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Abstract

This thesis seeks to determine the expected sensitivity to anomalous couplings of
tt̄ pair production at FCC-ee. The analysis is based on 1.5 ab−1 simulated data at√
s = 365GeV in the framework of FCC-ee with the IDEA detector. An event

selection is performed to target the search for fully hadronic top quark pairs and a
kinematic fit is applied in order to reconstruct the tt̄ pair. The 1σ confidence intervals
of seven anomalous couplings within top effect field theory are determined separately,
based on angular distributions and total cross section.
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1 Introduction

The field of particle physics continues to stand at the forefront of scientific research,
shaping our comprehension of the universe’s fundamental constituents and the laws
that govern their behavior. The top quark, as the heaviest known fundamental parti-
cle has profound significance in the Standard Model and beyond. This thesis focuses
on investigating the properties and behavior of top quarks within the context of Stan-
dard Model Effective Field (SMEFT) Theory, using simulated data expected from the
Future Circular Collider(FCC).

The FCC, a project in planning and development stages at CERN, is set to replace
the Large Hadron Collider as the most powerful particle accelerator in the world,
giving unparalleled opportunities for research. It is predicted to provide the conditions
required to study top quarks with great precision, thereby enabling a comprehensive
exploration of this intriguing particle and its interactions.

The unique characteristics of the top quark such as its large mass and short lifetime,
make it an excellent probe to test the boundaries of the Standard Model and explore
potential new physics.

In this context, the role of Effective Field Theory is to provide a simple framework
to capture effects of physics beyond the Standard Model. SMEFT provides a powerful
framework to systematically describe new physics without the full machinery of a
whole new theory of particle physics.

This thesis will delve into the depths of top quark pair production and hadronic
decay at the FCC, within the framework of EFT, with the intention to look for any
subtle hints of new physics beyond our current understanding.

In the subsequent chapters, the theoretical groundwork of the Standard Model and
Effective Field Theory is outlined. The experimental setup at the FCC is described.
An event selection process is described as well as a kinematic fit in order to reconstruct
the top quark pairs. Lastly the results are presented showing the effects of anomalous
couplings on angular distributions and 1σ confidence intervals are determined for each
coupling separately.
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2 The Standard Model

The Standard Model of particle physics encompasses our current knowledge of the
known fundamental particles and the interactions between them. It can broadly be
divided into the matter particles and the bosons. The universe consists of matter
particles, fermions, and their interactions are mediated by the bosons. All fermions
posses intrinsic angular momentum called spin, equal to 1/2 h̄. The bosons posses a
spin of 1 h̄, except for the Higgs boson, which, being a scalar particle, has a spin of
0 h̄.

The matter particles can further be divided into leptons and quarks. The lep-
tons consists of the charged leptons and the neutrinos. They are grouped by their
generation, where each charged lepton has a corresponding neutrino.

Similarly the quarks are grouped according to their generation, with each genera-
tion having an ”up-type” and a ”down-type” quark. The up-type quarks (up, charm,
top) all posses an electric charge of 2/3 e, whereas the down-type quarks (down,
strange, bottom) all posses an electric charge of −1/3 e. The complete contents of
the Standard Model can be seen in figure 2.1.

Figure 2.1: The Standard Model of Particle Physics. (Source: Wikimedia Commons)

The Standard Model is formulated in the mathematical language of quantum field
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theory. Quantum field theory (QFT) combines principles from quantum mechanics
with principles of the special theory of relativity in order to describe the matter
particles and forces in a rigorous manner. Among the fundamental quantities in
quantum field theory is the Lagrangian. The Lagrangian describes the full physics
of the Standard Model once the particles and their propertires are defined. The
Lagrangian can be written as

L = T − V (2.1)

where T and V are the kinetic and potential energies of the system, respectively. The
Lagrangian L(qi, q̇i) can be written as a function of some general coordinates, qi, and
their time derivatives q̇i. The equations of motion can then be determined by the
Euler-Lagrange equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (2.2)

The concept of the Lagrangian can be extended in order to describe a continuous
system by replacing it with the Lagrangian density L,

L

(
qi,
dqi
dt

)
→ L(ϕi, ∂µϕi) (2.3)

Here, the generalized coordinates qi are instead replaced by fields ϕi(t, x, y, z) and the
time derivatives q̇i are replaced by the derivatives of the fields

∂µϕi =
∂ϕi

∂xµ
(2.4)

The fields are continuous functions of some space-time coordinates xµ, and the La-
grangian L and the Lagrangian density are related by an integral

L =

∫
L d3x (2.5)

The equivalent of the Euler-Lagrange equation 2.2, can be shown to be

∂µ

(
∂L

∂(∂µϕi)

)
− ∂L
∂ϕi

= 0 (2.6)

In the context of quantum field theory, the term Lagrangian is often used to mean
the Lagrangian density. From this point on, the Lagrangian density will simply be
identified as the Lagrangian.

2.1 Quantum Electrodynamics

The following descriptions of the different aspects of the Standard Model are based
on [1]. Quantum Electrodynamics (QED) is the part of the Standard Model that
describes interactions between the electrically charged particles and their interaction
mediated by the photon. As such, it can be seen as the quantum field theory descrip-
tion of the electromagnetic interaction. The electromagnetic interaction is required
to be invariant under a U(1) local phase transformation. The required local gauge
symmetry is expressed as the invariance of the Lagrangian under a local phase trans-
formation of the fields,

ψ(x) → ψ
′
(x) = eiα(x)ψ(x) (2.7)
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The Lagrangian for a free particle can be written as

L = ψ̄(iγµ∂µ −me)ψ (2.8)

As it stands, the free-particle Lagrangian for a Dirac field is not invariant under
U(1) local phase transformations. This invariance can be restored by replacing the
derivative with a covariant derivative

∂µ → Dµ = ∂µ − ieAµ (2.9)

where Aµ is the photon field. With this, the full Lagrangian for QED describing the
fields for the electron, the photon and the interactions between them can be written
as

LQED = ψ̄(iγµ∂µ −me)ψ + eψ̄γµψAµ −
1

4
FµνF

µν (2.10)

where the first term is the kinetic term of a free electron, the second term describes
the interaction with the photon field, and the last term describes the kinetic energy of
the photon field. The Lagrangian for QED must satisfy a local U(1) gauge symmetry.
This second term that describes the interaction between the electron and the photon
field is therefore required in order to restore this symmetry. The strength of the
QED is described by the fine structure constant α, which can be expressed by the
dimensionless term

α =
e2

4πε0h̄c
(2.11)

This coupling strength is not constant, and varies slowly as a function of the underlying
energy scale of the interaction q2

α(q2) =
α(µ2)

1− α(µ2) 1
3π

ln
(

q2

µ2

) (2.12)

Figure 2.2: Running of αEM as a function energy [1].

Due to the slow change the approximation

α(µ = 0) ≈ 1

137
(2.13)

is commonly used in calculations at low energies [1].
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2.2 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the part of the Standard Model that describes
interactions between quarks and gluons that posses a color charge. and is mediated
by the gluon. As opposed to the single conserved electric charge of QED, the charges
of QCD are the three ”color” charges

r =

1
0
0

 g =

0
1
0

 b =

0
0
1

 (2.14)

and only particles with non-zero color charge participate in the strong interaction.
Similar to the antiparticles of QED having opposite electric charge, antiparticles in
QCD have opposite color charge, r̄, ḡ and b̄.

Figure 2.3: Color representation of QCD.

It is also the force responsible for confining quarks inside the proton and the
neutron. Whereas QED corresponds to a U(1) local gauge symmetry, the underlying
symmetry of QCD is the invariance of SU(3) local phase transformations

ψ(x) → ψ
′
(x) = exp

[
igsα(x) · T̂

]
ψ(x) (2.15)

where T̂ = {T a} are the eight generators of the SU(3) symmetry group, which can be
written in terms of the Gell-Man matrices as

T a =
1

2
λa (2.16)

where αa(x) are eight functions of some space-time coordinate x. The eight generators
of the SU(3) gauge symmetry correspond to the eight massless gluons that mediate
the strong interaction. Similar to the running of α in QED, the strength of the
QCD coupling is not constant, and it varies as a function of the energy scale of the
interaction (q2). The relationship is given by

αS(q
2) =

αS(µ
2)

1 +BαS(µ2) ln
(

q2

µ2

) (2.17)

where B is given by

B =
11Nc − 2Nf

12π
(2.18)
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Figure 2.4: Running of αS as a function energy [1].

where Nc = 3 is the number of colors, and Nf = 6 is the number of quarks. As B > 0
the value of αS decreases with increasing q2. At the scale of |q2| = m2

Z ,

αS(m
2
Z) = 0.1184± 0.0007 (2.19)

Compared to QED, the running of αS is much faster. This has profound consequences,
as it means perturbation theory cannot be applied at low energy scales, since it requires
that the energy scale of the interaction is significantly higher than the underlying scale
of αS. It is therefore only at the relative high energy scale of modern high-energy
accelerators that perturbative calculations can be made.

Processes such as e+e− → qq̄, the two quarks are initially free and traveling back to
back. However due to color confinement, the quarks are observed as jets of colorless
particles. This process is known as hadronization. The process happens as the initially
free quarks seperate from each other. As the spatial distance increases, the energy
stored in the color field increases, analogous to a spring being stretched. When the
distance between the quarks is sufficiently large and thus the energy of the color field
sufficiently high, new quarks and antiquarks are produced from the energy. This
process continues until the energy of all the quarks and antiquarks are low enough to
form colorless hadrons. A qualitative depiction of the hadronization process can be
seen in 2.5.
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Figure 2.5: Qualitative depiction of the hadronization process [1].

2.3 Weak Interaction

The weak interaction is the third fundamental force described by the Standard Model.
The weak interaction differs from QED and QCD in many keys aspects. The charged-
current weak interaction is mediated by theW±-bosons and couples fermions together
that differ by one unit of electric charge. The charged-current weak interaction is
associated with invariance under SU(2) transformations

φ(x) → φ
′
(x) = exp[igWα(x) ·T φ(x)] (2.20)

where T are the three generators of the SU(2) group which is given in terms of the
Pauli spin matrices as

T =
1

2
σ (2.21)

The gauge invariance can only be fulfilled by the introduction of three gauge fields
W k

µ where k = 1, 2, 3 corresponding to three gauge bosons W (1), W (2) and W (3). The
physical W -bosons can be identified as the linear combinations

W±
µ =

1√
2

(
W (1)

µ ∓ iW (2)
µ

)
(2.22)

The last field W (3) will described in the following section. The interaction vertex
involving exchanges of the W± is of the form

−igW√
2

1

2
γµ(1− γ5) (2.23)

where γ5 is given by

γ5 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 (2.24)

and gW is the weak coupling constant. The weak interaction is the only force in
the Standard Model that is known to break parity. The violation of parity in weak
interactions has far-reaching implications. It introduces a distinction between left
and right-handed particles due to the fact that it couples only to left-handed particles
and right-handed antiparticles. The strength of the weak interaction is given by the
coupling constant aW

αW =
g2W
4π

=
8mWGF

4
√
2π

≈ 1

30
(2.25)
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2.4 Electroweak Unification

In the electroweak model the U(1) gauge symmetry associated with QED is replaced
by a new U(1)γ gauge symmetry

ψ(x) → ψ
′
= Û(x)ψ(x) = exp

[
ig

′ Y

2
ζ(x)

]
ψ(x) (2.26)

which gives rise to a new gauge field Bµ that couples to the weak hypercharge Y .
The weak hypercharge is the quantum number associated with the electroweak The
interaction term has the same form as the interaction term of QED

g
′ Y

2
γµBµψ (2.27)

In the electroweak theory, the photon and the Z-boson can be expressed as a linear
combination of the Bµ and W

(3)
µ fields.

Aµ = +Bµ cos θW +W (3)
µ sin θW (2.28)

Zµ = −Bµ sin θW +W (3)
µ cos θW (2.29)

where θW is the weak mixing angle. The relationhip between the weak and electro-
magnetic couplings in term of the weak mixing angle is given by

e = gW sin θW = gZ sin θW cos θW (2.30)

The parameter θW is a parameter in the Standard Model with a value of

sin2 θW = 0.23146± 0.00012 (2.31)

Another key component of the Standard Model is the Cabibbo–Kobayashi–Maskawa
(CKM) matrix. It is a unitary matrix that describes the mixing of quark flavors during
weak decays, meaning it explains the probabilities of one type of quark changing into
another type. The CKM matrix is given byd′

s
′

b
′

 =

Vud Vus VubVcd Vcs Vcb
Vtd Vts Vtb

ds
b

 (2.32)

The individual elements are found experimentally to be|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 ≈

0.974 0.225 0.004
0.225 0.973 0.041
0.009 0.040 0.999

 (2.33)

In this thesis, the CKM matrix is assumed to be completely diagonal, such that the
top quarks always decay such that t→ bW .
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2.5 Higgs mechanism

The Higgs mechanism and the associated particle, the Higgs boson, are essential
to the Standard Model. It describes the way in which the W and Z bosons and
all the fermions acquires their mass. Without the Higgs mechanism, the Standard
Model would not be consistent theory, since the masses of the gauge bosons of the
electroweak interaction breaks the underlying gauge symmetry. If instead the masses
of the fermions were directly in the Lagrangian, it would break the gauge invariance
and the Standard Model would not be renormalisable. This problem does not occur
in QED and QCD, due to the associated gauge bosons, the photon and the gluons,
being massless.

The simplest Higgs model can be described by two complex scalar fields

ϕ =

(
ϕ+

ϕ0

)
=

1√
2

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
(2.34)

The Lagrangian describing this complex scalar field is given by

L = (∂µϕ)
†(∂µϕ)− V (ϕ) (2.35)

with the Higgs potential given by

V (ϕ) = µ2ϕ†ϕ+ λ(ϕ†ϕ)2 (2.36)

Figure 2.6: The Higgs potential for (a) µ2 > 0 and (b) µ2 < 0 [1].

The lowest energy of the field, i.e. the vacuum state obtains non-zero minima

⟨0|ϕ|0⟩ = 1√
2

(
0
v

)
(2.37)

where v is the Vacuum expectation value (VEV) given by

v =

√
−µ2

λ
(2.38)

with a value of
v = 246GeV (2.39)
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The mass of the Higgs boson mH = 125GeV as well as the masses of the electroweak
bosons are all related to the vacuum expectation value

mW = mZ cos θW =
1

2
gWv (2.40)

After the spontaneous symmetry breaking, the Higgs doublet in the unitary gauge
can be written as

ϕ(x) =
1√
2

(
0

v + h(x)

)
(2.41)

The Higgs bosons couples to all fermions in the Standard Model proportional the mass
of the fermion

mf =
1√
2
gfv (2.42)

where gf is the Yukawa coupling, which determines how strongly a fermion couples to
the Higgs field. In the case of the top quark, gf ∼ 1, and as such, the top quark is the
fermion with the strongest coupling to the Higgs field. This description of the Higgs
mechanism concludes the brief description of the Standard Model. A more detailed
description can be found in [1].
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3 Standard Model Effective Field Theory

Despite the major success of the Standard Model it is not considered to be the fi-
nal theory of particle physics. An ever increasing amount of experimental data are
found to be in incompatible with the core principles of the Standard Model. Among
such discoveries are the non-zero mass of neutrinos, the observation of dark matter
and the incompatibility with general relativity and as such the inability to combine
gravity with the other three forces. In order to probe new physics many theories
and approaches are being studied. One such approach is Standard Model Effective
Field Theory (SMEFT) and is the approach investigated in this thesis. SMEFT em-
ploys a theory-independent approach where the known Standard Model Lagrangian
is expanded upon in terms of additional anomalous operators

LSMEFT = LSM +
∑
i

c
(6)
i

Λ2
O(6)

i +
∑
j

c
(8)
j

Λ4
O(8)

j + . . . (3.1)

where Oi are the anomalous operators, Ci are coefficients and Λ is the effective en-
ergy scale where new physics is expected to arise. The scale of the effective energy
parameter is fixed to be 1TeV in this project. In reality there are thousands of these
operators. However it can be shown that all operators of dimension D = 5 cannot
conserve both baryon and lepton number. Further, operators of higher dimensions
are highly suppressed by a factor 1/ΛD−4 and as such their effects will be minimal.
The analysis of this project is limited to only non flavor-violating operators. Because
of this only operators of dimension D = 6 are considered in this thesis.

�γ

e+

e−

t

t

�Z

e+

e−

t

t

Figure 3.1: Two Feynman diagrams of the process e− + e+ → t+ t. The process can
be mediated by a photon (left) or by a Z boson (right).

11



3.1 Anomalous couplings

In total, there are seven independent operators that affect the Ztt̄, γtt̄ and Wtb
vertices relevant to tt̄ pair production being studied. The relevant vertices are shown
with black dots in 3.1. Following the notation of [2], these operators can be written
as

O(3)
ϕq = i(ϕ†τ IDµϕ)(q̄Lγ

µτ IqL)

O(1)
ϕq = i(ϕ†Dµϕ)(q̄Lγ

µqL)

Oϕϕ = i(ϕ̃†Dµϕ)(t̄Rγ
µbR)

Oϕt = i(ϕ†Dµϕ)(t̄Rγ
µtR)

OtW = (q̄Lσ
µντ ItR)ϕ̃W

I
µν (3.2)

ObW = (q̄Lσ
µντ IbR)ϕW

I
µν

OtBϕ = (q̄Lσ
µνbR)ϕ̃Bµν

where

qL =

(
tL
bL

)
, tR, bR (3.3)

are the weak interaction eigenstate of the quarks and the covariant derivative, Dµ, is
given by

Dµ = ∂µ + igs
λa

2
Ga

µ + ig
τ I

2
W I

µ + ig
′
Y Bµ (3.4)

where Ga
µ, W

I
µ and Bµ are gauge fields for SU(3), SU(2)L and U(1)L respectively, λa

are the Gell-Mann matrices, τ I are the Pauli matrices, Y is the weak hypercharge and
ϕ is the Higgs doublet.

The total Lagrangian for the Wtb vertex with the Standard Model contribution
included is given by

LWtb = − g√
2
b̄γµ(VLPL + VRPR)tW

−
µ

− g√
2
b̄
iσµνqν
MW

(gLPL + gRPR)tW
−
µ +H.c. (3.5)

where qν is the outgoing momentum, gL, gR, VL and VR are couplings and PL and PR

are the left- and right-handed chiral projection operators

PL =
1

2
(1− γ5) PR =

1

2
(1 + γ5) (3.6)

The couplings from the operators of equation 3.2 that contribute are

δVL = C
(3)∗
ϕq

v2

Λ2
, δgL =

√
2C∗

bW

v2

Λ2
,

δVR =
1

2
Cϕϕ

v2

Λ2
, δgR =

√
2CtW

v2

Λ2
(3.7)
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Similarly, the total Lagrangian for the Ztt vertex, including the SM contribution, can
be written as

LZtt =− g

2cW
t̄γµ(XL

ttPL +XR
ttPR − 2s2WQt)tZµ

− g

2cW
t̄
iσµν

MZ

(dZV + idZAγ5)tZµ (3.8)

The couplings from the operators that contribute are

δXL
tt = Re

[
C

(3)
ϕq − C

(1)
ϕq

] v2
Λ2
, δdZV =

√
2 Re[cwCtW − sWCtBϕ]

v2

Λ2

δXR
tt = −Re Cϕt

v2

Λ2
, δdZA =

√
2 Im[cWCtW − sWCtBϕ]

v2

Λ2

Lastly, the Lagrangian for the γtt vertex is given by

Lγtt = −eQtt̄γ
µAµ − et̄

iσµνqν
Mt

(dγV + idγAγ5)tAµ (3.9)

The couplings from the operators of equation 3.2 that contribute are

δdγV =

√
2

e
Re [cWCtBϕ + sWCtW ]

vmt

Λ2

δdγA =

√
2

e
Im [cWCtBϕ + sWCtW ]

vmt

Λ2

More detailed description of the operators can be found in [2].

3.2 Effective Matrix Element

The matrix element contains is the quantity that encodes the probability amplitude
for a given process to occur. The matrix element is a complex number associated
with the transition from one state to another in a quantum system. These states
could represent, for example, the initial and final states of a particle interaction. The
magnitude squared of this complex number gives the probability for that transition.
The matrix element is computed from the Feynman rules that govern the specific
particle process. It involves integrating over all possible ways that a given process
could occur, each of which is represented by a Feynman diagram. The matrix ele-
ment incorporates information about the dynamics of the particles involved (via the
so-called ”propagators”) as well as their interactions (via the ”vertices” of the Feyn-
man diagrams). Crucially, the matrix element does not include information about
the initial and final state kinematics, i.e., the specific directions and energies of the
incoming and outgoing particles. This information is instead incorporated into the
phase space factor. The product of the matrix element (squared) and the phase space
factor gives the differential cross section, which fully describes the likelihood of the
process occurring with specific kinematics. The total matrix element can be written
as the sum of the Standard Model plus the contribution from the effective operators

M = MSM +MEFT (3.10)
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The squared matrix element can then be written as

|M|2 = |MSM +MEFT|2 = |MSM|2 + ci(M∗
SMMEFT +MSMM∗

EFT) + c2i |MEFT|2
(3.11)

By inspecting the terms, it can be seen that the total cross section is expected to have
a quadratic dependence on an individual coupling. Three points are needed in order
to describe a polynomial. For this reason, the simulated event data samples for the
anomalous couplings are simulated with a value of ±1, in order to have three data
samples in total, where the last sample is from the Standard Model sample.
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4 Experimental Setup

A large aspect of particle physics is experimental in nature. Experimental particle
physics involves the design, construction, and implementation of experiments to test
predictions and discover new phenomena. A key role of experimental particle physics
is to test the predictions of theoretical physics, to either confirm or challenge the
existing understanding of fundamental particles and forces. In essence, the two fields
of experimental and theoretical particle physics form a symbiotic relationship in the
pursuit of expanding the knowledge of the universe. The predictions from theoreti-
cal particle physics often guides experimental physics by suggesting what to look for,
while the experimental particle physics provides the data needed to confirm or chal-
lenge theoretical predictions. When an experimental result aligns with a theoretical
prediction, it lends credence to the theory. Conversely, when an experimental result
deviates from the theoretical prediction, it can signal the need for a new theory or a
modification of the existing one. The analysis of this thesis is based upon the experi-
mental framework of a future particle accelerator and a future particle detector which
facilities the experimental study of new physics beyond the Standard Model. In turn,
this chapter describes the experimental apparatus of the Future Circular Collider as
well as the IDEA detector scheduled to be built.

4.1 Future Circular Collider

The Future Circular Collider (FCC) is a proposed particle accelerator at CERN with
the aim of expanding our knowledge of particle physics. It is envisaged to succeed the
Large Hadron Collider (LHC) as the flagship particle collider of CERN. The discovery
of the Higgs boson at the LHC completed the particle content of the Standard Model.
This is however by no means the end. The next step will be precision measurements
of the Standard Model, which historically have been used to guide the process of dis-
covery. The project is expected to span a large amount of time, with several years
of data taking at different energy regimes. The first stage of FCC will be a lepton
collider, which will collide electrons and positrons. Following that, the second stage
will be the FCC-hh collider where protons will be collided. This split mode will en-
able precision measurements of the lepton collider to lead the way to possible areas of
discovery, where the much higher energy of the FCC-hh collider has the advantage.

The accelerator itself will be housed in a ∼ 91 km ring [3] on the border of France and
Switzerland. It was initially proposed to be 100 km but later changed to the current
plan of 90.7 km. The construction of such a large and complex underground struc-
ture presents significant engineering challenges. The tunnel will need to be precisely
aligned to ensure accurate steering of the particle beams, despite geological variations
and potential ground movement. It also needs to be deep enough to avoid surface
structures and minimize disturbance to the local environment. The construction of
the tunnel is expected to start around 2030, and the FCC-ee is expected to start
running in the mid 2040’s.
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Figure 4.1: Layout of FCC. [4]

Figure 4.2: Preliminary timeline of FCC operation. [3]

4.2 FCC-ee

The FCC-ee experiment will be the first stage of the FCC project. FCC-ee will
be a e+e- collider with the goal of providing excellent precision measurements of
the particles and parameters of the Standard Model. The Future Circular Collider
Conceptual Design Report describes in detail the goals and motivations as well as
technical details about the accelerator and the proposed detectors.
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The report states four main research prospects of FCC-ee[4]:

• 1: Measure a comprehensive set of electroweak and Higgs observables with high
precision.

• 2: Tightly constrain a large number of the parameters of the standard model.

• 3: Unveil small but significant deviations with respect to the standard model
predictions.

• 4: Observe rare new processes or particles, beyond the standard model expec-
tations.

The collider is designed to operate at center of mass energies ranging from 88 to 365
GeV, where the operation points of interest are 91 GeV (Z pole), 160 GeV (W± pair
production), 240 GeV (ZH production) as well as 340-365 GeV (tt̄ production). This
is done in order to focus the search by maximizing the number of particles created at
each energy point.

Figure 4.3: Luminosity as a function of energy. [4]

The most important operational parameters are listed in 4.4. 1

1The total integrated luminosity noted here is different than that used for the data analysis. This
number is updated one in a while and different sources use different values. This source also states
4 interaction points, whereas the source from which the luminosity is used in the data analysis only
states 2 interaction points.
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Figure 4.4: Key parameters of each operational stage of FCC-ee. [3]

As seen from 4.3 and 4.4, the luminosity at the the tt̄ energy regime is significantly
lower than at the lower energy points. This is due primarily to the synchrotron
radiation that is very significant at higher energies. The synchrotron energy is related
to the center of mass energy, the radius of the collider and the mass of the particles
being accelerated

∆E ∝ 1

R

(
E

m

)4

(4.1)

The low mass of the electron means that the energy loss from synchrotron radiation
at each turn becomes a very sizeable effect at higher energies. The energy loss at√
s = 365GeV is 10GeV per turn. This is not as large of an issue at a hadron

collider such as LHC, where the ∼ 2000 times heavier protons means the synchrotron
radiation is much lower. In order to compensate for radiation losses resulting in the
short beam lifetime, top-up injections are used to keep the beam current constant by
injecting new electrons and positrons into the beam.

4.3 IDEA detector

The ”International Detector for Electron-positron Accelerators” (IDEA) is one of the
proposed detectors developed specifically for FCC-ee. The design of the detector con-
sists of a silicon pixel vertex detector, a large-volume extremely-light short-drift wire
chamber encased by a layer of silicon micro-strip detectors, a thin and low mass super-
conducting solenoid coil, a pre-shower detector, a dual-readout calorimeter, capable
of independently measuring the electromagnetic and hadronic energy deposits from a
particle shower, and a muon chamber within the magnet return yoke.
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Figure 4.5: Schematic of the IDEA detector [4].

Vertex technology Silicon
Vertex inner/outer radius 1.7 cm/34 cm
Tracker technology Drift chamber + silicon wrapper
Tracker half length/outer radius 2.0 m/2.0 m
Solenoid bore radius/half length 2.1 m/3.0 m
Preshower/calorimeter absorber Lead/lead
Preshower inner/outer radius 2.4 m/2.5 m
DR calorimeter inner/outer radius 2.5 m/4.5 m
Overall height/length 11 m/13 m

Table 4.1: Key parameters of the IDEA detector [4].

The innermost part of the detector, surrounding the beam pipe, is the silicon
pixel detector. Test-beam results show an excellent resolution of approximately 5µm.
These very light detectors are the basis for the vertex detector for the IDEA.

The next component in the IDEA detector is the drift chamber (DCH). The DCH is
designed to provide good tracking, high-precision momentum measurements as well as
providing excellent particle identification. The DCH is co-axial with the 2T solenoid
field and extends from an inner radius of Rin = 0.35m to an outer radius of Rout = 2m
for total length of L = 4m. It consists of 112 co-axial layers arranged in 24 sec-
tors. The sizes of the cells size vary between 12.0mm and 14.5mm for a total of
56448 drift cells. The spatial resolution of the tracking system is expected to be
σ(1/pT ) ≃ a

⊕
b/pT where a ≃ 3 · 10−5 GeV−1 and b ≃ 0.6 · 10−3.
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The preshower detector is placed between the magnet and the calorimeter in the bar-
rel region, and between the drift chamber and the end-cap calorimeter in the forward
region. The preshower detector further improves the tracking resolutions as well as
tagging pions by tagging both photons from their decay.

The dual-readout calorimeter made of lead fibers surrounds the second preshower
layer. The calorimeter will have an excellent energy resolution for both electromag-
netic and hadron showers as a result of both being sensitive to the independent signals
from scintillation light as well as Cerenkov radiation. The resulting energy resolu-
tion by combing the two signals are estimated from preliminary simulations to be
10%/

√
E for isolated electrons and 30%/

√
E for isolated pions. The calorimeter fur-

ther provides very good intrinsic discrimination between muons, electrons/photons
and hadrons assuming the measured particles are isolated with a 98% efficiency for
separating electrons and protons. In addition to the particle identification capabilities,
the high degree of transverse granularity allows for the separation of close showers.
Several ways to implement methods of disentangling the signals produced by overlap-
ping electromagnetic and hadron showers are currently being investigated.

4.4 Simulation and Reconstruction Framework

The analysis in this thesis is based on simulated data. The simulation tools used are
all contained within the Future Circular Collider Software FCCSW [5] framework .
The framework itself consists of multiple components that facilitate the entire process
of simulating Monte Carlo events and the subsequent steps of hadronisation, detec-
tor response and data analysis. The central components are Pythia [6], Delphes
[7] and EDM4HEP [8]. Pythia is a general purpose Monte Carlo event generator,
that facilitates the generation of high-energy collision events. This includes both the
hard interaction of a particular particle process, as well as decay and subsequent
fragmentation of final state partons. EDM4hep is a generic event data model for
future colliders where the structure of the output file is given. Pythia is used in
conjunction with Delphes, which is a software package that facilitates fast detector
response simulation. In order to perform a simulation with Pythia and Delphes, the
command ”DelphesPythia8 EDM4HEP” is called along with a Pythia command file
and a Delphes card. The Pythia command file instructs the program which hard
process to simulate and the Delphes card holds the specifications of the particle de-
tector to simulate. The analysis of this project is based on the capabilities of the
IDEA detector. Therefore, the Delphes detector card used is that of the IDEA de-
tector. This means that all the specifications and geometrical details of the IDEA
detector are encoded into the ”IDEA.tcl” file that is called in conjunction with the
”DelphesPythia8 EDM4HEP” command. This includes numerous effects such as the
calorimeter resolutions, the magnetic fields used for measurements of charged parti-
cles etc. The output is a ROOT file [9]. ROOT is the industry standard when it
comes to particle physics analysis. It is a an open-source data analysis framework
developed at CERN specifically for analyzing large amounts of data. It also provides
a number of helpful functionalities such as statistical analysis as well as easy-to-use
data visualization.
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4.4.1 Reconstruction object definitions

The purpose of Delphes is to provide the detector response to the simulated event
processes. Delphes reconstructs simulated particles based on the specifications of the
specific detector used. In Delphes, an ”object” refers to a reconstructed particle or
jet. Some of the object types that Delphes can handle include:

• Electrons: Identified by their characteristic signature in the detector’s electro-
magnetic calorimeter.

• Muons: Identified by their penetration through multiple detector layers.

• Jets: These are ”clusters” of particles produced by quark or gluon fragmentation.

• Missing transverse energy: This is not a directly observable object but is inferred
from the imbalance of the total energy in an event.

Each of these object types has an associated ”definition” in Delphes, which includes
the algorithm used to identify and reconstruct the object from the raw simulated
detector data, as well as any cuts or criteria applied to the reconstructed objects. For
example, an electron might be identified by a cluster in the electromagnetic calorimeter
with a matching track, and the electron definition might include a minimum transverse
momentum or a maximum pseudorapidity.

4.4.2 Jet reconstruction

As a result of the hadronization process, jets of particles are measured inside the
detector instead of individual quarks. These jets appear as a cone-shaped cascade
of of collimated particles. The reconstruction of the jets is in general not a trivial
task, and the definition of a jet is not unique. The type of particle accelerator is also
an important consideration when choosing a jet algorithm. Hadron colliders such as
LHC produce an immense amount of background, therefore any jet algorithm used
must be able to handle said background. In the clean environment of a lepton collider
such as FCC-ee, this is a much smaller issue. Nevertheless, the choice of jet algorithm
is an essential aspect of the analysis. In general jet algorithms work in a iterative

manner. Firstly, the jet algorithm classifies the reconstructed particles as pseudojets.
Pseudojets collections of particles that are clustered together and treated as a single
object. At each iteration the jet algorithm combines the pseudojets based on the
distance measure that is unique to each jet algorithm. The pseudojets closest based
on the distance measure are then combined. This iterative process is continued until
some cut-off value has been reached. Along with a definition of distance measure, a jet
algorithm is used with a recombination scheme. The recombination scheme determines
how the jets are to be combined once the minimum of the distance measure has been
found. Three of the main jet combinations schemes used in lepton colliders are E-
scheme, the E0-scheme and the p- scheme. Firstly, the E-scheme is defined such that
pseudojet i and j are replaced by a pseudojet k with four-momentum

pk = pi + pj (4.2)

The advantages of this particular scheme is that it is Lorentz invariant by construction,
such that it automatically conserves energy and momentum. The disadvantage is that
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it introduces a non-zero mass for the jet that cannot be accounted for in full [10].
Conversely, for the E0-scheme, the pseudojet k is rescaled such that is has 0 invariant
mass

Ek = Ei + Ej, p⃗k =
Ek

|p⃗i + p⃗j|
· (p⃗i + p⃗j) (4.3)

This recombination scheme is not Lorentz invariant since only the energy is conserved.
Therefore it can only be applied in the laboratory frame. Lastly in the p-scheme the
four-momentum is rescaled in order to have 0 invariant mass

p⃗k = p⃗i + p⃗j, Ek = |p⃗k| (4.4)

In this thesis, the Durham algorithm is used along with the E-scheme. In the Durham
algorithm, the distance measure is defined as

dij = min(E2
i , E

2
j )(1− cos θij) (4.5)

It incorporates both information about the energy as well as angular information to
combine jets. This choice was made on the basis of the work of [11], where the Durham
algorithm was found to be among the best performing algorithms when it came to
uniquely matching quarks at the Monte Carlo truth level to the reconstructed jets.
The Durham algorithm also performed the best at separating the decay products of
the b-quark into the same jet. The specific properties of the b-quark makes it possible
to distinguish jets originating from b-quarks from other types of hadronic jets. The
efficiency of the b-tagging in this analysis is set to be 80% in order to not overestimate
the real efficiency that will be possible at FCC. It could be envisioned that this could
be improved for example by implementing machine learning techniques.

The jet algorithm is implemented with FastJet [12]. FastJet is a software package that
provides fast native implementations of many sequential recombination algorithms.
In this analysis, FastJet is used in the exclusive clustering mode, meaning that a
predefined number of jets is defined, and the jet algorithm concludes whenever that
specific number of jets has been reached.
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5 Monte Carlo Simulation Samples

This section describes the Monte Carlo data samples as well as the relevant back-
grounds and the simulation of event samples of anomalous couplings that the analysis
of this project is based upon.

5.1 Hadronic tt̄ Production

In this thesis, the process of interest is a pair of top quarks in the fully hadronic decay
mode

e+e− → tt̄→ bW+b̄W−, W+ → qℓq̄ℓ, W− → qℓq̄ℓ (5.1)

This particular decay channel has a number of advantages and disadvantages when
it comes to looking for new physics. The main advantages is the relatively high
branching ratio of the W -bosons. With a hadronic branching ratio of 45.44% [13], it
is the most common decay channel of the tt̄ pair. This in turn translates to a large
amount of statistics and therefore improving the possibility of discovery. However,
the fully hadronic decay mode also has its drawbacks. Hadronic jets are in general
not measured as well as leptons. Further, the many jets in the final state increases
the chances of a jet partially of fully escaping detection by flying out near the beam
pipe. By contrast, the fully leptonic tt̄ event has a relatively low branching ratio,
but increased resolution and easier reconstruction. The semi-leptonic tt̄ is mixture of
the two, with a branching ratio very similar to the fully hadronic decay mode, but
has some of the advantages and disadvantages of the two former decay modes. With
each decay mode having advantages and disadvantages, there is ample motivation to
explore each of them in order to maximize the prospects of discovery.
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Figure 5.1: The Feynman diagram showing the full process including the subsequent
hadronic decays of the top quarks.

23



5.2 Backgrounds

The vast majority of events will not have any top quarks. These events can however
have final states that resemble the final state of the signal. These events are known
as background, and the ability to distinguish and therefore seperate the background
from the signal is of great importance. The considered backgrounds are meant to
serve as a representative depiction of the amount and type of background that would
occur in the real scenario in FCC. It is however not an exhaustive list, and processes
exist that are not considered here. The integrated luminosity used in this project
corresponds to the target luminosity of 1.5 ab−1 quoted in [4]. Given the timeline
of the project it is reasonable to assume this target is not only feasible, but perhaps
even a conservative number. All backgrounds considered in this thesis can be found
along with their cross section and the expected number of events in 5.1. The number
of expected events is easily calculated from the luminosity and the total cross section

N = L · σ (5.2)

where L is the integrated luminosity and σ is the cross section.

Process σ [pb] Number of events

tt̄→ bb̄qℓq̄ℓqℓq̄ℓ 0.2065± 1.292 · 10−3 309, 750± 1556

qℓq̄ℓ 17.03± 1.697 · 10−3 25, 545, 000± 2531

W+W− 11.20± 1.307 · 10−3 16, 800, 000± 1961

bb̄ 4.065± 7.920 · 10−4 6, 097, 500± 1188

µ+µ− 1.902± 4.720 · 10−4 2, 853, 000± 708

τ+τ− 1.901± 4.721 · 10−4 2, 851, 500± 708

ZZ 0.8565± 2.590 · 10−4 1, 284, 750± 389

ZH 0.1296± 1.230 · 10−4 194, 400± 185

ZWW 0.01594± 1.735 · 10−5 23, 910± 26

Single top 4.572 · 10−4 ± 1.191 · 10−5 6858± 18

ZZZ 7.644 · 10−4 ± 2.632 · 10−6 1, 147± 4

Table 5.1: Table of values of signal and all considered backgrounds along with their
cross section and expected number of events at 1.5 ab−1 and

√
s = 365GeV.

The first 7 backgrounds were simulated using Pythia. The last three backgrounds
were simulated using MadGraph [14]. MadGraph produces an LHE file. The LHE
files are imported with a Pythia command file in order to run the Delphes detector
reconstruction as well as utilize the fragmentation in Pythia.

5.2.1 Effects of ISR and FSR

The processes simulated with Pythia all include initial state radiation (ISR) as well
as final state radiation (FSR). These effects can be very significant depending on the
specific process. In particular, processes with a peak at the

√
s = mZ are heavily
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affected by ISR. This is due to the fact that the energy carried away by the ISR
photons essentially shift the center of mass energy from

√
s = 365GeV towards the

Z-peak and thus increasing the total cross section. The opposite of this is seen with
the tt̄, where less energy available shifts the total cross section away from the peak,
thereby lowering the cross section. MadGraph does not have ISR or FSR built in,
and such the event samples for the last three backgrounds are not including ISR and
FSR.
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Figure 5.2: Total cross section as a function of
√
s.

5.3 Simulation of Anomalous Couplings

The simulation of all event samples with anomalous couplings enabled is done using
Whizard [15]. Whizard is a program that enables efficient calculation and event
sample simulation. The model file that includes the anomalous couplings are built-in
inside the ”SM top anom” file. The file includes the couplings described in section
3.1, however 3 of the couplings are kept fixed in order to preserve gauge invariance.
In total, 14 event samples are produced corresponding to the 7 free parameters left
over, each with an event sample for the coupling value α = 1 and α = −1, except
for the coupling ∆VR where α = ±0.5. The couplings considered as well as their
cross section can be seen in 5.2. The output of Whizard is in the form of LHE files
similar to MadGraph. As with the event samples from MadGraph, the event samples
from Whizard are imported with a Pythia command card in order to utilize the
fragmentation capabilities of Pythia as well as the detector reconstruction of Delphes.

25



Coupling α σ [pb]
SM 0 0.2197

δVL
+0.5 0.3775
-0.5 0.2024

δVR
+1 0.2196
-1 0.2196

δgL
+1 0.2196
-1 0.2196

δgR
+1 1.177
-1 1.876

δdγV
+1 1.306
-1 3.370

δdγA
+1 0.2956
-1 0.2956

δXR
tt

+1 0.3593
-1 0.2206

Table 5.2: Cross sections for each of the anomalous couplings calculated by Whizard.
All cross sections are normalized by the hadronic branching ratio. The SM cross
section quoted is also from Whizard despite the event sample not being used.

Whizard does not have ISR and FSR built-in by default. This does introduce some
complications that cannot be fully accounted for. The difference in cross section is
accounted for by simply multiplying the cross sections by the ratio of the cross section
found from Pythia that includes ISR, and that from Whizard that does not, with that
factor being 0.2065 pb/0.2197 pb = 0.9399. A more subtle complication arises from
the fact that the energy scale Λ is also affected by ISR. This in turn means that the
energy loss from ISR is effectively changing the strength of the anomalous couplings.
This is however not possible to account for, unless ISR and FSR are implemented in
Whizard, or, the anomalous couplings become available in Pythia.
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6 Event Selection and Reconstruction

Event selection plays a vital role in particle physics, serving as a crucial step in the
data analysis. The primary motivations behind this rigorous selection process is the
necessity to reduce the amount of background events. When colliders create particle
collisions, it is a given that not every event will be of interest. These background
events, while important in their own right, can overshadow the signal events. This
chapter describes the event selection process used in this project, as well as the re-
construction method of the kinematic fit employed in order to reconstruct the pair of
top quarks.

6.1 Anatomy of a Fully Hadronic tt̄ Event

In order to optimize the search for this particular process it is crucial for the search
strategy to know exactly what these events look like in the detector. The fully hadronic
tt̄ events constitute a 2 → 6 event. With both of the W bosons decaying into two
hadrons, the signature in the detector will have six hadronic jets, assuming they are
all reconstructed properly, and not escaping detection by flying out along the beam
pipe. In reality, there is an additional complication from final state gluon radiation.
Because the final state quarks carry color charge, they can radiate off gluons that in
turn will produce a gluon jet. In that case the final state will be a seven-jet structure.
The application of the exclusive jet algorithm from FastJet in this project means the
final state is ”forced” to always have six jets, meaning that any potential gluon jets
get combined with another jet. As a consequence, no particular effort has been put
into studying the effects of additional gluon jets. Due to the hadronisation process
inherent to the strong interaction described in section 2, the six hadronic jets are
expected to produce a large amount of particles. Another key feature of the hadronic
decay is a low amount of missing energy, since essentially all the final state products
are expected to show up in the detector. Lastly, the b-quarks from the decay of the
t-quarks makes efficient b-tagging of the jets of great importance. Understanding and
targeting the search for fully hadronic tt̄ events based on these criteria, as well as
others, are therefore an instrumental part of keeping the desired events, and equally
important, removing the undesired events. Many observables can be used in order
to seperate the signal from the background. An example of one such observable is
the aplanarity. The aplanarity is an event shape observable, meaning it contains
information about how events appear in the detector. A momentum tensor can be
defined as

Mxyz =
∑
i

 p2xi pxipyi pxipzi
pyipxi p2yi pyipzi
pzipxi pzipyi p2zi

 (6.1)

where the sum is over all the reconstructed jets. Ordering and normalizing the three
eigenvalues of the tensor such that λ1 > λ2 > λ3 and

∑
i λi = 1, the sphericity,

transverse sphericity as well as the aplanarity can be defined as

S =
3

2
(λ2 + λ3), S⊥ =

2λ2
λ1 + λ2

, A =
3

2
λ3 (6.2)

The observable of interest is the aplanarity, A, and is a measure of the amount of
momentum going in or out of the plane formed by the two leading jets. In a fully
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hadronic tt̄ event, many reconstructed particles are expected without a strong prefer-
ence for any particular direction of those jets. It is therefore natural to expect that
the hadronic tt̄ events will have, on average, a distribution of aplanarity that is more
spread out. In contrast, a 2 → 2 event e.g. qq̄ with a very large amount of momentum
being carried by each of the jets, most events are expected to have a relatively low
measure of aplanarity.
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Figure 6.1: Distribution of aplanarity prior to cuts for tt̄ and qq̄.

6.2 Background Separation

In order to seperate the desired tt̄ events from all the background, cuts are made on
certain variables that will exclude events based on the values of those observables. The
optimal region is found based on the optimization of the three following quantities

Significance =
S√
S +B

(6.3)

Efficiency =
S

Stotal

(6.4)

Purity =
S

S +B
(6.5)

where S is the number of selected signal events, Stotal is the amount of total signal
events and B is the number of selected background events. The significance deter-
mines how many standard deviations the signal exceeds statistical fluctuations. The
efficiency is a measure of the fraction of signal events that are preserved and the purity
is the fraction of signal events among the total number of events. Optimizing for sig-
nificance is often a good strategy when the goal of the analysis is the discovery of new
physics. A high-significance result hints at a strong signal, one that is unlikely to be a
mere product of random statistical fluctuations, thus enhancing the statistical robust-
ness of the analysis. However optimizing for purity can be beneficial if background
events are important to filter out. A high purity ensures a greater fraction of signal
events, making the signal easier to interpret among the noise. Moreover, a highly pure
selection can reduce systematic uncertainties related to background estimation.The
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major drawback lies in the potential loss of signal events. In the pursuit of minimiz-
ing background noise, many signal events might be discarded, thereby decreasing the
efficiency. The optimization of efficiency aims to capture the maximum number of
signal events. This approach is often optimal when dealing with rare or weak signals.
However, by optimizing for high efficiency, it often comes with an increased amount of
background events. This increase can reduce the purity of the data, making the signal
more difficult to distinguish. Additionally, the inclusion of more background events
can lead to increased systematic uncertainties, complicating the analysis. In many
cases, the product of the purity and efficiency, PE is optimized. This is done in order
to maximize the purity of the event sample while simultaneously minimize the loss of
signal events. In this analysis, the event selection is optimized for the significance. It
is worth noting the set of cuts that optimizes the significance is also the set of cuts
that optimizes the product of purity and efficiency PE. The following variables are
used for separating signal from background:

• Number of reconstructed particles

• Invariant mass

• Thrust

• Aplanarity

• Missing energy

• Missing momentum

• Minimum distance measure, dij 7 → 6

• Minimum distance measure, dij 6 → 5

• Number of b-tagged jets

where dij 7 → 6 is the minimum of the distance measure as defined in 4.5 of going
from seven to six jets, and similarly, dij 6 → 5 of going from six to five jets. The event
selection is carried out in two discrete steps. Firstly, a coarse initial event selection
keeps only events where the FastJet algorithm can reconstruct seven jets. The jet
algroithm is instructed to terminate at seven jets in order to calculate the dij 7 → 6
used in the event selection. The final iteration of going to six jets is then done after
in order to end up ultimately with six jets. This initial selection already filters out
the vast majority of µµ̄ and τ τ̄ events as these mostly have very few particles in the
final state. In the second step of the event selection process, the cuts corresponding
to the maximum significance are performed. In general, a more narrow initial event
selection that rejects background already at the first stage is to be preferred due to
the computational efficiency of performing cuts on a smaller event sample.

6.2.1 TMVA

The background separation itself is done using the Rectangular cut optimization
method available through the Toolkit for Multivariate Analysis (TMVA)2, which is a

2Despite the name, the rectangular cut optimization method is not a multivariate method, but a
sequence of univariate ones, since no combination of the variables is used.
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library in ROOT. [16]. The rectangular cuts method, as the simplest method available
in TMVA, offers a quick and easy-to-use option to separate signal and background.
The method seeks to maximize the background rejection for a given signal efficiency
by applying a series of upper and lower cuts on the discriminating variables used as
input. The classifier then returns a simple binary response (signal or background) and
simply counts the amount of signal events versus the amount of background events.
The set of cuts that optimizes the significance as defined in 6.3 is then saved. Only
events that pass the cuts are saved. If used on variables with strong separation of
signal and background, the rectangular cut method is very competitive with more
advanced classifiers. The simplicity of the method also means that it is more robust
and less prone to overtraining, which can be an issue for more involved multivariate
methods. A qualitative depiction of the rectangular cuts method can be seen in 6.2.

Figure 6.2: Rectangular cuts method example in two dimensions [17].

As an example, the distribution of the number of reconstructed particles is shown
before and after applying cuts in 6.3. Prior to the application of cuts the signal is
barely visible among all the background events.
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(a) Signal and background prior to cuts.
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(b) Selected events after applying cuts.

Figure 6.3: Distribution of the number of reconstructed particles before and after
applying cuts.

The set of cuts that maximizes the significance can be found in 6.1. In some of the
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distributions, the signal is concentrated in either the bottom or top of the distribution.
In that case, no cut is necessary.

Observable Lower cut Upper cut

Number of reconstructed particles 97 N/A

Invariant mass 301.5 GeV N/A

Thrust 0.32 0.83

Aplanarity 0.04 0.45

Missing energy N/A 94.5 GeV

Missing momentum N/A 82.3 GeV

Minimum distance measure, dij 7 → 6 0.016 2.1

Minimum distance measure, dij 6 → 5 0.16 5.5

Number of b-tagged jets 1 N/A

Table 6.1: Lower and upper cut for each observable. N/A refers to no cut being made.

The number of events before and after applying cuts for both the signal and all
background processes can be found in 6.2.

Process Ninitial Nselected

tt̄→ bb̄qℓq̄ℓqℓq̄ℓ 309,750 227,325

qℓq̄ℓ 25,419,195 3,264

W+W− 15,212,521 1,904

bb̄ 6,090,743 9,034

µ+µ− 13,128 0

τ+τ− 866,604 0

ZZ 1,176,180 5,891

ZH 191,373 7,304

ZWW 23,390 1,152

Single top 6,858 1,993

ZZZ 1,131 140

Table 6.2: Number of events after initial selection and number of events after appli-
cation of cuts for each process.

The application of cuts increases the significance of the signal region from 44.1 to
447.4. In the end, 73% of the signal is preserved, while simultaneously rejecting 99.94%
of the background. Despite the very large number of qℓq̄ℓ events, their distributions of
the observables used in the event selection process means that they are easily separated
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from the signal. Conversely, single top events resemble tt̄ very closely, and as such are
much harder to filter out, despite the very low cross section.

Significance ϵS ϵB
Initial 44.1 1.0 1.0
After selection 447.4 0.73 0.00062

Table 6.3: Significance, signal efficiency and background efficiency before and after
applying cuts.

6.3 Kinematic Fit

The derivations in the following sections are based on [18] and [11]. The final state
of the hadronic tt̄ events appearing in the detector is six jets. The ultimate goal is to
obtain knowledge about the tt̄ pair itself at the quark level. This is however a very
difficult task since in general, it is difficult to know which measured jet corresponds
to which top quark. Additionally, the the limited detector resolution combined with
particles escaping detection introduces effects that make reconstruction of the original
quarks of the decay particularly difficult. In this analysis, the reconstruction at the
quark level is performed with a kinematic fit. The fit is based on the method of least
squares, which is a simple but effective method. At its core, the method of least
squares seeks to minimize the sum of squares of deviations between a model and the
data

S =
n∑

i=1

∆y2i = min (6.6)

This method is used to determine corrections to the measurements of the jets in the
effort to improve the accuracy of the reconstruction. The type of fitting is particular
powerful when applied at lepton colliders, since the total energy as well as the mo-
mentum in directions are well known. This is not the case for hadron colliders where
pz is not known due to the composite nature of the proton and the complexities that
follow.

6.4 Kinematic fit with constraints

The kinematic fit using the least squares method is used by imposing a set of con-
straints. The constraints are based on kinematic variables govern the specific tt̄ pro-
cess. The simplest constraints pertain to the conservation of energy and momentum
in the event i.e. ∑

E
px
py
pz

 =


365
0
0
0

GeV (6.7)

Beyond these four constraints, additional four constraints are placed on the invariant
masses of tt̄-pair as well as the pair of W -bosons. In total, eight constraints are
imposed in the kinematic fit. The model for a system of a total of m constraints can
be expressed as

fk(a,y) = 0, k = 1, . . . ,m (6.8)
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where y is a vector of n measurements, a is a vector of p unmeasured parameters.
Assuming uncorrelated measurements, a covariance matrix V is given by the diagonal
matrix

V = δijσiσj (6.9)

where σi is the resolution of measurement i. The principle of least squares is then to
minimize

S(a,y) = ∆yTV(y)−1∆y (6.10)

with respect to ∆y, where ∆y is the vector of corrections to the measurements y such
that

fk(a,y +∆y) = 0, k = 1, 2, . . .m (6.11)

Additional m parameters λk are introduced in the form of Lagrangian multipliers

L(a,∆y) = S(a,∆y) + 2
m∑
k=1

λkfk(a,y +∆y) (6.12)

With the introduction of Lagrange multipliers, the necessary condition for a local
extremum of this function with respect to ∆y. a and λ corresponds to the condition
of a minimum of S(a,∆y) under the the conditions

fk(a,y +∆y) = 0 (6.13)

Meaning that minimizing S(a,∆y) simultaneously fulfills

∂L

∂y
= 0,

∂L

∂a
= 0,

∂L

∂λ
= 0 (6.14)

For complicated system this is generally done in an iterative manner, since in general
only linear problems can be solve analytically. In the case of non-linear conditions, the
solution is found numerically by linearization of the conditions by a Taylor expansion

fk(a
n, yn) +

∑
j

∂fk

∂an+1
j

(∆an+1
j −∆anj ) +

∑
i

∂fk

∂yn+1
i

(∆yn+1
i −∆yni ) ≈ 0 (6.15)

The function L with linearization of constraints is given by

L = ∆yV(y)−1∆y + 2ΛT (A∆a+B∆y − c) (6.16)

where c is given by
c = A∆a+B∆y − f (6.17)

and A, B and f are given by

A =


∂f1/∂a1 ∂f1∂a2 . . . ∂f1/∂ap
∂f2/∂a1 ∂f2∂a2 . . . ∂f2/∂ap

. . . . . .
. . . . . .

∂fm/∂a1 ∂fm/∂a2 . . . ∂fm/∂ap

 , f =


f1(a

n, yn)
f2(a

n, yn)
. . .

fm(a
n, yn)

 (6.18)

(6.19)

B =


∂f1/∂y1 ∂f1∂y2 . . . ∂f1/∂yn
∂f2/∂y1 ∂f2∂y2 . . . ∂f2/∂yn

. . . . . .
. . . . . .

∂fm/∂y1 ∂fm/∂y2 . . . ∂fm/∂yn

 (6.20)
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The system system of equations to be solved can be written of the formV−1 0 BT

0 0 AT

B A 0

∆y
∆a
λ

 =

0
0
c

 (6.21)

The solution is given by the inverse∆y
∆a
λ

 =

V−1 0 BT

0 0 AT

B A 0

−10
0
c

 =

C11 CT
21 CT

31

C21 C22 CT
32

C31 C32 C33

0
0
c

 =

CT
31

CT
32

C33

 c (6.22)

Where the individual elements are given by

C11 = V −VBTWBBV +VBTWBAW
−1
A ATWBBV

C21 = −W−1
A ATWBBV

C22 = W−1
A (6.23)

C31 = WBBV −WBAW
−1
A ATWBBV

C32 = WBAW
−1
A

C33 = −WB +WBAW
−1
A ATWB

where WB = (BVBT )−1 and W−1
A = (ATWBA)−1. The covariance matrix V sym-

metric, which means the elements C11, C22, C31 and C33 are also symmetric. The
covariance matrix for the solution is given by

V

ŷ
â

λ̂

 =

C11 CT
21 0

C21 C22 0
0 0 −C33

 (6.24)

The final element in the fit is the inclusion of probability distribution functions (PDF).
Due to the Breit-Wigner nature of unstable particles, the masses of the reconstructed
top quarks and W -bosons are not expected to be exactly on resonance. This behavior
is accounted for by introducing a probability distribution function which extends the
function L such that

L(a,∆y) = S(a,∆y) + g(x) + 2
m∑
k=1

λkfk(a,y +∆y) (6.25)

where the function g(x) has been included. g(x) represents a penalty function, mean-
ing the constraint is loosened but comes with a penalty of violating that constraint.
The inclusion of the PDF can be included by extending the B-matrix in order to
included total set of measured parameters {y, x}

B =
∂f(a,y, x)

∂(y, x)
(6.26)

as well as extending the covariance matrix such that

Ṽ =

(
V 0

0
(

1
2
d2g
dx2 |x=xn

)−1

)
(6.27)
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The corrected measured parameters in the n+ 1-th iteration are now given by(
yn+1

xn+1

)
=

(
y0
xn

)
− Ṽ

(
0

1
2
d2g
dx2 |x=xn

)
+ ṼBT (BṼBT )−1

×
[
A(an − a0) +B

(
yn − y0

dg
dx
|−1
x=xn/ d2g

dx2 |x=xn

)
− f(an, yn, xn)

]
and the corrected free parameters in the n+ 1-th iteration are now given by

an+1 = a0 +W−1
A ATWB

×
[
A(an − a0) +B

(
yn − y0

dg
dx
|−1
x=xn/ d2g

dx2 |x=xn

)
− f(an, yn, xn)

]

6.5 ABC-parameterization

The constrained fit is parameterized in terms of the 3-vector of the reconstructed
particle

p⃗j
r = aj|p⃗jm|p⃗ja + bj p⃗j

b + cj p⃗j
c (6.28)

where aj, bj and cj are parameters to be used in the fit, and p⃗j
a p⃗j

b and p⃗j
c are

unit vectors that from a Cartesian coordinates system. They are found from the
momentum of the measured jet p⃗j

m and are given by

p⃗j
a =

p⃗j
m

|p⃗jm|
(6.29)

p⃗j
b =

1√
p2x,m + p2y,m

(pmy ,−pmx , 0) (6.30)

p⃗j
c =

1√
|p⃗jm|2(p2x,m + p2x,m)

(−pmx pmz ,−pmy pmz , p2x,m + p2y,m) (6.31)

where p⃗j
a is defined such that it is in the direction of of measured jet, p⃗j

b is defined
such that p⃗j

a · p⃗jb = 0 and p⃗j
c is defined as p⃗j

a × p⃗j
b. Initially, the values of aj, bj

and cj are set to 1, 0 and 0 respectively, such that the reconstructed particle vector
overlaps with the measured particle vector.

6.6 ABCfit++ software

The kinematic fit is implemented through the ABC-parameterization is implemented
with the ABCfit++ software package [19]. The software package contains multiple
classes that together make the fitting procedure possible. A detailed description of
individual classes can be found in [11].

6.7 Fitting procedure

Prior to the fitting procedure, the a, b and c-parameters as well as the Gaussian
parameters of the reconstructed top quarks and W -bosons that go into the fit are
estimated. The spread of the a, b and c-parameters determine the resolutions that
appear in the covariance matrix as defined in 6.9 to be used in the fit. In the fit, a
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constraint is placed on the invariant mass of the top quark as well as the W -boson.
At the quark level the spread in the distribution of the mass is from the associated
Breit-Wigner distribution of unstable particles. However, this is not the full picture
since at the detector level there is some amount of Gaussian spread of the energy. The
resulting true spread is therefore a complicated convolution of a Gaussian with the
Breit-Wigner distribution. In order to estimate an appropriate value of this spread to
be used in the fit, several aspects can be considered. Below, a simple Gaussian is fitted
to the distribution of the top and W mass. The distributions of both the a, b and
c-parameters as well as the distribution of the invariant masses are found by matching
the measured jets to the true value of the Monte Carlo particles. The unique matching
is done by pairing the quark to the reconstructed jet closest in angle. The matching is
such that only events where there is a unique match of the true Monte Carlo particles
to the corresponding reconstructed jets are considered. The distribution of the a, b
and c parameters for b-jets and hadronic jets from the W -bosons are shown in 6.4
and 6.5.
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Figure 6.4: a,b and c parameters for b-jets.

Similarly for reconstructed jets from the hadronic W -decays
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Figure 6.5: a,b and c parameters for W -decay jets.

In the central region the parameters are, to a good approximation, distributed ac-
cording to a Gaussian. The values for the resolution of the b-jets are found to be

a = 0.15, b = 1.45, c = 1.45 (6.32)

and similarly for the hadronic jets from the W -bosons

a = 0.12, b = 1.57, c = 1.57 (6.33)

These values are used in the covariance matrices of the b-jets and the jets originating
from the W -bosons to be used on the full data set of reconstructed particles. The
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covariance matrices are determined to be

Vb =


0.15 0 0 0
0 1.45 0 0
0 0 1.45 0
0 0 0 dB

 VW =


0.12 0 0 0
0 1.57 0 0
0 0 1.57 0
0 0 0 dW

 (6.34)

The d-parameters refers to the mass resolution. This parameter is not used in the
fitting procedure, as the masses of jets are simply kept fixed. The covariance matrices
for both the b-jets as well as the hadronic jets from the W -bosons are assumed to be
diagonal, i.e. all matrix elements outside of the diagonal are 0. This assumes that all
measured jets are completely uncorrelated which is almost certainly not the case.

The following plots show the distribution of invariant mass of reconstructed top quarks
and W -bosons found by the unique angular matching as described above. In this first
set of plots, no constraints are placed. In the second set of plots, simple energy and
momentum constraints are placed, i.e. the total event must fulfill

∑
E
px
py
pz

 =


365
0
0
0

GeV (6.35)
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(a) Reconstructed top quarks.
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(b) Reconstructed W bosons.

Figure 6.6: Distribution of invariant mass of the reconstructed top quarks (left) and
the reconstructed W bosons (right) with Gaussian fit to the peak.
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(a) Reconstructed top quarks.
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(b) Reconstructed W bosons.

Figure 6.7: Distribution of invariant mass of the reconstructed top quarks (left) and
the reconstructed W bosons (right) with four-vector constraints, with a Gaussian fit
to the peak.

From the Gaussian fit it can be seen that imposing energy and momentum con-
straints decreases the standard deviation and thereby improves the resolution of the
reconstructed top masses. Simply using the values obtained from the Gaussian fits
would overestimate the spread. Secondly, since the W -bosons are the decay products
of the top quarks, it means they inherit part of their spread, and as such their resolu-
tions are correlated. In order to reflect the width of the mass distribution at the quark
level, the choice was made to use the decay width of the top quark and the W -boson
as the Gaussian width parameter in the fit. The values used are Γt = 1.42GeV and
ΓW = 2.1GeV [13].

The objective of the kinematic fit is to correctly determine which measured jets
correspond to the two top quarks as well as the two b-quarks and the two W -bosons,
when recombined. In the case of the fully hadronic decay this is an immensely com-
putationally demanding task. The combinatorics of the final state are as follows:
Of the six jets, two jets combine to make the first W , another two jets combine to
make up the second W , and the remaining two jets are b-jets. Combinatorically, this
is equivalent to choosing four objects from a pile of six objects, and then arranging
them into two piles with each pile having two items, and then assigning the remaining
two objects and arranging them into a pile each. The number of ways to choose four
objects from six is

C(6, 4) =
6!

(4! · (6− 4)!)
= 15 (6.36)

In total there are 15 ways to choose which objects go into the piles of size two. The
number of ways to arrange the four chosen objects is given by

C(4, 2) =
4!

2! · (4− 2)!
= 6 (6.37)

In total there 15·6 = 90 ways to arrange six objects into four piles of two, and two piles
of one. This means the kinematic fit has to iterate through 90 combinations in each
event. At each iteration, the χ2 is calculated, and the combinations with the lowest
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χ2 is kept. The kinematic fit returns the combination of jets that make up the twoW -
bosons, the two b-quarks, and which combination of these that make up the top pairs
along with the corrections to their momenta found by the fit. Ideally, the b-tagged
jets should be used which would dramatically reduce the number of combinations for
the fit to iterate through. This in turn would optimize the computational aspect,
allowing for the analysis of many more events in a fraction of the time. This turned
out to be unpractical in this analysis, due in part to the efficiency of the b-tagging
combined with the false positive rate. Not only does a large fraction of the events
only have one b-tagged jet, a fraction of the events have three b-tagged jets. As a
consequence, it was necessary to iterate through all 90 combinations regardless. More
sophisticated techniques could be envisioned, where the b-tags could be used as the
starting point in order to speed up the computational process. For this project, no
such strategies were explored, and all 90 combinations were systemically checked for
all events regardless of any b-tags. The application of the kinematic fit improves
the resolution of the momenta and energy as well as the masses of the reconstructed
t-quarks and W -bosons as seen in the figures from 6.8 to 6.13.
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Figure 6.8: Total measured px before and after kinematic fit.
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Figure 6.9: Total measured py before and after kinematic fit.
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Figure 6.10: Total measured pz before and after kinematic fit.
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Figure 6.11: Total measured energy before and after kinematic fit.
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Figure 6.12: Invariant mass of reconstructed of t-quarks before and after kinematic
fit.
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Figure 6.13: Invariant mass of reconstructed of W -bosons before and after kinematic
fit.
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7 Analysis

This chapter presents the procedure used in this project of extracting the sensitivities
to the individual anomalous couplings and the results obtained.

7.1 Observables

There are many approaches to investigate the effects of the anomalous couplings.
In this thesis, the effects are studied by investigating angular distributions of the
reconstructed top quarks and its decay products.

7.1.1 Angular distributions

The effects of the anomalous couplings are investigated by studying how they effect
the angular distributions. The first angle of interest is the angle between the electron
beam and the top quark

cos(θet) =
pe · pt

|pe||pt|
(7.1)

where pe and pt are the 3-momenta of the electron beam and the reconstructed top
quark respectively, and |pe| and |pt| are the length of the respective vectors. The
next angles of interest is the angle between the reconstructed top quark and its decay
products in the reference frame of the top quark. This angle can be calculated by
a Lorentz boost of the laboratory frame to the frame of the top quark. The angle
is divided into the component parallel to the flight direction and the component
perpendicular to the flight direction. The component parallel to the flight direction
is given by

pt∥ = (pt · pd)
pt

|p|2
(7.2)

The perpendicular component of the angle is then simply

pt⊥ = pt − pt∥ (7.3)

The perpendicular component of the angle is unaffected by the Lorentz boost. The
parallel component of the angle, in the frame of the top, is given by

p∗
t∥
= γ(pt∥ − βE) (7.4)

where the star denotes the center of mass frame, and γ is the Lorentz factor. The
polar angle between the top quark and its decay products can now be found from

cos(θ∗td) =
|p∗

t∥
|√

(p∗
t∥
)2 + (pt⊥)

2
(7.5)

Defining the flight direction of the top quark as the z-axis, the x-axis is defined as
the cross product of the new z-axis and the axis defined by the beam direction x. To
complete the right-handed coordinate system, the y-axis is given by the cross product
of the newly defined z and x axes. The last angle of interest is the azimuthal angle,
which is given by

ϕ∗ = arctan
ŷ · pd

x̂ · pd

(7.6)
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The considered angles are summarized below.

tt̄ t→ bW
cos(θet) cos(θtb) ϕ∗

tb

Table 7.1: The three angles considered in the analysis.

The kinematic fit cannot distinguish the reconstructed t from the t̄. Therefore the
angular distributions will include both t and t̄. In order to compensate the histograms
are filled with a weight of 1/2 as to not overestimate the statistical weight of each
event. The same is true for the b-quarks and the W -bosons. In the case of semi-
leptonic as well as fully-leptonic tt̄ events, the charge of the lepton(s) can be used in
order to determine the charge of the t and in turn distinguish between t and t̄. The
absence of leptons makes the task for fully hadronic decays much more challenging.
It could be envisioned to use the charge of potential leptons from the b decay as a
possible way to determine the charge of the top. This was however not explored in
this analysis.

Figure 7.1: Illustration of the angles of interest. From [20].

7.2 Extraction of anomalous couplings

As described in section 3.2, the effective matrix element has a quadratic dependence on
an individual anomalous couplings. As such the event samples with α = ±1 together
with the Standard Model event sample with α = 0 make up three points that form
a parabola. The angular distributions can then be parameterized in terms of the
parameters A, B and C that describe the polynomial. The angular distributions in
terms of these parameters can be written as

f(α = 1) = Aα2 +Bα + C (7.7)

f(α = −1) = Aα2 −Bα + C (7.8)

f(α = 0) = C (7.9)
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The parameters A,B and C can be determined from this set of equations

A =
f(α = 1) + f(α = −1)

2α2
− f(α = 0)

α2
(7.10)

B =
f(α = 1)− f(α = −1)

2α
(7.11)

C = f(α = 0) (7.12)

A fit is then performed to the angular distributions parameterized by A, B and C. A
fit model can be introduced by

f(x) = Ax2 +Bx+ f(SM) + f(Background) (7.13)

where the parameter C has been identified as f(SM) and background has been included
as well. Confidence intervals can then be determined for each anomalous coupling by
determining a χ2 value

χ2 =
n∑

i=1

(yi − f(x, α))2

σ2
yi
+ σ2

f(xi,a)

(7.14)

where the term in the numerator is the difference between the observed value in
the angular distribution and the value obtained in the fit model. The term in the
denominator is the sum of the uncertainty from the square root of the bin and the
fit model uncertainty from the number of simulated events. Ideally, the number of
simulated events should far outweigh the number of expected events in order to reduce
the error 3. The sum is for each bin in the histogram. The Standard Model event
sample is used to act as real data. By construction, the χ2 is 0 for α = 0, i.e. Standard
Model event sample. The 1σ confidence intervals are the upper and lower value of α
where χ2 = 1. As seen from 5.2, the couplings affect the cross section of the process.
Both the cross section and the angular distributions contributes to to the sensitivity
of the coupling. This information is included in the fit of the angular distributions
by normalizing the individual distributions according to the respective cross section
of the coupling. This is done for all angular distributions for each of the anomalous
couplings separately.

7.3 Results

After applying the fit model described in eq 7.13 for the seven couplings, sensitivities
are determined for all couplings for each angle. Based on the χ2 fit, the best sensitivity
is found from the cos(θet) distribution of the δdγV coupling.

3Due to computational and time constraints, this is not the case for this analysis. The number
of simulated events is similar to the number of events used and only surpasses by a small fraction.
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Figure 7.2: Angular distribution of cos(θet) and χ
2 distribution of coupling δdγV .

The coupling with the least sensitivity is found from the fit to be the distribution
of cos(θet) of the coupling δVR
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Figure 7.3: Angular distribution of cos(θet) and χ
2 distribution of coupling δVR.

The table displaying all confidence intervals found for each coupling can be found
in 7.2
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Coupling cos(θet) cos(θtb) ϕtb

δVL
-0.0743761 -0.0741014 -0.0743729
0.0743761 0.0741014 0.0743729

δVR
-0.324585 -0.25623 -0.264947
0.27315 0.2862 0.351174

δgL
-0.187236 -0.169006 -0.182452
0.181414 0.174438 0.190001

δgR
-0.00124483 -0.0012413 -0.00124739
0.00125749 0.00125387 0.00126008

δdγV
-0.000360617 -0.000360208 -0.000361308
0.000361157 0.000360743 0.000361853

δdγA
-0.0650069 -0.0668985 -0.0678436
0.0692615 0.0717254 0.0714862

δXR
tt

-0.00539516 -0.00541099 -0.00540035
0.00533708 0.00535208 0.00534204

Table 7.2: Confidence intervals for all couplings for the three angles studied.

The couplings with the highest sensitivity are also the couplings where the total
cross section are affected the most. Since both information about the angular distri-
butions as well as the information about the total cross section is included in the fit,
it is expected that this is the case. Similarly, the coupling with the lowest sensitivity,
δVR, there is no effect on the total cross section.
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7.4 Discussion

As is always the case with projects that study the details of a subject matter, a set of
choices must be made in regards to the analysis. These choices will inevitable affect
and bias the results that are obtained. Whenever possible, an effort was applied in
order to justify these choices. However, even justified choices are not guaranteed to be
optimal. The use of angular distributions is a relatively simple set of observables that
can be used to study the effects of anomalous couplings and determine the sensitivities.
It is however not guaranteed to be the set of observables most sensitive to BSM effects.
A more optimal strategy to search for BSM effects can be employed by constructing
so called optimal observables [21], which by construction are particularly sensitive to
BSM effects. The method of optimal observables works by projecting the kinematic
information which is most sensitive to a particular parameter onto a single variable.
Optimal observables can be defined in terms of the differential cross section

dσ

dΩ
= S0(Ω) +

∑
i

S1,i(Ω)Pi +
∑
ij

S2,ij(Ω)PiPj (7.15)

where Ω is the full set of reconstructed kinematic variables e.g. different scattering
angles. The idea is then to measure the distribution of the function

Oi =
S1,i(Ω)

S0(Ω)
(7.16)

where Oi is the optimal observable for coupling i. The method of optimal observables
requires the full expression of the effective matrix element as defined in 3.11. The
analytical calculation of matrix elements is made possible with the software package
FeynCalc [22]. FeynCalc is a Mathematica [23] package designed for quantum field
theory calculations, particularly useful for Dirac algebra, tensor reduction, and Feyn-
man diagram calculations. The FeynCalc package also includes FeynArts, which is
primarily used for the generation and visualization of Feynman diagrams and am-
plitudes. Lastly, FeynRules [24] is a Mathematica package used to calculate the
Feynman rules for a given Lagrangian, which can then be exported to other codes.
The Lagrangian of the model is specified within FeynRules. It is essential to include
all the necessary fields, parameters, and their respective properties. Once the model
is defined correctly, FeynRules can calculate the Feynman rules. These rules are then
exported in a format that can be used with FeynArts. With the Feynman rules de-
fined, FeynArts is utilized in order to generate the Feynman diagrams corresponding
to the process. FeynArts offers the flexibility of generating diagrams based on a set
of initial and final states defined by the user. Following the diagram generation, Fey-
nArts calculates the corresponding amplitudes for each diagram, using the Feynman
rules imported from FeynRules. The amplitudes obtained from FeynArts serve as
input to FeynCalc. Here, the amplitudes are further simplified using various built-in
functions, such as Dirac algebra simplification, tensor reduction, and loop integration.
The square of the amplitude, which is proportional to the probability of the process,
is then calculated. This serves as the effective matrix element for the process. This
was attempted for the fully hadronic 2 → 6 tt̄ process. The relatively large amount
of particles in the final state made the computation infeasible and was ultimately
aborted and the analysis of the angular distributions was performed. In future works,
it is possible that the full 2 → 6 calculation using the above-mentioned tools can
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be achieved with appropriate simplifications that reduce the computational power
needed.

7.4.1 Comparing to previous work

The analysis of studying the effects of anomalous couplings by investigating angular
distributions done in this thesis overlaps to a large extent with the analysis done in [11],
where confidence intervals were determined based on angular distributions of semi-
leptonic tt̄ pair. The confidence intervals obtained in [11] can be seen in 7.4, where the
naming convention is such that ta ttA is δdγA, tv ttA is δdγV , vr ttZ is δXR

tt , tl tbW Re
is δgL, tr tbW Re is δgR, vl tbW Re is δVL and vr tbW Re is δVR. In general, the
determined sensitivities are in relative agreement. In both cases, the couplings with
the highest sensitivities are the couplings where the total cross section is affected the
most. The confidence intervals found in this thesis do however, show slightly higher
sensitivities. There are a plethora of factors that influence this discrepancy and it is
therefore very difficult to know exactly why they differ. In general, the semi-leptonic
decay channel has better resolution due the excellent reconstruction of the lepton.
However, it also has a slightly lower branching ratio and therefore slightly worse
statistics. Additional factors influencing the discrepancy include the event selection
as well as the kinematic fit. The kinematic fit is implemented differently with semi-
leptonic decays due to the neutrino. Neutrinos are not detected in the detector and
are instead inferred from the missing energy, which introduces free parameters in the
kinematic fit that are not present with fully hadronic decays where all final state
particles are present in the detector.
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Figure 7.4: Confidence intervals found in [11].
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8 Conclusion

This thesis focused on exploring the sensitivity to anomalous top couplings in effective
field theory, using angular distributions of tt̄ pairs in the fully hadronic decay channel.

An event selection process to remove background was implemented with the ROOT
software package TMVA. Subsequently, a kinematic fit with constraints was performed
in order to reconstruct tt̄ pairs as well as determine corrections to measured hadronic
jets. The 1σ confidence intervals were determined for each coupling individually by
a χ2 fit to angular distributions based on three different angles. These findings show
the potential of the fully hadronic channel for probing new physics.

A comparison to similar work was performed, comparing the sensitivities deter-
mined in this thesis to the sensitives determined from semi-leptonic tt̄ events. The
comparison showed a relatively high degree of agreement, however with most of the
couplings having a slightly higher degree of sensitivity in this thesis. Possible reasons
for this discrepancy were discussed.

Although this work has successfully determined sensitivities to anomalous cou-
plings, there are still many avenues to be explored. For instance, an analysis com-
bining the different decay modes of the tt̄ in order to have a larger event sample and
therefore better statistics could be envisioned to improve the confidence intervals of
the couplings. As discussed in 7.4, the confidence intervals could also be improved
upon by investigating optimal observables, rather than the simple one-dimensional
angular distributions that were studied in this thesis.

In conclusion, FCC-ee has the potential of finding small deviations from the Stan-
dard Model that could possibly reveal new physics beyond the Standard Model by
investigating top quark pairs.
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A Event Selection Figures
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(a) Signal and background prior to cuts.

100 120 140 160 180 200 220 240

Number of reconstructed particles

0

2000

4000

6000

8000

10000

E
ve

nt
s

tt
qq

-
W+W

bb
-µ+µ

-τ+τ
ZZ
ZH
ZWW
Single top
ZZZ

(b) Selected events after applying cuts.

Figure A.1: Distribution of the number of reconstructed particles before and after
applying cuts.
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(a) Signal and background prior to cuts.
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(b) Selected events after applying cuts.

Figure A.2: Distribution of invariant mass before and after applying cuts.

51



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Thrust

0

500

1000

1500

2000

2500

3000

310×

E
ve

nt
s

tt
qq

-
W+W

bb
-µ+µ

-τ+τ
ZZ
ZH
ZWW
Single top
ZZZ

(a) Signal and background prior to cuts.
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(b) Selected events after applying cuts.

Figure A.3: Distribution of thrust before and after applying cuts.
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(a) Signal and background prior to cuts.
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(b) Selected events after applying cuts.

Figure A.4: Distribution of aplanarity before and after applying cuts.
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(a) Signal and background prior to cuts.
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(b) Selected events after applying cuts.

Figure A.5: Distribution of missing energy before and after applying cuts.
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(a) Signal and background prior to cuts.

0 10 20 30 40 50 60 70 80 90 100

Missing momentum [GeV]

0

5000

10000

15000

20000

25000

30000

E
ve

nt
s

tt
qq

-
W+W

bb
-µ+µ

-τ+τ
ZZ
ZH
ZWW
Single top
ZZZ

(b) Selected events after applying cuts.

Figure A.6: Distribution of missing momentum before and after applying cuts.
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(a) Signal and background prior to cuts.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

6→ij 7d

0

2000

4000

6000

8000

10000

12000

14000

16000

E
ve

nt
s

tt
qq

-
W+W

bb
-µ+µ

-τ+τ
ZZ
ZH
ZWW
Single top
ZZZ

(b) Selected events after applying cuts.

Figure A.7: Distribution of minimum distance measure dij 7 → 6 before and after
applying cuts.
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Figure A.8: Distribution of minimum distance measure dij 6 → 5 before and after
applying cuts.
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B Results Figures
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Figure B.1: Angular distribution of cos(θet) and χ
2 distribution of coupling δVL.
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Figure B.2: Angular distribution of cos(θtb) and χ
2 distribution of coupling δVL.
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Figure B.3: Angular distribution of ϕtb and χ
2 distribution of coupling δVL.
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Figure B.4: Angular distribution of cos(θet) and χ
2 distribution of coupling δVR.
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Figure B.5: Angular distribution of cos(θtb) and χ
2 distribution of coupling δVR.
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Figure B.6: Angular distribution of ϕtb and χ
2 distribution of coupling δVR.
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Figure B.7: Angular distribution of cos(θet) and χ
2 distribution of coupling δgL.
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Figure B.8: Angular distribution of cos(θtb) and χ
2 distribution of coupling δgL.
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Figure B.9: Angular distribution of ϕtb and χ
2 distribution of coupling δgL.
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Figure B.10: Angular distribution of cos(θet) and χ
2 distribution of coupling δgR.
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Figure B.11: Angular distribution of cos(θtb) and χ
2 distribution of coupling δgR.
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Figure B.12: Angular distribution of ϕtb and χ
2 distribution of coupling δgR.
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Figure B.13: Angular distribution of cos(θet) and χ
2 distribution of coupling δdγV .

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
)tbθCos(

76000

78000

80000

82000

84000

86000

88000

90000

92000

94000

96000

E
ve

nt
s

+backgroundtSM t

+backgroundtSM t

+Cα+B*2αA*

+backgroundtSM t

(a) Angular distribution with fit

0.6− 0.4− 0.2− 0 0.2 0.4 0.6

3−10×

α

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2 χ ∆

2χ ∆ 2χ ∆

(b) χ2 distribution and confidence interval

Figure B.14: Angular distribution of cos(θtb) and χ
2 distribution of coupling δdγV .
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Figure B.15: Angular distribution of ϕtb and χ
2 distribution of coupling δdγV .
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Figure B.16: Angular distribution of cos(θet) and χ
2 distribution of coupling δdγA.
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Figure B.17: Angular distribution of cos(θtb) and χ
2 distribution of coupling δdγA.
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Figure B.18: Angular distribution of ϕtb and χ
2 distribution of coupling δdγA.
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Figure B.19: Angular distribution of cos(θet) and χ
2 distribution of coupling δXR

tt .

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
)tbθCos(

76000

78000

80000

82000

84000

86000

88000

90000

92000

94000

96000

E
ve

nt
s

+backgroundtSM t

+backgroundtSM t

+Cα+B*2αA*

+backgroundtSM t

(a) Angular distribution with fit

0.008− 0.006− 0.004− 0.002− 0 0.0020.0040.0060.008
α

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2 χ ∆

2χ ∆ 2χ ∆

(b) χ2 distribution and confidence interval

Figure B.20: Angular distribution of cos(θtb) and χ
2 distribution of coupling δXR
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Figure B.21: Angular distribution of ϕtb and χ
2 distribution of coupling δXR
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