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Abstract

In this thesis I join spectral element modelling of seismic waves with the adjoint
method to try and reproduce discontinuous boundary layers from seismic signals.
The adjoint method is a highly efficient way of generating model gradients to be
used in steepest descent type inversion algorithms. A series of simple models are
made to demonstrate how the adjoint method can be used to model sharp bound-
aries, such as faults, from seismic data. The results show that the method is able
to locate and horizontally delimit sharp contrasts not accounted for by the prior
model. The method is also tested on a more complex model, based on the seis-
mic survey of North Viking Graben [Keys et al., 1998], where the success of the
method does in part rely upon good prior model estimations.

Spectral element modelling has the advantage of being able to accurately hon-
our complex model geometry with a well designed mesh. Based on a seismic flat-
tening algorithm I present a simple approach to generating a finite element mesh to

be used with the spectral element software SPECFEM2D [Komatitsch et al., 2012].
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1 Introduction

The Earth is full of waves, excited by earthquakes, oceans, atmosphere or man-made
sources. These waves travel trough the Earth where they encounter obstacles that send
echos back to where the wave originated, just like when you hear you own echo in a
large room. These echos, or reflections as they are called, can carry information about
the physical properties of the Earth. The ultimate goal of seismology is to use these
reflections to infer information about what is hiding underneath our feet, and figure
out what the Earth looks like on the inside. To answer this question it is important to
understand the physics of these waves. From the theory of continuum mechanics it is
possible to derive the equations that govern the waves propagation though the Earth.
It is however no easy task to find solutions to these equations that can help explain the
reflections seen on the seismograms. It is therefor necessary to seek numerical solutions,
i.e. simulating the wave propagation, also called full waveform modelling. However, it
requires huge amounts of computing power to do realistic wave simulations, and for that
reason full waveform modelling is a fairly new discipline within the world of seismology.

Because there in the past 20 years or so has been made great advances in the available
computing power, it is now possible to run simple full waveform problems on laptops.
Simple 2D problems can easily run on modern laptops, but even a realistic 2D seismic
survey with hundreds of source and receiver configurations would require unhuman pa-
tience to simulate accurately. It is therefor common to use large computer clusters when
a full 3D problem, like in earthquake seismology, is modelled.

There exist different ways of doing full waveform modelling, but the two most com-
mon in seismology is the finite difference method and the spectral element method. In
this thesis I will present the spectral element method, both the theory behind it and some
of the more practical aspects, such as generating a suitable mesh grid. I will also walk
though the adjoint method [Tarantola, A. 1984], and how to use it with full waveform

modelling to reproduce sharp contrasts and discontinuous reflector geometry. A number

August 2021 Niels Fabrin Nymand



Page 2 of 61 SECTION 2. FULL WAVEFORM MODELLING

of examples will be given, as well as how the adjoint method handles the introduction of
random uncorrelated noise. Lastly, I use the adjoint method on a semi-realistic synthetic
problem, where model geometry, velocity logs and source-receiver setups are taken from
areal seismic survey of the Viking Graben in the North Sea. The goal is to see the adjoint

methods ability to find fault like structures using this more complex setup.

2  Full Waveform Modelling

In this section I will discuss full waveform modelling of seismic waves using spectral
element method. In short, full waveform modelling is simulating waves propagating
throughout a modelling domain with a predefined set of model parameters like p- and
s-wave velocities and density. Analytical solutions to the wave equation is limited, and
usually involve highly idealised systems with little root in reality, but can be useful to
test the accuracy of modelling algorithms. Numerical solutions to the wave equation is
much more flexible with regards to the complexity of the systems, and is mostly limited
by the computer power available. Two numerical methods frequently used in seismic
wave propagation are finite difference method and spectral element method. Finite dif-
ference has the advantage of being easy to understand and implement. One of the prob-
lems with finite difference methods is its limitations in dealing with complex geometry.
Modelling a seismic wave across a sloping boundary requires a fine grid to accurately
represent such boundaries, because the step like structure of the approximated boundary
would otherwise cause scattering. In the spectral element method such boundaries can
be modelled by creating a mesh grid that accurately represent the geometry present in the
geology, without increasing the grid resolution. Spectral element also has the advantage
of being able to have varying grid resolution throughout the modelling domain, depend-
ing on the model parameters, like the p- and s-wave velocities [Fichtner, A. 2011]. In

the following I will go through some of the theory behind the spectral element method.
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2.1 Spectral Element

As mentioned above, both finite difference and spectral element has its advantages and
disadvantages, but for this thesis I have chosen to use spectral element for modelling. In
the following I will give a brief description of the spectral element method.

The spectral element method is a subclass of the finite element method, with prop-
erties that makes it suited for wave propagation. In one dimension the derivation is as
follows.

Starting with the 1D scalar wave equation

pl@)i(z,t) — o |u(@) 5 ulz, )] = f(z,1) 2.1

where p is the density, u is the displacement, p is the elastic parameter, and f is external
forces (a source term). The model is limited in both time and space, x € G = [0, L] and
t € [0,T], where L is the length of the modelling domain and 7" is the modelled time.

The displacement field is subject to the Neumann boundary conditions
0 0
%U(CE? t)|ac:O = %U<ZE, t)|:c:L = 01 (22)
and the initial conditions
w(@,t)] =g = w2, t)|;—o = 0 (2.3)

Equations (2.1)-(2.3) is commonly known as the strong form of the wave equation, and
in finite difference this would be all we need. However, in finite element the weak

form is used. To derive the weak form, equation 2.1 is multiplied by an arbitrary, time

"Note that %u(x, t) is the strain, which is proportional to the stress. It is therefor also refered to
as the stress free boundary condition, and in 2D and 3D it would be n - |, 5 = 0, where n is the
direction normal to the boundary OG and o is the stress tensor.
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independent test function w, and is then integrated over space,

/pwildx—/w£<u£u> daf;z/wfdx (2.4)
o o Or ox o

Using integration by parts on the second term on the left-hand side,

/w2< 0 )dm [w 2 —/gw 2udav
o Ox ox | o O H ox
where the boundary condition 2.2 is used. The weak form of the wave equation can now

be written as,

/pwiidx%—/,uiwﬁudx:/wfdx (2.5)
e o Or Ox G

with the initial conditions,

/p w Ul de = /p WUl dx =0 (2.6)
G G

One of the advantages of the weak form, especially when modelling surface waves,
is the implicitly satisfied boundary conditions 2.2.
The first step in solving equations 2.5 and 2.6 is to lower our ambitions, and instead

look for solutions to an approximate displacement field u,
u(x,t) ~ u(z,t) Zu 2.7)

where 1), are space-dependent basis functions and u, are time-dependent expansion co-
efficients. The success of this approximation depend strongly on the choice of basis

functions 1);. The approximate weak form can then be written as,

- 0 g_ .
/GpijdeH‘/Gﬂ%wja—deﬂf—/G%fdx (2.8)
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where w = 1);. Inserting % to get the weak formulation for u,(t),

M,
> i) [ ot 0,00 wite) d |
i=1 L G
K;; fi(x,t) (29)
3 [ [ 1) gty ) ot de | = [ o) ) o
P ‘ G,u ox I ox )y ’
for all ;j = 1,...,n. This equation can be written as a matrix equation by defining

the vectors u(t) = [u;(t),...,u, ()T, £(t) = [f,(t), ..., f,,(t)]* and the mass matrix

’r'n

M = {M};} and stiffness matrix K = { K, }.
M -it(t) + K - u(t) = £(t) (2.10)

It would require very complex basis functions to accurately model the entire wave-
field as described in equation 2.10. The next step is therefor to once more lower our
ambitions, and divide the domain G into n, subdomains G, each with a local set of
basis functions ¢¢ (i = 1,..., N + 1). These subdomains is also called elements. The
displacement field within each element can then be approximated by,

N+1

U, )| peq, = Y uf(t)ys(x) (2.11)

=1

Equation 2.9 now holds for each element,

> () [ ole) o) i (o) o

>[40 | ulo) gu5te) vt d:z:}— /G V5o o) d
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or on matrix form,

M - i1°(t) + K€ - u®(t) = £e(t) (2.13)

To simplify the integrals that constitutes M, K® and f¢ the element domains G, are

mapped onto a reference interval [—1, 1] via an element transformations F,,

F, :[-1,1] = G,,

+1
L= Fe(7> = he’yT +z, (214)
7 =r(@) = M @) = 27— — 1

e

where h, is the width of the e’th element and x, is the position of the left boundary of

the e’th element.

Now we have arrived at the interesting part, what basis functions should we use?
What differentiates spectral element from other finite element schemes, is the choice
of N + 1 Lagrange polynomials of degree N as basis functions with Gauss-Lobatto-
Legendre points (GLL points) as collocation points,

N+1

bt = [[ =2, ij=12. N+1 (2.15)

where ~, are fixed points in the reference interval [—1, 1] called collocation points, which

in this case is GLL points.

There are a few good reason for this exact choice of basis functions and collocation
points that I will not go into detail with here, see [Fichtner, A. 2011] and [Igle, H. 2017].
However, one of the great benefits, from a computational perspective, is the fact that

the mass matrix become diagonal. This property comes from the orthogonality of the
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Lagrange polynomials,

N+1
My =T 2—L =5 2.16
i <7j>— H = 04 (2.16)

where 0, ; is the Kronecker symbol.

Combining the choice of basis functions and the element transformation lead to the

following equation,

= e ' , E(N) K(N) dmd

> i (0 / O )

N+1 1 9 3 p p
3w / o) (5 0) (VW) (R) G e

where p’, p’ and ’ are the transformed p, 1 and f. A benefit of using the GLL points is
that it makes it possible to apply the GLL quadrature formulas to accurately approximate
the integrals in equation 2.17. The integrals can be exchanged with a weighted sum of the
integrands evaluated at the GLL points. If 7y, is a GLL point and w;, is the corresponding

integration weight, equation 2.17 can then be approximated as,

N+1 N+1

S is(t) Y e (DAY (AN ()
i=1 k=1 Y

Y=k
N+1 N+1 2
(Nj 8 (N) d7 d$
+ Wi ( ( (7))( U (’Y)) (—) — 2.18
; Z k oy * dx) dv B ( )
Y=k
N+1
dx
_'jg:(ukg 7)
d
7 Y=k
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The orthogonality of the Lagrange polynomials comes into play in the first term as,

Y| =600 () = b =05

Y=k

which results in the mass matrix being diagonal,

All that is missing now is to collect it all into a global set of equations that can be
solved for the total displacement field. Another ’small” step is to extent all above to 2D

and 3D using the full elastic wave equation [Fichtner, A. 2011].

2.2 Modelling software
2.2.1 SPECFEM2D

There exist different software packages that can handle seismic wave propagation using
spectral element method. In this thesis I have chosen to use the SPECFEM2D package
[Komatitsch et al., 2012]. SPECFEMZ2D is an open-source software package capable of
doing forward and adjoint elastic wave simulations using spectral element. The choice
landed on SPECFEM2D because it is a proven piece of software and with relatively good
documentation 2. SPECFEM2D is great for testing smaller problems that can easily be
run on a modern laptop, and can then be upscaled to the full 3D problem at a later time

using SPECFEM3D together with a more powerful computer.

2Documentation for open source software is usually quite sparse, especially when dealing with a niche
subject like seismic waveform modelling with spectral element method.
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2.3 Mesh generation

Subdividing the modelling domain into elements is called mesh generation, and is in
many ways, the most important and difficult part of the spectral element modelling pro-
cess. As mentioned above, a great advantage of spectral element is the flexibility with
regards to geometrical complexity. To fully exploit this feature requires a well designed
mesh. In section 3 I will present a semi automatic way of extracting information about
the geometry of an area based on a seismic profile. The idea is to use this information to
create a mesh that honour internal boundaries of the model domain. To help create the

mesh, another piece of software is used, Gmsh.

2.3.1 Gmsh

There exist many different mesh generating tools, such as CUBIT and Gmsh. Following
the path of open source I have chosen to use Gmsh [Geuzaine et al., 2009] for mesh gen-
eration. Gmsh has good documentation, is relatively easy to use, but most importantly
it has the ability to be used together with Python. The connection with Python allows

for a semi automatic mesh generation routine.

3 Seismic Flattening

Seismic flattening is the discipline of removing geological structures in a seismic image.
The goal is to find a transform that maps the curved reflectors of a seismic profile to flat
horizontal reflectors. It can be thought of as finding the transform that arranges the
internal layers after age, or as removing the effects of geodynamical processes.

There are more than one way of finding the flattening transform. The most obvious
would be to do a manual/automatic tracking of all the major horizons present in the
seismic profile, and then do an elastic transformation of the seismic traces mapping the

horizons to flat lines. This method will guarantee that the tracked horizons becomes
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completely flat, but everything inbetween may not. Tracking horizons manually can
also be a time consuming process, especially in the case of large 3D data sets, which
require experience to be done well.

Another way to attack the problem would be to view the seismic profile as an 2D/3D
image, and use techniques developed in image processing to preform the flattening. In
the following I follow the derivation in [Parks, D. 2010]. The goal is to find the trans-
formation that relate the flattened image g(z, 7) with the input image f(z,t), where T
and t are depth coordinates®. Note that the variable 7 is constant along seismic events.
Each sample in the input image can be shifted up or down to create the flattened image.
Let s(z, 7) be the function describing these shifts. In figure 3.1 an example of such a
shift function is visualised.

From figure 3.1 it is easy to see that going from f to g can be done with the trans-

formation t(z, 7y) = 17, — s(z, 1), or generally

g(l‘,T) :f(x,t(.CE,T>) (3.1

where t(z,7) = 7 — s(x, 7) is the 2D mapping function relating the input image with
the flattened image.
A way of relating s with the input image can be found by taking derivatives on both

sides of equation 3.1 with respect to x:

g _0f ofor
ox Ox Ot Ox

where % = 0 per definition of g, and % = _g_j;
af 9f ds
ox ot Oz

3Here depth should be understood as the vertical axis of the image. It does not matter if this is a time
(e.g. measure in s) or depth (e.g. measured in m) axis
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X0 X1 X2 x
f(x0)
// T
R -
\\ /
t
Xo X1 X X
9(x,7)
To
T

Figure 3.1: Top figure shows an example of an event in f(x, t) with the shift function s(x, 7) visualised
as arrows. Bottom figure show that same event in g(z, 7).

d
gf;a = g_s (3.2)
B xr

Equation 3.2 is a bit problematic for a few reasons. First, the image almost certainly
contains noise, which will cause noisy derivatives. Second, if % = 0 the fraction is
undefined. Third, since s can be found by integrating both sides of equation 3.2, even
small errors in the derivatives can accumulate to large errors in s. A different approach
to calculating the derivatives is therefor needed, and such an approach could be the
structure tensor.

The structure tensor is used to find the direction of greatest change in a window
around every sample of the image, making it more robust towards noise. In a seismic
T

image the direction of greatest change is always normal to the events. If n = [n,, n,]

is normal to an event, then n,, and n, would be proportional to % and % respectively.
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of
= n,(x,t)
ple,t)=—-9% = % (3.3)
%%{ 7lt(1% t)
Equation 3.2 can then be rewritten as,
0
px,t) = —%S(I, T) (3.4)

3.1 Seismic flattening as an inverse problem

Equation 3.4 can be solved as a non linear inverse problem, where the non linearity is
introduced by the fact that the left side of the equation depend on ¢ and the right side
on 7. However by approximately linearizing equation 3.4, the shifts can be solved for

using a least-squares solution.

9 02, 7) = pla, 7 — U 7))

5’3 (3.5)
Y vy —
€55 (x,7)=0

Where the last equation in 3.5 is there to ensure that the vertical variation of s stays
under control. However, another formulation could be to have a tolerance k for the
maximum allowed vertical variation of s, \8%5| > k, instead of having the parameter
€. The algorithm for solving equation 3.5 is outlined in Algorithm 1. The number of

iterations needed, IV,

iters

to obtain a flattened image depend on the problem. An example
of how the algorithm performs can be seen in figure 3.2. The black lines in figure 3.2¢g
show the inverse flattening transformation, i.e. horizontal lines that have underwent
the flattening process in reverse. These black lines representing the inverse flattening
transform can then be used to generate a mesh that honour the internal boundaries, given

that the vertical axis is units of depth and not time.
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input : Image f
output: Flattened image g

StructureTensor (image):
Takes an image as input and calculates the direction of greatest change
n=[n,,n,’
GaussianConvolve (image):
Takes an image as input and convolves it with a Gaussian kernel
LeastSquaresSolver (G,d,mgy,max_iter):
An iterative least squares solver for the equation Gm = d, with m!%} as
starting guess. Stops when |’m{j b — m,{]‘*l}| is small, or j = max_iter
ImageWarping(image,s):
Warps an image according to the shift function s

F10 = GaussianConvolve(f)

st0} = 0 #starting guess for s

fori=1,N,,, do

# Calculating n,, and n, with the structure tensor
n,,n, = StructureTensor (F)

p= i
# Least squares solution to %s =p

s = LeastSquaresSolver(%,p,s{i_l})

while | Zs| > k do

# Least squares solution to %s =0
Spew = LeastSquaresSolver(%,O,S,max_iter =])
s = STLG’LU
end
Flit = ImageWarping(F{ifl},s)
8{7'} = S
end
g — F{Niter}

Algorithm 1: Flattening algorithm. In image processing a kernel, also known as
a convolution matrix, is a small matrix used in convolution with an image. A
Gaussian kernel is an often used kernel for removing high frequency noise, or
blurring.
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) ®

Figure 3.2: Seismic flattening preformed on a synthetic seismic profile. (a): Input image, (b): Input image
convolved with gaussian kernel to remove high frequency noise, (c): First iteration of flattening process,
(d): Second iteration, (e): Third iteration, (d): Fourth and final iteration, (g): Input image with inverse
flattening transformation overlay. Black arrows point in the direction of greatest change, n = [n,, n,]7
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4 The Data: Viking Graben

When collecting seismic data it is common to have a single source and multiple receivers,
either on both sides of the source or only on one side. Data is then collected throughout
the investigated area at multiple source and receiver configurations. This type of data
is called shot records. The ultimate goal of full waveform modelling is to help map the
subsurface by matching the modelled seismic to the observed seismic, also called full
waveform inversion, but more on this later. Because there exist no processing techniques
that can create new data, the most useful data should therefor be as raw as possible, i.e.
the shot records. In addition to the seismic data it is necessary to know something about
the physical properties of the area, which can come from well logs, and preferably at
multiple locations spread throughout the investigated area. Lastly it is also important to
know the source time function, wavelet, used when collecting the data. The wavelet can
be estimate with the use of the well logs.

In reality all of this information is rarely available. It turned out that readily available
pre-stack seismic data paired with well log data and wavelet information is a rarity.
However, in 1994 the Society of Exploration Geophysicists Research Commmittee held
a workshop titled ”Comparison of Seismic Inversion Methods on a single Real Data Set”
[Keys et al., 1998]. The goal of this workshop was to test seismic inversion methods
on the same data set, which included marine pre-stack seismic data and petrophysical
measurements collected at two wells that intersected the seismic line. In addition the
data set also includes a measured source pulse from the air gun array, which saves many
hours of wavelet estimation. The area of investigation, North Viking Graben, is located
in the North Sea.

Due to time restrictions it will not be possible to perform full waveform inversion
using this data set. What I will do instead is to use information about the geometry of
the area and velocity and density logs to create a semi realistic model that is based on

real data. I will also use the source and receiver setups in the modelling process. I will
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therefor briefly discuss the data available in the Viking Graben data set.

4.1 Seismic

The seismic data consists of 1001 shot records, where each shot was recorded on 120
receivers for six seconds sampled every 4ms. Receivers are spaced 25m apart, and
the distance from source to the near offset receiver is 262m. Receivers and source are
located 10m and 6m below the surface respectively. An example of a shot record is

shown in figure 4.1.

Receiver number

Figure 4.1: Shot record 832 of the Viking Graben data set cut off at 3 seconds. The data units are not
specified, but I assume it is in some units of pressure.

To get some information about the geometry of the area it is very useful to have a
depth migrated seismic section. It is unfortunately not directly included in the data set,
but in an attached pdf document is a scanned plot of a depth migrated seismic section
covering the area. Because it is only used in the flattening algorithm, a plot should be

okay as the algorithm is based on image processing. The scanned plot can not be used
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without a bit of work, because it is taken from a slightly curved page of a book. Via a
projection transform the picture is converted to an image with straight boundaries that
can hopefully be used in the flattening algorithm. In figure 4.2 the result of the projection
transform is shown. The data is in no way ideal, as it shows seismic wiggles. This means
that there is no way to distinguish zero amplitude from negative amplitudes, positive
amplitudes all have the same colour and the image is full of vertical lines. Because the
flattening algorithm look at structure in the image, it might still be possible to extract

information about the geometry.

CMP NUMBER
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00€l
=1 00c}
0011
000k
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=, = 2 - i < x T
2000 Ll e ST TE i e e LIS Ll ME’., " : oMl
1800 1700 1600 1500 1400 1300 1200 1100 1000 9200 800

CMP number

Figure 4.2: Top show a picture of a depth migrated seismic section of the Viking Graben area. After a
projection transform this picture has been converted into a data set, bottom plot.
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4.2 Well Logs

As mentioned, the data set include petrophysical measurments at two well locations. The
most important measurement is the compressional- and shear wave velocity logs. These
measurments, together with the density logs, are used to create a prior model, which I
discuss in more detail in section 7.

0

—— Vp log — Vs log —— Rho log
—— Vp blk —— Vs blk —— Rho blk

500 -

1000

1500 1

Depth [m]
N
o
o
o

2500 -

3000 A

3500 -

4000 T T T T T T T T T
1000 2000 3000 4000 5000 O 1000 2000 3000 1000 2000 3000 4000

Vp [m/s] Vs [m/s] Density [kg/m~ 3]

Figure 4.3: Well B log measurements versus blocked (blk) log interpretations. The blocked log is an
attempt to recreate the geological layers found in the well and their respective V),, V, p.

4.3 Wavelet: Source time function

Except for the prior model, the most important thing when doing full waveform mod-

elling is to get the correct source time function, or wavelet. The Viking Graben data

August 2021 Niels Fabrin Nymand



Page 19 of 61

SECTION 4. THE DATA: VIKING GRABEN

set actually does include a source time function that has been obtained by positioning a

hydrophone 250m below the air-gun array, only separated by water. The wavelet can

be seen in figure 4.4. Due to reasons I will discuss in section 7 I will not be using this

wavelet as source time function.

Viking Graben Wavelet
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Figure 4.4: Wavelet included in the Viking Graben data set together with its spectrum. The dominant
frequency shown is defined as the frequency with the maximum power.
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5 Full Waveform Inversion

In physics an inversion is the process of inferring information about a model based on
indirect measurements. It could for example be to extract information about the shape
of a drum based on the sound it makes [Gordon, C. 1996]. In this case the shape of the
drum would be the model we wish to estimate, and the sound of the drum, in the form
of an acoustic signal, would be the available data. The goal is then to setup a so called
forward model that relates the unknown model parameters, shape of the drum, to the
data, the sound it makes. Even this relatively simple problem, where everything other
than the shape is held constant, turns out not to have a unique solution. It turns out that
almost all inverse problems are haunted by the fact that multiple models can give the
exact same measurements. One such example could be to try and figure out the density
distribution of the earth based on a single gravity measurement at the surface. The for-
ward model is well know, and the relation between model and data is even linear, but
the task is still impossible, due to an infinite number of density distributions giving the
exact same gravity measurement at the surface. What makes the problem solvable is a
long set of assumptions and prior information. If one knows the radius of the Earth as
well as the assumption that the density on average increases with depth, it can be used
to constrain the solution. There may still exist an infinite set of possible solutions, but

some might violate physical principals, and the solutions can be further reduced.

Just like the examples mentioned above, full waveform inversion is simply the at-
tempt to use measurements, like seismograms, to infer information about an unknown
model, for example subsurface wave-velocity and density distributions. In full wave-
form inversion the forward model is full waveform modelling. Full waveform inversion
is a relatively new discipline, as it is only in the past 20 years or so that computers have

become powerful enough for it to be feasible. However, when doing inversion one seeks
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a model gradient, a direction that minimises a misfit function. To calculate this gradient
using a finite difference approach would require a forward calculation for each model
parameter, which in many cases might be millions. Even with todays computers, this
would be very impractical. It is therefor almost impossible to study full waveform in-
version without coming across the adjoint method. Before 1 discuss the adjoint method
further I would like to first comment on one of the most important aspects of inversion,

the prior model.

5.1 Prior Model

The ambiguity of the general inverse problems means that many different models are
equally valid from a mathematical perspective. In the probabilistic formulation of the
inverse problem [Tarantola, A. 2005] the solution is a probability distribution over the
model space. Such a distribution can be complex with many local maxima. In a deter-
ministic approach, using a steepest descent algorithm for example, will try to find such
a maxima. Which maxima it finds depend on where in the model space it starts. The
starting point is called the prior model, or the initial guess. Many things can help guide
such a guess like well logs, physical laws, geological knowledge of an area, intuition.
To estimate a model that satisfies data is usually easy, to estimate a good approxi-

mation to the true model depend greatly on the prior model.

5.2 The Adjoint Method

As mentioned above, the saviour of the full waveform inversion is the adjoint method.
One of the first people to use this method in seismology was Tarantola [Tarantola, A.
1984], where he showed that by only doing two simulation you can calculate a model
update. Before it would be necessary to do one simulation pr model parameter, which

could be millions, to calculate a gradient for a steepest descent algorithm for example.
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In the following I will give a brief description of the adjoint method. Starting with

the acoustic wave equation,

ﬁp(x,t) —V- {@Vp(x,t)} = s(x,1) (5.1)

where K (x) is the bulk modulus, p(x) is the density, s(x, t) is a source field and p(x, )
is the pressure field. For the sake of simplicity, let K, p, s, p represent the functions
mentioned above*. The solution to equation 5.1, or the forward problem, can be written

as,

p=t(K,p,s) (5.2)

where f represent a forward operator. The exact nature of f does not matter for now,
but it could for example be a full waveform modelling algorithm like SPECFEM2D.
In the real world the pressure field are measured at specific receiver location, x,., from
a source located at x,. Let the source function be treated as a point source s(x,t) =
d(x —x,)S(t), where S(t) is a source time function.

The hope, when doing inversion, is to find a model update that improves the dif-
ference between the observed pressurefield p, and the calculated pressure field from

equation 5.2. Let m represent a model and m, the prior model,

K K,
m=i{pl, My=| pg
S S,

The quality of the estimated model can be summarised by one number, the misfit. The

goal is then to minimise this misfit. Using a least squares norm, the misfit for m can be

*For example: In 1D the model domain could be descritized into N points, * = x1, T5, ..., T . In
that case K could be a vector specifying K at each point, K = [K(z,), K(x,), ..., K(z5)]7.
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formulated as,
2L(m) = [py — £(m)]"C, [py — f(m)] + [my — m]"C. }[my —m]  (53)

where C,, and C,,, are the covariance operators for the data set and model respectively,
these are often diagonal matrices. The second term is to ensure that the solution, ob-
tained by minimizing equation 5.3, does not become a victim of overfitting, also called

Tikhonov regularization. A steepest descent inversion algorithm can then be written as
my,; =my — oV, L(my) (5.4)

where £ is the iteration number and o, is a constant, which could be estimated by a
simple line-search method. This equation simply states that an update to m should be
found in the direction that reduces the value of £. To calculate the gradient of £ I will

first define a operator F/,
f(m + dm) — f(m)

F= om

)

the approximate first derivative of f at m in direction 0m. The gradient of £ can

then be written as [Tarantola, 1984],
— VmL(m) = C, FTCp, — f(m)] + (my — m) (5.5)
Insert this into equation 5.4,
m, ,, =m; +«a|C, FC py — f(my)] + (my —my) (5.6)

The model parameters, m, consist of three different sets of model parameters, K, p, S.
The derivative operator I can therefor also be split into three components F' = (F, F,, Fs),

and equation 5.6 can be written in component form,
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K Cr 0Ky Ky, - K,
Pri | T @ Copdpr | T Po— Py ) (5.7)
Ski1 Cg50Sy, So —Si

where C,, is assumed diagonal and C'y -, C

»p» Css are the diagonal elements,

0K, = Fop,
0py = FIop, -
08, = FIop,

0Py, = Cgl[Po — £(Ky, pr, Si)]

0Py, is the residuals of the measured seismograms and the synthetics from the forward

model, and can easily be calculated. However, to calculate 6K s 0P and S 1. requires

two operations. These two operations is really what the adjoint method is all about.
Firstly, Tarantola shows in the appendix of [ Tarantola, 1984] that we have to compute

the pressure field that corresponds to,

PL(x,t;x,) = /dx’g(x, 0;x,t) x ds(x’,t;x,),

(5.9)
Is(x,t;x,) = Z d(x —x,)0p,(%x,,t;X,)

where * refers to time convolution and g is the Green’s function defined via equation

5.1 as,

1 02 1V tx ) =6 ot —t 5.10
m@_ m :|g<X7 3 X >_ (X_X)<_ ) ( )

resulting in a solution to equation 5.1 as follows,

p(x,t) = /dx’g(x,t;x’,O) * (5(){ — XS)S(t>> (5.11)
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The difference between equation 5.9 and 5.11, is the source term used and the time
reversal of the Green’s function. The source term of p;, is interesting, because it treats
the receivers as sources and uses the residual of measured and computed wavefield as
the source time function. What the current model does not correctly account for is sent
back by the receivers.

Secondly, correlating the two wavefields at all points show areas where the model is

inadequate and needs to be modified. The model updates can be written as,

0
5Kk( / Z atpn X, t; Xg atpn<xvtaxs>

1

0p,.(x :—/dt VP (X, t;%,) - Vip,, (X, t; X, 5.12

= pL(xtix,)
S

where V is the spatial gradient operator. The equation for density and bulk modulus
simply state that the model update is non zero in areas where the adjoint wavefield p;,
and the forward wavefield p,, correlate.

What is so remarkable about the results presented in [Tarantola, 1984] is that the

model gradient can be computed in three steps,
1. Compute the forward wavefield, p,,

2. Compute the adjoint wavefield, p/,, by using receivers as sources with the residuals

of modelled and measured seismograms as source time functions
3. Correlate the two wavefields to calculate model updates, /K (x) and 05, (x)

Only two simulations are needed per iteration of the inversion algorithm. The adjoint
method is therefor a huge time saver when the forward model is slow, like in the case of

full waveform modelling.
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In the following section I will demonstrate a small example where the adjoint method

1s used.

5.3 Test Example

I'have set up a very simple example with the purpose of demonstrating the adjoint method
together with full waveform modelling. The true model and the prior model can be seen
in figure 5.1. The data consists of four different shot records, each recorded at 120 dif-
ferent receivers, see figure 5.1 for layout. The seismograms from shot record 0 is shown
in figure 5.2. All seismic data shown is the vertical component of the displacement”.
Like mentioned above, the adjoint sources, see figure 5.2¢, are the residuals of the mea-
sured and synthetic seismograms. The receivers, marked with blue on figure 5.1, are
then used as source points, where the adjoint sources are the source time functions. In
appendix A I have included a plot of the mesh grid, figure A.1 right, used together with
SPECFEM2D for the spectral element modelling. Right, left and bottom boundary are

absorbing and the top boundary is free, see equation 2.2.

Both the prior and the true model, m; and m,,.,,. respectivly, have a constant density,

Po(T,2) = prrve(T, 2) = 1600%,and zero shearmodulus, V (7, 2) =V, T, z) =

s,true (
0, where V is the shear velocity. The inversion algorithm used is just a simple steepest
descent algorithm,

mk+1 = mk + a5fhk (5.13)

where di,, is the model gradient, the direction that reduces the value of the misfit func-
tion,
L(my) = [pg — f(my)]" [py — f(my)] (5.14)

SPressure and vertical displacement are not interchangeable in the above equations, but everything
done here should not depend on whether the data is pressure or displacement. The choice to use displace-
ment is purely practical due to the use of preexisting software that was not setup for pressure data.

August 2021 Niels Fabrin Nymand



Page 27 of 61 SECTION 5. FULL WAVEFORM INVERSION

which is a simplified version of the one presented in [Tarantola, 1984]. « is determined
by a line search, see algorithm 2. To help organise the inversion process I have made
use of an open source Python based package that can work together with SPECFEM2D
to perform full waveform inversion. The package is called SeisFlow, and for more in-
formation see [Modrak et al., 2018].

The only thing missing before the inversion can proceed is the source time function.
I have made use of a Ricker wavelet, second derivative of a Gaussian, with a dominant

frequency of 12H z, see figure 5.3.

input : Initial model, m;, and observed seismograms, p,
output: Updated model, m;_ ;

Forward(m,,x,,S):

returns seismograms recorded at receiver locations X,
Adjoint (my,X,,0p;):

Returns gradient, dim,,

p;, = Forward(m,,x,,5)

# Calculate the adjoint sources
0Pr = Po — Py

dm, = Adjoint (my,x,,0p;)

# Pick an initial step length o =
my, o = my + agdm,

# Line search algorithm to determine step length
1=20
while £(my_, ;1) < L(my, ;) do
Qi1 = Q@+ 00y
My, = My + o, 0my
1=1+1
end
m;, =my + o;0my,

Algorithm 2: Simple inversion algorithm. Note that every iteration of the line
search algorithm requires a forward calculation to evaluate equation 5.14. In the
case of multiple source and receiver combinations, the gradient calculations (for-
ward and adjoint simulations) are run in parallel for each source and receiver com-
bination and merged to one gradient before the line search.
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Figure 5.1: Top plot show V,, for the true model. Bottom plot show V/, for the prior model. Density is
constant at p = 1600%, and shear velocity is zero, V, = 07

5.3.1 Inversion results and discussion

The result of the inversion can be seen in figure 5.4 and figure 5.5. The inversion suc-
cessfully finds the location of the box anomaly in the true model. The left and right
border of the anomaly in the inverted model are well defined, and match the true model.
The top and lower boundary are blurred, and have similar characteristics to the Ricker
wavelet.

In [Fichtner et al., 2006] they present a similar example with a box anomaly. In their

example they calculate the model gradient for two different wavelengths, one that is
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Figure 5.2: Shot record 0 (source located at shot position 0). (a): The observed data from the true model,
(b): Synthetic data from the prior model, (¢): The adjoint sources.
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Figure 5.3: Ricker wavelet with dominant frequency of 12 H z.

comparable to the size of the anomaly, and one that is significantly larger. The gradient
using the shorter wavelength have two significant signals, one from the top boundary and
one from the bottom boundary of the box. The gradient using the longer wavelength are

much better at mapping the entire box, but the left and right boundary is not as well
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defined. For the shorter wavelength the top and lower boundary of the box anomaly act
as two separate reflectors. The wavelength in my example is comparable to the size of
the anomaly ®, which explain the wavelet like characteristics of the inversion result.
Whether or not the inversion result can be deemed successful or not, depend on what
the goal is. If the goal is to reproduce the structure of the true model, then the result
seen in figure 5.4 is not very useful. In [Fichtner et al., 2006] they conclude that the
determination of structure require a more sophisticated iterative procedure that include
higher order derivatives. However, if the goal is to highlight and outline anomalies, as

is seen in figure 5.4, then the results of the inversion is very promising.

®The wavelength is A ~ 166m and the box anomaly measure 5201 x 100m,
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Figure 5.4: Top: The model gradient 1. Bottom: The inverted model
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Figure 5.5: Shot record 0 (source located at shot position 0). (a): The observed data from the true model,
(b): Synthetic data from the inverted model.
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6 Fault Assessment

The ability to detect faults in a seismic survey can be useful in predicting the potential
fluid migration, which would be of great interest in the field of CO,, storage for example
[Lubrano-Lavadera et al., 2018]. In the following I will present a number of simple
models with the goal of demonstrating the ability of the adjoint method to reproduce
discontinuities in seismic models. At the end of this section I will explore the effects of

random noise on the results.

6.1 Two box model

This first model is almost a complete copy of the test example discussed in the previous
section, just with a little added complexity in form of another box anomaly. The initial
model is identical to the one used in the test example, as is the wavelet. The true model,
together with the observed seismic and adjoint sources, can be seen in figure 6.1 and 6.2.
The objective is to see if the gradient from the adjoint method is able the reproduce the
step like structure of the two boxes. Looking at the seismic in figure 6.2 it looks very
similar to the test example in the previous section, figure 5.2. However, there is a small
visible kink at 0.4s between receiver number 40 and 50, which is not present in the one
box example.

In figure 6.3 the result of the inversion is shown. Just like in the single box problem
the inversion is able to capture the horizontal extension of the anomaly quite accurately,
but the bottom is less well defined. The step like structure is clearly visible in the gra-
dient for the top part of the anomaly. The step on the bottom become more of a smooth
transition between the two boxes in the gradient. Some of the explanation for this can
be found in the smoothing process that occur when the gradients are summed together.

I will explore this a bit further in the following.
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Figure 6.1: V,, for the true model. Density is constant at p = 1600%, and shear velocity is zero,
V, =02
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Figure 6.2: Left plot show the observed seismic, and right show the adjoint sources for the true model
shown in figure 6.1 and prior model shown in figure 5.1

6.2 Gradient summation

The combined gradient, as shown in figure 6.3, has the advantage of being able to illu-
minate the box from different directions, creating a more complete picture. There is a
downside however, and it comes from the smoothing process that is involved in com-

bining the gradients. To illustrate this I have included all the gradients, one from each
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Figure 6.3: Inversion result for the two box model. Top: The model gradient d1n,,. Bottom: The inverted
model

shot position, in figure 6.4. The ability to see the step structure is actually not possible
in almost all the individual gradients, except for shot position 3. These plots illustrate
very well why multiple shot positions are needed, but also how combining them might
remove vital information. Looking at the gradient from shot position 3 the step is very
well illuminated, as the shot is almost right above the contact point of the two boxes.
As one would expect, the information contained in the gradient depend on the dis-
tance from the source to the area of interest. This is also visible from the amplitude of the

gradients, which naturally makes the combined gradient a linear combination weighted

August 2021 Niels Fabrin Nymand



Page 36 of 61 SECTION 6. FAULT ASSESSMENT

by some measure of the inverse offset.

~

/4

shot position 0 shot position 1

- =3

I

i

- -

shot position 2 shot position 3
L ]
\~ — : )"
“—
ﬂ— J
-
|
shot position 4 combined

-1.0 -05 0.0 05 1.0
6Vp le-18

Figure 6.4: Model gradients for the two box model. Individual gradients from all 5 shot positions, as
well as the combined gradient in the lower right corner.

6.3 Horizontal reflector with fault

From the two box model we learned that discontinuous horizontal variations are possible
to detect. In this section I will lower the complexity and look at a horizontal reflector
with a vertical fault of 30m in height. The hope is that the fault location and size will
be easily detectable in the model gradient, as well as seeing how the method handles a
reflector that stretches the entire model domain. The prior model is again completely
uniform with V,, = 20007, p = 1600% and V, = 0, see figure 5.1. The true model
can be found in figure 6.5. The inverted model can be found in figure 6.6. I have not

included the model gradient, as the inverted model and model gradient are proportional
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for one iteration.

The reflector is well mapped in the illuminated areas, and the fault is not to be mis-
taken. The discontinuous nature of the true model is represented, not just in location,
but also in size. As mentioned earlier, the size of the dominant wavelength relative to
the structure you wish to resolve is key. It is however possible to resolve structure much
smaller that the dominant wavelength, as proven here. The dominant wavelength of the
source is A &~ 166m, making the fault size to dominant wavelength ratio ~ 12—1

The reflector in this example is perfectly flat, as is the mesh grid used in the spectral
element modelling, but what happens when the reflector is not flat? I have previously
mentioned that one of the advantages of the finite element method is the ability to create
grids that honour the sloping boundaries of the model. In the following I will therefor

show two models, where the only difference between them is the mesh grid used.
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Figure 6.5: V, for the true horizontal reflector with fault model. Density is constant at p = 16005,

and shear velocity is zero, V, = 07
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Figure 6.6: Inversion result for the horizontal reflector with fault model after one iteration.

6.4 The importance of a well designed mesh

One of the ideas behind a mesh that honour sloping boundaries, is to save time in the
simulation. Any type of smooth boundary could be modelled by a perfectly flat grid with
no spatial variation, by increasing the resolution of the grid. This is the strategy that is
needed in typical finite difference modelling, but with finite element modelling the grid

can simply follow this boundary, and potentially save significant computing power.

I have made one velocity model and two mesh grids. There are two ways to define
a velocity model in SPECFEM2D,
1. define areas of the mesh when creating the mesh and assign each area specific values,
2. create a unstructured (z, 2, V),) file that then gets interpolated onto the given mesh.
For more info see the SPECFEM manual [Komatitsch et al., 2020]. I have made use of
option 2. Option 1 can potentially give the most accurate model representations, but it
makes the mesh generating process much more complicated and time consuming.

Looking at figure 6.7 it is easy to see the difference between the velocity model
interpolated onto the square grid (see figure A.1 right), and the grid that try to honour the

reflector geometry (see figure A.1 left). Both grids have the same number of elements,
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the only difference is the internal shape. The question is now, does it actually make any
difference in the modelled seismic? To answer this I have made a forward calculation for
each of the two models, see figure 6.8. The difference between the two seismograms is
significant. The error introduced by the interpolation onto a square mesh have a similar
effect to adding small faults along the reflector, which introduce modelling noise. The
main reflector is still well represented, but scattering from the small faults justifies the

use of a mesh that follow reflector geometry. ’

6.5 Curved reflector with fault

In this section I want to explore how the inversion performs when the reflector is curved,
and the fault is on a slope. Using the model seen in 6.7c as the true model. The prior
model is still completely uniform with V,, = 2000, p = 1600%, V, = 0, but using
the mesh seen in figure A.1 left. The inversion result can be seen in figure 6.9. The
curved reflector is well represented in the inversion, and the fault is still visible but not
as dominating as in the horizontal reflector problem. Part of the explanation comes from
the fact that the fault is not as well illuminated, there is no shot position to the left of the
fault. Another explanation can be that the slope might soften the effects of a vertical fault
8. I say that the fault is still visible, even though it could easily be mistaken for a smooth
transition when looking at the inversion. The smooth nature of the inverted model comes
from the combining of the different shot record gradient estimations. Figure B.1 top left
(no noise) show the gradient estimation from shot record 4, the one closest to the fault.
There it is easy to see that the discontinuous nature of the fault leave a clear imprint in

the model gradient.

7 Another benefit of using a mesh that follow reflector geometry is the possibility of using layer depen-
dent element spacing. The maximum allowed size of the elements in the mesh depend on the wavelength
of the propagating waves. It is therefor common practice to vary the size of the elements depending on
the propagation velocity of a given layer.

8in the limit where the reflector slope approaches vertical the vertical fault signal would approach zero.
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Figure 6.7: Comparison between velocity model interpolated onto a square mesh (b) vs onto an adapted
mesh (c). (a) show the true velocity model, (b) shows (a) interpolated onto a square grid (figure A.1 right),
and (c) shows (a) interpolated onto an adapted grid (figure A.1 left)

The big question when dealing with any kind of inversion routine is: how does it

handle noise? I will explore this in the following subsection.
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Figure 6.8: Comparison of forward calculation between two different models, for shot position 1. Left is
from model (b) in figure 6.7 and right is from model (c).
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Figure 6.9: Inversion result for the curved reflector with fault after one iteration.

6.6 The adjoint method and random noise

One of the classical problems within inversion theory is how to deal with noise. Any
physical measurement is associated with noise, and the perfect inversion method would
only fit the part of the data that is not noise, such a method sadly does not exist. What I
will explore here is how is the inversion result of the curved reflector with fault affected

by the introduction of random noise. Let p,(x,.,?;X,) be the observed seismogram at
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receiver location x,. and source position x, 7(¢; X,.) be arandom realisation of uniformly
distributed white noise and S(¢) be the source time function used to generate p,, then

the noisy seismogram can be expressed as,

ﬁO(Xm t? Xs) = pO(Xrﬂ ta Xs) + E(n(tﬂ Xr) * S(t>> (61)

where * denotes convolution and ¢ is a constant used to scale the noise levels. The
reason for convolving the white noise with the source time function is to get noise with
a wavelength like the real signal. This also helps the simulation from becoming unstable.

I have included noise of three different . The three ¢ has been chosen as follows:
L [e(n(tix,) = ()] < 2 max(|op])

2. 5<n(t;xr) * S(t)> < max(|dp])

3. 5<n(t;xr)*5(t)) < 2max(|ép|)

where dp is the observed seismic with the direct wave subtracted. The noise is scaled
with respect to the signal from the reflector and not the direct wave. In figure 6.10 the

three different noise levels together with the resulting gradients can be found.

The worst case noise scenario, case 3., the reflector is still clearly visible, but the
noise does certainly have an effect on the gradient. The noise mostly manifests itself at
the top of the model gradient which might be due to the large correlation between the
direct wave and noise signals. Even though the noise does not hide the true reflector,
it does hinder the inversions ability to reproduce the seismic signal from the reflector.
In figure 6.11 it is clear that the simulated data from the inverted model does actually
succeed in removing most noise, but the amplitude of the reflector almost disappears
with increasing noise levels. The amplitude of the reflector could be increased by in-

creasing «, but that would also increase the strong noise induced anomalies of the model
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gradient. It might be possible to help the inversion by introducing some post processing
of the model gradient, like weighing the values by depth.

The fault is not very visible from the combined gradient, just like in the example
with no noise, however in figure B.1 the fault still leave a clear imprint in the gradient

for all three noise levels.

-200

Z[m]

—600

—800

=1000

—-200

-400

Z[m]

=600

-800

=1000

-200

Z[m]

—600

—800

=1000

6vp le-19

Figure 6.10: The observed data from shot position 2 with three different levels of noise (right) with the
corresponding gradient calculation from the adjoint method (left). The numbering correspond to the three
different noise levels listed above.
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Figure 6.11: Observed data from shot position 2 with three different noise levels (left) and simulated data

after inversion (right).
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7 A semi realistic problem

In this section I want to demonstrate how the flattening algorithm can be used to create
a mesh as well as a prior model. I then want to test how the adjoint method reacts to
faults that are not included into the prior model. At the end I introduce a form of model

noise to my prior model.

7.1 Flattening and mesh generation

In section 4.1 I convert a picture of a depth migrated seismic section into a data set. The
purpose of this data is to extract information about the geometry of the area, and to do
this I use the flattening algorithm discussed in section 3. The result of the flattening
can be seen in figure 7.1. The flattening process works, almost. The strong reflectors
are for the most part flattened correctly, but some areas, especially the bottom, do suffer
from the data quality. The data set is practically binary, which means any event, no
matter amplitude, are weighted equally when calculating the structure tensor. It helps to
convolve the image with a 2D Gaussian kernel, but it is a problem. The black and orange
lines seen in figure 7.1 represent the inverse flattening transformation. The orange lines
are specifically picked to design the mesh and prior model.

The orange lines are then used to specify layers in the mesh. Note that the lines are
used to define the geometry, not the layer boundaries. As mentioned in section 4 there
are two wells covering the area, and to limit the size of the model I only focus on the
area close to well B (CMP number 1572). The orange lines are imported into Gmsh to

create the finite element mesh, see figure 7.2.

7.2 Designing the prior model

Here I will show a very simple, and perhaps naive, way to design a prior model that in-

volves the inverse flattening transform. At well B the vertical velocity and density vari-
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Figure 7.1: Flattening process of the depth migrated seismic section for the Viking Graben data set. 1.
The input image; 2. Input image convolved with gaussian kernel with structure tensor overlay (black
arrows); 3. Warped image after 5 iterations of the flattening algorithm with structure tensor overlay; 4.
Input image with inverse flattening transform overlay (black and orange lines).

ation are measured, and assuming that the measurements and interpretations are correct,
it is reasonable to expect that the immediate area around the well share these charac-
teristic. I take this assumption further and assume that the entire 2D profile share these
velocity and density variations. Horizontally extending the log interpretations over the
entire model domain and using the inverse flattening transform to reshape into the cor-
rect geometry, see figure 7.3. Figure 7.4 show the velocity model of the actual prior

model used, which is a cutout of the full model shown in figure 7.3°

Note that the X axis point opposite directions in the two figures
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Figure 7.2: Mesh used for the Viking Graben model near well B. The element size is not to scale, the
real mesh used in SPECFEM2D is much finer yielding it impractical to show. The X coordinate is in a
reference coordinate system following the seismic segy file. Well B is located at X=21262m
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Figure 7.3: Horizontally extended V, log (left) transformed into the prior model using the inverse flat-
tening transform. The velocity model on the right is plotted on top of the depth migrated seismic.
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Figure 7.4: The prior V,, model for the Viking Graben area near well B. Well B lie at the right of the
model at X=21262m

7.3 Designing the true model

Because this is a synthetic problem the true model also has to be designed, and for this
I start with the prior model and add small layer extrusions. The true model can be seen
in figure 7.5. The only thing differentiating the true model from the prior mode is the
layer extrusions highlighted by white boxes. I use two different shot positions with
corresponding receiver setups. Shot position 0 and corresponding receiver positions can
be seen in figure 7.2, and shot position 1 is exactly the same setup but everything is
translated 1000 m to the left. Figure 7.6 show the “observed” shot records (modelled
with the true model) together with the adjoint sources. From this it is clear that the
extrusions, or at least some of them, are visible on the seismograms. This means that
the adjoint method should be able to highlight these on the model gradient.

I mentioned in section 4 that I would not be using the wavelet shown in figure 4.4.
The reason for this is because it containes a lot of high frequencies, which demands a
fine mesh to be able to resolve those shorter wavelengths, which in turn increases the
computing time needed. Instead I use a Ricker wavelet with a dominant frequency of 20

Hz.
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To further reduce the computing time needed the models are acoustic, shear veloc-
ities are set to zero everywhere. Eventhough the reduced computing time is a major
reason for only doing acoustic models, it is not the real reason why I have chosen to
set the shear velocities to zero. The first model I used had a top layer of around 350
m with water, V,, ~ 15007 and V; = 0, followed by solid layers, V, # 0. I wanted
to include this fluid to solid interface, to keep the problem as realistic as possible, but
the SPECFEM2D adjoint simulation could for some reason not handle this transition,
and would only propagate waves from the adjoint sources in the fluid region. To avoid
having to figure out where in the many thousands lines of code the problem originated
and coming up with a solution, I set the shear velocities to zero everywhere.

The boundary conditions used for the modelling are absorbing everywhere.

X [m]
17000 18000 19000 20000 21000 22000

_s00 J| 7 shot position 0

~1000
~1500
E —2000
N
~2500

—3000

—3500

—4000

1500 2000 2500 3000 3500 4000
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Figure 7.5: The true V), model. The white boxes highlight the layer extrusions that differentiate the true
model from the prior model. The orange star and blue dots show the locations of shot position 0 and the
corresponding receivers respectively.
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Time [s]

Time [s]

=4000 =2000 o 2000

Figure 7.6: Observed shot records (left), modelled with the true model (see figure 7.5), and the adjoint
sources (right), residuals of the observed and synthetic seismograms. Note the different colorbars for left
and right.

7.4 Fault Assessment

Before I start showing the results of the adjoint method I want to establish a bit of notation

to keep track of it all. Let F{j(X, Z) and F (X, Z) represent the model gradients at point
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(X,Z) of shot position 0 and 1 respectively. Let D represent a depth weighing function,

D:F(X,2) = F(X,2)-Z

and let H represent a simple highpass filter'?.

Figure 7.7 show the resulting model gradient. The model gradient without any
processing suffer from two things: amplitude decrease rapidly with depth and long
wavelength signals. The long wavelength signals are dealt with by applying H and
the amplitude is helped by applying D. The good news is that the resulting gradient
D[H (F,+ F,)] do show strong signal at all of the fault locations. The bad news is that

it also show fault like signals at locations where no faults exist in the true model.

7.4.1 Model noise

In section 6 I demonstrated the effects of uncorrelated random noise in the seismograms
on the resulting model gradients. Here I want to show what happens when the prior
model is slightly altered. To create the prior model the well log and inverse flattening
transform was used, but what happens if noise is added to the V,, log? All the layers
of the prior model would have slightly different velocities compared to the true model.
Figure 7.8 show the new velocity log used to create a new prior model, called well noise
model, by following the procedure explained in 7.2. The model gradient when using the

well noise model as prior model can be found in figure 7.9.

7.4.2 Discussion and conclusion

The adjoint method estimates a model gradient for the prior model without noise, see

figure 7.7, that show strong signals at the locations of the five missing faults. It also

10Tn practice H is purely a image processing technique that return the difference between the input and
the input convolved with a Gaussian kernel.
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Figure 7.7: Model gradient from the adjoint method. Top left is the sum of the two gradients, one for each
shot and receiver setup. Top right show is a highpass filtered version of top left. Bottom is a highpass
filtered and depth weighted version of top left. Every gradient is normalized before plotted. The white
boxes are located at the fault locations of the true model, and the red boxes are located a fault like signals
where no fault exist.

show signals similar to the fault signatures at locations that are perfectly represented by
the prior model. In figure 7.7 I highlight four such signatures, and what they all have in
common is that they lie such that a ray from the source to the false fault location will
intersect a true fault location. Another thing they have in common is that they lie on
a strong reflector, see 7.4. Because the rays traveltime is slightly altered by the faults
(layer extrusions), the locations of reflectors under these faults are moved slightly up or
down, in travletime, compared to the reflectors of the prior model. The false faults are

just “echos” of the true faults.

The estimated model gradient for the well noise model is more complicated. Because
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Figure 7.8: Blue show the original V), log found in figure 4.3 and orange show the new velocity log. The
orange log is used to create the prior model: well noise model
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Figure 7.9: Model gradient from the adjoint method using well noise model as prior model. The white
boxes are located at the fault locations of the true model

all the layer velocities are slightly off compared to the true model, the reflectors are also

going to be located at the wrong travletime. This means that the observed and synthetic
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seismograms no longer match and the layer boundary reflections no longer cancel each
other in the residual. The adjoint method will therefor highlight all the layer boundaries
that have a wrong average velocities above. This makes the model gradient far more
complicated, see figure 7.9, but not hopeless. Fault nr. 1,4 and 5 (see numbering of the
white boxes) still leave signatures that make them distinguishable. Fault nr. 1 manifests
itself as a discontinuity of the strong horizontal reflector located around Z = -1250 m.
Fault nr. 4 and 5 are both easy to spot. Fault number 2 is not possible to see, and
also the weakest in terms of velocity contrast in the true model. Fault number 3 does
have some of the characteristics of fault nr. 1, but would be difficult to identify without
knowing where to look. Something important to note here is that I only use two source
and receiver setups. If this was an inversion of the real Viking Graben prospect, there
would be a source and receiver setup for every 25m. I chose to limit the problem to
only have two source and receiver setups, to save computing time. [ believe more shot
positions would improve the results, because the shot position seems to have a big impact
in the methods ability to reproduce discontinuities, as seen in figure 6.4.

I have made a second type of model noise that I have included in appendix C. I will

not discuss it here as the effects are similar to the well noise model.
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8 Conclusion

In this thesis I have presented a way of extracting geometric information from a depth
migrated seismic profile to be used in generating a mesh and prior model. A simple flat-
tening algorithm is used for this purpose, where the inverse flattening transform can be
used to create a mesh for spectral element modelling that honour the sloping boundaries
of the model. A practical example is shown where the inverse flattening transform is
used to create the mesh as well as the prior model from well log data.

The adjoint method has been used together with simple 2D models to demonstrate
the methods ability to reproduce sharp contrasts and discontinuous velocity structures
from multiple shot records. The method is able to locate and horizontally delimit anoma-
lies not accounted for by the prior model. The illumination of the anomaly by the shot
and receiver locations play an important role in the methods ability to highlight sharp
boundaries. However, the process of combining these shot and receiver locations into
one gradient estimate, can also result in a smearing that hides the sharp contrast. Shot
positions located close to the fault lead to model gradients that show discontinuous re-
flector geometry that can help identify sharp contrasts not accounted for in the prior
model.

I have also demonstrated how the gradient estimations by the adjoint method is
affected by different levels of uncorrelated random noise of wavelet frequency. The
method seems to be robust towards this type of noise which mostly manifests it self as
large anomalies near receiver/source locations, resulting in weak velocity contrasts of
the inverted model, but the reflector geometry is still preserved.

Lastly, I have used the adjoint method to try and locate small fault like structures in
a semi-realistic synthetic model, based on geometry and well log data from the Viking
Graben area in the North Sea. The methods ability to locate and partly reproduce the
small faults not included in the prior model, depend greatly upon the quality of the prior

model. By introducing small errors in the prior velocity model, it is possible to partly or
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entirely hide the signature of the faults. Because these results are only based on the use
of two shot positions, it is very possible that the method would be able to distinguish the

faults from the model noise by including more shot locations.
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Appendix A Mesh
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Figure A.1: Left
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Appendix B Curved reflector and random noise
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Figure B.1: Model gradient estimation from shot position 4 for the curved reflector with fault with and
without noise. Noise level 1,2 and 3 are explained in section 6.6.

Appendix C Low frequency model noise

In section 7 I show the effects of model noise by changing the propagation velocities of

each layer in the prior model, compared to the true model. Here I will show the effects

of another type of model noise. I simply add a low frequency velocity perturbation to

the prior model shown in figure 7.4. Figure C.1 show the velocity perturbation. Figure

C.2 show the model gradient after adding the velocity perturbation.
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Figure C.1: Low frequency velocity perturbation to be added to the prior model.
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Figure C.2: Model gradient from the adjoint method using low frequency noise model as prior model.
The white boxes are located at the fault locations of the true model
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