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Abstract
With a diverse range of mesoscopic and macroscopic physical implementations and
quantum-level control, cavity optomechanics is now a mature research direction in
experimental and theoretical quantum optics alike. Recently in the article “Trajec-
tories without quantum uncertainties in composite systems with disparate energy
spectra” Zeuthen et. al. made a theoretical proposal which can further extend the
set of physical platforms that can implement such quantum-backaction evasion
that rely on the concept of a negative-mass reference frame. In particular, their
work showed how an intrinsically positive-mass mechanical oscillator can be con-
verted to an effective negative-mass oscillator with a down-converted frequency
using two-tone driving and feedback.

Abstract In this thesis we generalize the work by Zeuthen et. al. by going be-
yond the unresolved sideband regime and including variable detuning and relative
strength of the two drive tones, leading to a number of new effects relevant for
the practical implementation of the scheme. Firstly we make considerations on the
consequences of dynamical back-action arising from a non-zero detuning between
the cavity resonance and the relative drive frequency, and how such effects affect
the effective oscillator parameters and our ability to remove the extraneous noise
induced by the two-tone driving. Unlike much previous work on quantum back-
action evasion in cavity optomechanics, we do not limit our theory to neither the
resolved nor unresolved sideband regime. We find that it is possible to obtain a sim-
ple analytical theory in the limit where the light-oscillator interaction generates
sidebands that are well-separated and narrow compared to the cavity susceptibil-
ity. Within this simple theory we consider two noise removal schemes: We first
show that it is possible to completely suppress the extraneous light noise by using
a homodyne measurement, provided the power of the two drive tones is used to
equalize the response from the corresponding sidebands. Secondly we show that
in absence of such balancing, only the amplitude or phase part of the extraneous
noise can be removed using feedback based on a homodyne measurement, with
the residual noise leading to an effective elevated thermal bath occupancy of the
mechanical oscillator. The present work establishes that an optomechanical system
with arbitrary degree of sideband resolution can realize an effective negative-mass
oscillator.
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Introduction

“ A long time ago in a galaxy far, far away….”

- Star Wars, George Lucas

One of the major consequences of quantum mechanics is the fundamental lim-
its imposed on the precision of measurements, for example simultaneous tracking
of a pair of canonically conjugate variables such as position 𝑋 (𝑡) and momentum
𝑃 (𝑡). These limits all stem from the non-commutative nature of the given observ-
ables of interest, for example the canonical commutation relation

[
𝑋, 𝑃

]
= 𝑖 results

in the famous Heisenberg uncertainty relation Var(𝑋 )Var(𝑃) ≥ 1
4 . In experiments

such limitation on measurement precision is enforced by the quantum back-action
imposed on a system by the probe [2]. If e.g. you measure the position of a moving
mirror by probing it with a laser, the quantum fluctuations of the laser field leads
to a stochastic radiation pressure on the mirror.

One way to circumvent the limitations set by the uncertainty principle is by
only measuring commuting operators; for a set of commuting operators, usually re-
ferred to as a qunatum-mechanics free subspace (QMFS) [8], there is no uncertainty
relation, given the right engineering, the set of operators can be free of quantum
back-action. One particular instance of such a QMFS for measurement of position
and momentum of a quantuum oscillator, can be constructed by measuring the sys-
tem of interest relative to an effective negative mass oscillator [7]. For definiteness
say we have two quantum harmonic oscillators with position and momentum 𝑋1,
𝑃1 and 𝑋2, 𝑃2, their Heisenberg equations of motion (EOMs) are:

𝑋𝑖 (𝑡) = cos(𝛺𝑖𝑡) ˆ̃
𝑋𝑖 (𝑡) + sin(𝛺𝑖𝑡) ˆ̃

𝑃𝑖 (0), (1.1)

𝑃𝑖 (𝑡) = cos(𝛺𝑖𝑡) ˆ̃
𝑃𝑖 (0) − sin(𝛺𝑖𝑡) ˆ̃

𝑋𝑖 (0) (1.2)

These equations show that in the typical scenario of a weak, continuous mea-
surement of an individual oscillator position 𝑋𝑖 (𝑡) over several periods 2𝜋/|𝛺𝑖 |
amounts to a simultaneous measurement of the non-commuting pair ˆ̃

𝑋𝑖 (𝑡) and
ˆ̃
𝑃𝑖 (𝑡), resulting in both being contaminated by quantum backaction. To remedy
this, we now define a composite set of so called EPR variables:
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𝑋EPR (𝑡) =
𝑋1 (𝑡) + 𝑋2 (𝑡)√

2
(1.3)

𝑃EPR (𝑡) =
𝑃1 (𝑡) − 𝑃2 (𝑡)√

2
(1.4)

For 𝛺1 = 𝛺2 = 𝛺0 the EPR variables for the two harmonic oscillators are.

𝑋EPR (𝑡) =
[ ˆ̃
𝑋1 (𝑡) + ˆ̃

𝑋2 (𝑡)√
2

]
cos(𝛺0𝑡) +

[ ˆ̃
𝑃1 (𝑡) + ˆ̃

𝑃2 (𝑡)√
2

]
sin(𝛺0𝑡), (1.5)

𝑃EPR (𝑡) =
[ ˆ̃
𝑃1 (𝑡) − ˆ̃

𝑃2 (𝑡)√
2

]
cos(𝛺0𝑡) −

[ ˆ̃
𝑋1 (𝑡) − ˆ̃

𝑋2 (𝑡)√
2

]
sin(𝛺0𝑡) (1.6)

A weak, continuous measurement of, e.g., 𝑋EPR still cannot be QBA-free seeing
as its decomposition into slowly-varying operator combinations also consists of
non-commuting variables:[ ˆ̃

𝑋1 (𝑡) + ˆ̃
𝑋2 (𝑡)√

2
,

ˆ̃
𝑃1 (𝑡) + ˆ̃

𝑃2 (𝑡)√
2

]
= 𝑖 (1.7)

However consider the case of two counter rotating oscillators 𝛺1 = −𝛺2 = 𝛺0 with
𝛺0 > 0, then something interesting happens, namely we now have:

𝑋EPR (𝑡) =
[ ˆ̃
𝑋1 (𝑡) + ˆ̃

𝑋2 (𝑡)√
2

]
cos(𝛺0𝑡) +

[ ˆ̃
𝑃1 (𝑡) − ˆ̃

𝑃2 (𝑡)√
2

]
sin(𝛺0𝑡), (1.8)

𝑃EPR (𝑡) =
[ ˆ̃
𝑃1 (𝑡) − ˆ̃

𝑃2 (𝑡)√
2

]
cos(𝛺0𝑡) −

[ ˆ̃
𝑋1 (𝑡) + ˆ̃

𝑋2 (𝑡)√
2

]
sin(𝛺0𝑡) (1.9)

in which case a continuous measurement of 𝑋EPR (𝑡) is a simultaneous measure-
ment of the commuting pair consisting of 1√

2

( ˆ̃
𝑋1 (𝑡) + ˆ̃

𝑋2 (𝑡)
)

and 1√
2

( ˆ̃
𝑃1 (𝑡) − ˆ̃

𝑃2 (𝑡)
)

(which also determines 𝑃EPR (𝑡)) .
So we see that if one of the oscillators has an effective negative frequency,

also referred to as an effective negative mass oscillator(1), and we measure the
composite variables rather than a single subsystem we can in principle do so we
now limitations imposed by quantum mechanics. A futher intersting point, is that
the EPR variables satisfy the so-called Duan criterion:

Var
[
𝑋EPR (𝑡)

]
+ Var

[
𝑃EPR (𝑡)

]
< 2 (1.10)

and consequently the two subsystems, i.e. the two harmonic oscillators are
entangled. The takeaway is that constructing a QMFS by utilizing an effective nega-
tive frequency can be used both for quantum enhanced sensing and entanglement
generation.

The consideration so far now begs the question, are there such systems which
display an effective negative mass? Indeed there are! The prototypical example is
the collective spin degree of freedom for a polarized ensemble of atoms precessing
in a constant bias magnetic field can display a negative Larmor frequency [6].

(1) QBA evasion utilizing an effective negative frequency are often referred to as “measure-
ments in the effective negative mass reference frame”, the reason being the the sign of the
frequency can equally well be assigned to the mass. However this is more of a slight of hand
than anything profound. Personally I prefer to refer to the susceptibility of the system at
hand, since a 𝜋

2 phase shift in the susceptibility is what causes this “negative mass” behavior,
however the negative mass usually grabs more attention.
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Recently in [10] a proposal was made for generating such an effective negative
mass in an optomechanical system, which would allow for even broader appli-
cations of the QMFS based QBA evasion. This proposal introduces a scheme for
generating an effective mechanical oscillator with a tunable resonance and an ef-
fective negative frequency. The basic idea of the scheme is based on the following
consideration. In a canonical single-tone driven optomechanical system, a single
laser tone is used to drive a cavity with a mechanical oscillator embedded in it.
The mechanical motion of the oscillator is imprinted on the light in the cavity as
two sidebands, the lower sideband is due to a two-mode-squeezing interaction and
the upper sideband due to s beam-splitter interaction. These two sidebands are
seperated from the drive frequency by exactly the mechanical frequency. If you
instead drive a cavity with two tones, the optomechanical interaction leads to four
sidebands. By suitable tuning of the two tones, the central sidebands can be made
to mimic the response of the single-tone-driven system, except with the sidebands
resulting from two-mode-squeezing and beam-splitter interaction, respectively,
having swapped positions. This is the characteristic of negative-frequency oscilla-
tor seeing as, e.g., cooling via the beam-splitter interaction requires extracting a
negative amount of energy from the oscillator. However, the two processes associ-
ated with the additional, outermost sidebands must be somehow suppressed. In the
article by Zeuthen et. al they show that it is possible to simply measure the light
near the outer sidebands which allows one to remove the extraneous noise.

However their proposal is limited to the case where the linewidth of the cavity
is large compared to the sideband seperation, the so called unresolved sideband
regime, and they do not account for the dynamical back-action arising when the
mean frequency of the two drive tones is detuned from the cavity resonance.

In this thesis we will generalize the work started by Zeuthen et. al. by ac-
counting for the dynamical back-action arising from detuning, and by making no
assumption on the cavity resolution: our work captures both the resolved - and un-
resolved sidebands regime. Our guiding principle will be to find a simple analytical
theory which can be used as a starting point for further investigation.

1.1 Outline

• In Chapter 2 we discuss how to measure quadratures of light. Being able to
measure quadratures is an essential part of the noise suppression scheme we
need to generate a use full effective negative mass oscillator

• In Chapter 3 we introduce single-tone optomechanics. This is essential as our
end goal is to engineer an effective single-tone driven oscillator.

• In Chapter 4 we introduce two-tone driven optomechanics by deriving the
Heisenberg-Langevin equations of motion which will lay the foundation for
the remainder of the thesis.

• In Chapter 5 we use the contents of the previous chapters to derive simple
theory for two-tone optomechanics which allows us to examine the possibil-
ity of generating an effective negative mass oscillator.
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Measurement of Light
Quadratures

“ And the Lord spake, saying, ”First shalt thou take out the Holy
Pin. Then shalt thou count to three, no more, no less. Three shall be the
number thou shalt count, and the number of the counting shall be three.
Four shalt thou not count, neither count thou two, excepting that thou
then proceed to three. Five is right out. Once the number three, being the
third number, be reached, then lobbest thou thy Holy Hand Grenade of
Antioch towards thy foe, who, being naughty in My sight, shall snuff it.”

Brother Maynard

- Monty Python and the Holy Grail, the Pythons

In this chapter we discuss various methods for measuring quadratures
of light. This is crucial for the present work which aim is to engineer
the interaction between light and a localized oscillator by means of feedback
loops based exactly on the measurement of light In particular we focus
on so called homodyne measurements, where a signal of interest is mixed
on a 50/50 beam splitter with a strong coherent field, referred to as the
local oscillator (LO). We will first discuss homodyne measurements for
an arbitrary signal field and then using the so called two-photon formalism
which is natural when the signal of interest is contained in two sidebands.

2.1 Balanced Homodyne Detection

2.1.1 Homodyning with a Generic Signal

In cavity optomechanics the degrees of freedom we usually are interested in are
the position and momentum of the mechanical oscillator or the phase and ampli-
tude quadrature of the intra-cavity field. The information about the optomechan-
ical dynamics are imprinted in the quadratures of the light exiting the cavity and
thus it is of great interest to measure these quadratures. Let us refer to the light
we wish to measure as the signal field represented by the annihilation operator(1)

(1) In this section we work in a frame rotating at the carrier frequency 𝜔𝑠 of the signal field

Page 4 of 65



Chapter 2. Measurement of Light Quadratures 5

𝑎𝑠 (𝑡). We assume that the signal field is weak in the sense that it is dominated by
quantum fluctuations. From the signal field annihilation operator we can define an
amplitude quadrature 𝑞𝑠 (𝑡) and a phase quadrature 𝑦𝑠 (𝑡) as follows[3]:

𝑞𝑠 (𝑡) =
𝑎𝑠 (𝑡) + 𝑎

†
𝑠 (𝑡)√

2
(2.1a)

𝑦𝑠 (𝑡) =
𝑎𝑠 (𝑡) − 𝑎

†
𝑠 (𝑡)√

2 𝑖
(2.1b)

These quadratures satisfy the canonical commutation relation:

[𝑞𝑠 (𝑡), 𝑦 (𝑡 ′)] = 𝑖𝛿 (𝑡 − 𝑡 ′) (2.2)

Another important observation can be made by writing the quadrutures in Fourier
space(2):

𝑞𝑠 (𝛺) = 𝑎(𝛺) + 𝑎† (−𝛺)
√

2
, (2.3a)

𝑦𝑠 (𝛺) = 𝑎(𝛺) − 𝑎† (−𝛺)
√

2 𝑖
, (2.3b)

Namely, we see that the quadratures are two-photon quadratures in the sense
that they each depend on two frequencies ±𝛺 relative to the LO frequency. We will
elaborate further on the two-photon nature later. Our goal for now is to describe
how to measure these observables. Measuring light will at the end of the day boil
down to counting photons with a photo detector, so we need to devise a scheme
which will relate the quadratures of interest to photon counting. The first step is to
introduce a so-called local oscillator 𝑎 (hom)

LO (𝑡). For homodyne detection we assume
that the local oscillator is resonant with the carrier tone of signal field, 𝜔LO = 𝜔𝑜 ,
and that it is strong; it is in a coherent state with a large displacement 𝛼 (hom)

LO from
vacuum:

𝑎
(hom)
LO (𝑡) = 𝛼

(hom)
LO + 𝛿𝑎Lo (𝑡), (2.4)

where we have written the LO field in a frame rotating at the signal frequency
𝜔𝑜 , and hence the coherent amplitude is constant. The large classical part can be
written in terms of a constant amplitude and a phase:

𝛼
(hom)
LO = |𝛼𝐿𝑂 |𝑒𝑖𝜙LO , (2.5)

which will be very important later. We now combine the signal field 𝑎𝑠 and the LO
field 𝑎LO on a 50/50 beam splitter, which produces two output fields 𝑎1 and 𝑎2. We
choose a convention such that the beam-splitter transformation is real:(

𝑎1 (𝑡)
𝑎2 (𝑡)

)
=

1
√

2

[
1 1
1 −1

] (
𝑎𝑠 (𝑡)
𝑎LO (𝑡)

)
(2.6)

We then detect the number of photons in each output channel, i.e. measure 𝑛̂𝑖 =

𝑎
†
𝑖
𝑎𝑖 for 𝑖 = 1, 2, and subtract the photon flux(3) results we have (dropping the

(hom) superscript for ease of notation)

(2) For the Fourier convention used in this thesis see Appendix A. Essentially we choose
a convention such that 𝑎† (𝛺) = (𝑎(𝛺))†, and consequently the ±𝛺 must appear in the
quadrature expressions Eq. (2.3)
(3) Or photon number if we integrate over a given time interval
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𝑛̂1 − 𝑛̂2 = 𝑎†1𝑎1 − 𝑎†2𝑎2 (2.7)
= 𝑎LO𝑎

†
𝑠 + 𝑎

†
LO𝑎𝑠 (2.8)

If we denote the subtracted photon numbers by:

𝐼 (hom) (𝑡) ≡ 𝑛̂1 (𝑡) − 𝑛̂2 (𝑡) ⇒
𝐼 (hom) (𝑡) = 𝑎LO (𝑡)𝑎†𝑠 (𝑡) + 𝑎

†
LO (𝑡)𝑎𝑠 (𝑡)

We refer to 𝐼 (hom) as the measurement current operator. If we insert the expression
Eq. (2.3) for the LO in the measurement current operator we get:

𝐼 (hom) = (𝛼𝐿𝑂 + 𝛿𝑎LO) 𝛿𝑎†s + (𝛼𝐿𝑂 + 𝛿𝑎LO)† 𝛿𝑎s (2.9)
= 𝛼𝐿𝑂𝛿𝑎

†
s + 𝛼∗

𝐿𝑂𝛿𝑎s + 𝛿𝑎LO𝑎
†
s + 𝛿𝑎LO𝑎s (2.10)

We now neglect the terms bilinear in the light operators, such as 𝛿𝑎LO𝑎
†
s as we

assume they are small:

𝐼 (hom) (𝑡) ≈ 𝛼𝐿𝑂𝑎
†
s (𝑡) + 𝛼∗

𝐿𝑂𝑎s (𝑡) (2.11)

By explicitly writing the LO in terms of its amplitude and phase Eq. (2.5) we find
that:

𝐼 (hom) (𝑡) =
√

2 |𝛼LO |
(
cos(𝜙LO)

𝑎s + 𝑎
†
s√

2
+ sin (𝜙LO)

𝑎s − 𝑎
†
s√

2 𝑖

)
, (2.12)

where we recognize the amplitude and phase quadrature Eq. (2.5) of the signal
field:

𝐼 (hom) (𝑡) =
√

2 |𝛼LO | (cos(𝜙LO)𝑞𝑠 (𝑡) + sin (𝜙LO) 𝑦𝑠 (𝑡)) (2.13)

There are two important things to note. Firstly the homodyne detection current
scales with the large amplitude |𝛼LO | of the LO field, and thus we are able to de-
tect even weak quantum signals. Secondly we can control which quadrature we
measure by adjusting the LO phase, the canonical choices are:

1
√

2 |𝛼LO |
𝐼 (hom) (𝑡)

���
𝜙LO=0

= 𝑞𝑠 (𝑡), (2.14a)

1
√

2 |𝛼LO |
𝐼 (hom) (𝑡)

���
𝜙LO= 𝜋

2

= 𝑦𝑠 (𝑡), (2.14b)

However we can more generally define a set of arbitrarily rotated quadratures:

𝑞𝜙 (𝑡) ≡
𝑎s (𝑡)𝑒−𝑖𝜙 + 𝑎

†
s𝑒

𝑖𝜙

√
2

(2.15a)

𝑦𝜙 (𝑡) ≡ 𝑞𝜙+ 𝜋
2
(𝑡) = 𝑎s (𝑡)𝑒−𝑖𝜙 − 𝑎

†
s (𝑡)𝑒𝑖𝜙√

2 𝑖
(2.15b)

Such that they satisfy the canonical commutation relation:[
𝑞𝜙 (𝑡), 𝑦𝜙 (𝑡 ′)

]
= 𝑖𝛿 (𝑡 − 𝑡 ′) (2.16)
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2.1.2 Homodyning In the Two-Photon Formalism

In the description above we considered a completely generic signal, which we will
now denote 𝑎 (lab)

𝑠 (𝑡), with carrier frequency 𝜔𝑜 . However when using homodyne
detection we usually consider a situation where the light we wish to measure con-
sists of two distinct, i.e. localized and well-separated, sidebands. We assume the
sidebands are localized near 𝜔𝑜 ±𝛺0 , and for definiteness we assume 𝜔𝑜 ≫ 𝛺0 ≥ 0,
as this fixes what we refer to as upper and lower sideband. We now formally intro-
duce the two-photon formalism which we will use extensively. We already saw a
hint of the two-photon nature of a homodyne measurement in the Fourier space
quadratures Eq. (2.5), but we will now make this more explicit. First we imagine
a signal with carrier frequency 𝜔𝑜 , such that we can define a slowly varying field
𝑎𝑠 (𝑡) by:

𝑎
(lab)
𝑠 (𝑡) = 𝑎𝑠 (𝑡)𝑒−𝑖𝜔𝑜𝑡 (2.17)

In the lab frame the local oscillator now oscillates at 𝜔LO = 𝜔𝑜 :

𝑎
(lab)
LO (𝑡) = 𝛼LO (𝑡) + 𝛿𝑎

(lab)
LO (2.18)

𝛼LO (𝑡) = |𝛼LO |𝑒−𝑖 (𝜔𝑜𝑡−𝜙𝐿𝑜 ) (2.19)

We now define the upper sideband operator 𝑎+ (𝑡) and the lower sideband operator
𝑎− (𝑡), in frame rotating at 𝜔𝑜 as:

𝑎± (𝑡) ≡ 𝑎𝑠 (𝑡)𝑒±𝑖𝛺0𝑡 , (2.20)
Within a RWA that neglects dynamics at time scales shorter than ≲ 1/𝛺0 sideband
operators represent distinct modes and satisfy the commutation relations:[

𝑎± (𝑡), 𝑎†∓ (𝑡 ′)
]
= 𝑒±2𝑖𝛺0𝑡𝛿 (𝑡 − 𝑡 ′) ≈ 0

From these sideband operator we can define non-Hermitian quadratures (Bogoli-
ubov modes) 𝑄̂ and 𝑌 which are given by quadrature like combinations of the
upper and lower sideband light:

𝑄̂ (𝑡) = 𝑎+ (𝑡) + 𝑎†− (𝑡)√
2

, (2.21a)

𝑌 (𝑡) = 𝑎+ (𝑡) − 𝑎†− (𝑡)√
2 𝑖

(2.21b)

with the inverse relation:

𝑎+ =
𝑄̂ + 𝑖𝑌
√

2
, (2.22a)

𝑎− =
𝑄̂† + 𝑖𝑌 †

√
2

(2.22b)

Within the same RWA The non-Hermitian quadratures satisfy the commutation
relations(4):

[
𝑄̂ (𝑡), 𝑄̂ (𝑡 ′)

]
=

[
𝑌 (𝑡), 𝑌 (𝑡 ′)

]
= 0 (2.23)[

𝑄̂ (𝑡), 𝑄̂† (𝑡 ′)
]
=

[
𝑌 (𝑡), 𝑌 † (𝑡 ′)

]
= 0 (2.24)[

𝑄̂ (𝑡), 𝑌 (𝑡 ′)
]
= 0 (2.25)[

𝑄̂ (𝑡), 𝑌 † (𝑡 ′)
]
= 𝑖𝛿 (𝑡 − 𝑡 ′) (2.26)

(4) So e.g. [𝑄̂ (𝑡), 𝑌 (𝑡 ′)] = 𝑖𝑒2𝑖𝛺0𝑡𝛿 (𝑡 − 𝑡 ′) ≈ 0
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Take special note of the fact that 𝑄̂ (𝑡) commutes with its Hermitian conjugate,
while it doesn’t commute with 𝑌 † (𝑡 ′).

We now write the signal of interest in terms of two sidebands operators:

𝑎
(lab)
𝑠 (𝑡) = 𝑎+ (𝑡)𝑒−𝑖 (𝜔𝑜+𝛺0 )𝑡 + 𝑎− (𝑡)𝑒−𝑖 (𝜔𝑜−𝛺0 )𝑡 (2.27)

In terms of the non-Hermitian quadratures this becomes:

𝑎
(lab)
𝑠 (𝑡) = 𝑒−𝑖𝜔𝑜𝑡

(
𝑄̂𝑒−𝑖𝛺0𝑡 + 𝑒𝑖𝛺0𝑡𝑄̂†

√
2

− 𝑖
𝑒−𝑖𝛺0𝑡𝑌 + 𝑒𝑖𝛺0𝑡𝑌 †

√
2

)
(2.28)

We note that the Hermitian part of the signal only depends 𝑄̂ and its Hermitian
conjugate:

𝑎𝑠 (𝑡) + 𝑎
†
𝑠 (𝑡)√

2
=
𝑄̂𝑒−𝑖𝛺0𝑡 + 𝑒𝑖𝛺0𝑡𝑄̂†

√
2

while the Anti-Hermitian component of the signal only depends on 𝑌 and its Her-
mitian conjugate:

𝑎𝑠 (𝑡) − 𝑎
†
𝑠 (𝑡)√

2
=
𝑒−𝑖𝛺0𝑡𝑌 + 𝑒𝑖𝛺0𝑡𝑌 †

√
2 𝑖

.

If we now homodyne the two signal sidebands, i.e. mix the signal field with the LO
field on a 50/50 BS we find that the measurement current operator is given by:

𝐼
(hom)
𝜃

=
√

2 |𝛼LO |
(
cos(𝛺0𝑡)

[
𝑞𝜃,− (𝑡) + 𝑞𝜃,+ (𝑡)

]
+ sin(𝛺0𝑡)

[
𝑦𝜃,+ (𝑡) − 𝑦𝜃,− (𝑡)

] )
,

(2.29)
where we have defined the upper and lower sideband phase and amplitude quadra-
tures:

𝑞𝜃 =
𝑒−𝑖𝜙LO𝑎(𝑡) + 𝑒𝑖𝜙LO𝑎† (𝑡)

√
2

(2.30)

𝑦𝜃 = 𝑞𝜃+ 𝜋
2
=
𝑒−𝑖𝜙LO𝑎(𝑡) − 𝑒𝑖𝜙LO𝑎† (𝑡)

√
2 𝑖

(2.31)

We see that the signal consists of a cosine and sine part, and crucially these two
commute: [

𝑞𝜃,− (𝑡) + 𝑞𝜃,+ (𝑡), 𝑦𝜃,+ (𝑡) − 𝑦𝜃,− (𝑡)
]
= 0 (2.32)

Meaning that the cosine and sine component are compatible observables. We can
also write the expression in terms of sine and cosine quadratures, which turn out
to be the EPR-like combination of individual sideband quadratures:

𝑞cos (𝑡) =
1
√

2

[
𝑄̂ (𝑡) + 𝑄̂† (𝑡)

√
2

]
=
𝑞+ (𝑡) + 𝑞− (𝑡)√

2
, (2.33a)

𝑞sin (𝑡) =
1
√

2

[
𝑄̂ (𝑡) − 𝑄̂† (𝑡)

√
2 𝑖

]
=

𝑦+ (𝑡) − 𝑦− (𝑡)√
2

, (2.33b)

𝑦cos (𝑡) =
1
√

2

[
𝑌 (𝑡) + 𝑌 † (𝑡)

√
2

]
=

𝑦+ (𝑡) + 𝑦− (𝑡)√
2

, (2.33c)

𝑦sin (𝑡) =
1
√

2

[
𝑌 (𝑡) − 𝑌 † (𝑡)

√
2 𝑖

]
=
−𝑞+ (𝑡) + 𝑞− (𝑡)√

2
, (2.33d)

with the inverse transformation given by:
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𝑞± (𝑡) =
𝑞cos (𝑡) ± 𝑦sin (𝑡)√

2
, (2.34)

𝑦± (𝑡) =
𝑦cos (𝑡) ± 𝑞sin (𝑡)√

2
, (2.35)

and the single sidebands operators given by:

𝑞± (𝑡) =
𝑎± (𝑡) + 𝑎

†
± (𝑡)√

2

𝑦± (𝑡) =
𝑎± (𝑡) − 𝑎

†
± (𝑡)√

2 𝑖

The sine and cosine operators satisfy the commutation relations:

[𝑞𝑛 (𝑡), 𝑦𝑛 (𝑡 ′)] = 𝑖𝛿𝑛𝑚𝛿 (𝑡 − 𝑡 ′) (2.36)
[𝑞𝑛 (𝑡), 𝑞𝑚 (𝑡 ′)] = [𝑦𝑛 (𝑡), 𝑦𝑚 (𝑡 ′)] = 0 (2.37)

These sine and cosine quadratures are defined such that they are exactly the sine
and the cosine components of the homodyne detection current for the phase
choices:

𝐼
(hom)
𝜃=0√
2 |𝛼LO |

= cos(𝛺0𝑡)𝑞cos (𝑡) + sin(𝛺0𝑡)𝑞sin (𝑡)

𝐼
(hom)
𝜃= 𝜋

2√
2 |𝛼LO |

= cos(𝛺0𝑡)𝑦cos (𝑡) + sin(𝛺0𝑡)𝑦sin (𝑡)

From the definition Eq. (2.33) we clearly see that compatibility of the cosine
and sine component of a given quadrature cam be traced back to the the fact that
the non-Hermitian quadratures commute with their respective Hermitian conju-
gates. With this knowledge we need only consider the non-Hermitian quadratures
to determine if a given quadrature can be measured with a Homodyne detection.
This is great in practice as it will allow us to perform calculations with only the cre-
ation and annihilation operators and non-Hermitian operators, rather than having
to rewrite everything in terms of quadratures.

This also allow us to gauge the limitations of Homodyne detection. If we e.g.
wish to measure a non-Hermitian quadrature which is an unequally weighted com-
bination of the upper and lower sideband, or equivalently a non-equal combination
of the non-Hermitian quadratures:

𝑄̂ ′ (𝑡) = 𝛼+𝑎+ (𝑡) + 𝛼−𝑎†− (𝑡)√
2

=

𝛼− + 𝛼+√
2

𝑄̂ + 𝛼− − 𝛼+√
2 𝑖

𝑃

If we now consider the commutator with its Hermitian conjuagate we find:[
𝑄̂ ′ (𝑡), 𝑄̂ ′† (𝑡)

]
= [( |𝛼+ |2 − |𝛼− |2) 𝛿 (𝑡 − 𝑡 ′)] ≠ 0,

and thus the Hermitian quadrature corresponding to 𝑄̂ won’t be measurable
using a homodyne detection. We can also see this by the fact that an unbalanced
combination of the quadratures lead to a As we shall see in Eq. (2.33), such un-
equally weighted quantities will be of interest once we start discussing the removal
of unwanted noise in a two-tone driven optomechanical system.
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Cavity Optomechanics with a
Single-tone Drive

“ wha-what’s wrong Rick is it the Quantum Carburetor or some-
thing?”

”Quantum Carburetor? Jesus, Morty you can’t just add a sci-fi word
to a car word and hope it means something. Huh. Looks like something is
wrong with the microverse battery.”

Rick Sanchez and Morty Smith

- Rick and Morty: The Ricks Must Be Crazy, Justin Roiland and Dan Harmon

The aim of the two-tone scheme we wish to examine, is to achieve an
effective oscillator behaving like a single-tone driven oscillator with
an effective negative mass and a down-converted resonance frequency.

For this reason we need a thorough understanding of single-tone
optomechanics, and therefor we dedicate this chapter to discussing the
canonical optomechanical system: a cavity with one movable mirror,
driven by a single coherent tone. Using a transfer matrix approach will
see how the dynamics of the mechanical oscillations of the mirror are
imprinted on the light, and how this light can be detected. Importantly
we will consider the effects of driving the cavity off-resonantly, and discuss
the how the dynamics are modified by such a detuning. We will later
encounter similar effects in the two-tone driving case.

3.1 A Setup to Have in Mind

Coupling of a mechanical degree of freedom to light can be realized in a plethora
of ways. In particular we will consider so called cavity optomechanics [1], where a
cavity is used to enhance the light-matter coupling. While the calculations we will
be doing apply to a wide range of different physical implementations of optome-
chanical systems, it is beneficial to discuss at least one actual example.

For definiteness we will consider a setup with a Fabry-Perot cavity with one
fixed mirror and one movable mirror (see Fig. 3.1). More precisely we imagine that
the first mirror is fixed and has a transmission coefficient 𝑇1 < 1, such that the
cavity can be driven by an external field. The second mirror is assumed to have
𝑇2 = 0, and is attached to a spring with spring constant 𝑘 . This allows the mirror

Page 10 of 65
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to oscillate when it is perturbed by the light in the cavity. The coupling of the light
in the cavity and the motion of the mirror can now be understood as follows: The
resonance frequencies of the cavity are given by

𝜔𝑐,𝑛 = 𝑛
𝑐

2ℓ , (3.1)

where 𝑐 is the speed of light, ℓ is the length of the cavity and 𝑛 is the mode number.
If the length of the cavity is ℓ0 when the spring is in equilibrium, the length is
dependent on the displacement 𝑥 :

ℓ (𝑥) = ℓ0 + 𝑥 (3.2)

Consequently, the resonance frequencies of the cavity, now depend on the displace-
ment of the second mirror:

𝜔𝑐,𝑛 (𝑥) = 𝑛
𝑐

2(ℓ0 + 𝑥) =
𝑛𝑐

2ℓ0

∞∑︁
𝑚=0

(−1)𝑚
(
𝑥

ℓ0

)𝑚
where we emphasize that the displacement is assumed to be much smaller

than the equilibrium cavity length, so that the geometric series converges(1) , and
as we shall see, we usually consider only position dependence to first order.

When the optomechanical coupling arises due to the position dependence of
the cavity resonance frequency, we refer to it as dispersive. The optomechanical
coupling can however arise through other mechanisms. For example we could
imagine that the decay rate 𝜅 of the intra-cavity field depends on position so we
have 𝜅 (𝑥), leading instead to a dissipative coupling. From this point on we only
consider dispersive optomechanics.

Figure 3.1: Sketch of a mirror-at-the-end setup. The intracavity field leaks out at a rate 𝜅
but is also driven at the same rate by a single laser tone. The mechanical oscillator decays at
a rate 𝛾 .

3.2 Hamiltonian Formulation of Dispersive Cavity Optomechanics

The most generic form of the Hamiltonian can be split into three contributions,
a system Hamiltonian 𝐻̂𝑆 , a reservoir Hamiltonian 𝐻̂𝑅 and a system-reservoir
coupling Hamiltonian 𝐻̂𝑆𝑅 :

𝐻̂tot = 𝐻̂𝑐 + 𝐻̂𝑚 + 𝐻̂𝑑︸           ︷︷           ︸
𝐻̂

+ 𝐻̂𝛾 + 𝐻̂𝜅︸   ︷︷   ︸
𝐻̂𝑅

+ 𝐻̂𝑚−𝛾 + 𝐻̂𝑐−𝜅︸          ︷︷          ︸
𝐻̂𝑆𝑅

(3.3)

(1) The geometric series 1
1−𝑥 =

∑∞
𝑚=0 𝑥

𝑛 only converges for |𝑥 | < 1. If for some reason you
should be inclined to consider a cavity where displacement of one mirror is comparable or
larger than the equilibrium length of the cavity, then you would have to use the spectral
representation of the frequency. The second quantized spectral representation of a function
𝑓 (𝑥) is 𝑓 (𝑥) =

∫ ∞
−∞ 𝑓 (𝑥)𝜓† (𝑥)𝜓 (𝑥), where𝜓† (𝑥) is the creation operator for a position

eigenstate.
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Using the Heisenberg-Langevin Formalism [4], we can eliminate the reservoir
degrees of freedom and obtain a theory in terms of the system operators of interest
and stochastic input noise operators arising from the interaction with the reservoir.
For now all we need to know is that we denote the cavity decay rate by 𝜅 and
mechanical decay rate by 𝛾 , we will cover the rest of the necessary details in the
coming sections.

3.2.1 The Intra-Cavity light Hamiltonian

Firstly we have the Hamiltonian for the intra-cavity light field. We consider a
single optical mode with frequency 𝜔𝑐 (𝑥). In the Heisenberg picture, such a single
mode is described by a simple harmonic oscillator Hamiltonian:

𝐻̂𝑐 = ℏ𝜔𝑐 (𝑥 (𝑡))
(
𝑎† (𝑡)𝑎(𝑡) + 1

2

)
, (3.4)

where intra-cavity photons are described by the bosonic creation and annihilation
operators 𝑎† (𝑡) and 𝑎(𝑡) satisfying the usual synchronous commutation relations:

[
𝑎(𝑡), 𝑎† (𝑡)

]
= 1 (3.5)

3.2.2 The Mechanical Oscillator Hamiltonian

The free Hamiltonian 𝐻̂𝑚 for mechanical degree of freedom, is assumed to be a
single vibrational mode, which is just another harmonic oscillator, with frequency
𝛺𝑚 :

𝐻̂𝑚 = ℏ𝛺𝑚

(
𝑏† (𝑡)𝑏 (𝑡) + 1

2

)
(3.6)

The bosonic operators 𝑏† (𝑡) and 𝑏 (𝑡) are the phonon creation and annihilation
operators:

[
𝑏 (𝑡), 𝑏† (𝑡)

]
= 1 (3.7)

These are related to the position and momentum of the mechanical mode through
the relations: 

𝑏 (𝑡) = 1
𝑥zpf

√
2

(
𝑥 (𝑡) + 𝑖

𝑚𝛺𝑚
𝑝 (𝑡)

)
𝑏† (𝑡) = 1

𝑥zpf
√

2

(
𝑥 (𝑡) − 𝑖

𝑚𝛺𝑚
𝑝 (𝑡)

) (3.8)

Or if we invert them: 
𝑥 (𝑡) = 𝑥zpf

(
𝑏 (𝑡 )+𝑏† (𝑡 )√

2 ,

)
𝑝 (𝑡) = 𝑝zpf

(
𝑏 (𝑡 )−𝑏† (𝑡 )

𝑖
√

2

) (3.9)

The factors 𝑥xpf and 𝑝zpf set the scale of the zero point fluctuations of the position
𝑥 and the momentum 𝑝 , more precisely they are defined by the standard deviation
of the position and momentum operator when the mechanical oscillator is in the
vacuum state:

𝑥zpf ≡
√︁

Varvac [𝑥 (0)] =

√︄
ℏ

𝑚𝛺𝑚

(3.10)

𝑝zpf ≡
√︁

Varvac [𝑝 (0)] =𝑚𝛺𝑚𝑥zpf (3.11)

where the actual expressions follow from writing the mechanical Hamiltonian as:
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𝐻̂𝑚 =
𝑝2 (𝑡)
2𝑚 + 1

2𝑚𝛺2
𝑚𝑥

2 (𝑡) (3.12)

and we have defined the variance of an operator Ô as:

Var
[
Ô

]
≡ ⟨Ô2⟩ − ⟨Ô⟩2 (3.13)

It is often convenient to define a dimensionless position 𝑋 (𝑡) and momentum 𝑃 (𝑡)
using:

𝑋 (𝑡) = 𝑥 (𝑡)
𝑥zpf

(3.14a)

𝑃 (𝑡) = 𝑝 (𝑡)
𝑝zpf

(3.14b)

These dimensionless operators then satisfy the canonical (synchronous) commuta-
tion relation on the form: [

𝑋 (𝑡), 𝑃 (𝑡)
]
= 𝑖

And the Hamiltonian can be written:

𝐻̂𝑚 = ℏ𝛺𝑚

(
𝑋 2 (𝑡) + 𝑃2 (𝑡)

)
(3.15)

Let us have a small interlude to discuss what we mean by effective negative
mass or frequency. If we consider the Hamiltonian Eq. (3.15), we could in principle
have 𝛺𝑚take on negative values. On the other hand, in the Hamiltonian Eq. (3.15)
the frequency is squared, but instead we could imagine𝑚 taking on negative val-
ues. In the end these two Hamiltonians are equivalent, its all a mater of assigning
the sign to either the mass or frequency. That is we can either write 𝛺𝑚 = 𝜇 |𝛺𝑚 |
and𝑚 > 0 or equally well 𝛺𝑚 > 0 and𝑚 = 𝜇 |𝑚 |, where 𝜇 = ±1 depending on the
sign of the mass or frequency. We must also remember that the effective mass-sign
/frequency-sign 𝜇 always is an effective property, it has nothing to do with the ac-
tual mass of the object, rather it is about the response of the object to an external
force. For example for the two-tone optomechanics we will examine, the effective
negative mass simply means that the response of effective mechanical oscillator
to an external optical force, is 𝜋

2 out of phase with a normal mechanical oscillator.
So if the positive mass oscilator has suscptibility 𝜒𝑚>0 (𝛺) the susceptibility of a
negative mass oscillator is simple 𝜒𝑚<0 = 𝑒𝑖

𝜋
2 𝜒𝑚>0.

3.2.3 The Drive Hamiltonian

The optical reservoir which the intra-cavity field couples to is effectively at temper-
ature 𝑇 = 0. This means that all modes in the optical reservoir are in the vacuum
state. Turning on a laser now means that we activate one mode in the sense that
it is now in a coherent state. Hence, to include a coherent laser drive, we formally
apply a displacement operator to the photon reservoir, to activate a single mode at
frequency 𝜔𝑜 . This amounts to transforming to an interaction picture:

𝐻̂
turn on laser−−−−−−−−−→ 𝐷̂† (𝛼𝑑 (𝑡))𝐻̂𝐷̂ (𝛼d (𝑡)) + 𝑖ℏ𝐷̂† (𝛼d (𝑡))

𝜕

𝜕𝑡
𝐷̂ (𝛼d (𝑡)) (3.16)

= 𝐻̂ + 𝐻̂𝑑 (3.17)

where the displacement operator is given by:

𝐷̂ (𝛼d (𝑡)) = 𝑒𝛼𝑑 (𝑡 )𝑎
†
𝑅
(𝜔𝑜 )−𝛼∗

𝑑
(𝑡 )𝑎𝑅 (𝜔𝑜 ) , 𝛼d (𝑡) ∝

√
2𝜅 𝛼in𝑒

−𝑖𝜔𝑜𝑡 , (3.18)

where 𝑎†
𝑅
(𝜔𝑜 ) is the vacuum mode we displace by turning on the laser, i.e.
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𝐷̂† (𝛼d (𝑡))𝑎†𝑅 (𝜔𝑜 )𝐷̂ (𝛼d (𝑡)) = 𝑎
†
𝑅
(𝜔𝑜 ) + 𝛿 (𝜔 − 𝜔0)𝛼drive (𝑡) (3.19)

The resulting drive Hamiltonian is given by:

𝐻̂𝑑 = ℏ
√

2𝜅
(
𝑖𝛼in𝑒

−𝑖𝜔𝑜𝑡𝑎† + H.c
)

(3.20)

To show this we need to write down the actual reservoir Hamiltonian, however as
we leave out formal derivation of the Heisenberg-Langevin equations, we will not
do so here.

3.2.4 Rotating frame Hamiltonian

The full Hamiltonian, excluding the reservoir and system-reservoir coupling contri-
butions is:

𝐻̂ = ℏ𝜔𝑐 (𝑥)
(
𝑎†𝑎 + 1

2

)
+ ℏ𝛺𝑚

(
𝑏†𝑏 + 1

2

)
(3.21)

+ ℏ
√

2𝜅
(
𝑖𝛼in𝑒

−𝑖𝜔𝑜𝑡𝑎† + H.c
)

(3.22)

We now wish to transform to a rotating frame, rotating at the laser frequency 𝜔0,
using the unitary transformation:

𝑅(𝑡) = 𝑒𝑖𝜔𝑜𝑎
†𝑎𝑡 (3.23)

We now arrive at a key point: In this rotating frame the explicit time dependence
of the drive Hamiltonian is removed:

𝐻̂ → 𝑅† (𝑡)𝐻̂𝑅(𝑡) + 𝑖ℏ𝑅† (𝑡) 𝜕
𝜕𝑡
𝑅(𝑡) ⇒ (3.24)

𝐻̂ = ℏ (𝜔𝑐 (𝑥) − 𝜔𝑜 )
(
𝑎†𝑎 + 1

2

)
+ ℏ𝛺𝑚

(
𝑏†𝑏 + 1

2

)
(3.25)

+ ℏ
√

2𝜅
(
𝑖𝛼in𝑎

† + H.c
)

As we shall see, the elimination of any explicit time dependence is not possible for
a two-tone drive.

3.2.5 The Optomechanical Coupling & Radiation Pressure

Intuitively we expect that the optomechanical coupling should be realized by a
radiation pressure from the intra-cavity photon on the movable mirror, and the
consequent modulation of the intra-cavity field by the motion of the mechanical
oscillator. To see this we expand(2) the dispersion relation for the light around the

(2) For example, for a Fabry-perot resonator, the frequency-position dispersion relation can
be written

𝜔𝑐,𝑛 (𝑥) =
𝑛𝑐

2
1

ℓ0 + 𝑥
=

𝑛𝑐

2(𝑥 + ℓ0)

∞∑︁
𝑚=0

(−1)𝑚
(
𝑥 − 𝑥

ℓ0 + 𝑥

)𝑚
, (3.26)

From which we can formally define the derivative:

𝜕𝑚𝜔𝑐,𝑛 (𝑥)
𝜕𝑥𝑚

����
𝑥

≡ (−1)𝑚 𝑛𝑐

2(𝑥 + ℓ0)𝑚+1 (3.27)

And thus find the optomechancical coupling per displacement to be, for mode 𝑛, to be

𝐺𝑛 =
𝑛𝑐

2(𝑥ss + ℓ0)
(3.28)
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classical steady state value(3) 𝑥ss of the mechanical oscillator:

𝜔𝑐 (𝑥) = 𝜔𝑐 (𝑥ss) +
𝜕𝜔𝑐

𝜕𝑥

����
𝑥ss

𝑥 + O (𝑥2) (3.29)

We will only consider position dependence to first order. In this case we define the
frequency change per displacement as:

𝐺 = − 𝜕𝜔𝑐

𝜕𝑥

����
𝑥ss

(3.30)

If we rewrite the cavity frequency in terms of phonon operators or the dimension
less position 𝑋 we instead define the vacuum optomechanical coupling strength as:

𝑔0 = 𝑥zpf𝐺 (3.31)

Using the expression Eq. (3.15) for the position and momentum in terms of the
phonon operators we now have:

𝜔𝑐 ≈ 𝜔𝑐 (𝑋ss) −
ℏ𝑔0√

2
(𝑏† (𝑡) + 𝑏 (𝑡)) (3.32)

The intra-cavity field Hamiltonian now becomes:

𝐻̂𝑐 ≈
(
𝜔𝑐 (𝑋ss) − ℏ𝑔0𝑋

) (
𝑎† (𝑡)𝑎(𝑡) + 1

2

)
(3.33)

= 𝜔𝑐 (𝑥ss)
(
𝑎† (𝑡)𝑎(𝑡) + 1

2

)
︸                        ︷︷                        ︸

𝐻̂𝑐

− ℏ𝑔0𝑋
(
𝑎† (𝑡)𝑎(𝑡) + 1

2

)
︸                     ︷︷                     ︸

−𝐻̂om

(3.34)

The first contribution is just harmonic oscillator describing the free evolution
of the intra-cavity field for a fixed position of the mechanical oscillator. The second
term is now the interaction term describing how the light and the mechanics inter-
act. We can evaluate the force on the mechanical oscillator due to this interaction
using the Heisenberg equation of motion:

¤𝑃 (𝑡) = 1
𝑖ℏ

[
𝑃 (𝑡), 𝐻̂om

]
⇒ (3.35)

¤𝑃 (𝑡) = 𝑔0
(
𝑛̂𝑐 (𝑡) +

1
2

)
(3.36)

where we have defined the cavity photon number operator:

𝑛̂𝑐 (𝑡) = 𝑎† (𝑡)𝑎(𝑡) (3.37)

So the force 𝐹rad (𝑡) = ¤𝑃 (𝑡) is indeed a radiation pressure:

𝐹rad (𝑡) = 𝑔0
(
𝑛̂𝑐 (𝑡) +

1
2

)
(3.38)

As we see the mechanical coupling strength is essentially the vacuum radiation
pressure 𝐹

(vac)
rad (𝑡) = 𝑔

2 on the mechanical oscillator. Henceforth we will assume that
the cavity population is large:

𝑛𝑐 (𝑡) = ⟨𝑎† (𝑡)𝑎(𝑡)⟩ ≫ 1, (3.39)

and we can thus neglect the vacuum contribution to the optomechanical interac-
tion(4), so we simply have

(3) For now we assume that such a constant steady state exists. Using this assumption we
can derive the classical equations of motion, which we must then solve in steady state to
ensure everything is consistent.
(4) Eventually the vacuum force term would drop out anyways, once we define the position
of the oscillator relative to its equilibrium.
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𝐻̂om = −ℏ𝑔𝑛̂𝑐 (𝑡)𝑋 = −ℏ𝑔0√
2
𝑎† (𝑡)𝑎(𝑡)

(
𝑏† (𝑡) + 𝑏 (𝑡)

)
(3.40)

The Hamiltonian can then be written(5):

𝐻̂ ≈ −ℏ𝛥0𝑎
†𝑎 + ℏ𝛺𝑚𝑏

†𝑏 − ℏ𝑔0√
2
𝑎†𝑎(𝑏 + 𝑏†) + ℏ

√
2𝜅

[
𝑖𝛼in𝑎

† + H.c.
]

(3.41)

where we have define the detuning between the laser drive frequency 𝜔𝑜 and the
equilibrium cavity frequency 𝜔𝑐 (𝑋 ) as:

𝛥0 = 𝜔𝑜 − 𝜔𝑐 (𝑋ss) (3.42)

Note that at this point we have also neglected the zero point energies ℏ𝛺𝑚

2 and
ℏ𝛥0

2 , as these do not contribute to the dynamics(6). Alternatively we can write the
Hamiltonian in terms of the position and momentum of the mechanical oscillator:

𝐻̂ ≈ −ℏ𝛥0𝑎
†𝑎 + ℏ𝛺𝑚

(
𝑋 2 + 𝑃2

)
− ℏ𝑔0𝑎

†𝑎𝑋 + ℏ
√

2𝜅
[
𝑖𝛼in𝑎

† + H.c.
]

(3.43)

3.3 Eqations of motion in Optomechanics

3.3.1 Heisenberg-Langevin Equations For Light and Mechanics

The Heisenberg-langevin equation for the mechanical degrees of freedom 𝑋 , 𝑃 and
the intra-cavity light field 𝑎 are:

¤̂𝑎(𝑡) = 𝑖

ℏ

[
𝐻̂, 𝑎(𝑡)

]
− 𝜅𝑎(𝑡) +

√
2𝜅 𝛿𝑎in (𝑡), (3.44)

¤̂
𝑋 (𝑡) = 𝑖

ℏ

[
𝐻̂, 𝑋 (𝑡)

]
, (3.45)

¤̂
𝑃 (𝑡) = 𝑖

ℏ

[
𝐻̂, 𝑋 (𝑡)

]
− 𝛾𝑃 (𝑡) + 𝑓 (𝑡), (3.46)

where we have used the RWA on the photon reservoir, which results in a damping
term in both quadratures. Meanwhile, the phonon reservoir only leads to a drag-
like damping term in the momentum. The Langevin force acting on the mechanical
oscillator is given by:

𝑓 (𝑡) =
√2𝛾
𝑝𝑧𝑝𝑓

𝑝in (𝑡), 𝑝in (𝑡) = 𝑝zpf

(
𝑏in (𝑡) + 𝑏†in (𝑡)√

2

)
(3.47)

Importantly the input operators, which arise from integrating out the resevoir
degrees of freedom satisfy the commutation relations:

[
𝛿𝑎in (𝑡), 𝛿𝑎†in (𝑡

′)
]
=

[
𝑏in (𝑡), 𝑏†in (𝑡

′)
]
= 𝛿 (𝑡 − 𝑡 ′) (3.48)

[𝛿𝑎in (𝑡), 𝛿𝑎in (𝑡 ′)] =
[
𝛿𝑎

†
in (𝑡), 𝛿𝑎

†
in (𝑡

′)
]
=

[
𝑏in (𝑡), 𝑏in (𝑡 ′)

]
=

[
𝑏
†
in (𝑡), 𝑏

†
in (𝑡

′)
]
= 0
(3.49)

(5) This Hamiltonian is the same in the Heisenberg interaction picture and the Schrödinger
interaction picture, except for the time dependence of the operators.
(6) Remember, that for an operator Ô (𝑡) the evolution is determined by taking its commu-
tator with the Hamiltonian. If we shift the energy of a system by 𝐸0, i.e. 𝐻̂ → 𝐻̂ + 𝐸0,then
the commutator is unchanged since 𝐸0 is just a number and

[
Ô (𝑡), 𝐻̂ + 𝐸0

]
=

[
Ô (𝑡), 𝐻̂

]
+[

Ô (𝑡), 𝐸0
]

︸      ︷︷      ︸
0

.
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Commutators of phonon and photon resevoir operators all vanish. The correlation
function of the input noise, in the Markov approximation, are:

〈
𝛿𝑎in (𝑡)𝛿𝑎†in (𝑡

′)
〉
= 𝛿 (𝑡 − 𝑡 ’) (3.50)〈

𝛿𝑎
†
in (𝑡

′)𝛿𝑎in (𝑡)
〉
= 0 (3.51)〈

𝑏in (𝑡)𝑏†in (𝑡
′)
〉
= (𝑛𝑏 + 1)𝛿 (𝑡 − 𝑡 ’) (3.52)〈

𝑎
†
in (𝑡

′)𝑎in (𝑡)
〉
= 𝑛𝑏𝛿 (𝑡 − 𝑡 ′) (3.53)

All photon and phonon reservoir operators are uncorrelated. From these input
commutators and correlation function, we can eventually determine all commu-
tators and correlation functions we desire. Note that at room temperature, the
thermal occupation of optical photons is vanishing 𝑛𝑎 = 0, and hence we see no
contribution from the reservoir photon occupation. Evaluating the commutators,
leads to the following set of equations of motion:

¤̂𝑎(𝑡) = (𝑖𝛥0 − 𝜅) 𝑎(𝑡) + 𝑖𝑔0𝑎(𝑡)𝑋 (𝑡) +
√

2𝜅 𝛿𝑎in (𝑡) (3.54)
¤̂
𝑋 (𝑡) = 𝛺𝑚𝑃 (3.55)

¤̂
𝑃 (𝑡) = 𝑔0𝑎

† (𝑡)𝑎(𝑡) − 2𝛾𝑃 (𝑡) −𝛺𝑚𝑋 (𝑡) + 𝑓 (𝑡) (3.56)

where we have written the input noise in terms of the small quantum fluctuations
𝛿𝑎in (𝑡) arising from all reservoir modes, and the large coherent component from
the drive tone:

𝑎in (𝑡) = 𝛿𝑎in (𝑡) + 𝛼in

We can combine the 𝑋 and 𝑃 equations so that we only have to solve for 𝑋 and 𝑎:

¤̂𝑎(𝑡) =
√

2𝜅 𝛿𝑎in (𝑡) + (𝑖𝛥0 − 𝜅) 𝑎(𝑡) + 𝑖𝑔0𝑎(𝑡)𝑋 (𝑡) (3.57)
1
𝛺𝑚

[ ¥̂
𝑋 (𝑡) + 2𝛾 ¤̂

𝑋 +𝛺𝑚𝑋 (𝑡)
]
= 𝑔0𝑎

† (𝑡)𝑎(𝑡) + 𝑓 (𝑡) (3.58)

This system of coupled equations is unfortunately non-linear in the operators, and
consequently they do not generally admit an analytical solution.

3.3.2 Linearized Optomechanics

We now assume that the fields can be expanded as a large classical contribution
and a contribution from quantum fluctuations(7):

𝑎(𝑡) = ⟨𝑎⟩︸︷︷︸
𝛼

+𝛿𝑎(𝑡) = 𝛼 (𝑡) + 𝛿𝑎(𝑡) (3.59a)

𝑋 (𝑡) = ⟨𝑋 ⟩︸︷︷︸
𝑋

+𝛿𝑋 (𝑡) = 𝑥 (𝑡) + 𝛿𝑋 (𝑡) (3.59b)

𝑃 (𝑡) = ⟨𝑋 ⟩︸︷︷︸
𝑃

+𝛿𝑃 (𝑡) = 𝑝 (𝑡) + 𝛿𝑃 (𝑡) (3.59c)

We eventually make the assumption that this large classical value is a constant
steady state value of the field, but let us first ensure that such a steady state exists.
The Hamiltonian with this linear ansatz is:

(7) We can formally do these by acting with appropiate displacements operators 𝐷̂ (𝛼) and
𝐷̂ (𝑥)
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𝐻̂𝑆 = −ℏ𝛥0
(
𝛿𝑎†𝛿𝑎 + |𝛼 |2 + 𝛼𝛿𝑎† + 𝛼∗𝛿𝑎

)
(3.60)

+ ℏ𝛺𝑚

(
𝛿𝑋 2 + 𝑋 2 + 2𝑋𝛿𝑋 + 𝛿𝑃2 + 𝑃2 + 2𝑃𝛿𝑃

)
− ℏ𝑔0

(
𝛿𝑎†𝛿𝑎 + |𝛼 |2 + 𝛼𝛿𝑎† + 𝛼∗𝛿𝑎

) (
𝑋 + 𝛿𝑋

)
+ ℏ

√
2𝜅

[
𝑖𝛼in

(
𝛼∗ + 𝛿𝑎†

)
+ H.c.

]
Which can be divided into four contributions according to the order of the quan-
tum operators:

𝐻̂𝑆 = −ℏ𝛥0 |𝛼 |2 + ℏ𝛺𝑚

(
𝑋 2 + 𝑃2) − ℏ𝑔0 |𝛼 |2𝑋 + ℏ

√
2𝜅 [𝑖𝛼in𝛼

∗ + C.C.]︸                                                                              ︷︷                                                                              ︸
constant

(3.61)

−ℏ𝛥0
(
𝛼𝛿𝑎† + 𝛼∗𝛿𝑎

)
− ℏ𝑔0 |𝛼 |2𝛿𝑋 + ℏ

√
2𝜅

[
𝑖𝛼in𝛿𝑎

† + H.c.
]︸                                                                         ︷︷                                                                         ︸

linear (classical)

+2ℏ𝛺𝑚

(
𝑋𝛿𝑋 + 𝑃𝛿𝑃

)
− ℏ𝑔0

(
𝛼𝛿𝑎† + H.C.

)
𝑥︸                                                    ︷︷                                                    ︸

linear (classical)

(3.62)

−ℏ𝛥0𝛿𝑎
†𝛿𝑎 + ℏ𝛺𝑚

(
𝛿𝑋 2 + 𝛿𝑃2

)
− ℏ𝑔0

(
𝛼𝛿𝑎† + 𝛼∗𝛿𝑎

)
𝛿𝑋︸                                                                     ︷︷                                                                     ︸

quadratic(quantum)

−ℏ𝑔0𝛿𝑎
†𝛿𝑎𝛿𝑋︸           ︷︷           ︸

cubic

We assume that the quantum fluctuations are small, and so we neglect all terms
cubic in the quantum fluctuations. Since constant terms do not contribute to the
dynamics we also throw these away:

𝐻̂𝑆 = −ℏ𝛥0
(
𝛼𝛿𝑎† + 𝛼∗𝛿𝑎

)
− ℏ𝑔0 |𝛼 |2𝛿𝑋 + ℏ

√
2𝜅

[
𝑖𝛼in𝛿𝑎

† + H.c.
]

(3.63)

+2ℏ𝛺𝑚

(
𝑋𝛿𝑋 + 𝑃𝛿𝑃

)
− ℏ𝑔0

(
𝛼𝛿𝑎† + H.C.

)
𝑋

−ℏ𝛥0𝛿𝑎
†𝛿𝑎 + ℏ𝛺𝑚

(
𝛿𝑋 2 + 𝛿𝑃2

)
− ℏ𝑔0

(
𝛼𝛿𝑎† + 𝛼∗𝛿𝑎

)
𝛿𝑋

Classical equation of motion From the Hamiltonian to first order in the quan-
tum fluctuations, we simple get classical optomechanics(8), the equations motions
for this are(9):

¤̄𝛼 (𝑡) =
√

2𝜅 𝛼in + (𝑖𝛥 (𝑡) − 𝜅) 𝛼 (𝑡), (3.64)
1
𝛺𝑚

[
¥̄𝑋 (𝑡) + 2𝛾 ¤̄𝑋 +𝛺2

𝑚𝑋 (𝑡)
]
= 𝑔0 |𝛼 (𝑡) |2 (3.65)

where we have redefined the detuning:

(8) In this thesis we will not be concerned with the classical part of the fields beyond the
justification of expanding 𝜔𝑐 about some steady state.
(9) The classical EOM could equally well be obtained form the classical Hamiltonian
𝐻cl (𝑥, 𝑝, 𝛼, 𝛼∗) by e.g. ¤̄𝛼 (𝑡) = {𝛼 (𝑡), 𝐻cl} + 𝜕𝛼 (𝑡 )

𝜕𝑡 ,where {·, ·}denotes the Poisson bracket.
Recall for two functions 𝑓 (𝑥𝑖 , 𝑝𝑖 ) and 𝑔(𝑥𝑖 , 𝑝𝑖 ),which are functions of a set of general-
ized positions 𝑥𝑖 and canonically conjugate momenta 𝑝𝑖 , the Poisson bracket defined by
{𝑓 (𝑥𝑖 , 𝑝𝑖 ), 𝑔(𝑥𝑖 , 𝑝𝑖 )} =

∑
𝑖

(
𝜕𝑓
𝜕𝑥𝑖

𝜕𝑔
𝜕𝑝𝑖

− 𝜕𝑓
𝜕𝑝𝑖

𝜕𝑔
𝜕𝑥𝑖

)
.
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𝛥 (𝑡) = 𝜔𝑜 − 𝜔𝑐 (𝑋 ) + 𝑔0𝑋 (𝑡) (3.66)

Since there is no explicit time dependence we can solve steady state using

d𝛼ss
d𝑡 = 0, d𝑋ss

d𝑡 = 0, (3.67)

we find(10) the steady state relations:

𝛼ss =

√
2𝜅

(𝜅 − 𝑖𝛥)𝛼in (3.68)

𝑋ss =
𝑔0
𝛺𝑚

|𝛼ss |2 (3.69)

This shows us that once all transient behavior has died out, the classical part of
the intra-cavity field and the motion of the membrane remain stationary. It is this
stationary steady state value 𝑋ss we expanded the cavity frequency 𝜔𝑐 about in
Eq. (3.29). If we now measure all displacements relative to the steady state displace-
ment of the membrane 𝑋 → 𝑋 − 𝑋ss we simply have

𝑋ss = 0 (3.70)

It immediately follows form the equations of motion that classical part of the me-
chanical momentum is:

d𝑋ss
d𝑡 = 𝛺𝑚𝑃ss ⇒ (3.71)

𝑃ss = 0 (3.72)

We also note that this implies that the detuning is stationary:

𝛥 = 𝜔𝑜 − 𝜔𝑐 (0)

The quantum equation of motion If we assume that enough time has passed
for the classical part of the system to be in steady state, and we measure displace-
ments relative to the steady state displacement of the mechanical oscillator(11), then
the quantum part of the linearized Hamiltonian reduces to:

𝐻̂𝑆 = −ℏ𝛥0𝛿𝑎
†𝛿𝑎 + ℏ𝛺𝑚

(
𝛿𝑋 2 + 𝛿𝑃2

)
− ℏ𝑔0

(
𝛼𝛿𝑎† + 𝛼∗𝛿𝑎

)
𝛿𝑋 (3.73)

where we have dropped the ss subscript from 𝛼 for brevity. The equations of mo-
tion are:

¤𝛿𝑎(𝑡) =
√

2𝜅 𝛿𝑎in (𝑡) + (𝑖𝛥0 − 𝜅) 𝛿𝑎(𝑡) + 𝑖𝑔0 |𝛼 |𝛿𝑋 (𝑡) (3.74)
1
𝛺𝑚

[ ¥̂
𝛿𝑋 (𝑡) + 2𝛾 ¤̂

𝛿𝑋 +𝛺2
𝑚

ˆ𝛿𝑋 (𝑡)
]
= 𝑔0

(
𝛼∗𝛿𝑎 + 𝛼𝛿𝑎†

)
+ 𝑓 (𝑡) (3.75)

We can eliminate the phase of the classical intra-cavity field:

(10) Note that this isn’t the full solution for the intra-cavity field 𝛼ss and the potion
𝑥ss, since 𝛥 depends on 𝑥ss. One can rewrite the equations as a cubic equation in
𝑥ss: 𝑥ss ((𝛥0 +𝐺𝑥ss)2 + 𝜅2) =

𝐺2𝜅𝑛𝑐,ss
𝑚𝛺𝑚

,where the steady state photon population is
𝑛𝑐,ss = |𝛼ss |2 .The cubic equation for 𝑥ss implies the existence of several possible steady
state values, but we will assume that the system is locked to one particular solution.
(11) So we can also freely use 𝛥0 = 𝛥
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𝛼 = |𝛼 |𝑒𝑖Arg[𝛼 ], (3.76)

by making the 𝑈 (1) gauge transformation(12){
𝛿𝑎 → 𝛿𝑎𝑒𝑖Arg[𝛼 ]

𝛿𝑎in → 𝛿𝑎in𝑒
𝑖Arg[𝛼 ]

By doing so we have a set of equations where we can factor out the dependence on
phase of the classical intra-cavity field:

¤𝛿𝑎(𝑡) =
√

2𝜅 𝛿𝑎in (𝑡) + (𝑖𝛥 − 𝜅) 𝛿𝑎(𝑡) + 𝑖𝑔0 |𝛼 |𝛿𝑋 (𝑡) (3.77)
1
𝛺𝑚

[ ¥̂
𝛿𝑋 (𝑡) + 2𝛾 ¤̂

𝛿𝑋 +𝛺2
𝑚

ˆ𝛿𝑋 (𝑡)
]
= 𝑔0 |𝛼 |

(
𝛿𝑎 + 𝛿𝑎†

)
+ 𝑓 (𝑡) (3.78)

This allows us to define the photon-enhanced opto-mechanical coupling

𝑔 ≡
√
𝑛𝑐 𝑔0

We then finally arrive at the canonical optomechanical equations:

¤𝛿𝑎(𝑡) =
√

2𝜅 𝛿𝑎in (𝑡) + (𝑖𝛥 − 𝜅) 𝛿𝑎(𝑡) + 𝑖𝑔𝛿𝑋 (𝑡) (3.79)
1
𝛺𝑚

[ ¥̂
𝛿𝑋 (𝑡) + 2𝛾 ¤̂

𝛿𝑋 +𝛺2
𝑚

ˆ𝛿𝑋 (𝑡)
]
= 𝑔

(
𝛿𝑎 + 𝛿𝑎†

)
+ 𝑓 (𝑡) (3.80)

We could also write them only in terms of quadratures:

3.3.3 Quadrature Equations of Motion

We will often prefer to work with quadrature operators(13). This gives us three
equations of motion:

¤̂𝑞(𝑡) =
√

2𝜅 𝑞in (𝑡) − 𝜅𝑞(𝑡) − 𝛥𝑦 (𝑡) (3.81a)

¤̂𝑦 (𝑡) =
√

2𝜅 𝑦in (𝑡) − 𝜅𝑦 (𝑡) + 𝛥𝑞(𝑡) +
√︂

𝜅𝛤0
2 𝑋 (3.81b)

1
𝛺𝑚

[ ¥̂
𝑋 (𝑡) + 2𝛾 ¤̂

𝑋 +𝛺2
𝑚𝑋 (𝑡)

]
=

√︂
𝜅𝛤0

2 𝑞(𝑡) + 𝑓 (𝑡) (3.81c)

where we have defined the readout rate:

𝛤0 ≡
4𝑔2

𝜅
(3.82)

Even without solving the equations of motion we can see the presence of
a coherent feedback loop: The mechanical oscillator Eq. (3.81c) is driven by the
amplitude quadrature of the light. This disturbance of the mechanical oscillator
is imprinted on the phase quadrature in Eq. (3.81b). Through the rotation of the
phase quadrature into the amplitude quadrature, which arises due to the detuning
𝛥, the mechanical signal enters into the amplitude quadrature with a delay. This
now means that the radiation pressure on the mechanical oscillator depends on
the position of the oscillator at an earlier time, constituting a coherent retarded
feedback loop. We will later see that this feedback loop results in dynamical back
action.

(12) The transformation is valid, as it preserve the canonical commutation relations between
the creation and annihilation operators.
(13) For brevity, we now drop the 𝛿 on all quantum operators.
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3.3.4 Equations of Motion in Fourier space

Since the equations of motion Eq. (3.81) are linear in the operators we can obtain
a mathematically simpler description of the dynamic by going to Fourier space,
where all EOM are simply linear algebraic equations. Furthermore it is convenient
to arrange the light degrees of freedom in a vector , so we have:

[
(𝜅 − 𝑖𝛺) 𝛥

−𝛥 (𝜅 − 𝑖𝛺)

] (
𝑞(𝛺)
𝑦 (𝛺)

)
=
√

2𝜅
(
𝑞in (𝛺)
𝑦in (𝛺))

)
+
√︂

𝜅𝛤

2

(
0
1

)
𝑋 (𝛺) (3.83a)

𝜒−1
𝑚,0 (𝛺)𝑋 (𝛺) =

√︂
𝜅𝛤

2

(
1 0

) (
𝑞(𝛺)
𝑦 (𝛺))

)
+ 𝑓 (𝛺) (3.83b)

where we have defined the bare mechanical susceptibility as:

𝜒𝑚,0 (𝛺) = 𝛺𝑚

𝛺2
𝑚 −𝛺2 − 2𝑖𝛺𝛾 (3.84)

As we will see, the resonance frequency 𝛺𝑚 and the linewidth 𝛾 will be modified
by the dynamical back-action.

3.4 Solving the EOM

In this following we will show how to solve the Fourier space EOM Eq. (3.83). As
it turns out, it is beneficial to start by considering the prolbem of a cavity with no
mechanical DOF, and then use this solution to obtain the solution to the optome-
chanical problem.

3.4.1 The Cavity susceptibility

We start by considering the the problem of a cavity driven by an external field. The
EOM for the intra-cavity ahnihilation operator is the same as Eq. (3.79) with 𝑔 → 0:

𝜒𝑐 (𝛺)−1𝑎(𝛺) =
√

2𝜅 𝑎in (𝛺) ⇔ (3.85)
𝑎(𝛺) =

√
2𝜅 𝜒𝑐 (𝛺)𝑎in (𝛺) ⇔ (3.86)

where we have defined the cavity susceptibility:

𝜒𝑐 (𝛺) = 1
𝜅 − 𝑖 (𝛺 + 𝛥) (3.87)

We will often write the cavity susceptibility on polar form:

𝜒𝑐 (𝛺) = |𝜒𝑐 (𝛺) |𝑒𝑖𝜃 (𝛺 ) (3.88a)

|𝜒𝑐 (𝛺) | = 1√︁
𝜅2 + (𝛺 + 𝛥)2

(3.88b)

𝜃 (𝛺) = Arg [𝜒𝑐 (𝛺)] = arctan
(
𝛺 + 𝛥

𝜅

)
(3.88c)

The above definitions the following relation holds:

𝜒∗𝑐 (−𝛺) = |𝜒𝑐 (−𝛺) | 𝑒−𝑖𝜃 (−𝛺 ) (3.89)

It is worth noting that the cavity susceptibility for the annihilation operator isn’t
skew-Hermitian:

𝜒∗𝑐 (𝛺) ≠ 𝜒𝑐 (−𝛺)
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Once we start discussing the optical spring effect and dynamical broadening, it
is useful to know that the real and imaginary part of the cavity susceptibility can
be written:

Note that we have the two useful relations:

Re [𝜒𝑐 (𝛺)] = 𝜅 |𝜒𝑐 (𝛺) |2 (3.90a)
Im [𝜒𝑐 (𝛺)] = 𝜅tan (𝜃𝑐 ) |𝜒𝑐 (𝛺) |2 (3.90b)

3.4.2 Transfer Matrix with Optomechanical Coupling

It is convinient to solve for the intra-cavity fields using a transfer matrix approach.
The intra-cavity field EOM Eq. (B.9) has the solution (see Appendix B for the de-
tailed derivation of the transfer matrix):(

𝑞(𝛺)
𝑦 (𝛺)

)
= 𝑻 0

√
2𝜅

(
𝑞in (𝛺)
𝑦in (𝛺)

)
+
√︂

𝜅𝛤0
2 𝑻 0

(
0
1

)
𝑋 (𝛺) (3.91)

By factoring out |𝜒𝑐 (𝛺 ) |+|𝜒𝑐 (−𝛺 ) |
2 from the cavity transfer matrix 𝑻 0 we can defines

an effective read-out rate:

𝛤 (𝛺) = 𝛤0

(
𝜅
|𝜒𝑐 (𝛺) | + |𝜒𝑐 (−𝛺) |

2

)2
, (3.92)

and a sideband asymmetry factor:

𝜁 (𝛺) = |𝜒𝑐 (𝛺) | − |𝜒𝑐 (−𝛺) |
|𝜒𝑐 (𝛺) | + |𝜒𝑐 (−𝛺) | (3.93)

The intra-cavity field can then be written:

(
𝑞(𝛺)
𝑦 (𝛺)

)
= 𝑻 0

√
2𝜅

(
𝑞in (𝛺)
𝑦in (𝛺))

)
(3.94)

+ 𝑒𝑖
𝜃 (𝛺 )−𝜃 (−𝛺 )

2 R 𝜃 (𝛺 )+𝜃 (−𝛺 )
2

√︂
𝛤 (𝛺)

2𝜅

(
𝑖𝜁 (𝛺)

1

)
𝑋 (𝛺)

Using this the input-output relation can be written:

(
𝑞out (𝛺)
𝑦out (𝛺))

)
= 𝑒𝑖2𝜙− (𝛺 )

R2𝜙+ (𝛺 )

(
𝑞in (𝛺)
𝑦in (𝛺)

)
(3.95)

+ 𝑒𝑖
𝜃 (𝛺 )−𝜃 (−𝛺 )

2 R 𝜃 (𝛺 )+𝜃 (−𝛺 )
2

√︁
𝛤 (𝛺)

(
𝑖𝜁 (𝛺)

1

)
𝑋 (𝛺)

Finaly it is convinient to define a set rotated and phase shifted input and output
quadratures:

(
𝑞′out (𝛺)
𝑦 ′

out (𝛺)

)
= 𝑒−𝑖𝜙− (𝛺 )

R
T
𝜙+ (𝛺 )

(
𝑞out (𝛺)
𝑦out (𝛺)

)
(3.96)(

𝑞′in (𝛺)
𝑦 ′

in (𝛺)

)
= 𝑒𝑖𝜙− (𝛺 )

R𝜙+ (𝛺 )

(
𝑞in (𝛺)
𝑦in (𝛺)

)
(3.97)

Note that the input and output transformation have opposite phases and rotate the
quadratures in opposite directions.

So the input-output relation becomes:(
𝑞′out (𝛺)
𝑦 ′

out (𝛺))

)
=

(
𝑞′in (𝛺)
𝑦 ′

in (𝛺)

)
+
√︁
𝛤 (𝛺)

(
𝑖𝜁 (𝛺)

1

)
𝑋 (𝛺) (3.98)
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We see that the position of the oscillator is generally imprinted on both the
phase and amplitude quadrature. In particular the position is maximally read out,
at a rate 𝛤 (𝛺) in the phase quadrature 𝑦 ′

out (𝛺), while the sideband asymmetry
leads to an non-optimal readout of 𝑋 in the amplitude quadrature 𝑞′out (𝛺).

3.4.3 Solving the Mechanical EOM

To obtain the actual solution for the mechanical EOM Eq. (3.83b), i.e. one which
only depends on the input noise operators, we must insert the solution for the
intra-cavity field Eq. (3.91). However since the intra-cavity field depends on 𝑋 ,
inserting the light operators will lead to a renormalization of the oscillator suscepti-
bility. If we write the cavity transfer matrix Eq. (B.9) as:

𝑻 0 =

√︁
𝛤 (𝛺)
𝜅
√
𝛤0

[
1 𝑖𝜁 (𝛺)

−𝑖𝜁 (𝛺) 1

]
𝑒𝑖

𝜃 (𝛺 )−𝜃 (−𝛺 )
2 R 𝜃 (𝛺 )+𝜃 (−𝛺 )

2
(3.99)

Then the intra-cavity field quadratures can be written:

(
𝑞(𝛺)
𝑦 (𝛺)

)
=

(√︂
𝜅𝛤0

2

)−1 √︁
𝛤 (𝛺)

[
1 𝑖𝜁 (𝛺)

−𝑖𝜁 (𝛺) 1

] (
𝑞′in (𝛺)
𝑦 ′

in (𝛺))

)
(3.100)

+
√︂

𝜅𝛤0
2 𝑻 0

(
0
1

)
𝑋 (𝛺)

So the mechanical EOM can then be written:

[
𝜒−1
𝑚,0 −

𝜅𝛤0
2

(
1 0

)
𝑻 0

(
0
1

)]
︸                              ︷︷                              ︸

𝜒−1
𝑚 (𝛺 )

𝑋 (𝛺) =
[√︁

𝛤 (𝛺)
(
1 𝑖𝜁 (𝛺)

) (
𝑞′in (𝛺)
𝑦 ′

in (𝛺)

)
+ 𝑓 (𝛺)

]
(3.101)

And the solution is then readily obtained, simply by inverting the susceptibility:

𝑋 (𝛺) = 𝜒𝑚 (𝛺)
[√︁

𝛤 (𝛺)
(
1 𝑖𝜁 (𝛺)

) (
𝑞′in (𝛺)
𝑦 ′

in (𝛺)

)
+ 𝑓 (𝛺)

]
(3.102)

The renormalized mechanical susceptibility has the form:

𝜒−1
𝑚 (𝛺) = 𝜒−1

𝑚,0 (𝛺) + 𝛴 (𝛺), (3.103)

where the self energy is given by:

𝛴 (𝛺) = 𝜅𝛤0
4𝑖

(
𝜒𝑐 (𝛺) − 𝜒∗𝑐 (−𝛺)

)
⇒ (3.104)

𝛴 (𝛺) = 𝜅𝛤

4

[
𝛺 + 𝛥

𝜅2 + (𝛺 + 𝛥)2 − 𝛺 − 𝛥

𝜅2 + (𝛺 − 𝛥)2

]
(3.105)

+ 𝑖 𝜅𝛤4

[
𝜅

𝜅2 + (𝛺 − 𝛥)2 − 𝜅

𝜅2 + (𝛺 + 𝛥)2

]
Again, this renormalization arises due to the coherent feedback loop described
earlier.

3.4.4 Dynamical Back-Action: The Optical Spring Effect and Dynamical Broaden-
ing

Since 𝛴 (𝛺) generally is complex, it will lead to a modification of the resonance
frequency and the linewidth of the oscillator. To see this we write the susceptibility
explicitly:
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𝜒−1
𝑚 (𝛺) = 1

𝛺𝑚

(
𝛺2
𝑚 +𝛺𝑚Re [𝛴 (𝛺)] −𝛺2 − 2𝑖𝛺

(
𝛾 − 𝛺𝑚

2𝑖𝛺 Im [𝛴 (𝛺)]
))

(3.106)

⇒ 𝜒−1
𝑚 (𝛺) = 1

𝛺𝑚

(𝛺 ′2 −𝛺2 − 2𝑖𝛺𝛾 ′) (3.107)

where we define a new resonance and linewidth

𝛺 ′
𝑚 =

√︁
𝛺2
𝑚 +𝛺𝑚Re [𝛴 (𝛺)] = 𝛺𝑚

√︄
1 + Re [𝛴 (𝛺)]

𝛺𝑚

(3.108)

𝛾 ′ = 𝛾 − 𝛺𝑚

2𝑖𝛺 Im [𝛴 (𝛺)] (3.109)

The change in the resonance is called the optical spring effect, since the spring
constant 𝑘 satisfies 𝑘 ∝ 𝛺2

𝑚 , while the change in the linewidth is referred to as
dynamical broadening. If the readout is weak, 𝛤0 ≪ 𝜅, then we can expand the
renormalized resonance frequency and get:

𝛺 ′
𝑚 ≈ 𝛺𝑚 + 1

2Re [𝛴 (𝛺)] (3.110)

So in the weak read-out regime, the renormalization amount to a shift in the reso-
nance frequency 𝛿𝛺𝑚 (𝛺) and a broadening/narrowing of the oscillator 𝛿𝛾 (𝛺):

𝛺 ′
𝑚 = 𝛺𝑚 + 𝛿𝛺𝑚 (𝛺) (3.111)
𝛾 ′ = 𝛾 + 𝛿𝛾 (𝛺) (3.112)

with the optical spring shift and the dynamical broadening resulting from the
dynamical back-action given by:

𝛿𝛺𝑚 (𝛺) = Re [𝛴 (𝛺)] = 𝜅𝛤

4

[
𝛺 + 𝛥

𝜅2 + (𝛺 + 𝛥)2 − 𝛺 − 𝛥

𝜅2 + (𝛺 − 𝛥)2

]
(3.113)

𝛿𝛾 (𝛺) = −𝛺𝑚

2𝑖𝛺 Im [𝛴 (𝛺)] = 𝛺𝑚

2𝛺
𝜅𝛤

4

[
𝜅

𝜅2 + (𝛺 + 𝛥)2 − 𝜅

𝜅2 + (𝛺 − 𝛥)2

]
(3.114)

This dynamical BA is related to the unequal response at the two sidebands (see
Fig. 3.2) generated by the optomechanical interaction. We will return to this point
in more detail once we discuss two-tone driving.

3.4.5 Input-Output relation for Optomechanics

The output light 𝑎out (𝑡) from e.g. a cavity is related to the input light 𝑎in (𝑡) and the
intra-cavity light 𝑎(𝑡), through the input-output relation[5]:

𝑎out (𝑡) = −𝑎in (𝑡) +
√

2𝜅 𝑎(𝑡) (3.115)

We can now write an input-output relation purely in terms of the input fields,
simply by plugging the solution for 𝑋, as given in Eq. (3.102), into the input-output
relation for the light Eq. (3.98):

(
𝑞′out (𝛺)
𝑦 ′

out (𝛺)

)
=

(
𝑞′in (𝛺)
𝑦 ′

in (𝛺)

)
+ 𝜒𝑚 (𝛺)

√︁
𝛤 (𝛺) 𝑴𝜁

[√︁
𝛤 (𝛺)

(
𝑞′in (𝛺)
𝑦 ′

in (𝛺)

)
+

(
1
0

)
𝑓 (𝛺)

]
(3.116)

where we have defined:

𝑴𝜁 =

[
𝑖𝜁 (𝛺) −𝜁 2 (𝛺)

1 𝑖𝜁 (𝛺)

]
(3.117)
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We can now see that the output light contains three different noise terms. First
there is the shot noise:

®𝑁shot =

(
𝑞′in (𝛺)
𝑦 ′

in (𝛺)

)
, (3.118)

which is due to the vacuum fluctuations of the drive laser, and the optical reservoir.
Next there is the QBA

®𝑁QBA = 𝜒𝑚 (𝛺)𝛤 (𝛺)𝑴𝜁

(
𝑞′in (𝛺)
𝑦 ′

in (𝛺)

)
(3.119)

Like the shot noise the QBA is due to vacuum fluctuations of the optical field driv-
ing the mechanical oscillator, however, it is specifically due to the probing of the
oscillator by the light, as can be seen by the dependence on 𝛤 (𝛺). Finally there is
the thermal noise due to phonons:

®𝑁th = 𝜒𝑚 (𝛺)
√︁
𝛤 (𝛺) 𝑴𝜁

(
1
0

)
𝑓 (𝛺) (3.120)

If the mechanical oscillator is driven by additional forces, such as a classical force
𝑓cl (𝑡), they will simply be added to the thermal noise:

(
𝑞′out (𝛺)
𝑦 ′

out (𝛺)

)
=

(
𝑞′in (𝛺)
𝑦 ′

in (𝛺)

)
+ 𝜒𝑚 (𝛺)

√︁
𝛤 (𝛺) 𝑴𝜁

[√︁
𝛤 (𝛺)

(
𝑞′in (𝛺)
𝑦 ′

in (𝛺)

)
(3.121)

+
(
1
0

) (
𝑓 (𝛺) + 𝑓cl (𝛺)

)]

Figure 3.2: Sketch of the heterodyne spectrum for an optomechanical system driven by
a laser with frequency 𝜔𝑜 . The mechanical motion is imprinted sidebands (red and blue
Lorentzian) at frequencies 𝜔𝑜 ± 𝛺𝑚 . If the cavity susceptibility (black Lorentzian) and the
drive tone are detuned by an amount 𝛥 the response from the sidebands will be unequal and
lead to dynamical BA



Chapter 4. Cavity Optomechanics with a Two-tone Drive 26

C
h
a
p
t
e
r 4

Cavity Optomechanics with a
Two-tone Drive

“ This is getting out of hand, now there are two of them!”

Nute Gunray

- Star Wars: The Phantom Menace, George Lucas

In this chapter we up the ante and consider an optomechanical cavity
driven by two coherent tones. We start by introducing the two-tone
drive Hamiltonian and then discuss some subtleties in linearization procedure,
arising from the additional dynamics introduced by the second drive
tone. At the end of the chapter we arrive at the Heisenberg-Langevin
EOM for the two-tone driven problem.

4.1 The Two-Tone Optomechanical Hamiltonian

We start this section by discussing how to write the drive term in the Hamiltonian
for a system driven by two strong coherent tones

4.1.1 The Drive Hamiltonian

We now consider an optomechanical system driven by two laser tones at frequen-
cies 𝜔±. The Drive Hamiltonian is simply the sum of the drive Hamiltonians for
each tone, of the the same form as the drive Hamiltonian Eq. (3.20) we used previ-
ously:

𝐻̂𝑑 = 𝑖ℏ
√

2𝜅
(
𝛼in,+𝑒

−𝑖𝜔+𝑡 + 𝛼in,−𝑒
−𝑖𝜔−𝑡

)
𝑎† + H.c. (4.1)

The two amplitudes of the coherent drive fields are generally complex:

𝛼in,± = |𝛼in,± |𝑒𝑖𝜙± (4.2)

As we have two frequencies, it is more natural to rewrite the problem in terms of
an average drive frequency 𝜔𝑜 and a relative frequency 𝛺̃ :

Page 26 of 65
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𝜔𝑜 =
𝜔+ + 𝜔−

2 (4.3)

𝛺̃ =
𝜔+ − 𝜔−

2 (4.4)

This is easily achieved by factoring out the mean frequency:

𝐻̂𝑑 = 𝑖ℏ
√

2𝜅 𝑒−𝑖
𝜔𝑑++𝜔𝑑−

2 𝑡
(
𝛼in,+𝑒

−𝑖 𝜔𝑑+−𝜔𝑑−
2 𝑡 (4.5)

+𝛼in,−𝑒
𝑖
𝜔𝑑+−𝜔𝑑−

2 𝑡
)
𝑎† + H.c.

= 𝑖ℏ
√

2𝜅 𝑒−𝑖𝜔𝑜𝑡
(
𝛼in,+𝑒

−𝑖𝛺̃𝑡 + 𝛼in,−𝑒
𝑖𝛺̃𝑡

)
𝑎† + H.c. (4.6)

If we then transform to an interaction picture using the unitary:

𝑈 = 𝑒−𝑖𝜔𝑜𝑎
†𝑎𝑡 , (4.7)

we simply have:

𝐻̂𝑑 = 𝑖ℏ
√

2𝜅
(
𝛼in,+𝑒

−𝑖𝛺̃𝑡 + 𝛼in,−𝑒
𝑖𝛺̃𝑡

)
𝑎† + H.c. (4.8)

Moreover, since the complex amplitudes generally have different phases, we can
use the same trick and write:

𝐻̂𝑑 = 𝑖ℏ
√

2𝜅
(
|𝛼in,+ |𝑒𝑖𝜙+𝑒−𝑖𝛺̃𝑡 + |𝛼in,− |𝑒𝑖𝜙−𝑒𝑖𝛺̃𝑡

)
𝑎† + H.c. (4.9)

= 𝑒𝑖
𝛷−+𝛷+

2 𝑖ℏ
√

2𝜅
(
|𝛼in,+ |𝑒−𝑖

𝜙−−𝜙+
2 𝑒−𝑖𝛺̃𝑡 (4.10)

+|𝛼in,− |𝑒𝑖
𝜙−−𝜙+

2 𝑒𝑖𝛺̃𝑡
)
𝑎† + H.c.,

and then we can likewise define a mean phase and a relative phase:

𝜙 =
𝜙− + 𝜙+

2 (4.11)

𝜙 =
𝜙− − 𝜙+

2 (4.12)

So the drive Hamiltonian becomes:

𝐻̂𝑑 = 𝑖ℏ
√

2𝜅
(
|𝛼in+ |𝑒−𝑖𝜙𝑒−𝑖𝛺̃𝑡 + |𝛼in− |𝑒𝑖𝜙𝑒𝑖𝛺̃𝑡

)
𝑎† (𝑡)𝑒𝑖𝜙 + H.c.

We can now eliminate the mean phase by performing a gauge transformation of
the intra-cavity photon field:

𝑎 → 𝑎𝑒𝑖𝜙 (4.13a)

𝑎† → 𝑎†𝑒−𝑖𝜙 (4.13b)

So finally, by transforming to an interaction picture rotating with the mean
drive frequency 𝜔𝑜 , and by using a gauge transformation to eliminate the mean
phase, we are left with a drive Hamiltonian on the form:

𝐻̂𝑑 = 𝑖ℏ
√

2𝜅
(
|𝛼in+ |𝑒−𝑖𝜙𝑒−𝑖𝛺̃𝑡 + |𝛼in− |𝑒𝑖𝜙𝑒𝑖𝛺̃𝑡

)
𝑎† (𝑡) + H.c. (4.14)

In terms of the intracavity quadratures this is:

𝐻̂𝑑 = ℏ
√

2𝜅 sin(𝛺̃𝑡 + 𝜙)
[√

2 |𝛼in+ | −
√

2 |𝛼in− |
]
𝑞, (4.15)

− ℏ
√

2𝜅 cos(𝛺̃𝑡 + 𝜙)
[√

2 |𝛼in+ | +
√

2 |𝛼in− |
]
𝑦
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from which we see that for arbitrary drive amplitudes, both quadratures are driven
by the laser light.

An important special case of this, is for equal drive amplitudes |𝛼in+ | = |𝛼in− | =
|𝛼in |:

𝐻̂𝑑 = −𝑖ℏ
√

2𝜅 2|𝛼in— cos(𝛺̃𝑡 + 𝜙)
(
𝑎 − 𝑎†

)
, (4.16)

which looks just like a single tone drive Eq. (3.20) with a cosine modulation, and
double the maximal amplitude. In terms of quadratures it reduce to:

𝐻̂𝑑 = ℏ
√

2𝜅 2|𝛼in—
√

2 cos(𝛺̃𝑡 + 𝜙)𝑦 (𝑡), (4.17)

so for equal drive amplitudes, only the phase quadrature 𝑦 of the intra-cavity field
is driven.

4.1.2 Linearization for Equal Drive Amplitudes

Let us for a moment consider just a cavity with no mechanical degree of freedom.
If we drive such a cavity two with equal amplitude drive tones, we would expect
that after some transient period the sinusoidal driving of intra-cavity field would
lead to a steady state where the intra-cavity field also oscillates sinusoidally, be
it with some retardation due to the nontrivial response function of the cavity. If
we now add a mechanical degree of freedom, there will once again be a transient
period until the mechanical oscillator, which is driven by the intra-cavity field,
reaches a steady state. However since the intra-cavity field oscillates, our intuition
tells us the same will be the case for the mechanics(1), albeit it doesn’t have to be
at the same frequency nor in phase with the light. In our case, it could potentially
mean that the classical steady state values to linearize about would be time depen-
dent, which would lead to several parameters, such as the detuning between the
driving light and the cavity and picking up a time dependence. We wish to exam-
ine further if this is the case. To do so we choose to focus on the simple case of
equal drive amplitudes.

The Hamiltonian for the mechanical system and intra-cavity field is the same
as in the single-tone case. If we now transform to the frame rotating a 𝜔𝑜 , i.e. using
Eq. (3.20), and drop the vacuum terms, the Hamiltonian for equal drive amplitudes
can be written:

𝐻̂ = ℏ

(
𝜔𝑐 (𝑋 ) − 𝜔𝑜

)
𝑎† (𝑡)𝑎(𝑡) + ℏ𝛺𝑚𝑏

† (𝑡)𝑏 (𝑡) (4.18)

− 𝑖ℏ
√

2𝜅 2|𝛼in— cos(𝛺̃𝑡 + 𝜙)
(
𝑎 − 𝑎†

)
If we now linearize about the classical solution using the same ansatz Eq. (3.20) as
we did for single tone, we find that the classical EOM for the intracavity field 𝛼 (𝑡),
the mechanical position 𝑋 (𝑡) and the mechanical momentum 𝑃 (𝑡) are:

¤̄𝛼 (𝑡) =
√

2𝜅 2𝛼in cos(𝛺̃𝑡 + 𝜙) + (𝑖𝛥 (𝑡) − 𝜅) 𝛼 (𝑡)
1
𝛺𝑚

[
¥̄𝑋 (𝑡) + 2𝛾 ¤̄𝑋 +𝛺2

𝑚𝑋 (𝑡)
]
= 𝑔0 (𝑡) |𝛼 (𝑡) |2

where the detuning and the optomechanical coupling are given by:

(1) Recall that in general, when a oscillatory system is driven by a periodic force, it will
eventually reach a steady state determined by the drive and the response function. Typical
examples include a RLC circuit driven by an AC current, an electric dipole driven by a
monochromatic electric field, a single spin in a RF magnetic field and so on.



Chapter 4. Cavity Optomechanics with a Two-tone Drive 29

𝑔0 (𝑡) = −𝑥xpf
𝜕𝜔𝑐

𝜕𝑋

����
𝑋 (𝑡 )

(4.19)

𝛥 (𝑡) = 𝜔𝑜 − 𝜔𝑐 (𝑋 (𝑡)) + 𝑔0 (𝑡) (4.20)
(4.21)

Formal integration of the classical intracavity field EOM yields the steady state
solution (see Appendix C for the details):

𝛼 (𝑡) =
√

2𝜅 2𝛼in

∫ 𝑡

−∞
d𝑡 ′

[
cos(𝛺̃𝑡 ′ + 𝜙)𝑒−𝜅 (𝑡−𝑡 ′ )+𝑖

∫ 𝑡

𝑡 ′ d𝑡 ′′𝛥 (𝑡 ′′ )
]

Let us now assume that the frequency of the cavity mode does not vary apprecia-
bly in time, such that the detuning and the optomechanical coupling are approxi-
mately constant

𝛥 ≈ 𝜔𝑜 − 𝜔𝑐 (𝑋 (𝑡0)) + 𝑔0 (4.22)

𝑔0 ≈ −𝑥xpf
𝜕𝜔𝑐

𝜕𝑥

����
𝑥 (𝑡0 )

(4.23)

The solution for the intra-caivty field then reduces to:

𝛼 (𝑡) =
√

2𝜅 2𝛼in

∫ 𝑡

−∞
d𝑡 ′𝑒−(𝜅−𝑖𝛥 ) (𝑡−𝑡 ′ ) cos(𝛺̃𝑡 ′ + 𝜙) (4.24)

The integral can now be evaluated, and results in an intra-cavity field which can be
written on the form:

𝛼 (𝑡) = 𝛼+𝑒
−𝑖𝛺̃𝑡 + 𝛼−𝑒

𝑖𝛺̃𝑡 , (4.25)

where the positive and negative frequency component of the intracavity field are
given by:

𝛼± =
√

2𝜅 2|𝛼in |𝑒𝑖𝜙± 𝜒𝑐 (±𝛺̃) (4.26)

If we now consider the mechanical EOM, we can write it:

1
𝛺𝑚

[
¥̄𝑋 (𝑡) + 2𝛾 ¤̄𝑋 +𝛺2

𝑚𝑋 (𝑡)
]
= 𝐹rad (𝑡),

where the radiation preasure force now is time dependent:

𝐹rad (𝑡) = 𝑔0 |𝛼 (𝑡) |2

Using the solution for the intracavity field we find that the radiation pressure force
has a DC term and and a term oscillating at 2𝛺̃ :

𝐹rad (𝑡) = 𝑔0 (|𝛼+ |2 + |𝛼− |2)︸               ︷︷               ︸
𝐹𝑟𝑎𝑑,𝐷𝐶

+𝑔0
(
𝛼+𝛼

∗
−𝑒

−2𝑖𝛺̃𝑡 + 𝛼∗
+𝛼−𝑒

2𝑖𝛺̃𝑡
)

︸                                ︷︷                                ︸
𝐹𝑟𝑎𝑑,𝐴𝐶

The DC term is just a constant force, and only leads to a constant shift of the
equilibrium position of the oscillator in steady state, we also saw a term like this
in the single-tone driving case. The AC term is new, and potentially problematic.
It will in general lead to oscillations of the “equilibrium” of the oscillator, and po-
tentially invalidate the assumption that 𝛥 and 𝑔0 are constant, and furthermore
make the linearization problematic. For the physics we aim to examine, we assume
that the mechanical resonance 𝛺𝑚 and the relative drive frequency 𝛺̃ are relatively
close. In this case the AC force is non-resonant and can simply be neglected. In re-
ality, the single mechanical mode we consider will be one of many possible modes.
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If it just so happens that the spacing between modes is on the order of 𝛺̃ , then the
AC term in the radiation pressure force may be resonant with a neighboring me-
chanical mode. To mitigate other mechanical modes being activated, one can apply
a compensating feedback force 𝑓comp (𝑡):

1
𝛺𝑚

[
¥̄𝑋 (𝑡) + 2𝛾 ¤̄𝑋 +𝛺2

𝑚𝑋 (𝑡)
]
= 𝐹rad (𝑡) + 𝑓comp (𝑡), (4.27)

where the compensating force is exactly opposite the AC part of the radiation
pressure force, which is a deterministic and thus in theory known force:

𝑓comp (𝑡) = −𝐹𝑟𝑎𝑑,𝐴𝐶 (4.28)

By neglecting the non-resonant contribution from the AC term, there is no longer
any explicit time dependence in the mechanical EOM, and thus there will be a sta-
tionery steady state. This then ensures that 𝛥 and 𝑔0 indeed are constant, and thus
we are consistent. If we proceed as in the single-tone case and make the steady
state value 𝑋ss the reference point for position measurements, then everything is
just as in the single tone case, except the classical part 𝛼 (𝑡) of the intra-cavity field
now depends on time, even in steady state.

4.1.3 Linearized Hamiltonian For general Drive Ampltitudes

We now turn to the general two tone driving problem. In a frame rotating at the
mean driving frequency, the quantum part of the Linearized Hamiltonian has the
same form as for single-tone driving:

𝐻̂ = −𝛥ℏ𝛿𝑎† (𝑡)𝛿𝑎(𝑡) + ℏ𝛺𝑚

(
𝛿𝑋 2 + 𝛿𝑃2

)
− ℏ𝑔0

[
𝑖𝛼 (𝑡)𝛿𝑎† + H.C.

]
𝛿𝑋 (4.29)

where the classical steady state intra-cavity field still has the form:

𝛼 (𝑡) = 𝛼+𝑒
−𝑖𝛺̃𝑡 + 𝛼−𝑒

𝑖𝛺̃𝑡 (4.30)

with the complex amplitudes given by:

𝛼± = 𝛼±,in𝜒𝑐 (±𝛺̃), (4.31)

which is valid previously discussed limit where the classical mechanical motion
doesn’t influence the classical steady state of the intra-cavity field. Importantly we
can freely control the amplitudes |𝛼± | and phases𝛷± of the intra-cavity field is, by
adjusting the amplitudes |𝛼in,± | and phases 𝜙± of the two drive tones, although we
must remember to account for amplitude and phase the intra-cavity susceptibility
𝜒𝑐 (±𝛺̃).

We can equally well write the Hamiltonian in terms of phonon and photon
operators:

𝐻̂ = −𝛥ℏ𝛿𝑎† (𝑡)𝛿𝑎(𝑡)+ℏ𝛺𝑚𝛿𝑏
† (𝑡)𝛿𝑏 (𝑡)− ℏ𝑔0√

2
[
𝛼 (𝑡)𝛿𝑎† + 𝛼∗ (𝑡)𝛿𝑎

] (
𝛿𝑏 + 𝛿𝑏†

)
(4.32)

As each coherent component of the intra-cavity field has a different phase𝛷±,
however only the relative phase will affect the dynamics. To that end we define the
relative and mean phase:

𝛷 =
𝛷− −𝛷+

2 , (4.33a)

𝛷 =
𝛷− +𝛷+

2 , (4.33b)

and factor out the mean phase:
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𝐻̂ = −𝛥ℏ𝛿𝑎† (𝑡)𝛿𝑎(𝑡) + ℏ𝛺𝑚𝛿𝑏
† (𝑡)𝛿𝑏 (𝑡) (4.34)

− ℏ𝑔0√
2

[(
|𝛼+ |𝑒−𝑖𝛷𝑒−𝑖𝛺̃𝑡 + |𝛼− |𝑒𝑖𝛷𝑒𝑖𝛺̃𝑡

)
𝑒𝑖𝛷̄𝛿𝑎† + H.C.

] (
𝛿𝑏 + 𝛿𝑏†

)
If we then perform the gauge transformation:

𝛿𝑎 → 𝛿𝑎𝑒𝑖𝛷̄ ,

to eliminate the mean phase, then we finally achieve Hamiltonian we will consider:

𝐻̂ = −ℏ𝛥𝛿𝑎† (𝑡)𝛿𝑎(𝑡) + ℏ𝛺𝑚𝛿𝑏
† (𝑡)𝛿𝑏 (𝑡) (4.35)

− ℏ𝑔0√
2

[(
|𝛼+ |𝑒−𝑖𝛷𝑒−𝑖𝛺̃𝑡 + |𝛼− |𝑒𝑖𝛷𝑒𝑖𝛺̃𝑡

)
𝛿𝑎† + H.C.

] (
𝛿𝑏 + 𝛿𝑏†

)
If we define the classical quadrature-like variables:

𝑞cl =
|𝛼− | + |𝛼+ |√

2
(4.36a)

𝑦cl =
|𝛼− | − |𝛼+ |√

2
(4.36b)

and two corresponding read-out rates from the relation(2):√︁
𝛤𝑘 =

√︂
4𝑔2

0
𝜅

𝑘, 𝑘 ∈ {𝑦cl, 𝑞cl} ,

the Hamiltonian can be written succinctly in terms of the quadrature operators:

𝐻̂ = −ℏ𝛥 (𝛿𝑞2 + 𝛿𝑦2) + ℏ𝛺𝑚

(
𝛿𝑋 2 + 𝛿𝑃2

)
(4.37)

−
√
𝜅

[√︁
𝛤𝑞 cos(𝛺̃𝑡 +𝛷)𝑞 +

√︁
𝛤𝑦 sin(𝛺̃𝑡 +𝛷)𝑦

]
𝑋 (4.38)

From the quadrature Hamiltonian we can make the observation that no matter
the choice of |𝛼± |, there will always be a coupling between the intra-cavity ampli-
tude quadrature 𝑞 and the mechanical position. However, the intra-cavity phase
quadrature 𝑦 only couples to t̂he mechanical position when |𝛼+ | ≠ |𝛼− |.

4.2 Eqations of Motion for Two-Tone Optomechanics

4.2.1 Heisenberg Langevin Equation for creation and annihilation operators

Starting from the Hamiltonian Eq. (4.35) the corresponding Heisenberg-Langevin
equations for the intra-cavity photon annihilation operator 𝑎 and the phonon
annihilation operator 𝑏 are:

¤̂𝑎(𝑡) = 𝑖𝛥 − 𝜅𝛿𝑎(𝑡) +
√

2𝜅 𝛿𝑎in (𝑡) (4.39a)

+ 𝑖 𝑔0√
2

[
|𝛼− |𝑒𝑖𝛷𝑒𝑖𝛺̃𝑡 + |𝛼+ |𝑒−𝑖𝛷𝑒−𝑖𝛺̃𝑡

] (
𝑏 (𝑡) + 𝑏† (𝑡)

)
¤̂
𝑏 (𝑡) = − 𝑖𝛺𝑚𝑏 (𝑡) − 𝛾

(
𝑏 (𝑡) − 𝑏† (𝑡)

)
+ 𝑖 1

√
2
𝑓 (𝑡) (4.39b)

+ 𝑖 𝑔0√
2

[(
|𝛼− |𝑒−𝑖𝛷𝑒−𝑖𝛺̃𝑡 + |𝛼+ |𝑒𝑖𝛷𝑒𝑖𝛺̃𝑡

)
𝑎(𝑡) + H.C.

]
(4.39c)

(2) We define the read-out rates from their square roots to ensure that
√︁
𝛤𝑦 ∝ |𝛼+ | − |𝛼− | has

the correct sign.
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An important feature of these coupled differential equations is that 𝑎 does not
couple to 𝑎†, while 𝑏 does couple to 𝑏†. As we shall see, this allows us to easily
obtain a formal solution for 𝑎 in terms of the mechanical degrees of freedom, while
the mechanical equations require a more refined approach. The difference in the
damping terms when comparing the photon and phonon EOM arises from using
the RWA on the photon reservoir, but not the phonon reservoir.

4.2.2 Heisenberg Langevin Equation for quadratures

The EOM for the quadrature operators can now be obtained from the Hamiltonian
Eq. (4.37) or from the creation and annihilation operator EOM Eq. (4.37). In any
case the relevant EOM are:

¤̂𝑞(𝑡) =
√

2𝜅 𝑞in (𝑡) − 𝛥𝑦 (𝑡) − 𝜅𝑞(𝑡) −
√︁
𝜅𝛤𝑦 sin(𝛺̃𝑡 +𝛷)𝑋 (𝑡) (4.40)

¤̂𝑦 (𝑡) =
√

2𝜅 𝑦in + 𝛥𝑞 − 𝜅𝑦 +
√︁
𝜅𝛤𝑞 cos(𝛺̃𝑡 +𝛷)𝑋 (𝑡) (4.41)

1
𝛺𝑚

[
𝛿
¥̂
𝑋 (𝑡) + 2𝛾𝛿 ¤̂

𝑋 (𝑡) +𝛺2
𝑚𝛿𝑋 (𝑡)

]
= 𝑓 (𝑡)+ (4.42)√︁

𝜅𝛤𝑞 cos(𝛺̃𝑡 +𝛷)𝑞 +
√︁
𝜅𝛤𝑦 sin(𝛺̃𝑡 +𝛷)𝑦 + 𝑓 (𝑡)

Both the amplitude and phase quadrature of the light are driven by the me-
chanical oscillator, however they are driven 𝜋

2 out of phase and with different
strengths, set by

√︁
𝛤𝑞 and

√︁
𝛤𝑦 . Compared to the single-tone EOM Eq. (3.81), we

see the indication of a much more intricate set of feedback loops, not only because
there is a direct driving of 𝑋 by both optical quadratures and vice verse, but also to
the time dependence and relative phase between the two readout-rates(3) . We will
return to the nature of these feedback mechanisms in Chapter 5.

Another interesting feature is the form of the optical force 𝑓opt (𝑡) driving the
mechanical oscillator:

𝑓opt (𝑡) =
√︁
𝜅𝛤𝑞 cos(𝛺̃𝑡 +𝛷)𝑞 +

√︁
𝜅𝛤𝑦 sin(𝛺̃𝑡 +𝛷)𝑦,

is not simply a rotation of 𝑞 and 𝑦 .

(3) If we wanted to we could have defined two time dependent read-out rates√︁
𝛤𝑞 (𝑡) =

√︃
4𝑔2

0
𝜅 𝑞cl cos(𝛺̃𝑡 +𝛷) and

√︁
𝛤𝑦 (𝑡) =

√︃
4𝑔2

0
𝜅 𝑦cl sin(𝛺̃𝑡 +𝛷)
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Engineering an effective
oscillator in the

narrow-sideband regime

“ Y’know,’ he said, ‘it’s very hard to talk quantum using a language
originally designed to tell other monkeys where the ripe fruit is.”

Lu-Tze

- Night Watch, Terry Pratchett

In this chapter we use a time-domain approach, to examine how the
two-tone-driven system described in the preceding chapter can be engineered
to be have like a single-tone-driven system with negative mass and down-
converted frequency. To this end, we focus on the narrow sidebands
regime and try to derive a simpler set of equations, a toy model that
captures the essence of the scheme. From such a set of simpler solutions
one may, in future work, better understand how the complexity of the
more general problem arise, such a the coupling of feedback loops arising
from dynamical BA.

5.1 The General Mechanical and Optical Eqations of Motion

5.1.1 The Intra-cavity Field Solution

Let us first consider the EOM for the intra-cavity photon field Eq. (4.39a). Since this
is a first order differential equation, and 𝑎(𝑡) doesn’t explicitly couple to 𝑎† (𝑡), we
can write a formal solution by formal integration:

𝑎(𝑡) = 𝑎(𝑡0)𝑒 (𝑖𝛥−𝜅 ) (𝑡−𝑡0 ) +
∫ 𝑡

𝑡0

d𝑡 ′𝑒 (𝑖𝛥−𝜅 ) (𝑡−𝑡 ′ ) [√
2𝜅 𝑎in (𝑡 ′) (5.1)

+𝑖 𝑔0√
2

[
|𝛼− |𝑒𝑖 (𝛺̃𝑡+𝛷) + |𝛼+ |𝑒−𝑖 (𝛺̃𝑡+𝛷)

] (
𝑏 (𝑡) + 𝑏† (𝑡)

)]
As usual we will consider the system when it has reached steady state; when

all transients have died out. This can be achieved saying the experiment started
long ago which corresponds to taking 𝑡0 → −∞:

Page 33 of 65
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𝑎(𝑡) =
√

2𝜅
∫ 𝑡

−∞
d𝑡 ′𝑒 (𝑖𝛥−𝜅 ) (𝑡−𝑡 ′ )𝑎in (𝑡 ′) (5.2)

+ 𝑖 𝑔0√
2

∫ 𝑡

−∞
d𝑡 ′𝑒 (𝑖𝛥−𝜅 ) (𝑡−𝑡 ′ )

[
|𝛼− |𝑒𝑖 (𝛺̃𝑡 ′+𝛷)𝑏 (𝑡 ′) + |𝛼− |𝑒𝑖 (𝛺̃𝑡 ′+𝛷)𝑏† (𝑡 ′)

+|𝛼+ |𝑒−𝑖 (𝛺̃𝑡 ′+𝛷)𝑏 (𝑡 ′) + 𝑏† (𝑡 ′) |𝛼+ |𝑒−𝑖 (𝛺̃𝑡 ′+𝛷)
]

(5.3)

This is only formally a solution, as it still depends on the mechanical operators,
which themselves depend on the intra-cavity light.

5.1.2 Input-Output Relation and Mechanical sidebands

Before we move on with the solution of the mechanical and optical equations of
motion, let us see what we can learn from the solution for the intra-cavity field we
just found. The input-output relation Eq. (4.39a) for the cavity now becomes:

𝑎out (𝑡) =
∫ 𝑡

−∞
d𝑡 ′

[
2𝜅𝑒 (𝑖𝛥−𝜅 ) (𝑡−𝑡 ′ ) − 𝛿 (𝑡 − 𝑡 ′)

]
𝑎in (𝑡 ′)+ (5.4)

𝑖
𝑔0√
2

∫ 𝑡

−∞
d𝑡 ′𝑒 (𝑖𝛥−𝜅 ) (𝑡−𝑡 ′ )

[
|𝛼− |𝑒𝑖 (𝛺̃𝑡 ′+𝛷)𝑏 (𝑡 ′) + |𝛼− |𝑒𝑖 (𝛺̃𝑡 ′+𝛷)𝑏† (𝑡 ′)

+|𝛼+ |𝑒−𝑖 (𝛺̃𝑡 ′+𝛷)𝑏 (𝑡 ′) + 𝑏† (𝑡 ′) |𝛼+ |𝑒−𝑖 (𝛺̃𝑡 ′+𝛷)
]

To better understand how the mechanical motion is imprinted on the light
we make the following consideration: A free mechanical oscillator would simply
oscillate at frequency 𝛺𝑚 , however the interaction with the intra-cavity light will
generally lead to an optical spring effect which will renormalize(1) the frequency to
𝛺eff. Based on this we make the following Ansatz:

𝑏 (𝑡) = ˆ̃
𝑏 (𝑡)𝑒−𝑖𝛺eff𝑡 , (5.5)

where the essence of the Ansatz is that ˆ̃
𝑏 (𝑡) is a slowly varying operator compared

to 𝑒−𝑖𝛺eff𝑡 . We will show that this is indeed the case once we solve the mechanical
EOM. It is also convenient to define the detuning between this effective mechanical
frequency and half the relative drive frequency:

𝛬eff = 𝛺eff − 𝛺̃, (5.6)

which allows us to express the input-output relation Eq. (5.4) in terms of this
slowly varying operator as follows:

𝑎out (𝑡) =
∫ 𝑡

−∞
d𝑡 ′

[
2𝜅𝑒 (𝑖𝛥−𝜅 ) (𝑡−𝑡 ′ ) − 2𝛿 (𝑡 − 𝑡 ′)

]
𝑎in (𝑡 ′) (5.7)

+ 𝑖
√

2𝜅 𝑔0√
2

∫ 𝑡

−∞
d𝑡 ′𝑒 (𝑖𝛥−𝜅 ) (𝑡−𝑡 ′ )

[
|𝛼− |𝑒𝑖𝛷 ˆ̃

𝑏 (𝑡 ′)𝑒−𝑖𝛬eff𝑡
′ + |𝛼− |𝑒𝑖𝛷 ˆ̃

𝑏† (𝑡 ′)𝑒𝑖 (𝛬eff+2𝛺̃)𝑡 ′

+ |𝛼+ |𝑒−𝑖𝛷 ˆ̃
𝑏 (𝑡 ′)𝑒−𝑖 (𝛬eff+2𝛺̃)𝑡 ′ + |𝛼+ |𝑒−𝑖𝛷 ˆ̃

𝑏† (𝑡 ′)𝑒𝑖𝛬eff𝑡
′
]

(1) Generally the story is complicated by the fact that the renormalization may be fre-
quency/time dependent and thus we have a frequency dependent “resonance” 𝛺eff (𝛺). In
this chapter we will end up examining a regime where the renormalization is frequency
independent and thus we need not worry about it. Moreover, for the renormalized system
to be considered an oscillator, the parameters such as the resonance frequency must be
constant, so in a sense the assumption that this is the case is necessary for us.
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The interpretation of this expression is slightly clearer in frequency space, as
the convolution integrals just become products. We note that the cavity susceptibil-
ity(2) is given by the Fourier transform of the cavity response function :

𝜒𝑐 (𝛺) =
∫ ∞

−∞
d𝜏𝑒 (𝑖 (𝛺+𝛥 )−𝜅 )𝜏𝜃 (𝜏), (5.8)

And that we also need to use:∫ ∞

0
d𝜏𝑒𝑖𝛺𝜏𝛿 (𝜏) = 1

2 (5.9)

Using the above relations we find the input-output relation is a simple algebraic
expression in Fourier space:

𝑎out (𝛺) = 𝑒𝑖2𝜃𝑐 (𝛺 )𝑎in (𝛺) + 𝑖
√

2𝜅 𝑔0√
2
𝜒𝑐 (𝛺)

[
𝑒𝑖𝛷 |𝛼− | ˆ̃𝑏 (𝛺 − 𝛬eff) + 𝑒𝑖𝛷 |𝛼− | ˆ̃𝑏† (−𝛺 − 𝛬eff − 2𝛺̃)

(5.10)

+ 𝑒−𝑖𝛷 |𝛼+ | ˆ̃𝑏 (𝛺 − 𝛬eff − 2𝛺̃) + 𝑒−𝑖𝛷 |𝛼+ | ˆ̃𝑏† (−𝛺 − 𝛬eff)
]

The term proportional to 𝑎in (𝛺) arises due to the interference of input light which
is reflected from the cavity and the input light which was processed by the cavity.
We note that is simply results in a cavity induced phase shift of the input noise,
which follows from the rewriting (see Appendix D)

2𝜅𝜒𝑐 (𝛺)︸    ︷︷    ︸
from cavity

− 1︸︷︷︸
reflected

= 𝑒𝑖2𝜃𝑐 (𝛺 )

The mechanical signal in Eq. (5.10) is expressed as four sidebands(3): two inner
sidebands at frequencies ±𝛬eff and two outer sidebands at frequencies ±

(
𝛬eff + 2𝛺̃

)
(see Fig. 5.1). Note that what is the upper and lower sideband of the inner side-
bands depends on the sign of 𝛬eff, so:

𝛬eff > 0 → 𝑎out (𝛺) = 𝑒𝑖2𝜃𝑐 (𝛺 )𝑎in (𝛺)+ (5.11a)

𝑖
√

2𝜅 𝑔0√
2
𝜒𝑐 (𝛺)

𝑒
𝑖𝛷 |𝛼− | ˆ̃

𝑏† (−𝛺 − 𝛬eff − 2𝛺̃)︸                   ︷︷                   ︸
lower outer sideband

+𝑒−𝑖𝛷 |𝛼+ | ˆ̃
𝑏† (−𝛺 − 𝛬eff)︸           ︷︷           ︸

lower inner sideband


+ 𝑖

√
2𝜅 𝑔0√

2
𝜒𝑐 (𝛺)

𝑒
𝑖𝛷 |𝛼− | ˆ̃

𝑏 (𝛺 − 𝛬eff)︸       ︷︷       ︸
upper innner sideband

+𝑒−𝑖𝛷 |𝛼+ | ˆ̃
𝑏 (𝛺 − 𝛬eff − 2𝛺̃)︸               ︷︷               ︸
upper outer sideband


𝛬eff < 0 → 𝑎out (𝛺) = 𝑒𝑖2𝜃𝑐 (𝛺 )𝑎in (𝛺)+ (5.11b)

𝑖
√

2𝜅 𝑔0√
2
𝜒𝑐 (𝛺)

𝑒
𝑖𝛷 |𝛼− | ˆ̃

𝑏† (−𝛺 − 𝛬eff − 2𝛺̃)︸                   ︷︷                   ︸
lower outer sideband

+𝑒𝑖𝛷 |𝛼− | ˆ̃
𝑏 (𝛺 − 𝛬eff)︸       ︷︷       ︸

lower innner sideband


+ 𝑖

√
2𝜅 𝑔0√

2
𝜒𝑐 (𝛺)

𝑒
−𝑖𝛷 |𝛼+ | ˆ̃

𝑏† (−𝛺 − 𝛬eff)︸           ︷︷           ︸
upper inner sideband

+𝑒−𝑖𝛷 |𝛼+ | ˆ̃
𝑏 (𝛺 − 𝛬eff − 2𝛺̃)︸               ︷︷               ︸
upper outer sideband


(2) Here 𝜏 = 𝑡 − 𝑡 ′ appears due to the 𝑡 − 𝑡 ′ dependence of the cavity response function and
rewriting the integrals using

∫ 𝑡

−∞ d𝑡 ′ =
∫ ∞
−∞ d𝑡 ′𝜃 (𝑡 − 𝑡 ′).

(3) Generally these “sidebands” may be broadened and moved around frequency space by
dynamical BA, and so it is not guaranteed that the sidebands are narrow and well separated
enough to identify as individual sidebands in the actual spectrum, however the mechanical
dynamics in that limit are no longer oscillator like, and thus beyond our interest.
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We see that for 𝛬eff > 0 the inner sidebands have the same structure as for a single-
tone driven optomechanical cavity driven at frequency 𝜔𝑜 with mechanical fre-
quency 𝛬eff: the upper sidebands is due to 𝑏 while the lower sidebands is due to
𝑏†. For 𝛬eff < 0 the spectrum is radically different, the role of 𝑏 and 𝑏† are inter-
changed, and we instead have a mechanical oscillator with a negative frequency
𝛬eff. We will see exactly these conclusions hold true once we actually solve the
mechanical EOM.

Figure 5.1: Sketch of the heterodyne spectrum from a two-tone optomechanical system, in
the narrow sideband regime.

5.1.3 Eliminating the Intracavity Field

Let us now turn our attention to the mechanical EOM Eq. (4.39b). Following the
approach we used to analyze the mechanical signal in the light, we use the ansatz
Eq. (5.5) and wish to find an EOM for the slowly varying operator ˆ̃

𝑏 (𝑡):

¤̂
𝑏 (𝑡) = d

d𝑡

( ˆ̃
𝑏 (𝑡)𝑒−𝑖𝛺eff𝑡

)
⇔, (5.12)

¤̃̂
𝑏 (𝑡) = 𝑖𝛺eff

ˆ̃
𝑏 + 𝑒𝑖𝛺eff𝑡 ¤̂𝑏 (𝑡) (5.13)

It then follows from the mechanical EOM Eq. (4.39b) that the slowly varying opera-
tor ˆ̃

𝑏 is the solution to:

¤̃̂
𝑏 (𝑡) = −𝑖𝛥eff

ˆ̃
𝑏 (𝑡) − 𝛾

( ˆ̃
𝑏 (𝑡) − ˆ̃

𝑏† (𝑡)𝑒𝑖2(𝛬eff+𝛺̃)
)
+ 𝑖 1

√
2
𝑒𝑖 (𝛬eff+𝛺̃)𝑡 𝑓 (𝑡)+ (5.14)

+ 𝑖 𝑔0√
2

[(
𝑒𝑖𝛷 |𝛼− |𝑒𝑖 (𝛬eff+2𝛺̃)𝑡 + 𝑒−𝑖𝛷 |𝛼+ |𝑒𝑖𝛬eff𝑡

)
𝑎† (𝑡)

]
+ 𝑖 𝑔0√

2

(
𝑒−𝑖𝛷 |𝛼− |𝑒𝑖𝛬eff𝑡 + 𝑒𝑖𝛷 |𝛼+ |𝑒𝑖 (𝛬eff+2𝛺̃)𝑡

)
𝑎(𝑡),

where we have defined the detuning between the renormalized mechanical reso-
nance frequency 𝛺eff and the bare mechanical resonance 𝛺𝑚 :

𝛥eff = 𝛺𝑚 −𝛺eff (5.15)
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For weak read-out this detuning will simply be minus the optical spring shift in-
duced by the dynamical BA(4), via the terms depending on 𝑎 and 𝑎†, we will see
this later. If we insert the solution Eq. (5.2) for the intra-cavity field we find that
the Mechanical EOM takes the somewhat lengthy form:

¤̃̂
𝑏 (𝑡) = −𝑖𝛥eff

ˆ̃
𝑏 (𝑡) − 𝛾

( ˆ̃
𝑏 (𝑡) − ˆ̃

𝑏† (𝑡)𝑒𝑖2(𝛬eff+𝛺̃)
)
+ 𝑖 1

√
2
𝑒𝑖 (𝛬eff+𝛺̃)𝑡 𝑓 (𝑡) (5.16)

+
𝑔2

0
2

∫ 𝑡

−∞
d𝑡 ′

[
𝑒−(𝑖 (𝛥−𝛬eff−2𝛺̃)+𝜅) (𝑡−𝑡 ′ )

(
|𝛼− |2 + |𝛼+ | |𝛼− |𝑒𝑖2𝛷𝑒𝑖2𝛺̃𝑡 ′

)
+𝑒−(𝑖 (𝛥−𝛬eff )+𝜅 ) (𝑡−𝑡 ′ )

(
|𝛼− | |𝛼+ |𝑒−𝑖2𝛷𝑒−𝑖2𝛺̃𝑡 ′ + |𝛼+ |2

)
−𝑒 (𝑖 (𝛥+𝛬eff )−𝜅 ) (𝑡−𝑡 ′ )

(
|𝛼− |2 + |𝛼+ | |𝛼− |𝑒−𝑖2𝛷𝑒−𝑖2𝛺̃𝑡 ′

)
−𝑒 (𝑖 (𝛥+𝛬eff+2𝛺̃)−𝜅) (𝑡−𝑡 ′ )

(
|𝛼− | |𝛼+ |𝑒𝑖2𝛷𝑒𝑖2𝛺̃𝑡 ′ + |𝛼+ |2

)] ˆ̃
𝑏 (𝑡 ′)

+
𝑔2

0
2

∫ 𝑡

−∞
d𝑡 ′

[
𝑒−(𝑖 (𝛥−𝛬eff )+𝜅 ) (𝑡−𝑡 ′ )

(
|𝛼− | |𝛼+ |𝑒−𝑖2𝛷𝑒𝑖2𝛬eff𝑡

′ + |𝛼+ |2𝑒𝑖2(𝛬eff+𝛺̃)𝑡 ′
)

+𝑒−(𝑖 (𝛥−𝛬eff−2𝛺̃)+𝜅) (𝑡−𝑡 ′ )
(
|𝛼− |2𝑒𝑖2(𝛬eff+𝛺̃)𝑡 ′ + |𝛼+ | |𝛼− |𝑒𝑖2𝛷𝑒𝑖2(𝛬eff+2𝛺̃)𝑡 ′

)
−𝑒 (𝑖 (𝛥+𝛬eff )−𝜅 ) (𝑡−𝑡 ′ )

(
|𝛼− |2𝑒𝑖2(𝛬eff+𝛺̃)𝑡 ′ + |𝛼+ | |𝛼− |𝑒−𝑖2𝛷𝑒𝑖2𝛬eff𝑡

′
)

−𝑒 (𝑖 (𝛥+𝛬eff+2𝛺̃)−𝜅) (𝑡−𝑡 ′ )
(
|𝛼− | |𝛼+ |𝑒𝑖2𝛷𝑒𝑖2(𝛬eff+2𝛺̃)𝑡 ′ + |𝛼+ |2𝑒𝑖2(𝛬eff+𝛺̃)𝑡 ′

)] ˆ̃
𝑏† (𝑡 ′)

+ 𝑎nom (𝑡) + 𝑎extra (𝑡),

where we have defined the nominal quantum back-action:

𝑎nom (𝑡) = 𝑖
√

2𝜅 𝑔0√
2
|𝛼− |𝑒−𝑖𝛷

∫ 𝑡

−∞
d𝑡 ′𝑒 (𝑖 (𝛥+𝛬eff )−𝜅 ) (𝑡−𝑡 ′ )𝑎in (𝑡 ′)𝑒𝑖𝛬eff𝑡

′ (5.17)

+ 𝑖
√

2𝜅 𝑔0√
2
𝑒−𝑖𝛷 |𝛼+ |

∫ 𝑡

−∞
d𝑡 ′𝑒−(𝑖 (𝛥−𝛬eff )+𝜅 ) (𝑡−𝑡 ′ )𝑎†in (𝑡

′)𝑒𝑖𝛬eff𝑡
′

By nominal, we mean that this is the QBA we should expect for the effective single-
tone driven oscillator, with resonance frequency 𝛬eff, corresponding to the cou-
pling to the inner sideband frequencies. We have also define thed extraneous QBA:

𝑎extra (𝑡) = 𝑖
√

2𝜅 𝑔0√
2
𝑒𝑖𝛷 |𝛼+ |

∫ 𝑡

−∞
d𝑡 ′𝑒 (𝑖 (𝛥+𝛬eff+2𝛺̃)−𝜅) (𝑡−𝑡 ′ )𝑎in (𝑡 ′)𝑒𝑖 (𝛬eff+2𝛺̃)𝑡 ′ (5.18)

+ 𝑖
√

2𝜅 𝑔0√
2
𝑒𝑖𝛷 |𝛼− |

∫ 𝑡

−∞
d𝑡 ′𝑒−(𝑖 (𝛥−𝛬eff−2𝛺̃)+𝜅) (𝑡−𝑡 ′ )𝑎†in (𝑡

′)𝑒𝑖 (𝛬eff+2𝛺̃)𝑡 ′ ,

(5.19)

which extraneous in the sense that it is QBA acting on the effective oscillator the
outer sideband frequencies that we wish to eliminate in engineering the effective
oscillator.

The EOM Eq. (5.16) is not particularly practical for solving, we can extract
some important physical insights: We first and foremost see that there are several
contributions from dynamical BA, namely the second to fourth line. These terms
show the presence of several dynamical BA loops. Firstly there are terms propor-
tional to |𝛼± |2 ˆ̃

𝑏 (𝑡 ′). Such terms would also arise in single-tone optomechanics;
they are exactly the usual dynamical BA associated with the individual drive tones.
However there are several terms proportional to |𝛼± | |𝛼∓ |𝑒±2𝑖𝛷 ˆ̃

𝑏 (𝑡 ′); these terms

(4) Generally the renormalized frequency isn’t simply 𝛺eff ≠ 𝛺𝑚 + 𝛿𝛺 (opt)
𝑚 , where 𝛿𝛺 (opt)

𝑚 is
the optical spring shift, but nothing stops us from defining a detuning 𝛥eff, we just have to
be careful how we interpret it.
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are unique to two-tone driving, and in particular they are are due to dynamical BA
from both drive tones combining in a non-trivial way. Moreover, the coupling to
ˆ̃
𝑏† complicates the problem significantly, as we can not simply solve the EOM for
ˆ̃
𝑏 must include the Hermitian conjugate equation, the reason being that different
sidebands overlap leading to yet more BA. In general the non-trivial dynamical BA
arises from overlapping sidebands, and coupling to other sidebands. Based on this
we expect simpler dynamics in the limit where all sidebands are well separated. In
addition to the dynamical BA terms which depend on 𝑏 and ˆ̃

𝑏†, there are also QBA
terms, we will return to those in the next section.

5.2 Obtaining a Simple Description

5.2.1 Defining the Limits of Interest

We are now ready to pursue a simpler limit, to better understand the admittedly
complicated EOM which generally arise due to the intricate dynamical BA. As we
previously discussed there are two types of dynamical BA which complicates the
dynamics: dynamical BA which involves combinations of the feedback loops aris-
ing from both the drives and BA arising from the overlap of sidebands. To allow
for a simple description we thus want the sidebands to be well-separated, and we
also want the sidebands to be narrow such that their dynamics only concern a local
range of frequencies. But how do we characterize such a limit? Let us first think
about the problem for resonant driving 𝛥 = 0. In this case the distance between the
sidebands of a given tone, i.e. the separation of the outer and inner sidebands from
one tone, is simply 2𝛺̃ . However the separation of the two inner sidebands is 2𝛬.
We will now introduce a number of assumptions on the parameters that ensures
that the theory derived here is meaningful: the mechanical linewidth must be small
compared to the differences in sidebands resonances. In particular we will assume
that the mechanical oscillator has a high Q factor:

𝛾 ≪ 𝛺𝑚 (high Q) (5.20)

First and for most, we must be in the limit where the dynamical BA indeed only
leads to dynamical broadening and the optical spring effect. As we shall see this
requires that the driving be weak compared to the cavity linewidth, as this ensures
that the renormalization is frequency independent:

𝛤± ≪ 𝜅 (weak read-out) (5.21)

Next we need to ensure that the dynamical BA does not broaden the sidebands
enough nor shift the resonances enough to overlap the sidebands. The magnitude
of the renormalizations is set by the read-out rate, and so we must require that it is
small compared to the sideband separation:

𝛤± ≪ 2𝛬, 2𝛺̃ (seperated sidebands) (5.22)

The weak read-out and narrow-sideband conditions are in fact related to the
same assumption: We assume that the intra-cavity field equilibrates much faster
than the evolution of the slowly varying mechanical oscillator, i.e. we assume an
adiabatic read-out. By far the largest limitation here is assuming that 𝛤± ≪ 2𝛬,
which essentially states that the read.out must be slow compared to the effective
oscillator, however it is the assumptions which eventually allows us to completely
eliminate the coupling to ˆ̃

𝑏†. For the bare sidebands to be narrow enough that the
cavity can’t resolve their frequency dependence we must have:

𝜅 ≫ 𝛾 (narrow sidebands)
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Together with the weak read-out assumption this generally ensures that the
cavity susceptibility is constant over any given sideband, however the cavity can
still in principle vary with frequency over several sidebands. This is in fact a cru-
cial point: we have not made any assumptions on 𝜅 compared to the sideband
resonances(5), and thus we are not limited to neither the sideband resolved nor
sidebands unresolved regimes; our theory works in both regimes.

5.2.2 Mechanical EOM in the Narrow Sidebands regime

Let us now turn to the practical consequences of these assumptions in the mechan-
ical EOM Eq. (5.16). First and foremost the large sideband separation allows us to
employ a RWA and neglect mechanical terms oscillation like 𝑒±𝑖2𝛺̃𝑡 ′ , 𝑒±𝑖4𝛺̃𝑡 ′and
𝑒±𝑖2𝛬eff𝑡 as all of these are fast compared to 𝑒±𝑖𝛬eff𝑡 . This eliminates not only all dy-
namical BA terms which depends on |𝛼± | |𝛼∓ |, but crucially also the coupling to
ˆ̃
𝑏†:

¤̃̂
𝑏 (𝑡) ≈ − (𝑖𝛥eff + 𝛾) ˆ̃

𝑏 (𝑡) + 𝑖 1
√

2
𝑒𝑖 (𝛬eff+𝛺̃)𝑡 𝑓 (𝑡) (5.23)

−
𝑔2

0 |𝛼− |2
2

∫ 𝑡

−∞
d𝑡 ′𝑒 (𝑖 (𝛥+𝛬eff )−𝜅 ) (𝑡−𝑡 ′ ) ˆ̃

𝑏 (𝑡 ′)

+
𝑔2

0 |𝛼+ |2
2

∫ 𝑡

−∞
d𝑡 ′𝑒−(𝑖 (𝛥−𝛬eff )+𝜅 ) (𝑡−𝑡 ′ ) ˆ̃

𝑏 (𝑡 ′)

−
𝑔2

0 |𝛼+ |2
2

∫ 𝑡

−∞
d𝑡 ′𝑒 (𝑖 (𝛥+𝛬eff+2𝛺̃)−𝜅) (𝑡−𝑡 ′ ) ˆ̃

𝑏 (𝑡 ′)+

+
𝑔2

0 |𝛼− |2
2

∫ 𝑡

−∞
d𝑡 ′𝑒−(𝑖 (𝛥−𝛬eff−2𝛺̃)+𝜅) (𝑡−𝑡 ′ ) ˆ̃

𝑏 (𝑡 ′)

+ 𝑎nom (𝑡) + 𝑎extra (𝑡)

By employing the narrow sideband approximation we can neglect the fre-
quency dependence of the cavity susceptibility near the four sidebands. To see how
this is done consider for example the dynamical BA contribution via the sideband
at 𝛬eff as seen in thes second line of Eq. (5.16). By transforming to Fourier space,
evaluating the cavity susceptibility at the sideband resonance, and then transform-
ing back we get:

𝑔2
0 |𝛼− |2

2

∫ 𝑡

−∞
d𝑡 ′𝑒 (𝑖 (𝛥+𝛬eff )−𝜅 ) (𝑡−𝑡 ′ ) ˆ̃

𝑏 (𝑡 ′) =
𝑔2

0 |𝛼− |2
2

∫ ∞

−∞
d𝛺𝑒−𝑖𝛺𝑡 𝜒𝑐 (𝛺 + 𝛬eff) ˆ̃

𝑏 (𝛺)

(5.24)

≈
𝑔2

0 |𝛼− |2
2 𝜒𝑐 (𝛬eff) ˆ̃

𝑏 (𝑡) (5.25)

For the remaining three sidebands the narrow sideband approximations of the
mechanical terms are:

(5) The sideband resonances appear in many expression as 𝜒𝑐 is evaluated at them. See e.g.
the definition of the four sideband operators in Eq. (5.16)
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−
𝑔2

0 |𝛼+ |2
2

∫ 𝑡

−∞
d𝑡 ′𝑒−(𝑖 (𝛥−𝛬eff )+𝜅 ) (𝑡−𝑡 ′ ) ˆ̃

𝑏 (𝑡 ′) ≈ −
𝑔2

0 |𝛼+ |2
2 𝜒∗𝑐 (−𝛬eff) ˆ̃

𝑏 (𝑡 ′) (5.26)

𝑔2
0 |𝛼+ |2

2

∫ 𝑡

−∞
d𝑡 ′𝑒 (𝑖 (𝛥+𝛬eff+2𝛺̃)−𝜅) (𝑡−𝑡 ′ ) ˆ̃

𝑏 (𝑡 ′) ≈ (5.27)

𝑔2
0 |𝛼+ |2

2 𝜒𝑐 (𝛬eff + 2𝛺̃) ˆ̃
𝑏 (𝑡 ′)

−
𝑔2

0 |𝛼− |2
2

∫ 𝑡

−∞
d𝑡 ′𝑒−(𝑖 (𝛥−𝛬eff−2𝛺̃)+𝜅) (𝑡−𝑡 ′ ) ˆ̃

𝑏 (𝑡 ′) ≈ (5.28)

−
𝑔2

0 |𝛼− |2
2 𝜒∗𝑐 (−𝛬eff − 2𝛺̃) ˆ̃

𝑏 (𝑡 ′)

We can likewise approximate the the nominal QBA Eq. (5.17) and the extraneous
QBA Eq. (5.18):∫ 𝑡

−∞
d𝑡 ′𝑒 (𝑖 (𝛥+𝛬eff )−𝜅 ) (𝑡−𝑡 ′ )𝑎in(𝑡 ′)𝑒𝑖𝛬eff𝑡

′ ≈ 𝜒𝑐 (𝛬eff)𝑎in (𝑡)𝑒𝑖𝛬eff𝑡 (5.29)∫ 𝑡

−∞
d𝑡 ′𝑒−(𝑖 (𝛥−𝛬eff )+𝜅 ) (𝑡−𝑡 ′ )𝑎†in (𝑡

′)𝑒𝑖𝛬eff𝑡
′ ≈ 𝜒∗𝑐 (−𝛬eff)𝑎†in (𝑡

′)𝑒𝑖𝛬eff𝑡 (5.30)∫ 𝑡

−∞
d𝑡 ′𝑒 (𝑖 (𝛥+𝛬eff+2𝛺̃)−𝜅) (𝑡−𝑡 ′ )𝑎in (𝑡 ′)𝑒𝑖 (𝛬eff+2𝛺̃)𝑡 ′ ≈ (5.31)

𝜒𝑐 (𝛬eff + 2𝛺̃)𝑎in (𝑡)𝑒𝑖 (𝛬eff+2𝛺̃)𝑡∫ 𝑡

−∞
d𝑡 ′𝑒−(𝑖 (𝛥−𝛬eff−2𝛺̃)+𝜅) (𝑡−𝑡 ′ )𝑎†in (𝑡

′)𝑒𝑖 (𝛬eff+2𝛺̃)𝑡 ′ ≈ (5.32)

𝜒∗𝑐 (−𝛬eff − 2𝛺̃)𝑎†in (𝑡)𝑒
𝑖 (𝛬eff+2𝛺̃)𝑡

So the nominal noise simplifies to:

𝑎nom (𝑡) = 𝑖
𝜅

2
√︁
𝛤+ 𝑒

−𝑖𝛷 𝜒𝑐 (𝛬eff)𝑎in(𝑡)𝑒𝑖𝛬eff𝑡 (5.33)

+ 𝑖 𝜅2
√︁
𝛤− 𝑒

−𝑖𝛷 |𝛼+ |𝜒∗𝑐 (−𝛬eff)𝑎†in (𝑡)𝑒
𝑖𝛬eff𝑡 ,

and likewise the extraneous noise can now be written:

𝑎extra (𝑡) = 𝑖
𝜅

2
√︁
𝛤+ 𝑒

𝑖𝛷 𝜒𝑐 (𝛬eff + 2𝛺̃)𝑎in (𝑡)𝑒𝑖 (𝛬eff+2𝛺̃)𝑡 (5.34)

+ 𝑖 𝜅2
√︁
𝛤− 𝑒

𝑖𝛷 𝜒∗𝑐 (−𝛬eff − 2𝛺̃)𝑎†in (𝑡)𝑒
𝑖 (𝛬eff+2𝛺̃)𝑡 ,

where we now have introduced a readout rate for each drive-tone, defined by:

𝛤± =
4𝑔2

0 |𝛼± |2
𝜅

(5.35)

We then have a simple first order differential equation for the slowly oscillating
mechanical operator:

¤̃̂
𝑏 (𝑡) ≈ − (𝑖𝛥eff + 𝛾 + 𝑖𝛴) ˆ̃

𝑏 (𝑡) + 𝑖 1
√

2
𝑒𝑖 (𝛬eff+𝛺̃)𝑡 𝑓 (𝑡) + 𝑎nom (𝑡) + 𝑎extra (𝑡), (5.36)

where we have defined the self energy resulting from the dynamical BA

𝛴 =
𝜅𝛤−
8𝑖

[
𝜒𝑐 (𝛬eff) − 𝜒∗𝑐 (−𝛬eff − 2𝛺̃)

]
(5.37)

+ 𝜅𝛤+
8𝑖

[
𝜒𝑐 (𝛬eff + 2𝛺̃) − 𝜒∗𝑐 (−𝛬eff)

]
Before we solve the EOM let us first examine the self energy further.
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5.2.3 The Mechanical Self Energy

The first thing we should note is that the self energy is merely the sum of the self
energy associated with the dynamical BA due to the upper and lower drive tone:

𝛴 = 𝛴+ + 𝛴−, (5.38)

𝛴+ =
𝜅𝛤−
8𝑖

[
𝜒𝑐 (𝛬eff) − 𝜒∗𝑐 (−𝛬eff − 2𝛺̃)

]
, (5.39)

𝛴− =
𝜅𝛤+
8𝑖

[
𝜒𝑐 (𝛬eff + 2𝛺̃) − 𝜒∗𝑐 (−𝛬eff)

]
, (5.40)

as we can see by comparing with the single tone self energy(6) Eq. (3.104). Conse-
quently the shift in the resonance 𝛿𝛺 (opt)

𝑚 (optical spring effect) and the dynamical
broadening 𝛿𝛾 (opt)is just the sum of the contributions from each drive tone. The
optical spring shift is given by:

𝛿𝛺
(opt)
𝑚 = Re [𝛴] (5.41)

≈ 𝛤−
8

[
(𝛬 + 𝛥) 𝜅 |𝜒𝑐 (𝛬) |2 −

(
𝛬 + 2𝛺̃ − 𝛥

)
𝜅 |𝜒𝑐 (−𝛬 − 2𝛺̃) |2

]
(5.42)

+ 𝛤+
8

[(
𝛬 + 2𝛺̃ + 𝛥

)
𝜅 |𝜒𝑐 (𝛬 + 2𝛺̃) |2 − (𝛬 − 𝛥) 𝜅 |𝜒𝑐 (−𝛬) |2

]
While the dynamical broadening is:

𝛿𝛾 (opt) = −Im [𝛴] (5.43)

≈ 𝛤−
8

[
𝜅2 |𝜒𝑐 (𝛬) |2 − 𝜅2 |𝜒𝑐 (−𝛬 − 2𝛺̃) |2

]
(5.44)

+ 𝛤+
8

[
𝜅2 |𝜒𝑐 (𝛬 + 2𝛺̃) |2 − 𝜅2 |𝜒𝑐 (−𝛬) |2

]
Here we use the weak read-out assumption to justify that we evaluate the self
energy at the bare resonance 𝛺𝑚 , or more precisely we evaluate it at the bare de-
tuning 𝛬 = 𝛺𝑚 − 𝛺̃ .

We can now make the following observations. First and foremost we see that
the magnitude of resonance shift 𝛿𝛺

(opt)
𝑚 and the dynamical broadening 𝛿𝛾 (opt) are

both set by the read-out rates 𝛤±, as we expected. Another rather important obser-
vation is that we can have dynamical broadening or anti-broadening depending
on the relative strengths of the sidebands, which depends on the detuning and
the read-out rates. If the bare oscillator has a narrow intrinsic linwidth 𝛾 , and
the dynamical anti-broadening 𝛿𝛾 (opt) is larger than the instrinscic linwidth, i.e.
𝛾 < |𝛿𝛾 (opt) | the total linewidth will be negative and thus we have a completely
anti-damped oscillator; at such a negative-linewidth instability our theory breaks
down.

Another interesting observation is the fact that there is dynamical BA even for
𝛥 = 0, in contrast to the single-tone case:

𝛿𝛺
(opt)
𝑚

���
𝛥=0

=
𝛤− − 𝛤+

8

[
𝛬𝜅 |𝜒𝑐 (𝛬) |2 −

(
𝛬 + 2𝛺̃

)
𝜅 |𝜒𝑐 (𝛬 + 2𝛺̃) |2

]
(5.45)

𝛿𝛾 (opt)
���
𝛥=0

=
𝛤− − 𝛤+

8
[
𝜅2 |𝜒𝑐 (𝛬) |2 − 𝜅2 |𝜒𝑐 (𝛬 + 2𝛺̃) |2

]
(5.46)

(6) The factor 2 difference in the prefactor of the single tone self energy Eq. (3.104) and
the self energy 𝛴+ from the upper drive tone and the self energy 𝛴− , is simply a matter of
convention. The choice of convention is related whether we define the self energy for the
phonon annihilation operator or the self energy for the phonon quadrature.
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Note that for zero detuning(7) the susceptibility at the inner sidebands is
strictly larger than the susceptibility at the outer sidebands, i.e. |𝜒𝑐 (𝛬) |2 > |𝜒𝑐 (𝛬 +
2𝛺̃) |2, as the resonance(8) of the cavity susceptibility is at 𝛺 = 0. Thus we see that
for 𝛥 = 0, we have anti-broadening for 𝛤+ > 𝛤− , as the upper drive tone causes
net anti-broadening. This does of course not necessarily mean that the system is
unstable, as long as the net linewidth is positive i.e. 𝛾 (opt) = 𝛿𝛾 (opt) + 𝛾 > 0. Likewise
we have broadening for 𝛤+ < 𝛤− .

5.2.4 Solving the Mehcanical EOM in the Narrow Sideband Regime

We will now proceed to solving the mechanical EOM Eq. (5.36). We start by noting
that the renomalized frequency and linewidth are:

𝛺eff = 𝛺𝑚 + 𝛿𝛺
(opt)
𝑚 , (5.47)

𝛾 (opt) = 𝛾 + 𝛿𝛾 (opt), (5.48)

and so by using the definition of 𝛥efffrom Eq. (5.15) we see that:

𝛥eff = −𝛿𝛺 (opt)
𝑚 , (5.49)

and thus the EOM simplifies to:

¤̃̂
𝑏 (𝑡) ≈ −𝛾 (opt) ˆ̃

𝑏 (𝑡) + 𝑖 1
√

2
𝑒𝑖 (𝛬eff+𝛺̃)𝑡 𝑓 (𝑡) + 𝑎nom (𝑡) + 𝑎extra (𝑡) (5.50)

It should be no supprise that there is no oscillation as this was done per construc-
tion by choosing a frame rotating at the oscillation frequency 𝛺eff of the renormal-
ized oscillator. By direct integration we obtain the steady state solution:

ˆ̃
𝑏 (𝑡) =

∫ 𝑡

−∞
d𝑡 ′𝑒−𝛾 (opt) (𝑡−𝑡 ′ )

[
𝑖

1
√

2
𝑒𝑖 (𝛬eff+𝛺̃)𝑡 ′ 𝑓 (𝑡 ′) + 𝑎nom (𝑡 ′) + 𝑎extra (𝑡 ′)

]
(5.51)

5.3 Input-Output Relation and Sideband Operators

We now have the solution for the mechanical degree of freedom, and so we now
continue the discussion of the output light from the cavity. By virtue of the regime
we are working in, the four sidebands can be described as separate degrees of free-
dom. We define a set of four input and output operators, two sidebands operators
corresponding to the outermost sidebands, and two corresponding to the inner-
most sidebands:

𝑎
(outer)
in/out,± (𝑡) = 𝑎in/out (𝑡)𝑒±𝑖 (𝛬eff+2𝛺̃ ) (5.52)

𝑎
(inner)
in/out,± (𝑡) = 𝑎in/out (𝑡)𝑒∓𝑖𝛬eff (5.53)

We use ’+’ to label the upper and ’-’ to label the lower sideband. Note that four
the inner sidebands we have chosen notation which is sensible for 𝛬eff < 0, which

(7) For equal read-out rates but non-zero detunning the dynamical BA remains non-zero,
however there are no particular simplifications of the expressions for the optical spring shift
𝛿𝛺

(opt)
𝑚 and the dynamical broadening 𝛿𝛾 (opt) in this limit, so we will not learn anything

new from writing the expressions for 𝛤+ = 𝛤− = 𝛤 . The reason we see now simplification
is that we already eliminated the most complicated behavior arising from different drive
strengths when we neglected the fast oscillating terms, as these where the ones depending
on |𝛼± | |𝛼∓ |
(8) Remember that we are in a frame rotating at 𝜔𝑜 , but for 𝛥 = 0 this is the same as being in
a frame rotating a the cavity resonance 𝜔𝑐
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is the case we are most interested in(9). The sidebands operators are independent
degrees of freedom in the sense that they are separate optical modes and satisfy
the canonical algebra:[

𝑎
(inner/outer)
in/out,𝑛 (𝑡), 𝑎(inner/outer)

in/out,𝑚 (𝑡 ′)
]
= 0, 𝑛,𝑚 ∈ {+,−}[

𝑎
(inner/outer)
in,/n/out,𝑛 (𝑡), 𝑎(inner/outer)

in/out,𝑚 (𝑡 ′)
]
= 𝛿𝑛,𝑚𝛿 (𝑡 − 𝑡 ′)

Using these sideband operators and the input-output relation Eq. (5.15), we can
explicitly see how the mechanical motion is imprinted in four separate components
of the light(10):

𝑎
(inner)
out,− (𝑡) = 𝑒𝑖2𝜃𝑐 (𝛬eff )𝑎(inner)

in,− (𝑡) + 𝑖
√︁
𝛤−

𝜅𝜒𝑐 (𝛬eff)
2 𝑒𝑖𝛷

ˆ̃
𝑏 (𝑡) (5.54a)

𝑎
(inner)
out,+ (𝑡) = 𝑒𝑖2𝜃𝑐 (−𝛬eff )𝑎(inner)

in,+ (𝑡) + 𝑖
√︁
𝛤+

𝜅𝜒𝑐 (−𝛬eff)
2 𝑒−𝑖𝛷 ˆ̃

𝑏† (𝑡) (5.54b)

𝑎
(outer)
out,+ (𝑡) = 𝑒𝑖2𝜃𝑐 (𝛬eff+2𝛺̃ )𝑎(outer)

in,+ (𝑡) + 𝑖
√︁
𝛤+

𝜅𝜒𝑐 (𝛬eff + 2𝛺̃)
2 𝑒−𝑖𝛷 ˆ̃

𝑏 (5.54c)

𝑎
(outer)
out,− (𝑡) = 𝑒𝑖2𝜃𝑐 (−𝛬eff−2𝛺̃ )𝑎(outer)

in,− (𝑡) + 𝑖
√︁
𝛤−

𝜅𝜒𝑐 (−𝛬eff − 2𝛺̃)
2 𝑒𝑖𝛷

ˆ̃
𝑏† (𝑡) (5.54d)

We can likewise express the nominal QBA Eq. (5.33) and Eq. (5.34) QBA terms from
the equation for ˆ̃

𝑏:

𝑎nom (𝑡) = 𝑖𝑒−𝑖𝛷
𝜅

2
√︁
𝛤− 𝜒∗𝑐 (−𝛬eff)𝑎(inner)

in− (𝑡) (5.55)

+ 𝑖𝑒−𝑖𝛷 𝜅2 𝜒𝑐 (𝛬eff)
√︁
𝛤+ 𝑎

(inner)†
in+ (𝑡)

𝑎extra (𝑡) = 𝑖𝑒𝑖𝛷
𝜅

2
√︁
𝛤− 𝜒∗𝑐 (−𝛬eff − 2𝛺̃)𝑎(outer)†

in− (𝑡) (5.56)

+ 𝑖𝑒𝑖𝛷 𝜅2
√︁
𝛤+ 𝜒𝑐 (𝛬eff + 2𝛺̃)𝑎(outer)

in+ (𝑡)

We can now note that the extraneous noise is reminiscent of the non-Hermitian
quadratures Eq. (2.21) we discussed in relation to homodyne measurement in
Eq. (5.34), but with the important distinction that the two sideband operators not
are equally weighted. If we consider the commutator:[

𝑎extra (𝑡), 𝑎†extra (𝑡 ′)
]
= (5.57)

−𝜅
2

4

(
𝛤+ |𝜒𝑐 (𝛬eff + 2𝛺̃) |2 − 𝛤− |𝜒𝑐 (−𝛬eff − 2𝛺̃) |2

)
𝛿 (𝑡 − 𝑡 ′),

we see that is does not vanish, so 𝑎extra (𝑡) is indeed not a non-Hermitian quadra-
ture measurable by a Homodyne measurement. For the commutator to vanish, it
turns out that the strength of the outer sidebands must be matched according to:

|𝛼+ | |𝜒𝑐 (𝛬eff + 2𝛺̃) | − |𝛼− | |𝜒𝑐 (−𝛬eff − 2𝛺̃) | = 0 ⇔ (5.58)[
𝑎extra (𝑡), 𝑎†extra (𝑡)

]
= 0 (5.59)

We will put this knowledge to use once we start discussing noise removal in the
next section.

(9) We could define the operators as 𝑎(inner)
in/out,+ (𝑡) = 𝑎in/out (𝑡)𝑒±𝑖 |𝛬eff |𝑡 , however this becomes

cumbersome to work with in practice.
(10) Yes this could be writtenmore compactly as e.g. 𝑎(inner)

out,± (𝑡) = 𝑒𝑖2𝜃𝑐 (∓𝛬eff )𝑎(inner)
in,± (𝑡) +

𝑖
√
𝛤±

𝜅𝜒𝑐 (∓𝛬eff )
2 𝑒𝑖𝛷

ˆ̃
𝑏eff (𝑡) , but we write the expression explicitely to stress that there are

four distinc sidebands.
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5.4 Extraneous Noise Suppression and Read-out

Let us now consider actually measuring the light from the cavity. We wish to sep-
arate the light form the inner and the outer sidebands, so that we can measure the
light from the outer sidebands. In particular we wish to use the measurement of
the outer sideband light to track the extraneous QBA so that we can eliminate or at
least suppress it, via feedback on the mechanical oscillator, while the light from the
inner sidebands will be used to either probe the effective mechanical oscillator or
as input to other systems (see Fig. 5.2). We can filter the high frequency outer side-
band light from the lower frequency inner sideband light by using a filter cavity.
For simplicity we will assume that the cavity susceptibility is simply a box function
in Fourier space, so the frequencies are perfectly filtered by the cavity.

Figure 5.2: Sketch of the extraneous noise suppression scheme. First the candidate negative
mass oscillator, in this case depicted as a membrane-in-the-middle system, is driven by two
tones at frequency 𝜔±. The optomechanical interaction then generates four sidebands (the
four arrow exiting the cavity) Using a filter cavity with linewidth ∥𝛺 ∥ ≪ 𝜅𝑓 ≪ 𝛺̃ , we
separate out the outer sidebands. We then measure the outer sidebands by homodyning
them, and use this to construct a classical feedback force to suppress the extraneous noise
corresponding to the outer sideband. The inner sidebands now contain the signal of an
effective negative mass oscillator and can either be measured or used for e.g. a cascaded
experiment.

5.4.1 Non-Hermitian Quadratures for Homodyne Detection

We will consider the use of Homodyne detection for both the inner and outer side-
bands. This is primarily motivated by the practical consideration that Homodyne
detection is a standard tool in most quantum optics labs. As we use two homodyne
detections we have two new phases at our disposal. We will now use these extra
phase degrees of freedom and redefine the phases of most quantities, such that
they are simpler. By simpler we in particular have in mind the many instances
where the complex phase of 𝜒𝑐 appears and where we would like to eliminate the
cavity phase. We do so to allow us to identify whether or note the extraneous noise
may be measured using a homodyne detection.

The expressions are much easier to understand if we can factor out the cavity
susceptibility phases. We detail how this is done in Appendix E where we also
define what all the primed and double primed operators are, but the end result is
that the mechanical operator now reads

ˆ̃
𝑏′ (𝑡) =

∫ 𝑡

−∞
d𝑡 ′𝑒−𝛾 (opt) (𝑡−𝑡 ′ )

[
𝑖𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2 1

√
2
𝑒𝑖 (𝛬eff+𝛺̃)𝑡 ′ 𝑓 (𝑡 ′) (5.60)

+𝑎′nom (𝑡 ′) + 𝑎′extra (𝑡 ′)
]

where the change in phase reference simplifies the nominal QBA Eq. (5.55)so that it
now contains no phase factors:
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𝑎′nom (𝑡 ′) = 𝑖
𝜅

2

(√︁
𝛤− |𝜒𝑐 (𝛬eff) |𝑎′in,− (𝑡) +

√︁
𝛤+ |𝜒∗𝑐 (−𝛬eff) |𝑎′†in,+ (𝑡)

)
(5.61)

This simplification happens at the price of introducing additional phase factors in
the extraneous noise Eq. (5.56) which now reads:

𝑎′extra (𝑡 ′) = 𝑖
𝜅

2𝑒
2𝑖𝛷𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2 (5.62)

×
(√︁

𝛤+ |𝜒𝑐 (𝛬eff + 2𝛺̃) |𝑎′′in,+ (𝑡) +
√︁
𝛤− |𝜒∗𝑐 (−𝛬eff − 2𝛺̃) |𝑎′′†in,− (𝑡)

)
note that we have used different phase references for the input noise in the extra-
neous noise and nominal noise operators. We do so to simplify the expressions as
much as possible. The choice to do so is justified by the fact that we use a different
local oscillator for the detection of the inner and outer sidebands. By homodyning
the two inner sidebands with an LO with phase 𝜃 (i)

LO, we can measure observables
corresponding to the non-Hermitian quadrature (see Eq. (E.25) for the input-output
relation leading to this)

𝑄̂
(inner)
𝜃
(i)
LO

=
1
√

2
𝑒𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]

(
𝑒−𝑖𝜃

(i)
LO𝑎

(inner)′
out,+ (𝑡) + 𝑒𝑖𝜃

(i)
LO𝑎

(inner)′†
out,− (𝑡)

)
(5.63)

=
1
√

2

[(
𝑒−𝑖𝜃

(i)
LO𝑎

(inner)′
in,+ (𝑡) + 𝑒𝑖𝜃

(i)
LO𝑎

(inner)′†
in,− (𝑡)

)
(5.64)

+𝑖
(
𝑒−𝑖𝜃

(i)
LO
√︁
𝛤+

𝜅 |𝜒𝑐 (−𝛬eff) |
2 − 𝑒𝑖𝜃

(i)
LO
√︁
𝛤−

𝜅 |𝜒𝑐 (𝛬eff) |
2

)
𝑏′† (𝑡)

]
And likewise by homodyning the outer sidebands with an LO with phase 𝜃 (o)

LO we
can measure observables corresponding to the non-Hermitian quadrature:

𝑄̂
(outer)
𝜃
(o)
LO

=
1
√

2
𝑒−𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]

(
𝑒−𝑖𝜃

(o)
LO 𝑎

(outer)′′
out,+ (𝑡) + 𝑒𝑖𝜃

(o)
LO 𝑎

′′(outer)†
out,− (𝑡)

)
(5.65)

=
1
√

2

( [
𝑒−𝑖𝜃

(o)
LO 𝑎′′in (𝑡) + 𝑒𝑖𝜃

(o)
LO 𝑎

′′†
in (𝑡)

]
𝑒𝑖 (𝛬eff+2𝛺̃ )𝑡

+𝑖
[
𝑒−𝑖𝜃

(o)
LO

√︁
𝛤+

𝜅 |𝜒𝑐 (𝛬eff + 2𝛺̃) |
2 − 𝑒𝑖𝜃

(o)
LO

√︁
𝛤−

𝜅 |𝜒𝑐 (−𝛬eff − 2𝛺̃) |
2

]
×𝑒−𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2𝑒−2𝑖𝛷𝑒𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑏′ (𝑡)

)
Importantly the output light from the outer quadratures generally also contain

a signal from the oscillator, so when we measure this light we will not only detect
the input light responsible for the extraneous QBA, which we wish to use for noise
cancellation, but also some mechanical contribution.

5.4.2 Feedback with Outer Sideband Matching

We will now consider a particularly simple scheme where the all extraneous quan-
tum noise can be measured using homodyne detection and eliminated completely.
It however relies on fixing the value of the drive power of both drive tones accord-
ing to a certain matching condition. Later we will generalize to arbitrary drive
powers ,i.e. without the matching condition.

Consider the extraneous noise as given in Eq. (5.62). Due to the unequal
weighting of the upper and lower sideband operators, this is generally not mea-
surable by a homodyne detection, unless the strength of the outer sidebands are
matched, as we noted in Eq. (5.58). Let us now pursue the idea of adjusting the
drive power such that the sidebands become matched according to the relation:
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𝛤− = 𝛤+
|𝜒𝑐 (𝛬eff + 2𝛺̃) |2

|𝜒∗𝑐 (−𝛬eff − 2𝛺̃) |2
(5.66)

The extraneous noise then simplifies to a Homodyne non-Hermitian quadrature:

𝑎′extra (𝑡 ′) = 𝑖
𝜅
√

2
𝑒2𝑖𝛷𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2

×
√︁
𝛤+ |𝜒𝑐 (𝛬eff + 2𝛺̃) |

(
𝑎′′in,+ (𝑡) + 𝑎

′′†
in,− (𝑡)√

2

)
By setting the LO phase to 𝜃

(o)
LO = 0 in Eq. (5.65) we indeed measure a signal corre-

sponding the desired non-Hermitian quadrature. Incidentally, for 𝜃 (o)
LO = 0 and with

outer sideband matching, the measured signal Eq. (5.65) contains no information
about the mechanical oscillator. We now use this measured signal to construct a
feedback force which will completely suppress the extraneous noise:

𝑎fb (𝑡) = −𝑖 𝜅
√

2
𝑒2𝑖𝛷𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2 (5.67)

×
√︁
𝛤+ |𝜒𝑐 (𝛬eff + 2𝛺̃) |𝑄̂ (outer)

𝜃
(o)
LO =0

(𝑡)

= −𝑎′extra (𝑡) (5.68)

The scheme for engineering the effective oscillator proceeds as follows. We
separate the inner and outer sidebands signals using a filter cavity, and continu-
ously measure the outer sideband light. Using the measurement results we then
perform continuous feedback on the mechanical system by applying an appropri-
ate classical force 𝑓fb (𝑡). The feedback operator Eq. (5.67) tells us how the classical
feedback force can be determined from stochastic measurement current obtained
fro the homodyne detection. Including the feedback, the equation of motion, so the
solution to the oscillator reads:

𝑏′ (𝑡) =
∫ 𝑡

−∞
d𝑡 ′𝑒−𝛾 (opt) (𝑡−𝑡 ′ )

[
𝑖

1
√

2
𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑒𝑖𝛷𝑒𝑖 (𝛬eff+𝛺̃)𝑡 ′ 𝑓 (𝑡 ′) (5.69)

+𝑎′nom (𝑡 ′) + 𝑎′extra (𝑡) + 𝑎fb (𝑡)
]
=∫ 𝑡

−∞
d𝑡 ′𝑒−𝛾 (opt) (𝑡−𝑡 ′ )

[
𝑖

1
√

2
𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑒𝑖𝛷𝑒𝑖 (𝛬eff+𝛺̃)𝑡 ′ 𝑓 (𝑡 ′) + 𝑎′nom (𝑡 ′)

]
,

(5.70)

We now consider the information contained in the inner sidebands of the output
light. For easy comparison with the single-tone case, we consider the two-photon
homodyne quadratures that one would measure by invoking an LO with 𝜔LO = 𝜔𝑜 .
Due to our clever choice of phases, we easily see that setting the LO phase to 𝜃

(i)
LO =

𝜋
2 in the non-Hermitian measurement quadrature Eq. (5.65), will give the maximum
readout of the mechanical oscillator, in particular we find:

𝑄̂
(inner)
𝜃LO=

𝜋
2
=

(
𝑎

(inner)′
in,+ (𝑡) − 𝑎

(inner)′†
in,− (𝑡)

√
2 𝑖

)
(5.71)

+
√︁
𝛤+

𝜅

2

(
|𝜒𝑐 (𝛬eff + 2𝛺̃) |
|𝜒𝑐 (−𝛬eff − 2𝛺̃) |

|𝜒𝑐 (𝛬eff) | + |𝜒𝑐 (−𝛬eff) |
)
𝑏′† (𝑡)

If we define an effective read-out rate:
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𝛤eff =
𝜅2

4

(
|𝜒𝑐 (𝛬eff + 2𝛺̃) |
|𝜒𝑐 (−𝛬eff − 2𝛺̃) |

|𝜒𝑐 (𝛬eff) | + |𝜒𝑐 (−𝛬eff) |
)2

(5.72)

The non-Hermitian quadrature measured by Homodyning the inner sidebands is
simply:

𝑄̂
(inner)
𝜃LO=

𝜋
2
=

(
𝑎

(inner)′
in,+ (𝑡) − 𝑎

(inner)′†
in,− (𝑡)

√
2 𝑖

)
+
√︁
𝛤eff 𝑏

′† (𝑡) (5.73)

Going back to the input-output relation Eq. (5.7), we could define a new mechani-
cal operator:

𝑏′eff (𝑡) = 𝑒−𝑖𝛬eff𝑡𝑏′ (𝑡) (5.74)

If we write this mechanical oscillator explicitly, we now see that the effective me-
chanical oscillator which is read-out when Homodyning the inner sidebands, oscil-
lates at frequency 𝛬eff:

𝑏′eff (𝑡) =
∫ ∞

−∞
d𝑡 ′𝜒𝑏 (𝑡 − 𝑡 ′)

[
𝑓eff (𝑡 ′) + 𝑎′nom,eff (𝑡

′)
]
, (5.75)

Let us go trough the newly defined operators and function. Using the outer side-
band matching condition Eq. (5.65), the nominal QBA Eq. (5.61) can be written:

𝑎′nom,eff (𝑡
′) =

√︁
𝛤+

𝜅

2

(
|𝜒𝑐 (𝛬eff + 2𝛺̃) |
|𝜒𝑐 (−𝛬eff − 2𝛺̃) |

|𝜒𝑐 (𝛬eff) |𝑎
′
in (𝑡) + |𝜒𝑐 (−𝛬eff) |𝑎′†in (𝑡)

)
(5.76)

=
√︁
𝛤eff

(
𝛼nom𝑎

′
in (𝑡) + 𝛽nom𝑎

′†
in (𝑡)

)
(5.77)

where we have defined two coefficient which determine the form of the nominal
QBA:

𝛼nom =
|𝜒𝑐 (𝛬eff) |

|𝜒𝑐 (𝛬eff) | + |𝜒𝑐 (−𝛬eff−2𝛺̃ ) |
|𝜒𝑐 (𝛬eff+2𝛺̃ ) | |𝜒𝑐 (−𝛬eff) |

(5.78)

𝛽nom =
|𝜒𝑐 (−𝛬eff) |

|𝜒𝑐 (𝛬eff+2𝛺̃ ) |
|𝜒𝑐 (−𝛬eff−2𝛺̃ ) | |𝜒𝑐 (𝛬eff) | + |𝜒𝑐 (−𝛬eff) |

(5.79)

We notice that the effective nominal QBA isn’t a balanced homodyne (two-photon)
quadrature. The effective thermal noise is given by:

𝑓eff (𝑡 ′) =
1
√

2
𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑒𝑖 (𝛺̃𝑡 ′+𝛷) 𝑓 (𝑡 ′) (5.80)

Notably, the effective oscillator couples only to certain frequency components
of the thermal noise, and with a certain phase. If any other forces act on the me-
chanical oscillator, such as a classical force, these would enter into the equation
of motion in the same way. Thus if one wishes to use the effective oscillator as a
sensing probe, it needs to be taken into consideration that the force is folded in
frequency space around frequency 𝛺̃ .

We have defined the mechanical response function for the phonon operator as:

𝜒𝑏 (𝑡 − 𝑡 ′) = 𝑖𝑒−(𝑖𝛬eff+𝛾 (opt)) (𝑡−𝑡 ′ )𝛩 (𝑡 − 𝑡 ′) (5.81)

The susceptibility for the phonon operator in Fourier space is:

𝜒𝑏 (𝛺) =
∫ ∞

−∞
d𝜏 𝜒𝑏 (𝜏)𝑒𝑖𝛺𝜏 =

1
𝛬eff −𝛺 − 𝑖𝛾 (opt) (5.82)
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The susceptibility 𝜒m,eff (𝛺) for the mechanical oscillator, i.e. the susceptibility for
the Hermitian quadratures:

𝑋eff (𝛺) =
𝑏′eff (𝛺) + 𝑏′†eff (−𝛺)

√
2

, (5.83a)

𝑃eff (𝑡) =
𝑏′eff (𝛺) − 𝑏

′†
eff (−𝛺)

√
2 𝑖

, (5.83b)

which can be defined from the mechanical operator Eq. (5.61), is the Hermitian part
of the annihilation operator susceptibility(11):

𝜒m,eff (𝛺) =
𝜒b (𝛺) + 𝜒∗b (−𝛺)

2 (5.84)

=
𝛬eff

𝛬2
eff + 𝛾2

(opt) −𝛺2 − 2𝑖𝛺𝛾(opt)
(5.85)

We note that the resonance is not only modified by the optical spring effect but
also by the linewidth so the resonance is:

𝛺res =
√︃
𝛬2

eff + 𝛾2
(opt) , (5.86)

this is a direct consequence of having damping in both the position and momen-
tum due to the RWA we made earlier. For 𝛬eff ≪ 𝛺eff, 𝛺̃ , we see that the resonance
frequency has been down-converted, potentially by several orders of magnitude!

In contrast to the resonance frequency, the evolution frequency is:

𝛺evo = 𝛬eff,

From the definition Eq. (5.6) of 𝛬eff , we see that we can control the sign of the
evolution frequency by adjusting the relative drive frequency 𝛺̃ . This in turn now
allow us to control the sign of the effective mechanical susceptibility or equiva-
lently the effective mass, and thus paves the way for coherent QBA cancellation.
As for the dynamical BA, the renormalized quantities are:

𝛬eff = 𝛬 + 𝛿𝛺
(opt)
𝑚

𝛾 (opt) = 𝛾 + 𝛿𝛾 (opt)

When the outer sidebands are balanced, the dynamical broadening and anti-broadening
Eq. (5.43) from each of them cancel, leaving only the inner sideband contributions:

𝛿𝛾 (opt) =
𝛤+
8

(
|𝜒𝑐 (𝛬 + 2𝛺̃) |2

|𝜒𝑐 (−𝛬 − 2𝛺̃) |2
|𝜒𝑐 (𝛬eff) |2 − |𝜒𝑐 (−𝛬eff) |2

)
,

Note that for general detuning, balancing the outer sidebands necessarily means
that the inner sidebands are unbalanced, as we can see by the prefactor on the
upper sidebands term. The optical spring effect Eq. (5.41) oddly enough retains a
contribution from the outer sidebands:

𝛿𝛺
(opt)
𝑚 =

𝛤+
8

[
(𝛬 + 𝛥) 𝜅 |𝜒𝑐 (𝛬 + 2𝛺̃) |2

|𝜒𝑐 (−𝛬 − 2𝛺̃) |2
|𝜒𝑐 (𝛬) |2

]
+ 𝛥

𝛤+
4 𝜅 |𝜒𝑐 (𝛬 + 2𝛺̃) |2 (5.87)

(11) i.e the quadrature solution can be written.
(
𝑋eff (𝛺) 𝑃eff (𝛺)

)T
= 𝜒𝑚,eff (𝛺) [· · · ]
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5.4.3 Feedback For Arbitrary Read-Out Rates

Let us now examine to what extent it is possible to remove the extraneous noise,
if we want to keep 𝛤± unconstrained. In this case we want to identify which of
the quadratures contributes the most to the extraneous noise and eliminate that
particular quadrature, at the price of keeping the smallest component of the extra-
neous noise. To that end we write the extraneous noise in terms of the canonical
Hermitian quadratures:

𝑎′extra (𝑡 ′) = 𝑎′extra,𝑞 (𝑡 ′) + 𝑎′extra,𝑦 (𝑡 ′) = (5.88)

𝑖
𝜅

2𝑒
2𝑖𝛷𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2× (5.89)[(√︁
𝛤+ |𝜒𝑐 (𝛬eff + 2𝛺̃) | +

√︁
𝛤− |𝜒𝑐 (−𝛬eff − 2𝛺̃) |

)
𝑞′′in (𝑡)

+𝑖
(√︁

𝛤+ |𝜒𝑐 (𝛬eff + 2𝛺̃) | −
√︁
𝛤− |𝜒𝑐 (−𝛬eff − 2𝛺̃) |

)
𝑦 ′′

in (𝑡)
]
𝑒𝑖 (𝛬eff+2𝛺̃)𝑡

Once again, the phase choices we made earlier makes it clear that the predomi-
nant contribution to the extraneous noise is the amplitude quadrature 𝑞′′in (𝑡). Using
an LO with phase 𝜃 (𝑜 )

LO = 0, we can measure a signal from the outer sidebands
corresponding to non-Hermitian quadrature:

𝑄̂
(outer)
𝜃
(o)
LO =0

= 𝑞′′in (𝑡)𝑒𝑖 (𝛬eff+2𝛺̃ )𝑡 (5.90)

+ 𝑒−𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2𝑒−2𝑖𝛷𝑒𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2

× 𝑖
𝜅

2

[√︁
𝛤+ |𝜒𝑐 (𝛬eff + 2𝛺̃) | −

√︁
𝛤− |𝜒𝑐 (−𝛬eff − 2𝛺̃) |

]
𝑏′ (𝑡)

We now define a feedback operator:

𝑎fb (𝑡) = −𝑖𝑒2𝑖𝛷𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2 (5.91)

× 𝜅

2

(
𝛤+ |𝜒𝑐 (𝛬eff + 2𝛺̃) | +

√︁
𝛤− |𝜒𝑐 (−𝛬eff − 2𝛺̃) |

)
𝑄̂

(outer)
𝜃
(o)
LO =0

=

− 𝑖
𝜅

2𝑒
2𝑖𝛷𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2 (5.92)

×
(√︁

𝛤+ |𝜒𝑐 (𝛬eff + 2𝛺̃) | +
√︁
𝛤− |𝜒𝑐 (−𝛬eff − 2𝛺̃) |

)
𝑞′′in (𝑡)𝑒𝑖 (𝛬eff+2𝛺̃ )𝑡

+
[
𝜅2𝛤+

8 |𝜒𝑐 (𝛬eff + 2𝛺̃) |2 − 𝜅2𝛤−
8 |𝜒𝑐 (−𝛬eff − 2𝛺̃) |2

]
𝑏′ (𝑡)

This feedback force will first and foremost completely suppress the extraneous
amplitude noise 𝑎′extra,𝑞 (𝑡 ′), but secondly it will also renormalize the mechanical
oscillator due to the oscillator signal contained in the force, leading to a self energy
correction:

𝛴fb = −𝑖
[
𝜅2𝛤+

8 |𝜒𝑐 (𝛬eff + 2𝛺̃) |2 − 𝜅2𝛤−
8 |𝜒𝑐 (−𝛬eff − 2𝛺̃) |2

]
(5.93)

So we can write the feedback force as:

𝑎fb (𝑡) = −𝑎′extra,𝑞 (𝑡 ′) + 𝛴fb𝑏
′ (𝑡)

If we now consider the equation of motion for the mechanical operator when we
include this feedback force we have:

¤̂
𝑏′eff (𝑡) = −

(
𝛾 (opt) + 𝑖𝛴fb

)
𝑏′eff (𝑡) + 𝑎′nom (𝑡) + 𝑎′extra,𝑦 (𝑡 ′)+ (5.94)

𝑖
1
√

2
𝑒𝑖𝛷𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑒𝑖 (𝛬eff+𝛺̃)𝑡 𝑓 (𝑡)
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The renormalization due to the feedback causes additional broadening, which is
exactly the same as the dynamical broadening from the outer sidebands:

𝛿𝛾 (fb) =
𝜅2𝛤+

8 |𝜒𝑐 (𝛬eff + 2𝛺̃) |2 − 𝜅2𝛤−
8 |𝜒𝑐 (−𝛬eff − 2𝛺̃) |2

= 𝛿𝛾 (opt)

So to reiterate, the feedback doubles the dynamical broadening induced by the
dynamical BA. Unlike for the matched outer sidebands scheme, we also have the
residual extraneous noise from the phase quadrature:

𝑎′extra,𝑦 (𝑡) = −𝑒2𝑖𝛷𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2 (5.95)

× 𝜅

2
[
|𝛼+ | |𝜒𝑐 (𝛬eff + 2𝛺̃) | − |𝛼− | |𝜒𝑐 (−𝛬eff − 2𝛺̃) |

]
𝑦 ′′

in (𝑡)𝑒𝑖 (𝛬eff+2𝛺̃)𝑡 (5.96)

To understand the ramifications of this remaining noise we examine its power
spectral density. To determine this we find the symmetrized correlation function:

S
(extra)
𝑦𝑦 𝛿 (𝑡 − 𝑡 ′) =

〈
𝑎′extra,𝑦 (𝑡)𝑎

′†
extra,𝑦 (𝑡 ′) + 𝑎

′†
extra,𝑦 (𝑡 ′)𝑎′extra,𝑦 (𝑡)

2

〉
(5.97)

The phases cancel and we are left with:

S
(extra)
𝑦𝑦 𝛿 (𝑡 − 𝑡 ′) = (5.98)[𝜅
2

(√︁
𝛤+ |𝜒𝑐 (𝛬eff + 2𝛺̃) | −

√︁
𝛤− |𝜒𝑐 (−𝛬eff − 2𝛺̃) |

)]2
〈
𝑦in (𝑡)𝑦in (𝑡 ′) + 𝑦in (𝑡 ′)𝑦in (𝑡)

2

〉
︸                                  ︷︷                                  ︸

1
2𝛿 (𝑡−𝑡 ′ )

⇒ S (extra)
𝑦𝑦 =

𝜅2

4

(√︁
𝛤+ |𝜒𝑐 (𝛬eff + 2𝛺̃) | −

√︁
𝛤− |𝜒𝑐 (−𝛬eff − 2𝛺̃) |

)2
(5.99)

The residual extraneous noise is uncorrelated with all other noise sources, i.e. the
thermal noise and the shot noise and the nominal QBA. this allows us to absorb
the residual extraneous noise into the thermal noise as an effective heating. The
thermal force term:

𝑓 ′ (𝑡) = 𝑖
1
√

2
𝑒𝑖𝛷𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑒𝑖 (𝛬eff+𝛺̃)𝑡 𝑓 (𝑡),

has the correlation function:

𝑆 𝑓 𝑓 = 2𝛾
(
𝑛𝑚 + 1

2

)
(5.100)

We can then define an effective thermal spectral function:

𝑆
(eff)
𝑓 𝑓

≡ 2𝛾
(
𝑛eff + 1

2

)
(5.101)

where the effective phonon occupation number is:

𝑛𝑒 𝑓 𝑓 = 𝑛𝑚 +
S

(extra)
𝑦𝑦

2𝛾 , (5.102)

Besides this effective heating of the mechanical oscillator and the doubling of the
linewidth we can use the same approach as in the previous section to obtain a
mechanical oscillator where we can control the sign of the susceptibility.
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Conclusion &What’s Next

“ “There is a theory which states that if ever anyone discovers exactly
what the Universe is for and why it is here, it will instantly disappear and
be replaced by something even more bizarre and inexplicable.

There is another theory which states that this has already hap-
pened.”

The Narrator

- The Restaurant at the End of the Universe, Douglas Adams

6.1 Conclusion

In this thesis we have investigated the dynamics of a two-tone driven optome-
chanical system with the aim of engineering an effective oscillator with negative
effective frequency – a key ingredient in quantum backaction evasion schemes..
In the limit where the four sidebands generated by the two drive tones are suffi-
ciently narrow compared to the cavity susceptibility and sufficiently well-separated
compared to their widths we found a simple theory describing the mechanics,
intra-cavity field and the output light. Importantly this theory accounts for the
dynamical back-action arising due to detuning between the relative frequency of
the two drive tones and the cavity resonance frequency. We have showed that by
adjusting the power of the two drive tones, such that the strength of the outer side-
bands is equal, the extraneous noise generated by these sidebands can be measured
with homodyne detection and thus be completely suppressed using continuous
feedback or subtraction of the measured signal in post-processing. We also went
beyond this matching condition and showed that for general amplitudes of the two
drives, the extraneous noise on the mechanical oscillator from the outer sidebands
cannot be measured fully with a homodyne detection. This more complex noise
structure is partially due to the aforementioned detuning but also due to different
drive powers, and is a new effect not described in the original work by Zeuthen
et. al. However we also showed that by measuring the dominant noise quadrature,
the residual extraneous noise simply amounts to an effective thermal heating of
the mechanical oscillator. In both the matched and unmatched schemes we have
shown that the mechanical signal imprinted on the inner sidebands can be used
as an effective mechanical oscillator with a tunable resonance frequency and mass
sign, where the effective resonance is down-converted compared to the original
mechanical frequency. Hence, the scheme of Zeuthen et al. has been successfully
extended to the experimentally relevant scenario of an optomechanical system
with finite sideband resolution and detuning.
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6.2 Future perspectives

Our investigation in this thesis provides an excellent starting point for further anal-
ysis in several directions. Within our simple theory we have yet to estimate the
performance of concrete protocols e.g. generating entanglement of two mechanical
oscillators with disparate energy spectra, or quantum enhanced sensing of a classi-
cal force [9]. A number of corrections to the simple theory presented here should
be investigated. For instance, we assumed that the measurement and feedback for
the extraneous noise removal scheme were perfect, in the sense that we assumed
no optical losses and didn’t account for the spectral response of the filtering cavity
except to leading order. Moreover, it is of interest to include the coupling between
𝑏† and 𝑏 and examine how this affects the effective oscillator scheme. For example
it would be useful to gain a better understanding of the general structure of the ex-
traneous noise, and in particular investigate whether it can be measured, perhaps
by utilizing synodyne measurements instead of homodyne.
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Conventions

In this appendix we provide an overview of the convention used e.g. for Fourier
transforms in this thesis.

A.1 Fourier transform convention

For fourier transforms we use the convention:

𝑓 (𝑡) =
∫ ∞

−∞
d𝛺𝑓 (𝛺)𝑒−𝑖𝛺𝑡 (A.1)

𝑓 (𝛺) = 1
2𝜋

∫ ∞

−∞
d𝑡 𝑓 (𝑡)𝑒𝑖𝛺𝑡 (A.2)

A.2 Convention for Hermitian Conjugate in Fourier space

By considering the Hermitian conjugate of an annihilation operator in the time
domain:

(𝑎(𝑡))† =
[∫ ∞

−∞
d𝛺𝑎(𝛺)𝑒−𝑖𝛺𝑡

]†
=

∫ ∞

−∞
d𝛺 (𝑎(𝛺))†︸   ︷︷   ︸

𝑎† (𝛺 )

𝑒𝑖𝛺𝑡 (A.3)

∫ ∞

−∞
d𝛺 (𝑎(𝛺))†︸   ︷︷   ︸

𝑎† (𝛺 )

𝑒𝑖𝛺𝑡 = (A.4)

∫ ∞

−∞
d𝛺 (𝑎(−𝛺))†︸     ︷︷     ︸

𝑎† (−𝛺 )

𝑒−𝑖𝛺𝑡 , (A.5)

we define the relation between the time domain and Fourier space Hermitian con-
jugate as:

𝑎† (𝑡) = F −1
𝛺

[
𝑎† (−𝛺)

]
(A.6)

which is follows from our requirement that:

𝑎† (𝛺) ≡ (𝑎(𝛺))† (A.7)

For the quadratures this mean we have the relations
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𝑞(𝑡) = 𝑎(𝑡) + 𝑎† (𝑡)
√

2
⇒ 𝑞(𝛺) = 𝑎(𝛺) + 𝑎† (−𝛺)

√
2

(A.8)

𝑦 (𝑡) = 𝑎(𝑡) − 𝑎† (𝑡)
√

2 𝑖
⇒ 𝑦 (𝛺) = 𝑎(𝛺) − 𝑎† (−𝛺)

√
2 𝑖

(A.9)

With the inverse relation given by:

𝑎(𝛺) = 𝑞(𝛺)) + 𝑖𝑦 (𝛺)
√

2
, 𝑎† (𝛺) = 𝑞(−𝛺) − 𝑖𝑦 (−𝛺)

√
2

(A.10)

For the quadratures which are Hermitian in the time domain, we see that taking
the Hermitian conjugate in Fourier space gives:

𝑞† (𝛺) = (𝑞(𝛺))† = (A.11)[
𝑎(𝛺) + 𝑎† (−𝛺)

√
2

]†
= (A.12)

𝑎† (𝛺) + 𝑎(−𝛺)
√

2
(A.13)

So we find:

(𝑞(𝛺))† = 𝑞(−𝛺) ⇔ (A.14)
𝑞(𝛺) = 𝑞† (−𝛺) (A.15)

In general for any Hermitian operator:

𝑄̂ (𝑡) = 𝑄̂† (𝑡) =
(
𝑄̂ (𝑡)

)†
⇔ (A.16)

𝑄̂ (𝛺) = 𝑄̂† (−𝛺) =
(
𝑄̂ (−𝛺)

)†
(A.17)

Where we note that in Fourier space the Hermitian conjugate operator 𝑄̂† is not
the same as the Hermitian conjugate of the operator 𝑄̂ :

𝑄̂† (𝑡) = 𝑄̂ (𝑡) ⇒ (A.18)
𝑄̂† (𝛺) ≠ 𝑄̂ (𝛺) (A.19)

A.3 Rotations

We define a rotation as (i.e. anti-clockwise rotations) by the matrix:

R𝜃 =

[
cos(𝜃 ) − sin(𝜃 )
sin(𝜃 ) cos(𝜃 )

]
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Transfer Matrix for a Cavity

B.1 Quadrature transfer Matrix for a Driven Cavity

where 𝜅 is the HWHM of the cavity susceptibility. Even though the solution is
simple for the annihilation operator, we want to solve the problem for the quadra-
ture operators 𝑞 and 𝑦 . Our goal will be to find a transfer matrix 𝑻 which maps the
input light vector

(
𝑞in (𝛺) 𝑦in (𝛺)

)T
to the output light

(
𝑞out (𝛺) 𝑦out (𝛺)

)T
:(

𝑞out (𝛺)
𝑦out (𝛺))

)
= 𝑻

(
𝑞in (𝛺)
𝑦in (𝛺))

)
(B.1)

First we consider the equation of motion for the intra-cavity field, which can be
write neatly as:

T−1
0

(
𝑞(𝛺)
𝑦 (𝛺)

)
=

(
𝑞in (𝛺)
𝑦in (𝛺))

)
⇒ (B.2)(

𝑞(𝛺)
𝑦 (𝛺)

)
=
√

2𝜅 𝑻 0

(
𝑞in (𝛺)
𝑦in (𝛺))

)
(B.3)

Where we have defined the inverse of the cavity transfer matrix:

T−1
0 =

[
(𝜅 − 𝑖𝛺) 𝛥

−𝛥 (𝜅 − 𝑖𝛺)

]
⇔ (B.4)

𝑻 0 =
1
2

[
𝜒𝑐 (𝛺) + 𝜒∗𝑐 (−𝛺) 𝑖

(
𝜒𝑐 (𝛺) − 𝜒∗𝑐 (−𝛺)

)
−𝑖

(
𝜒𝑐 (𝛺) − 𝜒∗𝑐 (−𝛺)

)
𝜒𝑐 (𝛺) + 𝜒∗𝑐 (−𝛺)

]
(B.5)

We can bring the cavity transfermatrix on a more illuminating form by writing
the cavity susceptibility 𝜒𝑐 on polar form according to Eq. (3.88) and defining:

𝜙± =
𝜃 (𝛺) ± 𝜃 (−𝛺)

2 (B.6)

If we factor out the relative phase 𝜙− and and rewrite the complex exponentials in
terms of sines and cosines we have

𝑻 0 =
1
2𝑒

𝑖𝜙− (𝛺 )
R𝜙+ (𝛺 )

[
1 − 𝑖R− 𝜋

2

]
|𝜒𝑐 (𝛺) | (B.7)

+ 1
2𝑒

𝑖𝜙− (𝛺 )
R𝜙+ (𝛺 )

[
1 + 𝑖R− 𝜋

2

]
|𝜒𝑐 (−𝛺) | (B.8)

where the R-matrices are two-dimensional rotation matrices defined by:
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R𝜃 =

[
cos(𝜃 ) − sin(𝜃 )
sin(𝜃 ) cos(𝜃 )

]
We note that since rotations in 2D commute:[

R𝜃 ,R𝜙

]
= 0,

the transfer matrix is rotationally invariant. By changing the order of the rotations
we find:

𝑻 0 = 𝑒𝑖
𝜃 (𝛺 )−𝜃 (−𝛺 )

2 R 𝜃 (𝛺 )+𝜃 (−𝛺 )
2

[
|𝜒𝑐 (𝛺 ) |+|𝜒𝑐 (−𝛺 ) |

2 𝑖
|𝜒𝑐 (𝛺 ) |− |𝜒𝑐 (−𝛺 ) |

2
−𝑖 |𝜒𝑐 (𝛺 ) |− |𝜒𝑐 (−𝛺 ) |

2
|𝜒𝑐 (𝛺 ) |+|𝜒𝑐 (−𝛺 ) |

2

]
(B.9)

This form of the cavity transfer matrix will be useful for discussing how the me-
chanical motion is imprinted on different quadratures, and will later allow us to
define a more mathematically convenient set of light variables.

B.2 Transfer Matrix Form of Input-Output Relation

The input-output relation for the cavity is:(
𝑞out (𝛺)
𝑦out (𝛺))

)
= −

(
𝑞in (𝛺)
𝑦in (𝛺))

)
+
√

2𝜅
(
𝑞(𝛺)
𝑦 (𝛺))

)
(B.10)

Using the solution Eq. (B.3)for the intracavity field we can write the input-output
relation: (

𝑞out (𝛺)
𝑦out (𝛺))

)
= [−1 + 2𝜅𝑻 0]

(
𝑞in (𝛺)
𝑦in (𝛺))

)
(B.11)

So the transfer matrix 𝑻 , in the absence of a mechanical DOF is given by:

𝑻 = 2𝜅𝑻 0 − 1 (B.12)

We can in fact rewrite this purely in terms of a phase and a rotation by making the
following observation: The modulus of the cavity susceptibility can be rewritten in
terms of the argument:

|𝜒𝑐 (𝛺) | = 1
𝜅

cos(𝜃 (𝛺)) (B.13)

We can then rewrite the matrix containing |𝜒𝑐 (±𝛺) | in the expression for 𝑻 0 in
Eq. (B.9) as

[
|𝜒𝑐 (𝛺 ) |+|𝜒𝑐 (−𝛺 ) |

2 𝑖
|𝜒𝑐 (𝛺 ) |− |𝜒𝑐 (−𝛺 ) |

2
−𝑖 |𝜒𝑐 (𝛺 ) |− |𝜒𝑐 (−𝛺 ) |

2
|𝜒𝑐 (𝛺 ) |+|𝜒𝑐 (−𝛺 ) |

2

]
=

1
2𝜅

[
𝑒𝑖𝜙− (𝛺 )

R𝜙+ (𝛺 ) + 𝑒−𝑖𝜙− (𝛺 )
R

T
𝜙+ (𝛺 )

]
(B.14)

Which reduces the transfermatrix to:

𝑻 = 𝑒𝑖2𝜙− (𝛺 )
R2𝜙+ (𝛺 ) (B.15)

We thus see that the cavity simply rotates the input quadratures by 2𝜙+ and change
the global phase by 2𝜙− .
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p
p
e
n
d
ix C

Formal integration of the
classical intra-cavity field
EOM for two-tone driving

The EOM in question is

¤̄𝛼 (𝑡) = − (𝑖𝛥 (𝑡) − 𝜅) 𝛼 (𝑡) +
√

2𝜅 2𝛼in cos(𝛺̃𝑡) (C.1)

First we note that by multiplying with the integration factor 𝑒𝜅−𝑖
∫ 𝑡

𝑡0
d𝑡 ′ (𝑖𝛥 (𝑡 ′ ) ) we

can rewrite the EOM using the product rule for differentiation:

¤̄𝛼 (𝑡) − (𝑖𝛥 (𝑡) − 𝜅) 𝛼 (𝑡) =
√

2𝜅 2𝛼in cos(𝛺̃𝑡) ⇒ (C.2)

¤̄𝛼 (𝑡)𝑒𝜅−𝑖
∫ 𝑡

𝑡0
d𝑡 ′ (𝑖𝛥 (𝑡 ′ ) ) − (𝑖𝛥 (𝑡) − 𝜅) 𝛼 (𝑡)𝑒𝜅−𝑖

∫ 𝑡

𝑡0
d𝑡 ′ (𝑖𝛥 (𝑡 ′ ) ) (C.3)

=
√

2𝜅 2𝛼in cos(𝛺̃𝑡)𝑒𝜅𝑡−𝑖
∫ 𝑡

𝑡0
d𝑡 ′ (𝑖𝛥 (𝑡 ′ ) )

Which gives us the EOM:

d
d𝑡

[
𝛼 (𝑡)𝑒𝜅𝑡−𝑖

∫ 𝑡

𝑡0
d𝑡 ′ (𝑖𝛥 (𝑡 ′ ) )

]
=
√

2𝜅 2𝛼in cos(𝛺̃𝑡)𝑒𝜅𝑡
′−𝑖

∫ 𝑡

𝑡0
d𝑡 ′ (𝑖𝛥 (𝑡 ′ ) ) (C.4)

We can now directly integrate the expression, but it pays to by careful:

∫ 𝑡

𝑡0

d𝑡 ′ d
d𝑡 ′

[
𝛼 (𝑡 ′)𝑒𝜅𝑡

′−𝑖
∫ 𝑡 ′
𝑡0

d𝑡 ′′ (𝛥 (𝑡 ′′ ) )
]
= (C.5)∫ 𝑡

𝑡0

d𝑡 ′
[√

2𝜅 2𝛼in cos(𝛺̃𝑡 ′)𝑒𝜅𝑡
′−𝑖

∫ 𝑡 ′
𝑡0

d𝑡 ′′ (𝛥 (𝑡 ′′ ) )
]
⇒

𝛼 (𝑡)𝑒𝜅𝑡−𝑖
∫ 𝑡

𝑡0
d𝑡 ′ (𝑖𝛥 (𝑡 ′ ) ) − 𝛼 (𝑡0)𝑒𝜅𝑡0 = (C.6)

√
2𝜅 2𝛼in

∫ 𝑡

𝑡0

d𝑡 ′
[
cos(𝛺̃𝑡 ′)𝑒𝜅𝑡

′−𝑖
∫ 𝑡 ′
𝑡0

d𝑡 ′′ (𝛥 (𝑡 ′′ ) )
]
⇒

𝛼 (𝑡) = 𝛼 (𝑡0)𝑒−𝜅 (𝑡−𝑡0 )+𝑖
∫ 𝑡

𝑡0
d𝑡 ′ (𝛥 (𝑡 ′ ) )+

√
2𝜅 2𝛼in

∫ 𝑡

𝑡0

d𝑡 ′
[
cos(𝛺̃𝑡 ′)𝑒−𝜅 (𝑡−𝑡

′ )+𝑖
∫ 𝑡

𝑡0
d𝑡 ′′ (𝑖𝛥 (𝑡 ′′ ) )−𝑖

∫ 𝑡 ′
𝑡0

d𝑡 ′′ (𝛥 (𝑡 ′′ ) )
]

(C.7)

We can rewrite the exponential in the drive term using:
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∫ 𝑡

𝑡0

d𝑡 ′′ (𝛥 (𝑡 ′′)) −
∫ 𝑡 ′

𝑡0

d𝑡 ′′ (𝛥 (𝑡 ′′)) =
∫ 𝑡

𝑡0

d𝑡 ′′ (𝛥 (𝑡 ′′)) +
∫ 𝑡0

𝑡 ′
d𝑡 ′′ (𝛥 (𝑡 ′′)) =∫ 𝑡

𝑡 ′
d𝑡 ′′ (𝛥 (𝑡 ′′))

So the solution reduces to:

𝛼 (𝑡) = 𝛼 (𝑡0)𝑒−𝜅 (𝑡−𝑡0 )+𝑖
∫ 𝑡

𝑡0
d𝑡 ′ (𝛥 (𝑡 ′ ) )+

√
2𝜅 2𝛼in

∫ 𝑡

𝑡0

d𝑡 ′
[
cos(𝛺̃𝑡 ′)𝑒−𝜅 (𝑡−𝑡 ′ )+𝑖

∫ 𝑡

𝑡 ′ d𝑡 ′′ (𝛥 (𝑡 ′′ ) )
]

Which in steady state, i.e. for 𝑡0 → −∞ becomes:

𝛼 (𝑡) =
√

2𝜅 2𝛼in

∫ 𝑡

−∞
d𝑡 ′

[
cos(𝛺̃𝑡 ′)𝑒−𝜅 (𝑡−𝑡 ′ )+𝑖

∫ 𝑡

𝑡 ′ d𝑡 ′′ (𝛥 (𝑡 ′′ ) )
]
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Rewriting the Interference
Term in the Input-Output

relation

The interference term can be rewritten as follows:

2𝜅𝜒𝑐 (𝛺) − 1 = − 2𝜅
𝑖 (𝛺 + 𝛥) − 𝜅

− 1 = (D.1)

1 + 𝑖
(
𝛺+𝛥
𝜅

)
1 − 𝑖

(
𝛺+𝛥
𝜅

) (D.2)

Recall that the cavity susceptibility and its phase are given by:

𝜒c (𝛺) = 1
𝜅 − 𝑖 (𝛺 + 𝛥) =

𝜅 + 𝑖 (𝛺 + 𝛥)
𝜅2 + (𝛺 + 𝛥)2

𝜃c (𝛺) ≡ Arg [𝜒c (𝛺)] = arctan
(
𝛺 + 𝛥

𝜅

)
If we now define a complex number:

𝑧 = 1 + 𝑖
(
𝛺 + 𝛥

𝜅

)
⇒ (D.3)

Arg [𝑧] = Arg [𝜒c (𝛺)] , (D.4)

we can use the simpel relation:

1 + 𝑖
(
𝛺+𝛥
𝜅

)
1 − 𝑖

(
𝛺+𝛥
𝜅

) =
𝑧

𝑧∗
= 𝑒2𝑖Arg[𝑧 ] . (D.5)

So we find that the interference term just leads to a frequency dependent phase-lag

2𝜅𝜒𝑐 (𝛺) − 1 = 𝑒𝑖2𝜃𝑐 (𝛺 ) (D.6)

Page 59 of 65



Appendix E. Phase gymnastics for the Nominal and Extraneous QBA 60
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d
ix E

Phase gymnastics for the
Nominal and Extraneous QBA

In this appendix we seek to rewrite the nominal and extraneous QBA in a simplet
form by redefining our phase references in a clever maner. Let us start by rewriting
the input-output relations for the side-band operators by factoring out the mean
phase of the caivty susceptibility

𝑒−𝑖 [𝜃c (𝛬eff )+𝜃c (−𝛬eff ) ]/2𝑎(inner)
out,− (𝑡) ≈ 𝑒𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2 (E.1)

×
[
𝑒𝑖𝜃c (𝛬eff )𝑎(inner)

in,− (𝑡) + 𝑖
√︁
𝛤−

𝜅 |𝜒𝑐 (𝛬eff) |
2 𝑒𝑖𝛷

ˆ̃
𝑏 (𝑡)

]
𝑒−𝑖 [𝜃c (𝛬eff )+𝜃c (−𝛬eff ) ]/2𝑎(inner)

out,+ (𝑡) ≈ 𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2 (E.2)

×
[
𝑒𝑖𝜃c (−𝛬eff )𝑎(inner)

in,+ (𝑡) + 𝑖
√︁
𝛤+

𝜅 |𝜒𝑐 (−𝛬eff) |
2 𝑒−𝑖𝛷 ˆ̃

𝑏† (𝑡)
]

𝑒−𝑖 [𝜃c (𝛬eff+2𝛺̃ )+𝜃c (−𝛬eff−2𝛺̃ ) ]/2𝑎(outer)
out,+ (𝑡) ≈ 𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2 (E.3)

×
[
𝑒𝑖𝜃c (𝛬eff+2𝛺̃ )𝑎(outer)

in,+ (𝑡) + 𝑖
√︁
𝛤+

𝜅 |𝜒𝑐 (𝛬eff + 2𝛺̃) |
2 𝑒−𝑖𝛷 ˆ̃

𝑏

]
𝑒−𝑖 [𝜃c (𝛬eff+2𝛺̃ )+𝜃c (−𝛬eff−2𝛺̃ ) ]/2𝑎(outer)

out,− (𝑡) ≈ 𝑒−𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2 (E.4)

×
[
𝑒𝑖𝜃c (−𝛬eff−2𝛺̃ )𝑎(outer)

in,− (𝑡) + 𝑖
√︁
𝛤−

𝜅 |𝜒𝑐 (−𝛬eff − 2𝛺̃) |
2 𝑒𝑖𝛷

ˆ̃
𝑏† (𝑡)

]
Let us try to do the same rewriting to the remaining phase factors in front of the
input operators:
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𝑒−𝑖 [𝜃c (𝛬eff )+𝜃c (−𝛬eff ) ]/2𝑎(inner)
out,− (𝑡) ≈ 𝑒𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2 (E.5)

×
[
𝑒𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2

(
𝑒𝑖 [𝜃c (𝛬eff )+𝜃c (−𝛬eff ) ]/2𝑎(inner)

in,− (𝑡)
)
+ 𝑖

√︁
𝛤−

𝜅 |𝜒𝑐 (𝛬eff) |
2 𝑒𝑖𝛷

ˆ̃
𝑏 (𝑡)

]
,

𝑒−𝑖 [𝜃c (𝛬eff )+𝜃c (−𝛬eff ) ]/2𝑎(inner)
out,+ (𝑡) ≈ 𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2 (E.6)

×
[
𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2

(
𝑒𝑖 [𝜃c (𝛬eff )+𝜃c (−𝛬eff ) ]/2𝑎(inner)

in+ (𝑡)
)
+ 𝑖

√︁
𝛤+

𝜅 |𝜒𝑐 (−𝛬eff) |
2 𝑒−𝑖𝛷 ˆ̃

𝑏† (𝑡)
]
,

𝑒−𝑖 [𝜃c (𝛬eff+2𝛺̃ )+𝜃c (−𝛬eff−2𝛺̃ ) ]/2𝑎(outer)
out,+ (𝑡) ≈ 𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2 (E.7)

×
[
𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2

(
𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )+𝜃c (−𝛬eff−2𝛺̃ ) ]/2𝑎(outer)

in,+ (𝑡)
)

+𝑖
√︁
𝛤+

𝜅 |𝜒𝑐 (𝛬eff + 2𝛺̃) |
2 𝑒−𝑖𝛷 ˆ̃

𝑏

]
(E.8)

𝑒−𝑖 [𝜃c (𝛬eff+2𝛺̃ )+𝜃c (−𝛬eff−2𝛺̃ ) ]/2𝑎(outer)
out,− (𝑡) ≈ 𝑒−𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2 (E.9)

×
[
𝑒−𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2

(
𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )+𝜃c (−𝛬eff−2𝛺̃ ) ]/2𝑎(outer)

in,− (𝑡)
)

(E.10)

+𝑖
√︁
𝛤−

𝜅 |𝜒𝑐 (−𝛬eff − 2𝛺̃) |
2 𝑒𝑖𝛷

ˆ̃
𝑏† (𝑡)

]
(E.11)

Let us define a set of phase shifted output operators

𝑎
(inner)′
out,± (𝑡) = 𝑒−𝑖 [𝜃c (𝛬eff )+𝜃c (−𝛬eff ) ]/2𝑎(inner)

out,± (𝑡), (E.12)

𝑎
(outer)”
out,± (𝑡) = 𝑒−𝑖 [𝜃c (𝛬eff )+𝜃c (−𝛬eff ) ]/2𝑎(outer)

out,± (𝑡) (E.13)

and input operators:

𝑎
(inner)′
in,± (𝑡) = 𝑒𝑖 [𝜃c (𝛬eff )+𝜃c (−𝛬eff ) ]/2𝑎(inner)

in,± (𝑡) (E.14)

𝑎
(outer)′′
in,± (𝑡) = 𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )+𝜃c (−𝛬eff−2𝛺̃ ) ]/2𝑎(outer)

in,± (𝑡) (E.15)

So the input-output relation reads:

𝑎
(inner)′
out,− (𝑡) ≈ 𝑒𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2× (E.16)[
𝑒𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑎(inner)′

in,− (𝑡) + 𝑖
√︁
𝛤−

𝜅 |𝜒𝑐 (𝛬eff) |
2 𝑒𝑖𝛷

ˆ̃
𝑏 (𝑡)

]
𝑎

(inner)′
out,+ (𝑡) ≈ 𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2× (E.17)[
𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑎(inner)′

in+ (𝑡) + 𝑖
√︁
𝛤+

𝜅 |𝜒𝑐 (−𝛬eff) |
2 𝑒−𝑖𝛷 ˆ̃

𝑏† (𝑡)
]

𝑎
(outer)′′
out,+ (𝑡) ≈ 𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2 (E.18)

×
[
𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2𝑎(outer)′′

in,+ (𝑡) + 𝑖
√︁
𝛤+

𝜅 |𝜒𝑐 (𝛬eff + 2𝛺̃) |
2 𝑒−𝑖𝛷 ˆ̃

𝑏

]
𝑎

(outer)′′
out,− (𝑡) ≈ 𝑒−𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2 (E.19)

×
[
𝑒−𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2𝑎(outer)′′

in,− (𝑡) + 𝑖
√︁
𝛤−

𝜅 |𝜒𝑐 (−𝛬eff − 2𝛺̃) |
2 𝑒𝑖𝛷

ˆ̃
𝑏† (𝑡)

]
(E.20)

We now try to factor out the phase factor in front of the input noise terms:



Appendix E. Phase gymnastics for the Nominal and Extraneous QBA 62

𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑎(inner)′
out,− (𝑡) ≈ 𝑒𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2 (E.21)

×
[
𝑎

(inner)′
in,− (𝑡) + 𝑖

√︁
𝛤−

𝜅 |𝜒𝑐 (𝛬eff) |
2 𝑒𝑖𝛷𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2 ˆ̃

𝑏 (𝑡)
]

𝑒𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑎(inner)′
out,+ (𝑡) ≈ 𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2 (E.22)

×
[
𝑎

(inner)′
in+ (𝑡) + 𝑖

√︁
𝛤+

𝜅 |𝜒𝑐 (−𝛬eff) |
2 𝑒−𝑖𝛷𝑒𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2 ˆ̃

𝑏† (𝑡)
]

𝑒−𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2𝑎(outer)′′
out,+ (𝑡) ≈ 𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2 (E.23)

×
[
𝑎

(outer)′′
in,+ (𝑡) + 𝑖

√︁
𝛤+

𝜅 |𝜒𝑐 (𝛬eff + 2𝛺̃) |
2 𝑒−𝑖𝛷𝑒−𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2 ˆ̃

𝑏

]
𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2𝑎(outer)′′

out,− (𝑡) ≈ 𝑒−𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2 (E.24)

×
[
𝑒−𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2𝑎(outer)′′

in,− (𝑡)

+𝑖
√︁
𝛤−

𝜅 |𝜒𝑐 (−𝛬eff − 2𝛺̃) |
2 𝑒𝑖𝛷𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2 ˆ̃

𝑏† (𝑡)
]

Let us now try to absorb the phase 𝑒𝑖𝛷𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2 into ˆ̃
𝑏:

𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]𝑎(inner)−
out,− (𝑡) ≈

[
𝑎

(inner)′′
in,− (𝑡) + 𝑖

√︁
𝛤−

𝜅 |𝜒𝑐 (𝛬eff) |
2

ˆ̃
𝑏′ (𝑡)

]
(E.25a)

𝑒𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]𝑎(inner)′
out,+ (𝑡) ≈

[
𝑎

(inner)′′
in+ (𝑡) + 𝑖

√︁
𝛤+

𝜅 |𝜒𝑐 (−𝛬eff) |
2

ˆ̃
𝑏′† (𝑡)

]
(E.25b)

𝑒−𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]𝑎(outer)′′
out,+ (𝑡) ≈

[
𝑎

(outer)′′
in,+ (𝑡)+ (E.25c)

𝑖
√︁
𝛤+

𝜅 |𝜒𝑐 (𝛬eff + 2𝛺̃) |
2 𝑒−𝑖2𝛷𝑒−𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2𝑒𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2 ˆ̃

𝑏′ (𝑡)
]

(E.25d)

𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]𝑎(outer)′′
out,− (𝑡) ≈

[
𝑒−𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2𝑎(outer)′′

in,− (𝑡)
(E.25e)

+𝑖
√︁
𝛤−

𝜅 |𝜒𝑐 (−𝛬eff − 2𝛺̃) |
2 𝑒𝑖2𝛷𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2 ˆ̃

𝑏′† (𝑡)
]

(E.25f)

We must now check that we can infact absorb this phase in the phonon operator.
To do so we first note that th nominal QBA can be rewritten as follows by factoring
out the relative phase of the cavity susceptibility at the inner sidebands:

𝑎
(inner)′
out,± (𝑡) = 𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑒−𝑖 [𝜃c (𝛬eff )+𝜃c (−𝛬eff ) ]/2𝑎(inner)

out,± (𝑡)

𝑎nom (𝑡) = 𝑖
√

2𝜅 𝑔0√
2
𝑒−𝑖𝛷

(
|𝛼− | |𝜒𝑐 (𝛬eff) |𝑒𝑖𝜃c (𝛬eff )𝑎in (𝑡) + |𝛼+ | |𝜒∗𝑐 (−𝛬eff) |𝑒−𝑖𝜃c (−𝛬eff )𝑎†in (𝑡)

)
𝑒𝑖𝛬eff𝑡

(E.26)

= 𝑖
√

2𝜅 𝑔0√
2
𝑒−𝑖𝛷𝑒𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2

[
|𝛼− | |𝜒𝑐 (𝛬eff) |𝑒𝑖 [𝜃c (𝛬eff )+𝜃c (−𝛬eff ) ]/2𝑎in (𝑡)

(E.27)

+|𝛼+ | |𝜒∗𝑐 (−𝛬eff) |𝑒−𝑖 [𝜃c (𝛬eff )+𝜃c (−𝛬eff ) ]/2𝑎†in(𝑡)
]
𝑒𝑖𝛬eff𝑡

= 𝑖
√

2𝜅 𝑔0√
2
𝑒−𝑖𝛷𝑒𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2 (E.28)

×
(
|𝛼− | |𝜒𝑐 (𝛬eff) |𝑎′in (𝑡) + |𝛼+ | |𝜒∗𝑐 (−𝛬eff) |𝑎′†in (𝑡)

)
𝑒𝑖𝛬eff𝑡 (E.29)
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We can do the same for the extraneous noise:

𝑎extra (𝑡) = 𝑖
√

2𝜅 𝑔0√
2
𝑒𝑖𝛷

[
|𝛼+ | |𝜒𝑐 (𝛬eff + 2𝛺̃) |𝑒𝑖𝜃c (𝛬eff+2𝛺̃ )𝑎in (𝑡) (E.30)

+|𝛼− | |𝜒∗𝑐 (−𝛬eff − 2𝛺̃) |𝑒−𝑖𝜃c (−𝛬eff−2𝛺̃ )𝑎†in (𝑡)
]
𝑒𝑖 (𝛬eff+2𝛺̃)𝑡

= 𝑖
√

2𝜅 𝑔0√
2
𝑒𝑖𝛷𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2 (E.31)

×
[
|𝛼+ | |𝜒𝑐 (𝛬eff + 2𝛺̃) |𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )+𝜃c (−𝛬eff−2𝛺̃ ) ]/2𝑎in (𝑡) (E.32)

+|𝛼− | |𝜒∗𝑐 (−𝛬eff − 2𝛺̃) |𝑒−𝑖 [𝜃c (𝛬eff+2𝛺̃ )+𝜃c (−𝛬eff−2𝛺̃ ) ]/2𝑎†in (𝑡)
]
𝑒𝑖 (𝛬eff+2𝛺̃)𝑡

= 𝑖
√

2𝜅 𝑔0√
2
𝑒𝑖𝛷𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2 (E.33)

×
(
|𝛼+ | |𝜒𝑐 (𝛬eff + 2𝛺̃) |𝑎′′in (𝑡) + |𝛼− | |𝜒∗𝑐 (−𝛬eff − 2𝛺̃) |𝑎′′†in (𝑡)

)
𝑒𝑖 (𝛬eff+2𝛺̃)𝑡

We now absorb the phase-lag from the relative cavity phase from the inner side-
bands into the mechanical operator and define:

ˆ̃
𝑏′ (𝑡) ≡ 𝑒𝑖𝛷𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2 ˆ̃

𝑏 (𝑡) ⇔
ˆ̃
𝑏 (𝑡) ≡ 𝑒−𝑖𝛷𝑒𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑏′ (𝑡)

This is possible as we can rewrite the EOM:

𝑒𝑖𝛷𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2 ¤̃̂𝑏 (𝑡) = 𝑒𝑖𝛷𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2 (E.34)

×
[
− (𝑖𝛿𝛺𝑚 + 𝛾 + 𝑖𝛴) ˆ̃

𝑏 (𝑡) + 𝑖 1
√

2
𝑒𝑖 (𝛬eff+𝛺̃)𝑡 𝑓 (𝑡) + 𝑎nom (𝑡) + 𝑎extra (𝑡)

]
⇒

¤̂
𝑏′ (𝑡) = − (𝑖𝛿𝛺𝑚 + 𝛾 + 𝑖𝛴) 𝑏′ (𝑡) + 𝑖 1

√
2
𝑒𝑖𝛷𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑒𝑖 (𝛬eff+𝛺̃)𝑡 𝑓 (𝑡)

(E.35)
+ 𝑒𝑖𝛷𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑎nom (𝑡) + 𝑒𝑖𝛷𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑎extra (𝑡) ⇒

¤̂
𝑏′ (𝑡) = − (𝑖𝛿𝛺𝑚 + 𝛾 + 𝑖𝛴) 𝑏′ (𝑡) + 𝑖 1

√
2
𝑒𝑖𝛷𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑒𝑖 (𝛬eff+𝛺̃)𝑡 𝑓 (𝑡)

(E.36)
+ 𝑎′nom (𝑡) + 𝑎′extra (𝑡),

where the nominal QBA now is written in term of 𝑎′in, but no longer has any ex-
plicit phases:

𝑎′nom (𝑡) ≡ 𝑒𝑖𝛷𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑎nom (𝑡) =

𝑖
𝜅

2

(√︁
𝛤− |𝜒𝑐 (𝛬eff) |𝑎′in (𝑡) +

√︁
𝛤+ |𝜒∗𝑐 (−𝛬eff) |𝑎′†in (𝑡)

)
𝑒𝑖𝛬eff𝑡

As we used the phases which make the nominal QBA nice and tidy, the extraneous
noise now involve phases from both the inner and outer sidebands:

𝑎′extra (𝑡) ≡ 𝑒𝑖𝛷𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑎extra (𝑡) = (E.37)

𝑖
𝜅

2𝑒
2𝑖𝛷𝑒−𝑖 [𝜃c (𝛬eff )−𝜃c (−𝛬eff ) ]/2𝑒𝑖 [𝜃c (𝛬eff+2𝛺̃ )−𝜃c (−𝛬eff−2𝛺̃ ) ]/2

×
(√︁

𝛤+ |𝜒𝑐 (𝛬eff + 2𝛺̃) |𝑎′′in (𝑡) +
√︁
𝛤− |𝜒∗𝑐 (−𝛬eff − 2𝛺̃) |𝑎′′†in (𝑡)

)
𝑒𝑖 (𝛬eff+2𝛺̃)𝑡

(E.38)
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