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Abstract

Nanowires are an instrumental component of modern nano-technology and so a network of leads

forming a star graph is considered. The leads are being modelled as being one dimensional, and we

consider each channel within the lead to be induced by a potential, which physically is manifested as

the energies of transverse modes in the lead. We consider arbitrary values of these induced potentials.

At the vertex of the graph is a point-like and non-interacting general scatterer – and by finding a

self-adjoint extension to the Hamiltonian, we are able to explicitly construct the unitary scattering

matrix. The scattering matrix depend on the boundary conditions of the wavefunctions in each lead,

as well as the energy of the incoming electron. By connecting each lead to a thermal reservoir, the

system is away from equilibrium and it admits a non-equilibrium steady state.

Equipped with the scattering matrix formalism, we construct a quantum field theory on the star

graph and calculate the electric current, particle density, differential conductance and the heat current.

The x-dependence of the particle density is manifested as Friedel oscillations. Furthermore, the electric

current is constant along edges, and thus the state constitute a steady state. Finally, we study the

quantum quench protocol for switching from an equilibrium state without potentials, to suddenly enter

a non-equilibrium regime and turning on the potentials.
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1 Introduction

Nanowires are quantum systems that can be approximated as being one dimensional and allow for

transport of electrons. Nanowires are ubiquitous in modern nano-technology, and gaining insight in

their inner workings is crucial. Nano-scale systems consisting of many nanowires leading to intersections

are still a rarity, but fabricating such networks has been done in e.g. [1] and interesting physics emerges

as a consequence, depending on the nature of the scatterer at the intersections.

Understanding nanowires is an essential prerequisite in the pursuit for realising many platforms for

quantum technologies, and much effort has been put in studying and fabricating nanowires, since its

experimental inception in 1991. The size of a usual nano-wire can typically be considered unrestricted

in the longitudinal dimension, but severely confined along the transverse dimension down to less than

10 nanometers [2]. Due to this large length to width ratio, one considers this a quasi-one-dimensional

system. The relative size of the transverse dimension usually allow for a multitude of conducting

channels, within a single wire, to exist. The number of channels is partly determined by the conducting

material’s Fermi wavelength λF and the width (diameter for cylindrical wires or width of gate-induced

nanowires in 2D semiconductors) w of the wire [2]. If λF ≫ w, then many open channels (transverse

modes) may exist, and when λF ∼ w, few exist. A related structure that also hosts transverse modes

is the nanotube, that contrary to the nanowire, is a hollow cylinder, where the shell is a layer of atom-

thick graphene. This layer is then wrapped upon itself to create a hollow cylinder, whose diameter

also is of order 10 nanometer. For hexagonal nanowires extending in the x direction, and by assuming

discrete rotational symmetry, the wavefunction might look like ψℓ,kx
(x, φ) = eiφℓeikxxR(φ) where

φ = (0, 2π] is the azimuthal angle, ℓ = 0, ..., 5 accounts for the angular momentum, and R(φ) is the

radial dependence. For a given φ the wavefunction is invariant under φ → φ + 2π rotation, but will

gain a phase for every π/3 turns, and this leads to transverse energies. The energy of the system is the

sum of the transverse mode energies Eℓ and the plane wave eigenenergy E(kx). The fact that one part

of the energy depends on a parameter ℓ, allow us to, schematically, view this hexagonal nanowire as a

network of 6 (independent) channels, one for each eigenvalue of the angular momentum ℓ = 0, ..., 5. The

same generalisation can be applied to the nanowire where dimensional confinement led to transverse

modes. Each mode can be separated to its own lead, and we, get a network of non-interacting leads –

one for each transverse mode. This is shown on figure 1.b.

For a general star graph of nanowires, we wish to set up a general framework for handling scattering

phenomena with induced potentials in the wires. The formalism will encompass a large class of

physical system, such as nanowires with discrete rotational symmetry, the gate-defined nanowires with

transverse modes, nanotubes and the alike. By the same token, the general scatterer can represent a

large family of physical system, like an impurity (magnetic or not), a quantum device, a region with a

non-trivial spin orbit effect.

The simplest configuration of a nanowire-system is with two wires and a scatterer in the middle.
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The two-terminal system has been explored in many papers, including the important [3] from 1985

and the experimental testing of the aforementioned paper in [4]. In it Büttiker et.al. show how, at

non-zero temperature, the conductance across the junction depends on the reflection and transmission

coefficient of the scattering matrix. Furthermore, they generalise the result to an arbitrary number of

channels within each wire, although considering zero temperature. The system they studied can then

be characterised as a multichannel system with just two terminal points (wires) and with each wire

connected to a bath/reservoir, with differing chemical potentials. Systems of this nature with just two

terminal points, is prevalent in the literature because of its simplicity, and ability to model a large

class of junctions with an arbitrary number of channels.
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Figure 1: A two terminal device with transverse potential energies u can be mapped to a

star graph, with each channel is associated with an induced potential uL/R
i and reservoirs

Ri. The reservoir is parameterised by a chemical potential µL/R and an inverse temper-

ature βL/R = 1/TL/R. The S at the vertex symbolises the point-like impurity/device,

whose properties are characterised mathematically by the scattering matrix.

The star graph above is an approximate description of a large class of nano-structures, and thus

much of this thesis will be devoted to understanding such quantum star graphs. Already, much research

has been done on quantum star graphs by, e.g., M. Mintchev in [5]–[7]. There, non-equilibrium steady

states and energy transmutation on quantum star graphs is studied respectively. What is always

assumed though, is that the potentials in the leads are zero, meaning no transverse energies are present,

only that the leads are connected to different reservoirs taking the system away from equilibrium. In

this thesis, we also consider transverse energies (though constant), and we will show that observables

such as electric current, particle density, conductance and heat current has very similar structure to

those without potentials from [6]. However, we generalise the construction of the scattering matrix to

account for general potentials.
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Such a systems of nanowires is in general difficult to create in the laboratory, although there has

been recent progress in making like [1], [8] both using Selective Area Growth to grow the wires. [1]

created large networks of InAs semiconductor nanowires, which may at some point be used in a network

of semiconductor-superconductor junctions. This is of course highly sought after, because of possibility

of Majorana states, that could create fault-tolerant quantum computing, see also [8]. Even though

complicated semiconductor heterostructures, nanotubes, molecules [9] are completely different, these

nanostructures can be described by the same physics that we will discuss in this thesis.

The mathematical framework to describe quantum star graphs, is largely (at least in this thesis)

contributed by V. Kostrykin and R. Schrader in [10]. The problem they study is the following: along

each lead, each wavefunction is solely described by the Hamiltonian, that is hermitian – but at the

vertex, the Hamiltonian is not sufficient, and a, so-called, self-adjoint extension to the Hamiltonian,

is needed. This self-adjoint extension will depend on the boundary conditions of the wavefunctions at

the vertex. This self-adjoint extension also lead to an explicit formula of the scattering matrix S that

plays a central role.

In the following chapters, we will build the formalism for quantum star graphs with induced po-

tentials, based on the papers by Mintchev et.al., [5], [6] and Kostrykin and Schrader [10]. The former

built a quantum field theory and calculated observables, where the latter focused on a first quantisa-

tion method and include self-adjoint extensions of symmetric operators, and discuss symplectic forms.

Then we will use the formalism and calculate the scattering matrix for two examples: the mixed Robin

boundary conditions, and for a δ functions potential at the vertex. In chapter 5 we introduce quantum

fields and calculate certain observables, like particle density, the electrical current and conductance.

Lastly in chapter 6, we compare the two systems (with and without induced potentials) and see how

one can evolve into the other through a sudden switch of the Hamiltonian. This will be an example of

a quantum quench.

1.1 The Landauer-Büttiker formalism and Non-Equilibrium Steady States

These nano-systems are typically on the scale of nanometers or micrometers and in such systems,

the properties are determined by both quantum mechanics and classical mechanics. One of the main

observables one wants to know in a mesoscopic system is the electrical current and conductance. This

is in general given by the Landauer-Büttiker formula, given that the electrons are not interacting,

meaning the quantum mechanical coherence length must then by much greater than the size of the

system. Such systems host unique transport properties that are different from those of bulk materials

and individual atoms or molecules. For example, these systems can exhibit phenomena such as quantum

interference, localisation, and universal conductance fluctuations. These phenomena arise from the fact

that electrons in mesoscopic systems can be confined to small regions, and so their wave-like properties

become important.

The usual setup is the one discussed earlier, with a scatterer in the middle and a set of chan-
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nels/edges connected. Far away, those leads are then connected to metal contacts that supply an

indefinite amount of electrons (the reservoirs). The assumptions on the reservoirs and the general

coupling to the leads are as follows [3]: A reservoir is associated with a chemical potential µ, that is

the maximum energy an electron that is emitted from the reservoir can have (at zero temperature).

The reservoir emits electrons into the leads until all states in the lead are filled. An incident electron

will get absorbed and thermalised – and the reservoir does not change. One can immediately find that

if all reservoirs are equal, no current can run in any wire, and this situation is in thermal equilibrium.

On the other hand, if the reservoirs are different, an electric current will flow. This current will in

general depend on time and the position along the wire – but one finds that it indeed is constant along

each wire, so the system is in an Non-Equilibrium Steady State (NESS).

To begin, we will review the simple case of only two terminal points, with no induced potential and

state the Landauer-Büttiker formula for a two-terminal system.

1.1.1 The two terminal setup

The two terminal setup is a simple example on a nanowire/scattering setup which is the one with a

scattering region and two leads connected to it. Far away, each lead is then connected to a reservoir

with chemical potential µL and µR, and inverse temperature βL and βR.

Now, each lead is connected to its own reservoir with chemical potentials µL and µR. Much of this

section is taken from [9], [11]. These two leads will get labelled with L for left and R for right lead,

see again figure 1.a. Within each of these leads, are 2N channels, maybe originating from transverse

modes discussed earlier. The setup is partly depicted on the left half of figure 1, although we will

consider an arbitrary number of channels within each lead as opposed to only showing 3. Since there

only are two leads, we can write the unitary scattering matrix as the following block matrix, that

depend on the energy

Ŝ(ε) =

ŜLL(ε) ŜLR(ε)

ŜRL(ε) ŜRR(ε)

 =

r(ε) t′(ε)

t(ε) r′(ε)

 . (1.1)

Each sub-matrix Ŝi, i ∈ {LL,LR,RL,RR}. Incoming electrons from the left have amplitudes rij and

tij of being reflected and transmitted from channel j to i, and electrons coming from the left are

likewise described by the primed matrices. The probability for right electrons to be transmitted or

reflected from channel j to i is, respectively

Tij = |tij |2, Rij = |rij |2. (1.2)

The two reservoirs are filled according to a filling factor fL and fR for the left and right reservoir

respectively. These filling factors depend on the temperature and chemical potential of the reservoirs,

and will be the Fermi-Dirac distribution later.

We will now calculate current and also the conductance of such a two-terminal junction [3], [9].

Begin by assume µL > µR such that the electrons are moving from left to right, and also define positive
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momenta k by electrons moving away from the scattere. By taking a cross-section through the left

lead we make the following observations: An electron with negative momentum k < 0 can only be

coming from the left reservoir and is thus associated with filling factor fL. A fraction of the electrons

with positive momenta k > 0, will have been reflected at the scattere and the remaining fraction will

have been transmitted to a reservoir with filling factor fR. The fraction that have been reflected is

Rn =
∑

j Rnj , and the transmitted fraction is 1−Rn for channel n. The current is proportional to the

sum (integral) of all momenta and channels, weighted by the Fermi velocity [9]. By change of variables

and calculating the density of states dn/dε = 2/hv(k), one arrives at the Landauer equation for the

electrical current:

I =
e

π

∫ ∞

0

dεTr
{
t†(ε)t(ε)

}
(f(ε− µL)− f(ε− µR)) , (1.3)

now with f being the Fermi-Dirac distribution

f(ε− µL/R) =
1

1 + eβL/R(ε−µL/R)
. (1.4)

One can then Taylor expand the electrical current I, by introducing the equilibrium chemical potential

µ as µL/R = µ − eVL/R, and then expanding in eVL and eVR around µ. One get [11], with Planck’s

constant h explicitly inserted that

I ≈ −e
2

h

∫ ∞

0

dεTr
{
t†(ε)t(ε)

}∂f(ε− µ)

∂ε
(VL − VR) (1.5)

and by G = I/(VL − VR), as well as assuming zero temperature ∂f/∂ε = −δ(ε− µ)

G(µ) =
2e2

h
Tr
{
t†(µ)t(µ)

}
. (1.6)

The conductance is then only a function of the equilibrium chemical potential, and we have also

assumed that the spin degree of freedom is degenerate, hence the factor of 2.

This system is clearly not in an equilibrium state, as there is an exchange of particles with external

reservoirs. This is by assuming that Tr t†t ̸= 0, since if there was no transmission between edges

with different reservoirs, one would exist in an equilibrium state. This can be generalised from two

reservoirs to N by the unitary scattering matrix S. If S admits non-zero transmission amplitudes

between non-equal reservoirs, the system is away from equilibrium [6]. And as the current in (1.3)

and hence the conductance, among other observables, are time-independent, this is a Non-Equilibrium

Steady State (NESS).

Experimental work on quantised conductance

Experimentally this has been demonstrated a multitude of times, the first being in 1988 by [4]. The

authors found that the conductance is indeed quantised in integer values of G0 = 2e2/h, called the

conductance quanta. Since the conductance is given by the trace of t†t, the larger this matrix is, the

larger, in general, the conductance is. The dimension of t†t depends on the number of open channels

that allow electron transmission through the scatterer. For a given energy E, a channel is only open
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if E is greater than the potential in the channel, and so by increasing the energy, one opens more

channels. The following experiment is two-dimensional setup and using a two-dimensional electron

gas (2DEG), so the formalism we study in this thesis will not be applicable to describe such systems.

The system can be brought to one-dimensional by simply squeezing the transverse dimension as seen

in figure 2a, such that the “Contacts” only have a single point of contact to the wires (2DEG).

The way [4] modelled the scatterer was by a so called split-gate technique [9], [11]: They employed

GaAlAs-GaAs semiconductor heterostructur which forces the electrons to the surface of the GaAlAs

layer, and thus by placing a set of metallic gate electrodes top of the heterostructure, one is able to

control the number of open channels in the 2DEG. This is done simply by varying the voltage across

the metal electrodes, confining the width of the potential in the wire, that allow transport. Thus by

varying the voltage, new channels open, and the conductance jump in a step of G0. The number of

open channels is ⌊kFamin/π⌋, where kF is the Fermi wave number and amin is the narrowest point of

the confinement created by the electrodes. One can also conclude that the staircase-like graph formed

when varying the gate-voltage and measuring the conductance, is a really “sharp” staircase when the

system is entirely classical, meaning either transmission and reflection is either 0 or 1; the quantum

mechanical behaviour is manifested when it takes on values in-between. The experimental setup (from

another paper) as well as the historical observed conductance is shown below on figure 2a and 2b

respectively.

(a) Figure showing a similar experimental setup as

the original one performed by [4]. The figure is

from [12].

(b) Conductance across a two terminal device as a

function of the gate voltage. The conductance is in

clear steps of the conductance quantum G0. From

[4].

Figure 2

Another way to induce non-equilibrium is by a quantum quench protocol. Here one temporally

transitions from a state in equilibrium to a state not in equilibrium. This sudden change leaves the

system in a transient state after which it may settle to a steady state again. One may also do the

opposite. And we will study both cases in more detail.
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1.2 Quantum quenches

After building the formalism for both induced potentials and without, we will see the connection

between the two, by the protocol of a quantum quench. A quantum quench is a protocol in which a

quantum system, with initial Hamiltonian Hi evolves in its eigenstate until a specific time t = t0 where,

suddenly (or gradually) a parameter in the system change, and the Hamiltonian changes accordingly.

Thus the system evolves according to a new, final, Hamiltonian Hf . One is then interested in how

physical observables change, as well. This is often a non-trivial calculation, since expectation values

of operators in a state which is not an eigenstate may prove difficult. Specifically, we will see how the

average current changes after a quench, and if it settles into a steady state.

In [13] the authors compare different physical theories of calculating the average current in the

following setup: two 1D lattices are connected through a non-interacting junction. The two methods

considered are the LB scattering procedure and the Micro-Canonical Formalism (MCF). The authors

consider two quench protocols which will be very similar to the ones we will be considering in section

6. The density quench: at time t < 0, the leads are disconnected to the junction, and a voltage

bias is present in the leads, such that the density is the leads are not equal. At t ≥ 0 the leads are

connected to the junction and the voltage bias across each leads is removed. µ quench: At time t < 0,

the leads are connected to the junction, without a voltage difference. At t ≥ 0, a voltage is created in

each lead, and the densities are different, so a current flows through the junction.

The MCF assumes a closed system with a finite and constant number of particles – contrary to the

LB scheme, where an open system, with infinitely long wires, and an indefinite number of particles

which can be supplied from thermal reservoirs, is assumed. Either way, the authors find that the two

schemes agree largely on the average current, for semi-large times. An interesting feature they find for

the LB system, is that the particles at the reservoirs need not obey Fermi-Dirac statistics. Analysis

on density vs µ quench has been done in [13], [14]. In addition, [15] analysed the density quench with

a hydrodynamic approach.

One may also consider a slow quench, in which one adiabatically turn on parameters that turn a

simple Hamiltonian into a complicated one, whose ground state in the sought after. We will rather

consider a sudden quench, in which one inject a large amount of energy into the system, and thus

the ground-state is no longer an eigenstate for the system. Even though the voltage in wires usually

oscillate much slower than the motion of electrons, a sudden quench is a good approximation in the

long-time limit.

Previously we looked at the simplest case of a scattering matrix: the two-terminal setup without

induced potentials. We will now introduce the scattering matrix more rigorously, and to begin with,

assume no induced potentials in the leads. In section 3, we introduce the potentials and will explore

the implications the potentials cause.
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2 The Schrödinger junction without induced potentials

In this section, we will succinctly recap known results, taken from [5], [10], where a quantum star graph

with N edges, all connected at a vertex V , is being studied. We will start by studying the bulk of the

graph: G\V , i.e. what fields propagate on the edges, and the section that follows will then contain

the physics at the vertex V , i.e. the scattering matrix.

2.1 Fields in the bulk

The system we wish to explore is the one depicted on figure 3. N independent edges connected to

a single vertex. There is no induced potential in any channel, and we assume the leads are perfect

conductors in the sense that there is no energy loss due to dissipation.

S

·· ·

· ··

E1

E2

Ei

Ei+1
EN

xi

V

Figure 3: Inspired by [5]. Shows the graph G along with its N edges all with xi > 0 for

all i = 1, ..., N , as well as the vertex V located at x = 0. This is also the location of the

point-like scatterer, that is represented by a scattering matrix S.

The dynamics of the system is a simple scattering process: we inject an electron wave into edge

Ei and we want to describe its scattering properties in other edges. We can describe the system by a

state vector |χa(ε)⟩, where a labels which channel we inject a wave into, and ε is its energy. With H0

being the Hamiltonian

H0 |χa(ε)⟩ = ε |χa(ε)⟩ , (2.1)

Where ε > 0. If we let b label which specific channel we’re probing and x be the distance from the

vertex on edge Eb, the combination of the two, fully describes positions on G\V . We assume the state

|b, x⟩ is an orthonormal basis, i.e.

1 =

∫ ∞

0

dx
N∑
b=1

|b, x⟩ ⟨b, x| , (2.2)
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where 1 here symbolises an identity operator. In the bulk i.e. for x > 0, the particles are free, and

since ⟨b′, x′|H |b, x⟩ = −δbb′δ(x− x′)∂2b,j/2m. So the Hamiltonian on edge Ej is given by

H0
j = −

∂2j,x
2m

, m > 0, (2.3)

where m is the electron mass and ⟨b, x|χab(ε)⟩ = χab(x, ε) is the electronic wavefunction where a labels

the channel of the incoming particle, and b is which lead we’re probing. The j index on the derivative

is to explicitly state that the derivative only acts on edge Ej , but will often get suppressed. The

Hamiltonian in the bulk of the graph is

H0 =

N⊕
j=1

H0
j =

N⊕
j=1

−∂2j,x
2m

, (2.4)

Where the direct sum is taken over all N channels. For the following of the thesis, we assume each

lead is a perfect one-dimensional conductor with no impurities, such that each wave is a plane wave.

Furthermore, all electrons are completely incoherent, and do not interact. We now have a choice

between a basis of the wavefunctions: either we insert a wave in lead i that then gets transmitted into

the remaining N − 1 edges, and reflected back in i by the scatterer at the vertex – or waves from all

edges meet at the vertex and culminate to a single wave in just lead i. These two scenarios are basis

1 and 2 and are depicted on figure 4a and 4b, respectively. They are physically equivalent, and both

constitute an orthonormal basis, and so there exists a unitary transformation between the two. We

will see in section 5.1 that this transformation simply is given by the scattering matrix S. We will use

basis 1 in the following.

S

E1

E2

Ei

Ei+1
EN

V

·· ·

· ··

(a) Basis 1 takes incoming waves to the junction to

be e−ikx, k > 0.

S

E1

E2

Ei

Ei+1
EN

V

·· ·

· ··

(b) Basis 2 takes outgoing waves from the junction

to be e−ikx, k < 0.

Figure 4: The graph G with the two bases shown. The two wavefunction bases. The

filled black arrows on each lead shows which way positive x is.
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The two plane waves that can exist on edge Ei is the plane wave e−ikx, x, k > 0 with amplitude unity

if it originates from x = +∞, and a rescaled version Ae−ikx if it has been scattered from the vertex.

We will find that the prefactor A is elements of the scattering matrix. Since there are no induced

potentials, the leads are identical and momentum is conserved across the junction. We assume in the

remaining that the scattering matrix acts as a non-interacting junction, such that we are allowed to

only consider a single electron at a time. So S will in general depend on the momentum k of the particle

that is to get scattered: S(k). We will assume that S can scatter to and from all N edges, hence S is

N ×N . The entries of the matrix Sab(k), a ̸= b has the simple interpretation of probability amplitude

of a particle coming from edge Eb, and getting scatted to edge Ea, i.e. transmission amplitudes, and

so the diagonal elements a = b are reflection amplitudes. To conserve probability current, one requires

the scattering matrix to be unitary, i.e.

S†(k)S(k) = 1N , (2.5)

where 1N is the N ×N identity matrix. The wavefunctions that propagate in the bulk of the graph

G\V is

χab(x, k) = e−ikxδba + eikxSba(k), x, k > 0. (2.6)

We have renamed the wavefunction’s dependence on energy ε to momentum k. Here the labels a and

b both range from a, b ∈ [1, N ] and k is the momentum of the electron1. These wavefunctions are

eigenfunctions to the Hamiltonian in (2.3):

H0
bχab(x, k) =

k2

2m
χab(x, k) (2.7)

hence the eigenenergy is

ε =
k2

2m
. (2.8)

It has been shown in [5] that the wavefunctions are orthogonal∫ ∞

0

dx
N∑
b=1

χ∗
a′b(x, k

′)χab(x, k) = 2πδaa′δ(k − k′). (2.9)

Furthermore, they form a complete set if there are no bound states at the vertex meaning∫ ∞

−∞

dk
2π
eikxSba(k) = 0, (2.10)

then ∫ ∞

0

dk
N∑

a=1

χ∗
ab′(x

′, k)χab(x, k) = 2πδbb′δ(x− x′). (2.11)

This section was limited to the physics in the bulk of the graph. In the following we will study how the

scattering matrix, at the vertex plays a role. We will find a closed matrix-equation for S as a function

of the momentum and the boundary condition that the wavefunction make at the vertex.
1We have set ℏ = 1 and Boltzmann’s constant kB = 1 throughout the thesis
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2.2 Self-adjoint extensions and the scattering matrix

We will now discuss in more detail the actual structure of the scattering matrix S. Much of the

following is taken from [5], [10], [16]. Given two quantum states ψ and ϕ on a quantum star graph G

with N edges connected at the vertex V , we can define the following vector

ψ(x) = (ψ1(x), · · · , ψN (x))⊤ (2.12)

and likewise for ϕ. Each component ψi lives on edge Ei and belong to the Hilbert space

Hi = L2([0,∞[). (2.13)

Thus the Hilbert space for the graph G is

HG =
N⊕
i=1

Hi =

N⊕
i=1

L2([0,∞[), (2.14)

with the states ψ, ϕ ∈ HG. An inner product over HG is defined as

⟨ψ, ϕ⟩HG
=

N∑
i=1

⟨ψi, ϕi⟩Hi
=

N∑
i=1

∫ ∞

0

dx ψ∗(x)ϕ(x), (2.15)

where ∗ is complex conjugation. The inner will be written from now on simply as ⟨ψ, ϕ⟩. We require

self-adjointness of the Hamiltonian given in (2.3)

⟨ψ,Hϕ⟩ = ⟨Hψ, ϕ⟩, ∀ψ, ϕ ∈ HG. (2.16)

Our task is then to find which boundary conditions (BC) we must enforce to have self-adjointness.

With the shorthand notation

∂xϕi(0) = lim
x→0+

∂xϕi(x), (2.17)

ϕi(0) = lim
x→0+

ϕi(x) (2.18)

for any i = 1, ..., N , we find, by assuming the fields vanish as x→ ∞, and using partial integration

⟨ψ,Hϕ⟩ =
N∑
i=1

∫ ∞

0

dx ψ∗
i (x)

−∂2x
2m

ϕi(x) (2.19)

=
1

2m

N∑
i=1

[
ψ∗
i (0)∂xϕi(0)− ∂xψ

∗
i (0)ϕi(0)

]
+ ⟨Hψ, ϕ⟩, (2.20)

so the BC becomes
N∑
i=1

ψ∗
i (0)∂xϕi(0) =

N∑
i=1

∂xψ
∗
i (0) ϕi(0). (2.21)

The above equation is a direct consequence of the requirement of self-adjointness of the Hamiltonian

in the bulk. It has been shown in [10] that the self-adjoint extension to H on the boundary is uniquely

11



defined by the following three conditions for A and B given by N ×N matrices

Aψ(0)+Bψ′(0) = 0, (2.22a)

AB† = BA†, (2.22b)

the composite N × 2N matrix (A,B) has maximal rank N . (2.22c)

There exists equivalent conditions for the state ϕ. That is to say, these three equations maximise the

Hilbert space in which (2.21) holds. The prime on ψ′(x) denotes the derivative with respect to position

x. We will see later that ψ(x) is an annihilation operator in second quantisation, and will be discussed

in section 5, in more detail. The components ψb(x) for b ∈ [1, N ] of the field ψ(x) is given by

ψb(x) =

∫ ∞

0

dk
2π

N∑
a=1

χab(x, k)ca(k), (2.23)

with ca(k) being fermionic operators in lead a with momentum k, and satisfy anti-commutation-

relations. From (2.22a), we get, with the wavefunction χab given by 2.6, that

N∑
j=1

(Abjψj(0) +Bbjψ
′
j(0)) = 0, ∀b = 1, ..., N (2.24a)

∫
dk
2π

N∑
a=1

ca(k)

N∑
j=1

[Abjχaj(0, k) +Bbj∂xχaj(x, k)|x=0] = 0 (2.24b)

The solution to the equation C =
∑

a cava = 0 for ca an annihilation operator and va ∈ C makes sense

if one considers C acting on all vectors. If one does not consider the vacuum state |0⟩, the general

solution is that va = 0, ∀a, as ca |0⟩ = 0. So

N∑
j=1

(Abjχaj(0, k) +Bbj∂xχaj(x, k)|x=0) = 0, ∀a, b = 1, ..., N (2.25a)

Aba − i(Bk)ba + (AS)ba + i(BkS)ba =0, ∀a, b,= 1, ..., N. (2.25b)

and so the scattering matrix in matrix form is

S(k) = −(A+ iBk)−1(A− iBk). (2.26)

where here k ∈ R. The existence of the inverse (A+ iBk) has been proved in [10]. By the rewriting

S(k) = −
(
A† − iB†k

) [
AA† + k2BB†]−1

(A− iBk) (2.27)

and by using (2.22b), we see that the matrix is unitary and satisfy

S†(k) = S(−k), (2.28)

and by their combination, we get

S(k)S(−k) = 1. (2.29)

12



An important note of the scattering matrix, is that it is not possible to explicitly write out the elements

Sab explicitly as functions of k Aab and Bab.

Generally the scattering matrix depend on the momentum k of an incoming electron wave, but

there exists special cases where S(k) may be k-independent. This is the case if we let a matrix C(λ)

for λ > 0 exist, such that C(λ)A = A and C(λ)B = λB, [10]. The independence of k can be seen by

multiplying (2.22a) by C(λ) from the left, and then one get Aψ(0) + Bλψ′(0) = 0, simply meaning

B → λB, and if that happens to (2.26), one get the same equation but with k → λk, meaning S(k)

cannot depend on k. This is an important feature, only of the non-induced leads. The wavefunction

ψb(x) has units of 1/
√

L where L is a length. We choose A to be unit-less and B has then units of

length, in arbitrary units. We will now consider leads with induced potentials.

3 The Schrödinger junction with induced potentials

We now introduce the induced potentials Uj(x) in each edge Ej . The potential Uj(x) can in general

have a non-trivial dependence on position along the edge x, as well as the collection of all the chemical

potentials at the reservoirs. These potentials can originate from a multitude of reasons, and the

following is a non-exhaustive list:

1. The potential Uj(x) in channel j can be induced from a neighbouring electrostatic gate that is

in proximity of the wire, i.e. they are coupled capacitively. This technique has been done in e.g.

[17].

2. Induced potential Uj(x) in channel j can be inherited directly from the reservoirs themselves. Cal-

culating this effect would be done by solving the Schrödinger-Poisson equations self-consistently:

The potential in lead j = 1, ..., N solve Poisson’s equation

∇2Uj(x) ∝ N0 − nj(x) (3.1)

where N0 is a background density of electrons, corresponding to the Fermi energy. And

nj(x) =

∫ ∞

−∞
dε

∑
a open

|χaj(x, ε)|2fa(ε− µa) (3.2)

is the density of electrons in lead j, fa(ε−µa) = (exp(βa(ε− µa))+1)−1 is the Fermi-distribution

at reservoir Rj with chemical potential µa and inverse temperature βa = 1/Ta and χaj(x, ε) is

the wavefunction that satisfy the Schrödinger equation(
− ∂2x
2m

+ Uj(x)

)
χaj(ε, x) = εjχaj(x, ε) (3.3)

where εj is the eigenenergy of edge Ej , that in general may differ from each edge. This description

is purely physical and will happen regardless or not, though the potentials induced by this effect

might be small.
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In the following, we will make the simplistic assumption that the potential in edge Ej , Uj(x) = Uj is

constant.

For the formalism in the previous section without potentials, we had shifted the energy-scale up

by the Fermi-energy such that the ground-state had zero particles, but in this case, we now include

it explicitly, since a constant shift in the Fermi-energy for different leads, may be thought of as leads

with different Fermi-energies all together. We are considering metallic leads with a Fermi energy of

EF > 0. So for a constant induced potential Uj across channel Ej the Hamiltonian in channel Ej is

Hj =
−∂2x
2m

+ Uj − EF. (3.4)

We define the quantity

uj ≡ Uj − EF, (3.5)

and will from now on rename this the induced potential. A schematical depiction of the situation is

on figure 5.

Ŝ

·· ·
· ··

E1

E2

Ei

Ei+1
EN

x

V

uN

u1

u2

ui

ui+1

Figure 5: The graph G with N edges and a vertex V at x = 0. At each edge Ei is a

constant potential ui. The usual unitary scattering matrix S is replaced by Ŝ, which is a

consequence of the non-zero potentials u in the leads.

3.1 Fields in the bulk with induced potentials

First we will introduce the notion of open and closed channels. These are an artefact of the induced

potentials: consider the edge Ej with associated potential uj . Only particles with energy ε > uj may

exist, so for given ε only a subset of all leads are open:

• Open channel: For a fixed ε and a fixed set of potentials u = {u1, · · · , uN}, an open chan-

nels/edge Ei with an associated potential ui satisfies ε > ui. The number of open channels is

denoted n and is the size of the set of open channels

O(ε) = {j, ε− uj > 0}, (3.6)
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so

n = n(ε) = #O(ε) (3.7)

with #A denoting the number of elements in the set A.

• Closed channel: For a fixed ε, a closed channels Ei with induced potential ui satisfies ε ≤ ui.

By the same token, the number of closed channels η depend on ε as

C(ε) = {j, ε− uj ≤ 0}, (3.8)

and

η = η(ε) = N − n(ε), (3.9)

with N being the total number of edges in the system.

In the light of the possibility of a channel being open or closed, |χa(ε)⟩ might not be an eigenstate to

H for a = 1, ..., N , but

H |χa(ε)⟩ = ε |χa(ε)⟩ , a ∈ O(ε). (3.10)

and by inserting 1 =
∫

dx′
∑

b′ |b′, x′⟩ ⟨b′, x′|, and multiplying with ⟨b, x|, we find∫ ∞

0

dx′
N∑

b′=1

⟨b, x|H |b′, x′⟩χab′(x
′, ε) = εχab(x, ε) (3.11)

with χab(x, ε) = ⟨b, x|χa(ε)⟩. By incorporating the induced leads, the Hamiltonian on edge Ej is

Hj = − ∂2x
2m

+ uj (3.12)

and so the Hamiltonian on G\V is

H =

N⊕
j=1

Hj =

N⊕
j=1

(
− ∂2x
2m

+ uj

)
(3.13)

So from above we find

Hbχab(x, ε) = εχab(x, ε) (3.14)

the eigenenergy is

ε =
k2i
2m

+ ui, (3.15)

for any i = 1, ..., N , that, contrary to the case with no induced potentials, does not have momentum

conserved across the junction, though the energy ε is. This changes the dependence of the wavefunction

and the scattering matrix, from k to ε as

χab(x, ε) = e−ika(ε)xδba + eikb(ε)xSba(ε), x > 0, a ∈ O(ε). (3.16)

where in general

kj(ε) =
√
2m(ε− uj). (3.17)
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In the case of ε − uj < 0, we are left with an evanescent wavefunctions in channel Ej , hence no

electronic transport. We introduce a new notation for such a number and will from now on suppress

the energy-dependence on kj(ε) and simply write kj . We define

kj =
√

2m(ε− uj) = θ(ε− uj)
√
2m(ε− uj) + iθ(uj − ε)

√
2m(uj − ε) (3.18)

where θ(x) is the Heaviside step function that takes the value 1 if x > 0 and 0 if x ≤ 0, and we define

koj = θ(ε− uj)
√

2m(ε− uj) (3.19a)

kcj = θ(uj − ε)
√

2m(uj − ε) (3.19b)

kj = koj + ikcj , kojk
c
j = 0. (3.19c)

The superscripts o and c are short for open and closed. Since the numbering of the leads is arbitrary,

we have let

u1 ≤ u2 ≤ · · · ≤ uN . (3.20)

The momentum in (3.19) can be listed as the entries in an N ×N non-invertible diagonal matrix as

ko = diag
(
ko1, · · · , kon, 0, · · · , 0︸ ︷︷ ︸

η

)
, kc = diag

(
0, · · · , 0︸ ︷︷ ︸

n

, kcn+1, · · · , kcn+η

)
(3.21)

with n+ η = N being the total number of leads in the system. The momentum k still depends on the

energy ε, and so does n, meaning the rank of ko and kc depends on ε. The N ×N momentum matrix

k, is thus

k = diag
(
ko1, · · · , kon, ikcn+1, · · · , ikcN

)
. (3.22)

The momentum matrix k is not invertible at specific values of ε, indeed it has a single zero on the

n’th entry: ki(ui) = 0 ∀i = 1, ..., N . So k = k(ε) is invertible on the values ε ∈ R\{u1, ..., uN}, and

if ε < u1, then all channels will be closed, and k is purely imaginary. Likewise, if ε > uN , then all

channels are open and k is real. This almost invertibility will get discussed further once the unitary

scattering matrix Ŝ is introduced.

Taking the possibility of closed channels into consideration, we generalise the wavefunction as

χab(x, ε) =
√
voa

−1
(
e−iko

axδba + ei(k
o
b+ikc

b)xSba(ε)
)
, x > 0, a ∈ O(ε) (3.23)

with units of 1/
√

L · E with L being length and E energy, both in arbitrary units, and the scattering

matrix is unit-less. We also introduced the (Fermi) velocity

voa =
∂ε

∂koa
=
koa
m

(3.24)

Furthermore, we included the normalisation constant 1/
√
voa, such that the following orthogonality

relation holds: ∫ ∞

0

dx
N∑
b=1

χ∗
a′b(x, ε

′)χab(x, ε) = 2πδaa′δ(ε− ε′), (3.25)
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which has been proven in Appendix C. The primed variables only refer to a different energy, and the

potentials in each wire is the same is both cases. So

koj = θ(ε− uj)
√
2m(ε− uj), (3.26)

ko′j = θ(ε′ − uj)
√
2m(ε′ − uj), (3.27)

likewise for kcj and so

χ∗
a′b(x, ε

′) =
√
vo′a′

−1 (
eik

o′
a′xδba′ + e−i(ko′

b −ikc′
b )xSba′(ε′)

)
. (3.28)

Since ε and ε′ in general are not equal, and they dictate the number of open channels n = n(ε) and

n′ = n(ε′)

1 ≤ a′ ≤ n′, 1 ≤ a ≤ n, (3.29)

we assume the following

ε′ > ε, n′ ≥ n, (3.30)

where the equality n′ = n is true when there is at least one intermediate ui making ε′ − ε < ui − ui−1.

This section was limited to the physics of the bulk of the graph. We will now explore the vertex

when the edges are induced. This follows the procedure of section 2.2 closely.

3.2 Self-adjoint extensions with induced potentials and the unitary scat-

tering matrix

We need to check if by introducing the induced potentials, the self-adjoint extension will change as

well. Similar analysis has been done in [16]. We still require for two states ψ and ϕ on a quantum

graph G that the Hamiltonian is self-adjoint:

⟨ψ,Hϕ⟩ = ⟨Hψ, ϕ⟩, ∀ψ, ϕ ∈ HG (3.31)

with again

HG =

N⊕
i=1

L2([0,∞[), (3.32)

but now with the Hamiltonian on edge Ei is given by (3.13). We find, by partial integration that

⟨ψ,Hϕ⟩ =
N∑
i=1

∫ ∞

0

dx ψ∗
i (x)

(
−∂2x
2m

+ ui

)
ϕi(x) (3.33)

=
1

2m

N∑
i=1

[
ψ∗
i (0)∂xϕi(0)− ∂xψ

∗
i (0)ϕi(0)

]
+ ⟨Hψ, ϕ⟩ (3.34)

so
N∑
i=1

ψ∗
i (0)∂xϕi(0) =

N∑
i=1

∂xψ
∗
i (0)ϕi(0), (3.35)
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which is an equivalent condition to the case with no induced potentials in section 2.2. By introducing

the induced potentials, the BCs required for self-adjointness does not change, hence the results from

[10] still hold, and thus the three requirements for the vertex remain:

Aψ(0)+Bψ′(0) = 0, (3.36a)

AB† = BA†, (3.36b)

the composite N × 2N matrix (A,B) has maximal rank N . (3.36c)

The components of ψ(x) will now look like

ψb(x) =

∫ ∞

−∞

dε√
2π

∑
a∈O(ε)

ca(ε)χab(x, ε), (3.37)

with ca(ε) again being an annihilation operator, whose details will get discussed in section 5.2. So

from (3.36a) we get by the same argumentation as in section 2.2

N∑
j=1

(Abjχaj(0, ε) +Bbj∂xχaj(x, ε)|x=0) = 0, a ∈ [1, n], b ∈ [1, N ] (3.38)

with the wavefunctions χab given by (3.23).

N∑
j=1

(
AbjSja +Abjδaj − iBbjk

o
aδaj + iBbjk

o
jSja −Bbjk

c
jSja

)
= 0, a ∈ [1, n], b ∈ [1, N ] (3.39)

leading to the matrix equation

S(ε) = − (A+ iBk)
−1

(A− iBk)Π⊤
o (3.40)

with k given in (3.22), and Π⊤
o is the block-defined matrix

Π⊤
o =

 1n

0(N−n)×n

 being N × n, (3.41)

with ⊤ denoting the transpose, 1n is the n × n identity matrix and 0ab is a a × b matrix filled with

zeros. This makes the new scattering matrix S(ε) have dimension N ×n. One could also have defined

Π⊤
o as an N ×N projection matrix: with an n× n identity matrix in the top left corner as 1n 0n×η

0η×n 0η×η

 . (3.42)

The scattering amplitude for closed channels would then be zero, instead of being undefined as with

(3.41).

The Π’s satisfy

Po = Π⊤
o Πo =

 1n 0n×η

0η×n 0η×η

 , (3.43a)

ΠoΠ
⊤
o = 1n (3.43b)
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and we define the invertible n× n matrices νo and κo by

vo = Π⊤
o ν

oΠo, ko = Π⊤
o κ

oΠo (3.44a)

νo = Πov
oΠ⊤

o , κo = Πok
oΠ⊤

o , (3.44b)

Now νo is the truncated vo with m zeroes removed on both dimensions, meaning it is n × n with

only non-zero components on the diagonal. When calculating the orthogonality (3.25), one ends up

requiring the following construction of the scattering matrix to be unitary:

Ŝ(ε) =
√
κoΠoS(ε)

√
κo

−1
, (3.45)

that is now n×n. A very similar construction has been considered in [18]. With the non-unitary part

S(ε) given by (3.40). Unitarity of the scattering matrix Ŝ is proven in Appendix D. In the case of all

open channels ε > uN , the above simplifies to

Ŝ(ε) =
√
kS(ε)

√
k
−1

= −
(
A
√
k
−1

+ iB
√
k
)−1 (

A
√
k
−1

− iB
√
k
)
. (3.46)

And the existence of the inverse in this case is proven in Appendix A.

As alluded to earlier, κo(ε) is not invertible if it is evaluated at any of the induced potentials. Then

it is the case that κo(ub), for any b ∈ [1, N ], is b × b with its very last entry κob = 0. Specifically for

a, b ∈ O(ε) we find that

Ŝab(ε) =

(
ε− ua
ε− ub

)1/4

Sab(ε). (3.47)

Based on numerical simulations, one concludes that for diagonal elements

lim
ε→u+

b

Ŝbb(ε) = −1, (3.48)

but we cannot conclude anything about non-diagonal elements, except

lim
ε→u+

b

|Ŝab(ε)|2 = δab. (3.49)

This hints at that channel b indeed is closed when the energy of the electron is exactly at the induced

potential ub, as indicated in the definition of a closed channel in (3.8). The channel opens as ε > ub.

3.3 Conservation laws in first quantisation

At this point we can make several sanity checks, e.g. Kirchhoff’s law and the continuity equation.

We will show that the wavefunctions defined earlier satisfy Kirchhoff’s law – specifically that the

current is conserved. The construction below will also be used when calculating the current in second

quantisation in section 5. The current is defined as

Jab(x, ε) =
1

2im
χ∗
ab(x, ε)Rχab(x, ε) (3.50)
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with

χab(x, ε) =
√
voa

−1
(
e−iko

axδab + ei(k
o
b+ikc

b)xSba(ε)
)
, x ∈ (0,∞), 1 ≤ a ≤ n, 1 ≤ b ≤ N. (3.51)

Kirchoff’s law states that the sum over each lead of currents has to vanish, hence we want to show

that
N∑
b=1

Jab(x, ε) = 0, ∀a ∈ O(ε) (3.52)

This is easily satisfied if all channels are open, meaning S is unitary and the momentum in each lead is

conserved. However, we now will look at the situation with a general number n ≤ N of open channels.

χ∗
ab(x, ε)Rχab(x, ε) =

1

voa

[
−2ikoaδ

2
ab + iδabSba(ε)

(
(kob + ikcb)e

iko
axei(k

o
b+kc

b)x − koae
iko

axei(k
o
b+ikc

b)x
)

− iδabS
∗
ba(ε)

(
koae

−iko
axe−i(ko

b−ikc
b)x − (kob − ikcb)e

−iko
axe−i(ko

b−ikc
b)x
)
+ 2ie−2kc

bxkob |Sba(ε)|2
]

(3.53)

So

N∑
b=1

Jab(x, ε) =
−i
2m

1

voa

[
−2ikoa + 2i

N∑
b=1

e−2kc
bkob |Sba(ε)|2

]
(3.54a)

= −1 +

n∑
b=1

kob |Sba(ε)|2(koa)−1 (3.54b)

= −1 +

n∑
b=1

|Ŝba(ε)|2 (3.54c)

= 0 (3.54d)

where we used the unitarity of Ŝ, and the transformation rule

|Sba(ε)|2kob = |Ŝba(ε)|2koa, b, a ∈ O(ε) (3.55)

applies, since both indices a and b, in (3.54b), indeed belong to open channels.

The continuity equation ∂tρ(x, t) + ∂xJab(x, t) = 0, is satisfied since the density ρ does not depend

on time, and ∂x[χ
∗
ab(x, ε)Rχab(x, ε)] = 0, where terms not proportional to δba, in (3.53), vanish, and

the two terms proportional to S∗
ba and Sba cancel independently.

3.4 The leads connect to thermal reservoirs

We now connect each lead to a reservoir Ri infinitely far away, which is parameterised by an inverse

temperature βi = 1/Ti and a chemical potential µi. All the reservoirs we consider have µi > ui, such

that electrons from the reservoir tunnel to the lead. The leads are in equilibrium with its corresponding

reservoir.
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Figure 6: The graph G with each edge induced with a potential u and is connected to

a reservoir Ri with inverse temperature βi and chemical potential µi. The point-like

scatterer is located at the vertex and is symbolised by the unitary scattering matrix Ŝ.

The equilibrium regime is if all reservoirs are equal, meaning both temperature and chemical

potentials are equal. We assume that every reservoir is filled according to a Fermi-Dirac distribution

fj(ε− µj) =
1

1 + eβj(ε−µj)
, (3.56)

and thus if fj = fi for all i, j we are in equilibrium. The reservoirs Ri are modelled as infinitely large

thermal baths, and they supply electrons to the leads such that all states are filled up to energy µi, at

zero temperature. An incident electron on the reservoir, thus coming from the junction, is absorbed

and thermalised with the reservoir. We also neglect interference between channels within each lead.

With the formalism in place, we will look at two examples of the BC matrices and calculate the

scattering matrix in those cases.

4 Examples of the scattering matrix

We will now calculate the scattering matrix for some simple examples of BC matrices A and B. First

we consider the Robin mixed boundary conditions. This is a linear combination of the two well-

known boundary conditions: Dirichlet BC and Neumann BC. The former states only what values the

wavefunction takes on the boundary, and the latter states what the derivative is on the boundary.

4.1 Robin mixed boundary conditions

The N × n scattering matrix is given by

S(ε) = − (A+ iBk)
−1

(A− iBk)Π⊤
o . (4.1)

The unitary scattering matrix is

Ŝ(ε) =
√
κoΠoS(ε)

√
κo

−1
. (4.2)
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The Robin BCs are given by

A =



1 −1 0 · · · 0 0

0 1 −1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 −1

0 0 0 · · · 0 −α


, B =



0 0 0 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 0

1 1 1 · · · 1 1


(4.3)

with a general proportionality constant α ∈ C. This means

ψ1(0) = ψ2(0) = · · · = ψN (0),

N∑
i=1

∂xψi(0) = αψ1(0). (4.4)

A+ iBk =



1 −1 0 · · · 0 0

0 1 −1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 −1

ik1 ik2 ik3 · · · ikN−1 −α+ ikN


. (4.5)

By letting

Σab =

b∑
j=a

kj (4.6)

for b < N and

ΣaN =

N∑
j=a

kj + iα (4.7)

for b = N , where in particular

Σ1N =

N∑
j=1

kj + iα, (4.8)

we find

(A+ iBk)−1 =
1

Σ1N



Σ2N Σ3N Σ4N Σ5N · · · ΣNN i

−Σ11 Σ3N Σ4N Σ5N · · · ΣNN i

−Σ11 −Σ12 Σ4N Σ5N · · · ΣNN i

−Σ11 −Σ12 −Σ13 Σ5N · · · ΣNN i
...

...
...

...
. . .

...
...

−Σ11 −Σ12 −Σ13 −Σ14 · · · ΣNN i

−Σ11 −Σ12 −Σ13 −Σ14 · · · −Σ1,N−1 i


(4.9)

This makes

S(ε) = −(A+ iBk)−1(A− iBk)Π⊤
o = − 2

Σ1N


k1 · · · kn
...

. . .
...

k1 · · · kn

−Π⊤
o (4.10)
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Now, to find the unitary scattering matrix:

Ŝ(ε) = −
√
κoΠo(A+ iBk)−1(A− iBk)Π⊤

o

√
κo

−1
= − 2

Σ1N

√
κo


k1 · · · kn
...

. . .
...

k1 · · · kn

√
κo

−1 − 1n (4.11)

= − 2

Σ1N



k1
√
k1k2

√
k1k3 · · ·

√
k1kn

√
k1k2 k2

√
k2k3 · · ·

√
k2kn

√
k1k3

√
k2k3 k3 · · ·

√
k3kn

...
...

...
. . .

...
√
k1kn

√
k2kn

√
k3kn · · · kn


− 1n. (4.12)

Let

Λ =



k1
√
k1k2

√
k1k3 · · ·

√
k1kn

√
k1k2 k2

√
k2k3 · · ·

√
k2kn

√
k1k3

√
k2k3 k3 · · ·

√
k3kn

...
...

...
. . .

...
√
k1kn

√
k2kn

√
k3kn · · · kn


(4.13)

then assuming for simplicity α ∈ R,

Ŝ(ε) =
2
∑

j∈O k
o
j(∑

j∈O k
o
j

)2
+
(∑

j∈C k
c
j + α

)2Λ− 1n −
2i
(∑

j∈C k
c
j + α

)
(∑

j∈O k
o
j

)2
+
(∑

j∈C k
c
j + α

)2Λ (4.14)

and by letting

Ko/c =
∑

j∈O/C

k
o/c
j ≥ 0, λ2α = K2

o + (Kc + α)2 (4.15)

then

Ŝ(ε, α) = 2
Ko

λ2α
Λ− 1n − 2i

Kc + α

λ2α
Λ (4.16)

whose phase θab, in polar coordinates, is

θab(ε, α) = − tan−1 Kc + α

Ko − λ2αδab/2ka
, (4.17)

and since tan−1 x is a strictly increasing function it makes sense to take limits as α→ ±∞:

lim
α→±∞

θa̸=b(ε, α) = ∓π/2 (4.18)

lim
α→±∞

θa=b(ε, α) = 0 (4.19)

One can also check numerically that θa=b(ε, α) < 0 for α ∈ R and θa ̸=a(ε, α) > 0. For a given finite

interval of α and a constant ε, Ŝab(α) takes the shape of an ellipse arc in the complex plane, closing

around

lim
α→±∞

Ŝab(ε, α) = −δab, (4.20)
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which reproduces the Dirichlet boundary conditions.

Setting α = 0 gives a generalisation of the Neumann boundary conditions [5], and the unitary

scattering matrix is

Ŝab(ε, 0) = 2
Ko − iKc

K2
o +K2

c

Λ− 1n. (4.21)

Further, by setting all induced potentials u = 0, we find that the scattering matrix turns independent

of energy. Scattering matrices that happen to be independent of energy, are of special interest since

they correspond to critical points in statistical mechanics. However systems with non-zero induced

potentials in the leads, may not be able to host energy-independent scattering matrices. The case

of energy-independent scattering matrices without induced potentials has been explored fully in [10].

Now

Ŝ(ε, α = 0,u = 0) =
2

N


1 · · · 1
...

. . .
...

1 · · · 1

−


1 · · · 0
...

. . .
...

0 · · · 1

 (4.22)

=


2
N − 1 · · · 2

N
...

. . .
...

2
N · · · 2

N − 1

 . (4.23)

We will use examples for energy-independent scattering matrices in calculating the electric current and

particle density in section 5.

4.2 A δ function potential

We will now look at the simplest example by letting A and B be diagonal. The resulting scattering

matrix is also diagonal, and hence constitutes a family of systems in which there is no exchange of

particles between leads or even channels, i.e. all incoming electron waves will exclusively get reflected.

Using the fact that A and B are diagonal together with (3.23) and (3.38), we get that

Sba(ε) =
iBbbk

o
a −Abb

Abb + iBbbkb
δba (4.24)

in which

Sba(ε) = 0, ∀a, b > n(ε). (4.25)

This can be interpreted as each (open) channel only interacts with itself, and closed channels interacts

with nothing, so kc = 0.

Ŝ(ε) = −Πo (A+ iBko)
−1

(A− iBko)Π⊤
o (4.26)

is n× n and diagonal. The usual transformation
√
κo · · ·

√
κo−1

cancels.

Since Ŝ is diagonal, and to be unitary, it can be written as

Ŝ(ε) = e−iθ(ε), (4.27)
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with θ(ε) being a diagonal, hermitian, complex n× n matrix. Let’s rewrite Ŝ

Ŝ(ε) = −Πo (A+ iBko)
−1

(A− iBko)Π⊤
o (4.28a)

= −Πo (A+ iBPok
o)

−1
(A− iBPok

o)PoΠ
⊤
o (4.28b)

= −
[
Πo(A+ iBPok

o)Π⊤
o

]−1
Πo(A− iBPok

o)Π⊤
o (4.28c)

= −
(
ΠoAΠ

⊤
o + iΠoBΠ⊤

o Πok
oΠ⊤

o

)−1 (
ΠoAΠ

⊤
o − iΠoBΠ⊤

o Πok
oΠ⊤

o

)
. (4.28d)

We have used that koPo = Pok
o = ko, PoΠ

⊤
o = Π⊤

o and the fact that everything, with correct

dimensions, commute. The rewriting ΠoZ
−1Π⊤

o = [ΠoZΠ
⊤
o ]

−1 obviously holds if Z is diagonal and

invertible.

For convenience, we rename and rescale A, B and ko as

ΠoAΠ
⊤
o → A, ΠoBΠ⊤

o → B, Πok
oΠ⊤

o → k, (4.29)

such that Ŝ can be rewritten in terms of

Ŝ(ε) = − (A+ iBk)
−1

(A− iBk) = −AA
† − 2ikA†B −BB†k2

AA† +BB†k2 = cos θ − i sin θ (4.30)

The denominator is indeed invertible because of the rank condition rank ((A,B)) = N . By not con-

sidering the specific ε = un then k is invertible and so the phase matrix is

θ(ε) = tan−1

(
2AB†

BB†k −AA†k−1

)
, (4.31)

since AA†, BB†, AB† = (A†B)† = (AB†)† are real matrices. Arctangent with a diagonal matrix as

argument is well-defined as the arctangent of each element. The explicit calculation for wavefunction

orthogonality, with this specific scattering matrix, has been shown in Appendix E.

5 Field theory and observables

We will succinctly review the quantum field theory without induced potentials, as that will be used

in conjunction with quenches in section 6. We will not calculate observables in this case, as that has

been done in [5], [6]. Following this, we introduce the induced potentials, the fermionic fields and

ground-states. In section 5.3 we calculate observables.

5.1 Field theory without induced potentials

The Hamiltonian is given by

H0 =

N⊕
j=1

−∂2x
2m

(5.1)

and m > 0 with eigenvalue

ε =
k2

2m
, (5.2)
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as discussed in section 2. Where k is the momentum of the incoming electron and m is its mass,

and the momentum is conserved across the junction. The two basis from section 2.1 constitute an

orthonormal basis, and the corresponding algebras are then

Ain is generated by {ci(k), c†i (k) | k < 0, i ∈ [1, N ]}, (5.3a)

Aout is generated by {ci(k), c†i (k) | k > 0, i ∈ [1, N ]}. (5.3b)

The unitary transformation from Ain to Aout is given by the scattering matrix. This can easily be

seen as e.g. considering the unitary transformation χa → S†χa = χ̄a: with components

χ̄b′(x, k) =
∑
a

χba(x, ε)S
†
ab′ = e−ikxS∗

b′b + eikxδb′b (5.4)

The fields above form an anti-commuting algebra{
ca(ka), cb(kb)

}
=
{
c†a(ka), c

†
b(kb)

}
= 0,

{
ca(ka), c

†
b(kb)

}
= 2πδabδ(ka − kb). (5.5)

The state, which one could take expectation values of, is |Ω(β,µ,u = 0)⟩ where index 0, indicates that

there are no induced potentials u = 0, where β = {β1, · · · , βN} and µ = {µ1, · · · , µN}. Here each

edge Ei for all i = 1, ..., N , is filled according to Fermi distributions fi(ε − µi) in each edge Ei. At

zero temperature each lead is filled from zero energy to µ, or in terms of momentum:

|Ω(0, µ, 0)⟩ =
N∏
i=1

⊗
0≤k≤kF

c†i (k) |0⟩ (5.6)

with kF =
√
2mµ. We will not calculate explicit observables, but explore the field theory and then

include the potentials in the next section.

The above equation (5.5) does not hold if ki and kj have opposite sign. If the two momenta have

opposite signs, then terms proportional to the scattering matrix must be added to the expectation

value. The transformation between the negative and positive momentum basis is simply

ci(k) =

N∑
j=1

Sij(k)cj(−k) (5.7a)

c†i (k) =

N∑
j=1

Sji(−k)c†j(−k). (5.7b)

Of course if the system is in equilibrium, i.e. with a global chemical potential µ and inverse temper-

ature β, the state |Ω(β, µ,u)⟩, admits only equal Fermi-distributions fi = fj at the reservoirs. The

equilibrium and non-equilibrium situation of quantum star graphs with no induced potentials, have

been studied in e.g. [5] and [6], respectively.

For both momenta positive or negative it is in general true that

⟨c†i (ki)cj(kj)⟩ = 2πδijδ(ki − kj)fi(ε(k)− µi) (5.8)

Now one can calculate physical observables, such as particle density, electric current, and conduc-

tance. This has been done in the aforementioned papers [5], [6]. We now turn on the potentials in the

leads. This makes the field theory unlike the one just discussed.
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5.2 Field theory with induced potentials

Now we turn on the induced potentials. The eigenenergy of state |χa(ε)⟩ is ε as

H |χa(ε)⟩ = ε |χa(ε)⟩ (5.9)

for a ∈ O(ε) with

O(ε) = {j, ε− uj > 0}, (5.10)

and as found in 3:

ε =
k2i
2m

+ ui (5.11)

where ui is the constant potential in edge Ei. The energy of the electron wave inserted in edge Ea

with induced potential ua, and momentum ka has energy ε in all edges i = 1, ..., N . By assuming that

|χa(ε)⟩ for a ∈ O(ε) form an orthonormal basis, the fermionic fields in position x and lead b are

ψb(x) =

∫ ∞

−∞

dε√
2π

∑
a∈O(ε)

ca(ε)χab(x, ε), x > 0 (5.12a)

ψ†
b(x) =

∫ ∞

−∞

dε√
2π

∑
a∈O(ε)

c†a(ε)χ
∗
ab(x, ε), x > 0 (5.12b)

The field ψ(x) = (ψ1(x), · · · , ψN (x))⊤ satisfy the BCs in (3.36a):

Aψ(0) +Bψ′(0) = 0. (5.13)

For a star graph the combination x and b on ψb(x) completely determines the position on the star

graph, with b = 1, ..., N and x > 0. The wavefunctions and scattering matrices in (5.12) are

χab(x, ε) =
√
voa

−1
(
e−iko

axδba + ei(k
o
b+ikc

b)xSba(ε)
)
, (5.14)

where k is the diagonal, invertible and complex matrix

k = diag
(√

2m(ε− u1), ...,
√

2m(ε− uN )
)

(5.15)

and ko = Re{k}, and kc = Im{k}. The creation and annihilation operators c† and c in (5.12), are

defined through the anti-commutation relations{
ca(ε), cb(ε

′)
}
=
{
c†a(ε), c

†
b(ε

′)
}
= 0,

{
ca(ε), c

†
b(ε

′)
}
= 2πδabδ(ε− ε′) (5.16)

for a ∈ O(ε) and b ∈ O(ε′). The fields above are set to have units 1/
√

E and ψb(x) then have 1/
√

L,

since χ has 1/
√

EL. By assuming that the wavefunctions χab(x, ε) form a complete set, meaning they

satisfy

Ibb′ ≡
∫ ∞

−∞
dε

∑
a∈O(ε)

χ∗
ab′(ε, x

′)χab(ε, x) = 2πδb′bδ(x
′ − x), (5.17)
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which means

Ibb′ =
∫ ∞

−∞
dε

∑
a∈O(ε)

1

voa

{
e−iko

axeik
o
ax

′
δbaδab′ + e−iko

axe−i(ko
b′−ikc

b′ )x
′
S∗
b′a(ε)δba+ (5.18)

+ eik
o
ax

′
ei(k

o
b+ikc

b)xSba(ε)δb′a + ei(k
o
b+icb)xe−i(ko

b′−ikc
b′ )x

′
Sba(ε)S

∗
b′a(ε)

}
(5.19)

= δb′b

∫ ∞

ub

dε
eik

o
b (x

′−x)

vob
+

∫ ∞

−∞
dε ei(k

o
b+icb)xe−i(ko

b′−ikc
b′ )x

′ ∑
a∈O(ε)

Sba(ε)
√
voa

−1√
voa

−1
S†
ab′(ε)

(5.20)

+

∫ ∞

ub

dε
e−iko

bxe−i(ko
b′−ikc

b′ )x
′

vob
S†
bb′(ε) +

∫ ∞

ub′

dε
eik

o
b′x

′
ei(k

o
b+ikc

b)x

vob′
Sbb′(ε) (5.21)

= δb′b

(
πδ(x′ − x) +

i

x′ − x

)
+ L+Qbb′ +Q†

bb′ (5.22)

with

L =

∫ ∞

−∞
dε ei(k

o
b+icb)xe−i(ko

b′−ikc
b′ )x

′ ∑
a∈O(ε)

Sba(ε)
√
voa

−1√
voa

−1
S†
ab′(ε) (5.23)

=

∫ ∞

min(ub′ ,ub)

dε eik
o
bxe−iko

b′x
′ ∑
a∈O(ε)

√
vob

−1√
vobSba

√
vob′

−1√
vob

−1
S†
ab′

√
vob′
√
vob′

−1
(5.24)

+

∫ min(ub,ub′ )

−∞
dεe−ikc

bxe−ikc
b′x

′ ∑
a∈O(ε)

Sba(ε)
√
voa

−1√
voa

−1
S†
ab′(ε) (5.25)

= δb′b

∫ ∞

min(ub′ ,ub)

dε e−ko
b (x

′−x) 1

vob
+

∫ min(ub,ub′ )

−∞
dεe−ikc

bxe−ikc
b′x

′ ∑
a∈O(ε)

Sba(ε)
√
voa

−1√
voa

−1
S†
ab′(ε)

(5.26)

= δb′b

(
πδ(x′ − x) +

i

x′ − x

)
+

∫ min(ub,ub′ )

−∞
dε e−ikc

bxe−ikc
b′x

′ ∑
a∈O(ε)

Sba(ε)
√
voa

−1√
voa

−1
S†
ab′(ε)

(5.27)

and

Qbb′ =

∫ ∞

ub

dε
e−iko

bxe−i(ko
b′−ikc

b′ )x
′

vob
S†
bb′(ε). (5.28)

So we indeed see that

Ibb′ = 2πδbb′δ(x
′ − x) + 2iδb′b/(x

′ − x) +Qbb′ +Q†
bb′

+

∫ min(ub,ub′ )

−∞
dε e−ikc

bxe−ikc
b′x

′ ∑
a∈O(ε)

Sba(ε)
√
voa

−1√
voa

−1
S†
ab′(ε) (5.29)

we get the anti-commutation relations for ψb(x) and ψ†
b(x) are{

ψa(x), ψb(x
′)
}
=
{
ψ†
a(x), ψ

†
b(x

′)
}
= 0,

{
ψa(x), ψ

†
b(x

′)
}
= 2πδ(x′ − x)δab. (5.30)

The completeness assumption above leads one to require that there are no bound states at the vertex.

The existence of bound states at the vertex is explored in [19]. If we would include these bound states,
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the fields ψb(x) in (5.12) would need an additional term that is the contributions from the bound state

at the vertex, and completeness would then be restored. With these commutation relations in hand,

we will begin to define and calculate physical quantities, like the energy operator, particle current,

particle density, and heat current, and we will find agreement in the limit u = 0.

5.3 Observables

In this section, we will use the quantum field theory from the last section to explore the electronic

transport properties of the quantum star graph with induced potentials. We will calculate the electric

and heat current, particle density and differential conductance. The equilibrium and non-equilibrium

case, has been studied by e.g. B. Bellazzini and M. Mintchev in [5] and [6] and in the following we

extend the formalism to include induced potentials.

In one of the original papers by Landauer and Büttiker [3], the following was mentioned about

the possibility of imaginary wavenumber: “Evanescent states with imaginary value of the wave number

parallel to the wire can be neglected. They cannot contribute to the current, and can only have an effect

on the chemical potential right at the interface between the scatterer and the ideal conductor ”. We will

also find this to be the case, but these evanescent states do contribute to, e.g., the particle density.

The particle density will gain an x-dependence which will get manifested as Friedel oscillations for

scale invariant scattering matrices.

First, we define the observable as operators, and then calculate their corresponding expectation

value. Lastly, we discuss some conservation laws and symmetries about the system.

The Hamiltonian is now

H =

∫ ∞

0

dx
N∑
b=1

[
ψ†
b(x)

−∂2b,x
2m

ψb(x) + ubψ
†
b(x)ψb(x)

]
. (5.31)

By using (5.12), we can write it in the χa(ε) basis.

H =

∫ ∞

0

dx
N∑
b=1

∫∫ ∞

−∞

dεdε′

2π

∑
a′∈O(ε′)
a∈O(ε)

c†a′(ε′)ca(ε)√
vo′a′voa

[(
koa

2

2m
+ ub

)
ei(k

o
a′−ko

a)xδa′bδab (5.32)

+

(
(kob + ikcb)

2

2m
+ ub

)
eik

o′
a′xei(k

o
b+ikc

b)xδa′bSba(ε) +

(
koa

2

2m
+ ub

)
e−iko

axe−i(ko′
b −ikc′

b )xδabS
∗
ba(ε

′)

+

(
(kob + ikcb)

2

2m
+ ub

)
ei(k

o
b+ikc

b)xe−i(ko′
b −ikc′

b )xSba(ε)S
∗
ba(ε

′)

]
.

We can now perform the b sum, and find that all round brackets equal ε, since koa
2 = (koa + ikca)

2 for

a ∈ O. We then immediately reintroduce the b sum with appropriate δa′b and δab, and recognise the
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four terms as
∑

b χ
∗
a′bχab. Thus

H =

∫
dx
∑
b

∫∫
dε dε′

2π

∑
a′a

c†a′(ε
′)ca(ε)εχ

∗
a′b(x, ε

′)χab(x, ε) (5.33)

H =

∫ ∞

0

dε
∑

a∈O(ε)

c†a(ε)ca(ε)ε. (5.34)

The time evolution of ψb(x) is found by defining

n̂a(ε) = c†a(ε)ca(ε) (5.35)

and quickly verify that

[ca(ε), n̂a′(ε′)] = 2πδaa′δ(ε′ − ε)ca(ε), (5.36)

and by induction one finds for any m ∈ N[
ca(ε), (n̂a′(ε′))

m]
= (2πδaa′δ(ε− ε′))

m
ca(ε) (5.37)

such that

ca(ε)e
−iHt = e−iεte−iHtca(ε). (5.38)

The time evolution of the fields ψb(x) and ψ†
b(x) is then

ψb(x, t) = eiHtψb(x)e
−iHt (5.39a)

=

∫ ∞

−∞

dε√
2π

∑
a∈O(ε)

ca(ε)χab(x, ε)e
−iεt (5.39b)

ψ†
b(x, t) =

∫ ∞

−∞

dε√
2π

∑
a∈O(ε)

c†a(ε)χ
∗
ab(x, ε)e

iεt. (5.39c)

The non-equilibrium state |Ω(β,µ,u)⟩ with induced potentials, is the state with each edge Ei filled

from ui to µi. This is the state we take expectation values with respect to. At zero temperature this

state is

|Ω(∞,µ,u)⟩ =
N∏
i=1

⊗
ui≤ε≤µi

c†i (ε) |0⟩ . (5.40)

Any expectation value ⟨·⟩ is now taken with respect to ⟨Ω(β,µ,u)| · |Ω(β,µ,u)⟩ , with the dot repre-

senting the operator whose expectation value we wish to calculate. At non-zero temperature, we say

that

⟨c†a′(ε
′)ca(ε)⟩ = fa(ε− µa)δa′aδ(ε

′ − ε) (5.41)

with fa(ε− µa) the Fermi distribution function

fa(ε− µa) =
1

1 + eβa(ε−µa)
, (5.42)

with βa = 1/Ta the inverse temperature associated with each reservoir Ra, as well as the chemical

potential µa.
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We begin by calculating the electric current in units of the elementary charge.

Jb(x, t) =
i

2m
ψ†
b(x, t)Rψb(x, t) (5.43)

with

R = ∂⃗x − ⃗∂x, (5.44)

the arrow indicating which direction the derivative is acting.

Jb(x, t) =
i

2m

∫∫ ∞

0

dε dε′

2π

∑
a∈O(ε)
a′∈O(ε′)

c†a′(ε
′)ca(ε) χ

∗
a′b(x, ε

′)Rχab(x, ε)e
i(ε′−ε)t. (5.45)

We calculate the expectation value of the current Jb(x, t) with the reservoirs at non-zero temperatures

as well as with induced leads, in the same state and find that the particle current Ipart is

Ipart
b = ⟨Jb(x, t)⟩ (5.46a)

=
i

2m

∫∫ ∞

−∞

dε dε′

2π

∑
a∈O(ε)
a′∈O(ε′)

⟨c†a′(ε
′)ca(ε)⟩ χ∗

a′b(x, ε
′)Rχab(x, ε)e

−i(ε−ε′)t (5.46b)

Ipart
b =

1

2π

∫ ∞

ub

dε
∑

a∈O(ε)

[fb(ε)− fa(ε)] |Ŝba(ε)|2 (5.46c)

Ipart
b =

1

2π

∫ ∞

ub

dε
∑

a∈O(ε)

[
δba − |Ŝba(ε)|2

]
fa(ε) (5.46d)

Full derivation is in Appendix G. The b index on Ŝ can seem ambiguous, since the left hand side

b = 1, ..., N , but on the right, specifically the index on Ŝba is limited to b = 1, ..., n(ε), but since we

integrate over an ε-interval where ε ≥ ub, this makes b always open. This can also be seen as, for a

given energy ε0 > ub then n(ε0) ≥ n(ub) = b. We remember that kob = θ(ε−ub)
√
2m(ε− ub) and used

|Sba(ε)|2kob = |Ŝba(ε)|2koa, b, a ∈ O(ε), (5.47)

We also see that the current is both position and time independent. By nature of the continuity

equation, we must have that the particle density cannot depend on time, in accordance with not

accumulating charge along the edges. The system is thus in a non-equilibrium steady state. If there

are no induced potentials:

Ipart
b (u = 0) =

1

2π

∫ ∞

0

dε
N∑

a=1

[
δba − |Sba(ε)|2

]
fa(ε), (5.48)

the momentum would be conserved, so converting to a k integral would leave us with the same equation

for the current as [6] (without e being multiplied on), which indeed is reassuring. For zero temperature,

the current is

Ipart
b (β = ∞) =

1

2π

∑
a|µa>ub

∫ µa

ua

dε θ(ε− ub)
[
δba − |Sba(ε, α)|2

]
. (5.49)
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We will now consider the BC’s in section 4.1, i.e. the mixed Robin BC’s, parameterised by α, so

Ipart
b (β = ∞, α). We found that

lim
α→±∞

Ŝab(ε, α) = −δab. (5.50)

The current Ipart
b (β = 0, α), i.e. the current, for all channels, should vanish as α→ ±∞. The current

as a function of α is shown on figure 7.

Figure 7: Here the b refers to the channel number in Ib. Channel 1 has 2mu1 = 1 and

2mµ1 = 4, etc. The mass is set to m = 1/2. The BC matrices are given in (4.3).

The lead with lowest potential is more susceptible to electron flow, hence b = 1 has negative current.

Of course, the total current flowing out of the junction has to vanish according to Kirchhoff. For a

non-zero temperature:

N∑
b=1

Ipart
b =

1

2π

∫ ∞

0

dε
∑

a∈O(ε)

∑
b∈O(ε)

[
δba − |Ŝba(ε)|2

]
fa(ε) = 0. (5.51)

We also conclude from (5.46c), that there will run no current if all Fermi-distributions are equal at

the reservoirs. This is the case if all the temperatures βi and the chemical potential are equal, which

makes good sense. The current also vanishes if δba = |Ŝba(ε)|2, which, e.g., is the case for the example

for Robin B.C. discussed in section 4.1, where we set α → ±∞, and regained the Dirichlet B.C.:

Ŝba = δba, or more generally Ŝba(ε) = δbae
iϕa(ε), ϕa(ε) ∈ R. We can now find the electric current for
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the scale invariant scattering matrix found in section 4.1. It is given by

Sba =
2

N
− δba. (5.52)

Here there is no induced leads. The current at zero temperature is simply

Ipart
b (β = ∞) =

N∑
a=1

∫ µa

0

dε
(

4

N
δba −

4

N2

)
(5.53)

=
4

N
µb −

4

N2

N∑
a=1

µa. (5.54)

Another basic physical observable is the conductance Gab where the indices a, b indicate from which

channels the current is running to and from. We also reintroduce the charge e as eIpart
b = Ich

b , with

Ich
b being in the charge current that defines the (differential) conductance as Gbb′ = ∂Ich

b /∂Vb′ with

µb′ = eVb′ . Here Vb′ is the voltage across reservoir Rb′ . The conductance is then

Gbb′(µb′) = e2
∂Ipart

b

∂µb′
=
e2

2π

∫ ∞

−∞
dε θ(ε− ub)θ(ε− ub′)

[
δbb′ − |Ŝbb′(ε)|2

] ∂fb′(ε)
∂µb′

. (5.55)

This is the general formula. If the reservoirs are not filled according to a Fermi-Dirac distribution,

then the following approximation at T = 0 does not hold. The conductance at zero temperature G0
bb′ ,

can be found by setting fa(ε− µ) → θ(µ− ε) and the derivative ∂µfa(ε− µ) → +δ(ε− µ), we get

G0
bb′(µb′) =

e2

2π
θ(µb′ − ub)

(
δbb′ − |Ŝbb′(µb′)|2

)
(5.56)

where we have assumed that µb′ > ub′ , since if this is not the case, no electrons are being transferred

to the lead from reservoirs (at zero temperature). Due to unitarity of Ŝ, |Ŝbb′(µb′)|2 ≤ 1, so −1 ≤
G0

bb′/e
2 ≤ 1. From above (5.56), the conductance is negative for all b′ ̸= b and positive for diagonal

elements (or zero if everything is reflected). The graph of the conductance at zero temperature G0 is

shown on figure 8 for N = 3 and with induced potentials given by 2mu = 2m{u1, u2, u3} = {1, 2, 3},
and BCs given by the Robin BCs i.e. that

ψ1(0) = · · · = ψN (0), ψ′
1(0) + · · ·+ ψ′

N (0) = αψ1(0). (5.57)

Notice this BC is symmetric under any edge permutations. This is of course, not a universal feature,

as one could exchange a 0 in the B matrix in (4.3) to a 1 and this symmetry would be broken.

The conductance is of course only defined for values of µb′ > ub′ , else it must be zero, which is

illustrated below by the fact that each subgraph is not defined as µb′ < ub′ . Let’s focus on panel a) on

figure 8. As 1 < 2mµ1 < 2, a current can only get reflected in edge 1, as the induced potentials at the

others are > 2, i.e. closed channels. As 2 < 2mµ1 < 3, a current can flow from edge 1 to 2 (orange

graph), but still get reflected (blue), and no current goes from b = 1 to b = 3 as edge b = 3 is still

closed. As µ1 > 3 a current from b′ = 1 can flow to all three channels. And by the same token, on

b) current can flow immediately in b = 1 and b = 2, but only to b = 3 after µ2 > u3. Since µ3 is the

largest chemical potential, in c) are other channels open.
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Figure 8: The conductance at zero temperature is shown, given by (5.56) for N = 3

channels. The induced potentials in this case are 2mu = 2m{u1, u2, u3} = {1, 2, 3}, given

in arbitrary units of p2, where p is momentum. The B.C. matrices A and B are given by

the Robin B.C.s (4.3), with α = 0, and we have set m = 1/2. Panel a), b) and c) show

the conductance from channel b′ = 1, b′ = 2 and b′ = 3, to all 3 channels respectively.

Kirchhoff’s law also look to hold, by inspecting that the sum of the three graphs for each

sub-figure, vanish.

A similar graph for 2mu = {1, 2, 2}, is on figure 11 in Appendix F. The influence of α can be seen

on figure 12 and 13. The general feature is that as α → ∞ the conductance vanishes, i.e. each lead

becomes isolated. This is in agreement with (4.20) stating that limα→∞ Ŝab(ε, α) = −δab.
Next up is the particle density ρ. The particle density operator is

ρb(x) = ψ†
b(x)ψb(x), (5.58)

and the expectation value is then

⟨ρb(x)⟩ =
∫∫

dε dε′

2π

∑
a′,a

⟨c†a′(ε
′)ca(ε)⟩χ∗

a′b(x, ε
′)χab(x, ε) (5.59)

=

∫ ∞

ub

dε
2π

∑
a∈O(ε)

fa(ε− µa)|χab(x, ε)|2 +
∫ ub

−∞

dε
2π

∑
a∈O(ε)

fa(ε− µa)|χab(x, ε)|2 (5.60)
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⟨ρb(x)⟩ =
∫ ∞

ub

dε
2πvob

fb(ε)(1 + 2Re
{
e2ik

o
bxSbb(ε)

})
+

∑
a∈O(ε)

fa(ε)|Ŝba(ε)|2
+

∫ ub

−∞

dε
2π

e−2kc
bx

∑
a∈O(ε)

fa(ε)

voa
|Sba(ε)|2 (5.61)

Full derivation is in Appendix G. The last term in the above equation cannot be rewritten in terms

of the unitary scattering matrix, since the ε-interval makes the b-channel permanently closed, and the

whole term would vanish, which is also clear from (5.47). The above equation has a clear new addition

compared to the case without induced leads: the last term, which has an exponential decay of particles

in closed channels, which is expected.∫ ub

−∞
dε e−2kc

bx
∑

a∈O(ε)

fa(ε)

voa
|Sba(ε)|2 =

∑
a|ua<ub

∫ ub

ua

dε
fa(ε)

voa
e−2kc

bx|Sba(ε)|2 (5.62)

In the end of section 4.1, we found a case for an energy-independent scattering matrix, that re-

quired non-induced leads, and we will now calculate the particle density in this case. If all leads are

permanently open, the last term above vanish. We found the N × N scattering matrix to take the

form

Sba =
2

N
− δba (5.63)

We also assume zero temperature for simplicity.

⟨ρ0b(x)⟩ =
∫ µb

0

dε
vob

(
1 + 2Re

{
e2ik

o
bxSbb

})
+

N∑
a=1

∫ µa

0

dε
1

voa
|Sba|2 (5.64)

= 2kF,b

(
1 +

2−N

N

sin 2kF,bx

2kF,bx

)
+

4

N2

N∑
a=1

kF,a −
4kF,b

N
(5.65)

with

kF,a =
√
2mµa. (5.66)

Also note that at N = 2 there is no x dependence, and the particle density would be constant along

the two leads, and indeed the scattering matrix in (5.63) has solely zeros on the diagonal, hence no

reflection occurs. The particle density right outside the junction, in edge b is

⟨ρ0b(0)⟩ =
4

N2

N∑
a=1

kF,a (5.67)

The specific oscillation type in equation (5.65) is famously known as Friedel oscillations. The oscillatory

part is depicted on figure 9.

⟨ρ0b(x)⟩osc/2kF,b = 1 +
2−N

N

sin 2kF,bx

2kF,bx
(5.68)
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Figure 9: The oscillatory part of the particle density in edge b given by (5.68). The

scattering matrix is scale-invariant, and given by (5.63).

Alongside particle density, we can find the heat current κb in edge Eb. It is given by [7]

κb(x, t) = θb(x, t)− µbJb(x, t) (5.69)

where

θb(x, t) =
1

4m
ψ†
b(x, t)Rψb(x, t) (5.70)

is the energy current, with

R = ⃗∂t∂⃗x + ⃗∂x∂⃗t −
(

⃗∂t ⃗∂x + ∂⃗t∂⃗x

)
(5.71)

and so

θb(x, t) =
1

4m

∫∫
dε′dε
2π

∑
a′,a

c†a′(ε
′)ca(ε)

[
χ∗
a′b(x, ε

′)eiε
′t
]
R
[
χab(x, ε)e

−iεt
]

(5.72)

=
i

4m

∫∫
dε′dε
2π

(ε+ ε′)ei(ε
′−ε)t

∑
a′,a

c†a′(ε
′)ca(ε)χ

∗
a′b(x, ε

′)Rχab(x, ε) (5.73)
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and

Qb = ⟨θb(x, t)⟩ =
i

2m

∫ ∞

−∞

dε
2π

ε
∑

a∈O(ε)

fa(ε)χ
∗
ab(x, ε)Rχab(x, ε) (5.74)

=

∫ ∞

ub

dε
2π

ε
∑

a∈O(ε)

[δab − |Ŝab(ε)|2]fa(ε) (5.75)

=

∫ ∞

ub

dε
2π

ε
∑

a∈O(ε)

[fb(ε)− fa(ε)] |Ŝba(ε)|2 (5.76)

which is very similar in structure to Ipart
b in (5.46c), and neither is position or time dependent. We

can then find the heat current

κb =
i

2m

∫∫
dε dε′

2π

(
ε+ ε′

2
− µb

)
ei(ε

′−ε)t
∑
a′,a

c†a′(ε
′)ca(ε)χ

∗
a′b(x, ε

′)Rχab(x, ε) (5.77)

and then

Iheat
b = ⟨κb⟩ = Qb − µbI

part
b (5.78)

=

∫ ∞

ub

dε
2π

(ε− µb)
∑

a∈O(ε)

[fb(ε)− fa(ε)] |Ŝba(ε)|2. (5.79)

5.3.1 Conservation laws and symmetry

At this stage, we can check various conservation laws, like the continuity equation for particles and

Kirchhoff’s law at operator form.
N∑
b=1

Jb(0) = 0 (5.80)

and since both ψb(x) and ψ†
b(x) are fields on the graph G, they have to satisfy the boundary conditions

laid out in section 3 in (3.35):

Jb(0) = lim
x→0+

i

2m

(
ψ†
b(x)∂xψb(x)− ∂xψ

†
b(x) ψb(x)

)
(5.81a)

N∑
b=1

Jb(0) =
i

2m

N∑
b=1

(
ψ†
b(0)∂xψb(0)− ∂xψ

†
b(0) ψb(0)

)
(5.81b)

= 0. (5.81c)

Kirchhoff’s law for conductance

N∑
b=1

Gbb′(µb′) = e2
∫ ∞

ub′

dε
∑

b∈O(ε)

[
δbb′ − |Ŝbb′(ε)|2

] ∂fb′(ε)
∂µb′

= 0, (5.82)

holds as well for all b′.
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The continuity equation:

0 = ∂tρb(x, t)− ∂xJb(x, t) =

∫∫
dε dε′

(2π)2

∑
a∈O(ε)
a′∈O(ε′)

c†a′(ε
′)ca(ε)

×
{
χ∗
a′b(x, ε

′)χab(x, ε)∂te
i(ε′−ε)t − i

2m

[
χ∗
a′b(x, ε

′)∂2xχab(x, ε)− ∂2xχ
∗
a′b(x, ε

′) χab(x, ε)
]
ei(ε

′−ε)t

}
(5.83)

with the brackets equals

{· · · } = iei(ε
′−ε)tχ∗

a′b(x, ε
′)χab(x, ε)

(
(ε′ − ε)−

[
− k2b
2m

+
(k′b)

2

2m

])
= 0 (5.84)

since ε− k2b/2m = ε′ − (k′b)
2/2m = ub. It also holds trivially for expectation values since ⟨ρb(x, t)⟩ is

time-independent, and the current ⟨Jb(x, t)⟩ = Ib is position independent.

6 Quantum quench protocols

We will now explore what happens as we quench from the non-induced wire system, to a system with

induced wires and vice versa. Doing so, we will consider two protocols, as quickly mentioned in the

introduction. The two systems with and without induced wires are summarised below:

• System one S1: The non-equilibrium system with a non-zero temperature and potential at the

reservoirs. A constant current is present, and the unitary scattering matrix S(k) is given by

(2.26). This system is nicely explored in [6].

• The non-equilibrium system with a non-zero temperature and potential at the reservoirs as well

as induced potentials in the leads. A constant current is present, and the unitary scattering

matrix Ŝ(ε) is given by (3.45), and here the energy is a good quantum number.

Pure system two never occurs in reality, as one always turn on the voltage/system at some finite point

in time, and the calculation of the observables have assumed that the system has been the same for all

times. A way to simulate system two is thus by a quench. We will discuss two quench protocols, which

in both cases, at time t = 0 a parameter in the Hamiltonian changes, and the ground state before

the quench, is thus not a ground state anymore and will now evolve according to a new Hamiltonian.

This evolution is usually highly non-trivial. One can then asks if the system, after a sufficiently long

time, thermalizes into a steady state? Inspired by [14], we make the following definitions of quench

protocols, we will explore:

1. µ quenches:

For t < 0 the edges are connected to the scatterer, there is a global chemical potential µ at the

reservoirs and the induced potentials in the leads are all zero, thus the particle density across
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each lead is equal. The current vanish, and the unitary scattering matrix S(k) can in general be

non-trivial, and is given by (2.26). When t ≥ 0, the induced potentials turn on, the reservoirs

are disconnected and the unitary scattering matrix Ŝ(ε) now depend on the induced potentials,

and the current is non-zero.

2. Density quenches:

For t < 0 the scatterer and the leads are disconnected, such that there is no exchange of particles

between leads, but the leads are connected to the reservoirs, so the induced potentials in the leads

are different. As t ≥ 0, one connects the scatterer and the leads, and disconnect the reservoirs,

and the system evolves according to H<.

Thus in the end, one might expect that NESSs are reached in the µ and density quench with a scattering

matrix given by Ŝ(ε) (3.45) and S(k), (2.26) respectively.

The temporal evolution of the quench is as follows: At time zero we turn on the induced leads, and

disconnect the reservoirs. As this is done instantaneously, the signal has to propagate along the edges

at the speed of “sound” and opens a light-cone, to update the remaining wire with the information that

the leads now indeed has a potential. If the system is finite, the electric current, that is within this

light-cone, is thus in a quasi steady state, since the signal will re-bounce on the edge of the wire and

propagate back and disrupt the steady state. It is in this non-equilibrium quasi stead state (NEQSS)

we wish to calculate transport properties. Of course, since reservoirs are no longer present, after a

sufficiently long times the system will settle to an actual steady state whose current is zero.

The evidence for that the density quench protocol finds a NEQSS given by a Landauer Büttiker

form is convincingly given in [14], [15]. Both phenomenological and numerical arguments have been

made, as well as tight binding examples verifying it. We will thus only focus on the µ quench in the

following.

6.1 The µ quench

For the µ quench, we start in t < 0 with no induced potentials and thus all channels are open, and at

t ≥ 0, they are present and the possibility of a closed channel is present. So the two Hamiltonians we

will need are

H< =

N∑
j=1

−∂2j,x
2m

(6.1)

H> =

N∑
j=1

−∂2j,x
2m

+ uj (6.2)

where the subscripts < and > indicate in which time-regime Hamiltonians are acting in: H> is present

for t ≥ 0 and H< for t < 0. However, the Hamiltonians in second quantisation are the one we will
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work with and are

H< =

∫ ∞

0

dk
N∑

a=1

c̃†a(k)c̃a(k)
k2

2m
(6.3a)

H> =

∫ ∞

−∞
dε

∑
a∈O(ε)

c†a(ε)ca(ε)ε (6.3b)

From now on, we will denote with a tilde ∼ quantities in the t < 0 regime. As we connect the reservoirs,

we allow for a channel to get closed: so the two wavefunctions in the two regimes are, respectively,

χ̃ab(x, k) =
(
e−ikxδab + eikxS̃ba(k)

)
, a = 1, ..., N (6.4a)

χa′b(x, ε
′) =

1√
vo′a′

(
e−iko′

a′xδa′b + ei(k
o′
b +ikc′

b )xSba′(ε′)
)
, a′ = 1, ..., n(ε′) (6.4b)

where we have inserted normalisation explicitly. In the matrix S̃ the momentum is still a scalar, and

in S momentum is a matrix. We naturally define the overlap of the wavefunctions in the two regimes

as the following big mess

Γab(k, ε) = ⟨χ̃a(k)|χb(ε)⟩ =
N∑
j=1

∫ ∞

0

dx χ̃∗
aj(x, k)χbj(x, ε) (6.5)

=
1√
vob

πδ(k − kob )δab + δab
i

k − kob
+ π

∑
j∈O(ε)

δ(k − koj )S̃
∗
ja(k)Sjb(ε)+ (6.6)

i

k + kb
Sab(ε)− S̃†

ab(k)
i

k + kob
+

N∑
j=1

S̃†
aj(k)

i

kj − k
Sjb(ε)


again with

kb = kob + ikcb =
√
2m(ε− ub) (6.7)

being the entries of the N × N diagonal matrix k′, not to be confused by k =
√
2mε, that is the

momentum for the non-induced case. Since a = 1, ..., N and a′ = 1, ..., n(ε′) then k′a′ = ko′a′ . The

transformation from creation and annihilation operators from t < 0 and t > 0 is then

c̃†a(k) =
1√
L

∫
dε

∑
b∈O(ε)

Γ∗
ab(k, ε)c

†
b(ε) (6.8a)

c̃a(k) =
1√
L

∫
dε

∑
b∈O(ε)

Γab(k, ε)cb(ε) (6.8b)

and the inverted version is

c†a(ε) =
√
L

∫
dk

N∑
b=1

Γba(k, ε)c̃
†
b(k) (6.9a)

ca(ε) =
√
L

∫
dk

N∑
b=1

Γ∗
ba(k, ε)c̃b(k) (6.9b)
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with Γ∗
a′a(ε

′, ε) = (Γa′a(ε
′, ε))

∗
. Here c(ε) has 1/

√
E and c̃(k) is unit-less and Γ has

√
L/E. This makes

⟨c̃†a′(k
′)c̃a(k)⟩ =

2π

L
δa′aδ(k

′ − k). (6.10)

Imagining the evolution of the µ quench, it is natural to propose that as t→ ∞ the system settles

to the known L.B.-system with a NESS given by (5.46c). This is now what we would like to explore.

Explicitly we propose that

Wb(x) = lim
T→∞

1

T

∫ T

0

dt ⟨ψGS | eiH>tJb(x)e
−iH>t |ψGS⟩ = L.B.-like, (6.11)

The ground-state above is given by

|ψGS⟩ =
⊗

0≤ε(k)≤µ

N∏
a=1

c̃†a(k) |0⟩ (6.12)

where |0⟩ is the vacuum state, i.e. no particles. Since the ground-state is completely filled up to energy

µ, we cannot create particles with energy ≤ µ since there’s no room nor remove ones with energy > µ

since there are none. The Fermi energy is kF =
√
2mµ

c̃a(k > kF ) |ψGS⟩ = 0 (6.13a)

c̃†a(k ≤ kF ) |ψGS⟩ = 0 (6.13b)

The time evolution of the electric current was found earlier in (5.45):

Jb(x, t) = eiH>tJb(x)e
−iH>t =

i

2m

∫∫
dε′dε
2π

ei(ε
′−ε)t

∑
a′,a

c†a′(ε
′)ca(ε) χ

∗
a′b(x, ε

′)Rχab(x, ε). (6.14)

So

Wb(x) = lim
T→∞

1

T

∫ T

0

dt
∫∫

dε′dε
2π

iei(ε
′−ε)t

2m

∑
a′,a

χ∗
a′b(x, ε

′)Rχab(x, ε) ⟨ψGS | c†a′(ε
′)ca(ε) |ψGS⟩ (6.15)

where

⟨ψGS | c†a′(ε
′)ca(ε) |ψGS⟩ = L

N∑
b′,b=1

∫∫ kF

0

dk dk′ Γb′a′(k′, ε′)Γ∗
ba(k, ε) ⟨ψGS | c̃†b′(k

′)c̃b(k) |ψGS⟩ (6.16)

= 2π

N∑
b=1

∫ kF

0

dk Γba′(k, ε′)Γ∗
ba(k, ε)fb(ε(k)− µb) (6.17)

and we define

Xa′a(ε
′, ε) =

N∑
b=1

∫ kF

0

dk Γba′(k, ε′)Γ∗
ba(k, ε)fb(ε(k)− µb). (6.18)

So

Wb(x) =
i

2m
lim

T→∞

1

T

∫ T

0

dt
∫∫

dε′dε ei(ε
′−ε)t

∑
a′,a

χ∗
a′b(x, ε

′)Rχab(x, ε)Xa′a(ε
′, ε) (6.19)

After the quench one can then, for simplicity, assume one turns on a single potential u in channel ℓ.

This one channel then acts as a reservoir, and we postulate that the conductance is given in terms of

this shift in energy µ+ u.

Gquench
bℓ = Gbℓ(µℓ = u+ µ), ∀b. (6.20)
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7 Conclusion and outlook

A quantum star graph is a network of nano-wires with an arbitrary number of leads and channels,

connected to a single vertex. Each wire is connected to a thermal reservoir, and the system is away

from equilibrium if, in general, a current flows. At the vertex of the graph is a scatterer that is assumed

to be point-like and non-interacting, that, in a physical system, can take the role as an impurity, a

quantum device or the alike. This scatterer is mathematically described by a unitary scattering matrix

S(k), that depends on the momentum k of the incoming electron wave. Furthermore, the exact form

of S, is found in terms of the boundary conditions that each wavefunction, in the leads, make at the

vertex. Such a system has been studied to great detail by e.g. M. Mintchev in [5]–[7].

We now consider the leads to be induced with a constant potential. This effect is realised as an

intrinsic process by the reservoir-lead coupling, or from an external source. Because of the electron’s

presence, a potential in the leads is created. Calculating the electron’s contribution to the potential

is done self-consistently, by solving Schrödinger-Poisson’s equations. An external source to induce

a potential can take the form of an electrostatic potential, that may come from a wire that is in

proximity to the wire of the graph. The potentials in the wire acts as impenetrable walls for electrons

with inadequate energy, hence leads to the concept of open and closed channels. Because of this

novelty, wavefunctions in the leads and the unitary scattering matrix changes accordingly. We prove

the orthogonality of the wavefunctions, and the unitarity of the new scattering matrix.

Equipped with the new scattering matrix formalism for induced potentials, we create a quantum

field theory on the graph G, upon which, observables like electric current, particle density, differential

conductance and heat current is calculated. We find that the electric current is both time and position

independent, alluding to the fact that this indeed is a non-equilibrium steady state. For a scale

invariant scattering matrix, we find that the particle density make Friedel oscillations along each lead.

Such oscillation patterns are typical in metallic or semi-conductor systems with a point-like impurity.

Considering the two regimes with and without induced potentials, we briefly explored a quantum

quench protocol in which a system starts without potentials, and then suddenly the potentials are

turned on. The signal of this sudden change of Hamiltonian propagates throughout the graph, and

before the signal hits the edges of the graph, we postulate that there exists a non-equilibrium quasi

steady state, and that the long-time limit of the current will approach the Landauer-Büttiker value.
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Appendices

A Existence of the scattering matrix for real momentum-matrix

We will now show that A† − ikB† for k a real (and non-zero), diagonal, matrix, indeed is invertible

inspired by [10].

det
(
A† − ikB†) = det

(√
k
)
det
(√

k
−1
A† − i

√
kB†

)
= 0. (A.1)

Showing that
√
k
−1
A† − i

√
kB† is invertible is equivalent to showing A† − ikB† is invertible, since

det
√
k ̸= 0. There exists a non-zero vector v such that(√

k
−1
A† − i

√
kB†

)
v = 0 (A.2)

0 =
〈
v,
(
A
√
k
−1

+ iB
√
k
)(√

k
−1
A† − i

√
kB†

)
v
〉

(A.3)

=
〈√

k
−1
A†v,

√
k
−1
A†v

〉
+
〈√

kB†v,
√
kB†v

〉
(A.4)

concluding that
√
k
−1
A†v =

√
kB†v = 0, (A.5)

A†v = B†v = 0. (A.6)

Now notice that, since the composite matrix (A,B) has maximal rank, namely N , there is at least one

solution to

Aϕ+Bϕ′ = ψ (A.7)

for (ϕ, ϕ′), where ψ ∈ CN . Now

0 = ⟨ϕ,A†v⟩+ ⟨ϕ′, B†v⟩ = ⟨Aϕ+Bϕ′, v⟩ (A.8)

The only solution is to have v = 0, which is contradictory to the initial assumption. Thus A† − iB†

and
√
k
−1
A† − i

√
kB† is invertible. The invertibility of the hermitian conjugated version is proven

similarly.

B Wavefunctions are orthogonal for a real momentum-matrix

We define the state vector |χa(ε)⟩ with the label a to indicate in which lead we’re inserting a wave,

with energy ε. We wish to show that

⟨χa′(ε′)|χa(ε)⟩ =
N∑
b=1

∫ ∞

0

dx χ∗
a′b(x, ε

′)χab(x, ε) = 2πδa′aδ(ε
′ − ε) (B.1)

with

χab(x, ε) = ⟨b, x|χa(ε)⟩ (B.2)
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where we have inserted that

1 =

N∑
b=1

∫ ∞

0

dx |b, x⟩ ⟨b, x| (B.3)

⟨χa′(ε′)|χa(ε)⟩ =
∑
j

∫
dx (eik

′
a′xδja′ + e−ik′

jxS∗
ja′(ε′))(e−ikaxδja + eikjxSja(ε)) (B.4)

Expanding, we get four contributions, and using that∫ ∞

0

dx eikx = πδ(k) +
i

k
, k ∈ R (B.5)

we get that those are

F 1
aa′ =

∑
j

∫
dx ei(k

′
a′−ka)xδjaδja′ = δaa′

(
πδ(k′a − ka) +

i

k′a − ka

)
(B.6a)

F 2
aa′ =

∑
j

∫
dx ei(k

′
a′+kj)xδja′Sja(ε) = Sa′a(ε)

(
πδ(k′a′ + ka′) +

i

k′a′ + ka′

)
(B.6b)

F 3
aa′ =

∑
j

∫
dx e−i(k′

j+ka)xS∗
ja′(ε′)δja = S∗

aa′(ε′)

(
πδ(k′a + ka)−

i

k′a + ka

)
(B.6c)

F 4
aa′ =

∑
j

∫
dx ei(kj−k′

j)xS∗
ja′(ε′)Sja(ε) =

∑
j

S†
a′j(ε

′)Sja(ε)

(
πδ(k′j − kj)−

i

k′j − kj

)
(B.6d)

Since all ki, k′i > 0

δ(k′a′ + ka′) = δ(k′a + ka) = 0. (B.7)

Now, for δ(k′j − kj), we need ∂(k′j − kj)/∂ε|ε0 , with ε0 = ε′. We introduce velocities

v−1
a =

∂ka(ε)

∂ε
|ε=ε′ =

m√
2m(ε′ − µa)

= m/ka. (B.8)

So

δ(ka − k′a) = δ(ε− ε′)va. (B.9)

By setting

v = diag(v1, ..., vN ), u = diag
(

1

k′1 − k1
, ...,

1

k′N − kN

)
, ū = diag

(
1

k′1 + k1
, ...,

1

k′N + kN

)
,

(B.10)

then the F ’s can be written in matrix form as

F 1 = πvδ(ε− ε′) + iu (B.11)

F 2 = iūS(ε) (B.12)

F 3 = −iS†(ε′)ū (B.13)

F 4 = πδ(ε− ε′)S†(ε′)vS(ε)− iS†(ε′)uS(ε). (B.14)

So with Fa′a = ⟨χa′(ε′)|χa(ε)⟩

F = πδ(ε− ε′)v + iu+ iūS(ε)− iS†(ε′)ū+ πδ(ε− ε′)S†(ε′)vS(ε)− iS†(ε′)uS(ε). (B.15)
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We now calculate the sum of terms proportional to δ(ε− ε′):

πδ(ε− ε′)v′ + πδ(ε− ε′)S†(ε′)vS(ε) = πδ(ε− ε′)v′
[
1N + v′

−1
S†(ε′)vS(ε)

]
!∝ 1Nδ(ε

′ − ε). (B.16)

For the wavefunctions to be orthogonal, we want v′−1
S†(ε′)vS(ε) = 1, meaning (since v is proportional

to k, and ε′ = ε)
√
k
−1
S†(ε)

√
k
√
kS(ε)

√
k
−1

= 1N (B.17)

we then define the unitary matrix Ŝ as

Ŝ(ε) =
√
kS(ε)

√
k
−1

= −
(
A
√
k
−1

+ iB
√
k
)−1 (

A
√
k
−1

− iB
√
k
)
. (B.18)

Equation (B.17) simplifies to the unitarity condition

Ŝ†(ε)Ŝ(ε) = 1N . (B.19)

We now prove that Ŝ is unitary, by using the explicit form of S from (2.26), and using that AB† = BA†

Ŝ = −
(
A
√
k
−1

+ iB
√
k
)−1 (

A
√
k
−1

− iB
√
k
)

(B.20)

= −
(√

k
−1
A† − i

√
kB†

)(√
k
−1
A† − i

√
kB†

)−1 (
A
√
k
−1

+ iB
√
k
)−1 (

A
√
k
−1

− iB
√
k
)

(B.21)

= −
(√

k
−1
A† − i

√
kB†

) [
Ak−1A† +BkB†]−1

(
A
√
k
−1

− iB
√
k
)

(B.22)

Ŝ† = −
(√

k
−1
A† + i

√
kB†

) [
Ak−1A† +BkB†]−1

(
A
√
k
−1

+ iB
√
k
)

(B.23)

Ŝ−1 = −
(
A
√
k
−1

− iB
√
k
)−1 (

A
√
k
−1

+ iB
√
k
)

(B.24)

= −
(√

k
−1
A† + i

√
kB†

)(√
k
−1
A† + i

√
kB†

)−1 (
A
√
k
−1

− iB
√
k
)−1 (

A
√
k
−1

+ iB
√
k
)

(B.25)

= −
(√

k
−1
A† + i

√
kB†

) [
Ak−1A† +BkB†]−1

(
A
√
k
−1

+ iB
√
k
)

(B.26)

showing that Ŝ−1 = Ŝ†, so Ŝ is a unitary matrix. We also note

ŜA,B(ε) = Ŝ⊤
A∗,B∗(ε) (B.27)

which can be seen directly from above. The notation ŜA∗,B∗(ε) simply means Ŝ(ε) = ŜA,B(ε) with

A→ A∗ and B → B∗ and the star * meaning complex conjugation.

The remaining terms that has to cancel for orthogonality are

f = u+ ūS(k)− S†(k′)ū− S†(k′)uS(k) (B.28)

= u+ ū
√
k
−1
Ŝ(k)

√
k −

√
k′Ŝ†(k′)

√
k′

−1
ū−

√
k′Ŝ†(k′)

√
k′

−1
u
√
k
−1
Ŝ(k)

√
k (B.29)

= u+ ū
√
k
−1
Ŝ(k)

√
k −

√
k′Ŝ(−k′)

√
k′

−1
ū−

√
k′Ŝ(−k′)

√
k′

−1
u
√
k
−1
Ŝ(k)

√
k (B.30)
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We will now prove that f = 0, by introducing T̂ inspired by [5].

Ŝ(ε) = 1+ iT̂ (ε) (B.31)

Ŝ†(ε) = 1− iT̂ †(ε) (B.32)

This makes

iT̂ (ε) = Ŝ(ε)− 1 (B.33)

= −
(
A
√
k
−1

+ iB
√
k
)−1 (

(A
√
k
−1

− iB
√
k) + (A

√
k
−1

+ iB
√
k)
)

(B.34)

= −2
(
A
√
k
−1

+ iB
√
k
)−1

A
√
k
−1

(B.35)

T̂ (ε) = 2i
(
A
√
k
−1

+ iB
√
k
)−1

A
√
k
−1

(B.36)

T̂ †(ε′) = −2i
√
k′

−1
A†
(√

k′
−1
A† − i

√
k′B†

)−1

. (B.37)

We now apply (B.27) with (
1+ iT̂ (ε)

)⊤
= 1+ iT̂⊤(ε) (B.38)

T̂A,B(ε) = T̂⊤
A∗,B∗(ε) (B.39)

go get the two version of T̂

T̂ (ε) = 2i
(
A
√
k
−1

+ iB
√
k
)−1

A
√
k
−1

(B.40)

= 2i
√
k
−1
A†
(√

k
−1
A† + i

√
kB†

)−1

(B.41)

T̂ †(ε′) = −2i
√
k′

−1
A†
(√

k′
−1
A† − i

√
k′B†

)−1

(B.42)

= −2i
(
A
√
k′

−1
− iB

√
k′
)−1

A
√
k′

−1
(B.43)

Thus

if = −
√
k′T̂ ′ū

√
k′

−1
−
√
k
−1
ūT̂

√
k +

√
kuT̂

√
k
−1

−
√
k′T̂ ′u

√
k′

−1
− i

√
k′T̂ ′

√
k′

−1
u
√
k
−1
T̂
√
k

(B.44)

= −T ′ū− ūT + uT − T ′u− iT ′uT (B.45)

with T̂ denoting T̂ (ε) and T̂ ′, T̂ †(ε′) and similarly for T which follows the same transformation as S:

T̂ (ε) =
√
kT (ε)

√
k
−1

(B.46)

such that

T (ε) = 2i (A+ iBk)
−1
A = 2ik−1A† (A† + ikB†)−1

k (B.47)

T †(ε′) = −2iA† (A† − ik′B†)−1
= −2ik′ (A− iBk′)

−1
Ak′

−1
. (B.48)
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Introduce

κ−1 = k′2 − k2 = 2m(ε′ − µ)− 2m(ε− µ) = 2m∆ε (B.49)

which is proportional to the identity. ∆ε = ε′ − ε. Now

if = −T ′(ū+ u) + (u− ū)T − iT ′uT (B.50)

= 2ik′ (A− iBk′)
−1
Ak′

−1
(ū+ u)k−1

(
A† + ikB†) (A† + ikB†)−1

k (B.51)

+ 2ik′ (A− ik′B)
−1

(A− ik′B) k′
−1

(u− ū)k−1A† (A† + ikB†)−1
k (B.52)

− 4ik′
−1

(A− iBk′)
−1
Ak′

−1
uk−1A† (A† + ikB†)−1

k (B.53)

= 2ik′ (A− iBk′)
−1
[
Ak′

−1
(ū+ u)k−1

(
A† + ikB†)+ (A− iBk′) k′

−1
(u− ū)k−1A† (B.54)

−2Ak′
−1
uk−1A†

] (
A† + ikB†)−1

k (B.55)

with the bracketed term being

1

2m∆ε

[
2Ak−1

(
A† + ikB†)+ 2 (A− iBk′) k′

−1
A† − 2Ak′

−1
(k + k′)k−1A†

]
= 0. (B.56)

C Wavefunctions are orthogonal for a complex momentum-matrix

Ignore the proportionality constant and write the wavefunction as

χab(x, ε) = e−iko
axδba + ei(k

o
b+ikc

b)xSba(ε), x ∈ (0,∞), 1 ≤ a ≤ n, 1 ≤ b ≤ N. (C.1)

since we can only insert a wave into open channels. Depending on what channel we’re probing, b, we

either get a wave returning if b belongs to an open channel, or an exponential decrease if b is a closed

channel.

⟨χα(ε
′)|χβ(ε)⟩ =

N∑
j=1

∫ ∞

0

dx
(
eik

o
α

′xδαj + e−kc
j
′xe−iko

j
′xS∗

jα(ε
′)
)(

e−iko
βxδβj + e−kc

jxeik
o
jxSjβ(ε)

)
(C.2)

⟨χα(ε
′)|χβ(ε)⟩ =

N∑
j=1

∫ ∞

0

dx
(
eix(k

o
α

′−ko
β)δαjδβj + eix(k

o
α

′+ko
j )e−kc

jxδαjSjβ(ε)

+e−ix(ko
j
′+ko

β)e−kc
j
′xδβjS

∗
jα(ε

′) + eix(k
o
j−ko

j
′)e−x(kc

j+kc
j
′)S∗

jα(ε
′)Sjβ(ε)

)
. (C.3)

Now, α and β are restricted as

1 ≤ α ≤ n′, 1 ≤ β ≤ n. (C.4)

In the following, we will assume that

ε′ > ε, n′ ≥ n, (C.5)

where the equality n′ = n is true when there is at least one intermediate µi making ε′ − ε < µi − µi−1

(assuming µ1 < µ2 < · · · < µN ).
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N

1

ko, n

kc, m

ko′, n′

kc′, m′

Figure 10: 1 ≤ α ≤ n′ and 1 ≤ β ≤ n. The n, n′,m,m′ together with k indicate on

how many indecies the matrix k have non-zero components. Like kc has n zeros on the

diagonal followed by m non-zero numbers.

We will now calculate the four terms in (C.3), term by term, starting with the first.

Term 1 in (C.3):

N∑
j=1

∫
dx eix(k

o
α

′−ko
β)δαjδjβ =

N∑
j=1

δαjδjβ

(
πδ(koα

′ − koβ) +
i

koα
′ − koβ

)
(C.6)

= πδαβδ(ε
′ − ε)voα + δαβ

i

koα
′ − koα

. (C.7)

with
N∑
j=1

δαjδjβ =
(
Π′

oΠ
⊤
o

)
αβ
, Π′

oΠ
⊤
o =

 1n

0(n′−n)×n

 (C.8)

where 1n is the n× n identity matrix and 0(n′−n)×n is the (n′ − n)× n matrix filled exclusively with

zeroes.

Term 2:

N∑
j=1

∫
dx eixk

o
α

′
eixk

o
j e−kc

jxδαjSjβ(ε) =

n′∑
j=1

i

koα
′ + koj + ikcj

δαjSjβ(ε) =
i

koα
′ + koα + ikcα

Sαβ(ε) (C.9)

Term 3:

N∑
j=1

∫
dx e−ixko

j
′
e−ixko

βe−kc
j
′xδβjS

∗
jα(ε

′) =

n∑
j=1

−i
koβ + koj

′ δβjS
∗
jα(ε

′) = S†
αβ(ε

′)
−i

koβ + koβ
′ (C.10)
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Term 4:

N∑
j=1

∫
dx eix(k

o
j−ko

j
′)e−x(kc

j+kc
j
′)S∗

jα(ε
′)Sjβ(ε) (C.11)

=

n∑
j=1

S†
αj(ε

′)

[
πδ(koj

′ − koj )−
i

koj
′ − koj

]
Sjβ(ε) +

N∑
j=n+1

S†
αj(ε

′)
−i

koj
′ − i(kcj

′ + kcj)
Sjβ(ε) (C.12)

=πδ(ε′ − ε)

n∑
j=1

S†
αj(ε)v

o
jSjβ(ε) +

N∑
j=1

S†
αj(ε

′)
−i

koj
′ − koj − i(kcj

′ + kcj)
Sjβ(ε). (C.13)

The matrices S(ε) and S†(ε′) written above, are still N × n and n′ × N respectively. For the wave-

functions to be orthogonal we want

⟨χα(ε
′)|χβ(ε)⟩ ∝ δαβδ(ε

′ − ε) (C.14)

meaning, taken from the first term in (C.7) and (C.13) we get

πδ(ε′ − ε)δαβv
o
α + πδ(ε′ − ε)

n∑
j=1

S†
αj(ε

′)vojSjβ(ε)
!∝ δαβδ(ε

′ − ε) (C.15a)

=πδ(ε′ − ε)voα

δαβ +
√
voα

−1
N∑
j=1

√
voα

−1
S†
αj(ε)

√
voj

√
vojSjβ(ε)

√
voβ

−1√
voβ

 (C.15b)

=πδ(ε′ − ε)voα

[
δαβ +

√
voα

−1
(√

νo
−1
S†(ε)

√
vo
√
voS(ε)

√
νo

−1
)
αβ

√
voβ

]
(C.15c)

=πδ(ε′ − ε)voα

[
δαβ +

√
voα

−1
(√

νo
−1
S†(ε)Π⊤

o

√
νo

√
νoΠoS(ε)

√
νo

−1
)
αβ

√
voβ

]
(C.15d)

=2πvoαδαβδ(ε
′ − ε) (C.15e)

since
(
Ŝ†(ε)Ŝ(ε)

)
αβ

= δαβ . Now we need to show that all the remaining terms that were not propor-

tional to δαβδ(ε′ − ε) vanish. Those remaining terms are called G and are as follows.

Gαβ = δαβ
i

koβ
′ − koβ

+
i

koα
′ + koα + ikcα

Sαβ(ε)

− S†
αβ(ε

′)
i

koβ
′ + koβ

+

N∑
j=1

S†
αj(ε

′)
i

koj − koj
′ + i(kcj

′ + kcj)
Sjβ(ε) (C.16)

or on matrix form

−iG = Π′
oKΠ⊤

o − S†(ε′)KS(ε) + Π′
oK̄S(ε)− S†(ε′)K̄Π⊤

o (C.17)

with

K =
(
−ko + ko′ − i(kc′ + kc)

)−1 and K̄ =
(
ko + ko′ + i(kc′ + kc)

)−1 (C.18)

K =
(
k′

∗ − k
)−1

, K̄ =
(
k + k′

∗)−1
(C.19)
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both being N ×N , complex, diagonal and invertible, and ∗ means complex conjugation. We thus need

to show that Gαβ = 0. To begin, we write

K = (k′
∗
+ k)/2m∆ε, K̄ = (k′

∗ − k)/2m∆ε. (C.20)

and by letting

S(ε) = Π⊤
o + iT (ε), (C.21)

we find

−2imG∆ε = −2iΠ′
okT (ε) + 2iT †(ε′)k′

∗
Π⊤

o − T †(ε′)(k′
∗
+ k)T (ε). (C.22)

Ŝ(ε) = 1 + iT̂ (ε) (C.23)

From (D.10) we know that

T̂A,B,κo(ε) = T̂⊤
iA∗,−iB∗,−κo(ε), (C.24)

with T̂A,B,κo(ε) = T̂ (ε) and the notation T̂iA∗,−iB∗,−κo(ε) means T̂A,B,κo(ε) with A→ iA∗, B → −iB∗

and κo → −κo and
√
−κo = i

√
κo and

√
−κo−1

= −i
√
κo

−1
. Following the same procedure as (B.33)

we find the two version of T̂ from (C.24)

T̂ (ε) = 2i
(
Ã
√
κo

−1
+ iB̃

√
κo
)−1

Ã
√
κo

−1
(C.25a)

= 2i
√
κo

−1
Ã†
(√

κo
−1
Ã† + i

√
κoB̃†

)−1

(C.25b)

T̂ †(ε′) = −2i
(
Ã′

√
κo′

−1
− iB̃′

√
κo′
)−1

Ã′
√
κo′

−1
(C.25c)

= −2i
√
κo′

−1
Ã′†
(√

κo′
−1
Ã′† − i

√
κo′B̃′†

)−1

, (C.25d)

and by (C.21):

T̂ (ε) =
√
κoΠoT (ε)

√
κo

−1
(C.26)

T̂ †(ε′) =
√
κo′

−1
T †(ε′)Π′⊤

o

√
κo′ (C.27)

but since Πo does not have a left inverse (and Π⊤
o a right), an explicit expression for T is not available,

although we can guess and check solutions, such that by the above transformation, satisfy (C.25). So,

drawing inspiration from the open scattering matrix formulation, we set

T (ε) = 2ik−1A† (A† + ikB†)−1
kΠ⊤

o (C.28)

T †(ε′) = −2iΠ′
ok

′∗ (A− iBk′
∗)−1

A(k′
∗
)−1 (C.29)

By inserting the identities

1N = k′∗ (A− iBk′∗)
−1

(A− iBk′∗) (k′∗)−1 (C.30a)

1N = k−1
(
A† + ikB†) (A† + ikB†)−1

k (C.30b)
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appropriately, we find

−2imG∆ε = 4Π′
ok

′∗ (A− iBk′
∗)−1

[
(A− iBk′

∗
)(k′

∗
)−1kk−1A† (C.31)

+ A(k′
∗
)−1k′

∗
k−1

(
A† + ikB†)−Ak′

∗−1
(k′

∗
+ k)k−1A†

] (
A† + ikB†)−1

kΠ⊤
o

= 0. (C.32)

D Unitarity of the scattering matrix for a complex momentum-

maitrx

We will show that Ŝ is unitary by following the exact same procedure as done in (B.20) to (B.26), by

first defining

Ã = AΠ⊤
o , B̃ = BΠ⊤

o (D.1)

We now miss the important self-adjointness of AB† as ÃB̃† = APoB
† is not self-adjoint, but i(ÃB̃† −

B̃Ã†) is. Πo has a right inverse: Π⊤
o , but not a left inverse from. So

ΠoS(ε) = −
(
AΠ⊤

o + iBΠ⊤
o κ

o −BΠ⊤
c κ

cΠcΠ
⊤
o

)−1 (
AΠ⊤

o − iBΠ⊤
o κ

o
)

(D.2)

= −
(
Ã+ iB̃κo

)−1 (
Ã− iB̃κo

)
(D.3)

Ŝ(ε) = −
(
Ã
√
κo

−1
+ iB̃

√
κo
)−1 (

Ã
√
κo

−1 − iB̃
√
κo
)
. (D.4)

Ŝ(ε) = −
(√

κo
−1
Ã† − i

√
κoB̃†

) [
Ã(κo)−1Ã† + iB̃Ã† − iÃB̃† + B̃κoB̃†

]−1 (
Ã
√
κo

−1 − iB̃
√
κo
)

(D.5)

Ŝ†(ε) = −
(√

κo
−1
Ã† + i

√
κoB̃†

) [
Ã(κo)−1Ã† + iB̃Ã† − iÃB̃† + B̃κoB̃†

]−1 (
Ã
√
κo

−1
+ iB̃

√
κo
)

(D.6)

Ŝ−1(ε) = −
(
Ã
√
κo

−1 − iB̃
√
κo
)−1 (

Ã
√
κo

−1
+ iB̃

√
κo
)

(D.7)

= −
(√

κo
−1
Ã† + i

√
κoB̃†

) [
Ã(κo)−1Ã† + iB̃Ã† − iÃB̃† + B̃κoB̃†

]−1 (
Ã
√
κo

−1
+ iB̃

√
κo
)

(D.8)

= Ŝ†(ε). (D.9)

So Ŝ(ε) is unitary. This is without proving the existence of the different inverses, which may prove

troublesome as ÃB̃† is not self-adjoint. From (D.5) one can confirm

ŜA,B,κo(ε) = Ŝ⊤
iA∗,−iB∗,−κo(ε), (D.10)

with
√
−κo = i

√
κo and

√
−κo−1

= −i
√
κo
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E Delta function wavefunctions are orthogonal

For orthogonality, equation (B.29), we want f = 0 for

f = u+ ūŜ(ε)− Ŝ†(ε′)ū− Ŝ†(ε′)uŜ(ε) (E.1)

= u
(
1− Ŝ†(ε′)Ŝ(ε)

)
+ ū

(
Ŝ(ε)− Ŝ†(ε′)

)
(E.2)

= u
(
1− e−i(θ−θ′)

)
+ ū

(
e−iθ − eiθ

′
)

(E.3)

= u
(
1− e−i(θ−θ′)

)
− 2iūe−i(θ−θ′)/2 sin

θ + θ′

2
. (E.4)

with θ = θ(ε), θ′ = θ(ε′) and

u = (k − k′)−1, ū = (k + k′)−1. (E.5)

First define

D =
(
BB†k −AA†k−1

) (
BB†k′ −AA†k′

−1
)

(E.6)

and

g =
−AB†

BB†k −AA†k−1
, g′ =

−AB†

BB†k′ −AA†k′−1 (E.7)

so that

θ = tan−1 g, θ′ = tan−1 g′. (E.8)

Thus

f = u(1− cos θ cos θ′ − sin θ sin θ′) + ū(cos θ − cos θ′)

+ i [u(sin θ cos θ′ − cos θ sin θ′)− ū(sin θ + sin θ′)] . (E.9)

Re{f} =
1√

1 + g2
√

1 + g′2

[
u

(√
1 + g2

√
1 + g′2 − 1− gg′

)
+ ū

(√
1 + g′2 −

√
1 + g2

)]
(E.10)

=
1√

1 + g2
√

1 + g′2

[
−u

(
−2BB†AA†(kk′

−1
+ k′k−1) + 4A2B†2

D

)
(E.11)

ū

(
2AA†BB†(kk′

−1 − k′k−1)

D

)]

=
1√

1 + g2
√

1 + g′2

[
−k − k′

kk′
2AA†BB†

D
+
k − k′

kk′
2AA†BB†

D

]
= 0 (E.12)

where we extensively have used that A and B are diagonal, and AB† is self-adjoint.

Im{f} =
1√

1 + g2
√
1 + g′2

[
u(g − g′) + ū

(√
1 + g′2g +

√
1 + g2g′

)]
(E.13)

=
1√

1 + g2
√
1 + g′2

[
−2uAB†BB

†(k′ − k) +AA†(k−1 − k′
−1

)

D
(E.14)

−2ūAB†AA
†(k′

−1
+ k−1) +BB†(k + k′)

D

]
= 0. (E.15)
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So we conclude that in the simplest situation, when A and B are diagonal, corresponding to a δ

potential at the vertex, the wavefunctions are orthogonal.

F Kirchhoff’s law for conductance figures

Figure 11: Conductance at zero temperature, with induced potentials given by 2mu =

{1, 2, 2}, α = 0.
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(a) α = 5

(b) α = 10

Figure 12: Induced potentials 2mu = {1, 2, 3}. As α increase, any conductance decrease,

i.e. each lead becomes isolated.
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Figure 13: Here α = 10, and 2mu = {1, 2, 3})

G Observables derivations

The electric current:

⟨Jb(x)⟩ =
i

2m

∫∫
dε dε′

2π

∑
a′,a

⟨c†a′(ε
′)ca(ε)⟩ [χ∗

a′b(x, ε
′)∂xχab(x, ε)− ∂xχ

∗
a′b(x, ε

′) χab(x, ε)] (G.1)

=
i

2m

∫
dε
∑
a

fa[χ
∗
ab(x, ε)∂xχab(x, ε)− c.c.] (G.2)

=
i

2m

∫
dε
∑
a

fa
voa

[(
eik

o
axδab + e−i(ko

b−ikc
b)xS∗

ba(ε)
)

(G.3)

×
(
−ikoae−iko

axδab + i(kob + ikcb)e
i(ko

b+ikc
b)xSba(ε)

)
− c.c.

]
=

i

2m

∑
all a

∫ ∞

µa

dε
fa
voa

[
−2ikoaδ

2
ab + iδabSba(ε)

(
(kob + ikcb)e

iko
axei(k

o
b+kc

b)x − koae
iko

axei(k
o
b+ikc

b)x
)

− iδabS
∗
ba(ε)

(
koae

−iko
axe−iko

b−ikc
bx − (kob − ikcb)e

−iko
axe−i(ko

b−ikc
b)x
)
+ 2ie−2kc

bxkob |Sba(ε)|2
]

=

∫ ∞

µb

dε fb(ε)−
∫ ∞

0

dε e−2kc
bx

∑
a∈O(ε)

fa(ε)
kob
koa

|Sba(ε)|2 (G.4)

⟨Jb(x)⟩ =
∫ ∞

µb

dε
∑

a∈O(ε)

[fb(ε)− fa(ε)] |Ŝba(ε)|2 (G.5)

=

∫ ∞

µb

dε
∑

a∈O(ε)

[δab − |Ŝab(ε)|2]fa(ε) (G.6)
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The particle density:

⟨ρb(x)⟩ =
∫∫

dε dε′

2π

∑
a′,a

⟨c†a′(ε
′)ca(ε)⟩χ∗

a′b(x, ε
′)χab(x, ε) (G.7)

=

∫ ∞

0

dε
∑
a

fa|χab(x, ε)|2 (G.8)

⟨ρb,O(x)⟩ =
∫ ∞

µb

dε
∑

a∈O(ε)

fa|χab(x, ε)|2 (G.9)

=

∫ ∞

µb

dε
∑
all a

fa(ε)θ(ε− µa)

voa

(
δ2ab + 2δab Re

{
eik

o
axei(k

o
b+ikc

b)xSba(ε)
}
+ e−2kc

bx|Sba(ε)|2
)

(G.10)

=

∫ ∞

µb

dε

fb(ε)
vob

(
1 + 2Re

{
e2ik

o
bxSbb(ε)

})
+

∑
a∈O(ε)

fa(ε)

voa
|Sba(ε)|2

 (G.11)

⟨ρb,C(x)⟩ =
∫ µb

0

∑
a∈O(ε)

fa|χab(x, ε)|2 (G.12)

=

∫ µb

0

dε e−2kc
bx

∑
a∈O(ε)

fa(ε)

voa
|Sba(ε)|2. (G.13)

⟨ρb(x)⟩ =
∫ ∞

µb

dε

fb(ε)
vob

(
1 + 2Re

{
e2ik

o
bxSbb(ε)

})
+

∑
a∈O(ε)

fa(ε)

voa
|Sba(ε)|2

+

∫ µb

0

dε e−2kc
bx

∑
a∈O(ε)

fa(ε)

voa
|Sba(ε)|2 (G.14)

⟨ρb(x)⟩ =
∫ ∞

µb

dε
fb(ε)

vob

(
1 + 2Re

{
e2ik

o
bxSbb(ε)

})
+

∫ ∞

0

dε e−2kc
bx

∑
a∈O(ε)

fa(ε)

voa
|Sba(ε)|2 (G.15)

kcb is only defined if µb > ε, else return 0. At non-zero temperature there will always be a non-zero

number of particles in each lead.
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