots, allowing us to be fairly con-
fident that the influence of our choice of a single snapshot is negligible.
Our snapshot covers 8x8 Mm, and has a resolution of 240 × 240 × 230,
which was reduced in the horizontal axes to 30×30×230. This is the same
configuration as used by Bergemann et al. (2021) in their study of oxygen
lines, and who report that the down-scaling to this resolution introduces
only 2% difference in line profiles while significantly reducing computa-
tional times. In tests made by Amarsi & Asplund (2017), it was found
that very minor differences on the vertical intensities were introduced due
to down-scaling, and this was still negligible at inclined viewing angles
(at most 0.003 dex with a 1202 → 602 resolution change).

We consider now the differences between the observational data used
by the studies compared here. In this study a new IAG solar atlas was
used, recorded as described in Schäfer et al. (2020). This atlas comes
from the same group as the data used by Magg et al. (2022), but with
improvements to the experimental setup that fix tracking issues in the
former configuration which reportedly introduced errors on the order of
10ms−1. Both this updated atlas and the original (Reiners et al. 2016)
are improvements over the Jungfraujoch and Kitt Peak data; IAG report
accuracy to 10ms−1, while the Kitt Peak atlases have deviations up to
100ms−1. There were a number of Si I lines which were not used in this
study either because of blended features, or because of telluric contami-
nation in the atlas. In comparison to Amarsi & Asplund (2017) and Magg
et al. (2022), who use 9 and 8 diagnostic lines respectively, the 3 diag-
nostic lines used here is perhaps a small sample size with which to take
sample. However, as many of these other Si I lines are contaminated by
blending, it is difficult to say whether including these lines necessarily
improves the accuracy of the results.
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Recent efforts to update model atoms for the comprehensive work by
Magg et al. (2022), mean that the model atom used in this study is more
detailed than that of Mashonkina (2020) and the reduced model used by
Amarsi & Asplund (2017). However, a significant factor separating the fi-
nal abundance estimates of the different studies is the choice of transition
frequencies (or oscillator strengths, or f-values). With the Kurucz (2016)
f-values, we estimate a final abundance value (A(Si) = 7.60) which is in
close agreement with Mashonkina (2020) (A(Si) = 7.60) and Magg et al.
(2022) (A(Si) = 7.59); these studies share the same source of f-values
(notwithstanding the f-values used for the spectrum synthesis by Magg
et al. (2022), from Rhodin et al. (2018)), which for the lines in this study
is originally Garz (1973). If the abundances calculated in this study are
corrected to use the f-values of Rhodin et al. (2018), we find (with the
weighting explained above) a final value of A(Si) = 7.53 dex. This figure
is now in agreement with the value reported by Asplund et al. (2021),
with their corrections to the same f-values (A(Si) = 7.53). As discussed
earlier, Asplund et al. (2021) do not trust these new f-values, and, the re-
sults of Rhodin et al. (2018) are not yet published. Therefore, we proceed
in the discussion with the results that use Kurucz (2016), which, despite
originating from older calculations, are values still used in modern stud-
ies. Hopefully publication of the work of Rhodin et al. (2018) and sub-
sequent agreement on its reliability can bring about a convergence of the
estimations of the solar abundance of silicon and other chemicals (Palme
et al. 2014).

The primary difference between this and previous studies of solar Si
abundance is that equivalent widths and abundance values are calculated
in full 3D non-LTE across the solar disc, at viewing angles in the range
0.2 ≤ µ ≤ 1, independently. As shown in the results, there is some dis-
agreement with the abundances calculated across the disc, particularly at
the limb. In 1D LTE there is a significant overestimation of abundance
at the limb, showing that the 1D models are insufficient for spectroscopy
at wide viewing angles. As we take a simple average across the µ an-
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gles, and then average the values for the three diagnostic lines, we are
more reliant on both accurate performance of the statistical equilibrium
code and the observational methods, to interpret µ specific intensities ac-
curately, particularly at the limb. From the comparison with EWs and the
line profile bisectors, it seems possible that even with the 3D models the
methods used here cannot completely accurately synthesise spectra at the
solar limb. This may be due to underestimation of the temperature in the
upper layers of the atmosphere, where these µ = 0.2 lines form, prompt-
ing an overestimation of their strength. However, the discrepancies may
be due to the data reduction methods for the observed spectra. There are
many unclear sources of error which may enter the calculations, from the
effect of data reduction in the observed spectrum to the uncertainty at the
limb due to the grid down-sizing. These errors can even differ from the
centre-to-limb, making it complicated to unpick the causes of some of
the patterns we see in the results. Further, as this is the only study to
investigate these lines with the most up to date model atom and observa-
tional data across the solar disc with simulations in in full 3D, we cannot
make direct line-by-line comparisons. Despite this, it seems that the our
final abundance calculations are consistent with studies that use the same
source of oscillator strengths.

As silicon is commonly used either as the anchor element, or one of
the anchor elements between the meteoric and photospheric abundance
scales, changes to the silicon abundance become important when consid-
ering the Sun as a whole. Magg et al. (2022) present a new meteoric abun-
dance scale using their value for solar Si abundance (in agreement with
A(Si) = 7.61 of this study) as one of the anchor elements, and calculate
an updated Z/X ratio which is significantly larger (by 26%) than that of
Asplund et al. (2021). This new meteoric abundance was A(Si)met = 7.57.
With the metallicity adjustment and new chemical mixture, Magg et al.
(2022) calculate standard solar models, and the discrepancy which ex-
isted between the canonical photospheric abundances and those inferred
by the interior structure of the Sun, evidenced by helioseismic sound
speeds, appears to be close to resolved. The revised abundance of oxygen
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is the primary driver of this change, but the influence of the refractories
is not insignificant.

In the introduction to this work we discussed a number of other as-
trophysical examples in which the ratio of silicon to some other ele-
ment is an important factor. In the work of Adibekyan et al. (2012) and
Adibekyan et al. (2015), the [Mg/Si] ratio of a star is shown to correlate
with its likelihood to host a low mass star. The 1D LTE techniques used in
such studies are not suitable for accurate abundance analysis in the Sun,
and as the stars in the survey of the latter study are chosen to be within
500K of the solar Teff, it is probably not suitable in these cases either.
It may be that updated atomic models and 3D non-LTE analysis change
the abundances of both metals in such a manner which preserves the ra-
tio, but this again cannot be assumed. This is particularly important if
non-LTE introduces opposite strengthening effects in different chemicals
Bergemann et al. (2019).

These chemical abundance ratios are defined as relative to the solar
abundances as such:

[Mg/Si] = log10(Mg/Si)star − log10(Mg/Si)⊙ (49)

Even beyond the limitations due to the analysis methodology, the
dependence of such ratios on the solar abundance estimates mean that
changes in the latter can prove important to understanding trends in galac-
tic and stellar evolution. In these investigations on planet-host stars where
the [Mg/Si] ratios are compared between stars in the sample, an altered
solar abundance ratio gives a constant offset to the distribution. With a
constant solar abundance value A(Mg) = 7.55 dex from both Asplund
et al. (2021) and Magg et al. (2022), and the change in A(Si) from 7.51
dex (of Asplund et al. (2021) to 7.59 dex estimated by Magg et al. (2022),
the [Mg/Si] changes by -0.08 dex. This represents a difference of more
than 20% in the abundance ratio for each of the stars.

As discussed, silicon is used either as the only, or as one of the ref-
erence elements for meteoric abundances. This means that changes to
the canonical silicon abundance can have wide-reaching effects on the
studies in solar-system and geophysics which use meteoric abundances.
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Many such investigations are made at the Center for Star and Planet Re-
search at the University of Copenhagen; in the work by Connelly et al.
(2012), the abundance of uranium isotopes in CI chondrites is used to in-
fer dynamics of the solar protoplanetary disk that led to the formation of
the solar system; Bizzarro et al. (2003) use hafnium isotopes in chondrites
to gain insight on the Earth’s early crust-mantle system. Such studies of-
ten use a collection of solar abundances such as Asplund et al. (2009) as a
reference for their findings, meaning that updates to these canonical val-
ues may require some revision in dependent works. According to Palme
et al. (2014), the photospheric Hf abundance is higher than, and in dis-
agreement with the meteoric abundance, which is claimed to have been
accurately determined. In cases such as this, re-scaled meteoric abun-
dances may bring photospheric and meteoric measurements into closer
alignment.

It is clear that changes to solar abundances can have significant im-
pact, not only for our understanding of the structure of the Sun, but in
wider study of star and planet formation. Advances in high performance
computing mean that simplifications to 1D LTE may soon be unneces-
sary, even for large surveys of many stars with different atmospheres.
Programs such as the Dispatch Framework (Nordlund et al. 2018), will
significantly reduce computational cost of radiative transfer calculation,
and enable the addition of magnetohydrodynamic effects in the calcula-
tion, enhancing the accuracy of the solar model. Computation time may
also be improved with advances in the application of neutral networks; it
may soon be possible for techniques such as SunnyNet, which Chappell
& Pereira (2022) use to compute hydrogen spectra in 3D non-LTE, to be
extended to accurately predict the spectra of more complex atoms.
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9 Conclusions
In this work we present an investigation into the solar photospheric abun-
dance of silicon, calculating abundances for each of 6 viewing angles
across the solar disc with full 3D non-LTE simulations. We synthesise
theoretical spectra using a modern model atom, with the MULTI3D ra-
diative transfer and statistical equilibrium code in a 3D STAGGER model
atmosphere and in a 1D MARCS atmosphere. Abundance differences are
calculated with the equivalent width method in 1D non-LTE, 3D LTE and
3D non-LTE.

We use new observational data from the Institute for Astrophysics
Göttingen (Schäfer et al. 2020), which features very high resolution spec-
tra at R ≈ 900,000, spatially resolved across the solar disc. Three di-
agnostic lines are identified at 5645Å, 5701Å and 5772Å, while others
are rejected due to blending and telluric contamination. We compare line
profiles of the diagnostic observed lines and synthesised lines to calculate
1D LTE abundances with the curve of growth method, before using the
abundance differences to estimate abundances in 1D non-LTE, 3D LTE
and 3D non-LTE, and using two different sources of oscillator strength.
Also demonstrated were possible limitations in the calculations at the so-
lar limb caused by the 3D models, using line bisectors to compare the
behaviour of the synthesised and observed line profiles across the solar
disc, illustrating wavelength shifts and line asymmetries.

We conclude with a final A(Si) = 7.61 dex using older oscillator
strengths from Kurucz (2016), and A(Si) = 7.53 dex using recent, exper-
imental, but unpublished oscillator strengths from Rhodin et al. (2018).
The values are calculated using the mean of the abundances calculated
for each µ angle and with a weighted mean over the diagnostic lines,
based on their adjudged quality. Finally, we compare these results to
those of some similar studies of photospheric abundance, finding agree-
ment with the most recent (Magg et al. 2022), (Mashonkina 2020) studies
with the former A(Si) value, and agreement with renormalised Asplund
et al. (2021) calculations, with the latter A(Si) value. It is shown how sig-
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nificant differences in the oscillator strengths in the literature have major
influence over the estimated silicon abundance. These results are placed
in the context of the solar abundance problem at large and with agreement
with meteoric abundance and solar models.

In general there was an excellent consistency in equivalent widths
calculated in 3D non-LTE with observational data, and abundances which
are largely consistent across the solar disc. This is not achieved with
modelling in 1D LTE, 1D non-LTE, or 3D LTE, highlighting the value
of realistic 3D non-LTE modelling in the analysis and interpretation of
astronomical spectra.
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Figure 24: Normalised intensity plots of Si I spectral lines: pro-
cessed IAG solar spectrum, 1D LTE MARCS simulation, 3D non-LTE
STAGGER simulation. Simulations calculated with A(Si)=7.56 and oscil-
lator strengths from Kurucz (2016).
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Figure 25: Normalised intensity plots of Si I spectral lines: pro-
cessed IAG solar spectrum, 1D LTE MARCS simulation, 3D non-LTE
STAGGER simulation. Simulations calculated with A(Si)=7.61 and oscil-
lator strengths from Kurucz (2016).
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Figure 26: Spatially resolved observed spectra from IAG before de-
blending and renormalisation. 87
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