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Abstract

In this thesis, the Improved Ramp Fitting Method has been developed, tested,

and applied to paleoclimatic records from ice cores and speleothems in order to

investigate abrupt Dansgaard-Oeschger transitions during the last glacial period.

The method is used to characterize the age and timing of a series of 15 Dansgaard-

Oeschger events (27-60 ka BP) in records from the NorthGRIP and NEEM ice cores

from Greenland, and from speleothems from the Hulu cave in Southeast China.

The study investigate the phasing and anatomy of the Dansgaard-Oeschger events

across different proxy records from ice cores (δ18O, Ca2+, Na+, D-excess). A lead

of 20 years and 10 years to δ18O are found for D-excess and Ca2+ respectively.

The study also compares the timing of Dansgaard-Oeschger events between ice

core and speleothem records, and concludes that they happen synchronously or

within a lead-lag of 10 years.
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Chapter 1

Introduction

During the last glacial period, the climate was not as stable as it has been during

the last ten thousand years in the Holocene period. Instead, it was affected by a

series of abrupt changes which drastically changed the climate with up to 16 ◦C

in Greenland (Dansgaard et al., 1993). The abrupt changes were first discovered

in stable isotope records obtained from ice cores drilled on the Greenland ice

sheet (figure 1.1) (Dansgaard et al., 1982; Dansgaard et al., 1993; Johnsen et al.,

1992). The isotope records measured the fractional concentration of 18O referred

to as δ18O. The abrupt changes are commonly referred to as Dansgaard-Oeschger

events (DO events). The stable isotope records from Greenland reveal more than

25 dramatic events during the last glacial period (Rasmussen et al., 2014). The

events are characterised by fluctuations between a cold full-glacial state and a more

mild state, and the states vary in duration from a few hundred years to a several

thousand years (Rasmussen et al., 2014). Cold and mild periods are referred to as

Greenland Stadials (GS) and Greenland Interstadials (GI).

DO events are believed to be a result of oscillations between two quasi-stable states

of the climate system (Dansgaard et al., 1993). A recent study suggested that

the oscillations are determined by the CO2 level and the transitions are induced

by a stochastic element related to internal climate variability (Vettoretti et al.,

2022). However, the precise mechanisms behind these abrupt changes are still

being discussed as well as what the global impact on the coupled atmosphere and

ocean system of DO events is (Lohmann & Svensson, 2022; Pedro et al., 2022;

Pedro et al., 2018; Vettoretti et al., 2022).
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CHAPTER 1. INTRODUCTION

Greenlandic Ice cores offer a multitude of parameters to measure, with each pa-

rameter representing a proxy for different climate system processes. In all of the

measured parameters DO events can be seen. Furthermore, DO events are also

recorded in other paleoclimatic archives across the globe, such as marine sediment

cores and speleothem cores. Combining archives around the globe offers a spa-

tial coverage of DO events and their impact. It is essential that the records are

precisely dated in order to successfully compare the timing of DO events between

different records. This is often problematic across archives dated with various

methods (Adolphi et al., 2018; Buizert et al., 2015; Corrick et al., 2020). Ulti-

mately, the goal is to map the changes temporally and spatially in the climate

system, to understand the mechanisms an causalities.

Ice-core and speleothem records does not share the same dating method. Green-

landic ice cores are dated with annual layer counting, and provide annual to multi-

annual resolution (K. K. Andersen et al., 2006; Rasmussen et al., 2006; Sinnl et

al., 2022; Svensson et al., 2006). Speleothem records are dated using the ratio

of U/Th isotopes, and offers decadal resolution (Cheng et al., 2016; Wang et al.,

2001). The specific timing of paleoclimatic records is essential for understanding

the causes and mechanisms of DO events as phasing difference between records

could suggest phasing differences in the global impact of the events, or could be

due to cross-dating uncertainties between the records (Blunier et al., 1998).

Unfortunately dating methods and thus timescales are, as everything else, subject

to errors and uncertainties. Ice core records can be synchronized precisely via ref-

erence horizons such as volcanic eruptions. In the case of ice cores from Antarctica

and Greenland, peaks in methane records can be used as methane is subject to a

fast global mixing in the atmosphere (Blunier & Brook, 2001; Buizert et al., 2015).

Both speleothems and ice cores record climate changes in the δ18O records. The

only shared features are the climate transitions associated with the DO events

and the glacial cycles. The Ramp Fitting Method (RFM) was developed to offer

an unbiased estimate for the age of the transitions, and can then be used to

synchronise the two types of records.

The aim of this thesis is to test the robustness of a Markov Chain Monte Carlo

(MCMC) inference method that fits a ramp model to data. Familiarity in terms of

2



CHAPTER 1. INTRODUCTION

strength and weaknesses of the method is key to effectively interpret the results.

The motivation to investigate the Ramp Fitting Method, arose from the results of

four papers (Buizert et al., 2015; Capron et al., 2021; Corrick et al., 2020; Erhardt

et al., 2019). These studies measured the age and properties of DO events during

the last glacial. Together they raise three questions:

Question 1: When measuring ice core parameters such as δ18O, Na+, Ca2+, D-

excess, does there exist a lead or lag relationship between these parameters

with regards to the onset of Dansgaard-Oeschger events?

Question 2: Does there exist a time difference between Dansgaard-Oeschger events

measured in ice cores and speleothems? If yes, is this difference related to

dating errors of the time series or is the event non-coincidental globally?

Question 3: Can the Ramp Fitting Method, which is used on ice cores, be used

on speleothem records given their limitations?

To answer the questions, the need for more thorough testing of the limits of the

RFM is required.

This is done here, first by developing the model to include more parameters that

better represents the signal. Then the model is investigated in a test environment,

testing the method on surrogate data with known properties, to find the accuracy

and limitations of ramp fitting. Finally, the method is applied to the data from

the four papers, firstly on two ice cores from Greenland, secondly on speleothem

data from the Hulu Cave.
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CHAPTER 1. INTRODUCTION

Figure 1.1: The figure shows a combination of the NEEM and NGRIP δ18O ice
core records from Greenland (Andersen et al., 2004; Dahl-Jensen et al., 2013). The
Dansgaard-Oeschger events are clearly visible as fast fluctuations during the last
Glacial time period. The climate was relatively stable during the Eemian (130 -
115 thousand years BP) and Holocene interglacial time periods (0-11.7 years BP).
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Chapter 2

Background

In this chapter, the background for the thesis is described. An introduction of the

climate system and the relevant processes is presented, as well as the paleoclimatic

archives used in the thesis. Finally, Dansgaard-Oeschger events are introduced

together with previous studies and a short explanation of how this study differs.

2.1 The Climate System

The Earth’s climate system includes five components: the atmosphere, the ocean,

the cryosphere, the biosphere and the lithosphere. In each component, complex

processes act and interact. They change dynamically with each other into what

we know as the climate (Ruddiman, 2014). Previously, climate was defined as

the thirty year mean of precipitation and surface temperature, which is a useful

indication of the climate, although a very crude representation. Present day, this

definition is expanded to include the variations and extremes which gives a more

precise representation of what the climate is and how it changes (Gulev et al.,

2021; IPCC, 2021; Ruddiman, 2014).

Climate change occurs as a response to external forcings on the climate system.

External forcings are changes in plate tectonics, Earth’s orbit, the insolation, and

anthropogenic changes. The external forcing influence the current climate sys-

tem directly and may initiate a response from internal mechanisms in the climate

system, that leads to changes over a range of timescales. Feedback mechanisms

5



2.1. THE CLIMATE SYSTEM CHAPTER 2. BACKGROUND

Figure 2.1: The plot shows the typical response times of different components of
the climate system. This illustrates at what time scale each component is most
dominant (figure from Goosse (2015))

refers to mechanisms that either amplify or counteracts the initial forcing and are

said to be positive or negative, respectively (Ruddiman, 2014). They are a key

feature of the climate system, and essentially define the stability of the climate.

Positive feedback mechanisms creates unstable states, in which a change will pro-

pel the climate into a new state. On the contrary, negative feedback mechanisms

counteracts this and act to maintain the climate in a stable state.

When the climate system responds to a forcing, not all components will respond

equally fast. The different mechanisms may vary in response time, or feedback

mechanisms may slow down or speed up the response. Consequently this means,

when working with climate data, that the timescale at which you operate will

define what mechanisms are relevant. The atmosphere is a very dynamic system

which can change on a daily basis. Compared to the cycles of orbital forcing,

which acts on tens to hundred thousands of years or changes in the deep ocean

circulation which changes over a range of decades to millennia, the atmospheric

circulation can change in less than a year, which is a much faster time scale (see

figure 2.1).

Climate change can also originate from internal variations within the climate sys-
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2.2. PALEOCLIMATIC RECORDS CHAPTER 2. BACKGROUND

tem. This type of change is the result of natural variability and feedbacks between

components of the climate system. The climate in the North Atlantic is mainly

controlled by the Gulf stream and its northern extension, the North Atlantic Cur-

rent. These two ocean currents transport warm waters from low latitudes to the

North Atlantic region. As the water reaches the Arctic ocean southeast of Green-

land the water density increases due to cooling and increased salinity from sea

ice formation, and sinks to the bottom and flows back towards Antarctica as cold

deep water. These currents together are called the Atlantic Meridional Overturn-

ing Circulation (AMOC) and constitutes the northern part of the Thermohaline

Circulation which is an important part of the global meridional heat transport

(Ruddiman, 2014). Several numerical and observational studies of the AMOC

suggests three possible stable modes for the system. A warm mode resembling the

current state in the Holocene period and GI, a cold mode related to a weakening

of the AMOC which is associated with GS, and a shutdown where the North At-

lantic circulation is disrupted (Boers, 2021; Dima et al., 2022; Hawkins et al., 2011;

Rahmstorf, 2002). The third state for AMOC where it shuts down is believed to

be associated with Heinrich events. During Heinrich events, the Laurentide ice

cap is believed to collapse resulting in extreme amounts of added fresh water in

the North Atlantic (Bond et al., 1992).

If temperatures continue to rise, it would lead to increased freshwater fluxes from

the Greenland ice sheet into surface waters from the Arctic ocean. This would

affect the salinity of the surface waters, and could reduce the AMOC and eventually

push it towards a tipping point. Passing the tipping point would change the current

mode, further weakening the circulation, or in extreme cases, shutting it down

(Boers, 2021). A change of this magnitude would abruptly and drastically change

the climate around the North Atlantic region. Recent studies suggests that the

AMOC is currently weakening (Boers, 2021), which could suggest that the climate

is moving towards such a tipping point.

2.2 Paleoclimatic Records

The climate leaves a footprint in nature, which can be stored for million of years.

The information of previous temperature, atmosphere, sea level, etc. are sealed
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2.2. PALEOCLIMATIC RECORDS CHAPTER 2. BACKGROUND

Figure 2.2: The figure shows a graphical representation of the thermohaline circu-
lation. The blue lines represents bottom currents, whereas the red lines represents
surface currents (figure from https://encounteredu.com)

in nature in paleoclimatic archives. The most commonly known climate archive is

trees. Trees contains information in the tree rings which together with their width,

shows a representation of the past climate. Similarly several other archives hold

information about the past, such as ice cores, corals, speleothems, sea-floor sedi-

ments, etc. A climate proxy refers to a physical property that indirectly represents

the climate. This is contrast to air bubbles in ice cores that, when measured, is

a direct measurement of the past atmosphere. For climate proxies, further knowl-

edge of the deposition process is needed to interpret the measured parameter. This

means, that proxies from climate archives has to both be well understood, as well

as precisely measured before they can be used as a climate proxy to infer the past

climate.

2.2.1 Greenland Ice Core Records

The Greenland ice sheets contains information of the climate throughout the last

glacial cycle (approximately 130 kyrs ago) (Andersen et al., 2004; Dahl-Jensen et

al., 2013). Due to high evaporation of water vapor at low latitudes and the general

atmospheric circulation, water vapor is transported poleward towards Greenland.
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Figure 2.3: The plot shows different paleoclimatic archives, here tree rings, ice
cores, speleothems, varves, corals. In some archives, the creation of one layer
follows an annual cycle, which allows for detection of seasonal variations and dating
via layer counting. However, for speleothems, one layer can span several years
(figure from Schmittner (2021)).

During this transport, water molecules containing heavy isotopes of hydrogen and

oxygen, such as H18
2 O and HD16O, condenses with a higher rate than the lighter

water molecules H16
2 O due to differences in the water vapor pressure of the two

isotopic components. When the snow falls on Greenland, the fraction of H18
2 O and

HDO isotopes in the snow are then lower than it was initially in the subtropical

ocean water where the water vapor originated from (Cuffey & Paterson, 2010).

The condensation rate is affected by the temperature, and this creates an annual

signal in the stable isotope concentration, thus making the relative concentration of

9



2.2. PALEOCLIMATIC RECORDS CHAPTER 2. BACKGROUND

H18
2 O and HDO a proxy for the past temperature. This is traditionally calculated

as:

δ =
R−RSMOW

RSMOW

, R =
[18O]

[16O]
or R =

[D]

[H]
(2.1)

Where R is the relative concentration for a sample, and RSMOW is for standard

mean ocean water (SMOW) (Dansgaard, 1964). The δ value can be calculated for

both of the heavy isotopes, i.e. δ18O and δD. The deuterium excess is defined

from both delta values as:

D-excess = δD − 8δ18O (2.2)

D-excess is a second-order stable water isotope parameter that is sensitive to

conditions during evaporation of water from the ocean, and has been used in pale-

oclimatic research to inform of changes in the moisture source region (Dansgaard,

1964; Rasmussen et al., 2014). Willi Dansgaard was the first scientist to measure

the signal in Greenland ice cores, after his initial discovery of this phenomenon in

rain water over Denmark (Dansgaard, 1964). In order to use δ18O concentrations

as a proxy for temperature, it is necessary to know the temperature difference to

the evaporation source as well as the isotopic composition (Dansgaard, 1964).

In addition to snow, ice cores also contain impurities from various aerosols. In this

study two aerosol records will be investigated: The Na+ record which originates

from seasalt (NaCl) formed by sea spray and is influenced by sea ice, and the

Ca2+ records which originates from continental dust (CaCO3) from Asia and is

influenced by storminess and atmospheric circulation Erhardt et al., 2019. Both

of these records have an annual cycle.

Greenland ice cores are usually drilled vertically on the highest local point on the

ice sheet. This ensures minimal impacts of horizontal ice flow, keeping the snow

layers in chronological order (figure 2.4). The annual layers form from snowfall at

the central surface of an ice sheet. As the snow builds up in the middle, ice flows

downward and towards the margins of the ice sheet. When the snow sinks down

into the ice, the layers are stretched and thinned by ice flow, and the annual layer

thickness decrease over depth 2.4. The figure shows how the layer thickness and

ice age changes with depth in a simple model (Cuffey & Paterson, 2010). Towards

10
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the bottom, the age of the ice increase exponentially due to the layer thickness

approaching zero.

At the time of writing, the current drill project EastGRIP is located in the North

East Greenland Ice Stream (NEGIS) (eastgrip.org). This provides an opportunity

to investigate ice stream flow, which in turn will help understand the link between

ice mass loss and ocean circulation in the North Atlantic.

To summarize, the climate proxies used in this thesis from ice cores are:

• δ18O: a proxy for temperature.

• λ: annual layer thickness, a proxy for precipitation.

• D-excess: A proxy for the water vapor source conditions.

• Ca2+: A proxy for atmospheric circulation and storminess.

• Na+: A proxy affected by the sea-ice extent.

Ice cores are particularly well dated, due to the seasonal signal, as well as the

annual or multi-annual resolution. Many processes and parameters also has a

seasonal signal, which is measurable with the high resolutions. Greenlandic ice

cores are dated by counting the annual layers in the ice core from multiple records.

Volcanic eruptions create a significant peak in sulphuric acids and sometimes

tephra layers can be found. The volcanic layers can be identified as reference

horizons between different ice cores, which enables a precise synchronization be-

tween the cores (Seierstad et al., 2014). Additionally, the dating is calculated in

relation to depth, which means that all tracers measured from the ice share equal

age and age uncertainty for the same depth. The shared age-depth relationship

together with the high resolution is an important feature of ice core proxies, which

provide an excellent basis for multi tracer studies, that is, studying all the ice core

parameters in a comparison (Cuffey & Paterson, 2010).

The NEEM and NorthGRIP ice core records used in this thesis are dated ac-

cording to the the Greenland Ice Core Chronology 2005 (GICC05). GICCO5 was

constructed from layer counting in the NorthGRIP ice core from Greenland back

11
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Figure 2.4: a: An idealized ice-sheet model (figure adopted from Dansgaard et al.,
1969), illustrating how annual layers thin with depth throughout the ice column
due to ice flow. b: The two graphs shows age and layer thickness with respect
to fractional depth according to a simple ice-flow model (the Nye model) (figure
from Cuffey and Paterson, 2010). It illustrates together with a how the layers are
thinned towards the bottom and as a result how the age gradient increases. c:
This panel shows Greenland and the location of previous deep ice core drill sites.
The ongoing ice-core project is located on the NEGIS at the EastGRIP marker.

to 60 thousand years BP K. K. Andersen et al., 2006; Svensson et al., 2008; Svens-

son et al., 2006, and extended back to 104 thousand years BP by volcanic reference

horizons and modelling (Seierstad et al., 2014). The NEEM ice core is dated via

matchpoints with the NorthGRIP ice core (Dahl-Jensen et al., 2013). The dating

uncertainty arises from cumulative counting uncertainty, commonly referred to as

the counting error (K. K. Andersen et al., 2006; Svensson et al., 2008; Svensson

et al., 2006). The counting error grows from ≈ 100 years to ≈ 2500 years during

the last glacial (Rasmussen et al., 2014).

12
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2.2.2 Speleothem Records

While ice cores are excellent records in the polar regions, they do not offer much

around the tropical or subtropical regions for the last glacial period. Instead,

speleothem formations in caves also acts as climate archives. Like ice cores, the

formation of speleothems also depends on precipitation as they form from rainwater

that drains through the ground and wash out calcite (CaCO3), that essentially

becomes speleothems.

As previously mentioned, the isotopic composition of the rainfall depends on local

temperature, precipitation, and changes in the vapor source region (Dansgaard,

1964). These changes are reflected in the δ18O values in the speleothem and many

of these records capture the stadial-interstadial oscillations related to DO events

(Cheng et al., 2016; Corrick et al., 2020). The climatic interpretation of the δ18O

proxies in speleothems is more complicated than for ice cores and varies depending

on the geographical location of the speleothem. For the Asian Summer Monsoon

region and South American Monsoon region the δ18O records are a proxy for

precipitation (monsoon strength), and for the Europe-Mediterranean region it is a

proxy for temperature (Cheng et al., 2016; Corrick et al., 2020). Figure 2.5 shows

the location of speleothem caves that records evidence of DO events.

Due to the geographical variation in speleothem cave locations, speleothem records

combined with ice-core records offer global coverage of the temperature and climate

system. However, compared to ice-core records, speleothems records often has

severely reduced resolution. Furthermore, the complex process of their formation

can lead to lag and mixing during seepage to the subsurface cave which can affect

the resolution of the records.

Dating of speleothem records can not be done by layer counting as they generally

do not possess an annual signal. Instead, the speleothems are dated using radioac-

tive dating methods. 230Th disequilibrium dating is common dating method for

paleoclimatic data that usually spans a time period of 600.000 years, which is the

maximum limit for the method. The dating method is used on speleothems, and

corals among others (Brauer et al., 2014). The radioactive decay series beginning

with 238U , omitting the fast reaction, is shown here:

238U →234 U →230 Th (2.3)

13
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Figure 2.5: This figure is adopted from Corrick et al. (2020) and shows the location
of 63 different speleothem records , which all recorded the DO transitions. The red
triangle shows the location of the Hulu cave used in this study. The three regions
are (A) Asian Summer Monsoon region, (B) South American Monsoon region, (C)
Europe-Mediterranean region. The color gradient for each plot show anomalies
of annual mean precipitation for (A) and (B) and surface air temperature for (C)
between interstadial and stadial states based on climate model experiments of DO
events (Corrick et al., 2020).

The dating method compares the concentration of Uran and Thorium, and can

then estimate the age based on the decay chain between the two. The method

provides independent, accurate and precise chronologies of speleothems. (Brauer

et al., 2014). However, samples are not collected continously and this can lead to

gaps in the chronology for the record. Between these gaps, the dating relies on
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Figure 2.6: The figure on the left shows a picture of a speleothem, cut in half to
show the layers. On the right the figure shows a picture of speleothems in a cave.
(figure from the INTIMATE project website by Brauer et al. (2014))

modelling of the growth rate for the speleothem (Cheng et al., 2016).

2.3 Dansgaard-Oeschger Events

In ice cores, we can observe periods in the past with more and less variations in the

climate. The glacial and interglacial cycles during the last 800,000 years (Jouzel et

al., 2007) show that the climate oscillates between glacial and interglacial periods.

During the glacials, there is much higher variations compared to the interglacial

periods, and we see several events of abrupt climate happening during the glacials

(see figure 1.1) (Andersen et al., 2004).

The events are referred to as the already mentioned Dansgaard-Oeschger events

after Willi Dansgaard and Hans Oeschger, who first discovered the abrupt events

in ice core records from Greenland (Dansgaard et al., 1982). The DO events only

occurs during glacial periods and have not been observed in neither the Holocene or

in previous interglacial periods (see e.g. figure 1.1). The events are characterized

by a sharp transition in to a warm period (Greenland Interstadial or GI), then

followed by a cold period (Greenland Stadial or GS) as illustrated on figure 2.3.

Usually, the isotope concentration in GIs will be gradually decreasing, until an

abrupt transition down into the GS.

The duration of a Greenland stadial or interstadial are within a hundred to several
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thousand years (Rasmussen et al., 2014), and the temperature difference is 10-16

degrees (Dansgaard et al., 1993). The transitions are abrupt and spans a few

decades. Previously, it was proposed that DO events could be a result of external

forcing of the climate system from the sun, and it was believed that DO events

were periodic (Rahmstorf, 2002). However, the idea has been rejected (or debated)

after ice core time scales have been improved (Svensson et al., 2006).

Another view of DO events, which is gaining support, is that they are originating

from internal variations in the climate system (Vettoretti et al., 2022). That

is, natural variations reaching a tipping point pushing the climate into a new

state. It is unknown what specific processes are causing DO events (Vettoretti

et al., 2022). The impact of DO events is observed globally in Greenland, Asia

and Antarctica among others (Pedro et al., 2018). A phenomenon called the

thermal bipolar seesaw describes a connection between the North Atlantic and

the Antarctic region via ocean currents (Stocker & Johnsen, 2003). Studies of

Antarctic stable isotope records show cooling coinciding with warm conditions in

Greenland and the opposite for warming in Antarctica. The thermal bipolar seesaw

was proposed as ’the simplest possible model’ to explain the relationship between

DO events in Greenland and isotope variations in Antarctic records (Stocker &

Johnsen, 2003), but recent studies support the view that DO events are part of an

oscillatory climate mode that does not rely on a systematic trigger (Pedro et al.,

2022; Vettoretti et al., 2022).

As mentioned, DO events are also reflected in speleothem records. On figure 5.2 an

isotope record from Hulu cave is shown, together with the NorthGRIP (NGRIP)

isotope record. It is clearly visible that both records contain evidence of DO events.

As DO events are visible in the Hulu record, it reveals that the Asian Monsoon

and weather system was affected by the events, witch suggests that DO events had

global-scale impact (Corrick et al., 2020; Markle et al., 2017).

2.3.1 Anatomy of Dansgaard-Oeschger Events

DO events are diverse, and no two appears completely identical (Capron et al.,

2021). The anatomy of DO events refers to the parameters used to describe the

initial warming of the event. This is the transition length, the magnitude of the

warming for each proxy, and any leads or lags between these. Several studies have
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Figure 2.7: The plots shows shows DO event 10 and 11 in the NEEM and Hulu
δ18O record. The last panel shows two surrogate datasets together with the cor-
responding flat and sloped signal models (see chapter chapter 4). The number of
points for each data set is shown above the plots.

been conducted on ice cores, investigating causal relationships and variations in

the anatomy of DO events (Adolphi et al., 2018; Capron et al., 2021; Corrick et al.,

2020; Erhardt et al., 2019).

The methods used to determine the age of the transitions vary substantially across

studies of DO events. Furthermore, the dating methods of speleothems and ice

cores display different challenges and uncertainties. Speleothems have a precise

absolute dating by U/Th at the dated samples, and ice cores have precise rela-

tive dating, but a relatively large error of the absolute age (Buizert et al., 2015)

and several studies investigates the difference from the U/Th scale to GICC05

(buizert; Adolphi et al., 2018). The discrepancies between the two methods, can

then be discussed as differences in response time or dating errors.

In the papers by Erhardt et al. (2019), Adolphi et al. (2018) and Capron et al.

(2021), they investigate ice-core data using an ”unbiased” objective method build-

ing on Bayesian sampling. In the paper by Corrick et al. (2020), a more subjective

approach is used due to data quality, and in Buizert et al. (2015) a third method

is used. The methods and results of the papers are presented below to illustrate

what differences exists.
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2.3.2 Multi-tracer Studies on Ice Cores

As already mentioned, ice cores offers a plethora of measurements on gas and iso-

topes among others. Multi-tracer studies refers to when several records from the

same ice core record are studied together, e.g. δ18O and Na+. Multi-tracer analysis

is interesting, because all tracers are measured in parallel, meaning each measure-

ment have the same age, and there is no relative dating uncertainty between the

records. Previous studies have used a multi-tracer approach, analyzing the ice-core

library. In Capron et al. (2021) and Erhardt et al. (2019), they search for causal

relationships between the five records, Ca2+, Na+, λ, ∆18O, and D-excess with

respect to their timing of DO events. Erhardt et al. (2019) and Capron et al.

(2021) use records from the two deep ice cores from NorthGRIP and NEEM. Both

ice cores originates from Greenland.

The paper by Erhardt et al. (2019) argues that all DO events are realisations

of the same process or mechanism. Because of this, when calculating the lead

and lag relationship between the different tracers, the time difference is obtained

from a combination of the statistical distribution across all the DO events for

each individual tracer. The resulting conclusion is that on average, the local

accumulation and terrestrial dust aerosol concentrations has a lead of about one

decade compared to sea-salt aerosol concentrations and local temperature. This

suggests that the DO events impacted the Asian monsoon system as well as the

moisture transportation to Greenland, while AMOC simultaneously changed to its

strong state. If this is true, it might prove that a collapse in the sea-ice cover was

not the initial trigger of the DO warming.

The method used in this thesis are based on the method used in Erhardt et al.

(2019) - a Bayesian inference of a ramp model assuming a linear transition be-

tween two constant levels. The model in Erhardt et al. (2019) was programmed

in python. The sampler was run for 60 000 iterations with 60 different ensembles

and a posterior of 6000 samples.

The paper by Capron et al. (2021) states two goals, the first being investigating the

geographical representativeness of an ice-core record, searching for differences in

the timings of DO event transitions between the NGRIP and NEEM ice cores. The

second goal is to compare the results from the ice core analysis with simulations
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from the Community Climate System Model version 4 (CCSM4) to further discuss

which mechanisms are involved in DO events.

Capron et al. (2021) finds high correlations between the anatomy of DO events

across the two cores, and that the different DO events has a different anatomy.

They argue that the observed transitions could be different realizations of the same

underlying processes meaning the different anatomy between DO events might then

stem from internal climate variability. This imposes a new problematic that if any

sequence exists in the onsets of the different tracers, it itself would be sensitive to

internal climatic variability. However, the lack of a unique sequence in the tracers

might also suggests that the different anatomy of DO events stems from different

external forcings or different expressions of unforced internal oscillations. Exam-

ples of these could be fluctuations in salinity or stochastic atmospheric instability,

respectively. Nevertheless, the observed abrupt climate change, for both alterna-

tives, features large variations in sea-ice, atmospheric circulation, and temperature

anomalies.

The method used in Capron et al. (2021) is essentially the same method as the

one used in Erhardt et al. (2019), but in a different implementation. However, the

priors vary slightly, in particular for τ . The sampler is written in MATLAB and

draw 106 samples over an ensemble of 3 with a posterior of 7× 104.

2.3.3 Synchronization between Ice Cores and

Speleothems

Ice cores are dated via layer counting following the GICC05 timescale (K. K. An-

dersen et al., 2006; Svensson et al., 2008; Svensson et al., 2006)) while speleothems

records are dated via radioactive dating with the U/Th method (Brauer et al.,

2014; Cheng et al., 2016). Several studies have reported a difference in the cal-

culated ages in ice cores and speleothems, e.g. Adolphi et al. (2018) and Buizert

et al. (2015). This poses a new problem of whether differences in the timing of DO

events are real or due to issues with the timescales, which can also be investigated

using the RFM.

The paper by Adolphi et al. (2018) attempts to account for the dating error be-

tween GICC05 and the U/Th chronology using cosmogenic radionuclides and link-
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ing them between speleothems and ice cores. The paper reports a time difference

of 118 to 549 years between the two timescales calculated as U/Th − GICC05

during the period 45 000 to 15 000 years B.P. After correcting for this error, the

average time difference between the speleothem records and NGRIP is found to

be within 1σ uncertainty of the age (Adolphi et al., 2018), for all but one record.

Thus, the differences are not large enough to reject the hypothesis of synchronous

DO events in Greenland and low latitude speleothem records.

The paper use the exact same method as in Erhardt et al. (2019) on both the

ice core data and speleothem data. The paper analyse transitions in selected

speleothem records that are measured in high resolution with distinct features.

The paper by Buizert et al. (2015) attempts to match DO events across ice core

records from Greenland and Antarctica, and a speleothem record from the Hulu

cave. The ice core data is methane (CH4) records, which mix fast globally mak-

ing them optimal for synchronization. The paper finds an average age difference

between the U/Th timescale and GICC05 of 0.63% meaning that on average that

the U/Th scale is 1.0063×GICC05 older than the ice core record. The difference

is believed to originate from ice-core annual-layer counting errors.

This paper uses a more subjective method for determining the timing of DO events.

Here the midpoint is calculated as:

tmid =

{
t | y(t) =

ypost − ypre
2

}
(2.4)

with ypre and ypost calculated as a 150 and 50 year mean respectively over intervals

on the levels just before and after the transition. Some DO events are excluded

due to indistinct features or suboptimal data quality.

The paper by Corrick et al. (2020) investigated a collection of speleothem records

from three regions, each location representing the European-Mediterranean region,

the South American Monsoon and the Asian Monsoon respectively. The ages of

DO events in the speleothems are compared to ages in the NGRIP ice core. The

paper finds that DO events are recorded synchronous across each region, as well

as less than 100 years of lag between the three regions. Based on the results, they

reject the scaling difference between GICCO5 and U/Th timescales proposed in

Buizert et al., 2015, as well as the time scale correction of up to 549 years proposed
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in Adolphi et al., 2018. The paper uses a method similar to the dating method

for DO events in ice cores, which is applied in Rasmussen et al., 2014. The age of

the DO event is determined following ’the age of the first data point, which exceeds

the maximum value recorded in the preceding stadial period ’. For transitions that

exhibit a negative ramp, the method instead applies to the minimum value of the

preceding stadial period. For cases where the data point position on the speleothem

ramp did not match the location in the NGRIP ice core (i.e. onset vs endpoint

or similarly), the data point was switched to the apropriate adjacent points. The

method classifies as a more subjective method mostly due to the tuning of the age

location.

2.4 How this study differs

This study differs from the previous studies in 3 different ways. Firstly and most

importantly, an improved model for the abrupt transition has been developed

building on the method from Capron et al., 2021. The improved model intro-

duces two new parameters that describes the slope before and after a transition,

which better reflect the typical evolution of a DO event. The improved model is

programmed in python utilizing the package PyMC3 that improves the compu-

tational strain and run time of the program. Secondly, the model is tested more

thoroughly on surrogate data to see how well it can find known parameters, while

testing various setups for model parameters, data resolution and noise amplitude.

Finally, this method will be applied identically on two ice cores, as well as the Hulu

speleothem core, thereby eliminating any bias associated with a specific method.

This will provide a consistent and comparable dating of the abrupt events across

different paleoclimatic datasets, improved with a more complex model.
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Chapter 3

Data

This chapter presents the data used in this study. This includes the geographical

location, the type of paleoclimatic archive, the specific record used in this study

and the timescale. The presentation gives a short summary of the interpretation

of the records. The timescale includes information about the measuring method,

the resolution and the uncertainty.

3.1 NEEM and NGRIP records

3.1.1 NGRIP

Geographical location: The NorthGRIP (NGRIP) ice core was drilled in Northwest

Greenland at (75.1 ◦N , 42.3 ◦W ), see figure 2.4. The location was chosen in order

to find graphically undisturbed ice dating back into the previous interglacial, the

Eemian (130-110 kyears BP). However, basal melting at the site had removed the

oldest layers, so only the transition from the Eemian into the last glacial period

was preserved. Due to the basal melting, the NorthGRIP core had an exceptional

high resolution in the glacial period (Andersen et al., 2004).

Source: The ice core is a deep ice core drilled in the interior of the Greenlandic ice

sheet, meaning it covers the entire depth at the NorthGRIP drill site of 3, 085 m,

reaching a maximum age of ∼ 123, 000 years (Andersen et al., 2004). The strati-

graphic framework includes the transition into the Holocene as well as all GIs and

GSs back to GS-26 and the start of the Holocene period (Rasmussen et al., 2014).
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In this study, only the period from 27, 000 to 61, 000 years will be studied, which

includes DO-3 to DO-17.2.

Records: In this study, the following records from NorthGRIP were used: δ18O

and D-excess (Andersen et al., 2004; Gkinis et al., 2014) and Ca2+ (Erhardt et

al., 2019). Together these records allow for the investigation of local temperature

and precipitation in Greenland, atmospheric circulation and transportation of dust

from e.g. the central Asian deserts.

Measuring Method and resolution: The δ18O parameter is measured via mass

spectroscopy on 5 cm (depth) cut samples of the ice core, resulting in a four to

seven years resolution in the depth range studied here (Andersen et al., 2004;

Gkinis et al., 2014). The aerosol record (Ca2+) are measured via Continuous Flow

Analysis (CFA), where the ice is melted, and the meltwater is measured with

spectroscopy. With CFA the meltwater liquid is measured continuously across 8

bags (containing 55cmm pieces) or ∼ 4.4 m, with simultaneous registration across

all aerosol records down to approximately 1-2 cm scale resolution. Depending on

the layer thickness this corresponds to a sub-annual to multi-annual resolution

(Erhardt et al., 2019).

Dating: The NorthGRIP ice core is dated according to GICCO5 timescale (see

subsection 2.2.1). Uncertainties are determined from the maximum counting error

(MCE) (K. K. Andersen et al., 2006; Svensson et al., 2008; Svensson et al., 2006).

3.1.2 NEEM

Geographical location: The NEEM ice core was drilled further North in the central

North part of the Greenland ice sheet at (77.45 ◦N , 51.06 ◦W ), see figure 2.4. The

NEEM ice core was drilled to the bedrock with a length of 2, 540 m. The location

was chosen with the goal of finding ice, covering the entire previous interglacial, the

Eemian period. The NEEM ice core did contain Eemian ice, but the stratigraphy

was disturbed in the lower layers (Dahl-Jensen et al., 2013).

Source: This ice core is also a deep ice core, spanning the entire depth of the ice

sheet at the NEEM drill site. The first 2, 206.7 m of the ice core can be matched

to the NGRIP GICC05 timescale. The last ∼ 300 m of the ice core is distorted

and folded due to non-vanishing ice flow close to the bottom, so the dating was
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done by using several ice core records and linking to Antarctic records, by which

the Eemian section could be reconstructed (Dahl-Jensen et al., 2013).

Records: In this study, the following records from the NEEM ice core was used:

∆18O and D-excess (Vasileios et al., 2020), Ca2+ and Na+ (Erhardt et al., 2019).

These records allow for the investigation of local temperature and precipitation in

Greenland, sea ice, atmospheric circulation and transportation of dust from the

central Asian deserts.

Measuring method and resolution: The δ18O and D-excess parameters are mea-

sured on the NEEM ice core covering the period 8 - 129 kyears b2k. The depth

resolution of the record is 0.05 m. The analysis has been performed using Cavity

Ring Down Spectroscopy with an average precision for the whole record equal to

0.05 and 0.3 ‰ for δ18O and δD, respectively (Vasileios et al., 2020). The mea-

suring methods for Na+ and Ca2+ was identical to that of the NGRIP ice core

(Erhardt et al., 2019).

Dating: The NEEM ice core is also dated according to the GICCO5 timescale

by mathcing reference horizons to the NorthGRIP ice core (Dahl-Jensen et al.,

2013). The uncertainties are transferred from the NorthGRIP timescale (see sub-

section 2.2.1).

3.2 Hulu record

Geographical location: The Hulu speleothem is named after the Hulu cave in South-

east China where it was obtained (32◦30′N , 119◦10′E), see figure 2.5. The mean

annual precipitation and temperature at Hulu Cave are 1015 mm and 15.4 ◦C. The

annual precipitation is mainly from the summer monsoon (80%, June to Septem-

ber) (Wang et al., 2001).

Source: The record originates from a group of five speleothems obtained from

stalagmite calcite deposits formed from drip water in the Hulu Cave (Wang et al.,

2001). The speleothems were obtained from 35 m depth in Hulu Cave, and one

was 35 cm long (Southon et al., 2012; Wang et al., 2001). It is unknown if the

length is representative for all the speleothems.

25



3.2. HULU RECORD CHAPTER 3. DATA

Records: In this study, the δ18O record was used (Buizert et al., 2015). The record

is a proxy for monsoon strength in Southeast China (Wang et al., 2001).

Measuring method and resolution: The δ18O parameter is measured via mass spec-

troscopy with a resolution of approximately 130-140 years per samle (Wang et al.,

2001).

Dating: The Hulu record is dated using radioactive dating methods based on U/Th

dating (see subsection 2.2.2). The U/Th age uncertainty range from ± 150 years

at 10 kyears to ± 400 years at 60 kyears (Wang et al., 2001). Between measured

dates, uncertainties are related to the age modelling and assumptions of stalagmite

growth rate (Southon et al., 2012).
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Chapter 4

Methods

DO events are modelled as a transition between two stable states. There are

several possible functions to choose for the transition. There is a large variety in

the transition anatomy, that is the duration of an event and the difference between

isotope concentrations in GS and GI. Transitions spanning only a few years exists

(Steffensen et al., 2008). For these transitions, the transition duration rivals the

resolution of ice cores, which limits information of the details of the transition.

The original Ramp Fitting Method assumes a linear transition between states. In

ice cores, the signal is subject to smoothing due to diffusion in the ice. For the

NGRIP ice core, the diffusion length is 5 − 10cm during the last glacial for the

isotope records.

This chapter will first introduce Bayesian inference as well as some basic mathe-

matical background. Then the chapter describes the Ramp Fitting Method (RFM)

and the Improved Ramp Fitting Method (IRFM) in detail. Finally, the chapter

will describe the implementation in Python, with an example of the main code.

4.1 Bayesian Inference

The Ramp Fitting Method developed here is based on the theory of Bayesian

inference. Bayesian inference is a branch of probability theory that describes

the approximation of uncertainties and probabilities obtained through empirical

measurements. The formalism used for this chapter are defined in table 4.1.
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Notation Description
θ Model parameter(s) to be inferred
t Input (time)
y Observed data
ŷ True signal (no noise)

m(t, θ) The model taking input t and θ
p Auxiliary momentum
π Canonical distribution

P (θ) Prior probability of θ
P (θ|y) Posterior probability of θ given y
P (y|θ) Likelihood of y given θ
P (y) Marginal probability of y

4.1.1 Stochastic Variables

Formulating the ramp fitting model in more general mathematical terms, the data

consists of N pairs of (ti, yi) with y = {yi} denoting the observed data (δ18O,

aerosols, etc.). t = {ti} is then the model input variable (age) and θ is a set

of 4 (or 6) model parameters for the prediction model ŷ = m(t, θ). The goal of

Bayesian inference is to find a set of model parameters, θ, that best predicts the

observed data y. For this study a model can be formulated as:

y = ŷ + ε = m(t, θ) + ε (4.1)

The model consists of a deterministic part m(t, θ) = ŷ and a stochastic part with

the stochastic or random variable ε. A stochastic variable is used to describe

quantities that behave randomly. Compared to deterministic variables that take a

fixed value, stochastic variables are associated with some probability distribution

that describes the range of values it can take. Random variables are fundamental

for probabilistic modelling and are in these cases often associated with the noise

parameter.

For a stochastic variable Xi at time i, it can take a value xi that is drawn from

the distribution of Xi. A stochastic process is then a time series of a stochastic

variable. When modelling white or Gaussian noise, each value that is drawn is

independent of the previous values and drawn from the same distribution Xi = X

for all times. If on the other hand the noise is correlated, then the distribution
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for the stochastic value changes with time. The noise ε in this case is a stochastic

process described by an AR(1) process meaning an auto-regressive process. The

general formula for an AR(p) process is written:

εi =

p∑
k=1

φkεi−k + µ (4.2)

Where µ is white noise, p denotes the order of the process, and φk is the correlation

parameters of the AR(p) process and determines how much the preceding points

influences the next point. Further details of the error model will be elaborated in

section 4.2.

4.1.2 Probability

Stochastic variables and probabilities goes hand in hand as one is used to describe

the other. Stochastic variables are defined by a probability distribution that de-

scribes how likely it is to get a certain outcome. The outcome of a stochastic vari-

able integrated over all possible outcomes has to sum to one:
∫ inf

− inf
p(X = x)dx = 1.

It should be mentioned that this study will only cover continuous probability dis-

tributions. The probability to get a specific outcome is written P (X = x) = P (x).

Conditional probabilities refers to when the outcome of one event affects the out-

come of another event. It is written as P (X = x|Y = y) and describe what the

probability to get x when when the outcome Y = y has happened. Joint proba-

bility is a little different and refers to the probability to get both outcomes X = x

and Y = y before knowing any of them. It is written P (X = x, Y = y) and

can be calculated by multiplying the probabilities together or with the conditional

probability:

P (X = x, Y = y) = P (X = x) · P (Y = y) or (4.3)

P (X = x, Y = y) = P (X = x|Y = y) · P (Y = y) (4.4)

= P (Y = y|X = x) · P (X = x) (4.5)

The last concept that needs to be mentioned is Marginalisation. Marginal probabil-

ity is calculated by marginalising out one of the two variables in a joint probability,

29



4.1. BAYESIAN INFERENCE CHAPTER 4. METHODS

i.e. marginalising P (X = x, Y = y) for X is done by summing over all possible

values of Y :

P (X = x) =
∑
all y

P (X = x, Y = y) (4.6)

The introduced stochastic variables and probability covers the basics for under-

standing Bayesian inference. The next step is to understand the main equation

Bayes Theorem.

4.1.3 Bayes Theorem

The goal of Bayesian inference is to find a probability distribution for the model

parameters given the observed data. This can be done in the classical way by a trial

and error approach, in which the set of best fit parameters are found. With the

Bayesian approach, the probability distribution of the model parameters are found

empirically. Prior knowledge of the model parameters is used to delimit and sample

the parameter space. Thereby, any prior knowledge of the model parameters is

systematically integrated through prior probability p(θ). The parameter space

is sampled to find all sets of model parameters that fit the observed data which

results in an empirically determined posterior probability distribution P (θ|y) for

the model. This set of probability distributions are the result of the analysis.

Bayes Theorem describes how the probability distribution is updated with each

new guess of model parameters. The equation is found from combining equation

(4.4) and (4.5), and inserting the variables from the model (4.1) Bayes Theorem

is written as:

P (θ|y) =
P (y|θ)
P (y)

· P (θ) (4.7)

This equation is a fundamental part of the Monte Carlo method and machine

learning and is a mathematical analogy to how learning and knowledge is obtained.

The different components of the theorem represents probabilities and likelihood

for the data and parameters.

Prior probability p(θ) The prior probability or just prior is the initial guess

for a distribution for the model parameters. In Bayesian inference, the prior is
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used to define where to search for θ in the parameter space. The wider the prior

is, the more general the search for the optimal set of model parameters can be.

However, if the prior is very narrow the opposite is true and it can take longer to

converge. The prior should then be balanced between generality and effectiveness.

Likelihood P (y|θ) The likelihood tells how likely it is to observe the data y

for a specific set of model parameters θ and it can be used as an evaluation of the

model parameters. The likelihood is not a probability distribution and therefore

it does not follow a normalization of 1. In terms of equation 4.7, The likelihood is

high when the observed data y is close to the model m(t, theta) with the proposed

set of model parameters θ.

Marginal likelihood P (y) The marginal probability or likelihood act as

a normalization that makes sure the posterior distribution p(θ|y) is a properly

normalized probability density. It is calculated from marginalising out θ from the

joint probability P (y) =
∫
θ
P (y, θ)dθ =

∫
θ
P (y|θ)P (θ)dθ. The last form of the

marginal likelihood can be recognised as the integral over the Likelihood and the

Prior multiplied. The marginal likelihood is often very difficult to calculate for

high dimensional problems, or the integral is impossible to calculate and must be

approximated or disregarded in some other way.

Posterior probability p(θ|y) The posterior probability combines the knowl-

edge prior to any observations with the knowledge gained from testing. The pos-

terior, for short, is the final goal in Bayesian inference and describes a probability

distribution for the parameters θ based on the initial guess or prior knowledge

(P (θ) and the observed data (P (y|θ)). In Bayesian inference Bayes theorem has

to be applied several times in order to calculate the final posterior distribution.

For some cases of prior and likelihood, the posterior distribution will be the same as

the prior. These cases are referred to as conjugate prior-likelihood pairs. However,

in the case for this model, the many priors vary a lot between each model parameter

resulting in a complex posterior distribution with a non-conjugate prior-likelihood

pair. Although conjugate priors are easier to work with and offer analytical solu-

tions, with the current mathematical and computational resources available, the

choice of prior should rather represent a modelling perspective (physical or logical)

instead of mathematical convenience (Rogers, 2017).

31



4.1. BAYESIAN INFERENCE CHAPTER 4. METHODS

In Bayesian inference, the model parameters are treated as random variables with

associated probability distributions. A set of values are drawn from their respective

prior distributions and rejected or accepted depending on the likelihood. If the

values are rejected with too low a likelihood a new set of values for theta are

drawn. If the drawn values are accepted, the resulting posterior becomes the new

updated prior and the sampling continues.

4.1.4 MCMC Sampling

The Monte Carlo method covers a broad group of random sampling methods and

have many uses in physics and mathematics. The Monte Carlo Method uses ran-

domly drawn samples to estimate numerical results. Usually the basic Monte Carlo

sampling method uses a subset of possible outcomes to calculate an estimate of the

desired numerical value. There exists many different versions of the Monte Carlo

Method that varies in simplicity and effectiveness. The Monte Carlo method used

for Bayesian Inference is typically a Markov Chain Monte Carlo (MCMC) method.

Markov chains refers to a state model where the probability for the ”next” state

is only dependant on the previous state. As mentioned before, the Monte Carlo

method uses random sampling to infer or approximate a result. With Markov

Chain Monte Carlo theory, instead the probability distribution for each value is

dependant on the previous drawn value, instead of being a stationary distribution.

Figure 4.1 illustrates a simple state model of 5 possible states. The black token

represents the current state. Assume that the token has to jump to one of the

adjacent states with probaility p and p − 1. The probability to be in one of the

five states at any step would only depend on the current position of the token as

the two adjacent states would have probability p and p − 1 and all other states

would be impossible outcomes resulting in probability zero. As the probability only

depends on the previous position this system is an example of a Markov Chain or

a Markovian system. This system provides a useful analogy for the Markov Chain

Monte Carlo Method, which is similar to a random walk.

An example of a random walk simulation, is where each value is drawn from a

normal distribution with constant σ and mean value equal to the previous position.

The sampled points are thus also prone to auto correlation as each step will be
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Figure 4.1: This figure illustrates a simple state model of 5 possible states. The
black token represents the current state. Assuming the token can only move to
adjacent states with probability p and p−1, this system exhibits Markovian prop-
erties.

near the previous position and the posterior should therefore only contain i.e. every

fifth iteration. Compared to white noise each position has no correlation with the

previous position and will be drawn randomly.

A random walk simulation and a sampling from a stationary normal distribution

will both continue to have an expected value of the the initial position if run in-

finitely. In Bayesian inference, the probability distributions are constantly updated

changing the properties of the distribution until a steady state is reached.

Metropolis-Hastings Markov-Chain Monte Carlo models follows a random walk to

draw samples and walk through the parameter space of θ. For each sample drawn

the likelihood is evaluated in order to decide whether or not to discard the value.

If the value is accepted the probability densities are updated to be centered around

the current value. The variance of the distribution can however also be updated

depending on the likelihood. That is if there is a high probability density for

the currently sampled parameters, small steps should be taken. If the opposite is

true larger steps should be taken in order to more efficiently search the parameter

space. Usually Monte Carlo samplers are trying to tune sampling parameters such

as the step size to have an acceptance rate of ≈ 60−80% of the proposed samples.

A random-walk search is easy to code and works well for low dimensional problems.

However, in this case the model parameters θ is 8 dimensional. Then algorithms
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such as Metropolis-Hastings functions badly with very slow convergence rates.

Instead the more advanced Hamiltonian Monte Carlo model works better.

4.1.5 HMC sampling

Hamiltonian Monte Carlo (HMC) sampling is a special case of MCMC. HMC

is a more efficient sampling method compared to random walk sampling as it

uses gradient evaluation of the posterior together with Hamiltonian Mechanics

Betancourt, 2017. In HMC the problem changes from a sampling problem to

be a modelling problem. Recall that the goal is to sample from the posterior

probability P (θ|y) given some data y = {yi}. To do this in HMC, the number

of model parameters are doubled by introducing a momentum variable for each

parameter:

θn → (θn, pn) (4.8)

Here θ = {θn} is a vector of the model parameters and p = {pn} is the new auxiliary

momentum parameters (Betancourt, 2017). The prior distribution now becomes

a joint distribution between the momentum and the true model parameters called

the canonical probability density π:

π(θ, p) = π(p|θ)π(θ) (4.9)

This makes sure that marginalising out the momentum variable p brings back the

prior distribution π(θ) =
∫
p
π(p|θ)π(θ)dθ. The density π is a probability density

but denoted π as to not be confused with the momentum p.

The canonical density π(θ, p) can be written in terms of an invariant Hamiltonian:

π(θ, p) = e−H(θ, p) (4.10)

The Hamiltonian can be used to describe the invariant probabilistic structure of

the phase space distribution (π(θ, p)), as it is independent on the parameterization

Betancourt, 2017. Taking the logarithm of the canonical density and utilizing
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equation (4.4) gives:

H(θ, p) = − log π(θ, p) (4.11)

= − log π(p|θ)− log π(θ) (4.12)

≡ K(θ, p) + V (θ) (4.13)

Here K are defined as the kinetic energy and V is the potential energy following the

analogy of celestial mechanics. Then from the Hamiltonian equations trajectories

are calculated through the posterior distribution, which equates to sampling the

posterior:

dθ

dt
= +

∂H

∂p
=
∂K

∂p
(4.14)

dp

dt
= −∂H

∂θ
= −∂K

∂θ
− ∂V

∂θ
(4.15)

In order to fully explore the posterior distribution random momentum p are sam-

pled and integrated over L time steps of size T in the parameter space and then

the new position is used as the next sample, and the process starts over. The inte-

gration time T , which is equivalent to path length, and the number of integration

steps taken L before testing the sampled value, are two sampling parameters that

needs to be tuned for the sampling.

The No-U-Turns sampler (NUTS) (Hoffman & Gelman, 2014) is used together

with HMC as it eliminates the need to tune L and T . If the steps are too small

the sampler will be similar to a random walk with values grouped together. If the

steps are too large the steps can trace back looping around the potential. The

name ”No-U-Turns” also refers to avoiding this behaviour.

Now understanding the Bayesian Inference of Markov-Chain Monte Carlo sam-

pling, the specific model is introduced in detail.

4.2 The Ramp Fitting Model

Having introduced the mathematical background the ramp fitting model used in

Capron et al. (2021) and Erhardt et al. (2019) can now be introduced. The model
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assumes that the warming of a DO event can be described as a linear transition

between two stable states, and uses four parameters to describes this anatomy:

y0 the initial state, ∆y the difference between the two states, ∆t the length of

the transition, and t0 the initial onset of the transition. While all parameters are

relevant, timing the onset of the transition is the key factor to determine any lead-

lag relationship between different time series. The model used in Erhardt et al.,

2019 is defined as:

yi = ŷi + εi, for i > 0 (4.16)

with yi being the measured signal, ŷi is the true underlying true signal without

noise, and εi is a stochastic variable that represents the noise. The model for the

true signal ŷi is formulated as:

ŷi(ti) =


y0 ti ≤ t0

y0 + ∆y ti−t0
∆t

t0 < ti < t0 + ∆t

y0 + ∆y tmid + dt
2
≤ ti

(4.17)

with ∆t as the duration of the transition, and t0 being the onset of the transition.

y0 is the initial level of a GS and ∆y is the height of the ramp or the change in

concentration level. Note that ∆y can both be negative and positive depending

on the data studied. The noise εi is modeled as a red-noise or an AR(1) process

as described in section subsection 4.1.1. Red-noise is similar to Brownian noise,

described by the following equations:

p(εi|εi−1, ti, ti−1, τ, σ) = N
(
εi−1 · e−δti/τ , σ2

ε

)
and (4.18)

p(εi=0|σ2) = N (0, σ2) with (4.19)

σ2
ε = σ2 ·

(
1− e−2δti/τ

)
(4.20)

δti = ti − ti−1 (4.21)

Here, σ is the actual standard deviation of the resulting red-noise, and σε is the

standard deviation for an underlying white noise. τ is the correlation time of the
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system and can be used to calculate the red-noise coefficient AR1 which represents

the auto-correlation in the system together with δti. δti is the i’th time step or

the resolution of the data set.

Equation 4.18 can be rewritten in terms of the red-noise coefficient:

p(εi) = (1− AR12) · N
(
0, σ2

)
+ εi−1 · AR1 with (4.22)

AR1 = e−δti/τ (4.23)

This shows how the noise is constructed from an underlying white noise with

standard deviation σ. The standard deviation and the mean of the red-noise is

scaled so that for last time steps the noise becomes uncorrelated and independent

of the previous value. The formula for the red-noise coefficient can be recognised as

the Poisson distribution. On figure 4.2 to the left this model is illustrated together

with the improved model to the right.

Figure 4.2: Left: Shows the original ramp model used in Capron et al., 2021 and
Erhardt et al., 2019. Right: Shows the improved ramp model developed in this
thesis. It features two new parameters s1 and s2 as well as a redefinition of t0 to
tmid. If s1 = s2 = 0, the two models are essentially the same, except for the fact
that the improved model is smoothed, making it differentiable.

The prior probabilities used by Erhardt et al. (2019) are shown here:
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p(t0) = N (0.0, 50.02) (4.24)

p(δt) = Γ(2.0, 0.02) (4.25)

p(y0) = 1.0 (4.26)

p(τ) = γ(2.5, 0.15) (4.27)

p(σ) ∝ 1

σ
;σ < 10 (4.28)

Where N is the normal distribution and γ is the gamma probability distributions:

N (µ, σ2) = p(t|µ, σ2) =
1

σ
√

2π
exp

(
−(µ− t)2

2σ2

)
(4.29)

γ(α, β) = p(t|α, β) =
βα

Γ(α)
tα−1e−βt (4.30)

Where Γ(α) is the gamma function.

4.3 The Improved Ramp Fitting Model

The model developed in this study are based on the previous model although the

function for the true transition as well as priors are different. while being contin-

uous as well , as the software calculates the gradient of the posterior distribution.

The Sigmoid function is similar in appearance but have smooth corners compared

to the step function. The equation for a Sigmoid is given as:

S(t) =
t

(1 + |t|p)1/p
(4.31)

The exponent p changes how smooth the Sigmoid is. For this study p = 10 is used.

The equation can then be rewritten in terms of the 4 parameters tmid, ∆t, y0, and

∆y:

R(t) =

(
y0 +

∆y

2

)
+

∆y
2
· t′

(1 + t′10)1/10
, t′ = (t− tmid)

2

∆t
(4.32)

The model is much more complex but now has the added benefit of being continous.

Notice that compared to the previous RFM the timing parameter has changed to
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be the midpoint instead of the onset. The addition of slopes was also done utilizing

the Sigmoid function. Each slope is its own Sigmoid function, with a duration of

1 year and midpoint at tmid − ∆t
2
− 0.1 ·∆t and tmid + ∆t

2
+ 0.1 ·∆t:

S1(t) =

(
s1− s1

2

)
−

s1
2
· t′

(1 + t′10)1/10
, t′ =

(
t− tmid +

∆t

2
+ 0.1 ·∆t

)
· 2 (4.33)

S2(t) =

(
0 +

s2

2

)
+

s2
2
· t′

(1 + t′10)1/10
, t′ =

(
t− tmid −

∆t

2
− 0.1 ·∆t

)
· 2 (4.34)

As the Sigmoid function are smooth the function does not reach the value of y0

and ∆y at t = tmid ± ∆t
2

. If S1(t) and S2(t) are not shifted, the function will

therefore not reach the actual fitted levels of y0 and ∆y and would cause a misfit.

This is prevented by shifting the midpoint for S1 and S2 by 10% of the duration

∆t.

The noise model is identical to the original RFM and the changes made does not

affect it. The prior probabilities now involves calculations based on the input data

(tn, yn) for n = 1..N and also uses different distributions. The priors have been

changed to the following:

P (σ) = U(0.1, 5) (4.35)

P (τ) = U(0.001, 0.1) (changed to H(0.022) after subsection 5.3.7) (4.36)

P (tmid) = U(t2, tN−1) (4.37)

P (∆t) = U(0.001, (tN − t0)/3) (4.38)

P (y0) = N (y1, var(y)) (4.39)

P (∆y) = N (yN − y1var(y)) (4.40)

P (s1) = N (0, 62) (4.41)

P (s2) = N (062) (4.42)

(4.43)

where H is the half-normal distribution, U is the uniform distribution, and N is
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again the normal distribution:

N (µ, σ2) = p(t|µ, σ2) =
1

σ
√

2π
exp

(
−(µ− t)2

2σ2

)
(4.44)

H(σ2) = p(t|σ2) =
1

σ
√

2π
exp

(
− t2

2σ2

)
for t ≥ 0 (4.45)

U(a, b) = p(t|a, b) =

{
1
b−a a ≤ t ≤ b

0 x ≤ a ∨ x ≥ b
(4.46)

The likelihood of the model is defined from the noise model. As such the Likelihood

distribution is equal to the probability of stochastic variable ε. For a drawn set of

parameters θ the residuals res are calculated as:

res = y −m(t, θ) (4.47)

and then the likelihood is calculated as the probability that the residuals res are

the output from p(εi) = N
(
εi−1 · e−δti/τ , σ2

ε

)
(equation (4.18)).

4.3.1 Implementation in PyMC3

The availability of all kinds of packages for programming languages such as python

has made it very easy to find effective code for most problems. Probabilistic

programming is not excluded and thus the PyMC3 (J Salvatier, 2016) package is

introduced. This package offers a simple yet powerful framework for setting up a

Monte Carlo Model and running it. The PyMC3 package uses c++ based libraries

optimizing the code. Figure 4.3 shows how the main function is coded.

The MCMC Hammer function requires three input parameters: A list containing

the x-values and y-values for the observed data, the number of tuning steps defin-

ing the burn-in period where the parameter space is searched, and the number

of posterior samples where the distributions are not updated anymore but just

sampled from to get an estimate for the probability density for the optimal pa-

rameters. The function also has the option to change the power of the sigmoid,

however this study only uses one value p = 10. The last input parameter is for

switching between the previous model and the improved model.
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One iteration of the function takes v 1 minute of run time with 14000 sample

draws (2× (6000 + 1000) draws). The sampling itself takes about 45 seconds and

the last 15 seconds are added from the code being compiled into the underlying

c++ code.

The package is installed in a new python environment together with the differ-

ent package dependencies. The code has been run on Denmark’s National Life

Science Supercomputing Center, Computerome. The supercomputer have 31,600

CPU cores, with 220 terabytes of memory available, providing an aggregate peak

performance in excess of 1,000 TeraFLOPS.
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Figure 4.3: This figure shows the PyMC3 code used to program the Monte Carlo
Method used in this study. The model is defined within the with environment
following the approach described by PyMC3.
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Chapter 5

Model Performance

Before applying the model to real data, it is important to test the models limi-

tations and requirements to the data. The goal is to test how robust the IRFM

is when applied to data of various quality in order to enhance the credibility of

its results. In this chapter, the model is tested on surrogate data that reflects

the complications of the measured paleoclimatic records with a goal to identify

when the model fails to be able to determine the location of the transitions with

sufficient precision.

Previous studies which have used the model (Capron et al., 2021; Erhardt et al.,

2019), are mostly comparing results to archives such as Rasmussen et al. (2014)

to discuss the temporal differences in the timing of DO events across various ice

core records. In Capron et al. (2021) an analysis of surrogate data from a climate

model (CCSM5) which can reproduce DO events is used to further their discussion

of lead and lag relationships, and not to test the RFM capabilities.

In order to conduct a proper test of the model it has to be done on data with

known characteristics. This study will use surrogate data that replicates the char-

acteristics of ice-core and speleothem data, which allows for testing the model with

respect to sample resolution, signal to noise ratio, etc. The next sections will cover

experiments that aims to replicate the measured paleoclimatic records, allowing

for the perfect environment to test different hypothesis and tune the priors and

settings for the IRFM.

First, the sensitivity of the model to the resolution of data is investigated. Then
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the following tests are conducted on two set-ups, one with high and low resolution,

which reflects typical ice-core and speleothem data properties, respectively.

Figure 5.1: The plot shows the posterior solutions that lies within 1σ of the mean
posterior solution inferred from an example transition created as surrogate data.
This illustrates how the posterior samples can be combined into proposed solutions.

5.1 Surrogate Data

All surrogate data presented are created from the model given in equation (4.16)

by first calculating the true model from the four parameters tmid, ∆t, y0 and ∆y,

then adding the red noise which is constructed with known values of τ and σ. The

sample rate is set accordingly to each experiment. In all tests, the surrogate data

are constructed from the sloped signal model (equation (4.32)) and the AR1 noise

model (equation (4.18)).

The units for the different parameters are omitted on the plots as for the model

parameters σ, y0, ∆y, s1 and s2 the units vary depending on the ice core parameter

measured, e.g. δ18O and Na+. However, for the time related parameters, the units
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are the same in all cases, i.e. tmid [kyr], ∆t [kyr] and τ [kyr]. Although the unit

for the slopes changes, they will always be referred to in rates pr kyr.

When constructing the surrogate data and choosing a resolution, even though it is

not a model parameter, the AR1 coefficient AR1 = e−δti/τ is dependent on the step

size δi, meaning the resolution will determine the effective auto-correlation together

with τ . All of the surrogate data used in this study will be evenly distributed to

have a constant resolution, although the IRFM is not limited by this feature, as

when it is applied on the paleoclimatic records, they have varying resolution as

shown on figure 5.2. All model parameter values used for the surrogate data

Figure 5.2: The figure shows the two δ18O records from Hulu and NEEM. The top
panel shows the two records. The bottom panel shows the resolution calculated
as the step size for each measurement ∆t = ti − ti−1 (not to be confused with the
duration of the transition). There is one outlier in the resolution for NEEM where
there is a gap in the record.
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5.2 The Error Model

The Monte Carlo algorithm is trying to fit yi = ŷi + εi. Figure 5.3 shows a

plot and histogram of two surrogate data sets of 500 points constructed from a

constant model (ŷi = 0), with normal white noise (cyan) and correlated red noise

(magenta). In this section the signal is assumed to be dimensionless. The noise

model parameters are set to be τ = 6 and σ = 1. As seen from the right pane

on figure 5.3, the standard deviation is larger for the red noise data set. This can

be explained by the correlation allowing the noise process to travel further from

the true signal. When calculating the standard deviation of the red noise, it is

found to be 1.75 which is about twice as large as the white noise with a correlation

coefficient, AR1, that is:

Cor(εred) = AR1 = e(−δt/τ) = e(−1/6) = 0.846 (5.1)

This means that about 85% of the previous value is transferred to the next value

(for δt = 1). This amount then decreases or increase as ∆t or τ increases.

Figure 5.3: The plots shows the difference in white and red-noise with a constant
model Y = 0. The first plot shows the red and white noise plotted together and
the left plot shows a histogram of them which clearly illustrates how the red noise
distribution is wider than the white noise distribution.

It is desired to find σε, as described in equation (4.20), from the surrogate data as

this is the value being fed to the noise model. The standard deviation associated
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with the red noise, σ, can be thought of as a scaling of σε and is what the model

fits. Recall equation (4.20) that describes how to calculate σε from σ. It can be

rewritten to:

σW = σR ·

√(
1− exp

(
−2 · δt
τ

))
= σR ·

√
(1− AR12) (5.2)

Using the values that the red noise in figure 5.3 was constructed from (τ = 6,

δt = 1), it is possible to go from σ = 1.75 to σε = 0.93 with equation (5.2).

σ = 1.75 is calculated analytically. In comparison the IRFM is used for a constant

model yi = 0 and 4000 tuning and sample draws, the method finds σ = 1.82 and

τ = 5.67. Calculating σε with these values gives σε = 0.99. This yields a difference

in the σε values analytically and numerically determined, that can be explained

by the stochastic nature of the process. Rerunning the code that constructs the

surrogate data, a variation can be observed in the standard deviation for the

red noise ranging from approximately 1.63 to 2.02 giving a mean around 1.83. In

comparison the theoretical value for σ can be calculated using equation (5.2) which

gives:

σ = σε ·
(

1− exp

(
−2 · δt
τ

))−1/2

= 1 ·
(

1− exp

(
−2 · 1

6

))−1/2

= 1.82 (5.3)

The theoretical value for σ is within the range of the experimentally estimated

value of σ, and very close to the mean. Table 5.1 shows the result of further tests

of how well the method finds σ and τ for various model parameters.

5.3 Tests

The following section contains 6 tests conducted with the IRFM (and RFM) on

surrogate data. The tests and their goals will be presented together with con-

cluding remarks of the gained knowledge from each test. For all but one of the

tests two chains are used to sample from with a standard of 6000 tuning sample

draws and 1000 posterior sample draws. Unless mentioned the surrogate data is

constructed from over a time window equivalent to a thousand years, from 31 to
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true values mean sampling estimate
σ τ σ τ
1 6 1.01 5.80
2 6 1.96 5.09
3 6 3.05 6.08
5 6 4.76 5.65
10 6 10.01 5.44
1 10 0.98 15.25
1 5 0.99 5.94
1 5 1.03 5.31
1 5 0.99 5.72
1 3 1.01 3.17
1 1 1.00 0.97

Table 5.1: The table shows results from runs with noise applied to a constant
model Y = 0 of size 500, with 4000 tuning draws and 4000 sampling draws.

32, with model parameters: tmid = 31.5, y0 = −38, ∆t = 0.1, ∆y = 2, s1 =

−1.2, s2 = −1.5, τ = 0.003, σ = 0.4 (note that σ here refers to the white noise

sigma σepsilon).

5.3.1 Test 1a: Sampling Rate

Figure 5.4 shows the result for test 1. Test 1 wishes to test the model sensitivity

to teh data sampling rate. The surrogate data used in test 1 is made with varying

numbers of samples, keeping all other values constant. Recall the equation for the

AR1 coefficient:

AR1 = e−δti/τ (5.4)

It is important to note that tau, and not the AR1 coefficient, is kept constant.

The AR1 coefficient is dependent on the resolution which means with a constant

τ the auto correlation between neighbouring points goes down as the resolution

goes down, resulting in the noise converging to white noise as the resolution gets

more coarse. Each data point on figure 5.4 is an average over 50 realisations of the

same process. All the error bars shown is calculated as the mean of one standard

deviation (1σ) across the 50 iterations. A general trend for each parameter is that
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they converge when the resolution goes up, and all parameters appear to have

converged at a sampling rate about 100 or 150 samples/kyr. The same thing can

be observed for the errors. τ , σ and ∆t does not converge to their true values.

Note that the uncertainties for τ reaches negative values.

For τ the mean value does not seem to converge towards the true value, but rather

a smaller value. This is problematic when the error bars becomes so tiny, that the

true value is not in the 2-3 σ range. This could be a systematic error in the model

that the AR1 coefficient converges to white noise when the correlation time τ is

smaller than the step size. Thus if all sampled τ equal to or smaller than the step

size δt are accepted, this means that the mean value for τ will converge towards
δt
2

as the posterior distribution would be U(0.001, δt).

The σ shown is the white-noise σ, which means it is dependant on τ . Since the

two noise parameters are correlated, it is expected that the σ values converge to

a mean value above the true value, when τ converges to a mean value below the

true value. The 1σ uncertainties for τ are calculated for the entire posterior set

and then added and subtracted from the mean value on the plot. This results in

the uncertainties reaching negative values. This should be disregarded as τ only

can take positive values. The ideal error bars would be asymmetric showing the

95 % and 5 % values for the posterior distribution.

As the uncertainties displayed on the figure is the 1σ standard deviation, the true

value for τ is still not inside the 2σ range for the last point with a sample rate of 250

samples/kyr. As mentioned in the investigation of the error model (section 5.2),

the IRFM does not necessarily fit the true value of sigma and tau in order to

find the best line. In the study by Erhardt et al. (2019) they do not consider the

inferred posterior result for σ and τ , but rather treat them as nuisance parameters

as they are used to define the likelihood of the model (as mentioned in section 4.3).
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Figure 5.4: This plots shows the result of test 1, investigating the sampling rate.
The error bars are calculated from an ensemble of 50 transitions with identical
parameters but different realisations of the noise added.
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5.3.2 Test 1b: Correlation

This subsection will investigate how the posterior distributions of the inferred

model parameters correlate. Figure 5.6 shows scatter plots between all parameters

for the slope model for a single run with the IRFM method. There are three

groups of correlated relations. The first group is between y0, ∆y, s1, and s2.

The next group is between s1, s2, tmid, and ∆t. The third group is between the

noise parameters τ and σ. When referred to as a group, this means the mentioned

parameters are all inter-correlated directly or indirectly.

All three groups displays logical correlations. As an example, for the first group,

it makes sense that changes in the initial level y0 affects the value of the initial

slope s1. If y0 is estimated larger than the signal s1 will increase to shift the line

down. A similar relationship exists for ∆y and s2. As the final level is defined as

y0 + ∆y it is only logical that these two parameters are correlated. The arguments

for group one are illustrated in figure 5.5 with some random data. The figure

shows the best fit for two fixed values of y0. The two other groups follow a similar

logical connection, where the correlation balances out if one model parameter is

too large a negatively correlated model parameter would be too small.

None of the correlations display anything unusual that should be considered when

interpreting the results. If two of the model parameters are misfitted and does not

match the input values, it might be a result of the model struggling to find one

model parameter and the correlation between the two acting as a correction. Thus

it is important to be aware of the correlation groups.
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5.3.3 Test 2: No Slopes

Figure 5.7 shows the result of test 2. Test 2 showcases difference of the original

RFM to the new model with slopes. In test 2 a similar approach to test 1 was

used. Test 2 uses the exact same data as test 1, meaning the same realisation of

the noise model, and the same parameters for the true model. The performance

is expected to be worse, as the true model and the sample model differs. It is

immediately noticed that y0 and ∆y are not converging towards the true values.

y0 is estimated too large, and ∆y estimated to small. The result for τ is unchanged

compared to test 1, however σ converge towards a larger value than the true value.

tmid is the only parameter which fits perfectly without any problems. Again the

method draws 6000 tuning samples and 1000 posterior samples.

The misfit in ∆t, ∆y, and y0 stems from the different model used for the data

and the sampling. Both slopes are negative, meaning the value of y0 and ∆y

are increased and decreased respectively. This will then also affect the transition

length ∆t to be shorter, just as observed. The observed changes has no effect on

the mid point of the transition, which is also perfectly found in both tests. The

general success for tmid owes to the relatively high step compared to the noise

amplitude, even after the scaling of the standard deviation.

It should also be mentioned that the difference in results for test 1 and 2 are

observed to be larger in the ice-core region, and smaller in the speleothem region.

However, this appears to be a result of the resolution being low, as the model finds

slopes closer to 0, making it equal to the flat model, in the speleothem region, then

converging towards the true value in the ice-core region.

With the systematic misfit by the flat model, figure 5.7 shows that the IRFM is

necessary for reliable results in cases where the records have strong slopes before

and after the transitions of the DO events. However, the method is consistent

in this test for finding the midpoint. This means that the new results are not

expected to demonstrate significant divergence from the previous results.
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5.3.4 Test 3: No variations

Test 3 investigates the resolution as well as test 1 and 2, however in test 3, only a

single data set is used where data points are removed systematically from the data

set to emulate the ice-core and speleothem regions for the resolution. It should be

mentioned that 4 chains was used, which can be seen on figure 5.8. Additionally,

this method had less variations, thus the number of tuning samples were increased

to 10000 samples but still the 1000 samples for the posterior distribution. Similar

results as the previous tests is observed. tmid fits perfectly and δt, ∆y, and y0

again are misfitted in the speleo region, and found in the ice-core region. When

there is a large variation between each chain as seen at resolution 66 and 50, the

chains have either found several solutions or the sampler is not fully converged yet.

The way the noise is removed changes how it is applied to the relevant data set,

meaning that the noise which is propagating from the previous data point to the

next is lost when removed. However, this should only have an effect similarly

to test 1, where the noise becomes white, when the correlation time exceeds the

average spacing between points.

This test was mostly to investigate if different methods of changing the sample

rate would yield distinct results. There is some minor variations compared to test

2, but generally the two test produces similar results.
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5.3.5 Test 4: Tuning samples

Test 4 investigates the number of burn in or tuning samples that are drawn, before

sampling from the posterior samples. Here, two data sets are created with the

same parameters but different temporal resolutions. One dataset is created with a

resolution of 25 samples/kyr, which is typical for the Hulu speleothem record, and

200 samples/kyr, which is typical for the Ice core records. The analysis is again

run on 50 different realisations of the noise for each data point. The hypothesis

is that the speleothem data needs more tuning for the posterior distributions to

converge. However, it can be observed on all the plots in figure 5.9, that the tested

values for the tuning sample size appears to have no influence on the result.

Assuming there exists a lower limit for the number of tuning samples required

to converge, and the tests show no change in the posterior solutions for the in-

vestigated values, this suggest that the limit for the number of tuning samples is

outside the investigated region. Furthermore, if the number of tuning samples can

be dramatically reduced, this pose as a computational advantage, compared to

the earlier methods, which would require a significantly larger number of tuning

samples.

When applying the method on the paleoclimatic records a set-up of 6000 tuning

draws and 1000 posterior draw will continue to be used as the standard for this

study.
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5.3.6 Test 5: Signal to noise ratio

Figure 5.10 shows the resulting posterior estimates for tests 5. This tests seeks to

determine a limit for the model with respect to the inverse signal to noise ratio,

SNR−1, where the model fails to find the known model parameters. Testing for

various values of σ the inverse signal to noise ratio is here defined as the fraction

between the input or white standard deviation σε = σW and the step size ∆y:

SNR−1 =
σW
∆y

(5.5)

The chosen range covers extreme values for both small and large σ in order to

exhaust all possible scenarios in observed data:

σ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} (5.6)

The upper left panel on figure 5.10 shows the linear correlation between the noise

and inverse signal to noise ratio. Here the σ values are from the analysis with the

IRFM. In the second panel containing the correlation time τ , it appears relatively

constant for all values of σ with uncertainties around ±1 year. Tmid starts to

diverge and give uncertain results for σ = 0.9, 1. The parameter y0 share the

same behaviour diverging after σ ≥ 0.9, with uncertainties around 0.2. The mean

value for the two slopes s1 and s2 are relatively constant for all values of σ, with

uncertainties reaching 1.3 to 1.5. The only parameter that appears to be strongly

affected by σ is the duration, ∆t. The values for ∆t starts to significantly diverge

around σ = 0.7.

Most of the parameters are relatively stable during the entire test. Parameters such

as y0 and ∆y show a clear bias already around σ = 0.4. Increasing σ and thereby

the noise have a similar effect to lowering the step size as the SNR−1 becomes

smaller. The most valuable parameter to find is the midpoint or the onset, in

which case the estimate for a max value of the SNR−1 should be based off the

behaviour of tmid and ∆t. For the largest value of σ = 1 the standard deviation

for the midpoint is on the order of half the duration of the transition (±50 years).

The duration shows large uncertainties and the mean starts to diverge with more

than 20 % of the true for σ = 0.7, meaning a sensible limit would be for σ = 0.6

meaning SNR−1 = 0.3.
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5.3.7 Test 6: Prior

For test 6, the prior for τ was changed from a uniform distribution to a half-

normal distribution. The uniform distribution was defined with an upper limit at

100 years, which were much larger than the input values of τ , at around 3 years,

as well as the expected values for the observed data of 3 to 8 years. Thus the

hypothesis for the change in prior was that the consistent overestimate of tau for

smaller sampling rates would be immproved. Additionally it would also improve

cases where the model sees the transition as red noise with a large τ and instead fits

the ramp as a line with large variations in the noise. The resulting plots on figure

5.11 for test 6 is in general similar to the result of test 1 on figure 5.4. Only the plot

for τ displays a significant difference. For the low sample rates (10, 20, 40, 60, 80)

the mean value for tau starts at 10 years and converges to around 1 year at sample

rate 100 samples/kyr.

Compared to test 1 where τ starts at a value of about 30 years and converges to

a value around 1 year at sample rate 100 samples/kyr, similarly to test 1. Thus

the new prior improved the values for τ but did not have any other particular

effect on the remaining model parameters. The test does not show if the new prior

eliminates the case for when the model misses the transition and fits it as noise.
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Figure 5.5: This plots shows some random data with two manually set posterior
solutions. The yellow and red lines illustrates how a different value of ∆y affects
the slope of s1.
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Figure 5.6: This plots shows the correlation in the posterior distributions between
the parameters sampled in test 1. Especially s1 and s2 have strong correlations
to y0, ∆y, tmid, ∆t. However this is expected since the location of the onset and
the end of the transition tunes the slope to be more or less steep.
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Figure 5.7: This plots shows the result of test 2, investigating the sampling rate on
the same data as in test 1. A similar approach as in test 1 is used, however instead
of the IRFM, the initial flat RFM is used. There are clear differences between the
two results.
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Figure 5.8: This plots shows the result of test 3, investigating the sampling rate
on 1 data set with 200 samples over 1000 years. For each point on the x-axis we
take every i’th data point and redo the test. Here we use four chains instead of
the previous two and it is important to mention that since we are not reapplying
the noise for each subset, we only run the method once with the four chains.
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Figure 5.9: This plots shows the result of test 4, investigating the number of burn
in samples needed for the posterior distributions to properly converge. Each point
on the x-axis shows the number of tuning samples drawn. Here we use two chains
on two different datasets. One with a resolution in the speleothem region (20
samples pr kyr) and one in the ice-core region (200 samples pr kyr).
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Figure 5.10: This plots shows the result of test 5, investigating the influence of
signal to noise ratio on the model result. Each point on the x-axis shows ratio of
the standard deviation and step size of the data, here referred to as signal to noise
ratio. Here we use two chains and 50 iterations pr variation of sigma.
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Figure 5.11: This plots shows the result of test 6. The input model parameters
used to construct the data is identical to test1, however the prior of τ , has been
tuned to be a half normal that favors smaller values. (And the prior for tmid is )
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Chapter 6

Results

After testing the Improved Ramp Fitting Method (IRFM) on surrogate data, the

precision and effectiveness of the model has been proven against known parameters.

The IRFM can now be applied to real data and compared to other studies using

the RMF method, to see if the added modification have improved the results.

A list of fifteen DO events have been selected for the analysis here. The analysis

covers the age range from 27 to 60 thousand years ago from Marine Isotope Stage

3 during the last glacial period. This period contains 19 DO events from DO-event

3 to 17.2 (Erhardt et al., 2019). Four DO events are not included in the analysis

(14, 15.1, 15.2, 16.1), as they are poorly represented in the Hulu record, following

the study by Buizert et al. (2015).

This chapter will present the results of the IRFM analysis in ice-core and speleothem

records as well as a technical discussion of the results. A more broad analysis that

puts the results in to perspective is reserved for chapter 7. Firstly, the investiga-

tion of lead and lag in different ice core measured parameters is presented. The

Ice core records have high resolution and well defined transitions which allows for

a detailed comparison to other studies. A short summary commenting on the re-

sults will be given after the presentation of the result. Secondly, the analysis of the

anatomy and lag between Ice Core and Speleothem records using the RFM will

be presented. Again it will be followed by a technical discussion of the presented

results.
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6.1 Age of DO events in Ice Cores

Figure 6.1 shows the six measured records from the two different ice cores ana-

lyzed here, δ18O, Ca2+, Na+, and D-excess from NEEM and δ18O and Ca2+ from

NorthGRIP.

On the figure the 15 selected DO events are marked. All records are plotted on

the GICCO5 timescale. In table 6.1 the MCMC inferred results of the age of the

DO-transitions using the IRFM are listed with their uncertainties together with

the reference dates and uncertainties from the study by Rasmussen et al. (2014).

The uncertainties for the MCMC inferred midpoint ages are visualized in figure

6.2 in comparison to the reference ages in Rasmussen et al. (2014) and compared

accross the two ice cores.

The figure clearly shows how the DO events influences each proxy, thus each DO

transition are seen in all records and occurs almost at the same time. It should be

noted that the concentrations of impurities (Na, Ca) are higher during the GSs

and lower during the GIs. This means that the impurities display a negative ramp

step, compared to δ18O which displays a positive ramp step over the transition of

a DO-event. The DO events are also reflected in the D-excess record, which shows

different features as the impurities, but they are both defined by a negative ramp

step for each transition.

6.1.1 NEEM

The next four figures (figures 6.3, 6.4, 6.5, 6.6) show the results of the analysis for

each individual record from the NEEM ice core. Each figure contains the 15 events

and the selected time windows. Each time window covers the age determined in

Rasmussen et al. (2014) ±250 years. For each run two MCMC chains are used

with 6000 tuning sample draws and 1000 posterior sample draws. The priors are

given in chapter 5.

On figure 6.3 the analysis of the δ18O record from NEEM is shown. Each panel

contains the fitted data, an ensemble of the posterior 1 σ solutions for two chains

indicated by thin red and green lines, respectively, a mean fit solution for each

chain indicated by thick lines of similar colors, and three vertical cyan lines, where
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Figure 6.1: This plot shows six ice-core records from NEEM and NGRIP. From
NEEM: δ18O (Blue), Ca2+ (Green), D-excess (Purple), Na+ (Brown), and from
NorthGRIP: δ18O (Orange), Ca2+ (Red). The vertical yellow lines shows the fitted
midpoints for each of the investigated transitions. The black dots are also placed
at the fitted midpoint with the inferred height y0 + ∆y

2
.
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DO-event This Study Rasmussen

NEEM NGRIP NGRIP
δ18O Ca D-excess Na δ18O Ca δ18O

no. ka ka ka ka ka ka ka

3 27.737 27.776 27.771 27.779 27.775 27.672 27.78
±0.273 ±0.007 ±0.009 ±0.006 ±0.011 ±0.182 ±0.832

4 28.9 28.888 28.899 28.889 28.894 29.143 28.9
±0.088 ±0.02 ±0.012 ±0.005 ±0.016 ±0.007 ±0.898

5.1 30.849 30.81 30.774 30.795 30.688 30.772 30.84
±0.26 ±0.381 ±0.019 ±0.027 ±0.092 ±0.301 ±1.024

5.2 32.502 32.507 32.501 32.51 32.499 32.5 32.5
±0.024 ±0.02 ±0.004 ±0.013 ±0.023 ±0.022 ±1.132

6 33.738 33.723 33.734 33.75 33.653 33.734 33.74
±0.019 ±0.147 ±0.006 ±0.031 ±0.171 ±0.016 ±1.212

7 35.478 35.483 35.486 35.483 35.486 35.481 35.48
±0.026 ±0.025 ±0.009 ±0.008 ±0.028 ±0.027 ±1.321

8 38.217 38.215 38.21 38.217 38.216 38.244 38.22
±0.053 ±0.02 ±0.011 ±0.007 ±0.012 ±0.149 ±1.449

9 40.098 40.15 40.144 40.149 39.998 40.104 40.16
±0.24 ±0.067 ±0.018 ±0.014 ±0.139 ±0.094 ±1.58

10 41.449 41.459 41.463 41.464 41.467 41.455 41.46
±0.018 ±0.017 ±0.019 ±0.009 ±0.016 ±0.028 ±1.633

11 43.347 43.358 43.345 43.345 43.347 43.335 43.34
±0.027 ±0.087 ±0.017 ±0.014 ±0.006 ±0.025 ±1.736

12 46.854 46.851 46.861 46.859 46.884 46.847 46.86
±0.01 ±0.02 ±0.014 ±0.011 ±0.151 ±0.017 ±1.912

13 49.282 49.232 49.292 49.289 49.31 49.283 49.28
±0.022 ±0.163 ±0.008 ±0.033 ±0.108 ±0.049 ±2.031

16.2 58.28 58.307 58.276 58.276 58.261 58.272 58.28
±0.185 ±0.178 ±0.115 ±0.135 ±0.233 ±0.213 ±2.511

17.1 59.072 59.084 59.089 59.079 59.065 59.092 59.08
±0.099 ±0.105 ±0.124 ±0.093 ±0.026 ±0.205 ±2.557

17.2 59.397 59.413 59.413 59.365 59.448 59.331 59.44
±0.258 ±0.191 ±0.154 ±0.177 ±0.189 ±0.227 ±2.573

Table 6.1: This table shows the resulting midpoint age and 2σ uncertainty analyzed
in six ice core records for the 15 DO events. The last column shows the results
from Rasmussen et al. (2014).
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Figure 6.2: The figure shows the difference between the midpoints found with
the IRMF and the reference ages from Rasmussen et al. (2014) for NEEM (top),
NorthGRIP (middle), and the difference between the two cores (bottom). The
uncertainties shown are the 2σ standard deviation in the posterior samples.
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the two dotted lines show the inferred midpoints for the two chains, and the full

line shows the reference age determined in Rasmussen et al. (2014). Some of the

events are well defined, and the model finds the midpoint with only small variations

in the posterior solutions. This is the case for events 3, 4, 5.2, 6, 7, 8, 10, 11, 12,

13, and 17.1, and common for all these events, the inferred midpoint is located

close to the reference age determined in Rasmussen et al., 2014. Event 5.1 has

a very subtle transition and the result is a very flat ramp, and the reference age

is outside the inferred uncertainty of the midpoint (see figure 6.2). DO events

3, 9, 17.2 are all misfitted meaning the method does not capture the transition.

All three of these transitions are characterised by a short GI, where the search

interval covers the entire GI period. This results in a decrease in the signal and

a new baseline after the transition, making it difficult for the method to find the

transition correctly.

Figure 6.4 shows the Ca analysis, with the results presented as described above

for figure 6.3. Most of the transitions are determined successfully with very small

variations in the posterior solutions. On figure 6.2 this is also visible as the Ca

midpoint ages have the smallest uncertainties of the analyzed parameters. The

last three events (16.2, 17.1, 17.2) fits the data less accurately. They all have short

GIs as described above, but (16.2, 17.1) find midpoints that still are close to the

reference age in Rasmussen et al. (2014).

Figure 6.5 shows the D-excess analysis. Noticeable for this figure is that all of the

dashed lines are placed very nicely even for the poorly visible transitions in (6, 16.2,

17.2). For DO events (5.1, 6, 9) the fitted midpoints deviate from the reference

age, and the differences for event (5.1, 9) are larger than the 2σ uncertainties. The

model misfits the two transitions (5.1, 9) as it finds the backside of the transition

instead of the initial change, resulting in a positive value for the inferred ∆y.

Figure 6.6 shows the Na analysis. DO-event (4, 5.1, 8) are the first cases where the

two chains converge to two significantly different values. Event 4 clearly misfits

the transition, and it can immediately be identified on figure 6.2 as an outlier,

despite the low uncertainty. Event 5.1 is very subtle, similarly to what was seen in

the δ18O record and display the largest uncertainty (see figure 6.2). Event (16.2,

17.1) are fitted in agreement with the reference age, but display large uncertainties.

DO-event (3, 17.2) are both not in agreement with the reference age, and their
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uncertainties are both large, however still covereing the reference age.

For all the four records the three last events (16.2, 17.1, 17.2) are the most difficult

to fit and generally display larger uncertainties than the rest.
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Figure 6.3: The plot shows the result of the IRFM for the δ18O NEEM record.
The posterior fits (transparent) as well as a mean fit (bright color) are displayed
as the red and green lines for the two chains, respectively. The cyan lines are the
mean midpoint for each chain (dashed) and the ages from Rasmussen et al. (2014)
(full).
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Figure 6.4: The plot shows the result of the IRFM for the Ca2+ NEEM record.
The posterior fits (transparent) as well as a mean fit (bright color) are displayed
as the red and green lines for the two chains, respectively. The cyan lines are the
mean midpoint for each chain (dashed) and the ages from Rasmussen et al. (2014)
(full).
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Figure 6.5: The plot shows the result of the IRFM for the D-excess NEEM record.
The posterior fits (transparent) as well as a mean fit (bright color) are displayed
as the red and green lines for the two chains, respectively. The cyan lines are the
mean midpoint for each chain (dashed) and the ages from Rasmussen et al. (2014)
(full).
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Figure 6.6: The plot shows the result of the IRFM for the Na+ NEEM record.
The posterior fits (transparent) as well as a mean fit (bright color) are displayed
as the red and green lines for the two chains, respectively. The cyan lines are the
mean midpoint for each chain (dashed) and the ages from Rasmussen et al. (2014)
(full).
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6.1.2 NGRIP

The next two figures (figures 6.7, 6.8) show the results of the analysis for the

NGRIP ice core. Again, each figure contains the 15 events and the selected time

windows. Each time window covers the age determined in Rasmussen et al., 2014

±250 years. For each run two MCMC chains are used with 6000 tuning sample

draws and 1000 posterior sample draws. The priors are given in chapter 5.

On figure 6.3 the analysis of the δ18O record from NorthGRIP is shown. The figures

has the same layout as the previous figures with the red and green lines being the

inferred lines for each data window and the cyan lines being the midpoints and

reference age. DO-event 5.1 has no distinct features in the signal, similarly to in

the NEEM core (see figure 6.3). DO-event 13 is only fitted correctly by one of the

chains (Green). For DO-event (16.2, 17.2) the inferred midpoints are close to the

reference age, however the lines poorly describe the signal. Generally the data and

anatomy of the events are similar to the data from NEEM.

Figure 6.4 shows the Ca analysis. The Ca data consistently has smaller variations,

better defined transitions, and have significantly smaller uncertainties than the

δ18O data (see figure 6.2). As mentioned, this also applies to the NEEM ice core.

DO-event (16.2, 17.1, 17.2) in general have larger uncertainties compared to the

other events, which is reflected in the posterior solutions on figure 6.4. Event

17.2 is the only transition where the inferred model poorly matches the signal and

reference date in this analysis.
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Figure 6.7: The plot shows the result of the IRFM for the δ18O NorthGRIP record.
The posterior fits (transparent) as well as a mean fit (bright color) are displayed
as the red and green lines for the two chains, respectively. The cyan lines are the
mean midpoint for each chain (dashed) and the ages from Rasmussen et al. (2014)
(full).
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Figure 6.8: The plot shows the result of the IRFM for the Ca2+ NorthGRIP record.
The posterior fits (transparent) as well as a mean fit (bright color) are displayed
as the red and green lines for the two chains, respectively. The cyan lines are the
mean midpoint for each chain (dashed) and the ages from Rasmussen et al. (2014)
(full).

78



6.1. AGE OF DO EVENTS IN ICE CORES CHAPTER 6. RESULTS

6.1.3 Anatomy of DO events

In order to get a better overview and to compare the inferred results across the

6 records, the previously shown results are investigated in detail in the following

figures.

Figure 6.9 shows scatter plots for different sets of model parameters or their 1σ

standard deviation. The parameters are chosen to highlight the observations made

in the previous section and to characterize the anatomy of DO events across dif-

ferent parameters. The black dots denotes the transitions that are mentioned

above where the inferred model poorly describes the data or where the model had

problems to find the right parameters.

Figure 6.9 panel A shows no distinct correlation between the values of the slopes

before and after the transitions. On panel B ∆y is organised into levels depending

on the record and regardless of ∆t, except for the poorly fitted black dotted points.

Panel C and D shows that the signal noise σ is organises into two distinct levels,

one for ∆18O and D-excess and one for the aerosol parameters Ca and Na.

Panel E shows that there is no general correlation between the value of tau and

sigma, but τ generally display smaller values for the well fitted transitions. In

panel F all the black dotted events are generally placed towards smaller values of

∆y, and have the highest values for τ . Additionally, the the black dotted events

also have larger values of τ . For the remaining DO events τ is relatively constant,

regardless of the value of ∆y with values around 4 years.

Panel G and H both shows a linear relationship between the 1σ standard deviation

for ∆t and tmid as well as ∆y and y0. This shows that when one parameters is

well defined, this applies to both parameters. On panel G the black dotted lines

appear to fall outside of the linear relationship when the standard deviation for

tmid is large.

Figure 6.10 illustrates differences in the ages of DO events between the differ-

ent records from NEEM and NorthGRIP with respect to onset, midpoint, and

endpoint. The three columns on the left, shows the inferred ages for the NEEM

records and the three columns on the right shows the NorthGRIP records. All ages

are given relative to the corresponding age in the respective Ca record for that

79



6.1. AGE OF DO EVENTS IN ICE CORES CHAPTER 6. RESULTS

ice core, hence all dots fro the Ca records are placed at δtmid = 0. These three

values are derived from the inferred midpoint tmid and inferred transition duration

∆t. Positive values corresponds to a lag compared to the Ca ages, meaning the

transition happened after the Ca transition.

The distributions on the bottom panels represents the dots in the panel above and

show the general lead and lag relationships between the records. The Na age for

DO-event 4 is an outlier, and is out of the range shown on the figure. As the area

below the curve is normalized, the taller the distribution is, the smaller the general

variation is for the record in question. This indicates that as the distribution for

δ18O gets smaller, the variation of the onset is smaller than the variations of the

endpoint compared to the Ca ages.

Figure 6.11 is two zoom-ins of figure 6.10. The panels shows the onset, midpoint

and endpoint of the four parameters: δ18O, D-excess, Na from NEEM and δ18O

from NorthGRIP. In the top panels the above-mentioned outlier can be seen. This

outlier corresponds to DO-event 4 which was misfitted for the Na record.

The bottom panel shows a full zoom for the distributions. The two δ18O records

appear to have slightly different timings compared to Ca, with the NorthGRIP

ages having a lag of 10 years. The Na record have on average a lag of 10 years and

the D-excess have a lead of 10 years relative to the Ca record, respectively. The

study by Erhardt et al. (2019) also estimates that the Ca record shows a lead of

10 years to Na and δ18O. The distributions found in this study however are much

broader than what was found in Erhardt et al. (2019).

6.1.4 Summarizing remarks

For most of the transitions that the models fails to identify, the signal has several

changes in slope over the search interval, e.g. due to a short GI. It is very possible

that the model falsely recognises the short GI’s as longer term variability in the

signal with high values of τ , i.e. the transition is hidden as red noise.
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Figure 6.9: This figure shows the inferred model parameters for all ice core records
and DO events studied. The dots are grouped together after parameters across
records, i.e. the blue dots contain NorthGRIP and NEEM δ18O values. The model
parameters plotted are chosen to highlight the anatomy in the the different records,
found with the IRFM. The black dots denote results from DO events where the
posterior solutions poorly describes the signal (see text for details).

81



6.1. AGE OF DO EVENTS IN ICE CORES CHAPTER 6. RESULTS

Figure 6.10: This figure shows the result for the inferred midpoint tmid and transi-
tion duration ∆t from the analysis of the NEEM and NorthGRIP ice cores. Each
dot is plotted as age difference to the midpoint in the Ca records. Thus, the green
and red points are all placed at δtmid = 0, and have no distribution on the bottom
panels.
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Figure 6.11: This figure is two different zooms for the bottom panels of figure 6.10.
The distributions shows the lead and lag relationship to the respective ages in the
Ca2+ record.

6.2 Age of DO events in Speleothems

Now the analysis of the δ18O speleothem record from Hulu cave will be presented

in comparison with the two δ18O records from NEEM and NorthGRIP already

presented. Table 6.2 shows the inferred midpoint ages for the Hulu record, found

in this study, together with reference ages from Buizert et al. (2015). The table

also includes the slopes for the linear fits in figure 6.14.

Figure 6.12 shows the three δ18O records from three different locations. The yellow

lines and the black dots corresponds to the inferred midpoints and half height signal

value y0 + ∆y
2

, similarly to figure 6.1. The midpoint ages of the transitions in the

two ice cores are very close together, however they do not align with several of the

Hulu midpoint ages. The four DO events (14, 15.1, 15.2, 16.1) are not included as

they display unclear features in the speleothem record.

The inferred parameters in the ice cores are the same values presented in the

previous section and will not be reintroduced here.
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Figure 6.12: The plot shows the three δ18O records analyzed in this thesis from
Hulu (Red), NEEM (Green), and NorthGRIP (Blue). The vertical yellow lines
shows the fitted midpoints for each of the investigated transitions. The black dots
are also placed at the fitted midpoint with the inferred height y0 + ∆y

2
.

6.2.1 Hulu

The next figure shows an analysis similar to that introduced in section 6.1, but for

the Hulu speleothem data set. This analysis uses the same setup as the one used

in the ice-core analysis. Each run uses two MCMC chains with 6000 draws during

tuning and a 1000 draws for the posterior distributions. The figure shows the 15

events in separate panels with a time window covering manually selected for each

event. The priors are given in chapter 5.

Figure 6.13 shows the analysis of the δ18O Hulu record. Each panel contains the

fitted data, an ensemble of the posterior 1σ solutions for two chains indicated by

thin red and green lines, respectively, a mean fit solution for each chain indicated

by thick lines of similar colors, and three vertical cyan lines, where the two dotted
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DO-event This Study Buizert

Hulu Hulu
δ18O δ18O

no. ka ka

3 27.916±0.056 27.922±0.078
4 29.15±0.138 29.134±0.042
5.1 30.883±0.097 30.876±0.074
5.2 32.663±0.058 32.667±0.042
6 34.068±0.144 34.034±0.072
7 35.331±0.468 35.532±0.04
8 38.311±0.032 38.307±0.038
9 40.244±0.14 40.264±0.084
10 41.593±0.255 41.664±0.054
11 43.499±0.533 43.634±0.052
12 47.258±0.023 47.264±0.04
13 49.566±0.065 49.562±0.104
16.2 58.54±0.034 58.545±0.044
17.1 59.367±0.02 59.364±0.036
17.2 59.768±0.014 59.772±0.046

Slope

This Study Buizert

NEEM NGRIP NGRIP

0.0048 0.0047 0.0063

Table 6.2: The upper table shows the resulting midpoint age and 2σ uncertainty
analyzed in the Hulu speleothem record for the 15 DO events. The last column
shows the results from Buizert et al. (2015). The lower table shows the slopes for
the linear fits in figure 6.14.

lines show the fitted midpoints for the two chains, and the full line shows the

reference age determined in Buizert et al. (2015). The data signal has a noticeably

smaller resolution than the ice-core records analyzed above. All records appear to

successfully find and describe the respective transitions, and the posterior solutions

all appear representative of the data signal.

The inferred midpoint ages are all in agreement with the reference ages in Buizert

et al., 2015. DO-event 7 is the transition with largest difference between the

inferred midpoint age and reference age.
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Figure 6.13: The plot shows the result of the IRFM for the δ18O Hulu record.
The posterior fits (transparent) as well as a mean posterior fit (bright color) are
displayed as the red and green lines for the two chains, respectively. The cyan
lines are the mean midpoint for each chain (dashed) and the ages from Rasmussen
et al. (2014) (full).
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6.2.2 Comparing Hulu, NEEM and NGRIP

The analysis of the Hulu speleothem record is now compared to the analysis of the

two ice cores from NEEM and NorthGRIP. In the study by Buizert et al. (2015)

the Hulu midpoint ages were compared to the NorthGRIP midpoint ages in order

to synchronize the two records. The study found a scaling factor of 1.0063 between

the NorthGRIP ages and the Hulu ages.

Figure 6.14 shows a comparison of the midpoint ages between the three δ18O

records. Each point is plotted as the age in the ice-core record versus the difference

in age between the respective ice-core record and the Hulu record. Following

Buizert et al. (2015), a linear fit is made through the data points, forced to intersect

the origin, thus the lines are of the form:

y − x = a · x⇒ y = (a+ 1) · x (6.1)

The red dots and line are the results of the analysis by Buizert et al. (2015),

where the slope of the line is 0.0063 and the ice-core ages are calculated from the

NorthGRIP ice core. The uncertainties are calculated as the root sum square of

the NorthGRIP and Hulu midpoint age uncertainty (Buizert et al., 2015). The

analysis and results of this study are plotted with the orange and blue points which

corresponds to NEEM and NorthGRIP, respectively.

The orange and blue line are almost similar with slope values of 0.0048 for NEEM

and 0.0047 for NorthGRIP. The uncertainties of Buizert et al. (2015) are generally

smaller than the uncertainties inferred from the analysis in this study.

For all except two of the DO events, the red, yellow, and blue points fall inside the

uncertainties. The exception is DO-event 12 where the uncertainty for all three

ages are relatively small and DO-event 8 where the blue and red points fall outside

of the uncertainties. The largest uncertainties is for DO-event (7, 11) which is

consistent for both NEEM and NorthGRIP.

As noted by Buizert et al. (2015) the age difference between the NEEM and North-

GRIP ice cores and the Hulu record is smaller than the ice core counting error

(which ranges from 832 to 2573 years) (Rasmussen et al., 2006; Svensson et al.,

2006; Wolff et al., 2010) and larger than the Hulu age uncertainty (92 to 366 years)
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(Wang et al., 2001) for the specific age range we are investigating. They suggested

that the difference in age is caused by missing years in the GICC05 annual layer

counting (missing 6.3 out of every 1000 layers).

On figure 6.15 a visualization of the inferred midpoint ages and transition lengths

for the three δ18O records is shown relative to the inferred midpoint ages from

NorthGRIP, with the distribution for the inferred points in the bottom panels.

For the two middle columns, the ice-core ages are scaled linearly by the respective

slopes determined by the linear fits in figure 6.14 and listed in table 6.2. In the

two rightmost columns the ice core ages are shifted uniformly by a constant value

equal to the mean of the age differences to Hulu from NEEM and NorthGRIP,

respectively, i.e. the distribution of the midpoint age difference between Hulu and

NorthGRIP is shifted to align around zero. The shifts are calculated as the gray

dashed lines in figure 6.14, which represents the mean y-values for the NEEM and

NorthGRIP age differences to Hulu. Note that the uniform scalar shift does not

change the transition durations.

Figure 6.16 shows the two corrections for all three records plotted together. In

the top figure the ice core records are corrected by the linear scaling, and in the

bottom figure the ice core records are corrected by a uniform shift.
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Figure 6.14: The plot shows a comparison between the ice-core ages and the Hulu
ages of the transitions. The orange and blue points are from this study and the
red points are from Buizert et al., 2015. The lines are linear fits forced to go
through origin. The grey lines are the mean of the differences between Hulu, and
NorthGRIP and NEEM respectively.

6.2.3 Summarising remarks

Figure 6.15 shows two different corrections for the inferred ice-core midpoint ages

and transitions. Both correction methods shifts the distribution of the midpoint

lag for the Hulu record relative to NorthGRIP to be distributed around zero.

The uniform shift does not change the shape of the distribution for the Hulu

midpoint lag but the scaling correction changes the distribution to be sharper.

This could suggest that the scaling correction works better. It can also be seen

on figure 6.15 that there is a trend in the midpoint lag between the younger and

older events for the uniformly shifted correction. Furthermore, figure 6.14 also

shows that the linearly scaling correction better captures the age differences of the

midpoints between ice cores and Hulu, compared to the uniformly scaling method.

A linear scaling factor suggest that the annual layer counting consequently misses
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Figure 6.15: The plot shows the midpoints and transitions length for each DO-
event in the three δ18O records. The two left columns are the unchanged results,
the two middle columns are scaled for the ice-core ages with the respective slopes
from 6.2, and the two rightmost columns show a scalar correction of the ice-core
ages. The dashed lines are placed at ±200 years.
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Figure 6.16: shows the two corrections for all three records plotted together. In
the top figure the ice-core records are corrected by the linear scaling, and in the
bottom figure the ice-core records are corrected by a uniform shift.
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years with a constant error rate. A uniform shift could suggest that an interval,

younger than investigated in this study, misses some years in the counting, but

that there are no further errors accumulating. This was discussed by Adolphi et al.

(2018) and Sinnl et al. (2022), see discussion.
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Chapter 7

Discussion

This chapter will discuss the different results in order to answer the three research

questions listed in the introduction. Each research question is discussed in the

separate sections below.

7.1 Model stability

The IRFM is tested against surrogate data. Based on the tests conducted in

this thesis, the IRFM appears to have no problem fitting the surrogate data with

sampling rates similar to ice core records. In test 2 where the original RFM was

used, the results for the midpoint were not affected, but it is clear that the model

struggles to find the proper anatomy of the ramp in regards to height and duration.

As the test does not investigate the window size, it is unknown if the mid point

or duration would significantly change, as reported in Capron et al. (2021), when

narrowing or widening the search window.

With the new sampling method and signal model the IRFM only uses 6000 draws

to converge, and then sampled 1000 samples per chain resulting in 14000 total

samples drawn. The RFM used in Erhardt et al. (2019) used 60000 iterations and

saved every 600th sample for the posterior. With 60 chains this result in a larger

posterior but also requires a much larger total sample size of 3.6 million draws.

This corresponds to a 99.62% reduction in sample size per transition when using

the IRFM. For the RFM used by Capron et al. (2021), where they used a total
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of 1 million sample per chain and 3 chains, there is a reduction of 99.54% per

transition.

With regards to research question 3, the general results of the tests shows that

for sampling rates ≤ 30 samples/kyear, some of the model parameters display a

general bias towards larger values (σ, τ , ∆t, y0, s1, s2) or smaller values (∆y).

Although this bias is not present in the midpoint, the duration is affected, meaning

the resulting onset is affected. The 1σ uncertainties is, however, on the order of 90

years for a sample rate of 20 samples/kyear, rivaling the duration of the transition

of 100 years. Although the uncertainties seems large, this means that the onset of

the duration can be determined with uncertainty ±2δt compared to the resolution,

and the method can be accepted with regard to the low sampling rate.

Looking at the mean posterior solution plotted in the results for Hulu cave (figure

6.13), it is clear that there are larger variations for the accepted 1σ posterior

samples in Hulu compared to the ice cores, with the spread visible for the levels y0

and ∆y. However, the mean solution does not appear wrong with regards to the

duration ∆t. The reason for the model to do worse when tested on surrogate data,

might suggest that the constructed surrogate data representing the speleothem

records could be improved.

When updating the priors, it had no effect for the surrogate data with ice core like

sampling rate, but drastically improved the estimation for τ for the data with the

speleothem like sampling rate. Even though the noise model parameters should

be treated as nuisance parameters, as mentioned by Erhardt et al. (2019), a better

(smaller) estimate for τ can have a large impact for the fit, as it has a huge

impact on the allowed variations for the posterior results. The model subtracts

the proposed signal from the data and then test the residuals (y − data) against

the error model (line 45-50 in the code on figure 4.3). Thus a large τ will allow

the noise model to have sinus like oscillations, as illustrated in the red noise on

figure 5.3. It is definitely the most common case, when the model misfits, that τ

is estimated to be too large. This is also supported from figure 6.9, panel E.
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7.2 Phasing of Abrupt Change

The IRFM works well for ice core records, and it is clear that several DO events

show features corresponding to non-zero slopes for both s1 and s2 (see DO event

11 on figure 6.5; 5.1, 13 on figure 6.4; 3, 9 on figure 6.7. The aerosol records (Na+,

Ca2+) have smaller variations and more well defined transitions, which result in

the clear grouping of water isotope records (blue, green) and aerosol records (red,

orange) on figure 6.9, panel C-E.

The fitted mean posterior solutions shows some outlier events related to misfits

where the search window for the transition is too large, meaning for DO events

that features from two DO events in rapid succession are present in the search

window. Ultimately, this changes the fundamental structure of the signal (from

two to three breakpoints) and thus the model is poorly represented. Modifying

these search windows should eliminate all misfits, and is a natural next step in the

analysis. In the study by Capron et al. (2021) they mention that some DO events

are disregarded due to large variations in the result when changing the search

window. This does not refer to the above mentioned problem in this study, but

refers to DO events with large slopes.

The study by Capron et al. (2021) reports no systematical patterns between the

anatomy of different DO events. The results in this study supports that claim, as

there exist no linear relationship for the tested (figure 6.9, panel A-F), meaning

they are different samples originating from the same stochastic process or mecha-

nism. There is a strong correlation in the uncertainties for the model parameters

(tmid and δt, y0 and ∆y, see figure 6.9, panel G-H), however this only refers to

the correlations discussed in test 1b (subsection 5.3.2, figure 5.5). If any extra

comparison should be added to figure 6.9, it should be a comparison between the

midpoint tmid and either the duration ∆t, the initial level y0, or the ramp height

∆y to reveal if there are any general evolution over the course of the ice age.

The analysis of lead and lag relationships (figure 6.1, 6.11) between the different

ice core records are compared to the result in Erhardt et al. (2019), shown on figure

7.1. The λ record and D-excess records are not accounted for in the comparison,

and will be addressed afterwards. In general the two Ca2+ records are synchronised

within a few years as they both display small differences to the age determined
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in Rasmussen et al. (2014) (figure 6.2), which is in agreement with Erhardt et al.

(2019) that shows around 1 year lead in NEEM. For the onset of the transition

Erhardt et al. (2019) finds that on average the Ca2+ records have a 10 year lead

to the Na+ and δ18O records, which are synchronized. Although it is not as

clear with the more wide distributions on figure 6.11, on average the Ca2+ records

also have a lead of 10 years to the NEEM Na+ and NorthGRIP δ18O records.

However, the average lead to the NEEM δ18O record is only 5 years. Notice here,

that Erhardt et al. (2019) directly fits the onset in the original RFM, where the

IRFM has to calculate the onset from the inferred midpoint and duration, and

the uncertainty in the duration is significantly larger than the uncertainty in the

midpoint (figure 6.9, panel G) (however, these plots do not show the uncertainty

in the posterior distributions). The densities in this study are larger around the

mean values in this study, meaning the wider distributions arise from the outliers

and misfits mentioned in chapter 6.

For the midpoint, Erhardt et al. (2019) finds the same pattern as with the onset,

but the NorthGRIP δ18O midpoints show a slight lead of 2 years to the Na+

record. In this study, the NEEM Na+ and δ18O records display a 5 year lag in

the midpoint to the Ca2+ record and the NorthGRIP δ18O record show no lag to

Ca2+ record. Here, the results diverge slightly. Notice again, that in this case the

original RFM has to calculate the midpoint from the inferred onset and duration,

where the IRFM finds it directly. As shown in test 2 on figure 5.7, the duration

converges to a value lower than the true value using the RFM. This means that

depending on the search window chosen in Erhardt et al. (2019), the duration

might have a bias towards smaller values, leading to younger midpoints. However,

as the figures compare relative timings, this bias is not visible in the distributions.

For the endpoint, Erhardt et al. (2019) finds Ca2+ and δ18O to be close to syn-

chronous with a lead of 5 and 4 years, respectively, to the Na+ endpoint. This

study finds that the endpoints for NEEM δ18O and Na+ show a 5 year lag to

NorthGRIP δ18O and both Ca2+ records. The small lead-lag relationships of ≤
10 years between the aerosol and water isotope records suggests a tight coupling

between the Asian and North Atlantic climate.

The λ record show a large relative lead of 10, 16, and 12 years for the onset,

midpoint and endpoint respectively to the Na2+ records. Similarly, the D-excess
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records shows 10 years lead, synchronicity, and 10 years lag for the onset, midpoint

and endpoint, respectively, to the Ca2+. These relatively large leads for λ and D-

excess suggests a significant change in the sub-tropical source region, leading to

increased amounts of precipitation preceding the DO event. The lag forD-excess at

the endpoint means the transition is longer and the sub-tropical changes continues

after the DO event ends in the North Atlantic.

Figure 7.1: This figure and figure text is from Erhardt et al. (2019). Combined
probability density estimates of the lag of the Ca2+, layer thickness and δ18O
transitions relative to the respective point in the Na+ records for the onset (a),
midpoint (b) and end (c) of all transitions from stadial to interstadial for the two
cores.

The study by Capron et al. (2021) warns against drawing conclusions based on a

stacking of the DO events, as they display large variations from event to event.

The variations in the distributions in this study are quite large (possibly due to

outliers) to support stacking the events. However, the densities are larger around

the mean values, further suggesting that the outliers are widening the distribution,

but the majority of transitions are grouped together.

With respect to research question 1, results for the onset of the transitions regard-

ing lead and lag is found, supporting the idea of a sequence in the onset age for

the ice core parameters at DO events. The largest leads and lags observed is for

D-excess which unfortunately cannot be compared to the study by Erhardt et al.

(2019). The leads and lags can only be obtained by stacking the DO events.
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7.3 Synchronous Abrupt Events

The IRFM works well for the speleothem data set, finding all transitions with no

misfits. The search window here is carefully selected as there are large variations in

the stadial and interstadial duration compared to the Greenland ice cores. In most

cases the ages agree with the study by Buizert et al. (2015), the largest difference

in the methods is the duration of the events. The method in Buizert et al. (2015)

determines the level before and after the event from a 50 years and a 150 years

window, respectively. The midpoint is then found as the age of where the signal

reaches half of the ramp height. The duration is defined much smaller than the one

inferred by the IRFM for all transitions, where the ages disagree. Additionally, the

ramps where the age disagree, are all characterised by large variations on the ramp

resulting in a two step ramp. Here Buizert et al. (2015) chooses the last of the

two ramps, where the IRFM see the two steps as one ramp with large variations

in the noise.

The study by Buizert et al. (2015) suggests a linear correction of 0.0063 for the

GICCO5 timescale based on age differences between DO events in the NorthGRIP

and Hulu δ18O records. This study also finds significant differences in the ages

between the two records, and additionally between the Hulu and NEEM δ18O

records. The ages in the NEEM and NorthGRIP records agree, and thus the

two linear corrections are almost identical at 0.0048 and 0.0047 for NEEM and

NorthGRIP, respectively. The linear correction can be supported as a systematic

miscounting error of 6.3 years per 1000 layers counted. The reason for changing

the GICCO5 scale and not the U/Th is due to the absolute dating error for Hulu

being significantly smaller than the maximum counting error (MCE) of the ice core

dating. On the contrary, two independent studies suggests the GICCO5 timescale

misses layers over two different ranges. The study by Adolphi et al. (2018) suggests

that the GICCO5 has a growing error compared to the U/Th timescale, peaking

at around 22 ka BP with a difference of 500 years. The more recent study by Sinnl

et al. (2022) suggests that the GICCO5 timescale is missing about 13 years 3.8 ka

BP. This would suggest, that a scalar correction corresponding to a miscounting

in a specific age interval, would be a better correction. The scalar correction found

here is estimated to be about 200 years, which is close to the suggested correction

in Adolphi et al. (2018) for the 27-60 ka BP range.
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In respect to research question 2, the correction of the GICCO5 timescale is only

necessary assuming that DO events in ice cores and speleothems are synchronous.

Otherwise, this would suggests a 200 year lag between ages for DO events in ice

cores compared to speleothems. However, the resulting lead and lags of only about

10 years for the aerosols record in the ice core contradicts a lag of 200 years for the

Asian atmospheric climate. Thus, the results suggest that the GICCO5 timescale

have to be corrected to match the U/Th timescale.
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Chapter 8

Conclusion

This chapter will summarise the conclusions drawn from the analysis and discus-

sion, including climatic perspectives of the results.

In this thesis, the Improved Ramp Fitting Method has been developed, tested,

and applied to paleoclimatic records from ice cores and speleothems in order to

investigate abrupt DO transitions during the last glacial period (27-60 ka BP).

Tt has been shown that the Improved Ramp Fitting Method is a computational

and methodological improvement compared to the original Ramp Fitting Method.

The method works well for ice core records as well as speleothem records, with

regards to desired parameters (tmid, ∆t) that are used to characterize the age of

abrupt climate transitions. The computational improvements are on the order of

99%, while the inferred model parameters give consistent results compared to the

original model.

The method is tested and is concluded to be sensitive to changes in the prior for

the auto-correlation time τ , as well as the sampling rate δt of the data set. The

lower limit for the sampling rate is 20 samples/year, as lower sample rates result

in large uncertainties, that render the results inconclusive.

In this thesis a multi-tracer study of four different proxy records (δ18O, D-excess,

Na+, Ca2+) from the two Greenland deep ice cores NEEM and NorthGRIP was

conducted in order to date DO events from the last glacial period. The resulting

analysis revealed a chronological order for the four ice core parameters measured,
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when stacking the DO events to calculate average lead and lags between the tran-

sition onsets, midpoints, and endpoints. The analysis found leads and lags of up

to 10 years, and for the onset of the transitions, D-excess shows a lead of 10 years

to Ca2+, which in turn shows a lead of 5 years to NEEM δ18O, and 10 years to

NorthGRIP δ18O and NEEM Na+. The IRFM fails to fit events where the search

window are poorly chosen resulting in outliers. Better chosen search windows

would improve these results, and would be a natural next step in the analysis.

Furthermore, A δ18O speleothem record from the Hulu cave located in China

was analyzed in this thesis. Here, the IRFM was again applied to find DO ages

in the speleothem record. The resulting analysis find an age difference of 200

years on average between the DO event ages determined in the Hulu, NEEM and

NorthGRIP δ18O records. Using the gained knowledge from the ice core analysis,

the 200 year age difference was estimated to be a dating error between the U/Th

and GICCO5 timescales. This resulted in two possible proposed corrections: a

linear scaling correction of the GICCO5 timescale by 1.0048 and 1.0047 for NEEM

and NorthGRIP, respectively, or a uniform shift of 200 years. The uniform shift was

supported by recent studies, but the magnitude of the shift may vary depending

on the age range investigated. Thus the timing differences between ice cores and

speleothems are due to errors in the timescale(s),as there is most evidence for the

speleothem and ice-core records being synchronous with up to a 10 year lead of

the speleothems.
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Azuma, K., Hansson, M. E., & Ruth, U. (2006). A new greenland ice core

chronology for the last glacial termination (Rasmussen, S. O., and et. al.

(2006), A new Greenland ice core chronology for the last glacial termina-

tion, J. Geophys. Res., 111, D06102, doi:10.1029/2005JD006079.). Journal

of Geophysical Research, 111 (D6), D06102–n/a.

Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L., Clausen,

H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer, H., Gkinis,

V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T., Seier-

106

https://doi.org/10.5194/cp-18-2021-2022
https://doi.org/10.1038/NGEO2848
https://doi.org/10.1016/j.quascirev.2022.107599
https://doi.org/10.1016/j.quascirev.2018.05.005


BIBLIOGRAPHY CHAPTER 8. CONCLUSION

stad, I. K., Steffensen, J. P., Svensson, A. M., . . . Winstrup, M. (2014). A

stratigraphic framework for abrupt climatic changes during the last glacial

period based on three synchronized greenland ice-core records: Refining and

extending the intimate event stratigraphy. Quaternary science reviews, 106,

14–28.

Rogers, S. (2017). A first course in machine learning. Chapman & Hall /CRC

Press.

Ruddiman, W. F. ( F. (2014). Earth’s climate : Past and future (Third edition.).

W.H. Freeman; Company.

Schmittner, A. (2021). Introduction to climate science. Oregon State University.

https://books.google.dk/books?id=F8K1zQEACAAJ

Seierstad, I. K., Abbott, P. M., Bigler, M., Blunier, T., Bourne, A. J., Brook,

E., Buchardt, S. L., Buizert, C., Clausen, H. B., Cook, E., Dahl-Jensen,

D., Davies, S. M., Guillevic, M., Johnsen, S. J., Pedersen, D. S., Popp,

T. J., Rasmussen, S. O., Severinghaus, J. P., Svensson, A., & Vinther,

B. M. (2014). Consistently dated records from the greenland grip, gisp2 and

ngrip ice cores for the past 104 ka reveal regional millennial-scale delta o-18

gradients with possible heinrich event imprint. QUATERNARY SCIENCE

REVIEWS, 106 (SI), 29–46. https://doi.org/10.1016/j.quascirev.2014.10.

032

Sinnl, G., Winstrup, M., Erhardt, T., Cook, E., Jensen, C. M., Svensson, A.,

Vinther, B. M., Muscheler, R., & Rasmussen, S. O. (2022). A multi-ice-core,

annual-layer-counted greenland ice-core chronology for the last 3800 years:

Gicc21. Climate of the past, 18 (5), 1125–1150.

Southon, J., Noronha, A. L., Cheng, H., Edwards, R. L., & Wang, Y. (2012). A

high-resolution record of atmospheric 14c based on hulu cave speleothem

h82. Quaternary Science Reviews, 33, 32–41. https://doi.org/https://doi.

org/10.1016/j.quascirev.2011.11.022

Steffensen, J. P., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Fis-

cher, H., Goto-Azuma, K., Hansson, M., Johnsen, S. J., Jouzel, J., Masson-

Delmotte, V., Popp, T., Rasmussen, S. O., Röthlisberger, R., Ruth, U.,
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