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Abstract

In this thesis I join spectral element modelling of seismic waves with the adjoint

method to try and reproduce discontinuous boundary layers from seismic signals.

The adjoint method is a highly efficient way of generating model gradients to be

used in steepest descent type inversion algorithms. A series of simple models are

made to demonstrate how the adjoint method can be used to model sharp bound-

aries, such as faults, from seismic data. The results show that the method is able

to locate and horizontally delimit sharp contrasts not accounted for by the prior

model. The method is also tested on a more complex model, based on the seis-

mic survey of North Viking Graben [Keys et al., 1998], where the success of the

method does in part rely upon good prior model estimations.

Spectral element modelling has the advantage of being able to accurately hon-

our complex model geometry with a well designed mesh. Based on a seismic flat-

tening algorithm I present a simple approach to generating a finite element mesh to

be used with the spectral element software SPECFEM2D [Komatitsch et al., 2012].
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1 Introduction

The Earth is full of waves, excited by earthquakes, oceans, atmosphere or man-made

sources. These waves travel trough the Earth where they encounter obstacles that send

echos back to where the wave originated, just like when you hear you own echo in a

large room. These echos, or reflections as they are called, can carry information about

the physical properties of the Earth. The ultimate goal of seismology is to use these

reflections to infer information about what is hiding underneath our feet, and figure

out what the Earth looks like on the inside. To answer this question it is important to

understand the physics of these waves. From the theory of continuum mechanics it is

possible to derive the equations that govern the waves propagation though the Earth.

It is however no easy task to find solutions to these equations that can help explain the

reflections seen on the seismograms. It is therefor necessary to seek numerical solutions,

i.e. simulating the wave propagation, also called full waveform modelling. However, it

requires huge amounts of computing power to do realistic wave simulations, and for that

reason full waveformmodelling is a fairly new disciplinewithin theworld of seismology.

Because there in the past 20 years or so has beenmade great advances in the available

computing power, it is now possible to run simple full waveform problems on laptops.

Simple 2D problems can easily run on modern laptops, but even a realistic 2D seismic

survey with hundreds of source and receiver configurations would require unhuman pa-

tience to simulate accurately. It is therefor common to use large computer clusters when

a full 3D problem, like in earthquake seismology, is modelled.

There exist different ways of doing full waveform modelling, but the two most com-

mon in seismology is the finite difference method and the spectral element method. In

this thesis I will present the spectral element method, both the theory behind it and some

of the more practical aspects, such as generating a suitable mesh grid. I will also walk

though the adjoint method [Tarantola, A. 1984], and how to use it with full waveform

modelling to reproduce sharp contrasts and discontinuous reflector geometry. A number
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of examples will be given, as well as how the adjoint method handles the introduction of

random uncorrelated noise. Lastly, I use the adjoint method on a semi-realistic synthetic

problem, where model geometry, velocity logs and source-receiver setups are taken from

a real seismic survey of the Viking Graben in the North Sea. The goal is to see the adjoint

methods ability to find fault like structures using this more complex setup.

2 Full Waveform Modelling

In this section I will discuss full waveform modelling of seismic waves using spectral

element method. In short, full waveform modelling is simulating waves propagating

throughout a modelling domain with a predefined set of model parameters like p- and

s-wave velocities and density. Analytical solutions to the wave equation is limited, and

usually involve highly idealised systems with little root in reality, but can be useful to

test the accuracy of modelling algorithms. Numerical solutions to the wave equation is

much more flexible with regards to the complexity of the systems, and is mostly limited

by the computer power available. Two numerical methods frequently used in seismic

wave propagation are finite difference method and spectral element method. Finite dif-

ference has the advantage of being easy to understand and implement. One of the prob-

lems with finite difference methods is its limitations in dealing with complex geometry.

Modelling a seismic wave across a sloping boundary requires a fine grid to accurately

represent such boundaries, because the step like structure of the approximated boundary

would otherwise cause scattering. In the spectral element method such boundaries can

be modelled by creating a mesh grid that accurately represent the geometry present in the

geology, without increasing the grid resolution. Spectral element also has the advantage

of being able to have varying grid resolution throughout the modelling domain, depend-

ing on the model parameters, like the p- and s-wave velocities [Fichtner, A. 2011]. In

the following I will go through some of the theory behind the spectral element method.

August 2021 Niels Fabrin Nymand
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2.1 Spectral Element

As mentioned above, both finite difference and spectral element has its advantages and

disadvantages, but for this thesis I have chosen to use spectral element for modelling. In

the following I will give a brief description of the spectral element method.

The spectral element method is a subclass of the finite element method, with prop-

erties that makes it suited for wave propagation. In one dimension the derivation is as

follows.

Starting with the 1D scalar wave equation

𝜌(𝑥)𝑢̈(𝑥, 𝑡) − 𝜕
𝜕𝑥[𝜇(𝑥) 𝜕

𝜕𝑥𝑢(𝑥, 𝑡)] = 𝑓(𝑥, 𝑡) (2.1)

where 𝜌 is the density, 𝑢 is the displacement, 𝜇 is the elastic parameter, and 𝑓 is external

forces (a source term). The model is limited in both time and space, 𝑥 ∈ 𝐺 = [0, 𝐿] and
𝑡 ∈ [0, 𝑇 ], where 𝐿 is the length of the modelling domain and 𝑇 is the modelled time.

The displacement field is subject to the Neumann boundary conditions

𝜕
𝜕𝑥𝑢(𝑥, 𝑡)|𝑥=0 = 𝜕

𝜕𝑥𝑢(𝑥, 𝑡)|𝑥=𝐿 = 01 (2.2)

and the initial conditions

𝑢(𝑥, 𝑡)|𝑡=0 = 𝑢̇(𝑥, 𝑡)|𝑡=0 = 0 (2.3)

Equations (2.1)-(2.3) is commonly known as the strong form of the wave equation, and

in finite difference this would be all we need. However, in finite element the weak

form is used. To derive the weak form, equation 2.1 is multiplied by an arbitrary, time
1Note that 𝜕

𝜕𝑥 𝑢(𝑥, 𝑡) is the strain, which is proportional to the stress. It is therefor also refered to
as the stress free boundary condition, and in 2D and 3D it would be 𝐧 ⋅ 𝝈|𝐱∈𝜕𝐺 = 0, where 𝐧 is the
direction normal to the boundary 𝜕𝐺 and 𝝈 is the stress tensor.
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independent test function 𝑤, and is then integrated over space,

∫
𝐺

𝜌 𝑤 𝑢̈ 𝑑𝑥 − ∫
𝐺

𝑤 𝜕
𝜕𝑥 (𝜇 𝜕

𝜕𝑥𝑢) 𝑑𝑥 = ∫
𝐺

𝑤 𝑓 𝑑𝑥 (2.4)

Using integration by parts on the second term on the left-hand side,

∫
𝐺

𝑤 𝜕
𝜕𝑥 (𝜇 𝜕

𝜕𝑥𝑢) 𝑑𝑥 =
��������*0
[𝑤 𝜇 𝜕

𝜕𝑥𝑢]
𝐺

− ∫
𝐺

𝜕
𝜕𝑥𝑤 𝜇 𝜕

𝜕𝑥𝑢 𝑑𝑥

where the boundary condition 2.2 is used. The weak form of the wave equation can now

be written as,

∫
𝐺

𝜌 𝑤 𝑢̈ 𝑑𝑥 + ∫
𝐺

𝜇 𝜕
𝜕𝑥𝑤 𝜕

𝜕𝑥𝑢 𝑑𝑥 = ∫
𝐺

𝑤 𝑓 𝑑𝑥 (2.5)

with the initial conditions,

∫
𝐺

𝜌 𝑤 𝑢|𝑡=0 𝑑𝑥 = ∫
𝐺

𝜌 𝑤 𝑢̇|𝑡=0 𝑑𝑥 = 0 (2.6)

One of the advantages of the weak form, especially when modelling surface waves,

is the implicitly satisfied boundary conditions 2.2.

The first step in solving equations 2.5 and 2.6 is to lower our ambitions, and instead

look for solutions to an approximate displacement field 𝑢,

𝑢(𝑥, 𝑡) ≈ 𝑢(𝑥, 𝑡) =
𝑛

∑
𝑖=1

𝑢𝑖(𝑡)𝜓𝑖(𝑥) (2.7)

where 𝜓𝑖 are space-dependent basis functions and 𝑢𝑖 are time-dependent expansion co-

efficients. The success of this approximation depend strongly on the choice of basis

functions 𝜓𝑖. The approximate weak form can then be written as,

∫
𝐺

𝜌 𝜓𝑗 𝑢̈ 𝑑𝑥 + ∫
𝐺

𝜇 𝜕
𝜕𝑥𝜓𝑗

𝜕
𝜕𝑥𝑢 𝑑𝑥 = ∫

𝐺
𝜓𝑗 𝑓 𝑑𝑥 (2.8)
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where 𝑤 = 𝜓𝑗. Inserting 𝑢 to get the weak formulation for 𝑢𝑖(𝑡),

𝑛
∑
𝑖=1

[𝑢̈𝑖(𝑡)

𝑀𝑗𝑖

⏞⏞⏞⏞⏞⏞⏞⏞⏞
∫

𝐺
𝜌(𝑥) 𝜓𝑗(𝑥) 𝜓𝑖(𝑥) 𝑑𝑥 ]

+
𝑛

∑
𝑖=1

[𝑢𝑖(𝑡)

𝐾𝑗𝑖

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∫

𝐺
𝜇(𝑥) 𝜕

𝜕𝑥𝜓𝑗(𝑥) 𝜕
𝜕𝑥𝜓𝑖(𝑥) 𝑑𝑥 ] =

𝑓𝑗(𝑥,𝑡)
⏞⏞⏞⏞⏞⏞⏞⏞⏞
∫

𝐺
𝜓𝑗(𝑥) 𝑓(𝑥, 𝑡) 𝑑𝑥

(2.9)

for all 𝑗 = 1, … , 𝑛. This equation can be written as a matrix equation by defining

the vectors 𝐮(𝑡) = [𝑢1(𝑡), … , 𝑢𝑛(𝑡)]𝑇 , 𝐟 (𝑡) = [𝑓1(𝑡), … , 𝑓𝑛(𝑡)]𝑇 and the mass matrix

𝐌 = {𝑀𝑗𝑖} and stiffness matrix 𝐊 = {𝐾𝑗𝑖}.

𝐌 ⋅ 𝐮̈(𝑡) + 𝐊 ⋅ 𝐮(𝑡) = 𝐟(𝑡) (2.10)

It would require very complex basis functions to accurately model the entire wave-

field as described in equation 2.10. The next step is therefor to once more lower our

ambitions, and divide the domain 𝐺 into 𝑛𝑒 subdomains 𝐺𝑒, each with a local set of

basis functions 𝜓𝑒
𝑖 (𝑖 = 1, … , 𝑁 + 1). These subdomains is also called elements. The

displacement field within each element can then be approximated by,

𝑢(𝑥, 𝑡)|𝑥∈𝐺𝑒
=

𝑁+1
∑
𝑖=1

𝑢𝑒
𝑖 (𝑡)𝜓𝑒

𝑖 (𝑥) (2.11)

Equation 2.9 now holds for each element,

𝑁+1
∑
𝑖=1

[𝑢̈𝑒
𝑖 (𝑡) ∫

𝐺𝑒

𝜌(𝑥) 𝜓𝑒
𝑗(𝑥) 𝜓𝑒

𝑖 (𝑥) 𝑑𝑥]

+
𝑁+1
∑
𝑖=1

[𝑢𝑒
𝑖 (𝑡) ∫

𝐺𝑒

𝜇(𝑥) 𝜕
𝜕𝑥𝜓𝑒

𝑗(𝑥) 𝜕
𝜕𝑥𝜓𝑒

𝑖 (𝑥) 𝑑𝑥] = ∫
𝐺𝑒

𝜓𝑒
𝑗(𝑥) 𝑓(𝑥, 𝑡) 𝑑𝑥

(2.12)
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or on matrix form,

𝐌𝑒 ⋅ 𝐮̈𝑒(𝑡) + 𝐊𝑒 ⋅ 𝐮𝑒(𝑡) = 𝐟 𝑒(𝑡) (2.13)

To simplify the integrals that constitutes 𝐌𝑒,𝐊𝑒 and 𝐟𝑒 the element domains 𝐺𝑒 are

mapped onto a reference interval [−1, 1] via an element transformations 𝐹𝑒,

𝐹𝑒 ∶ [−1, 1] → 𝐺𝑒,

𝑥 = 𝐹𝑒(𝛾) = ℎ𝑒
𝛾 + 1

2 + 𝑥𝑒,

𝛾 = 𝛾(𝑥) = 𝐹 −1
𝑒 (𝑥) = 2𝑥 − 𝑥𝑒

ℎ𝑒
− 1

(2.14)

where ℎ𝑒 is the width of the e’th element and 𝑥𝑒 is the position of the left boundary of

the e’th element.

Now we have arrived at the interesting part, what basis functions should we use?

What differentiates spectral element from other finite element schemes, is the choice

of 𝑁 + 1 Lagrange polynomials of degree 𝑁 as basis functions with Gauss-Lobatto-

Legendre points (GLL points) as collocation points,

𝜓𝑒
𝑖 → ℓ(𝑁)

𝑖 (𝛾) =
𝑁+1
∏
𝑗≠𝑖

𝛾 − 𝛾𝑗
𝛾𝑖 − 𝛾𝑗

, 𝑖, 𝑗 = 1, 2, … , 𝑁 + 1 (2.15)

where 𝛾𝑖 are fixed points in the reference interval [−1, 1] called collocation points, which
in this case is GLL points.

There are a few good reason for this exact choice of basis functions and collocation

points that I will not go into detail with here, see [Fichtner, A. 2011] and [Igle, H. 2017].

However, one of the great benefits, from a computational perspective, is the fact that

the mass matrix become diagonal. This property comes from the orthogonality of the
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Lagrange polynomials,

ℓ(𝑁)
𝑖 (𝛾𝑗) =

𝑁+1
∏
𝑗≠𝑖

𝛾𝑗 − 𝛾𝑗
𝛾𝑖 − 𝛾𝑗

= 𝛿𝑖𝑗 (2.16)

where 𝛿𝑖𝑗 is the Kronecker symbol.

Combining the choice of basis functions and the element transformation lead to the

following equation,

.

𝑁+1
∑
𝑖=1

𝑢̈𝑒
𝑖 (𝑡) ∫

1

−1
𝜌′(𝛾)ℓ(𝑁)

𝑗 (𝛾)ℓ(𝑁)
𝑖 (𝛾)𝑑𝑥

𝑑𝛾 𝑑𝛾

+
𝑁+1
∑
𝑖=1

𝑢𝑒
𝑖 (𝑡) ∫

1

−1
𝜇′(𝛾) ( 𝜕

𝜕𝛾 ℓ(𝑁)
𝑗 (𝛾)) ( 𝜕

𝜕𝛾 ℓ(𝑁)
𝑖 (𝛾)) (𝑑𝛾

𝑑𝑥)
2 𝑑𝑥

𝑑𝛾 𝑑𝛾

= ∫
1

−1
ℓ(𝑁)

𝑗 (𝛾)𝑓 ′(𝛾, 𝑡)𝑑𝑥
𝑑𝛾 𝑑𝛾

(2.17)

where 𝜌′, 𝜇′ and ′ are the transformed 𝜌, 𝜇 and 𝑓 . A benefit of using the GLL points is

that it makes it possible to apply the GLL quadrature formulas to accurately approximate

the integrals in equation 2.17. The integrals can be exchangedwith a weighted sum of the

integrands evaluated at the GLL points. If 𝛾𝑘 is a GLL point and 𝜔𝑘 is the corresponding

integration weight, equation 2.17 can then be approximated as,

𝑁+1
∑
𝑖=1

𝑢̈𝑒
𝑖 (𝑡)

𝑁+1
∑
𝑘=1

𝜔𝑘𝜌′(𝛾)ℓ(𝑁)
𝑗 (𝛾)ℓ(𝑁)

𝑖 (𝛾)𝑑𝑥
𝑑𝛾 ∣

𝛾=𝛾𝑘

+
𝑁+1
∑
𝑖=1

𝑢𝑒
𝑖 (𝑡)

𝑁+1
∑
𝑘=1

𝜔𝑘𝜇′(𝛾) ( 𝜕
𝜕𝛾 ℓ(𝑁)

𝑗 (𝛾)) ( 𝜕
𝜕𝛾 ℓ(𝑁)

𝑖 (𝛾)) (𝑑𝛾
𝑑𝑥)

2 𝑑𝑥
𝑑𝛾 ∣

𝛾=𝛾𝑘

=
𝑁+1
∑
𝑘=1

𝜔𝑘ℓ(𝑁)
𝑗 (𝛾)𝑓 ′(𝛾, 𝑡)𝑑𝑥

𝑑𝛾 ∣
𝛾=𝛾𝑘

(2.18)
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The orthogonality of the Lagrange polynomials comes into play in the first term as,

ℓ(𝑁)
𝑗 (𝛾)ℓ(𝑁)

𝑖 (𝛾)∣
𝛾=𝛾𝑘

= ℓ(𝑁)
𝑗 (𝛾𝑘)ℓ(𝑁)

𝑖 (𝛾𝑘) = 𝛿𝑗𝑘𝛿𝑖𝑘 = 𝛿𝑗𝑖

which results in the mass matrix being diagonal,

𝑀𝑒
𝑗𝑖 = 𝜔𝑗𝜌′(𝛾)𝑑𝑥

𝑑𝛾 𝛿𝑗𝑖∣
𝛾=𝛾𝑗

All that is missing now is to collect it all into a global set of equations that can be

solved for the total displacement field. Another ”small” step is to extent all above to 2D

and 3D using the full elastic wave equation [Fichtner, A. 2011].

2.2 Modelling software

2.2.1 SPECFEM2D

There exist different software packages that can handle seismic wave propagation using

spectral element method. In this thesis I have chosen to use the SPECFEM2D package

[Komatitsch et al., 2012]. SPECFEM2D is an open-source software package capable of

doing forward and adjoint elastic wave simulations using spectral element. The choice

landed on SPECFEM2D because it is a proven piece of software and with relatively good

documentation 2. SPECFEM2D is great for testing smaller problems that can easily be

run on a modern laptop, and can then be upscaled to the full 3D problem at a later time

using SPECFEM3D together with a more powerful computer.
2Documentation for open source software is usually quite sparse, especially when dealing with a niche

subject like seismic waveform modelling with spectral element method.
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2.3 Mesh generation

Subdividing the modelling domain into elements is called mesh generation, and is in

many ways, the most important and difficult part of the spectral element modelling pro-

cess. As mentioned above, a great advantage of spectral element is the flexibility with

regards to geometrical complexity. To fully exploit this feature requires a well designed

mesh. In section 3 I will present a semi automatic way of extracting information about

the geometry of an area based on a seismic profile. The idea is to use this information to

create a mesh that honour internal boundaries of the model domain. To help create the

mesh, another piece of software is used, Gmsh.

2.3.1 Gmsh

There exist many different mesh generating tools, such as CUBIT and Gmsh. Following

the path of open source I have chosen to use Gmsh [Geuzaine et al., 2009] for mesh gen-

eration. Gmsh has good documentation, is relatively easy to use, but most importantly

it has the ability to be used together with Python. The connection with Python allows

for a semi automatic mesh generation routine.

3 Seismic Flattening

Seismic flattening is the discipline of removing geological structures in a seismic image.

The goal is to find a transform that maps the curved reflectors of a seismic profile to flat

horizontal reflectors. It can be thought of as finding the transform that arranges the

internal layers after age, or as removing the effects of geodynamical processes.

There are more than one way of finding the flattening transform. The most obvious

would be to do a manual/automatic tracking of all the major horizons present in the

seismic profile, and then do an elastic transformation of the seismic traces mapping the

horizons to flat lines. This method will guarantee that the tracked horizons becomes
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completely flat, but everything inbetween may not. Tracking horizons manually can

also be a time consuming process, especially in the case of large 3D data sets, which

require experience to be done well.

Another way to attack the problem would be to view the seismic profile as an 2D/3D

image, and use techniques developed in image processing to preform the flattening. In

the following I follow the derivation in [Parks, D. 2010]. The goal is to find the trans-

formation that relate the flattened image 𝑔(𝑥, 𝜏) with the input image 𝑓(𝑥, 𝑡), where 𝜏
and 𝑡 are depth coordinates3. Note that the variable 𝜏 is constant along seismic events.

Each sample in the input image can be shifted up or down to create the flattened image.

Let 𝑠(𝑥, 𝜏) be the function describing these shifts. In figure 3.1 an example of such a
shift function is visualised.

From figure 3.1 it is easy to see that going from 𝑓 to 𝑔 can be done with the trans-

formation 𝑡(𝑥, 𝜏0) = 𝜏0 − 𝑠(𝑥, 𝜏0), or generally

𝑔(𝑥, 𝜏) = 𝑓(𝑥, 𝑡(𝑥, 𝜏)) (3.1)

where 𝑡(𝑥, 𝜏) = 𝜏 − 𝑠(𝑥, 𝜏) is the 2D mapping function relating the input image with

the flattened image.

A way of relating 𝑠 with the input image can be found by taking derivatives on both
sides of equation 3.1 with respect to 𝑥:

𝜕𝑔
𝜕𝑥 = 𝜕𝑓

𝜕𝑥 + 𝜕𝑓
𝜕𝑡

𝜕𝑡
𝜕𝑥

where 𝜕𝑔
𝜕𝑥 = 0 per definition of 𝑔, and 𝜕𝑡

𝜕𝑥 = − 𝜕𝑠
𝜕𝑥

0 = 𝜕𝑓
𝜕𝑥 − 𝜕𝑓

𝜕𝑡
𝜕𝑠
𝜕𝑥

3Here depth should be understood as the vertical axis of the image. It does not matter if this is a time
(e.g. measure in s) or depth (e.g. measured in m) axis
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Figure 3.1: Top figure shows an example of an event in 𝑓(𝑥, 𝑡) with the shift function 𝑠(𝑥, 𝜏) visualised
as arrows. Bottom figure show that same event in 𝑔(𝑥, 𝜏).

𝜕𝑓
𝜕𝑥
𝜕𝑓
𝜕𝑡

= 𝜕𝑠
𝜕𝑥 (3.2)

Equation 3.2 is a bit problematic for a few reasons. First, the image almost certainly

contains noise, which will cause noisy derivatives. Second, if 𝜕𝑓
𝜕𝑡 = 0 the fraction is

undefined. Third, since 𝑠 can be found by integrating both sides of equation 3.2, even
small errors in the derivatives can accumulate to large errors in 𝑠. A different approach

to calculating the derivatives is therefor needed, and such an approach could be the

structure tensor.

The structure tensor is used to find the direction of greatest change in a window

around every sample of the image, making it more robust towards noise. In a seismic

image the direction of greatest change is always normal to the events. If 𝐧 = [𝑛𝑥, 𝑛𝑡]𝑇

is normal to an event, then 𝑛𝑥 and 𝑛𝑡 would be proportional to
𝜕𝑓
𝜕𝑥 and 𝜕𝑓

𝜕𝑡 respectively.
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𝑝(𝑥, 𝑡) ≡ −
𝜕𝑓
𝜕𝑥
𝜕𝑓
𝜕𝑡

= −𝑛𝑥(𝑥, 𝑡)
𝑛𝑡(𝑥, 𝑡) (3.3)

Equation 3.2 can then be rewritten as,

𝑝(𝑥, 𝑡) = − 𝜕
𝜕𝑥𝑠(𝑥, 𝜏) (3.4)

3.1 Seismic flattening as an inverse problem

Equation 3.4 can be solved as a non linear inverse problem, where the non linearity is

introduced by the fact that the left side of the equation depend on 𝑡 and the right side
on 𝜏 . However by approximately linearizing equation 3.4, the shifts can be solved for
using a least-squares solution.

− 𝜕
𝜕𝑥𝑠{𝑖}(𝑥, 𝜏) = 𝑝(𝑥, 𝜏 − 𝑠{𝑖−1}(𝑥, 𝜏))

𝜖 𝜕
𝜕𝜏 𝑠{𝑖+1}(𝑥, 𝜏) = 0

(3.5)

Where the last equation in 3.5 is there to ensure that the vertical variation of 𝑠 stays
under control. However, another formulation could be to have a tolerance 𝑘 for the

maximum allowed vertical variation of 𝑠, | 𝜕
𝜕𝜏 𝑠| > 𝑘, instead of having the parameter

𝜖. The algorithm for solving equation 3.5 is outlined in Algorithm 1. The number of

iterations needed,𝑁𝑖𝑡𝑒𝑟, to obtain a flattened image depend on the problem. An example

of how the algorithm performs can be seen in figure 3.2. The black lines in figure 3.2g

show the inverse flattening transformation, i.e. horizontal lines that have underwent

the flattening process in reverse. These black lines representing the inverse flattening

transform can then be used to generate a mesh that honour the internal boundaries, given

that the vertical axis is units of depth and not time.
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input : Image 𝑓
output: Flattened image 𝑔
StructureTensor(image):
Takes an image as input and calculates the direction of greatest change

𝐧 = [𝑛𝑥, 𝑛𝑡]𝑇
GaussianConvolve(image):
Takes an image as input and convolves it with a Gaussian kernel

LeastSquaresSolver(𝐺,𝑑,𝑚0,max_iter):
An iterative least squares solver for the equation 𝐺𝑚 = 𝑑, with 𝑚{0} as
starting guess. Stops when |𝑚{𝑗} − 𝑚{𝑗−1}| is small, or 𝑗 = max_iter

ImageWarping(image,𝑠):
Warps an image according to the shift function 𝑠

𝐹 {0} = GaussianConvolve(f )
𝑠{0} = 0 # starting guess for 𝑠
for 𝑖 = 1, 𝑁𝑖𝑡𝑒𝑟 do

# Calculating 𝑛𝑥 and 𝑛𝑡 with the structure tensor
𝑛𝑥,𝑛𝑡 = StructureTensor(F)
𝑝 = −𝑛𝑥

𝑛𝑡
# Least squares solution to 𝜕

𝜕𝑥𝑠 = 𝑝
𝑠 = LeastSquaresSolver( 𝜕

𝜕𝑥 ,𝑝,𝑠{𝑖−1})

while | 𝜕
𝜕𝜏 𝑠| > 𝑘 do

# Least squares solution to 𝜕
𝜕𝜏 𝑠 = 0

𝑠𝑛𝑒𝑤 = LeastSquaresSolver( 𝜕
𝜕𝜏 ,0,𝑠,max_iter = 1)

𝑠 = 𝑠𝑛𝑒𝑤
end
𝐹 {𝑖} = ImageWarping(𝐹 {𝑖−1},𝑠)
𝑠{𝑖} = 𝑠

end
𝑔 = 𝐹 {𝑁𝑖𝑡𝑒𝑟}

Algorithm 1: Flattening algorithm. In image processing a kernel, also known as
a convolution matrix, is a small matrix used in convolution with an image. A
Gaussian kernel is an often used kernel for removing high frequency noise, or
blurring.
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Figure 3.2: Seismic flattening preformed on a synthetic seismic profile. (a): Input image, (b): Input image
convolved with gaussian kernel to remove high frequency noise, (c): First iteration of flattening process,
(d): Second iteration, (e): Third iteration, (d): Fourth and final iteration, (g): Input image with inverse
flattening transformation overlay. Black arrows point in the direction of greatest change, 𝐧 = [𝑛𝑥, 𝑛𝑡]𝑇
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4 The Data: Viking Graben

When collecting seismic data it is common to have a single source andmultiple receivers,

either on both sides of the source or only on one side. Data is then collected throughout

the investigated area at multiple source and receiver configurations. This type of data

is called shot records. The ultimate goal of full waveform modelling is to help map the

subsurface by matching the modelled seismic to the observed seismic, also called full

waveform inversion, but more on this later. Because there exist no processing techniques

that can create new data, the most useful data should therefor be as raw as possible, i.e.

the shot records. In addition to the seismic data it is necessary to know something about

the physical properties of the area, which can come from well logs, and preferably at

multiple locations spread throughout the investigated area. Lastly it is also important to

know the source time function, wavelet, used when collecting the data. The wavelet can

be estimate with the use of the well logs.

In reality all of this information is rarely available. It turned out that readily available

pre-stack seismic data paired with well log data and wavelet information is a rarity.

However, in 1994 the Society of Exploration Geophysicists Research Commmittee held

a workshop titled ”Comparison of Seismic InversionMethods on a single Real Data Set”

[Keys et al., 1998]. The goal of this workshop was to test seismic inversion methods

on the same data set, which included marine pre-stack seismic data and petrophysical

measurements collected at two wells that intersected the seismic line. In addition the

data set also includes a measured source pulse from the air gun array, which saves many

hours of wavelet estimation. The area of investigation, North Viking Graben, is located

in the North Sea.

Due to time restrictions it will not be possible to perform full waveform inversion

using this data set. What I will do instead is to use information about the geometry of

the area and velocity and density logs to create a semi realistic model that is based on

real data. I will also use the source and receiver setups in the modelling process. I will
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therefor briefly discuss the data available in the Viking Graben data set.

4.1 Seismic

The seismic data consists of 1001 shot records, where each shot was recorded on 120

receivers for six seconds sampled every 4𝑚𝑠. Receivers are spaced 25𝑚 apart, and

the distance from source to the near offset receiver is 262𝑚. Receivers and source are

located 10𝑚 and 6𝑚 below the surface respectively. An example of a shot record is

shown in figure 4.1.

Figure 4.1: Shot record 832 of the Viking Graben data set cut off at 3 seconds. The data units are not
specified, but I assume it is in some units of pressure.

To get some information about the geometry of the area it is very useful to have a

depth migrated seismic section. It is unfortunately not directly included in the data set,

but in an attached pdf document is a scanned plot of a depth migrated seismic section

covering the area. Because it is only used in the flattening algorithm, a plot should be

okay as the algorithm is based on image processing. The scanned plot can not be used
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without a bit of work, because it is taken from a slightly curved page of a book. Via a

projection transform the picture is converted to an image with straight boundaries that

can hopefully be used in the flattening algorithm. In figure 4.2 the result of the projection

transform is shown. The data is in no way ideal, as it shows seismic wiggles. This means

that there is no way to distinguish zero amplitude from negative amplitudes, positive

amplitudes all have the same colour and the image is full of vertical lines. Because the

flattening algorithm look at structure in the image, it might still be possible to extract

information about the geometry.

Figure 4.2: Top show a picture of a depth migrated seismic section of the Viking Graben area. After a
projection transform this picture has been converted into a data set, bottom plot.
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4.2 Well Logs

Asmentioned, the data set include petrophysical measurments at twowell locations. The

most important measurement is the compressional- and shear wave velocity logs. These

measurments, together with the density logs, are used to create a prior model, which I

discuss in more detail in section 7.
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Figure 4.3: Well B log measurements versus blocked (blk) log interpretations. The blocked log is an
attempt to recreate the geological layers found in the well and their respective 𝑉𝑝, 𝑉𝑠, 𝜌.

4.3 Wavelet: Source time function

Except for the prior model, the most important thing when doing full waveform mod-

elling is to get the correct source time function, or wavelet. The Viking Graben data
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set actually does include a source time function that has been obtained by positioning a

hydrophone 250𝑚 below the air-gun array, only separated by water. The wavelet can

be seen in figure 4.4. Due to reasons I will discuss in section 7 I will not be using this

wavelet as source time function.
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Figure 4.4: Wavelet included in the Viking Graben data set together with its spectrum. The dominant
frequency shown is defined as the frequency with the maximum power.

August 2021 Niels Fabrin Nymand



Page 20 of 61 SECTION 5. FULL WAVEFORM INVERSION

5 Full Waveform Inversion

In physics an inversion is the process of inferring information about a model based on

indirect measurements. It could for example be to extract information about the shape

of a drum based on the sound it makes [Gordon, C. 1996]. In this case the shape of the

drum would be the model we wish to estimate, and the sound of the drum, in the form

of an acoustic signal, would be the available data. The goal is then to setup a so called

forward model that relates the unknown model parameters, shape of the drum, to the

data, the sound it makes. Even this relatively simple problem, where everything other

than the shape is held constant, turns out not to have a unique solution. It turns out that

almost all inverse problems are haunted by the fact that multiple models can give the

exact same measurements. One such example could be to try and figure out the density

distribution of the earth based on a single gravity measurement at the surface. The for-

ward model is well know, and the relation between model and data is even linear, but

the task is still impossible, due to an infinite number of density distributions giving the

exact same gravity measurement at the surface. What makes the problem solvable is a

long set of assumptions and prior information. If one knows the radius of the Earth as

well as the assumption that the density on average increases with depth, it can be used

to constrain the solution. There may still exist an infinite set of possible solutions, but

some might violate physical principals, and the solutions can be further reduced.

Just like the examples mentioned above, full waveform inversion is simply the at-

tempt to use measurements, like seismograms, to infer information about an unknown

model, for example subsurface wave-velocity and density distributions. In full wave-

form inversion the forward model is full waveform modelling. Full waveform inversion

is a relatively new discipline, as it is only in the past 20 years or so that computers have

become powerful enough for it to be feasible. However, when doing inversion one seeks
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a model gradient, a direction that minimises a misfit function. To calculate this gradient

using a finite difference approach would require a forward calculation for each model

parameter, which in many cases might be millions. Even with todays computers, this

would be very impractical. It is therefor almost impossible to study full waveform in-

version without coming across the adjoint method. Before I discuss the adjoint method

further I would like to first comment on one of the most important aspects of inversion,

the prior model.

5.1 Prior Model

The ambiguity of the general inverse problems means that many different models are

equally valid from a mathematical perspective. In the probabilistic formulation of the

inverse problem [Tarantola, A. 2005] the solution is a probability distribution over the

model space. Such a distribution can be complex with many local maxima. In a deter-

ministic approach, using a steepest descent algorithm for example, will try to find such

a maxima. Which maxima it finds depend on where in the model space it starts. The

starting point is called the prior model, or the initial guess. Many things can help guide

such a guess like well logs, physical laws, geological knowledge of an area, intuition.

To estimate a model that satisfies data is usually easy, to estimate a good approxi-

mation to the true model depend greatly on the prior model.

5.2 The Adjoint Method

As mentioned above, the saviour of the full waveform inversion is the adjoint method.

One of the first people to use this method in seismology was Tarantola [Tarantola, A.

1984], where he showed that by only doing two simulation you can calculate a model

update. Before it would be necessary to do one simulation pr model parameter, which

could be millions, to calculate a gradient for a steepest descent algorithm for example.
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In the following I will give a brief description of the adjoint method. Starting with

the acoustic wave equation,

1
𝐾(𝐱) ̈𝑝(𝐱, 𝑡) − ∇ ⋅ [ 1

𝜌(𝐱)∇𝑝(𝐱, 𝑡)] = 𝑠(𝐱, 𝑡) (5.1)

where 𝐾(𝐱) is the bulk modulus, 𝜌(𝐱) is the density, 𝑠(𝐱, 𝑡) is a source field and 𝑝(𝐱, 𝑡)
is the pressure field. For the sake of simplicity, let 𝐊, 𝝆, 𝐬, 𝐩 represent the functions

mentioned above4. The solution to equation 5.1, or the forward problem, can be written

as,

𝐩 = 𝐟(𝐊, 𝝆, 𝐬) (5.2)

where 𝐟 represent a forward operator. The exact nature of 𝐟 does not matter for now,

but it could for example be a full waveform modelling algorithm like SPECFEM2D.

In the real world the pressure field are measured at specific receiver location, 𝐱𝑟, from

a source located at 𝐱𝑠. Let the source function be treated as a point source 𝑠(𝐱, 𝑡) =
𝛿(𝐱 − 𝐱𝑠)𝑆(𝑡), where 𝑆(𝑡) is a source time function.

The hope, when doing inversion, is to find a model update that improves the dif-

ference between the observed pressurefield 𝐩0 and the calculated pressure field from

equation 5.2. Let 𝐦 represent a model and 𝐦0 the prior model,

𝐦 =
⎛⎜⎜⎜⎜⎜
⎝

𝐊
𝝆
𝐒

⎞⎟⎟⎟⎟⎟
⎠

, 𝐦0 =
⎛⎜⎜⎜⎜⎜
⎝

𝐊0

𝝆0

𝐒0

⎞⎟⎟⎟⎟⎟
⎠

The quality of the estimated model can be summarised by one number, the misfit. The

goal is then to minimise this misfit. Using a least squares norm, the misfit for 𝐦 can be
4For example: In 1D the model domain could be descritized into 𝑁 points, 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑁 . In

that case 𝐊 could be a vector specifying 𝐾 at each point, 𝐊 = [𝐾(𝑥1), 𝐾(𝑥2), … , 𝐾(𝑥𝑁)]𝑇 .
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formulated as,

2L(𝐦) = [𝐩0 − 𝐟(𝐦)]𝑇 𝐂−1
𝑝 [𝐩0 − 𝐟(𝐦)] + [𝐦0 − 𝐦]𝑇 𝐂−1

𝑚 [𝐦0 − 𝐦] (5.3)

where 𝐂𝑝 and 𝐂𝑚 are the covariance operators for the data set and model respectively,

these are often diagonal matrices. The second term is to ensure that the solution, ob-

tained by minimizing equation 5.3, does not become a victim of overfitting, also called

Tikhonov regularization. A steepest descent inversion algorithm can then be written as

𝐦𝑘+1 = 𝐦𝑘 − 𝛼𝑘∇𝐦𝑘
L(𝐦𝑘) (5.4)

where 𝑘 is the iteration number and 𝛼𝑘 is a constant, which could be estimated by a

simple line-search method. This equation simply states that an update to 𝐦 should be

found in the direction that reduces the value of L. To calculate the gradient of L I will

first define a operator 𝐹 ,

𝐹 = 𝐟(𝐦 + 𝛿𝐦) − 𝐟(𝐦)
𝛿𝐦 ,

the approximate first derivative of 𝐟 at 𝐦 in direction 𝛿𝐦. The gradient of L can

then be written as [Tarantola, 1984],

− ∇𝐦L(𝐦) = 𝐶𝑚𝐹 𝑇 𝐶−1
𝑝 [𝐩0 − 𝐟(𝐦)] + (𝐦0 − 𝐦) (5.5)

Insert this into equation 5.4,

𝐦𝑘+1 = 𝐦𝑘 + 𝛼[𝐶𝑚𝐹 𝑇
𝑘 𝐶−1

𝑝 [𝐩0 − 𝐟(𝐦𝑘)] + (𝐦0 − 𝐦𝑘)] (5.6)

Themodel parameters,𝐦, consist of three different sets ofmodel parameters,𝐊, 𝝆, 𝐒.
The derivative operator𝐹 can therefor also be split into three components𝐹 = (𝐹𝐾, 𝐹𝜌, 𝐹𝑆),
and equation 5.6 can be written in component form,
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⎛⎜⎜⎜⎜⎜
⎝

𝐊𝑘+1

𝝆𝑘+1

𝐒𝑘+1

⎞⎟⎟⎟⎟⎟
⎠

+ 𝛼
⎡
⎢⎢⎢
⎣

⎛⎜⎜⎜⎜⎜
⎝

𝐶𝐾𝐾𝛿𝐊̃𝑘

𝐶𝜌𝜌𝛿 ̃𝝆𝑘

𝐶𝑆𝑆𝛿𝐒̃𝑘

⎞⎟⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜⎜
⎝

𝐊0 − 𝐊𝑘

𝝆0 − 𝝆𝑘

𝐒0 − 𝐒𝑘

⎞⎟⎟⎟⎟⎟
⎠

⎤
⎥⎥⎥
⎦

, (5.7)

where 𝐶𝑚 is assumed diagonal and 𝐶𝐾𝐾, 𝐶𝜌𝜌, 𝐶𝑆𝑆 are the diagonal elements,

𝛿𝐊̃𝑘 = 𝐹 𝑇
𝐾𝛿𝐩̃𝑘

𝛿 ̃𝝆𝑘 = 𝐹 𝑇
𝜌 𝛿𝐩̃𝑘

𝛿𝐒̃𝑘 = 𝐹 𝑇
𝑆 𝛿𝐩̃𝑘

𝛿𝐩̃𝑘 = 𝐶−1
𝑝 [𝐩0 − 𝐟(𝐊𝑘, 𝝆𝑘, 𝐒𝑘)]

(5.8)

𝛿𝐩̃𝑘 is the residuals of the measured seismograms and the synthetics from the forward

model, and can easily be calculated. However, to calculate 𝛿𝐊̃𝑘, 𝛿 ̃𝝆𝑘 and 𝛿𝐒̃𝑘 requires

two operations. These two operations is really what the adjoint method is all about.

Firstly, Tarantola shows in the appendix of [Tarantola, 1984] that we have to compute

the pressure field that corresponds to,

𝑝′
𝑘(𝐱, 𝑡; 𝐱𝑠) = ∫ 𝑑𝐱′𝑔(𝐱, 0; 𝐱′, 𝑡) ∗ 𝛿𝑠(𝐱′, 𝑡; 𝐱𝑠),

𝛿𝑠(𝐱, 𝑡; 𝐱𝑠) = ∑
𝑟

𝛿(𝐱 − 𝐱𝑟)𝛿 ̃𝑝𝑘(𝐱𝑟, 𝑡; 𝐱𝑠)
(5.9)

where ∗ refers to time convolution and 𝑔 is the Green’s function defined via equation

5.1 as,

[ 1
𝐾(𝐱)

𝜕2

𝜕𝑡2 − ∇ ⋅ 1
𝜌(𝐱)∇] 𝑔(𝐱, 𝑡; 𝐱′, 𝑡′) = 𝛿(𝐱 − 𝐱′)𝛿(𝑡 − 𝑡′) (5.10)

resulting in a solution to equation 5.1 as follows,

𝑝(𝐱, 𝑡) = ∫ 𝑑𝐱′𝑔(𝐱, 𝑡; 𝐱′, 0) ∗ (𝛿(𝐱 − 𝐱𝑠)𝑆(𝑡)) (5.11)
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The difference between equation 5.9 and 5.11, is the source term used and the time

reversal of the Green’s function. The source term of 𝑝′
𝑛 is interesting, because it treats

the receivers as sources and uses the residual of measured and computed wavefield as

the source time function. What the current model does not correctly account for is sent

back by the receivers.

Secondly, correlating the two wavefields at all points show areas where the model is

inadequate and needs to be modified. The model updates can be written as,

𝛿𝐊̃𝑘(𝐱) = 1
𝐊𝑘(𝐱)2 ∫ 𝑑𝑡 ∑

𝑠

𝜕
𝜕𝑡𝑝′

𝑛(𝐱, 𝑡; 𝐱𝑠) 𝜕
𝜕𝑡𝑝𝑛(𝐱, 𝑡; 𝐱𝑠)

𝛿 ̃𝝆𝑘(𝐱) = 1
𝝆𝑘(𝐱)2 ∫ 𝑑𝑡 ∑

𝑠
∇𝐱𝑝′

𝑛(𝐱, 𝑡; 𝐱𝑠) ⋅ ∇𝐱𝑝𝑛(𝐱, 𝑡; 𝐱𝑠)

𝛿𝐒̃𝑘(𝐱) = ∑
𝑠

𝑝′
𝑛(𝐱, 𝑡; 𝐱𝑠)

(5.12)

where ∇𝐱 is the spatial gradient operator. The equation for density and bulk modulus

simply state that the model update is non zero in areas where the adjoint wavefield 𝑝′
𝑛

and the forward wavefield 𝑝𝑛 correlate.

What is so remarkable about the results presented in [Tarantola, 1984] is that the

model gradient can be computed in three steps,

1. Compute the forward wavefield, 𝑝𝑛

2. Compute the adjoint wavefield, 𝑝′
𝑛, by using receivers as sourceswith the residuals

of modelled and measured seismograms as source time functions

3. Correlate the two wavefields to calculate model updates, 𝛿𝐊̃𝑘(𝐱) and 𝛿 ̃𝝆𝑘(𝐱)

Only two simulations are needed per iteration of the inversion algorithm. The adjoint

method is therefor a huge time saver when the forward model is slow, like in the case of

full waveform modelling.
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In the following section I will demonstrate a small example where the adjoint method

is used.

5.3 Test Example

I have set up a very simple examplewith the purpose of demonstrating the adjointmethod

together with full waveform modelling. The true model and the prior model can be seen

in figure 5.1. The data consists of four different shot records, each recorded at 120 dif-

ferent receivers, see figure 5.1 for layout. The seismograms from shot record 0 is shown

in figure 5.2. All seismic data shown is the vertical component of the displacement5.

Like mentioned above, the adjoint sources, see figure 5.2c, are the residuals of the mea-

sured and synthetic seismograms. The receivers, marked with blue on figure 5.1, are

then used as source points, where the adjoint sources are the source time functions. In

appendix A I have included a plot of the mesh grid, figure A.1 right, used together with

SPECFEM2D for the spectral element modelling. Right, left and bottom boundary are

absorbing and the top boundary is free, see equation 2.2.

Both the prior and the true model,𝐦0 and𝐦𝑡𝑟𝑢𝑒 respectivly, have a constant density,

𝜌0(𝑥, 𝑧) = 𝜌𝑡𝑟𝑢𝑒(𝑥, 𝑧) = 1600 𝑘𝑔
𝑚3 , and zero shearmodulus, 𝑉𝑠,0(𝑥, 𝑧) = 𝑉𝑠,𝑡𝑟𝑢𝑒(𝑥, 𝑧) =

0, where 𝑉𝑠 is the shear velocity. The inversion algorithm used is just a simple steepest

descent algorithm,

𝐦𝑘+1 = 𝐦𝑘 + 𝛼𝛿𝐦̃𝑘 (5.13)

where 𝛿𝐦̃𝑘 is the model gradient, the direction that reduces the value of the misfit func-

tion,

L(𝐦𝑘) = [𝐩0 − 𝐟(𝐦𝑘)]𝑇 [𝐩0 − 𝐟(𝐦𝑘)] (5.14)
5Pressure and vertical displacement are not interchangeable in the above equations, but everything

done here should not depend on whether the data is pressure or displacement. The choice to use displace-
ment is purely practical due to the use of preexisting software that was not setup for pressure data.
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which is a simplified version of the one presented in [Tarantola, 1984]. 𝛼 is determined

by a line search, see algorithm 2. To help organise the inversion process I have made

use of an open source Python based package that can work together with SPECFEM2D

to perform full waveform inversion. The package is called SeisFlow, and for more in-

formation see [Modrak et al., 2018].

The only thing missing before the inversion can proceed is the source time function.

I have made use of a Ricker wavelet, second derivative of a Gaussian, with a dominant

frequency of 12𝐻𝑧, see figure 5.3.

input : Initial model, 𝐦𝑘 and observed seismograms, 𝐩0
output: Updated model, 𝐦𝑘+1
Forward(𝐦𝑘,𝐱𝑟,𝐒):
returns seismograms recorded at receiver locations 𝐱𝑟

Adjoint(𝐦𝑘,𝐱𝑟,𝛿𝐩̃𝑘):
Returns gradient, 𝛿𝐦̃𝑘

𝐩𝑘 = Forward(𝐦𝑘,𝐱𝑟,𝑆)
# Calculate the adjoint sources
𝛿𝐩̃𝑘 = 𝐩0 − 𝐩𝑘
𝛿𝐦̃𝑘 = Adjoint(𝐦𝑘,𝐱𝑟,𝛿𝐩̃𝑘)
# Pick an initial step length 𝛼 = 𝛼0
𝐦𝑘+1,0 = 𝐦𝑘 + 𝛼0𝛿𝐦̃𝑘

# Line search algorithm to determine step length
𝑖 = 0
while L(𝐦𝑘+1,𝑖+1) < L(𝐦𝑘+1,𝑖) do

𝛼𝑖+1 = 𝛼𝑖 + 𝛿𝛼𝑖
𝐦𝑘+1,𝑖+1 = 𝐦𝑘 + 𝛼𝑖+1𝛿𝐦̃𝑘
𝑖 = 𝑖 + 1

end
𝐦𝑘+1 = 𝐦𝑘 + 𝛼𝑖𝛿𝐦̃𝑘

Algorithm 2: Simple inversion algorithm. Note that every iteration of the line
search algorithm requires a forward calculation to evaluate equation 5.14. In the
case of multiple source and receiver combinations, the gradient calculations (for-
ward and adjoint simulations) are run in parallel for each source and receiver com-
bination and merged to one gradient before the line search.

August 2021 Niels Fabrin Nymand



Page 28 of 61 SECTION 5. FULL WAVEFORM INVERSION

Figure 5.1: Top plot show 𝑉𝑝 for the true model. Bottom plot show 𝑉𝑝 for the prior model. Density is
constant at 𝜌 = 1600 𝑘𝑔

𝑚3 , and shear velocity is zero, 𝑉𝑠 = 0 𝑚
𝑠

5.3.1 Inversion results and discussion

The result of the inversion can be seen in figure 5.4 and figure 5.5. The inversion suc-

cessfully finds the location of the box anomaly in the true model. The left and right

border of the anomaly in the inverted model are well defined, and match the true model.

The top and lower boundary are blurred, and have similar characteristics to the Ricker

wavelet.

In [Fichtner et al., 2006] they present a similar example with a box anomaly. In their

example they calculate the model gradient for two different wavelengths, one that is
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(a) (b) (c)

Figure 5.2: Shot record 0 (source located at shot position 0). (a): The observed data from the true model,
(b): Synthetic data from the prior model, (c): The adjoint sources.
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Figure 5.3: Ricker wavelet with dominant frequency of 12𝐻𝑧.

comparable to the size of the anomaly, and one that is significantly larger. The gradient

using the shorter wavelength have two significant signals, one from the top boundary and

one from the bottom boundary of the box. The gradient using the longer wavelength are

much better at mapping the entire box, but the left and right boundary is not as well
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defined. For the shorter wavelength the top and lower boundary of the box anomaly act

as two separate reflectors. The wavelength in my example is comparable to the size of

the anomaly 6, which explain the wavelet like characteristics of the inversion result.

Whether or not the inversion result can be deemed successful or not, depend on what

the goal is. If the goal is to reproduce the structure of the true model, then the result

seen in figure 5.4 is not very useful. In [Fichtner et al., 2006] they conclude that the

determination of structure require a more sophisticated iterative procedure that include

higher order derivatives. However, if the goal is to highlight and outline anomalies, as

is seen in figure 5.4, then the results of the inversion is very promising.

6The wavelength is 𝜆 ≈ 166𝑚 and the box anomaly measure 520𝑚 × 100𝑚
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Figure 5.4: Top: The model gradient 𝛿𝐦̃𝑘. Bottom: The inverted model
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(a) (b)

Figure 5.5: Shot record 0 (source located at shot position 0). (a): The observed data from the true model,
(b): Synthetic data from the inverted model.

August 2021 Niels Fabrin Nymand



Page 33 of 61 SECTION 6. FAULT ASSESSMENT

6 Fault Assessment

The ability to detect faults in a seismic survey can be useful in predicting the potential

fluid migration, which would be of great interest in the field of CO2 storage for example

[Lubrano-Lavadera et al., 2018]. In the following I will present a number of simple

models with the goal of demonstrating the ability of the adjoint method to reproduce

discontinuities in seismic models. At the end of this section I will explore the effects of

random noise on the results.

6.1 Two box model

This first model is almost a complete copy of the test example discussed in the previous

section, just with a little added complexity in form of another box anomaly. The initial

model is identical to the one used in the test example, as is the wavelet. The true model,

together with the observed seismic and adjoint sources, can be seen in figure 6.1 and 6.2.

The objective is to see if the gradient from the adjoint method is able the reproduce the

step like structure of the two boxes. Looking at the seismic in figure 6.2 it looks very

similar to the test example in the previous section, figure 5.2. However, there is a small

visible kink at 0.4𝑠 between receiver number 40 and 50, which is not present in the one
box example.

In figure 6.3 the result of the inversion is shown. Just like in the single box problem

the inversion is able to capture the horizontal extension of the anomaly quite accurately,

but the bottom is less well defined. The step like structure is clearly visible in the gra-

dient for the top part of the anomaly. The step on the bottom become more of a smooth

transition between the two boxes in the gradient. Some of the explanation for this can

be found in the smoothing process that occur when the gradients are summed together.

I will explore this a bit further in the following.
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Figure 6.1: 𝑉𝑝 for the true model. Density is constant at 𝜌 = 1600 𝑘𝑔
𝑚3 , and shear velocity is zero,

𝑉𝑠 = 0 𝑚
𝑠

Figure 6.2: Left plot show the observed seismic, and right show the adjoint sources for the true model
shown in figure 6.1 and prior model shown in figure 5.1

6.2 Gradient summation

The combined gradient, as shown in figure 6.3, has the advantage of being able to illu-

minate the box from different directions, creating a more complete picture. There is a

downside however, and it comes from the smoothing process that is involved in com-

bining the gradients. To illustrate this I have included all the gradients, one from each
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Figure 6.3: Inversion result for the two boxmodel. Top: The model gradient 𝛿𝐦̃𝑘. Bottom: The inverted
model

shot position, in figure 6.4. The ability to see the step structure is actually not possible

in almost all the individual gradients, except for shot position 3. These plots illustrate

very well why multiple shot positions are needed, but also how combining them might

remove vital information. Looking at the gradient from shot position 3 the step is very

well illuminated, as the shot is almost right above the contact point of the two boxes.

As one would expect, the information contained in the gradient depend on the dis-

tance from the source to the area of interest. This is also visible from the amplitude of the

gradients, which naturally makes the combined gradient a linear combination weighted
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by some measure of the inverse offset.

Figure 6.4: Model gradients for the two box model. Individual gradients from all 5 shot positions, as
well as the combined gradient in the lower right corner.

6.3 Horizontal reflector with fault

From the two boxmodel we learned that discontinuous horizontal variations are possible

to detect. In this section I will lower the complexity and look at a horizontal reflector

with a vertical fault of 30𝑚 in height. The hope is that the fault location and size will

be easily detectable in the model gradient, as well as seeing how the method handles a

reflector that stretches the entire model domain. The prior model is again completely

uniform with 𝑉𝑝 = 2000𝑚
𝑠 , 𝜌 = 1600 𝑘𝑔

𝑚3 and 𝑉𝑠 = 0, see figure 5.1. The true model
can be found in figure 6.5. The inverted model can be found in figure 6.6. I have not

included the model gradient, as the inverted model and model gradient are proportional
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for one iteration.

The reflector is well mapped in the illuminated areas, and the fault is not to be mis-

taken. The discontinuous nature of the true model is represented, not just in location,

but also in size. As mentioned earlier, the size of the dominant wavelength relative to

the structure you wish to resolve is key. It is however possible to resolve structure much

smaller that the dominant wavelength, as proven here. The dominant wavelength of the

source is 𝜆 ≈ 166𝑚, making the fault size to dominant wavelength ratio ≈ 2
11 .

The reflector in this example is perfectly flat, as is the mesh grid used in the spectral

element modelling, but what happens when the reflector is not flat? I have previously

mentioned that one of the advantages of the finite element method is the ability to create

grids that honour the sloping boundaries of the model. In the following I will therefor

show two models, where the only difference between them is the mesh grid used.

Figure 6.5: 𝑉𝑝 for the true horizontal reflector with fault model. Density is constant at 𝜌 = 1600 𝑘𝑔
𝑚3 ,

and shear velocity is zero, 𝑉𝑠 = 0 𝑚
𝑠
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Figure 6.6: Inversion result for the horizontal reflector with fault model after one iteration.

6.4 The importance of a well designed mesh

One of the ideas behind a mesh that honour sloping boundaries, is to save time in the

simulation. Any type of smooth boundary could be modelled by a perfectly flat grid with

no spatial variation, by increasing the resolution of the grid. This is the strategy that is

needed in typical finite difference modelling, but with finite element modelling the grid

can simply follow this boundary, and potentially save significant computing power.

I have made one velocity model and two mesh grids. There are two ways to define

a velocity model in SPECFEM2D,

1. define areas of the mesh when creating the mesh and assign each area specific values,

2. create a unstructured (𝑥, 𝑧, 𝑉𝑝) file that then gets interpolated onto the given mesh.

For more info see the SPECFEM manual [Komatitsch et al., 2020]. I have made use of

option 2. Option 1 can potentially give the most accurate model representations, but it

makes the mesh generating process much more complicated and time consuming.

Looking at figure 6.7 it is easy to see the difference between the velocity model

interpolated onto the square grid (see figure A.1 right), and the grid that try to honour the

reflector geometry (see figure A.1 left). Both grids have the same number of elements,
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the only difference is the internal shape. The question is now, does it actually make any

difference in the modelled seismic? To answer this I have made a forward calculation for

each of the two models, see figure 6.8. The difference between the two seismograms is

significant. The error introduced by the interpolation onto a square mesh have a similar

effect to adding small faults along the reflector, which introduce modelling noise. The

main reflector is still well represented, but scattering from the small faults justifies the

use of a mesh that follow reflector geometry. 7

6.5 Curved reflector with fault

In this section I want to explore how the inversion performs when the reflector is curved,

and the fault is on a slope. Using the model seen in 6.7c as the true model. The prior

model is still completely uniform with 𝑉𝑝 = 2000𝑚
𝑠 , 𝜌 = 1600 𝑘𝑔

𝑚3 , 𝑉𝑠 = 0, but using
the mesh seen in figure A.1 left. The inversion result can be seen in figure 6.9. The

curved reflector is well represented in the inversion, and the fault is still visible but not

as dominating as in the horizontal reflector problem. Part of the explanation comes from

the fact that the fault is not as well illuminated, there is no shot position to the left of the

fault. Another explanation can be that the slope might soften the effects of a vertical fault
8. I say that the fault is still visible, even though it could easily be mistaken for a smooth

transition when looking at the inversion. The smooth nature of the inverted model comes

from the combining of the different shot record gradient estimations. Figure B.1 top left

(no noise) show the gradient estimation from shot record 4, the one closest to the fault.

There it is easy to see that the discontinuous nature of the fault leave a clear imprint in

the model gradient.

7Another benefit of using a mesh that follow reflector geometry is the possibility of using layer depen-
dent element spacing. The maximum allowed size of the elements in the mesh depend on the wavelength
of the propagating waves. It is therefor common practice to vary the size of the elements depending on
the propagation velocity of a given layer.

8in the limit where the reflector slope approaches vertical the vertical fault signal would approach zero.
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Figure 6.7: Comparison between velocity model interpolated onto a square mesh (b) vs onto an adapted
mesh (c). (a) show the true velocity model, (b) shows (a) interpolated onto a square grid (figure A.1 right),
and (c) shows (a) interpolated onto an adapted grid (figure A.1 left)

The big question when dealing with any kind of inversion routine is: how does it

handle noise? I will explore this in the following subsection.
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Figure 6.8: Comparison of forward calculation between two different models, for shot position 1. Left is
from model (b) in figure 6.7 and right is from model (c).

Figure 6.9: Inversion result for the curved reflector with fault after one iteration.

6.6 The adjoint method and random noise

One of the classical problems within inversion theory is how to deal with noise. Any

physical measurement is associated with noise, and the perfect inversion method would

only fit the part of the data that is not noise, such a method sadly does not exist. What I

will explore here is how is the inversion result of the curved reflector with fault affected

by the introduction of random noise. Let 𝑝0(𝐱𝑟, 𝑡; 𝐱𝑠) be the observed seismogram at
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receiver location𝐱𝑟 and source position𝐱𝑠, 𝜂(𝑡; 𝐱𝑟) be a random realisation of uniformly

distributed white noise and 𝑆(𝑡) be the source time function used to generate 𝑝0, then

the noisy seismogram can be expressed as,

̂𝑝0(𝐱𝑟, 𝑡; 𝐱𝑠) ∶= 𝑝0(𝐱𝑟, 𝑡; 𝐱𝑠) + 𝜀(𝜂(𝑡; 𝐱𝑟) ∗ 𝑆(𝑡)) (6.1)

where ∗ denotes convolution and 𝜀 is a constant used to scale the noise levels. The

reason for convolving the white noise with the source time function is to get noise with

a wavelength like the real signal. This also helps the simulation from becoming unstable.

I have included noise of three different 𝜀. The three 𝜀 has been chosen as follows:

1. ∣𝜀(𝜂(𝑡; 𝐱𝑟) ∗ 𝑆(𝑡))∣ ≤ 2
3 max(|𝛿𝐩|)

2. ∣𝜀(𝜂(𝑡; 𝐱𝑟) ∗ 𝑆(𝑡))∣ ≤ max(|𝛿𝐩|)

3. ∣𝜀(𝜂(𝑡; 𝐱𝑟) ∗ 𝑆(𝑡))∣ ≤ 2 max(|𝛿𝐩|)

where 𝛿𝐩 is the observed seismic with the direct wave subtracted. The noise is scaled

with respect to the signal from the reflector and not the direct wave. In figure 6.10 the

three different noise levels together with the resulting gradients can be found.

The worst case noise scenario, case 3., the reflector is still clearly visible, but the

noise does certainly have an effect on the gradient. The noise mostly manifests itself at

the top of the model gradient which might be due to the large correlation between the

direct wave and noise signals. Even though the noise does not hide the true reflector,

it does hinder the inversions ability to reproduce the seismic signal from the reflector.

In figure 6.11 it is clear that the simulated data from the inverted model does actually

succeed in removing most noise, but the amplitude of the reflector almost disappears

with increasing noise levels. The amplitude of the reflector could be increased by in-

creasing 𝛼, but that would also increase the strong noise induced anomalies of the model
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gradient. It might be possible to help the inversion by introducing some post processing

of the model gradient, like weighing the values by depth.

The fault is not very visible from the combined gradient, just like in the example

with no noise, however in figure B.1 the fault still leave a clear imprint in the gradient

for all three noise levels.

Figure 6.10: The observed data from shot position 2 with three different levels of noise (right) with the
corresponding gradient calculation from the adjoint method (left). The numbering correspond to the three
different noise levels listed above.
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Figure 6.11: Observed data from shot position 2 with three different noise levels (left) and simulated data
after inversion (right).
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7 A semi realistic problem

In this section I want to demonstrate how the flattening algorithm can be used to create

a mesh as well as a prior model. I then want to test how the adjoint method reacts to

faults that are not included into the prior model. At the end I introduce a form of model

noise to my prior model.

7.1 Flattening and mesh generation

In section 4.1 I convert a picture of a depth migrated seismic section into a data set. The

purpose of this data is to extract information about the geometry of the area, and to do

this I use the flattening algorithm discussed in section 3. The result of the flattening

can be seen in figure 7.1. The flattening process works, almost. The strong reflectors

are for the most part flattened correctly, but some areas, especially the bottom, do suffer

from the data quality. The data set is practically binary, which means any event, no

matter amplitude, are weighted equally when calculating the structure tensor. It helps to

convolve the image with a 2DGaussian kernel, but it is a problem. The black and orange

lines seen in figure 7.1 represent the inverse flattening transformation. The orange lines

are specifically picked to design the mesh and prior model.

The orange lines are then used to specify layers in the mesh. Note that the lines are

used to define the geometry, not the layer boundaries. As mentioned in section 4 there

are two wells covering the area, and to limit the size of the model I only focus on the

area close to well B (CMP number 1572). The orange lines are imported into Gmsh to

create the finite element mesh, see figure 7.2.

7.2 Designing the prior model

Here I will show a very simple, and perhaps naive, way to design a prior model that in-

volves the inverse flattening transform. At well B the vertical velocity and density vari-
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Figure 7.1: Flattening process of the depth migrated seismic section for the Viking Graben data set. 1.
The input image; 2. Input image convolved with gaussian kernel with structure tensor overlay (black
arrows); 3. Warped image after 5 iterations of the flattening algorithm with structure tensor overlay; 4.
Input image with inverse flattening transform overlay (black and orange lines).

ation are measured, and assuming that the measurements and interpretations are correct,

it is reasonable to expect that the immediate area around the well share these charac-

teristic. I take this assumption further and assume that the entire 2D profile share these

velocity and density variations. Horizontally extending the log interpretations over the

entire model domain and using the inverse flattening transform to reshape into the cor-

rect geometry, see figure 7.3. Figure 7.4 show the velocity model of the actual prior

model used, which is a cutout of the full model shown in figure 7.39

9Note that the X axis point opposite directions in the two figures
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Figure 7.2: Mesh used for the Viking Graben model near well B. The element size is not to scale, the
real mesh used in SPECFEM2D is much finer yielding it impractical to show. The X coordinate is in a
reference coordinate system following the seismic segy file. Well B is located at X=21262m

Figure 7.3: Horizontally extended 𝑉𝑝 log (left) transformed into the prior model using the inverse flat-
tening transform. The velocity model on the right is plotted on top of the depth migrated seismic.
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Figure 7.4: The prior 𝑉𝑝 model for the Viking Graben area near well B. Well B lie at the right of the
model at X=21262m

7.3 Designing the true model

Because this is a synthetic problem the true model also has to be designed, and for this

I start with the prior model and add small layer extrusions. The true model can be seen

in figure 7.5. The only thing differentiating the true model from the prior mode is the

layer extrusions highlighted by white boxes. I use two different shot positions with

corresponding receiver setups. Shot position 0 and corresponding receiver positions can

be seen in figure 7.2, and shot position 1 is exactly the same setup but everything is

translated 1000 m to the left. Figure 7.6 show the ”observed” shot records (modelled

with the true model) together with the adjoint sources. From this it is clear that the

extrusions, or at least some of them, are visible on the seismograms. This means that

the adjoint method should be able to highlight these on the model gradient.

I mentioned in section 4 that I would not be using the wavelet shown in figure 4.4.

The reason for this is because it containes a lot of high frequencies, which demands a

fine mesh to be able to resolve those shorter wavelengths, which in turn increases the

computing time needed. Instead I use a Ricker wavelet with a dominant frequency of 20

Hz.
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To further reduce the computing time needed the models are acoustic, shear veloc-

ities are set to zero everywhere. Eventhough the reduced computing time is a major

reason for only doing acoustic models, it is not the real reason why I have chosen to

set the shear velocities to zero. The first model I used had a top layer of around 350

m with water, 𝑉𝑝 ≈ 1500𝑚
𝑠 and 𝑉𝑠 = 0, followed by solid layers, 𝑉𝑠 ≠ 0. I wanted

to include this fluid to solid interface, to keep the problem as realistic as possible, but

the SPECFEM2D adjoint simulation could for some reason not handle this transition,

and would only propagate waves from the adjoint sources in the fluid region. To avoid

having to figure out where in the many thousands lines of code the problem originated

and coming up with a solution, I set the shear velocities to zero everywhere.

The boundary conditions used for the modelling are absorbing everywhere.

Figure 7.5: The true 𝑉𝑝 model. The white boxes highlight the layer extrusions that differentiate the true
model from the prior model. The orange star and blue dots show the locations of shot position 0 and the
corresponding receivers respectively.
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Figure 7.6: Observed shot records (left), modelled with the true model (see figure 7.5), and the adjoint
sources (right), residuals of the observed and synthetic seismograms. Note the different colorbars for left
and right.

7.4 Fault Assessment

Before I start showing the results of the adjointmethod Iwant to establish a bit of notation

to keep track of it all. Let 𝐹0(𝑋, 𝑍) and 𝐹1(𝑋, 𝑍) represent the model gradients at point
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(X,Z) of shot position 0 and 1 respectively. Let 𝐷 represent a depth weighing function,

𝐷 ∶ 𝐹(𝑋, 𝑍) → 𝐹(𝑋, 𝑍) ⋅ 𝑍

and let 𝐻 represent a simple highpass filter10.

Figure 7.7 show the resulting model gradient. The model gradient without any

processing suffer from two things: amplitude decrease rapidly with depth and long

wavelength signals. The long wavelength signals are dealt with by applying 𝐻 and

the amplitude is helped by applying 𝐷. The good news is that the resulting gradient

𝐷[𝐻(𝐹0 + 𝐹1)] do show strong signal at all of the fault locations. The bad news is that

it also show fault like signals at locations where no faults exist in the true model.

7.4.1 Model noise

In section 6 I demonstrated the effects of uncorrelated random noise in the seismograms

on the resulting model gradients. Here I want to show what happens when the prior

model is slightly altered. To create the prior model the well log and inverse flattening

transform was used, but what happens if noise is added to the 𝑉𝑝 log? All the layers

of the prior model would have slightly different velocities compared to the true model.

Figure 7.8 show the new velocity log used to create a new prior model, called well noise

model, by following the procedure explained in 7.2. The model gradient when using the

well noise model as prior model can be found in figure 7.9.

7.4.2 Discussion and conclusion

The adjoint method estimates a model gradient for the prior model without noise, see

figure 7.7, that show strong signals at the locations of the five missing faults. It also
10In practice 𝐻 is purely a image processing technique that return the difference between the input and

the input convolved with a Gaussian kernel.
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Figure 7.7: Model gradient from the adjoint method. Top left is the sum of the two gradients, one for each
shot and receiver setup. Top right show is a highpass filtered version of top left. Bottom is a highpass
filtered and depth weighted version of top left. Every gradient is normalized before plotted. The white
boxes are located at the fault locations of the true model, and the red boxes are located a fault like signals
where no fault exist.

show signals similar to the fault signatures at locations that are perfectly represented by

the prior model. In figure 7.7 I highlight four such signatures, and what they all have in

common is that they lie such that a ray from the source to the false fault location will

intersect a true fault location. Another thing they have in common is that they lie on

a strong reflector, see 7.4. Because the rays traveltime is slightly altered by the faults

(layer extrusions), the locations of reflectors under these faults are moved slightly up or

down, in travletime, compared to the reflectors of the prior model. The false faults are

just ”echos” of the true faults.

The estimated model gradient for thewell noise model is more complicated. Because

August 2021 Niels Fabrin Nymand



Page 53 of 61 SECTION 7. A SEMI REALISTIC PROBLEM

100 0 100
 [m/s]

0

500

1000

1500

2000

2500

3000

3500

4000
1500 2000 2500 3000 3500 4000 4500 5000

Vp [m/s]

0

500

1000

1500

2000

2500

3000

3500

4000

De
pt

h 
[m

]

Vp
Vp + 

Figure 7.8: Blue show the original 𝑉𝑝 log found in figure 4.3 and orange show the new velocity log. The
orange log is used to create the prior model: well noise model

Figure 7.9: Model gradient from the adjoint method using well noise model as prior model. The white
boxes are located at the fault locations of the true model

all the layer velocities are slightly off compared to the true model, the reflectors are also

going to be located at the wrong travletime. This means that the observed and synthetic
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seismograms no longer match and the layer boundary reflections no longer cancel each

other in the residual. The adjoint method will therefor highlight all the layer boundaries

that have a wrong average velocities above. This makes the model gradient far more

complicated, see figure 7.9, but not hopeless. Fault nr. 1,4 and 5 (see numbering of the

white boxes) still leave signatures that make them distinguishable. Fault nr. 1 manifests

itself as a discontinuity of the strong horizontal reflector located around Z = -1250 m.

Fault nr. 4 and 5 are both easy to spot. Fault number 2 is not possible to see, and

also the weakest in terms of velocity contrast in the true model. Fault number 3 does

have some of the characteristics of fault nr. 1, but would be difficult to identify without

knowing where to look. Something important to note here is that I only use two source

and receiver setups. If this was an inversion of the real Viking Graben prospect, there

would be a source and receiver setup for every 25m. I chose to limit the problem to

only have two source and receiver setups, to save computing time. I believe more shot

positions would improve the results, because the shot position seems to have a big impact

in the methods ability to reproduce discontinuities, as seen in figure 6.4.

I have made a second type of model noise that I have included in appendix C. I will

not discuss it here as the effects are similar to the well noise model.
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8 Conclusion

In this thesis I have presented a way of extracting geometric information from a depth

migrated seismic profile to be used in generating a mesh and prior model. A simple flat-

tening algorithm is used for this purpose, where the inverse flattening transform can be

used to create a mesh for spectral element modelling that honour the sloping boundaries

of the model. A practical example is shown where the inverse flattening transform is

used to create the mesh as well as the prior model from well log data.

The adjoint method has been used together with simple 2D models to demonstrate

the methods ability to reproduce sharp contrasts and discontinuous velocity structures

frommultiple shot records. The method is able to locate and horizontally delimit anoma-

lies not accounted for by the prior model. The illumination of the anomaly by the shot

and receiver locations play an important role in the methods ability to highlight sharp

boundaries. However, the process of combining these shot and receiver locations into

one gradient estimate, can also result in a smearing that hides the sharp contrast. Shot

positions located close to the fault lead to model gradients that show discontinuous re-

flector geometry that can help identify sharp contrasts not accounted for in the prior

model.

I have also demonstrated how the gradient estimations by the adjoint method is

affected by different levels of uncorrelated random noise of wavelet frequency. The

method seems to be robust towards this type of noise which mostly manifests it self as

large anomalies near receiver/source locations, resulting in weak velocity contrasts of

the inverted model, but the reflector geometry is still preserved.

Lastly, I have used the adjoint method to try and locate small fault like structures in

a semi-realistic synthetic model, based on geometry and well log data from the Viking

Graben area in the North Sea. The methods ability to locate and partly reproduce the

small faults not included in the prior model, depend greatly upon the quality of the prior

model. By introducing small errors in the prior velocity model, it is possible to partly or
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entirely hide the signature of the faults. Because these results are only based on the use

of two shot positions, it is very possible that the method would be able to distinguish the

faults from the model noise by including more shot locations.
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Appendix A Mesh

Figure A.1: Left: Simple mesh that follow the spatial variation of the velocity model. Right: Simple
mesh with no spatial variation. Created in Gmsh
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Appendix B Curved reflector and random noise

Figure B.1: Model gradient estimation from shot position 4 for the curved reflector with fault with and
without noise. Noise level 1,2 and 3 are explained in section 6.6.

Appendix C Low frequency model noise

In section 7 I show the effects of model noise by changing the propagation velocities of

each layer in the prior model, compared to the true model. Here I will show the effects

of another type of model noise. I simply add a low frequency velocity perturbation to

the prior model shown in figure 7.4. Figure C.1 show the velocity perturbation. Figure

C.2 show the model gradient after adding the velocity perturbation.
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Figure C.1: Low frequency velocity perturbation to be added to the prior model.

Figure C.2: Model gradient from the adjoint method using low frequency noise model as prior model.
The white boxes are located at the fault locations of the true model
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