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Resume

I denne opgave ser vi på Faraday vekselvirkningen mellem et kohært lysfelt og et atomart
ensemble. Faraday vekselvirkningen er meget central i kvanteinformation og er ofte anvedt
til hukommelesprotokoller. Ved Niels Bohr Institutet har Eugene Polziks gruppe haft
succes med at udføre den direkte afbildningsprotol. Indtil videre har der dog ikke være en
fyldestgørende beskrivelse af det spontane henfald, som systemet undergår. Det har været
denne opgaves formål for første gang at inkludere den fulde niveaustruktur af atomerne og
give en fuld beskrivelse af dekohærensen fra den spontane emission. Opgaven er bygget
op, på følgende måde: Først betragter vi et enkelt atom og opstillet en effektiv dipol
vekselvirkning, der beskriver interaktionen for stærkt ikke-resonant lys. Derefter inkluderer
vi koblingen til omgivelserne (som vi tager som vacuum) og ser hvordan den introducerer
henfald i vores ideélle system. Dernæst skitserer vi hvordan denne model udvides til et helt
ensemble af atomer, der antages ikke at vekselvirke. Til slut ser vi på bevægelsesligningerne
for lys- og atom kvadraturerne og ser hvordan den direkte afbildningsprotokol modificeres
fra det ideélle tilfælde. Vi finder at for at protokollen skal kunne virke, så skal man have
optiske dybder over 10. Vi finder også at π

2 er den optimale vinkel mellem lys - og atomernes
polarisationsretning. For optiske dybder over 20, burde man i princippet kunne opnå en
fidelity over 0.75.
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Abstract

In this thesis we review the Faraday interaction between a coherent light field and an
atomic ensemble. The Faraday interaction is an important tool in the growing field of
quantum information, which is widely used to perform quantum memory protocols. At
the Niels Bohr Institute, Eugene Polzik’s group has had succes with performing the direct
mapping protocol based on the Faraday interaction. However so far there has not been
a satisfactory description of the spontaneous emission that the system undergoes. In this
work we have for the first time included the full level structure of the atoms to get a
complete description of the decoherence from spontaneous emission. The thesis is built
up as follows: First we consider a single atom and set up an effective dipole interaction
that describes the interaction with strongly off-resonant light. After that we include the
coupling to the enviroment (which we take as vacuum) and find how it introduces decay to
our ideal system. Then we sketch how one extends this interaction to a whole ensemble of
atoms, but where the atoms are independent. Finally we look at the equations of motion
for light and atom quadratures and see how the direct mapping memory protocol changes
from the ideal case. Our results show that for the protocol to be succeful several criteria
must be met. First it is important that the detunings be large enough ∼ GHz, for the
Faraday interaction to be dominant. Secondly one needs optical depths above 10. We also
find that π

2 is the optimal angle between the atomic- and light polarization vector. With
optical depths above 20 in principle one should be able to get a fidelity greater than 0.75.
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Chapter 1

Introduction

1.1 Quantum information

Since the emergence of quantum mechanics [QM] the technology has experienced a huge
boost based on the applications of it. Quantum information [QI] represents another realm
which could prove to change our ways of storing and mediating information in a radical
way. As is apparent from the name, the theory relies on QM and it seeks to store and
manipulate information in states of a quantum system. Loosely said QI consists of two
large domains: quantum computation [QC] and quantum cryptography. Things from QM
that we usually regard as oddities, such as the uncertainty principle and entanglement, are
the very same things that in QI enable us to perform tasks that either would have been
impossible or much more time and resource consuming with today’s technology. Apart
from having a realistic practical value QI also enrichens our understanding of QM and the
fundamental laws of nature. It is in topics central to QI that QM has faced the greatest
tests, such as Bell inequality, - and passed.
So what is the main difference between classical information and QI? Usually on our com-
puters we store information in bits that can take the values 0 or 1. The QI analog is the
qubit, a two-level (spin 1

2) system:

|ψ〉 = a|0〉 + b|1〉, |a|2 + |b|2 = 1. (1.1)

QI deals with superpositions of states (or bits) and it produces some essential differences
that are worth mentioning. First of all QM tells us that we cannot acces the information
in the state without projecting the state to the measured value. More over we cannot clone
the state [31] and despite being a superposition, the qubit carries the same amount of
information as a classical bit. So what good are these new states? The benefit comes from
the processing, which builds on quantum parallelity as Feynman termed it in the 1980’s.
Simply stated, the principle is that since QM is a linear theory, the action of some operation
you want to perform on your state, will work simultaneously on all the substates. That
allows a tremendeous speed up that is exploited in QC and we will not go into details, but
note that there are many possible utilities, like Shor’s factoring algorithm [28] and Grover’s
search algorithm [8].
Also one can simulate complicated systems, where classical algorithms have proven unable
to do so in reasonable (that is polynomial) time. We also mentioned quantum cryptography
and it could provide ways to create unconditionally secure keys, meaning that the safety
of the protocols would be provided by the laws of quantum mechanics rather than the
computational complexity of mathematic problems, as is the case today. There are many
possible protocols that could do the job, but the BB84 protocol gives a good description of
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2 CHAPTER 1. INTRODUCTION

the fundamentals [2]. This is not only speculation, the first commercial uses have already
appeared on the market, see for instance [1].
Generally one can also say that even though QI as a whole is a very dynamic field, one must
say that development for theory and experiment is not parallel. There are still many places
where the theoretical foundation has been laid, but practical realizations are absent. One
of the biggest unresolved questions is what the best practical way to store the information
for longer time periods is. There has been different approaches, one of them coming from
the solid state field, where they use electronic states (often in a quantum dot) to keep the
information. A recent breakthrough in that field is reported in [12] and it could advance
the solid state implementation of QI. But we will look at another alternative, namely the
use of alkali atoms as memory holders.

1.2 Atomic ensembles

Initially much attention for implementation of well controlled light-atom interactions was
given to systems with few atoms - cavity quantum electrodynamics (Cavity QED). One
had one (or few) atoms inside a cavity and the Jaynes-Cummings model interaction [13]
could be achieved for single atom - single photon interactions. Despite big advances in
Cavity QED, there has been great technical difficulties with making good enough cavities
and people started looking for other paths. One of the more succesful of them was the
idea that instead of trying to operate with one or few atoms, one could use whole atomic
ensembles. In the context of memory, it was realized that one could use the collective spin
as the information carrier:

J =

N
∑

i

j(i). (1.2)

Here j(i) = · · ·⊗1i−1⊗j⊗1i+1⊗· · · is the angular momentum operator for the ith atom and
through out this thesis we will put ~ = c = 1. The advantage of using many atoms, is
that it is much easier to couple light to a whole collection of atoms, rather than a single
or few atoms. And besides the collectively enhanced atom-light coupling, it is possible to
perform collective operations using simple linear optics. Another aspect is the noise - to
be able to perform meaningful operations on the system of interest, it should not be too
noise sensitive. And in fact the mean of a big collection of atoms is much more robust with
respect to fluctuations than a single or few atoms are - one could compare it to what is
known as the law of large numbers in mathematics.
Two possible candidates seem to posses the desired qualities mentioned above. The one
we will be looking at, is the room temperature gas in a glass cell, but also much effort
is being put into developing systems consisting of cold trapped atoms inside a magneto
optical trap [MOT]. In both approaches there are still challenges to be overcome, some
are technical, like attenuation in used channels or correcting for the ineffecies of detectors.
But also more ”fundamental” losses like spontaneuos emission should be adressed. This is
what we will opt for in this thesis - to describe how much noise is generated in the system
due to spontaneous emission.
But first let us see how exactly we want to use these atomic ensembles to store information.
We will assume that the information to be stored is supplied by a coherent light field (laser)
and see how the so-called Faraday interaction can give the transfer of information from
light to atoms.



Chapter 2

Faraday interaction

In the next chapter we will contruct the off-resonant light-atom interaction for our system,
but before starting the full scale analysis we will try to motivate our work by looking
at how it can be used to store information. For that we discuss the Faraday interaction
which is a simple and yet realistic model of light-atom couplings. We note though that
the Faraday interaction is not the only possible interaction for memory purposes. Another
very analyzed one is the beamsplitter interaction and it has also proven succeful as in [21].
We will assume that both light and atoms can be described by some quadrature operators
{X,P} that obey the canonical commutation relations, where i, j labels atoms or light:

[Xi, Pj ] = iδij , (2.1)

[Xi,Xj ] = [Pi, Pj ] = 0. (2.2)

As we will see these quadratures are related to the spin of the atoms and polarization
states of light. Usually we describe these (vector) quantities using all 3 components, but
the idea in this model, is that one of them has a big value and thus may be replaced with
it’s expectation value. The other two are small and will carry the interesting quantum
properties we want to exploit. Precisely how we define these quadratures we will see in
chapters 6 and 7, but for now we focus on the Faraday interaction that has the form of the
quadrature product:

HF = κPAPL. (2.3)

Here κ is the interaction strength - a parameter that tells how strongly the light couples
to atoms. To get something useful out of the interaction, we want want this quantity to
be big enough, which is typically of order 1.
Now what is so special about this interaction? First we note that in our thesis will work
in the Heisenberg picture, where the operators A are time dependent and subject to a
Hamiltonian H the evolution is governed by:

Ȧ = i[H,A] +
∂A

∂t
, (2.4)

where the last term comes from the possible explicit time dependence of A. So according
to Heisenberg’s equation of motion, together with relations (2.1+2), we get that the light
quadratures change as:

ẊL = κPA, (2.5)

ṖL = 0. (2.6)

3



4 CHAPTER 2. FARADAY INTERACTION

By the same token we have for the atomic variables:

ẊA = κPL, (2.7)

ṖA = 0. (2.8)

These first order differential equations for light and atoms couple to each other in a simple
way and one quickly finds the solution expressed in terms of input and output:

Xout
L = Xin

L + κP in
A , (2.9)

P out
L = P in

L , (2.10)

Xout
A = Xin

A + κP in
L , (2.11)

P out
A = P in

A . (2.12)

We see that in the interaction the quadrature momenta PA and PL do not change and are
mapped onto resp. XL and XA. Given that the interaction strength κ is big enough we
can therefore measure P in

A by measuring Xout
L . That way we have a performed a so-called

quantum non-demolition measurement - the integrity of the system is preserved after the
measurement and it relied on the fact that PA was not altered in the interaction.
The QND structure of the interaction gives the possibility for creating a memory protocol
based on this quadrature formalism. We will consider the direct mapping protocol, as
desribed in [14]. After letting the light interact with the atoms through HF , we measure
the value of Xout

L and subtract it from the atomic P out
A with a gain g, such that we end up

with:

Xout
A = Xin

A + κP in
L , (2.13)

P ′
A

out = P out
A − gXout

L = P in
A (1 − κg) − gXin

L . (2.14)

If κ = g = 1 and Xin
A has with zero mean, we have thus achieved a faithful storage of both

light variables in the atoms:

〈Xout
A 〉 = 〈P in

L 〉, (2.15)

〈P out
A 〉 = −〈Xin

L 〉. (2.16)

So how well does this memory protocol work? A number used to describe the efficiency
of a memory protocol is the fidelity. It tells how well the state recorded in the atomic
quadratures represents the actual state supplied by the light and is simply the overlap of
the two. We can calculate the fidelity for this protol using the formula from [10]:

F = (
1

2
+ ∆X2,out

A )−
1
2 × (

1

2
+ ∆P 2,out

A )−
1
2 . (2.17)

This formula can be used for coherent light input states that have symmetric noise in the
quadratures, but does not apply for squeezed states of light that we will mention later.
From (2.13+14) we can calculate the variances on the atomic output quadratures:

∆X2,out
A = ∆X2,in

A + ∆P 2,in
L , (2.18)

∆P ′2,out
= ∆X2,in

L . (2.19)

We see that even though Xin
A can have a mean zero value, it still contributes to the variance

of the output Xout
A . Assuming that both light and atoms exhibibit minimum uncertainty,

such that the variance of all quadratures is 1
2 , one obtains from (2.17) that the the maximal
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fidelity for this protocol is
√

2
3 ≃ 82%. However if we squeeze the input state Xin

A such

that ∆X2,in
A → 0, the fidelity approaches 100%. In our work we will usually not include

this possibility of squeezing the input atomic state, because it gives some other problems
and therefore we usually assume that ∆X2,in

A = ∆P 2,in
A = 1

2 .

Historically the idea of using a QND Hamiltonian for manipulating quantum states was
first made by (among others) [26] in 1989. Since then many experiments have been per-
formed by several groups, confirming this approach. One of them being Eugene Polzik’s
Quantop at Niels Bohr Institute and in [27] they reported an observed fidelity for the de-
scribed protocol around 0.70. In this context we want to mention that for our protocol to
be succeful, we demand a fidelity that should be higher than the best fidelity that can be
achieved classically. If we assume that our light input states could come from the whole
(XL, PL) phase space, then this classical fidelity is 1

2 . If we only had vacuum or states
displaced by small amount from vacuum as input, we could get a high fidelity simply by
using vacuum states as memory - we would not need any protocols. So looking at the
protocol we think that the states to be stored are not just vacuum, but rather vacuum
states displaced by some unspecified amount - coherent states.
In all of this we have assumed our system of atoms to be isolated from everything else.
This is of course unrealistic, our atoms will interact with the surroundings, which will give
rise to spontaneuos emission. It is already known that even with this complication, the
protocols can still be used for memory, but so far there has not been a precise theoretical
estimate of how much decay and noise is introduced and this we wish to quantify in this
thesis.



Chapter 3

Interaction Hamiltonian

In this chapter we will find the interaction Hamiltonian from which we later will deduce
the equations om motion. Our description is composed of three parts, the purely atomic
part, the purely photonic part and the interaction part which describes the interaction of
atoms with our light field. We will consider these three parts separately first and introduce
the relevant notions before going to the interaction part. In most of our analysis we will
only consider a single atom, later on we will see how we should approach the situation of
a collection of atoms - the atomic ensemble.

3.1 Light

We will quantize the light field in a standard way (for a more detailed description we refer
to App.A.1), using the form of the electric field:

E(r, t) =
∑

kσ

ǫkσ

√

ωk

2ǫ0V
(akσ(t)eik·r + a†kσ(t)e−ik·r) = E(+)(r, t) + E(−)(r, t). (3.1)

We have written the eletric field as a sum of positive- and negative frequency compo-
nents representing respectively the destruction- and generation of field excitations. The
Hamiltonian for the radiation field itself is:

HL =
∑

kσ

ωka
†
kσakσ. (3.2)

Which simply counts the number of photons in different states and assigns the correspond-
ing energy. For the coherent field we shine onto the atoms, we will assume the electric
field to be centralized about the carrier frequency ω0 and to have a flat profile with area
A, with a strongly polarized x component and a weak y component. So we use 1/

√
A as

the transverse profile and have in the paraxial approximation with L as the length of the
quantization volume, the electric field to be:

E(r, t) =

√

ω0

2ǫ0A

∑

kσ

ǫσ
1√
L

(akσ(t)eikz + a†kσ(t)e−ikz)

=

√

ω0

2ǫ0A

∑

σ

ǫσ(aσ(z, t) + a†σ(z, t)). (3.3)

We have defined the position varying operator a(z, t), such that nσ(z, t) = a†σ(z, t)aσ(z, t)
gives the flux of photons with polarization σ at position z and time t. Later it will be

6



3.2. ATOMS 7

useful to describe the fields by using Stokes operators rather than the a, a†-operators. For
our laser beam which is travelling in the z direction, we describe the polarization by Stokes
operators (also decribed in App.A.2):

Sx(z, t) =
1

2
(nx(z, t) − ny(z, t)), (3.4)

Sy(z, t) =
1

2
(n+45◦(z, t) − n−45◦(z, t)), (3.5)

Sz(z, t) =
1

2
(nσ+(z, t) − nσ−(z, t)). (3.6)

Sx is the difference between the flux of photons being x-polarized and y polarized, Sy is
difference between photons having ±45◦ polarization and Sz is the difference between right
circularly and left circularly polarized photon flux. Furthermore we will also need the total
flux:

φ(z, t) = nx(z, t) + ny(z, t). (3.7)

Because our light is strongly polarized along x, we can treat Sx as the c-number 〈Sx〉, while
the smaller Sy and Sz retain their quantum properties. Also we mention that the Stokes
operators obey the angular momentum like relation:

[Si, Sj ] = i
∑

k

ǫijkSk. (3.8)

As with spin we cannot know all components of the Stokes vector simultaneously. And
because of this commutation relation, they fulfill the uncertainty relation:

∆S2
y∆S2

z ≥ S2
x

4
. (3.9)

For a coherent state like the light our laser produces, we have (almost) ∆S2
y = ∆S2

z = Sx

2
and we say that the light in this case is shot noise limited. These coherent states can be
seen as displaced vacuum states. There are also states that fulfill the equality, but have an
uneven distribution of variances and these are called squeezed states and have no classical
analog. They will not be used in this work, although they are also very interesting in this
context.

Figure 3.1: Left: Coherent light state with vanishing Sy,Sz and ∆S2
y = ∆S2

z Right: Dis-
placed squeezed light state with ∆S2

y > ∆S2
z .

3.2 Atoms

The atom we will work with in our model is cesium. Cesium is an alkali metal with a single
electron in the outer shell. We know that due to fine structure there will be a coupling
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of orbital momentum L of the outer electron with its spin S, giving a total of J = L+ S
where |J | must satisfy the triangle inequality |L− S| < J < L+ S. Cesium has a ground
state with L = 0 and S = 1

2 , giving J = 1
2 . The first exited state has L = 1 meaning

that J = 1
2 or J = 3

2 . It means that these states will have a shift resulting in two split
components and the transitions 62S 1

2
→ 62P 1

2
and 62S 1

2
→ 62P 3

2
from the ground state to

this fine structure doublet, we call resp. the D1- and D2 line.
Additionaly we have a hyperfine structure due to the coupling of J to nuclear spin I giving
a total angular momentum F = I + J with the similar condition |J − I| < F < J + I.
Cesium has I = 7

2 so we have two ground states with F = 3 or F = 4. For the D1-line
the total spin of the exited state can be 3 or 4, while for the D2-line F can be 2, 3, 4, 5.
Because the splitting between the two D-lines is big enough (∼THz), it is possible to lock
a laser on the transition of interest. We will be solely investigating the D2 line, but much
of the analysis can be applied for the D1 line too.

Figure 3.2: D1 and D2 lines of cesium

Now as in [29], we define the projections onto the ground- and exited spin state mani-
folds(We will use |F,m〉 and |F̃ , m̃〉 to represent ground states and |F ′,m′〉 to represent
excited states.):

PF =
∑

m

|F,m〉〈F,m|, PF ′ =
∑

m′

|F ′,m′〉〈F ′,m′|, (3.10)

Pg =
∑

F

PF , Pe =
∑

F ′

PF ′ , Pg + Pe = 1. (3.11)

This projections will be very used for our treatment of the operators and if we specifically
apply it to the dipole-operator d we get (Note that we do not get any contributions from
the terms PgdPg, PedPe since d is a parity odd operator.):

d = (Pg + Pe)d(Pg + Pe) = PedPg + PgdPe = d(+) + d(−). (3.12)

The physical intepretation of d(+) can be seen from it’s action on a ground state specified by
total- and spin magnetic moment |F,m〉. It gives an up transition to exited states |F ′,m′〉
with amplitudes given by the matrix element of the dipole operator: 〈F ′,m′|d|F,m〉. For
exited states d(+) gives the null ket. In the same way one can see that d(−) = (d(+))† is
a lowering from the exited states to the ground states. In the following we will go into
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the rotating frame with respect to the laser frequency ω0, so the energy of the atom is
described by the Hamiltonian:

HA =
∑

F ′

∆F ′PF ′ . (3.13)

Where ∆F ′ is the detuning of the exited stated from the laser frequency. For the cesium
atom we saw earlier that we have two stable ground states with resp. F = 3 and F = 4,
where we will choose the F = 4 as reference:

H0 = −∆34P3. (3.14)

Here ∆34 = 9.192631770 GHz1 is the energy difference between the two ground states. As
mentioned we will describe the atoms in terms of their spin operators (for a quick review
of angular momentum we refer to App.B.1) that have:

[ji, jj ] = i
∑

k

ǫijkjk. (3.15)

The same holds for the collective spin as defined in (1.2), that because of Heisenberg’s
uncertainty relation has:

∆J2
y ∆J2

z ≥ J2
x

4
. (3.16)

Using the technique of optical pumping [11], it can be arranged such that to a high degree
of accuracy, all the atoms have a spin pointing in the same direction, e.g. x, such that
Jx = NAF and 〈Jy〉 = 〈Jz〉 = 0. In this case we say that the atoms are in a coherent spin
state [CSS] and the atoms are independent, so the wavefunction for the system factorizes:

|ψ〉 =
⊗N

n=1 |ψ〉(n). The CSS is a minimum uncertainty state: ∆J2
y = ∆J2

z = Jx

2 and as
with light it is possible to squeeze the uncertainties, such that the equation still holds, but
the quarature variances are different. In the experiments they typically have NA ∼ 1012

giving an angular uncertainty of order 10−6.

Figure 3.3: Left:Coherent spin state with ∆J2
y = ∆J2

z , Right: Displaced squeezed state
with ∆J2

y > ∆J2
z .

When we talk about the ensemble polarized along a direction, e.g. x, it means for the
collective spin Jx we have p = Jx

NF close to 1, while p = 0 describes a completely unpolarized
ensemble. In experiments described in [15] using optical pumping they managed to create
polarized ensembles with p lying within 10% from the desired value 1.

1The transition between the two ground state levels defines the second, which explains the exact value
of the splitting.
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3.3 Interaction

In this section we find the interaction Hamiltonian. We will work in the dipole approxima-
tion, where the interaction between light and atoms is of the form Hint = −d·E. This form
works as long as the spatial extent of the atom is much smaller than the wavelength of the
light. In the previous sections we wrote the electric field and the dipole operator as a sum
of positive and negative components. This we can insert into the expression for Hint, and
we will affect the rotating wave approximation [RWA] that amounts to neglecting the fast
oscillating terms E(+)d(+),E(−)d(−) that describe the strongly forbidden processes where
e.g. an atom is exited by emitting a photon as for the E(−)d(−) term. That way we get:

Hint = −d·E = −(d(+) + d(−))(E(+) + E(−))

≃ −d(+)E(−) − d(−)E(+)

= −
∑

F,F ′

PF dPF ′E(−) + PF ′dPF E(+)

= −
∑

F,F ′

∑

m,m′

〈F,m|d|F ′,m′〉σF,m;F ′,m′E(−) + 〈F ′,m′|d|F,m〉σF ′,m′;F,mE(+). (3.17)

We have ended up with a Hamilton that describes the proces where an atom creates
(annihilates) a photon as it decays (gets exited) from an exited (ground) state to a ground
(excited) state. The matrix element 〈F,m|d|F ′,m′〉 gives the coupling strength of this
transition. We want to obtain a Hamiltonian that only involves the ground states and
to do that we first form the EOM for the transition matrix, where we use the transition
matrix commutation relations from App.D.2 to obtain:

d

dt
σF,m;F ′,m′ = i[Hint +HA, σF,m;F ′,m′ ]

= i(
∑

F̃ ,m̃

〈F ′,m′|d|F̃ , m̃〉E(+)σF,m;F̃ ,m̃ − ∆F ′σF,m;F ′,m′). (3.18)

Now we are going to perform the adiabatic elimination. We assume the laser to be far
detuned from resonance, such that we can ignore the population in the exited states, more
precisely we demand that the saturation parameter satisfies:

s = φ(
Ω

∆
)2≪1, (3.19)

which can be achieved by making the detuning large enough (Ω is the single photon Rabi
frequency and φ is the laser flux). As a result each atomic dipole will follow the applied
field adiabatically and putting the derivative to zero we are left with2:

σF,m;F ′,m′ =
1

∆F ′

∑

F̃ ,m̃

〈F ′,m′|d|F̃ , m̃〉E(+)σF,m;F̃ ,m̃. (3.20)

2We see that the dispersive part of the interaction goes as 1/∆, while (as we also will see later) the
absorptive goes as 1/∆2. Also we will use the convention that blue detuning is taken as negative.
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This expression for σ we can insert into the Hamiltonian (3.17) to obtain:

Hint = −
∑

F,F̃ ,F ′

∑

m,m̃,m′

〈F,m|d|F ′,m′〉 1

∆F ′

〈F ′,m′|d|F̃ , m̃〉σF,m;F̃ ,m̃E(−)E(+) + h.c.

= −E(−)(
∑

F,F̃ ,F ′

∑

m,m̃,m′

|F̃ , m̃〉 〈F̃ , m̃|d|F ′,m′〉〈F ′,m′|d|F,m〉
∆F ′

〈F,m|)E(+) + h.c.

= −
∑

F ′

E(−)PgdPedPg

∆F ′

E(+) + h.c. = E(−)αE(+) + h.c. = 2E(−)αE(+). (3.21)

Here we have introduced the atomic polarizability α:

α = −
∑

F ′

PgdPF ′dPg

∆F ′

, (3.22)

which we will analyze in the following. But first we return to the atomic Hamiltonian
HA that we should add to our Hint to get the full system. For HA we insert the found
expression (3.20) for σ (here |F0,m0〉 is some arbitrary ground state that we just insert to
use what we have found and it drops out eventually):

HA =
∑

F ′,m′

∆F ′σF ′,m′;F ′,m′ =
∑

F ′,m′

∆F ′σF ′,m′;F0,m0σF0,m0;F ′,m′

=
∑

F ′,m′

∆F ′(
1

∆F ′

)2
∑

F,F̃

∑

m,m̃

〈F̃ , m̃|d|F ′,m′〉〈F ′,m′|d|F,m〉E(−) (3.23)

× σF̃ ,m̃;F0,m0
σF0,m0;F,mE(+))

= E(−)(
∑

F,F̃ ,F ′

∑

m,m̃,m′

〈F̃ , m̃|d|F ′,m′〉〈F ′,m′|d|F,m〉
∆F ′

σF̃ ,m̃;F,m)E(+)

= −E(−)αE(+). (3.24)

So when we add HA to the interaction Hamiltonian Hint we get rid of the factor 2 in (3.21):

Heff
int = Hint +HA = E(−)αE(+)≡Hint. (3.25)

With our assumption of having light far detuned from resonance we have performed the
adiabatic elinination and now have a Hamiltonian that couples ground states to ground
states. With this procedure the Hamiltonian works only for timescales longer than 1

∆F ′
∼

ns, which is fulfilled for the actual experiments, where the pulses typically have a duration
of order µs.
So far the polarizability α in (3.22) is just some complicated formal expression. We want
to examine it closer and to do that we will use the spherical basis3:

Hint = E(−)αE(+) =
∑

q,q′

E
(−)
q′ e∗q′αeqE

(+)
q . (3.26)

The elements in the polarizability matrix can be simplified by using conservation of mo-
mentum to get rid of the irrelevant m-sums. Since we have two ground state spin: F
and F̃ and we start in the state with F , we will make the replacement ∆F ′ → ∆F ′F to

3This basis is described in App.D.1.



12 CHAPTER 3. INTERACTION HAMILTONIAN

remind ourselves that it is the detuning from the frequency corresponding to the transition
|F,m〉 → |F ′,m′〉 we have in the expressions:

αq,q′ = e∗q′ ·α·eq = (−1)1+q′
∑

F F̃F ′

PF̃ d−q′PF ′dqPF

∆F ′F

= (−1)1+q′
∑

F,F̃ ,F ′

∑

m

〈F̃ ,m+ q − q′|d−q′ |F ′,m+ q〉〈F ′,m+ q|dq|F,m〉
∆F ′F

σF̃ ,m+q−q′;F,m.

(3.27)

For the matrix elements 〈F ′,m′|dq|F,m〉 we will use the Wigner-Eckart theorem, which
is a very powerful tool for evaluting spherical tensor operators on the basis of angular
momentum eigenstates. The details are explained in App.D.3 and one can also look in [5].
As a result the polarizability tensor for given F, F̃ , may be written as (In the following we
will write the Clebsch-Gordan coefficients 〈F,m|F ′,m′; 1, q〉 as cF,m

F ′,m′ etc.):

αF,F̃
q,q′ = (−1)1+F+F̃ α0

2J + 1

∑

F ′

fF,F̃ ,F ′

∆F ′F

∑

m

cF
′,m+q

F̃ ,m+q−q′
cF

′,m+q
F,m |F̃ ,m+ q − q′〉〈F,m|. (3.28)

Where the characteristic polarizability constant for the |J〉 → |J ′〉 transition is defined as:

α0 = |〈J ′||d||J〉|2 2J + 1

2J ′ + 1
, (3.29)

and we have also introduced the generalized relative oscillator strength:

fF,F̃ ,F ′ = (2J ′ + 1)

√

(2F + 1)(2F̃ + 1)

{

F F ′ 1
J ′ J I

}{

F̃ F ′ 1
J ′ J I

}

, (3.30)

which for F = F̃ has the sum rule
∑

F fFF ′ = 1.
It is easy to understand the physical meaning of the Hamiltonian. We look at processes
where an atom initially in state |F,m〉 absorbs a photon with polarization q and gets exited
to the virtual (to stipulate that we are dealing with off resonant processes) state |F ′,m′〉.
It is accompanied by an emission of a photon with polarization q′ after which the atom
ends up in the state |F̃ ,m+ q − q′〉. The strength of the proces is essentially determined

by the Clebsch-Gordan coefficients cF
′,m+q

F̃ ,m+q−q′
cF

′,m+q
F,m .

Since the atom can end in a different spin state it means that there can be an exchange
of energy between the atoms and the light field. For F = F̃ we are looking at an elastic
scattering event and will call the interaction coherent.
So far the formalism has been very general, but for the cesium atom we are dealing with, we
know from section 3.1 that we just have to consider the two ground states that have F = 3
or F = 4. In App.C.1 we have for these choices of F and F̃ , calculated the coefficients:

CF,F̃
q,q′ (∆,m) = (−1)F+F̃

∑

F ′

fF,F̃ ,F ′

(2J ′ + 1)∆F,F ′

cF
′,m+q

F̃ ,m+q−q′
cF

′,m+q
F,m , (3.31)

such that (3.28) can be written as:

αF,F̃
q,q′ = −D2

0

∑

m

CF,F̃
q,q′ (m)σF̃ ,m+q−q′;F,m. (3.32)
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Choosing a specific F ′ as reference, we will take the detuning for this transition to F ′

outside, and write the polarizability as:

αF,F̃
q,q′ = −D

2
0

∆

∑

m

CF,F̃
q,q′ (m)σF̃ ,m+q−q′;F,m. (3.33)

As is shown in App.C.1 all these coefficients CF,F̃
q,q′ (m) can be expressed through some simple

expressions involving m and 3 numbers a0, a1 and a2 for F = F̃ . For F 6= F̃ we find that
besides the m-depedence the coefficients only need two numbers b1 and b2. For F = F̃ = 3
we get (with ∆ being the detuning from the transition to F ′ = 2) the coefficients together
with their limit of |∆| → ∞:

a0 =
1

672
(24 +

63

1 + ∆23
∆

+
25

1 + ∆24
∆

)→1

6
, (3.34)

a1 =
1

2688
(−80 − 21

1 + ∆23
∆

+
45

1 + ∆24
∆

)→− 1

48
, (3.35)

a2 =
1

2688
(16 − 21

1 + ∆23
∆

+
5

1 + ∆24
∆

)→0. (3.36)

And for F = F̃ = 4 we find:

a0 =
1

96
(8 +

7

1 − ∆45
∆

+
1

1 − ∆35
∆

)→1

6
, (3.37)

a1 =
1

5760
(176 − 21

1 − ∆45
∆

− 35

1 − ∆35
∆

)→ 1

48
, (3.38)

a2 =
1

5760
(16 − 21

1 − ∆45
∆

+
5

1 − ∆35
∆

)→0. (3.39)

We see that that the sign of the a1 coefficient for ∆ → ∞ is opposite for F = 3 and
F = 4 and they both have a2 → 0. Now we can construct the coherent Hamiltonian for

F = F̃ = 3, 4 by evaluting the coefficients CF,F̃
q,q′ (m) in terms of a-coefficients as in App.C.1

and applying the sum rules from App.B.1 (a more detailed derivation is found in App.D.4):

Hcoh = −D
2
0

∆

∑

m

((a0 + a1m+ a2m
2)E

(−)
+ E

(+)
+ + (a0 − a1m+ a2m

2)E
(−)
− E

(+)
−

+ (a0 + F (F + 1)a2 − 2a2m
2)E

(−)
0 E

(+)
0 )σm,m

+

√

(F +m)(F + 1 −m)

2
(a2 − a1 − 2a2m)(E

(−)
+ E

(+)
0 σm−1,m + h.c.)

+

√

(F −m)(F + 1 +m)

2
((a2 − a1 + 2a2m)(E

(−)
− E

(+)
0 σm+1,m + h.c.))

+ a2

√

(F +m)(F + 1 +m)(F −m)(F + 1 −m)(E
(−)
+ E

(+)
− σm−1,m+1 + h.c.)

= −D
2
0

∆
((a0 +

1

3
a2j

2)E(−)E(+) + ia1E
(−)·j×E(+)

− 2a2

∑

i,j

E
(−)
i (

jijj + jjji
2

− δij
j2

3
)E

(+)
j )

= H
(0)
FF +H

(1)
FF +H

(2)
FF (3.40)
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From the expressions above we see that the Hamiltonian contains parts that changes the
atomic angular momentum (m), by 0,1 and 2 and this change is counterbalanced by a
polarization change of the light, such that the total angular momentum along z is conserved.
We need need three parameters a0,a1 and a2 for this interaction, which reflects that the
Hamiltonian is a sum of tensors of rank 0,1 and 2. Essentially what this Hamiltonian
describes is the Stark shift experienced by the atoms due to the presence of the light field.
For the case with F 6= F̃ we find that to set up the Hamiltonian we need the two b
coefficients:

b1 =
1

384
(

3

1 − ∆35
∆

+
5

1 − ∆45
∆

)→ 1

48
(3.41)

b2 =
1

384
(

−1

1 − ∆35
∆

+
1

1 − ∆45
∆

)→0 (3.42)

But this time we cannot make use of the sum rules to reach expressions involving angular
momentum, because σ connects different F . Therefor we simply state the Hamiltonian:

H34 = −D
2
0

∆

∑

m

√

(4 +m)(4 −m){b1(E(−)
+ E

(+)
+ − E

(−)
− E

(+)
− )

+ b2m(E(−)·E(+) − 3E
(−)
0 E

(+)
0 )}(σ3,m;4,m + σ4,m;3,m)

+

√

(4 +m)(5 +m)

2
{b1[(E(−)

+ E
(+)
0 + E

(−)
0 E

(+)
− )σ3,m;4,m+1 + h.c.]

+ (2m− 3)b2[(E
(−)
+ E

(+)
0 − E

(−)
0 E

(+)
− )σ3,m;4,m+1 + h.c.]}

−
√

(4 −m)(5 −m)

2
{b1[(E(−)

− E
(+)
0 + E

(−)
0 E

(+)
+ )σ3,m;4,m−1 + h.c.]

+ (2m+ 3)b2[(E
(−)
0 E

(+)
+ − E

(−)
− E

(+)
0 )σ3,m;4,m−1 + h.c.]}

+ b2{
√

(3 −m)(4 −m)(5 −m)(4 +m)(E
(−)
− E

(+)
+ σ3,m+1;4,m−1 + h.c.)

−
√

(3 +m)(4 +m)(5 +m)(4 −m)(E
(−)
+ E

(+)
− σ3,m−1;4,m+1 + h.c.)}

= H
(1)
34 +H

(2)
34 (3.43)

For the case where we go from 3 to 4 or vice versa we only needed two parameters, b1
and b2, to describe the interaction. The reason is that we for all processes have a change
in the spin state and therefor have no scatic part - a tensor of rank 0 and therefor no
b0 term. Physically the Hamiltonian describes inelastic scattering which gives so-called
Raman transitions.
We have plotted the found a and b coefficients and we see that even though they are all
different per se, a1 and b1 have the same limit value as well as a2 and b2.
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Figure 3.4: a0, a1, a2, b1 and b2(black dots) as a function of −∆.

So far we have gone into the rotating frame of laser field with carrier frequency ω0, but
from section 3.2 we remember that we also have a ground level shift Hamiltonian H0 (3.14),
where we have taken the F = 4 as the zero point energy. We will go into the interaction
picture with respect to H0, with the effect that for σ3,4 and σ4,3 the operators will os-
cillate much faster since they gain respectively ±i∆34t in the phase, where we recall that
∆ ∼GHz. On the other hand the σ3,3 and σ4,4 remain uchanged under this transformation.
Because of this, we will neglect the contributions of H34 to the coherent part (for both light
and atoms), since the involved frequencies are much higher. But we will keep the σ3,4,σ4,3

terms in the noise since it will be assumed to be white anyway.

In this section we have found the effective Hamiltonian that descibes the dipole interaction
between atoms and strongly off-resonant light. We have included the full level structure
of cesium and found that the Hamiltonian consists of two parts. An elastic part that pre-
serves the spin state and describes the Stark shift caused on the atoms by the light and to
describe this coherent Hamiltonian we needed the 3 coefficients a0, a1, and a2. The second
part was inelastic and desribed Raman scattering and to express this part we needed the
two coefficients b1 and b2. The involved transitions in the two parts have a big frequency
difference allowing us to focus on one of them. For our purpose it is the elastic part and
this coherent Hamiltonian will form the basis for the dynamics we investigate. This section
has been a bit mathematical, so in the next chapter we comment on the physical meaning
of the interaction Hamitonian.



Chapter 4

Coherent interaction

In this chapter we will look at the coherent part of the interaction which is the most
interesting. In this case we only consider the light field in the z-direction and our atoms
are point like particles from the which the light scatters. Also we will just consider one
atom separately and in chapter 5 explain how we adopt the simplest possible model, where
we say the dynamics of the sample is the sum of single atom dynamics.
Now let us examine the polarizability Hamiltonian we derived in last section and to make
clear that we only look at forward modes of field we put an F on the electric field:

Hcoh = −
∑

F,F ′

E
(−)
F ·PF dPF ′dPF

∆FF ′

·E(+)
F =

∑

i

H
(i)
coh. (4.1)

As we saw above we can also express the Hamiltonian in terms of a polarizability α, that
is a sum of spherical tensors of rank 0,1 and 2:

H(i) = E
(−)
F α(i)E

(+)
F , (4.2)

α = α(0)⊕α(1)⊕α(2). (4.3)

We will analyze the 3 three Hamiltonian parts from (3.40), where we just look at a single F
state. Instead of electric fields we will express the Hamiltonian in terms of Stokes vectors.

We take the single photon strength |E| =
√

ω0
2ǫ0A out of the expression and combine it with

the dipole element D0 to a single photon Rabi frequency Ω = D0|E|.

4.1 Scalar Hamiltonian

The first term in (3.40) is the scalar Hamiltonian:

H(0) = −Ω2

∆
(a0 +

a2

3
j2)φ. (4.4)

It is seen that regardless of the internal (magnetic) state the atoms experience a constant
shift caused by the light field and proportional to the flux - a constant Stark shift. Similarly
because of the atoms, the light sees a change in the index of refraction and the polarization
modes of light experience an identical shift. This corresponds to a phase shift and the
pulse shape is not changed by this interaction. Since it does not reveal information on the
internal atomic state, measuring the pulse will not reveal any information and the state of
the atoms is preserved.
This Hamiltonian will not be important for us, since it is ”just a constant” and does not

16
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influence the dynamics. However if we were looking at an optical lattice, this term would be
very relevant describing a spatially varying (attractive) potential. Also it would be relevant
if we had the task of distiguishing between the F = 3, F = 4 states, since measuring the
outgoing pulses using homodyning we could check the total spin of the atoms.

4.2 Vector Hamiltonian

The second term in (3.40) is the most interaction part of the interaction namely the vector
Hamiltonian (the factor 2 in front comes from the definition of the Stokes operators, also
see App.A.2):

H(1) = −Ω2

∆
2a1Szjz. (4.5)

It is this Hamiltonian that in terms of quadratures becomes κPAPL - the Faraday interac-
tion we discussed in chapter 2. The effect of it on light is that it causes a phase shift on
the circular polarization modes. This shift gives a rotation of the Stokes vector about the
z axis by an amount that is proportional to the z-component of the atomic spin. So it is
a circular birefringence effect and we will analyze it more quantatively in section 6.1. For
the atoms we have that the atomic spin also gets rotated about the z axis by an amount
proportional to the difference in the circular polarizations. This rotation will be adressed
more mathematically in section 7.1.
So the vector Hamiltonian gives us the so-called Faraday rotation.

4.3 Tensor Hamiltonian

Finally we have the complicated tensor Hamiltonian:

H(2) = 2a2
Ω2

∆
(Sx(j2x − j2y ) + Sy{jx, jy} + φ(3j2z − j2)/3). (4.6)

This Hamiltonian couples atomic spin to light operators in a complicated way. If one was
looking at a system with j = 1

2 we know the spin to be described by Pauli matrices σi,
with ji = 1

2σi. They obey the relation 1
2{σi, σj} = δij and therefore the elements of the

rank 2 polarizability: j2x − j2y , {jx, jy}, 3j2z − j(j + 1), all vanish. Conversely for any spin

higher than 1
2 , the rank 2 tensor never vanishes exactly. However we have seen that for

increasing detuning a2 goes to zero, so it is a good approximation to neglect this term.
The physical intepretation of this Hamiltonian is that it is a dynamic Stark shift, caused
by the presence of the laser field. In out work we will only consider the electric fields,
but in actual experiments they also use magnetic magnetic fields and the shift induced by
this term adds to the Zeeman shifts from the magnetic field. The shift depends on the
polarization angle and assuming the light to be polarized linearly with an angle θ relative
to the mean atomic spin (being in the xy-plane), it is possible to write (4.6) as [15]:

H(2) ∝ φ

∆
(j2z − (j2x − j2y) cos(2θ) − {jx, jy} sin(2θ)). (4.7)

From this expression it can be shown that the atoms experience an energy shift which goes
as φ

∆(1 + 3 cos(2θ)). The shifts have been measured by magneto-optical resonance signals
and the results in [15] confirm the form of shift above.



18 CHAPTER 4. COHERENT INTERACTION

It also interesting to compare the full Hamiltonian1 to the ideal QND Hamiltonian, which
was of the form: H = κPAPL. When we inlcude the a2 terms, we also get a XAXL

term in the Hamiltonian. This gives an unwanted evolution of the quadrature momenta:
ṖA ∝ XL, ṖL ∝ XA. (Actually the a2 term do even more damage, because they will also
produce some constant (but big) drifts on our quadratures.) This is a problem - our inter-
action is no longer QND, the angular momenta are not preserved and now the protocols
from chapter 2 no longer work. So far the way of proceding has been to say that since for
big detunings the a2 goes to zero - this term can neglected. This is a good approximation
and we will also make it when we reach the protocols.

In this chapter we have discussed the different components of the interaction Hamiltonian.
In the next chapter we will take into account that our atomic system is not completely iso-
lated - it interacts with the environment - a thermal reservoir and it produces decoherence.
But we will still think of the coherent interaction to be dominating and the interaction
with the environment as a small perturbation that adds some noise, but leaves the form of
the dynamics intact.

1A mathematical curiosity is that if we had defined the atomic operators along the lines of the Stokes
operators for light -(that is by replacing ai, a

†
i with ji in the definitions) and denoted them by j̃x, j̃y , j̃z, then

the full Hamiltonian (apart from a constant term) could be written in a very symmetric form: Hint ∝ j̃CS,
where C is a diagonal matrix.



Chapter 5

General EOM

In this section we will find the general evolution of operators (for both atoms and light)
and then we will perform some noise analysis that will be important for later discussions.
Many of the results in this section are more general than we will need for our treatment of
the system and shows that this theory can be extended to other similar systems operating
at similar conditions.

5.1 Single atom EOM

First we find the Hamiltonian for a single atom j and then we will say how to extend the
results for an ensemble. We will supress the position dependence in the following since all
interactions are considered to be point like, so it is understood that the Hamiltonian for
atom j should be evaluated at position rj . Since we will not carry the position dependence

with us for light through e±ik·rj , we will occasionally put a j on the operators bj ,b
†
j to

remind that these should be evaluated at the atomic positions. After the derivation of the
EOM we will analyze what conditions must hold for the model to be valid. In the next
section we will give a more detailed discussion of the position dependence.

Earlier we found the Hamiltonian for a single atom. We will write the electric field as
a sum of a forward field, EF,(which represents the coherent field created by our laser) and
an incoherent field, ES,(which represents the environment - the reservoir field). These two
kinds of modes of the electric field: forward and ”non-forward” we will view as separated
and as we already know, it is the forward modes that have the most important role. We
will approximate the Hamiltonian by:

Hj = E(−)αjE
(+) (5.1)

≃ E
(−)
F αjE

(+)
F + E

(−)
S αjE

(+)
F + E

(−)
F αjE

(+)
S = Hj

coh + Vj . (5.2)

In this approximation we have neglected the much weaker part of the interaction that has
reservoir as both input and output. Similarly the process where we have vacuum input
and coherent output will be heavily supressed as compared to the conjugate proces. For
now we will have both to have a Hermitian Hamiltonian, but the weakness of the former
as compared to the latter will enter through the expectation values in the end. Also we
remember that we assume that Hcoh dominates the dynamics, while Vj is a perturbation.

It will be nice to have α dimensionless, so we pull out the factor
D2

0
∆ :

Hcoh = E
(−)
F αE

(+)
F ≡ D2

0

∆
E

(−)
F αE

(+)
F . (5.3)
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Now we form the EOM by absorbing E
(+)
F into α by αE

(+)
F = |E|α̃ (meaning that α̃ now

is a polarization vector and not the polarizability matrix). The reason we choose to do so,
is that we want the commutators [α̃, A], [α̃†, A] to describe the evolution of both light and
atoms. Continuing we can write:

Vj =
|E|D2

0

∆

∑

kσ

√

ωk

2ǫ0V
ǫkσ(b†kσα̃j + α̃†

jbkσ). (5.4)

As in last chapter we will introduce the single photon Rabi frequency Ω = D0|E|. We will
model the enviroment by a thermal reservoir1 in equilibrium, with the standard Hamilto-
nian:

HR =
∑

kσ

ωkb
†
kσbkσ, (5.5)

where b†kσbkσ gives the number of reservoir excitations in the mode |kσ〉 with frequency
ωk. Usually we will assume that the population for ωk = ω0 is negligible, which we also
justify later. Before studying the evolution of the operators we really are interested in, it
will prove helpful to know the dynamics of these b operators:

∂

∂t
bkσ(t) = i[HR + Vj , bkσ] = −iωkbkσ(t) − i

Ω

∆
D0

√

ωk

2ǫ0V
ǫkσα̃j(t), (5.6)

∂

∂t
b†kσ(t) = i[HR + Vj , b

†
kσ] = iωkb

†
kσ(t) + i

Ω

∆
D0

√

ωk

2ǫ0V
ǫkσα̃

†
j(t). (5.7)

These equations have the formal solution:

bkσ(t) = bkσ(0)e−iωkt − i
Ω

∆
D0

√

ωk

2ǫ0V
ǫkσ

∫ t

0
dt′α̃j(t

′)e−iωk(t−t′), (5.8)

b†kσ(t) = b†kσ(0)eiωkt + i
Ω

∆
D0

√

ωk

2ǫ0V
ǫkσ

∫ t

0
dt′α̃†

j(t
′)eiωk(t−t′). (5.9)

The first part is the homogeneous solution and describes the free field evolution. The
second part includes the interaction with our quantum system through α̃, which shows
that the electromagnetic field (described by the b operators) originates from the atomic
polarization α̃. Now we insert the found expression for the reservoir operators into Vj :

d

dt
A(t) = i[Hj , A] = i[Hj

coh, A] + i[Vj , A]

= i[Hj
coh, A] + i

Ω

∆
D0

∑

kσ

√

ωk

2ǫ0V
ǫkσ(b†kσ(t)[α̃j , A](t) + [α̃†

j , A](t)bkσ(t))

= i[Hj
coh, A] + i

Ω

∆
D0

∑

kσ

√

ωk

2ǫ0V
ǫkσ(b†kσ(0)eiωkt[α̃j , A](t) + [α̃†

j , A](t)bkσ(0)e−iωkt)

− (
Ω

∆
)2D2

0

∑

kσ

ωk

2ǫ0V
ǫ
2
kσ

∫ t

0
dt′α̃†

j(t
′)eiωk(t−t′)[α̃j , A](t) − [α̃†

j , A](t)α̃j(t
′)e−iωk(t−t′).

(5.10)

1This is also often referred to as a heat bath in litterature.
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Using that the forward electric field has a carrier frequency ω0, we may introduce the slowly
varying operator α̃j 7→ α̃je

iω0t so our equation becomes:

d

dt
A(t) = i[Hcoh, A]

+ i
Ω

∆
D0

∑

kσ

√

ωk

2ǫ0V
ǫkσ(b†kσ(0)ei(ωk−ω0)t[α̃j , A](t) + [α̃†

j , A](t)bkσ(0)e−i(ωk−ω0)t)

− (
Ω

∆
)2D2

0

∑

kσ

ωk

2ǫ0V
ǫ
2
kσ

∫ t

0
dt′{α̃†

j(t
′)ei(ωk−ω0)(t−t′)[α̃j , A](t)

− [α̃†
j , A](t)α̃j(t

′)e−i(ωk−ω0)(t−t′)}. (5.11)

Introducing the unnormalized Langevin noise operator:

fj(t) = D0

∑

kσ

√

ωk

2ǫ0V
ǫkσb

j
kσ(0)e−i(ωk−ω0)t, (5.12)

and making the Markov approximation by assuming that α̃j(t) varies little over the inverse
reservoir bandwidth, such that we can take it out of the integral in (5.11), we end up with:

d

dt
A = i[Hcoh, A] + i

Ω

∆
(f †j [α̃j , A] + [α̃†

j , A]fj) − (
Ω

∆
)2[g(+)α̃†

j [α̃j , A] − g(−)[α̃†
j , A]α̃j ].

(5.13)

We have arrived at a stochastic differential equation, which is called a quantum Langevin
equation, because of the similarity with the classical Langevin equation. It has a randomly
fluctuating noise term that because of the sum over all reservoir frequencies oscillates
quickly over time scales corresponding to the inverse reservoir bandwidth. The last term
is the loss, describing the radiation the fluctuations induce ∼ spontaneous emission. In
deriving it we have assumed that the coupling to the reservoir is weak as compared to
the reservoir bandwitdth, such that α̃ was a slowly varying operator in time and we could
make the Markov approximation.
It is also worth to mention a few words on ordering. When pursuing this approach one
ought be careful with ordering. If A is a light varible we have generally the commutator
with the vacuum modes is [A(t), b(t′)] 6= 0, unless t = t′. We have chosen to use normal
ordering, however this is not crucial, it just important to be consistent, once the ordering
chosen, it should not be changed, also see [20].
Let us now examine the coefficients g(±) above, where we will make use of the identity
∑

kσ → V
(2π)3

∫

d3k = V
(2π)3

∫∞
0 dωkω

2
k

∫

dΩ. Formally they were defined as:

g(±) = D2
0

∑

kσ

ωk

2ǫ0V
ǫ
2
kσ

∫ t

0
dt′e±i(ωk−ω0)(t−t′)

= D2
0

1

2ǫ0V
(
∑

σ

∫

dΩǫ
2
kσ)(

V

(2π)3

∫ t

0
dt′
∫ ∞

0
dωkω

3
ke

±i(ωk−ω0)(t−t′)). (5.14)

Now we change the variable t→ t− t′ and extend the integration limit to infinity (of course
the interaction time is finite, but again because the functions are so sharply peaked it is a
good approximation), which is consistent with the Markov approximation. If we for now
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ignore the imaginary part ∼ the Lamb shift, then we find:

g(±) = D2
0

1

2ǫ0V
(
∑

σ

∫

dΩǫ
2
kσ)(

V

(2π)3

∫ ∞

0
dt′
∫ ∞

0
dωkω

3
ke

±i(ωk−ω0)t′)

= D2
0

1

2ǫ0V

8π

3

V

(2π)3

∫ ∞

0
dωkω

3
kπδ(ωk − ω0) = D2

0

1

2ǫ0
π

8π

3

1

(2π)3
ω3

0

= D2
0

ω3
0

6πǫ0
= 2γ. (5.15)

Here we have defined the population decay rate γ = D2
0

ω3
0

12πǫ0
, also known as the Wigner-

Weisskopf decay rate2. Strictly speaking we should not sum over the forward modes, but
since this is a few modes out of an infinity, it is an excellent approximation. In fact it can
be shown that the corrections are of second order in the opening angle as is noted in [9],
(the opening angle being the angular spreading of the coherently emitted forward modes,
which we most of the time think as being zero). So since we now have g(+) = g(−) = 2γ,
we may write (5.13) as:

d

dt
A = i[Hj

coh +
Ω

∆
(f †j α̃j + α̃†

jfj), A] − (
Ω

∆
)22γ(α̃†

j [α̃j , A] − [α̃†
j , A]α̃j)

= i[Hj
coh +

Ω

∆
(f †j α̃j + α̃†

jfj), A] − (
Ω

∆
)22γ(α̃†

jα̃jA+Aα̃†
jα̃− 2α̃†

jAα̃j)

= i[Hj
coh +

Ω

∆
(f †j α̃j + α̃†

jf)j , A] + (
2Ω

∆
)2Lj(A). (5.16)

Here we have introduced the Lindblad form:

Lj(A) =
γ

2
(2α̃†

jAα̃j − α̃†
jα̃jA−Aα̃†

jα̃j), (5.17)

and this form of decay is common to all systems under Markovian conditions. Actually the
more general Lindblad form includes the possibility of multichannel decay with distinct
rates γi, so Lj(A) =

∑

i
γi

2 (2α̃†
jAα̃j − α̃†

jα̃jA−Aα̃†
j α̃j). In our case we only have one decay

channel due to the coupling to an empty radiation reservoir.
The terms −α̃†

jα̃jA,−Aα̃†
jα̃j describe the loss experienced due to decay, while +2α̃†

jAα̃j

puts probability back into system - i.e. even though our atoms might decay to another state,
they are still there! It can also be seen that without the noise term we would have that for
instance the commutator [a, a†] for light would decay exponentially. So the preservation of
the commutator demands the inclusion of noise, as we also motivate in App.D.5.
It is instructive to note that we could write (5.16) in another way:

d

dt
A = i([Hj

coh +
Ω

∆
(α̃†

jfj + f
†
j α̃j), A] + i(

Ω

∆
)22γ(α†

j α̃jA+Aα̃†
jα̃j)) + (

2Ω

∆
)2γα̃†

jAα̃j

= i(Hj
effA−AHj

eff
†) + (

2Ω

∆
)2L j

jump(A). (5.18)

Here we have defined the effective Hamiltonian by:

Hj
eff = Hj

coh +
Ω

∆
α̃jfj + i(

2Ω

∆
)2
γ

2
α̃†

jα̃j, (5.19)

2In fact our derivation has been virtually identical to Weisskopf-Wigner analysis, only we have worked
in the Heisenberg picture.
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and the jump operator

L
j
jump(A) = γα̃jAα̃

†
j. (5.20)

We could have taken the above as a definition of the EOM for observables of this system.
The first part of the EOM in (5.19) is continuos and deterministic, albeit not unitary,
whilst the second performs ”jumps” or projections in a discontinuous way and we see that
for increasing detuning we have fewer jumps. This approach is similar to what is used for
so-called quantum Monte Carlo simulations and possibly it could have applications, even
though we well not dwell more upon it.
In our treatment we only look at population decay, we neglect the added phase decoherence
which has it’s own decay rate γphase. We could include it by adding a phase relaxation
Lphase to the EOM. The decoherence could come from thermal collisions or fluctuations
in the laser field and it will also increase the total noise in the system. This is a very
complicated issue and we assume none of these effects to be present i our system - or at
least heavily supressed by the effects we investigate. What makes it more difficult is that
there is no simple expression for the phase operator, so it is a formidable task to include
the decoherence in the Heisenberg picture, but as an example of how to do it, one can look
in [4].
If we were dealing with a non-empty reservoir we would have to modify the decay in (5.16).
We simply state the form without further proof, but it can be motivated by the master
equation approach as in [17] or the noise correlations we will see later. If we let n̄ be the
average number of photons given by Planck’s law:

n̄(ω0) =
1

eω0/kbT − 1
, (5.21)

then the modified decay reads:

d

dt
A = (

2Ω

∆
)2([1 + n̄]Lj(A) + n̄L̄j(A)), (5.22)

with the ”conjugate Lindblad form”:

L̄j(A) =
γ

2
(2α̃jAα̃

†
j − α̃jα̃

†
jA−Aα̃jα̃

†
j). (5.23)

To understand what the difference from the simple decay is, let us consider the decay of
the photon flux expectation value:

d

dt
〈a†a〉 = −Γ〈a†a〉. (5.24)

(5.24) is however only true for an empty reservoir where some of the forward modes would
decay to the reservoir giving the damping by ∝ e−Γt. But generally the reverse proces is
also possible if there is a significant population of the relevant frequency in the reservoir
(in our case ω0) , so the decay would be modified to:

d

dt
〈a†a〉 = −Γ〈a†a〉 + Γn̄. (5.25)

We can write it in the same form as (5.22):

d

dt
〈a†a〉 = −Γ〈a†a〉(n̄+ 1) + Γn̄(〈a†a〉 + 1). (5.26)
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The first term gives the attenuation of the pulse, while the second shows the enhancement
of it. The +1 terms describe spontaneous emission and the other terms gives the stimu-
lated emission. Generally we can say that the form (5.22) gives the balance between the
system and reservoir, including both loss and growth. But a full and consistent treatment
including a non-empty reservoir is beyond the scope of this work and we will usually not
include it in the coming analysis.

After having discussed the decay, let us now say a few words on the noise too. In (5.16)
we saw that the noisy part of the EOM contained the noise operators for atom j:

fj(t) = D0

∑

kσ

√

ωk

2ǫ0V
ǫkσb

j
kσ(0)e−i(ωk−ω0)t. (5.27)

Assuming that each atom couples to it’s own reservoir (we will also discuss it in the next
section) and that we possibly have some non-zero populations n̄(ω0), it has the correlations
for each component fµ = f ·µ:

〈fi,µ(t)f †j,ν(t
′)〉 = 4γδijδµνδ(t− t′)(1 + n̄(ω0)), (5.28)

〈f †i,µ(t)fj,ν(t
′)〉 = 4γδijδµνδ(t− t′)n̄(ω0). (5.29)

From these relations it is natural to normalize the f operators, so they now are:

fj(t) =
D0

2
√
γ

∑

kσ

√

ωk

2ǫ0V
ǫkσb

j
kσ(0)e−i(ωk−ω0)t. (5.30)

And with these we can express the decay rate as:

γ =
1

n̄

∫ ∞

−∞
dt′〈f †i,µ(t)fi,µ(t′)〉 =

1

1 + n̄

∫ ∞

−∞
dt′〈fi,µ(t)f †i,µ(t′)〉, (5.31)

which shows that the decay of our system originates from the reservoir fluctations, as stated
in the fluctuation-dissipation theorem.3 If we go back, we find that the noise operators
joined the analysis through the incoherent part of the electric field:

ES =
∑

kσ

ǫkσ

√

ωk

2ǫ0V
(bkσe

−iωkt + b†kσe
iωkt). (5.32)

We also remember to have assumed the reservoir to be in thermal equlibrium, which means
that the noise is stationary - the reservoir correlations can only depend on the time differ-
ence. When dealing with random stationary processes, (as the interaction of our system
with the reservoir) the Wiener-Khinchin theorem [19] states that the power spectrum is

3This is discussed more together with the regression theorem in App.D.7.
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given by the Fourier transform of the autocorrelation function for the radiated field4:

S(ω) =

∫ ∞

0
eiωt′〈ES(t)ES(t− t′)〉dt′

=
1

4πǫ0

2

3

1

π

∫ ∞

0
dωkω

3
k

∫ ∞

0
([1 + n̄(ωk)]e

−i(ωk−ω)t′ + n̄(ωk)e
(iωk+ω)t′)dt′

=
1

4πǫ0

2

3

∫ ∞

0
dωkω

3
k([1 + n̄(ωk)]δ(ωk − ω) + n̄(ωk)δ(ωk + ω))

+
1

4πǫ0

2

3

1

π
P

∫ ∞

0
dωkω

3
k(

[1 + n̄(ωk)]

ω − ωk
+

n̄(ωk)

ω + ωk
)

=
1

4πǫ0

2

3
ω3(1 + n̄(ω)) + is =

2γ(ω)

D2
0

(1 + n̄(ω)) + is. (5.33)

As usual the real part of the power spectrum gives us the decay and here the decay rate
is γ(ω) = ω3

12πǫ0
D2

0. The imaginary part modifies the transition frequencies of the system
due to a shift of the levels - in our case s is the Lamb shift, which can be incorporated
into the transition frequency ω0 → ω0 + s. Experimentally this is already this shifted
frequency that the lasers are being locked on, so it is assumed that s is already included in
our ω0. Since we neglect the thermal motion of atoms due to conservation of energy both
the coherently- and incoherently emitted photons have the same energy ω0 only the latter
have an arbitrary phase and are isotropically distributed in space. So our interest lies in
the case where ω = ω0 ∼ therefor S(ω) ≃ S(ω0) ∼ our noise is white.

What we have analyzed here encompasses the most important features of the coupling
of a small system with few degrees of freedom [DOF] to a large system with many DOF,
which is also known as the quantum theory of dissipation. Now let us try to look at what
assumptions must be met for our model to be justified. We have seen that the small system
decays exponentially at a constant rate γ and the first natural requirement is that γ ≪ ω0.
This is fulfilled for the transitions we study, because there γ ∼ MHz, while ω0 ∼ THz. The
second assumtion we make is that the Markov approximation is valid. It enters when we
take α(t′) out of the integral over t′ ∈ [0, t], thereby assuming implicitly that the coupling
to the reservoir is a smoothly and slowly varying function in the range of the resonance
frequency ω0. This is certainly the case for our function ω3

ke
i(ωk−ω0)t. But it should also

be the case for the population n̄(ωk). The physical meaning of it is that the reservoir does
not have any resonances near ω0 and therefor in the time domain the reservoir immedi-
ately loses memory of which frequency was involved in the transition. This is the essence
of the Markov approximation. Had we a situation where the requirements were not met,
the non-Markovian evolution would be radically different from the exponential decay we
found. Another point worth noting is that in terms of perturbation theory we have only
included the first non vanishing element, which in our case is of first order. This is the
Born approximation. Going to higher order the corrections would be the processes with
emission of 3 or higher odd number of photons5.
A closer look at the shift s in (5.33) reveals that formally the integral diverges (loga-
rithmically), since we should integrate over all frequencies.This is a very well known di-
vergence called the ultraviolet divergence and it stemns from the incompleteness of the

4We make use of the property
R∞

0
dteiωt = πδ(ω) + iP 1

ω
, where P denotes the principal part, also

known as the Cauchy principal value.
5The exclusion of even number of photons come from conservation of parity. Since photons have odd

intrinsic parity and initially one photon is absorbed by the atom, consequently odd number of photons
have to be emitted.
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non-relativistic model. This singularity was later removed by the celebrated renormaliza-
tion theory developed by Feynman and others [6].
Our description of the noise has been very general. Even though we in our case have that
the bk represented the reservoir mode photons, one could use the same treatment for other
bosonic noise sources. For instance one could have situation where the bk instead were
phonons in a solid. We have seen if the reservoir is non-empty, the decay was enhanced
by the replacement γ → (1 + n)γ, where n is the mean reservoir occupation. And to
be consistent we ought to include the possibility of reservoir induced stimulated emission.
However if the reservoir is ”cold” enough one could neglect the contributions. For room
temperature the thermal energy is about:

Et ≃ kBT = 2 · 1010 Hz/K · 300 K = 6 THz, (5.34)

which is roughly a factor 60 smaller than the transition frequency ω0 ≈ 350 THz, meaning
that according to the Boltzman distribution the probability having a vacuum photon at
the right frequency is less than 10−25. Therefore it is certainly a good approximation to
exclude the possibility of excitations from the reservoir as we will do from now on.

The central result of this section is that under some realistic assumptions we have con-
structed the EOM for our light- and atomic variables that were governed by (5.16) and
consisted of a dominating coherent part, a noise part and a spontaneous emission part.

5.2 The ensemble

In the last section we studied the dynamics for a single atom. Our system consists of many
atoms (1012) located inside a glass cell of length L (∼cm) and now we want to see how
we can generalize the found EOM to be applicable for this situation. Once we have many
atoms we obviously have system with spatial extent - that is a 3 dimensional problem. To
boil it down to the 1 dimensional model that we want to study we refer to [24]. Along
the lines of [23] they present the general reduction from 3- to 1 dimension and identify
the parameters that make this approximation work. We will just mention that one key
parameter is the Fresnel number, which is desired to be big enough for the model to be
valid. That is we have that F = A/λL ≫ 1 and we will assume that this is the case in
the thesis. That it is big enough means that for our purpose the beam is just a plane wave
and we can neglect changes in the light profile.
We will introduce continuos operators through a density of atoms n(r):

n(r) =
∑

j

δ(r − rj). (5.35)

This density will evaluate the different operators at the right positions - the positions where
the atoms are located (rj) and where the interaction takes place. We may continue and
define continous spin operators:

jk(r) =
∑

j

δ(r − rj)jk,j , k = x, y, z. (5.36)
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For these continuos j-operators the commutator relation becomes:

[jm(r), jn(r′)] =
∑

jj′

δ(r − rj)δ(r
′ − rj′)[j

j
m, j

j′

n ]

= i
∑

jj′

∑

k

ǫmnkδ(r − rj)δ(r
′ − rj′)j

j
kδjj′

= i
∑

k

ǫmnkjk(r)δ(r − r′). (5.37)

We generalize this continuos extension for the polarizability too and we write:

α(r) =
∑

j

δ(r − rj)αj . (5.38)

As with the spin in (5.37) we get for an atomic operator A:

[α(r), A(r′)] = [α,A](r)δ(r − r′). (5.39)

To continue we will assumme that the averaged density is constant along the sample:

n(z) =
1

A

∫

d2r⊥n(r) = ρ. (5.40)

This is a reasonable assumption, but for a more general treatment one can consult [10]
where they keep n(z). We define the atomic operators as function of z only, by integrating
out the perpendicular part:

A(z) =
1

ρA

∫

d2r⊥A(r). (5.41)

For our purpose we will need the spin j(z) and the polarizability α(z):

j(z) =
1

ρA

∫

d2r⊥j(r), (5.42)

α(z) =
1

ρA

∫

d2r⊥α(r). (5.43)

When we take the commutator we get:

[α(r), A(z)] =
δ(z − z′)
ρA

[α,A](r). (5.44)

And therefor:

[α(z), A(z′)] =
δ(z − z′)
ρA

[α,A](z). (5.45)

In last chapter we treated light and atoms simultaneously, this becomes troublesome when
we are looking at the spatial description of the operators. The reason is that while we for

the atomic operators - e.g. spin have that [ji(z), jj(z
′)] = i δ(z−z′)

ρA ǫijkjk(z), we at the same

time have for light that [Si(z), Sj(z
′)] = iδ(z − z′)ǫijkS(z). Now let us first see how the

difference shows up in the coherent interaction. To get the Hamiltonian for the ensemble
we should sum over all the atoms, but instead with the continuos notation above we turn
the Hamiltonian continuos one:

Hint =

∫

d3rE(−)(r)α(r)E(+)(r). (5.46)
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The coherent part of the interaction is simple and becomes according to (5.43):

Hcoh =

∫

d3rE
(−)
F (z)α(r)E

(+)
F (z) =

∫

dzE
(−)
F (z)α(z)E

(+)
F (z)ρA. (5.47)

Therefor the only difference from the previous section is that our α is averaged over the
transverse dimensions. So for an atomic operator A(z) we get the EOM:

∂

∂t
A(z, t) = i

∫

dz′E(−)
F (z′)[α(z′), A(z)]E

(+)
F (z′)ρA = iE

(−)
F (z)[α,A](z)E

(+)
F (z). (5.48)

Remembering that the electric fields have an 1√
A

we see that the atomic part of the inter-

action will go as 1
A . This is sensible because we know that the light intensity goes as 1

A , so
for a given power, the more focused the light is, (meaning A is smaller) the stronger the
interaction should be. If we are dealing with light, say an annilation a(z) operator, then
making the EOM we simply get rid of the integral over z. Now the profile areas cancel out
and we have that the interaction is proportional to the atomic density ρ. The is also nat-
ural, if there were no atoms in the cell, the light would just pass through unaffected, while
as we increase the concentration of the atoms it means that light sees a higher refractive
index.
Now we will look at the more complicated interaction term V , but omit the details that are
found in last section. We will also assume that the operator A is atomic - the derivation
for light is very parallel, only one would not have to worry so much about the constants
ρA. For the rest terms in the Hamiltonian we write:

V (r) =
Ω

∆
D0(E

(−)
S (r)α̃(r) + α̃†(r)E(+)

S (r)). (5.49)

Forming the EOM along the lines of the previous section we get:

∂

∂t
A(z, t) = i

∫

d3r′[V (r′, t), A(z, t)]

= i
Ω

∆
D0

∫

d3rE
(−)
S (r, t)[α̃(r, t), A(z, t)] + [α̃†(r, t), A(z, t)]E

(+)
S (r, t)

= i
Ω

∆
D0

1

ρA

∫

d3rE
(−)
S (r, t)[α̃, A](r, t) + [α̃†, A](r, t)E

(+)
S (r, t). (5.50)

As in (5.8) we find for the vacuum operators that:

bkσ(t) = bkσ(0)ei(ωk−ω0)t − i
Ω

∆
D0

√

ωk

2ǫ0V

∫ t

0
dt′
∫

d3rα̃(r, t)e−i(k·r−(ωk−ω0)(t−t′)). (5.51)

This we can insert into the expression for ES and one sees that the noisy part of the
interaction becomes:

∂

∂t
A(z, t) =

2Ω

∆

√
γ(FA + F †

A)(z, t). (5.52)

With the space averaged noise:

FA(z, t) =
i

ρA

∫

d2r⊥[α̃, A](r, t)f(r, t). (5.53)

The more complicated decay term will go as:

∂

∂t
A(z, t) ∝

∑

kσ

ωkǫ
2
kσ

∫ t

0
dt′
∫

d2r⊥

∫

d3rα̃†(r′, t′)[α̃, A](r, t)e−i(k·(r−r′)−(ωk−ω0)(t−t′))

− [α̃†, A](r, t)α̃(r′, t′)ei(k·(r−r′)−(ωk−ω0)(t−t′)). (5.54)
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Using the definition of the continuos operators we can say loosely that this term is propor-
tional to:

∑

ij

δ(ri − r′)δ(rj − r)αiαj . (5.55)

Remembering that α was the atomic polarizability, we see that we here have possible
dipole-dipole effects. It descibes interactions between different atoms through the field and
can give rise to collective effects, such as superradiance. We ignore these and only consider
the decay ∼ terms for which r = r′. That way we can write (5.55) as:

∑

i

δ(ri − r′)δ(r − r′)αiαi. (5.56)

For that to be realistic the density of atoms ρ should not be too high. After this approx-
imation we can again perform the Markov approximation and use the result from (5.15)
and finally write the evolution from V as:

∂

∂t
A(z, t) =

2Ω

∆

√
γ(FA + F †

A)(z, t) + (
2Ω

∆
)2L (A)(z, t). (5.57)

With the Lindblad form:

L (A)(z, t) =
γ

2

1

ρA

∫

d2r⊥α̃
†[α̃, A](r, t) − [α̃†, A]α̃(r, t). (5.58)

Looking at the noise operator correlations we get with our assumption of the atoms having
independent decay channels:

〈FA(z, t)F †
A′(z

′, t′)〉 ≈ δ(z − z′)δ(t − t′)
1

(ρA)2

∫

d2r⊥([α̃†, A][α̃, A])(r, t)

= δ(z − z′)δ(t − t′)
1

ρA
([α̃†, A][α̃, A])(z, t). (5.59)

Here in accordance with the above one should read ([α̃†, A][α̃, A′])(r) as the single atom

contributions
∑

i[α̃
†
i , A][α̃i, A

′]δ(r−ri), etc. Joining (5.57) with the coherent part, the final
atomic EOM becomes:

∂

∂t
A(z, t) = i[Hcoh, A](z, t) +

2Ω

∆

√
γ(FA(z, t) + F †

A(z, t)) + (
2Ω

∆
)2L (A)(z, t). (5.60)

So starting from the single atom interaction model we have constructed the behaviour of
the ensemble as the sum of single atom contributions. We have assumed a constant atomic
density n(z) = ρ and neglected all cross terms - the atoms are independent entities. For
this to hold we must have that the atoms are well separated, the density should not be
too high. Otherwise the atoms, that in our model are small dipoles, start to see the other
dipoles and one has to deal with dipole-dipole interations. It can lead to collective effects
like superradiance, which is very different from the dynamics we expect (want) to see.

We have made the derivation for atomic variables and we will not repeat it for light oper-
ators. The reason is that the equations are almost the same - in fact they are more simple
and one does not have to worry so much about the factors ρA. The equation (5.60) also
describes light variables, but these are defined without the ρA:

F (z, t) = i

∫

d2r⊥[α̃, A](r, t)f(r, t), (5.61)

L (A)(z, t) =
γ

2

∫

d2r⊥α̃
†[α̃, A](r, t) − [α̃†, A]α̃(r, t). (5.62)
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In the next chapters we are going to apply the found results to find the evolution of first
light and then atoms. Even though this section has introduced some complications with
us having to deal with spatial extension of the system, it is good to keep in mind that with
the assumptions made, we have not departed so much from the single atom dynamics. So
even though we will see integrals over transverse dimension and factors of ρA one can view
the system effectively as a single photon scattering from a single atom. And as we will see
later, it is precicely the single particle correlations that describe all wanted quantities.



Chapter 6

Light EOM

As the light passes through the sample, we expect that due to the interaction with atoms,
the light experiences a change in polarization and some attenuation due to absorption. We
will calculate this absorption and see that it is in fact quite small, just as needed for our
use. One should also bear in mind that we assume that we have a flat transverse profile
for the ingoing pulses which is roughly 1/

√
A. We also assume the profile area to be large,

so we have a big Fresnel number and can ignore diffraction of light. When dealing with
light we need to include the photonic Hamiltonian HL itself. As described in App.A.3 we
can use HL to transform the EOM from time (t) to space (z), such that the EOM read:

∂

∂z
A(z, t) = i[Hcoh, A](z, t) +

2Ω

∆

√
γ(FA + F †

A)(z, t) + (
2Ω

∆
)2L (A)(z, t). (6.1)

As we have seen the EOM consist of 3 parts: the coherent part, noise and associated
decay and we will analyze each of them separately and finally combine them in the end.
To describe the light we will make use of Stokes-operators Sx, Sy, Sz and they are defined
and explained in App.A.1 together with how they are defined as functions of z. The
following analysis on the coherent interaction is much inspired by [15] and for a discussion
on experimental results we refer to the same.

6.1 Coherent interaction

In chapter 4 we saw that the coherent Hamiltonian can be written as: Hcoh = H(0) +
H(1) +H(2). We also remember that H(0) represented a static Stark shift, which for the
light just will give a phase shift, but otherwise not affect the dynamics. Therefore we can
throw away that term and the reduced Hamiltonian thus becomes:

Heff
coh = H(1) +H(2)

= −2Ω2

∆

∫ L

0
a1jz(z, t)Sz(z, t)

− a2[(j
2
x(z, t) − j2y(z, t))Sx(z, t) + {jx, jy}(z, t)Sy(z, t)]ρAdz. (6.2)

From now on we will use that we can write 2Ω2 = 2σ0γ
A , where σ0 =

3λ2
0

2π and it is convenient
to write the Hamiltonian as the inner product:

Heff
coh = −2σ0γ

A∆

∫ L

0
(γ · S)(z, t)ρAdz. (6.3)

31
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Where γ = (−a2(j
2
x − j2y),−a2{jx, jy}, a1jz) is a polarization vector. From here it easy to

obtain the EOM for the Stokes vector using the canonical commutation relation
[Si(z), Sj(z

′)] = i
∑

k ǫijkSk(z)δ(z − z′) combined with the form of the vector product of
two operators: A× B =

∑

ijkAiBjekǫijk:

∂

∂z
S(z, t) = −i2σ0γ

A∆

∑

ij

∫

dz′[γi(z
′, t)Si(z

′, t), Sj(z, t)ej ]ρA,

=
2σ0γ

A∆

∑

ijk

γi(z, t)Sk(z, t)ejǫijkρA,

= −2σ0γ

A∆
(γ × S)(z, t)ρA. (6.4)

If we replace the operators in γ with their expectation values1, we can interpret that in
the interaction the Stokes operator S gets rotated about the vector γ, corresponding to
the unitary evolution per segment dz:

dU = exp[i
2σ0γ

A∆
(γxSx + γySy + γzSz)ρAdz]. (6.5)

For clarity we can also write out the expression:

∂

∂z





Sx

Sy

Sz



(z, t) = −2σ0γ

A∆





0 −a1jz −a2{jx, jy}
a1jz 0 a2(j

2
x − j2y)

a2{jx, jy} −a2(j
2
x − j2y) 0









Sx

Sy

Sz



 (z, t)ρA. (6.6)

The rotation of S is seen to be composed of a big rotation (proportional to a1) about the
z-axis and proportional to the atomic spin along z and a small rotation (proportional to
a2) in the (x, y) plane by an angle which depends on the relative angle (this will be shown
below) between the mean atomic spin and the Stokes vector.
Also note that by finding the evolution of the a, a† operators and forming the total flux
φ = a†xax + a†yay, one can show that the number of photons is conserved as one would
expect in the coherent interaction.
We see from the equation for Sz that this component of the Stokes vector is not conserved
in general, but changes due to the presence of the a2-terms j2x − j2y and {jx, jy}. Moreover
we also know that our system is axially symmetric about z so we should have conservation
of angular momentum along z. Since Sz is changing that must mean that jz is changing
too and by the same amount. So for non vanishing Sz we get a rotation of the spin about
the z-axis, an effect which complicates the interaction a lot and in principle destroys the
protocols we discussed in chapter 2 since the quantities PA,PL are no longer conserved.
So what physical interpretation do these annoying terms have? If we look closer at j2x − j2y
and assume the light to have a neglegible Sx and atoms polarized along x2, then according
to (6.6) we get the evolution:

∂

∂z
Sy(z, t) = −2σ0γ

A∆
ρAa2(j

2
x − j2y)Sz(z, t) = +

κ2

L
Sz(z, t), (6.7)

∂

∂z
Sz(z, t) = +

2σ0γ

A∆
ρAa2(j

2
x − j2y)Sy(z, t) = −κ2

L
Sy(z, t) (6.8)

With the dimensionless constant κ2:

κ2 = −2σ0γ

A∆
a2
F

2
(2F − 1)LρA = −a2γρσ0L

∆
F (2F − 1). (6.9)

1How it is done is described in App.B.
2Had we chosen the y direction instead we would just have κ2 with opposite sign.
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Here we have replaced the atomic operators j2x − j2y with the expectation value F
2 (2F − 1)

and now we can write the solution for the Stokes operators as:

Sy(z, t) = Sy(0, t) cos(
κ2

L
z) + Sz(0, t) sin(

κ2

L
z), (6.10)

Sz(z, t) = −Sy(0, t) sin(
κ2

L
z) + Sz(0, t) cos(

κ2

L
z). (6.11)

We see that for linearly polarized input photons Sy(0) we build up an amount of circularly
polarized photons out and contrary we produce linearly polarized photons for circular
polarized input photons. So we conclude that the term j2x − j2y gives an alignment in the
xy-basis and produces linear birefringence. The effect of {jx, jy} can be understood in the
same way, only the alignment takes place in the (π/4) rotated xy-basis.
Now let us assume that the atoms are prepared in a state where the mean spin is parallel
to propagation of the light field - the z-direction and replace the operator jz with it’s
expectation value. We will have light linearly polarized such that 〈Sz〉 = 0 and we may
write:

∂

∂z

(

Sx

Sy

)

(z, t) = −a1
σ0γ

2A∆
ρA〈jz〉

(

−Sy

Sx

)

(z, t). (6.12)

I means that as the light pulse travels across the sample we may write the changes with
Sin = S(z = 0), Sout = S(z = L):

Sout
x = Sin

x cos(2θF ) − Sin
y sin(2θF ), (6.13)

Sout
y = Sin

x sin(2θF ) + Sin
y cos(2θF ). (6.14)

Here we have defined the Faraday rotation angle θF :

θF = −a1
σ0γ

A∆
ρAL〈jz〉. (6.15)

This angle is how much the polarization of the light field is rotated due to the presence
of the atomic spin pointing along the propagation direction (The factor 2 comes from the
fact that if ax and ay, are rotated by θ, the Stokes operators are rotated by 2θ, because
they are product of these operators.). Expressing it in terms of the collective spin, using
that 〈Jz〉 = NA〈jz〉 = ρAL〈jz〉, we can write:

θF = −a1
σ0γ

A∆
〈Jz〉. (6.16)

The macroscopic spin is a huge quantity so it is a big rotation of the light beam. In section
3.3 we saw that a1 has different signs and equal magnitude in the two cases F = 3 and
F = 4, meaning that light will start rotating in different directions depending on whether
the atoms are in the F = 3 state or the F = 4 state. This also means that for a special
distribution of atomic populations one can have that the contributions from F = 3 and
F = 4 cancelled out, such that there were no overall rotation of the light. These populations
p3 and p4 (with p3 + p4 = 1) depend on the detuning of the laser, because the detunings in
(6.16) are different for the two states. A few calculations reveal this is achieved by having
p3 = (1 + 3

4
1

1+
∆34
∆

)−1, meaning that 4
7 ≤ p3 ≤ 1 and 0 ≤ p4 ≤ 3

7 . However this rotation of

the Stokes operators about z is unwanted, so unless otherwise mentioned we assume the
mean atomic spin to be zero along z. More general rotations for this kind of settings are
discussed in [7].
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6.2 Noise

In our description we have included the possibility of incoherent scattering of light, this will
weaken the pulse and consenquently add some noise to the forward modes. In this section
we investigate how much noise is being added to the Stokes operators and ultimately to
the light quadratures. We saw in chapter 5 that we could write the noise part of the light
EOM as:

∂

∂z
A(z, t) =

2Ω

∆

√
γ[FA + F †

A](z, t), (6.17)

F (z, t) = i

∫

d2r⊥[α̃, A](r, t)f(r, t). (6.18)

With the single atom noise operators:

f(r, t) =
D0

2
√
γ

∑

kσ

√

ωk

2ǫ0V
ǫkσbkσ(0)ei(k·r−(ωk−ω0)t). (6.19)

And we remember that when forming the noise operator correlations, then only same-atom
elements contribute, because each atom atom couples to it’s own reservoir. This time we
cannot express this part of the interaction directly in terms of Stokes operators. But we
can easily find the EOM for the a, a† operators and then combine them to obtain the EOM
for the Stokes operators by using the product rule. That way we obtain that the noise for
each component of the Stokes vector is (we will supress the time dependence to simplify
the notation):

∂

∂z
Sx(z) =

Ω

∆
i
√
γ

∫

d2~r⊥f
†
x(r)[αxx(r)ax(z) − αxy(r)ay(z)]

+ f †y(r)[αyx(r)ax(z) − αyy(r, t)ay(z)] + f †z (r)[αzx(r)ax(z) − αzy(r, t)ay(z)] + h.c.,

(6.20)

∂

∂z
Sy(z) =

Ω

∆
i
√
γ

∫

d2~r⊥f
†
x(r)[αxx(r)ay(z) + αxy(r)ax(z)]

+ f †y(r)[αyx(r)ay(z) + αyy(r)ax(z)] + f †z (r)[αzx(r)ay(z) + αzy(r)ax(z)] + h.c.,

(6.21)

∂

∂z
Sz(z) =

Ω

∆

√
γ

∫

d2~r⊥f
†
x(r)[αxx(r)ay(z) − αxy(r)ax(z)]

+ f †y(r)[αyx(r)ay(z) − αyy(r)ax(z)] + f †z (r)[αzx(r)ay(z) − αzy(r)ax(z)] + h.c..

(6.22)

This is a new result and even though the expressions are long and complicated they show
what the noise of the Stokes operators are expressed in terms of the elements of the po-
larizability α and vacuum noise operators f . We are interested in the noise of our Sy and
Sz from which we will build the light quadatures, while we will treat Sx like a c-number
which roughly equals half the total flux φ. Therefore we form the new noise operators:

F̃y(z) =
−i
2

∫

d2~r⊥([αyx(r)a†x(z) + αxx(r)a†y(z)]fx(r)

+ [αyy(r)a
†
x(z) + αxy(r)a

†
y(z)]fy(r) + [αyz(r)a

†
x(z) + αxz(r)a

†
y(z)]fz(r)), (6.23)

F̃z(z) = −1

2

∫

d2~r⊥([αyx(r)a†x(z) − αxx(r)a†y(z)]fx(r)

+ [αyy(r)a
†
x(z) − αxy(r)a

†
y(z)]fy(r) + [αyz(r)a

†
x(z) − αxz(r)a

†
y(z)]fz(r)). (6.24)
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And write the noise term in short form:

∂

∂z
Si(z, t) =

2Ω

∆

√
γ(F̃i + F̃ †

i )(z, t), i = y, z. (6.25)

These F̃i have zero mean and below we have listed their correlations3 where we have made
use of the fact that Sx ≃ φ

2 : and supressed the (z) dependence that should be on the
different α2:

〈F̃y(z, t)F̃
†
y (z′, t′)〉 = 〈F̃z(z, t)F̃

†
z (z, t)〉

= δ(t− t′)δ(z − z′)
〈Sx〉

2
(α2

yy − α2
xx +

1

2
[α2

xx + α2
yy]

〈φ〉
〈Sx〉

)ρA

≃ δ(t− t′)δ(z − z′)〈Sx〉〈α2
yy〉ρA, (6.26)

〈F̃y(z, t)F̃
†
z (z′, t′)〉 = 〈F̃z(z, t)F̃

†
y (z′, t′)〉∗

= iδ(t− t′)δ(z − z′)
〈Sx〉

2
(α2

xx + α2
yy −

1

2
[α2

xx − α2
yy]

〈φ〉
〈Sx〉

)ρA

≃ iδ(t− t′)δ(z − z′)〈Sx〉〈α2
yy〉ρA. (6.27)

From these relatively simple correlations we get:

〈{F̃y(z, t) + F̃ †
y (z, t), F̃z(z

′, t′) + F̃ †
z (z′, t′)}〉 = 0, (6.28)

〈[F̃y(z, t) + F̃ †
y (z, t), F̃z(z

′, t′) + F̃ †
z (z′, t′)]〉 = iδ(t − t′)δ(z − z′)〈Sx〉

× (α2
xx + α2

yy − 1

2
[α2

xx − α2
yy]

〈φ〉
〈Sx〉

)ρA

≃ 2iδ(t − t′)δ(z − z′)〈Sx〉〈α2
yy〉ρA. (6.29)

Interestingly all the correlations are effectively desribed by a single number - namely the
element 〈α2

yy〉. The value of it can be written as a constant and a term that depends on
the relative angle θ between the light polarization (x) and the mean atomic spin pointing
somewhere in the xy-plane:

〈α2
yy〉 = (a2

0 + 4a2
1 + 340a2

2 − 24a0a2 + 56a1a2 + 28b21 + 168b1b2 + 252b22

+ 14 cos2 θ[a2
1 + 5a2

2 + 4a0a2 − 6a1a2 − b21 − 18b1b2 + 3b22])

=
1

240
(3 +

7

(1 + 251
∆ )2

) +
7

1440
cos2 θ(16 +

5

(1 + 452
∆ )2

− 21

(1 + 251
∆ )2

). (6.30)

If we focus on the last term then as the detuning becomes large a2 and b2 go to zero while
a2

1 and b21 become ( 1
48 )2. But because the latter appear in the combination a2

1 − b21 the
whole angular part goes to zero. This result is for F = 4, but inserting the numbers one
finds that the same holds for F = 3. Therefore as ∆ → ∞ we are left with the constant
term which has the limit 〈α2

yy〉 → 1
24 , which is also the limit value for F = 3. For many of

our quantities it will be nice to have them relative to a2
1, which is also the case for 〈α2

yy〉:

3In the expressions α2
ij is the (i, j) element of α2 and not αijαij . The explicit values of α2 and found

in App.C.2.
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Figure 6.1: Element
〈α2

yy〉
a2
1

as a function of detuning and polarization angle.

We see that 〈α2
yy〉 is a smooth function of the angle θ and detuning ∆. One sees that

〈α2
yy〉 has period π, as we would expect from symmetry. Also as is both apparent from the

expression and the graph, for a given detuning 〈α2
yy〉 has maximum at θ = 0 and minimum

at θ = π
2 . This is no coincidence as we will see in the final section on light where we

reveal the simple physical interpretation of 〈α2
yy〉. Even though it looks like 〈α2

yy〉 grows

for increasing detuning, we remember that we still have a 1
∆ outside for each of the Stokes

operators in (6.25).

If we now choose to normalize the noise operators F̃y,F̃z by
√

〈α2
yy〉ρA〈Sx〉 we get that

without the tilde the correlations may be written simply:

〈Fi(z, t)F
†
i (z′, t′)〉 = δ(t− t′)δ(z − z′), (6.31)

〈[Fi(z, t), F
†
j (z′, t′)]〉 = iǫijkδ(t− t′)δ(z − z′) , i, j = y, z. (6.32)

And the final form of the noise EOM is:

∂

∂z
Si(z, t) =

2Ω

∆

√

γ〈α2
yy〉ρA〈Sx〉(Fi + F †

i )(z, t). (6.33)

6.3 Light attenuation

As the light passes through the atomic sample we expect to see some attenuation of the
pulse due to absorption. To find the attenuation it is easiest to use the a, a† operators by
going back to the expression for the decay:

∂

∂z
A(z) = ...− (

2Ω

∆
)2
γ

2

∫

d2r⊥(α̃†[α̃, A](r) − [α̃†, A]α̃(r)). (6.34)
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Only one of the commutators survives when A is our a, a†-operator and we get:

∂

∂z
ax(z) = −(

2Ω

∆
)2
γ

2

∫

d2r⊥(α2
xx(r)ax(z) + α2

xy(r)ay(z))

= −(
2Ω

∆
)2
γ

2
(α2

xx(z)ax(z) + α2
xy(z)ay(z))ρA, (6.35)

∂

∂z
ay(z) = −(

2Ω

∆
)2
γ

2

∫

d2r⊥(α2
yx(r)ax(z) + α2

yy(r)ay(z))

= −(
2Ω

∆
)2
γ

2
(α2

yx(z)ax(z) + α2
yy(z)ay(z))ρA. (6.36)

If we now assume that we shine in circularly polarized light (a+ = − 1√
2
(ax − iay)) and we

have prepared the atoms in the coherent spin state, where all atomic spins are pointing in
the z-direction, we have that the light gets attenuated by an amount:

∂

∂z
a+(z) = −(

2Ω

∆
)2
γ

2
ρAχa+, (6.37)

χ = 〈α2
xx(z) + iα2

xy(z)〉 = 〈α2
yy(z) − iα2

yx(z)〉. (6.38)

How big the attenuation is, will depend on the spin state of the atoms. For the case where
the atoms after having absorbed the photon decay to the same F state as they started,
one finds when putting in the elements of α2 that the contribution to the attenuation for
this proces can be expressed neatly as:

χ = (a0 + a1F + a2F
2)2. (6.39)

For F = 3 and F = 4 we therefor get respectively the attenuations:

∂

∂z
a+(z) = − 25

2304
(
2Ω

∆
)2
γ

2
ρAa+(z), (6.40)

∂

∂z
a+(z) = − 1

16
(
2Ω

∆
)2
γ

2
ρAa+(z). (6.41)

For decay to another spin state (H34) we for the F = 3 state on the other hand we find:

∂

∂z
a+(z) = − 35

2304
(
2Ω

∆
)2
γ

2
ρAa+(z). (6.42)

While for the F = 4 state:

∂

∂z
a+(z) = 0. (6.43)

This is also what we expected since the transition |F = 4,m = 4〉 → |F = 5,m = 5〉 is
closed, the atom cannot decay to the F = 3 state. By adding (6.40) and (6.42) we obtain
the total attenuation from the atoms in the F = 3 state:

∂

∂z
a+(z) = − 5

192
(
2Ω

∆
)2
γ

2
ρAa+(z). (6.44)

As we expected the attenuation is proportional to ρ - the higher the concentration of
atoms is, the higher will the damping of light be. When comparing the attenuations (6.41)
and (6.44) one should remember that the detunings are defined differently. This little
calculation shows how our model gives us some specific numbers that one can check in the
experiments and with earlier work.
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Now we return to the general case and find the evolution of the Stokes operators by using

the product rule ∂
∂z (a†iaj) =

∂a†
i

∂z aj + a†i
∂aj

∂z . We obtain that way:

∂

∂z





Sx

Sy

Sz



(z) = −(
2Ω

∆
)2
γ

2
ρA(〈α2

xx + α2
yy〉





Sx

Sy

Sz



 (z) +





〈α2
xx − α2

yy〉
〈α2

xy + α2
yx〉

i〈α2
xy − α2

yx〉





φ

2
(z))

= −(
2Ω

∆
)2
γ

2
ρA(〈α2

xx + α2
yy〉





Sx

Sy

Sz



 (z) +





ζ〈j2x − j2y〉
ζ〈{jx, jy}〉
β〈jz〉





φ

2
(z)). (6.45)

Here β and ζ are some real numbers and when we replace the operators with their expec-
tation values:

〈j2x − j2y〉 =
F

2
(2F − 1) cos(2θ), (6.46)

〈{jx, jy}〉 =
F

2
(2F − 1) sin(2θ), (6.47)

〈jz〉 = 0. (6.48)

We may write the damping as4:

∂

∂z





Sx

Sy

Sz



(z) = −(
2Ω

∆
)2
γ

2
ρA(ΓS





Sx

Sy

Sz



 (z) +
1

2
ζ





cos(2θ)
sin(2θ)

0



φ(z)) (6.49)

We see that the decay of the Stokes operators consists of a common rate ΓS , which is
independent of the polarization angle and is given by (together with it’s limit for ∆ → ∞):

ΓS = 〈α2
xx + α2

yy〉
= 2a2

0 + 22a2
1 + 750a2

2 + 28a1a2 + 8a0a2 + 42(b21 + 2b1b2 + 13b22)

=
1

5760
(256 +

35

(1 + 452
∆ )2

+
189

(1 + 251
∆ )2

) → 1

12
(6.50)

For Sx and Sy we also have a big drift term proportional to the field flux that depends
on the polarization angle and starts rotating Sx and Sy by an angle 2θ. This is reflecting
that in general the photons are being absorbed in an asymmetric way by the atoms and
this absorption depends on the relative polarization angle. The drift term does not have
a dependence on θ for Sz since the system is symmetric about the z-axis and therefore
cannot have a preferred decay direction. The value of ζ (with the limit ∆ → ∞) is:

ζ = −14(a2
1 + 5a2

2 + 4a0a2 − 6a1a2 − b21 − 18b1b2 + 3b22)

= − 7

5760
(16 +

5

(1 + 452
∆ )2

− 21

(1 + 251
∆ )2

) → 0 (6.51)

We see that apart from the sign this is exactly the angular part of 〈α2
yy〉 in (6.30) that we

saw when discussing noise correlations.

4In the following we will absorb the constant F
2
(2F − 1) into ζ.
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6.4 Light X,P

Finally we introduce the light quadratures that we spoke about in chapter 2:

XL =

∫ T
0 dtSy(t)
√

〈Sx〉T
, PL =

∫ T
0 dtSz(t)
√

〈Sx〉T
. (6.52)

It is easily checked that they obey [XL, PL] = i (Remember that we have assumed that
Sx ≈ 〈Sx〉.). Also notice that it reasonable do treat XL and PL as continuos variables,
because the quantity Sx ≃

√

Np ≃ 107 is very big as compared to Sy and Sz. We will
analyze the EOM of these quadratures, where we include the derivative of 〈Sx〉:

∂

∂z
XL =

1
√

〈Sx〉T

∫ T

0
dt(

∂

∂z
Sy −

1

2

〈 ∂
∂zSx〉
〈Sx〉

Sy), (6.53)

∂

∂z
PL =

1
√

〈Sx〉T

∫ T

0
dt(

∂

∂z
Sz −

1

2

〈 ∂
∂zSx〉
〈Sx〉

Sz). (6.54)

We will consider each part separately and then combine them in the end for the full EOM.
We will omit the details, since most calculations have been done in the sections above.
For the coherent part we have seen in (6.6) that 〈 ∂

∂zSx〉 ≃ 0 since the contributions from
〈Sy〉 and 〈Sz〉 are much smaller. This means that the evolution of Sy and Sz gives the
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dynamics:

∂

∂z
XL =

1
√

〈Sx〉T

∫ T

0
dt
∂

∂z
Sy

= − 1
√

〈Sx〉T
2σ0γ

A∆
ρA

∫ T

0
dt a1jzSx + a2(j

2
x − j2y)Sz (6.55)

∂

∂z
PL =

1
√

〈Sx〉T

∫ T

0
dt
∂

∂z
Sz

= − 1
√

〈Sx〉T
2σ0γ

A∆
ρA

∫ T

0
dt a2({jx, jy}Sx − (j2x − j2y)Sy) (6.56)

We can write these equations in compact form:

∂

∂z

(

XL

PL

)

(z) = −2σ0γ

A∆
ρAa2〈j2x − j2y〉

(

PL

−XL

)

(z) − 1
√

〈Sx〉T
2σ0γ

A∆
ρA

∫ T

0
dt

(

a1jz(z, t)
a2{jx, jy}(z, t)

)

(6.57)

The constant in front of XL and PL in (6.57) is precisely the κ2 we calculated in 6.1. We
have seen how light experiences a different index of refraction as it passed through the
atomic cell. This change is the same for both Sy and Sz and therefor also XL and PL and
experimentalists know how to deal with this effect. But for our purpose it is sufficiently
to note that by applying the coordinate transformation in App.D.6 we can eliminate this
term from the EOM and get:

∂

∂z

(

XL

PL

)

(z) = −2σ0γ

A∆

√

〈Sx〉T
1

T

∫ T

0
dt

(

a1jz(z, t)ρA
a2{jx, jy}(z, t)ρA

)

(6.58)

Had we only the coherent part we would have the solution with κ = −2σ0γ
A∆ a1

√

〈Sx〉〈J‖〉T
and Xin

L = XL(z = 0),Xout
L = XL(z = L) and similarly for PL:

(

Xout
L

P out
L

)

=

(

Xin
L

P in
L

)

+ κ

(

1
T

∫ T
0 dtPA(t)

(2F − 1)a2
a1

[12

√

〈J‖〉 sin(2θ) + cos(2θ)
T

∫ T
0 dtXA(t)]

)

(6.59)

While as we saw earlier Xout
L carries information about the atomic P in

A , we see that a huge

quantity (
√

〈J‖〉) is added to P out
L , such that P out

L carries no real information. If we ignore

the time dependence of the atomic quadrature variances we obtain:

(

∆X2,out
L

∆P 2,out
L

)

=

(

∆X2,in
L

∆P 2,in
L

)

+
κ2

T 2

(

V ar(
∫ T
0 dtPA(t))

(2F − 1)2(a2
a1

)2cos2(2θ)V ar(
∫ T
0 dtXA(t))

)

≃
(

∆X2,in
L

∆P 2,in
L

)

+ κ2

(

∆P 2,in
A

(2F − 1)2(a2
a1

)2cos2(2θ)∆X2,in
A

)

(6.60)

We see that if we choose θ = π
4 we almost recover the result from the section on the Fara-

day interaction. Unfortunately this choise has some other problems that we will see in the
coming and that render this choice undesired.
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The noise operators have zero mean and therefore the evolution of the quadratures is
determined by the first part of (6.53) and (6.54), giving that way:

∂

∂z

(

XL

PL

)

(z) =
1

√

〈Sx〉T

∫ T

0
dt
∂

∂z

(

Sy

Sz

)

(z, t) =
2Ω

∆

√

γ〈α2
yy〉ρA

1√
T

∫ T

0
dt

(

Fy + F †
y

Fz + F †
z

)

(z, t).

(6.61)

From here it is natural to define the noise operators by:

fX(z) =
1√
2T

∫ T

0
dt Fy(z, t) + F †

y (z, t), fP (z) =
1√
2T

∫ T

0
dt Fz(z, t) + F †

z (z, t). (6.62)

They inherit the former correlations, just without the time dependence and we can write
them in short form:

〈{fX(z), fX (z′)}〉 = 〈{fP (z), fP (z′)}〉 = δ(z − z′), (6.63)

〈[fX(z), fP (z′)]〉 = iδ(z − z′). (6.64)

This allows to write (6.61) as:

∂

∂z

(

XL

PL

)

(z) =
2Ω

∆

√

2γ〈α2
yy〉ρA

(

fX

fP

)

(z). (6.65)

For the decay we have according to (6.49) that the derivative of 〈Sx〉 has a non-vanishing
expectation value and inserting the expressions from (6.49) we find:

∂

∂z
XL(z) = −(

2Ω

∆
)2
γ

2
ρA(

1

2
[ΓS − ζ cos(2θ)

〈φ〉
2〈Sx〉

]XL(z) +
ζ

2
sin(2θ)

∫ T

0
dt

φ
√

〈Sx〉T
),

(6.66)

∂

∂z
PL(z) = −(

2Ω

∆
)2
γ

2
ρA

1

2
(ΓS − ζ cos(2θ)

〈φ〉
2〈Sx〉

)PL(z). (6.67)

We see that XL and PL decay at the same rate ΓL = 1
2(ΓS − ζ cos(2θ) 〈φ〉

2〈Sx〉), but since

ΓS = 〈α2
xx〉+ 〈α2

yy〉 and ζ cos(2θ) = 〈α2
xx〉 − 〈α2

yy〉, we see that ΓL ≃ 〈α2
yy〉 - the very same

element we encountered first time in the noise analysis. XL has a big term proportional to
φ expressing that due to the interaction with the atoms the light experiences a drift and
starts rotating. This term gives a linear contribution to the decay and it is quite big since
it is proportional to

√

〈Sx〉T . Also we see that this term vanishes for θ = 0 or θ = π
2 ,

motivating the use of extreme polarizations.
So for the decay we have found that:

∂

∂z

(

XL

PL

)

(z) = −(
2Ω

∆
)2
γ

2
ρA(ΓL

(

XL

PL

)

(z) +
√

〈Sx〉Tζ sin(2θ)

(

1
0

)

). (6.68)

We will in the following neglect the constant term in the decay and keep in mind that we
really would like to have θ = 0 or θ = π

2 .

Finally the full light EOM may be written by combining (6.58+61+66+67):

∂

∂z

(

XL

PL

)

(z) = {−2σ0γ

A∆

√

〈Sx〉T
1

T

∫ T

0

(

a1jz(z, t)
a2{jx, jy}(z, t)

)

+
2Ω

∆

√

2γΓL

(

fX

fP

)

(z)

− (
2Ω

∆
)2
γ

2
ΓL

(

XL

PL

)

(z)}ρA. (6.69)
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This is an equation of the form ẋ = −γx+ f(t) for which the solution is

x(t) = x(0)e−γt +
∫ t
0 dt

′f(t′)e−γ(t−t′). Expressing the solution in terms of κ and η = κ2

2d ,
where d = σ0

A NA is the optical depth, we get:

(

Xout
L

P out
L

)

=

(

Xin
L

P in
L

)

e
−η

NA
Np

ΓL

2a2
1

+

∫ L

0
dz[

1
√

〈J‖〉
1

T

∫ T

0
dt κ

(

ρAjz(z, t)
a2
a1
ρA{jx, jy}(z, t)

)

+
2Ω

∆

√

2γΓLρA

(

fX

fP

)

(z)]e
−η

NA
Np

ΓL

2a2
1

(z−L)
L . (6.70)

This is the full solution of the problem, including the attenuation and noise. But having in
mind that we want to use this for our protocol, we will ignore the a2 terms in the coherent
part (we have seen that jz changed due to a2) and can write the simplified form:

(

Xout
L

P out
L

)

= (

(

Xin
L

P in
L

)

+ κ

(

P in
A

0

)

)e
−η

NA
Np

ΓL

2a2
1 +

√

η
NA

Np

ΓL

a2
1

1

L

∫ L

0
dz

(

fX(z)
fP (z)

)

e
−η

NA
Np

ΓL

2a2
1

(z−L)
L

.

(6.71)

The difference from the ideal relations in chapter 2, is that now our coherent part expe-
riences an attenuation and we have added some extra noise terms. For the variances it
means that:

(

∆X2,out
L

∆P 2,out
L

)

= (

(

∆X2,in
L

∆P 2,in
L

)

+ κ2

(

∆P 2,in
A

0

)

)e
−η

NA
Np

ΓL

a2
1 +

1

2
(1 − e

−η
NA
Np

ΓL

a2
1 )

(

1
1

)

. (6.72)

As we guessed in the limit of weak attenuation, where the exponential functions in the
expressions are approximately 1, we get the desired relations:

(

Xout
L

P out
L

)

=

(

Xin
L

P in
L

)

+ κ

(

P in
A

0

)

, (6.73)

and:

(

∆X2,out
L

∆P 2,out
L

)

=

(

∆X2,in
L

∆P 2,in
L

)

+ κ2

(

∆P 2,in
A

0

)

. (6.74)

Even though we have neglected the noise and corresponding decay we note that they have
a (almost) symmetric contribution to the variances of XL and PL (6.72). We also see that
the ratio NA

Np
characterizes how close we are to the desired situation of weak attenuation,

because the rest factor ηΓL

a2
1

is approximately of order 1 for the optical depths and detunings

that we consider. We can limit the attenuation of light, by making the ratio small enough.
Given that one has some fixed amount of atoms in the cell, the easiest way to achieve this,
is to increase the number of photons by increasing the power.
Note also that as we expect for very big damping the light quadratures according to (6.71)
simply become vacuum operators. They no longer carry information about the atoms
and give vacuum noise. We will assume that the light is shot noise limited meaning
∆X2,in

L = ∆P 2,in
L = 1

2 . Of course by using squeezed states of light one could redistribute
the variance in an uneven way, but for the protocols we will consider we will stick to the
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coherent states - that is displaced vacuum states. That way we will have a simple expres-
sion for the fidelity and we can always use the benchmark F = 1

2 to say whether a protocol
is succesful. This is not the case for squeezed states where the situation is complicated,
but of course the new variance degree of freedom has some advantages.

We conclude this chapter with saying that our analysis have shown that the attenua-
tion of the light quadratures is virtually determined by a single matrix-element 〈α2

yy〉. We
have seen that by having enough photons the attenuation can be made arbitrarily small.
To avoid big drifts we want to have either θ = 0 or θ = π

2 . We these settings the relations
for the light quadratures become the simple ones from chapter 2.



Chapter 7

EOM for atoms

7.1 Simple case EOM

In this section we will embark on the atomic dynamics. Our approach will be similar to
the one for light: we will analyze the different parts of the dynamics separately first and
then join them in the end. We will still assume the light to be strongly polarized along x
and mostly focus on the F = 4 state, even though some places we will keep the general
F . The results for F = 3 can easily be obtained from the procedure of F = 4 and all the
relevant elements are found in App.C.

Now let us again start from our general dynamical equation:

d

dt
A(z, t) = i[Hcoh, A(z, t)] +

2Ω

∆
(FA + F †

A)(z, t) + (
2Ω

∆
)2L (A)(z, t). (7.1)

In our case A is atomic spin operator j, from which we later construct the collective spin
and then the quadratures XA and PA. We will write the coherent Hamiltonian as:

Hcoh = −2σ0γ

A∆
[γ·S + γ0

φ

2
], (7.2)

where we have γ = (−a2(j
2
x − j2y),−a2{jx, jy}, a1jz) and γ0 = −a2j

2
z . From this we can

determine the coherent evolution of the spin vector j:

∂

∂t
j(z, t) = i[Hcoh, j](z, t) = −i2σ0γ

A∆

∑

ij

[γi, jj ](z, t)Si(z, t)ej + [γ0, jj ](z, t)
φ

2
ej

= −2σ0γ

A∆

∑

ij

g̃ij(z, t)Si(z, t)ej + g̃0
j (z, t)

φ

2
ej. (7.3)

The Hermitian g̃-matrix is defined by:

g̃ij = i[γi, jj ], g̃
0
j = i[γ0, jj ]. (7.4)

These elements are listed in App.C.3 and when we insert them we get the equations:

∂

∂t





jx
jy
jz



 = −2σ0γ

A∆
[





a2{jy, jz} −a2{jx, jz} −a1jy
a2{jx, jz} a2{jy, jz} a1jx

−2a2{jx, jy} 2a2(j
2
x − j2y) 0









Sx

Sy

Sz



+
a2

2





−{jy, jz}
{jx, jz}

0



φ].

(7.5)

44
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The equations we have reached are very complicated - they are not closed and couple to
each other. Therefor it would be a very difficult task to find an analytical solution for them
and will refrain from doing that. But by treating the different terms separately one can
gain some insight.
For instance if we look at the a1 terms in these equations, we see that they represent
the rotation of the atomic spin about the Sz component of light (which we take as an
expectation value):

∂

∂t

(

jx
jy

)

(z, t) = −2σ0γ

A∆
a1

(

−jy
jx

)

(z, t)Sz . (7.6)

We notice the resemblance with (6.12) from the light chapter. The solution is straightfor-
ward with jin = j(t = 0), jout = j(t = T ):

(

jout
x

jout
y

)

= R(θ̃F )

(

jinx
jiny

)

. (7.7)

Here R is the matrix that rotates the spin by the angle:

θ̃F = −a1
2σ0γ

A∆
〈Sz〉T. (7.8)

Note that there is no factor 2 this time as compared to (6.16) and we only get a non-zero
rotation for circularly polarized light. We see that if the atom starts with the spin in the
y direction, then after the interaction it has build up a non-zero value of spin in the x
direction and vice versa. But as we would expect, if the spin initially points along z, it
stays there. Again if the atom is in F = 3 state it will rotate opposite to the atom with
F = 4.

Now let us assume that our light is linearly polarized and we have oriented the mean
atomic spin along x. Then we are interested in the behavior of the transverse spin com-
ponents jy and jz. If we again linearize in jx as we did in (6.7-11) and take φ ∼ 2Sx and
only look at the terms involving jy or jz, then from (7.5) we are lead to the equations:

∂

∂t

(

jy
jz

)

(z, t) = −2σ0γ

A∆

(

(2F − 1)a2jz(z, t)Sx + (2F−1)a2jz(z,t)φ
2

−2(2F − 1)a2jy(z, t)Sx + F (2F − 1)a2Sy(z, t)

)

≃ ΩS

(

−jz
+jy

)

(z, t),ΩS =
2σ0γ

A∆
2(2F − 1)a2〈Sx〉 =

γσ0a2

A∆
2(2F − 1)〈φ〉.

(7.9)

Because of the Stark effect the spin precesses about the mean spin with frequency ΩS.
The related phenomenon, Larmor precession, can be observed with an atom in an applied
external magnetic field, where the spin precesses with a frequency proportional to the
magnetic field strength. In our case the frequency is proportional to the electric field
strength instead. In the actual experiments they use magnetic fields and the calculated
effect will be seen as an extra Zeeman shift.

7.2 Atomic X,P

As we have seen from the section above, the general light atom-interaction, is quite compli-
cated. But due to symmetry the interaction can only depend on the relative angle between
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the polarization directions of light and atoms. Therefor without loss of generality we have
assumed that the light is strongly polarized along x, while the direction of the atomic
makes an angle θ with the polarization (the x-axis). But the spin is still assumed to be in
the xy-plane - there is no component along z, which as we have seen otherwise gives an
unwanted rotation. First we will analyze the two extremal angles θ = 0 and θ = π

2 and
finally consider general θ.

Parallel configuration (θ = 0)

Now we are ready to look at the EOM for XA and PA. These are collective observables for
our atomic ensemble and are constructed through the collective atomic spin:

Ji(t) =

∫ L

0
ji(z, t)ρAdz. (7.10)

From the definition of the continuos spin operators (5.24), we get that the collective spin
also has:

[Ji, Jj ] = i
∑

k

ǫijkJk. (7.11)

And this collective spin behaves in the very same way as the usual j operators - basically we
have just added the small atomic spins to a large one, but the spin nature has not changed.
Assuming that all the atoms have a big component of the spin along x ∼ 〈jx〉 = F , we can
treat the collective spin Jx as a classical number. With this setting the light polarization
and atomic mean are are parallel ∼ θ = 0. From these collective spin we now define the
atomic quadratures we talked about in chapter 2:

XA =
Jy

√

〈Jx〉
, PA =

Jz
√

〈Jx〉
. (7.12)

We know that the angular momentum operators have discrete eigenvalues, but since Jx

has a very big value while Jy and Jz usually have vanishing or at least small values,
the quadratures go approximately as 1√

NA
with NA ∼ 1012. Therefor it is a very good

approximation to treat XA and PA as continuos variables. As one can easily check by
using (7.11) the XA and PA fulfill the canonical commutator relation in the mean:

〈[XA, PA]〉 = i. (7.13)

We want to study the dynamics of XA and PA from the interaction with light. Even
though we treat Jx as the number 〈Jx〉, we will include that possibly the magnitude of it
can change in time. So when we differentiate, we get:

ẊA =
J̇y

√

〈Jx〉
− 1

2

Jy
√

〈Jx〉
〈J̇x〉
〈Jx〉

, (7.14)

ṖA =
J̇z

√

〈Jx〉
− 1

2

Jz
√

〈Jx〉
〈J̇x〉
〈Jx〉

. (7.15)

We are now in position to see how the dynamics of the atomic system looks in term of
X,P - language. First we will study the coherent interation from last section.
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Going to back to spin evolution from (7.5) and linearizing by using that jx is almost1 a
c-number, we obtain for the single atomic spin:

∂

∂t





jx
jy
jz



(z, t) = −2σ0γ

A∆
[





0 −(2F − 1)a2jz −a1jy
2(2F − 1)a2jz 0 a1jx
−2(2F − 1)a2jy (2F − 1)a2jx 0









Sx

Sy

Sz



 (z, t)

= −2σ0γ

A∆





0 −a1Sz −(2F − 1)a2Sy

a1Sz 0 2(2F − 1)a2Sx

(2F − 1)a2Sy −2(2F − 1)a2Sx 0









jx
jy
jz



 (z, t).

(7.16)

Now we can multiply by ρA and integrate over z to get the equations for the collective
variables. But first we note from the first row in the matrix (7.16) that we can safely
disregard the change in the mean spin jx. The reason is that the terms in question: Szjy
and Syjz are per contruction much smaller than those involving either Sx or jx. So when
we integrate up the equations, we would have terms that are roughly a factor NA or Np

smaller than the retained.
Inserting the integrated last two lines of (7.16) into (7.14) and (7.15) we get:

∂

∂t

(

XA

PA

)

(t) = −2σ0γ

A∆

1
√

〈Jx〉

∫ L

0
dzρA

(

2(2F − 1)a2Sxjz(z, t) + a1jxSz(z, t)
−2(2F − 1)a2Sxjy(z, t) + (2F − 1)a2jxSy(z, t)

)

(7.17)

= −2σ0γ

A∆

(

2(2F − 1)a2〈Sx〉PA(t) + a1

√

〈Jx〉 1
L

∫ L
0 dzSz(z, t)

−2(2F − 1)a2〈Sx〉XA(t) + (2F − 1)a2

√

〈Jx〉 1
L

∫ L
0 dzSy(z, t)

)

(7.18)

The first term in the equations for XA and PA, describes the extra Zeeman shift that the
atoms experience. In 7.1 we found how it means that the Larmor frequency experiences
a shift by ΩS, with ΩS given in (7.9). Generally the Zeeman shift is not symmetric for
XA and PA and even though it introduces some complications, it can be taken care of
experimentally. The way it is done, is to use two cells instead of just one and a smart use
of magnetic fields makes it possible to get rid of the effect that way. But then one has to
deal with two ensembles, which is beyond the scope of this work and for details we refer
to [27].
In this specific case, the shift is identical for XA and PA and we can once again perform
the coordinate transformation from App.D.6, just for atomic variables this time, and get
rid of it that way. With κ = −2σ0γ

A∆ a1

√

〈Sx〉〈Jx〉 the solution for the coherent part will be:

(

Xout
A

P out
A

)

=

(

Xin
A

P in
A

)

+ κ

(

1
L

∫ L
0 PL(z)dz

(2F−1)a2

a1

1
L

∫ L
0 XL(z)dz

)

(7.19)

Now keeping in mind the protocol from chapter 2 we see that we to be able to use it,
we need to assume that the a2 terms do not contribute to the coherent dynamics. We
need that for two reasons, first we have seen in last chapter that if a2 6= 0 then PL is not
conserved, because Sz changes, meaning we cannot save P in

L in XA. Also in the equation
for PA we have an unwanted position averaged XL term that messes up our attempt to
store Xin

L . Ignoring the a2 terms we obtain the ideal relations (2.11+12) that serve as our
point of reference.

1But one cannot just replace all the jx with F - we refer to App.B to see how we make the replacements.
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Above we saw how we could translate the coherent spin evolution in terms of XA and PA.
For the noise we will use start with a the single atom noise form, found in the section on
general EOM where the forward field is absorbed into α. That way we get for a single
atom that:

∂

∂t
ji(z, t) =

2Ω

∆

√
γ(Fi + F †

i ](z, t), (7.20)

where:

Fi(z, t) = i

∫

d2r⊥[α̃†, ji](r, t)f(r, t). (7.21)

If we integrate the single atom evolution (7.20) over the sample we obtain the collective
response. Since the noise operators have zero mean, we once again have that only the first
term in the EOM (7.14+15) survives:

(

XA

PA

)

(z, t) =
2Ω

∆

√
γ

√

〈Jx〉

∫ L

0

(

[Fy + F †
y ](z, t)

[Fz + F †
z ](z, t)

)

ρAdz =
2Ω

∆

√
γ

(

fXA

fPA

)

(z, t). (7.22)

Here fXA
and fPA

are the noise operators for the atomic quadratures telling what noise
they get. Correlations between these kind of noise operators were analyzed in chapter
5 and exploiting the result from (5.59), we see that for fXA

and fPA
we have (only the

combinations 〈FiF
†
i 〉 give something different from zero, because we have assumed the

reservoir to be empty):

〈fXA
(t)fXA

(t′)〉 =
δ(t− t′)
〈Jx〉|E|2 E

(−)
F [

∫

d3rg2
y(r)]E

(+)
F =

δ(t− t′)
〈Jx〉|E|2 E

(−)
F [

∫ L

0
dzρAg2

y(z)]E
(+)
F ,

(7.23)

〈fPA
(t)fPA

(t′)〉 =
δ(t− t′)
〈Jx〉|E|2 E

(−)
F [

∫

d3rg2
z(r)]E

(+)
F =

δ(t− t′)
〈Jx〉|E|2 E

(−)
F [

∫ L

0
dzρAg2

z (z)]E
(+)
F .

(7.24)

We have in (7.23+24) neglected the position dependence of the electric fields. The reason
is that we expect this correlation to be propotional to the flux. Moreover we only bother
about the dominating x-polarized part of light. Inserting the values of the (x,x) elements
of the g2 matrices from App.C.3, we get explicitly that:

〈fXA
(t)fXA

(t′)〉 = 〈fPA
(t)fPA

(t′)〉

= φδ(t − t′)(4(a2
1 + 77a2

2) +
21

2
(b21 + 2b1b2 + 13b22)). (7.25)

This is in effect a number that describes the noisecorrelations of the quadratures and later
we will evaluate it for typical values of the detuning. Together with the other correlations
we find, it is a new result, describing precisely how much noise we have in the quadratures.
That the noise correlations are the same for XA and PA is expected. We have x as a
symmetry axis and therefor the y and z components of the spin change in a similar way
due to interaction with the environment. Therefor the decay of the spin should be the
same for and the noise correlations too.
For the commutator we find:

[fXA
(t), fPA

(t′)] =
δ(t− t′)
〈Jx〉|E|2 E

(−)
F [

∫

d3r[gy, gz ](r)]E
(+)
F (7.26)

=
δ(t− t′)
〈Jx〉|E|2 E

(−)
F

∫ L

0
dzρA[gy, gz ](z)E

(+)
F (7.27)

= φδ(t − t′)(28(−4a1a2 + 8a2
2) + 21(b21 + 2b1b2 + 13b22)), (7.28)
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while the anticommutator {fXA
(t), fPA

(t′)} = 0.
Having looked at the noise it is natural procede with examining the decay for XA and PA.
To describe the decay of a single atomic spin we use the expression (5.58) from section 5.2
to obtain:

∂

∂t
ji(z, t) = (

2Ω

∆
)2L (ji)(z, t), (7.29)

L (ji)(z) = −γ
2

1

ρA

∫

d2r⊥[α̃†α̃ji + jiα̃
†α̃− 2α̃†jiα̃](r)

= − γ

2|E|2
1

ρA
E

(−)
F (z)

∫

d2r⊥[α2ji + jiα
2 − 2αjiα](r)E

(+)
F (z). (7.30)

We expect this decay to be proportional to the total flux and we can as a good approxima-
tion ignore the position dependence of the light field, allowing us to write for the collective
spin:

L (Ji)(t) = −γ
2

∫

d3r[α̃†α̃ji + jiα̃
†α̃− 2α̃†jiα̃](r)

= − γ

2|E|2 E
(−)
F

∫

d3r[α2ji + jiα
2 − 2αjiα](r)E

(+)
F

= −γ
2
φΓiJi(t). (7.31)

The most notable contribution comes from the x polarized part of light, so since we already
expect this effect to be small (remember that it goes as 1

∆2 ) we can safely only consider the
(x, x) element of the decay matrix ξi = α2ji + jiα

2 − 2αjiα. The decay rate Γi is defined
as the linearization of the expression:

ΓiJi(t) =

∫ L

0
dzρAξi(z, t). (7.32)

This element gives the magnitude of the decay of the respective component of the spin.
For the decay to different F (the b terms), we will neglect the term 2αjiα, which described
the increase in the population of the final state. The reason is that once an atom decays
to another F state it will no longer be interesting for us, since we restrict our analysis to
collective behaviour of many atoms in the same F state. And as we have seen it reasonable
to do since the energy spacing between the two ground spin states is big. For the same
reasons we obviously need to keep 2αjiα for the a-terms.
Written in short form the decay reads:

∂

∂t
Ji(t) = −(

2Ω

∆
)2
γ

2
φΓiJi(t) = − η

T

Γi

2a2
1

Ji(t). (7.33)

The different ξ are listed in App.C.4 and are generally quite complicated. But if one just
considers the a2

1 terms, it is seen from the ξxx that Jx decays twice as fast as Jy and Jz.
This holds generally, the component of the spin which points along the polarization of the
light, will decay twice as fast as the orthogonal spin components as is also explained in
[9]. In the listed ξ-elements one also sees it confirmed from ξyy for the case where light is
polarized along y. But for all other a and b terms we do not have such simple relations.
Inserting the elements ξ and using the linearizations from App.B.1, we find the decay for
X and P , which again due to symmetry is the same:

∂

∂t

(

XA

PA

)

= − η

T

1

2a2
1

(

(Γy − 1
2Γx)XA

(Γz − 1
2Γx)PA

)

= − η

T

Γ

2a2
1

(

XA

PA

)

, (7.34)
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with:

Γ = 112a2(−a1 + 2a2) + 21(b21 + 2b1b2 + 13b22). (7.35)

Comparing the (7.28) with (7.35) we see that (from now on we will take the flux out of the
noise correlations, corresponding to us having a

√
φ in front in (7.22)):

[fX(t), fP (t′)] = iΓδ(t− t′). (7.36)

This is no coincidence, but holds generally, as we can motivate. If we neglect the coherent
part we are dealing with equations for X,P of the form:

∂

∂t
X = −ΓXX + fX , (7.37)

∂

∂t
P = −ΓPP + fP . (7.38)

We can write the quadratures as:

X(t+ δt) = X(t) +

∫ t+δt

t
dt′
dX

dt
(t′), (7.39)

P (t+ δt) = P (t) +

∫ t+δt

t
dt′
dP

dt
(t′). (7.40)

For the commutator [X,P ] we get by using the product rule and the form of X and P in
(7.39) and (7.40) that:

˙[X,P ] = −(ΓX + ΓP )〈[X,P ]〉 + 2
〈[fX(t), fP (t′)]〉

δ(t − t′)
. (7.41)

Demanding that the commutation relation [X,P ] = i be preserved (as it should for the
canonical spin commutation relation to hold), is equivalent to setting the left handside of
(7.41) to zero, leading to:

〈[fX(t), fP (t′)]〉 =
i

2
(ΓX + ΓP )δ(t− t′) = i〈Γ〉δ(t− t′). (7.42)

In our case we had that ΓX = ΓP , which is not always the case as we also will see in
the next section. We conclude that the relation (7.36) is equivalent to the fact that the
commutator [X,P ] is always i.

We have described all the parts of the dynamics of X and P , and now we can join them
to find the total EOM. Using that η = κ2

2d and collecting the constants, we can write the
EOM as:

∂

∂t

(

XA

PA

)

= −2σ0γ

A∆

(

a1
L

∫ L
0 dz

√

〈Jx〉Sz(z) + 2(2F − 1)a2SxPA

(2F − 1)a2
1
L

∫ L
0

√

〈Jx〉Sy(z) − 2SxXA

)

+
1

|a1|

√

η

T

(

fXA

fPA

)

− η

T

Γ

2a2
1

(

XA

PA

)

. (7.43)

As mentioned earlier we can performing a change of coordinates and eliminate XA and PA

from the coherent part of the equation system to have:

∂

∂t

(

XA

PA

)

=
κ

L

∫ L

0
dz





Sz(z,t)√
〈Sx〉T

(2F−1)a2

a1

Sy(z,t)√
〈Sx〉T



+

√

η

T

1

|a1|

(

fXA

fPA

)

− η

T

Γ

2a2
1

(

XA

PA

)

. (7.44)
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We see that we have arrived at a differential equation which is very similar to the one we
had for light (6.69). Again the solution is of the same form, where the light operators are
just some extra noise terms:

(

Xout
A

P out
A

)

= e
−η Γ

2a2
1

(

Xin
A

P in
A

)

+

∫ T

0
dte

−η Γ

2a2
1

(T−t)
T {κ

L

∫ L

0
dz





Sz(z,t)√
〈Sx〉T

(2F−1)a2

a1

Sy(z,t)√
〈Sx〉T



+

√

η

T

1

|a1|

(

fXA
(t)

fPA
(t)

)

}. (7.45)

We have seen that to use our protocol of mapping light variables onto the atomic variables,
we need to get rid of the a2 term. Therefor we assume that the detuning is sufficiently big
such that a2 contributions are negligible and replace the damping of the light quadrature

PL with a mean damping e
− η

2
Γ

2a2
1 . This replacement is not trivial and only works in the case

where the decay is not too big. We can sketch some details by expanding the exponential
to first order and to simplify the expression we use β = η Γ

2a2
1
:

∫ T

0
e−β

(T−t)
T Sz(t)dt ≃

∫ T

0
(1 − β

(T − t)

T
)Sz(t)dt

= (1 − β

2
)

∫ T

0
Sz(t)dt + β

∫ T

0
dt(

t

T
− 1

2
)Sz(t). (7.46)

The first term corresponds to the mean damping that we made and is for the simple
constant mode that we usually focus on. The last term is a correction that corresponds to
another mode of the incoming light and including it would effectively give more noise in
the results. We will neglect for our purpose and what is left we recognize as the first order

expansion of e−
β
2 . One could also have reached the same result simply by saying that for

the coherent part in (7.45) we average the time in the exponential to t = T
2 . So for not too

big decay we have that:

(

Xout
A

P out
A

)

≃





e
−η Γ

2a2
1Xin

A + κe
− η

2
Γ

2a2
1 P in

L

e
−η Γ

2a2
1 P in

A



+

√

η

T

1

|a1|

∫ T

0
dte

−η Γ

2a2
1

(T−t)
T

(

fXA
(t)

fPA
(t)

)

. (7.47)

When we perform the direct mapping protocol described in chapter 2 (subtract Xout
L from

P out
A ), the equations translate to:

(

Xout
A

P out
A

)

=





(e
−η Γ

2a2
1Xin

A + κe
− η

2
Γ

2a2
1 P in

L )

(e
−η Γ

2a2
1 − κg)P in

A − gXin
L



+

√

η

T

1

|a1|

∫ T

0
dte

−η Γ

2a2
1

(T−t)
T

(

fXA
(t)

fPA
(t)

)

.

(7.48)

Now let us examine what are the optimal values of the parameters g and κ for the protocol
to be succeful. We immediately see that we want g = 1 so PA gets the value of XL.
However as we have seen the light also undergoes some decay and in case this decay is

non-zero we should put g = e
+η

NA
Np

ΓL

2a2
1 , so the role of g is to correct for the possible decay

of the light quadratures. But as we have mentioned we assume that the ratio NA

Np
≪ 1,

so we will not take the decay of the light into account. For XA to get the value of PL we
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need to have κe
− η

2
Γ

2a2
1 = 1. This equation is of the form ecx

2
= x and it cannot be solved

in terms of simple functions, but we can write the solution as:

κ = e
− 1

2
LambertW(− Γ

4a2
1

d
)
. (7.49)

Here LambertW is a special function and it’s definition and application in physics can for
instance be seen in [3]. The graph of κ:
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Figure 7.1: κ0(−∆, d).

shows that the values of κ are slightly above 1, which is well known from earlier work [27].
Also we see that when the optical depth is too small there is no solution - we cannot map
XL faithfully onto XA, because the decay is too big. Mathematically it means that the
equation ecx

2
= x cannot be solved, because c is too big and the exponential function blows

up without intersecting x. Remembering that κ is given by (7.49) the equations read:

(

Xout
A

P out
A

)

=





e
−η Γ

2a2
1Xin

A + P in
L

(e
−η Γ

2a2
1 − e

η
2

Γ

2a2
1 )P in

A −Xin
L



+

√

η

T

1

|a1|

∫ T

0
dte

−η Γ

2a2
1

(T−t)
T

(

fXA
(t)

fPA
(t)

)

.

(7.50)

These equations represent the memory protocol with included decay. We see that they are
not as simple as the ideal ones in (2.13+14) and PA is no longer conserved. However if XA

and PA have zero mean input values, we still have achieved the wanted:

〈Xout
A 〉 = 〈P in

L 〉, (7.51)

〈P out
A 〉 = −〈Xin

L 〉. (7.52)

So despite the decay and added noise we can still use this protocol for mapping the light
quadratures. The variances now become:

∆X2,out
A = e

−η Γ

a2
1 ∆X2,in

A + ∆P 2,in
L +

(1 − e
−η Γ

a2
1 )

Γ
〈fXA

fXA
〉, (7.53)

∆P 2,out
A = (e

−η Γ

2a2
1 − e

η
2

Γ

2a2
1 )2∆P 2,in

A + ∆X2,in
L +

(1 − e
−η Γ

a2
1 )

Γ
〈fPA

fPA
〉. (7.54)

In the limit where the decay vanishes we have that the input-output relations (7.50) and
variances (7.53+54), become the original from chapter 2 (2.15-18). This is also what we
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expected, but let us now consider the limit where the decay is substantial (but not too big

to ruin the protocol) such that we may neglect the terms e
−η Γ

a2
1 . Then from (7.25+35) we

see that for the b-terms 〈fXfX〉
Γ = 〈fP fP 〉

Γ = 1
2 . Therefor this decay does not contribute to

the X,P variances. It is reasonable, because if an atom decays to an auxillary level (we
remember that the b terms described the processes that changed the spin state), it should
not increase the noise in the quadratures - if we started in a minimum uncertainty state
and some atoms ”decay out” the rest atoms are still in the minimum uncertainty state. So
for b-terms it is sensible to model the decay and noise by standard vacuum operators, as
is done in [10]. And as one can easily see the same does not hold for the a terms, there
the decay will created extra noise - we are no longer in the desired minimum uncertainty
state. With some caution one can compare it to what is known in other areas of quantum
information: that it is better to lose some part of your system, than to keep it complete,
but decohered.
Also note that from (7.35) we see that there are no a2

1 terms in the decay rate Γ, but we
we do have that in the noise correlations (7.25). And actually there is also a non-vanishing
contribution to the decay from the b1 term, which also had a non-zero limit value (equal
to the one for a1). When putting in numbers one finds that the biggest contributions to
the decay come from the b terms.
From the variances above we can calculate the fidelity that was given by:

F = (
1

2
+ ∆X2,out

A )−
1
2 × (

1

2
+ ∆P 2,out

A )−
1
2 . (7.55)

We remember that the fidelity was limited by 82%, but we naturally expect it to be
lower due to decay. And as we said F = 1

2 is the border between succes or fail of the
mapping protocol. Assuming the initial quadratures to be shot noise limited, we get that
the fidelity is (to be consistent we have not assumed a constant value of κ, but used the
formal expression (7.49)):
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Figure 7.2: Left: F0(∆, d) and Right: F(d) at ∆ = −1 GHz.

We see that the fidelity is almost independent of the detuning in the considered region,
but we keep in mind that we have thrown away the a2 terms, thereby commiting ourselves
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to high detunings. Both the graphs for κ and fidelity show that the protocol can only
work for optical depths above 6-7 (value at ∆ = −1 GHz). But once it works we (almost)
immediately have F > 1

2 , which was the succes criterion. The fidelity grows as we continue
to increase the depth and becomes flat d = 50. In the asymptotic regime we approach the
maximal value Fmax ≃ 82%. Note that because we generally cannot eliminate P in

A from
the input-output relations, and there is no reason to squeeze XA infinitely, because that
way we increase the variance of PA. In our calculations we have simply assumed minimum
uncertainty (1

2) on both quadratures (as we also do for light), but small squeezings could
increase the fidelity.

Orthogonal configuration (θ = π
2
)

Now we assume the atoms are prepared in a state with jy = F , so the angle between the
light, which is still x-polarized and atomic polarization is π

2 . This is the other extreme -
all other cases must lie within this and the previous. This time we define the canonical
operators:

XA = − Jx
√

〈Jy〉
, PA =

Jz
√

〈Jy〉
. (7.56)

And one can check that this operators also obeys [X,P ] = i in the mean. We will skip the
details, because the derivation is performed similarly to the parallel case and one ends up
with a full equation that reads:

∂

∂t

(

XA

PA

)

(t) = − σ0γ

2A∆

(

a1

√

〈Jy〉 1
L

∫ L
0 dzSz(z, t)

+2(2F − 1)a2〈Sx〉XA(t) − (2F − 1)a2

√

〈Jy〉 1
L

∫ L
0 dzSy(z, t)

)

+
1

|a1|

√

η

T

(

fXA
(t)

fPA
(t)

)

− η

T

1

2a2
1

(

ΓXXA(t)
ΓPPA(t)

)

. (7.57)

This time our composite system does not posses the same symmetry as last time and it
leads to the decays for XA, PA:

ΓX =
3

2
a2

1 + 119a1a2 −
245

2
a2

2 + 21(b21 + 2b1b2 + 13b22), (7.58)

ΓP =
1

2
a2

1 − 7a1a2 +
105

2
a2

2 + 14(b21 − 6b1b2 + 21b22), (7.59)

Γ =
1

2
(ΓX + ΓP ) = a2

1 + 56a1a2 − 35a2
2 +

7

2
(5b21 − 6b1b2 + 81b22). (7.60)

The decays are completely different, not even the b terms are the same. Moreover unlike
last time we now have an a2

1 term in the decays. Similarly the noise correlations are also
different now:

〈fXA
(t)fXA

(t′)〉 = δ(t− t′)
1

2
(9a2

1 − 14a1a2 + 63a2
2 +

7

2
(5b21 − 6b1b2 + 81b22)), (7.61)

〈fPA
(t)fPA

(t′)〉 = δ(t− t′)
1

2
(a2

1 + 14a1a2 + 651a2
2 +

7

2
(5b21 − 6b1b2 + 81b22)). (7.62)

But they still have:

〈[fXA
(t), fPA

(t′)]〉 = iδ(t− t′)Γ, (7.63)

〈{fXA
(t), fPA

(t′)}〉 = 0. (7.64)
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Besides that, they have changed a lot from last time, but interestingly the b part is common
for the correlations of fXA

and fPA
and is half 〈Γ〉. We can plot these together with the

ones for θ = 0:
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Figure 7.3: Left: Decays Γ
a2
1

for θ = 0(black) and θ = π
2 , Right: Noise correlations 〈ff〉

a2
1

for

θ = 0(black) and θ = π
2 .

These graphs show the decay and the noise for the two cases we have analyzed so far. Even
though it looks like both the decay and noise grows as we increase the detuning, we must
remember that in the actual expressions we also have a 1

∆2 outside, which damps the decay
contributions as we make ∆ larger. We see that for θ = 0 we have a bit smaller mean
decay than for θ = π

2 . In the last case we have that ΓX is more than 2 times as large as
ΓP . A larger ΓX implies that we expect the critical (for which the protocol begins to work)
optical depth to be higher than earlier. For the noise we see that interestingly all the noise
correlations for θ = π

2 are smaller than for θ = 0. From first sight it can be surprising
that even though our decay rates as whole are larger, then we still have less noise on the
quadratures. And because the noise correlations are smaller we indeed will find a higher
fidelity.
Now let us we return to the EOM. We can no longer make a unitary transformation in
(7.57) to eliminate the XA term from the coherent part of PA, since this is no longer a
Hermitian matrix we ought to make diagonal. This Zeeman shift can still be accounted for
and we throw away this term, so we again can write:

∂

∂t

(

XA

PA

)

(t) =
κ

L

∫ L

0
dz





Sz(z,t)√
〈Sx〉T

− (2F−1)a2

a1

Sy(z,t)√
〈Sx〉T



+

√

η

T

1

|a1|

(

fXA
(t)

fPA
(t)

)

− η

T

1

2a2
1

(

ΓXXA(t)
ΓPPA(t)

)

.

(7.65)

So we see that for the coherent part we have a sign change for the coherent evolution of
PL relative to the former case, but the overall structure is the same. However we keep in
mind that this time the noise operators and decay have changed asymmetrically and give
different correlations. Solving the equation we get:

(

Xout
A

P out
A

)

=





e
−η

ΓX

2a2
1Xin

A

e
−η

ΓP

2a2
1 P in

A



+

∫ T

0
dt









e
−η

ΓX

2a2
1

(T−t)
T [ κ

L

∫ L
0 dz Sz(z,t)√

〈Sx〉T
+
√

η
T

1
|a1|fXA

(t)]

e
−η

ΓP

2a2
1

(T−t)
T [− (2F−1)a2

a1

κ
L

∫ L
0 dz

Sy(z,t)√
〈Sx〉T

+
√

η
T

1
|a1|fPA

(t)]









.

(7.66)
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Now to use the protocol we again ignore the a2 terms in the coherent part and affect a
mean damping of PL:

(

Xout
A

P out
A

)

=





(e
−η

ΓX

2a2
1Xin

A + κe
− η

2

ΓX

2a2
1 P in

L )

e
−η

ΓP

2a2
1 P in

A



+

√

η

T

1

|a1|

∫ T

0
dt





e
−η

ΓX

2a2
1

T−t
T fXA

(t)

e
−η

ΓP

2a2
1

T−t
T
fPA

(t)



 .

(7.67)

Performing the protocol and optimizing the parameter κ (we ignore the attenuation of
light, meaning that g is always 1) we get for this case that to map PL onto XA we need:

κ = e
− 1

2
LambertW(− ΓX

4a2
1

d
)
. (7.68)

This gives a graph that is very similar to the last one:
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Figure 7.4: Left: κπ
2
(−∆, d) for θ = π

2 , Right: κ0(red) and κπ
2
(blue) at ∆ = −1 GHz.

Once again we see how κ diverges as d → 0, while as we increase d we have κ close to 1.
Again κ depends very weakly on the detuning and much more on d.
Again performing our memory protocol, we arrive at:

(

Xout
A

P ′out
A

)

=





e
−η

ΓX

2a2
1Xin

A + P in
L

(e
−η

ΓP

2a2
1 − e

η
2

ΓX

2a2
1 )P in

A −Xin
L



+

√

η

T

1

|a1|

∫ T

0
dt





e
−η

ΓX

2a2
1

T−t
T
fXA

(t)

e
−η

ΓP

2a2
1

T−t
T fPA

(t)



 .

(7.69)

The only difference from (7.50) is that the noise and decay for XA,PA are no longer the
same. In the limit of vanishing decay we again obtain (2.13+14) and in the mean we again
have accomplished the mapping (7.51+52). This time the variances are:

(

∆X2,out
A

∆P 2,out
A

)

=









e
−η

ΓX

a2
1 ∆X2,in

A + ∆P 2,in
L + (1−e

−η
ΓX
a2
1 )

ΓX
〈fXA

fXA
〉

(e
−η

ΓP

2a2
1 − e

η
2

ΓX

2a2
1 )2∆P 2,in

A + ∆X2,in
L + (1−e

−η
ΓP
a2
1 )

ΓP
〈fPA

fPA
〉









. (7.70)

This is almost what we found before, but now we have different decay rates and noise
contributions for X and P because of the asymmetry. From the variances we can find the
fidelity, which is:
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Figure 7.5: Left: Fπ
2
(−∆, d), Right: F0(d) (red) and Fπ

2
(d) (blue) at ∆ = −1 GHz.

This time we see that the protocol only starts working for optical depths above 10. This
is because XA decays at a highter rate, as we saw in the fig 7.3. On the other hand,
once it works it immediately gives F > 1

2 and the fidelities produced are higher than for
θ = 0. This can also be explained by the graphs from fig.7.3. Because even though we have
to deal with higher decay rates, we on the other hand have smaller noise contributions,
which is more important for the fidelity. At an optical depth around 20, the fidelity is
around 0.75 and it continues to grow as we increase d, but is virtually unaffected by the
detuning. Actually as was also the case last time, the fidelity is even slightly larger for
smaller detunings. But we remember that for the protocol to be meaningful we needed
small a2 and therefor it is the higher detunings that interest us. In (7.58-62) we saw the

decays and correlations explicitly and from them we see that both
〈fXA

fXA
〉

ΓX
and

〈fXA
fXA

〉
ΓX

are no longer 1
2 . Actually when putting in numbers one finds that the uncertainty for X

in below shot noise, while for P it is above. This means that if we once again start in a
minimum uncertainty state (and again neglect the e−Γ terms), then if the atoms decay to
another spin state, it produces a squeezing of XA and stretching of PA. We conclude that
the orthogonal configuration requires a higher critical depth (10), but overall gives higher
fidelities (0-5%) than the parallel configuration.

General configuration

Now we will consider the general case with two orthogonal components of the spin J⊥ and
Jz and a parallel component J‖, so:

XA =
J⊥
√

〈J‖〉
, PA =

Jz
√

〈J‖〉
. (7.71)

We can write the spin in terms of cartesian components:

Jx = cos θJ‖ − sin θJ⊥, (7.72)

Jy = sin θJ‖ + cos θJ⊥. (7.73)
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We see that Jx,Jy are nothing but a rotation of the (J‖, J⊥) by an angle θ around the
z-axis. When θ = 0 the atoms are polarized along the x-direction and the y-direction
when θ = π

2 . So we can express the general XA,PA through:

XA =
〈Jx〉Jy − 〈Jy〉Jx

(〈Jx〉2 + 〈Jy〉2)
3
4

, PA =
Jz

(〈Jx〉2 + 〈Jy〉2)
1
4

. (7.74)

It is seen that they fulfill:

[XA, PA] =
1

〈Jx〉2 + 〈Jy〉2
(〈Jx〉[Jy, Jz] − 〈Jy〉[Jx, Jz])

=
i

〈Jx〉2 + 〈Jy〉2
(〈Jx〉Jx + 〈Jy〉Jy). (7.75)

So on average we have again that 〈[XA, PA]〉 = i. Now the analysis in the general case is
very parallel to the two special cases θ = 0 and θ = π

2 , only now the evolution reads:

ẊA =
J̇⊥
√

〈J‖〉
− 1

2

J⊥
√

J‖

〈J̇‖〉
〈J‖〉

, (7.76)

ṖA =
J̇z

√

〈J‖〉
− 1

2

Jz
√

J‖

〈J̇‖〉
〈J‖〉

. (7.77)

The most notable difference is that when we linearize the atomic operators we obtain an
angular dependence:

∂

∂t
j‖ = −2σ0γ

A∆
(2F − 1)a2 sin(2θ)(−1

2
cos θj‖Sy + Sxjz), (7.78)

∂

∂t
j⊥ = −2σ0γ

A∆
(a1j‖Sz + (2F − 1)a2(

1

2
sin θ sin(2θ)j‖Sy + 2cos2 θSxjz), (7.79)

∂

∂t
jz = −2σ0γ

A∆
(2F − 1)a2(cos(2θ)j‖Sy −

1

2
sin(2θ)j‖Sx − 2 cos(2θ)Sxj⊥). (7.80)

Here we have kept those terms where at least one of the variables has a big mean value (j‖
or Sx), but the full equations can be found in App.B.2. The equations for the momenta
are quite intricate and have many terms that go as sin(2θ), which we therefore did not see
in the parallel and orthogonal case.
We really want the mean spin to be fixed during the interaction, but according to (7.78) it
is not the case in general. Even though the magnitude 〈j‖〉 might be preserved or change
by a only small amount, the fact that the right-hand side of (7.78) is non-zero, means that
we at best only have a rotation of j‖. This however is already bad enough and is the first
indication of that we really are only interested in the choices θ = 0, π

2 .
As we expected, the Faraday term (a1) in (7.78) does not depend on θ, because it described
hos the z component of atomic spin and Sz coupled to each other, while θ is an angle in
the xy-plane. Furthermore we see from (7.79) and (7.80) how the much the a2 terms
generally complicate the interaction. The last term in (7.79) and (7.80) is the Zeeman
shift and as we saw for the orthogonal case, it as a rule is not identical for the two spin
components. Nonetheless the biggest problem is the second term in (7.80). Both Sx and
j‖ (when we change to collective spin) are very big quantities, meaning that the product
Sxj‖ will produce a gigantic drift of jz, which we want to be conserved. Again this can be
solved (besides setting a2 = 0), by having θ = 0, π

2 .
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Keeping in mind that the coherent interaction is the central, our discussion leads to the
conclusion that for the interaction to be as close to the Faraday form we (besides having
big detunings) really want θ = 0 or θ = π

2 . As a consequence of that we could stop with the
general considerations here and solely rely on the results from the parallel- and ortogonal
configuration. But there are some interesting points worth noting for the noise and decay,
so we continue.
First we look at the evolution of XA and PA, where we neglect the changes in j‖:

∂

∂t

(

XA

PA

)

(t) = κ{ 1

L

∫ L

0
dz





Sz(z,t)√
〈Sx〉T

+ (2F−1)a2

a1
sin θ sin(2θ)

Sy(z,t)√
〈Sx〉T

2(2F−1)a2

a1
(cos(2θ)

Sy(z,t)√
〈Sx〉T

− sin(2θ) Sx√
〈Sx〉T

)





+
2(2F − 1)a2

a1

√

〈Sx〉
〈J‖〉

(

cos2 θPA(t)
− cos(2θ)XA(t)

)

}. (7.81)

Ignoring the Zeeman shift, gives the solution:

(

Xout
A

P out
A

)

=

(

Xin
A

P in
A

)

+ κ
1

L

∫ L

0
dz

(

PL(z) + (2F−1)a2

a1
sin θ sin(2θ)XL(z)

2(2F−1)a2

a1
(cos(2θ)XL(z) −

√

〈Sx〉T sin(2θ))

)

. (7.82)

The last term in the expression of P out
A is very big since 〈Sx〉T ≃ Np and it means that

unless θ = 0 or π
2 , it practically erases any information we want to have in PA by adding

this big quantity. Choosing a2 = 0 we return to the ideal relations.

We can find the noise operators in the general case, by using that j⊥ = − sin θjx + cos θjy
and that we in this chapter already have discussed how they were formed for the different
Cartesian spin components. As with the former cases using the g elements from App.C.3.
one can construct the noise operators:

(

fXA

fPA

)

=
1

√

〈J‖〉

∫ L

0

(

(F⊥ + F †
⊥)(z)

(Fz + F †
z )(z)

)

ρAdz, (7.83)

where the noise operator Fi was defined in (7.21) and F⊥ = − sin θFx + cos θFy. One
could fear that the correlations between these operators would be very complicated due to
the θ dependence, both explicitly from the definition of F⊥ and implicitly when we should
evaluate the elements of g2

i . But as in the former cases due to the assumption of light
being strongly polarized along x we will only keep the (x,x) terms of the decay and the
noise correlations. After some calculations where we use the values of g2 from App.C.3.
and the linearizations from B.1, we find that the result is quite simple:

〈fXA
(t)fXA

(t′)〉(θ) = δ(t− t′)(〈fXA
fXA

〉(0) cos2 θ + 〈fXA
fXA

〉(π
2
) sin2 θ), (7.84)

〈fPA
(t)fPA

(t′)〉(θ) = δ(t− t′)(〈fPA
fPA

〉(0) cos2 θ + 〈fPA
fPA

〉(π
2

) sin2 θ). (7.85)

Apparently the noise correlations can be written as f(θ) = f(0) cos2 θ+f(π
2 ) sin2 θ. Think-

ing about it, it is quite reasonable. Our quantities should be invariant under rotations of
π and moreover symmetry implies the quantities to be the same for ±θ, which makes the
form above quite plausible. That allows us to plot the different noise correlations:
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1
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1
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We see that for a give detuning, both the X-and P noise correlations are smooth functions
of θ. They have minimum for orthogonal configuration and maximum for parallel-, which
is also confirmed in fig.7.3. So loosely stated we get most noise for θ = 0 and least noise
for θ = π

2 .

To construct the decay of X,P in the general case we follow the same path as for the
noise. We express j⊥ and j‖ in terms of cos θ, sin θ combinations of jx and jy and use the
(x,x) elements of the decay matrices ξi in App.C.4. That way we can find the decay of
J‖, J⊥ and Jz, and again we find the general form to be a harmonic combination of θ = 0
and θ = π

2 :

Γ‖(θ) = Γx(0) cos2 θ + Γy(
π

2
) sin2 θ, (7.86)

Γ⊥(θ) = Γy(0) cos2 θ + Γx(
π

2
) sin2 θ, (7.87)

Γz(θ) = Γz(0) cos2 θ + Γz(
π

2
) sin2 θ. (7.88)

Here each of components Γi, i = x, y, z is obtained from the corresponding ξi according to
(7.32). From (7.76+77) we form the decay of the quadratures:

ΓX = Γ⊥ − 1

2
Γ‖ = ΓX(0) cos2 θ + ΓX(

π

2
) sin2 θ, (7.89)

ΓP = Γz −
1

2
Γ‖ = ΓP (0) cos2 θ + ΓP (

π

2
) sin2 θ. (7.90)

The following graphs show the decays for different angles:
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The first graph shows that XA decays slowest at θ = 0 and fastest θ = π
2 . From the second

graph we see that the situation is reversed for PA, which decays fastest for θ = 0. Because
ΓX overall is larger than ΓP , we get that the mean decay 〈Γ〉 has the same extremal points
as ΓX , but for increasing detuning the angular dependence disappears. Again this we also
saw earlier in Fig.7.3.
We remember that the b part of ΓX was the same for both configurations and together
with (7.68) it means that it is independent of the polarization angle. Possibly we could
also have guessed that it was so - after all we decay ”out”, so how precisely our atoms are
oriented relative to the polarization of the light field should not matter. But on the other
hand, we remember that the same did not hold for ΓP , the b part of the decay was different
in the two situations. The fact that we have some kind of angular dependence for ΓP must
mean that we are dealing with a kind of interference effect. The decay interference comes
from the interference between the possible decay paths and is not something new - it can
for instance serve to induce transparency as described in [22].
When it comes to the b parts of the noise correlations, we had in both cases that 〈fXfX〉 =
〈fPfP 〉 = 1

2〈Γb〉, which therefor must hold for all θ. But note that they can only be directly
related to the mean decay rate, not the individual ΓX and ΓP . We have not talked so much
about the a-terms, because they have no simple relations between noise correlations and
decay.
Together with the noise correlations above we have seen that there somehow is a tradeoff
between noise correlations and decay, if you want one of them to be smaller, the other one
grows correspondingly. Noise is smallest for orthogonal configuration, while we have least
decay for parallel.

Now we are ready to join the results in the full general EOM. Including the noise and
decay in (7.80) we get without the Zeeman shift:

∂

∂t

(

XA

PA

)

(t) =
κ

L

∫ L

0
dz





Sz(z,t)√
〈Sx〉T

+ (2F − 1)a2 sin θ cos(2θ)
Sy(z,t)√
〈Sx〉T

2(2F − 1)a2(cos(2θ)
Sy(z,t)√
〈Sx〉T

− sin(2θ) Sx√
〈Sx〉T

)





+

√

η

T

1

|a1|

(

fXA

fPA

)

(t) − η

2a2
1T

(

ΓXXA

ΓPPA

)

(t). (7.91)

Once again the solution is of the form:

(

Xout
A

P out
A

)

=





e
−η

ΓX

2a2
1Xin

A

e
−η

ΓP

2a2
1 P in

A





+

∫ T

0
dt









e
−η

ΓX

2a2
1

T−t
T [ κ

L

∫ L
0 dza1

Sz(z,t)√
〈Sx〉T

+ (2F − 1)a2 sin θ cos(2θ)
Sy(z,t)√
〈Sx〉T

+
√

η
T

1
|a1|fXA

]

e
−η

ΓP

2a2
1

T−t
T [ κ

L
2(2F−1)a2

a1

∫ L
0 dz cos(2θ)

Sy(z,t)√
〈Sx〉T

− sin(2θ) Sx√
〈Sx〉T

+
√

η
T

1
|a1|fPA

]









.

(7.92)

To use the protocol we again ignore the a2 terms in the coherent part and assume a mean
damping of PL:

(

Xout
A

P out
A

)

=





(e
−η

ΓX

2a2
1Xin

A + κe
− η

2

ΓX

2a2
1 P in

L )

e
−η

ΓP

2a2
1 P in

A



+

√

η

T

1

|a1|

∫ T

0
dt





e
−η

ΓX

2a2
1

T−t
T fXA

(t)

e
−η

ΓP

2a2
1

T−t
T
fPA

(t)



 .

(7.93)
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The resulting equation is identical to the one for θ = π
2 , only now our decay and noise have

an angular dependency. Again performing the protocol and optimizing κ (g = 1) we get
that κ should be as in (7.59). This time we choose to plot κ as a function of θ and d and
set the detuning to -1 GHz:
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Figure 7.8: κ(d, θ) at ∆ = −1 GHz.

For high optical depths κ is close to 1, no matter what θ is. But for small depths κ diverges
and the closer the angle is to π

2 the more pronounced is the divergence. With this setting
of κ the protol yields:

(

Xout
A

P ′out
A

)

=





e
−η

ΓX

2a2
1Xin

A + P in
L

(e
−η

ΓP

2a2
1 − e

η
2

ΓX

2a2
1 )P in

A −Xin
L



+

√

η

T

1

|a1|

∫ T

0
dt





e
−η

ΓX

2a2
1

T−t
T fXA

(t)

e
−η

ΓP

2a2
1

T−t
T
fPA

(t)



 .

(7.94)

One sees that we again for vanishing atomic input, have succesfully performed the mapping:

〈Xout
A 〉 = 〈P in

L 〉, (7.95)

〈P out
A 〉 = −〈Xin

L 〉. (7.96)

The variances are also formally the same as for θ = π
2 :

(

∆X2,out
A

∆P 2,out
A

)

=









e
−η

ΓX

a2
1 ∆X2,in

A + ∆P 2,in
L + (1−e

−η
ΓX
a2
1 )

ΓX
〈fXA

fXA
〉

(e
−η

ΓP

2a2
1 − e

η
2

ΓX

2a2
1 )2∆P 2,in

A + ∆X2,in
L + (1−e

−η
ΓP
a2
1 )

ΓP
〈fPA

fPA
〉









, (7.97)

and inserting these into the expression for the fidelity we get the fidelity as a function of
optical depth and polarization angle:
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Figure 7.9: Left: F(d, θ) at ∆ = −1 GHz, Right: F0(d)(red) and Fπ
2
(d)(blue) at ∆ = −1

GHz.

The graph shows that the fidelity does not depend so much on θ, but much more on d. For
optical depths above 10 we can make the protocol work for all angles. The fidelity has a
small bulge for θ = π

2 , but as we increase d it smears out and becomes flat around d = 50.
Increasing d further we approach the maximal fidelity of 82%.

In this chapter we have found the fidelity F as a continuos function of polarization angle θ
and optical depth d. During that we have stressed that we actually only have the choices
θ = 0 or θ = π

2 . The reason is that for general θ we encountered big drift terms going as
sin(2θ) that vanish only for these two settings. And unless one has optical depths below
10 (in principle the protocol should work for optical depths as low as 6-7 for the parallel
configuration), the highest fidelity is achieved for θ = π

2 , where it is about 0.60 at d = 10
and grows as d is increased and is 0.75 already at d = 20.



Chapter 8

Conclusion

Let us now sum up what we have done in this thesis. Our work has been motivated by
the direct mapping protocol, which builds on the Faraday interaction. To understand the
system we have set up an effective dipole Hamiltonian that describes the interaction of
atoms with highly off-resonant light. We have included the full level structure of the atoms
and treated the light field in a simple way, assuming the transverse mode to be constant
and having high Fresnel numbers to avoid diffraction effects. Moreover we have assumed
it to have a strong classical field along x and a weak quantum field along y. From this
Hamiltonian we have looked at the dynamics of light- and atomic variables and seen how
one can include the spontaneous emission arising from couplings to environment. For the
atoms we have sketched how one extends the dynamics from a single atom to a whole
ensemble of atoms.
After that we were ready to investigate the equations of motion for the quadratures. We
studied the cases where the atomic ensemble and light have parallel- and orthogonal po-
larizations. We have explicitly calculated the amount of noise and decay in these cases
and seen that for the mapping protocol to work, one generally needs optical depths above
10 (for the parallel configuration we have found that in principle it should still work for
optical depths around 6-7). The highest fidelity can be achieved by having atoms polarized
orthogonal to light although the difference from the parallel is just a few percent. The
fidelities we find are well above the limit 1

2 , rendering the protocol in theory to be useful
and for optical depths around 20 one should be able to reach fidelities around 0.75. Of
course our assumptions of having everything all interesting operators shot noise limited is
difficult to realize in real lifem, so one can expect the actual fidelities to be lower.
Besides the two extremal situations, we have also looked at a general angle between the
polarization of light and atoms. Our calculations show that there is no reason to have
other configurations of light and atoms, because otherwise the protocols get distorted by
big drift terms.
Generally we find that a simple way to increase the fidelity, is to increase the optical
depth. That could be done by increasing the concentration of atoms, but as we have seen
in chapter 5 then one can get in trouble because then the dipole-dipole interaction between
neighbouring atoms can no longer be ignored and the simple model breaks down. How
much the concentration can be increased is likely to be guided by the experiments at hand.
The noise correlations and decays we have calculated include the full level structure of
cesium and these numbers should for the first time give a realistic theoretical comparison
with the measured values. From the elements in App.C one can find even more correlations
than we have needed.
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So what future analysis could be worth making? For instance one could try other atomic
transitions. Most of the time we have only been looking at F = 4, one could go through
the same calculations and check whether there is less noise for F = 3. Of course we could
also look at the D1 line, but there the problem is that the a2 terms are bigger and since
the whole protocol builds on the assumption that a2 → 0, it is not likely to be a better
candidate. Most of the theoretical framework we have seen can also be carried over to
other alkali atoms. Here we mainly think of rubidium, which a recent paper describes [16].
A degree of freemdom we have not exploited is the squeezing of the atomic input quadra-
tures XA and PA. They could also be important tools for increasing the fidelity. For
instance we have seen how in the pure Faraday interaction one could increase the fidelity
by squeezing XA. Once we introduced decay, it was no longer desirable to have infinite
squeezing, but it could be worth determining how much squeezing is optimal for the fidelity
with included decoherence.
Finally it could also be worth to set up a theory that works as the detunings approach
zero. In our framework the noise and decay diverges at that point. Possibly it could be
done by waiting with the adiabatic elimination, but the precise path is yet to be found,
even though many things already fit well in [10].



Appendix A

Light

A.1 Radiation theory

We make a little detour into the general theory of radiation to remind ourselves of the
basic concepts. As always when dealing with electromagnetic fields the natural starting
point are Maxwell’s equations:

∇ × E +
∂B

∂t
= 0, (A.1)

∇ × H − ∂D

∂t
= J, (A.2)

∇·D = σ, (A.3)

∇·B = 0. (A.4)

Here J is the current density, while σ is the free charge density, which generates our fields.
In vacuum they are zero, while D = ǫ0E, H = µ0B. A standard way of expressing the
fields, is to exploit the forms of the equations and write the electric and magnetic field as:

E = −∇φ− ∂A

∂t
,B = ∇ ×A. (A.5)

As one can check Maxwell’s equations are invariant under gauge transformations, so if we
make the transformations:

φ′ = φ− ∂χ

∂t
,A′ = A + ∇χ. (A.6)

(here χ is any given scalar function of position and space), Maxwell’s equation remain
unchanged, that is A′ and φ′ also fulfill them if A and φ do. We will adopt the Coulomb
gauge for which we set φ = 0 and ∇·A = 0, so the field equations simplify:

E = −∂A
∂t

,B = ∇ × A. (A.7)

So the vector potential uniquely determines the electric- and magnetic field. Using the
vector identity ∇ × (∇ × A) = ∇(∇·A) −∇2A we get the wave equation:

(∇2 − ∂

∂t2
)A = 0. (A.8)

In open space we write the potential as:

A(r, t) =
∑

kσ

ǫkσ

√

1

2ǫ0V ωk
(akσe

i(k·r−ωkt) + a†kσe
−i(k·r−ωkt)). (A.9)
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From which the fields follow according to (11.7):

E(r, t) = i
∑

kσ

ǫkσ

√

ωk

2ǫ0V
(akσe

i(k·r−ωkt) − a†kσe
−i(k·r−ωkt)), (A.10)

B(r, t) = i
∑

kσ

k̂×ǫkσ

√

ωk

2ǫ0V
(akσe

i(k·r−ωkt) − a†kσe
−i(k·r−ωkt)). (A.11)

Here k̂ = k/|k| and we will employ the useful separation:

E(r, t) = E(+)(r, t) + E(−)(r, t). (A.12)

Here E(+) contains the annihilation operators that oscillate as e−iωkt and E(−)(r, t) =
(E(+)(r, t))† contains the creation operators oscillating with the conjugate frequency. An-
other common way of writing the electric field omits the i and corresponds to an overall
phase change, so:

E(r, t) =
∑

kσ

ǫkσ

√

ωk

2ǫ0V
(akσe

i(k·r−ωkt) + a†kσe
−i(k·r−ωkt)). (A.13)

This is the form of the electric field that we will use in this work. We will not need the
magnetic field for our purpose.

A.2 Stokes operators

The Stokes operators are very practical for descriptions of light and are more easy to
measure from an experimental point of view, than the creation/annihilation operators. It
is also useful to introduce the circular annihilation (and creation) operators:

a+ = −ax − iay√
2

, (A.14)

a− =
ax + iay√

2
. (A.15)

They describe light having right (a+) - or left (a−) circular polarization. The Stokes
operators can be seen as a new operator basis, where Sx gives the number of photons
polarized along ex minus those along ey, Sy the number of photons polarized along e+45

minus those along e−45 and finally Sz gives the difference between σ+- and σ− polarizations.
They can be expressed in terms of the linear and circular operators:

Sx =
1

2
(a†+a− + a†−a+) =

1

2
(a†xax − a†yay), (A.16)

Sy =
i

2
(a†−a+ − a†+a−) =

1

2
(a†xay + a†yax), (A.17)

Sz =
1

2
(a†+a+ − a†−a−) =

1

2i
(a†xay − a†yax). (A.18)

The Stokes operators obey the canonical commutation relation:

[Si, Sj ] = i
∑

k

εijkSk. (A.19)
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If light is strongly polarized along the x-axis we may treat the operator ax as a classical
number Ax and now we may write the Stokes operators:

Sx ≈ A2
x

2
, (A.20)

Sy ≈ Ax

2
(ay + a†y), (A.21)

Sz ≈ Ax

2i
(ay − a†y). (A.22)

So all the interesting properties of the light are encoded in the weak y-polarized mode.
Finally we note that we also will use the total number of photons:

φ = a†+a+ + a†−a− = a†xax + a†yay. (A.23)

In the thesis our Stokes operators are actually fluxes, so they instead count the number of
photons per time.

A.3 Transformation of the light EOM

We will work in the paraxial approximation assuming a flat transverse profile and write
the forward electric field as:

EF(z, t) =
∑

kσ

ǫσ

√

ω0

2ǫ0V
(akσ(t)eikz + a†kσ(t)e−ikz),

= |E|
∑

σ

ǫσ(aσ(z, t) + a†σ(z, t)). (A.24)

Here |E| =
√

ω0
2ǫ0A and we have defined the space dependent operators

aσ(z, t) = 1√
L

∑

k akσ(t)eikz, where it is assumed that the different k are close to k0, so

the operators oscillate at the common frequency ω0 = |k0|. For the radiation field we have
that:

HL =
∑

kσ

ωka
†
kσakσ. (A.25)

Now we are to ready to form the EOM:

∂

∂t
aσ(z, t) = i[Hint +HL, aσ(z, t)], (A.26)

[HL, aσ(z, t)] =
1√
L

∑

k

[HL, akσ(t)]eikz = − 1√
L

∑

k

ωkakσ(t)eikz . (A.27)

But also have from the explicit z-dependence that:

∂

∂z
aσ(z, t) =

1√
L

∑

k

ikakσ(t)eikz. (A.28)

Which we recognize as −i[HL, aσ(z, t)]. So we replace the time evolution from the radiation
field by minus derivative with respect to z and end up with:

(
∂

∂t
+

∂

∂z
)aσ(z, t) = i[Hint, aσ(z, t)]. (A.29)
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This procedure is directly applicable for Stokes operators too. Now we throw away the time
derivative, which is the same as ignoring retardation effects. In fact it can be shown that
by introcucing a rescaled time the equality of the last equation without the time derivative
can be made exact. So totally we have an equation in position and not time for light
observables.



Appendix B

Atoms

B.1 Angular momentum

Throughout the thesis we are going to make an extensive use of the angular momentum
operators. Here I only present the relevant details - for a full explanation one can consult
any elementary book on quantum mechanics, such as [25]. The z-axis is conventionally
taken as the quantization axis and the defining properties of angular momentum operators
are:

jz|m〉 = m|m〉, (B.1)

j±|m〉 =
√

F (F + 1) −m(m± 1)|m±1〉. (B.2)

Where we have j± = jx±ijy. These operators are closely related to the rotation group
SO(3) and the mathematical structure of it is well explained in [30] and also [18]. We will
need the operators expressed in terms of density operators σab = |a〉〈b|, that is:

jx =
1

2

∑

m

√

F (F + 1) −m(m+ 1)(σm+1,m + σm,m+1), (B.3)

jy =
1

2i

∑

m

√

F (F + 1) −m(m+ 1)(σm+1,m − σm,m+1), (B.4)

jz =
∑

m

mσm,m, (B.5)

j+ =
∑

m

√

F (F + 1) −m(m+ 1)σm+1,m, (B.6)

j− =
∑

m

√

F (F + 1) −m(m+ 1)σm,m+1. (B.7)

By combining these we may form new expressions:

j2z =
∑

m

m2σm,m (B.8)

j2+ =
∑

m

√

(F −m)(F +m)(F + 1 +m)(F + 1 −m)σm+1,m−1, (B.9)

j2− =
∑

m

√

(F −m)(F +m)(F + 1 +m)(F + 1 −m)σm−1,m+1, (B.10)

j+jz =
∑

m

√

F (F + 1) −m(m+ 1)mσm+1,m, (B.11)

j−jz =
∑

m

√

F (F + 1) −m(m− 1)mσm−1,m. (B.12)
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And it is useful to know that:

j+|F 〉 = 0, j+|F − 1〉 =
√

2F |F 〉, j+|F − 2〉 =
√

2
√

2F − 1|F − 1〉, (B.13)

j−|F 〉 =
√

2F |F − 1〉, j−|F − 1〉 =
√

2
√

2F − 1|F − 2〉. (B.14)

Often we will linearize the atomic spin operators and here we describe how we have found
the given linearizations. Let j‖ denote the parallel component of the spin, along which
we assume the collective spin is pointing and j⊥ be a component perpindicular to j‖.
We will assume that the atom is almost in a coherent spin state and write the state as
|ψ〉 = 1√

1+ǫ2
(|F 〉 + ǫ|F − 1〉). That way we find that to first order in ǫ:

〈ψ|j‖|ψ〉 =
1√

1 + ǫ2
〈ψ|F |F 〉 + (F − 1)ǫ|F − 1〉) = F, (B.15)

〈ψ|j⊥|ψ〉 =
1

2
〈ψ|j+ + j−〉|ψ〉 =

1

2

1√
1 + ǫ2

〈ψ|
√

2Fǫ|F 〉 +
√

2F |F − 1〉,

=

√
2F

2

1√
1 + ǫ2

(〈F | + ǫ〈F − 1|)(ǫ|F 〉 + |F − 1〉) =
ǫ√

1 + ǫ2

√
2F . (B.16)

For instance the linearization for 〈j‖j⊥j‖〉 becomes this way:

j‖j⊥j‖|ψ〉 =
1√

1 + ǫ2
1

2
j‖(j+ + j−)(F |F 〉 + (F − 1)ǫ|F − 1〉),

=
1√

1 + ǫ2
1

2
j‖(

√
2FF |F − 1〉 + (F − 1)

√
2Fǫ|F 〉 + (F − 1)

√
4F − 2ǫ|F − 2〉),

=
1√

1 + ǫ2
1

2
(
√

2FF (F − 1)(|F − 1〉 + ǫ|F 〉) + (F − 1)(F − 2)
√

4F − 2ǫ|F − 2〉).

(B.17)

Taking the overlap with 〈ψ| we get this way:

〈ψ|j‖j⊥j‖|ψ〉 =
ǫ√

1 + ǫ2
F (F − 1)

√
2F = F (F − 1)j⊥. (B.18)

Using this approach one finds the matrix elements:

〈{j⊥, j′⊥}〉 ≈ 0, 〈{j‖, j⊥}〉 ≈ (2F − 1)j⊥, 〈j2‖ − j2⊥〉≈
F

2
(2F − 1), (B.19)

〈j‖j⊥j‖〉≈F (F − 1)j⊥, 〈j2⊥〉 ≈
F

2
, 〈j3⊥〉 ≈

3F − 1

2
j⊥, 〈j4⊥〉 ≈

F (3F − 1)

4
, (B.20)

〈j⊥j2‖j⊥〉 ≈
F (F − 1)2

2
, 〈j⊥j‖j⊥〉 ≈

1

2
(F − 1)j‖, (B.21)

〈j⊥j′⊥j⊥〉 ≈
F − 1

2
j′⊥, 〈j⊥j′⊥2j⊥〉 ≈

F

4
(3F − 1). (B.22)

Together with these relations and that:

jx = cos θj‖ − sin θj⊥, (B.23)

jy = sin θj⊥ + cos θj‖. (B.24)
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one obtains for instance the expectation values:

〈jzjxjz〉 =
F − 1

2
(cos θj‖ − sin θj⊥), (B.25)

〈jzjyjz〉 =
F − 1

2
(sin θj‖ + cos θj⊥), (B.26)

〈jxjzjx〉 =
F − 1

2
jz(1 + (2F − 1) cos2 θ), (B.27)

〈jyjzjy〉 =
F − 1

2
jz(1 + (2F − 1) sin2 θ), (B.28)

〈{jx, jy}〉 = (2F − 1)(
j‖
2

sin(2θ) + cos(2θ)j⊥), (B.29)

〈{jy , jz}〉 = = (2F − 1) sin θjz, (B.30)

〈{jx, jz}〉 = (2F − 1) cos θjz (B.31)

〈j2x〉 =
j‖
2

(1 + (2F − 1) cos2 θ) − (2F − 1) cos θ sin θj⊥, (B.32)

〈j2y〉 =
j‖
2

(1 + (2F − 1) sin2 θ) + (2F − 1) cos θ sin θj⊥. (B.33)

Using the same principles one can find expectation values of other combinations and these
are useful when we in chapter 6 and 7 want to have expectation values of matrix elements,
such as α2, etc.

B.2 General coherent interaction

The equations describe the general coherent evolution of spin:

∂

∂t
j‖ = −2σ0γ

A∆
(−(2F − 1)

2
a2 cos θ sin(2θ)Syj‖ + (−(2F − 1)a2 cos θ cos(2θ)Sy − a1Sz)j⊥

+ (2F − 1)a2(sin(2θ)Sx + sin2 θSy)jz) (B.34)

∂

∂t
j⊥ = −2σ0γ

A∆
(
(2F − 1)

2
a2 sin θ sin(2θ)Sy + a1Sz)j‖ + (2F − 1)a2 sin θ cos(2θ)Syj⊥

+ (2F − 1)a2(2 cos2(θ)Sx +
1

2
sin(2θ)Sy)jz (B.35)

∂

∂t
jz = −2σ0γ

A∆
(2F − 1)a2[(cos(2θ)Sy −

sin(2θ)Sx

2
)j‖ − 2(cos(2θ)Sx + sin(2θ)Sy)j⊥]

(B.36)



Appendix C

Interesting matrix elements

C.1 C
F,F̃
q,q′ (m), coefficients

When setting up the coherent Hamiltonian we need the coefficients CF,F̃
q,q′ (m) explicitly.

They are calculated using the formula from (3.31):

CF,F̃
q,q′ (m) = (−1)F+F̃

∑

F ′

fF,F̃ ,F ′

(2J ′ + 1)∆F ′F
cF

′m+q

F̃ ,m+q−q′
cF

′,m+q
F,m . (C.1)

Explicitly they are:

F = F̃ = 3 :

C±,±(m) =
1

40320∆
(240m2 ∓ 1200m+ 1440

+
−315m2 ∓ 315m+ 3780

1 + ∆23
∆

+
75m2 ± 675m + 1500

1 + ∆24
∆

), (C.2)

C0,0(m) =
1

40320∆
(−480m2 + 4320 +

630m2

1 + ∆23
∆

+
−150m2 + 2400

1 + ∆24
∆

), (C.3)

C±,0(m) =
1

40320∆

√

(3 ±m)(4 ∓m)

2
(±480m− 1440

∓ 630m

1 + ∆23
∆

+
±150m+ 600

1 + ∆24
∆

), (C.4)

C0,±(m) = C±,0(m± 1), (C.5)

C±,∓(m∓ 1) =
1

40320∆

√

(3 +m)(4 +m)(3 −m)(4 −m)

× (240 − 315

1 + ∆23
∆

+
75

1 + ∆24
∆

). (C.6)

They lead to the definition of the a-coefficients together with their limit value of ∆ → ∞:

a0 =
1

40320
(1440 +

3780

1 + ∆23
∆

+
1500

1 + ∆24
∆

) → 1

6
, (C.7)

a1 =
1

40320
(−1200 − 315

1 + ∆23
∆

+
675

1 + ∆24
∆

) → − 1

48
, (C.8)

a2 =
1

40320
(240 − 315

1 + ∆23
∆

+
75

1 + ∆24
∆

) → 0. (C.9)
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The a terms give the C-coefficients through the relations:

C±,±(m) =
1

∆
(a0±a1m+ a2m

2), C0,0(m) =
1

∆
(a0 + 12a2 − 2a2m

2), (C.10)

C±,0(m) =
1

∆

√

(3 ±m)(4±m)

2
(a1 − a2 ± 2a2m), (C.11)

C+,−(m− 1) =
1

∆

√

(3 +m)(4 +m)(3 −m)(4 −m)a2. (C.12)

For F = 4 one obtains:

F = F̃ = 4 :

C±,±(m) =
1

40320∆
(112m2 ± 1232m+ 3360

+
−147m2 ∓ 147m+ 2940

1 − ∆45
∆

+
35m2 ∓ 245m + 420

1 − ∆35
∆

), (C.13)

C0,0(m) =
1

40320∆
(−224m2 + 5600 +

294m2

1 − ∆45
∆

+
−70m2 + 1120

1 − ∆35
∆

), (C.14)

C±,0(m) =
1

40320∆

√

(4 ±m)(5 ∓m)

2
(±244m + 1120

∓ 294m

1 − ∆45
∆

+
±70m− 280

1 − ∆35
∆

), (C.15)

C±,∓(m∓ 1) =
1

40320∆

√

(4 +m)(5 +m)(4 −m)(5 −m)

× (112 − 147

1 − ∆45
∆

+
35

1 − ∆35
∆

). (C.16)

This time the a-coefficients become:

a0 =
1

40320
(3360 +

2940

1 − ∆45
∆

+
420

1 − ∆35
∆

) → 1

6
, (C.17)

a1 =
1

40320
(1232 − 147

1 − ∆45
∆

− 245

1 − ∆35
∆

) → − 1

48
, (C.18)

a2 =
1

40320
(112 − 147

1 − ∆45
∆

+
35

1 − ∆35
∆

) → 0. (C.19)

(C.20)

The C-coefficients can be expressed as:

C±,±(m) =
1

∆
(a0 + a1m+ a2m

2), C0,0(m) =
1

∆
(a0 + 20a2 − 2a2m

2), (C.21)

C±,0(m) =
1

∆

√

(4±m)(5±m)

2
(a1 − a2 ± 2a2m), (C.22)

C+,−(m− 1) =
1

∆

√

(4 +m)(5 +m)(4 −m)(5 −m)a2.
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For different F , namely F = 3 and F = 4 we get the coefficients:

F = 3, F̃ = 4 :

C±,±(m) =
1

384

√

(4 +m)(4 −m)(
−m±3

∆3
+
m±5

∆4
) = (±b1 + b2m)

√

(4 +m)(4 −m),

(C.23)

C0,0(m) =
2

384
m
√

(4 +m)(4 −m)(
1

∆3
− 1

∆4
) = −2b2m

√

(4 +m)(4 −m), (C.24)

C±,0(m) =
2

384

√

(4±m)(5±m)

2
(
−m±3

∆3
+
m± 1

∆4
)

= (±(b1 − b2) + 2b2m)
√

(4±m)(5±m)/2, (C.25)

C0,±(m) =
2

384

√

(4∓m)(5∓m)

2
(
m

∆3
+

−m∓ 4

∆4
)

= (∓(b1 + 3b2) − 2b2m)
√

(4∓m)(5∓m)/2, (C.26)

C±,∓(m) = ± 2

384

√

(3±m)(4±m)(5±m)(4∓m)(
1

∆3
− 1

∆4
),

= ∓b2
√

(3±m)(4±m)(5±m)(4∓m). (C.27)

This time we define just two b-coefficients:

b1 =
1

384
(

3

∆3
+

5

∆4
), (C.28)

b2 =
1

384
(
−1

∆3
+

1

∆4
). (C.29)

C.2 Polarizability α and α2 elements

In section 3 and 4 we contruct the coherent Hamiltonian which we write as:

Hcoh =
D2

0

∆
E

(−)
F αE

(+)
F . (C.30)

The elements of the polarizability αFF are:

α =





(a0 + a2j
2) − 2a2j

2
x −ia1jz − a2{jx, jy} ia1jy − a2{jx, jz}

ia1jz − a2{jx, jy} (a0 + a2j
2) − 2a2j

2
y −ia1jx − a2{jy , jz}

−ia1jy − a2{jx, jz} ia1jx − a2{jy, jz} (a0 + a2j
2) − 2a2j

2
z



 . (C.31)

In chapter 7 we rewrite the Hamiltonian in terms of Stokes operators:

Hcoh =
D2

0

∆
E

(−)
F αE

(+)
F = −2

Ω2

∆
(γ·S + γ0

φ

2
). (C.32)

This somehow simplifies the epxression in terms of a vector

γ =





−a2(j
2
x − j2y)

−a2{jx, jy}
a1jz



 , (C.33)
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and the term γ0 = −a2j
2
z .

The elements of polarizability for different F , α34 are:

αxx = b2
∑

m

m
√

(4 +m)(4 −m)σ3,m;4.m +
1

2

√

(3 +m)(4 +m)(5 +m)(4 −m)σ3,m−1;4,m+1

− 1

2

√

(3 −m)(4 −m)(5 −m)(4 +m)σ3,m+1;4,m−1 + h.c., (C.34)

αxy = i
∑

m

−b1
√

(4 +m)(4 −m)σ3,m;4.m +
b2
2

(
√

(3 +m)(4 +m)(5 +m)(4 −m)σ3,m−1;4,m+1

+
√

(3 −m)(4 −m)(5 −m)(4 +m)σ3,m+1;4,m−1) + h.c., (C.35)

αyx = −i
∑

m

−b1
√

(4 +m)(4 −m)σ3,m;4.m +
b2
2

(
√

(3 +m)(4 +m)(5 +m)(4 −m)σ3,m−1;4,m+1

+
√

(3 −m)(4 −m)(5 −m)(4 +m)σ3,m+1;4,m−1) + h.c., (C.36)

αyy = b2
∑

m

m
√

(4 +m)(4 −m)σ3,m;4.m − 1

2

√

(3 +m)(4 +m)(5 +m)(4 −m)σ3,m−1;4,m+1

+
1

2

√

(3 −m)(4 −m)(5 −m)(4 +m)σ3,m+1;4,m−1 + h.c., (C.37)

αxz =
1

2

∑

m

√

(4 +m)(5 +m)((−b1 + b2(3 − 2m))σ3,m;4,m+1 + (b1 + b2(3 − 2m))σ4,m+1;3,m)

+
√

(4 −m)(5 −m)((−b1 + b2(3 + 2m))σ3,m;4,m−1 + (b1 + b2(3 + 2m))σ4,m−1;3,m),
(C.38)

αzx =
1

2

∑

m

√

(4 +m)(5 +m)((b1 + b2(3 − 2m))σ3,m;4,m+1 + (−b1 + b2(3 − 2m))σ4,m+1;3,m)

+
√

(4 −m)(5 −m)((b1 + b2(3 + 2m))σ3,m;4,m−1 + (−b1 + b2(3 + 2m))σ4,m−1;3,m),
(C.39)

αyz =
i

2

∑

m

√

(4 +m)(5 +m)((−b1 + b2(3 − 2m))σ3,m;4,m+1 + (−b1 − b2(3 − 2m))σ4,m+1;3,m)

+
√

(4 −m)(5 −m)((b1 − b2(3 + 2m))σ3,m;4,m−1 + (b1 + b2(3 + 2m))σ4,m−1;3,m),
(C.40)

αzy =
−i
2

∑

m

√

(4 +m)(5 +m)((−b1 − b2(3 − 2m))σ3,m;4,m+1 + (−b1 + b2(3 − 2m))σ4,m+1;3,m)

+
√

(4 −m)(5 −m)((b1 + b2(3 + 2m))σ3,m;4,m−1 + (b1 − b2(3 + 2m))σ4,m−1;3,m),
(C.41)

αzz = −2b2
∑

m

m
√

(4 +m)(4 −m)σ3,m;4,m. (C.42)
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Values of α2 (for both F = 3 and F = 4):

α2
xx = (a0 + a2j

2)2 − 4a0a2j
2
x + a1a2(6j

2
x − 2j2) + a2

1(j
2 − j2x) + a2

2(j
2 − 5j2x), (C.43)

α2
yy = (a0 + a2j

2)2 − 4a0a2j
2
y + a1a2(6j

2
y − 2j2) + a2

1(j
2 − j2y) + a2

2(j
2 − 5j2y), (C.44)

α2
xy = −2a2(a0 + a2j

2){jx, jy} − 2ia1(a0 + a2j
2)jz + a1a2(3{jx, jy} + ijz)

− a2
1jyjx + a2

2(4(j
2 − 1)jxjy − jyjx), (C.45)

α2
yx = −2a2(a0 + a2j

2){jx, jy} + 2ia1(a0 + a2j
2)jz + a1a2(3{jx, jy} − ijz)

− a2
1jxjy + a2

2(4(j
2 − 1)jyjx − jxjy). (C.46)

It is possible to find α2
34 and choosing z as the quantization axis we get:

α2
xx = P3(20(b1 + 3b2)

2 + (b21 − 30b1b2 + 45b22)j
2
x

+ P4(12(b1 − 5b2)
2 + (b21 + 18b1b2 − 3b22)j

2
x), (C.47)

α2
yy = P3(20(b1 + 3b2)

2 + (b21 − 30b1b2 + 45b22)j
2
y

+ P4(12(b1 − 5b2)
2 + (b21 + 18b1b2 − 3b22)j

2
y ), (C.48)

α2
xy = P3(−

9i

2
(b21 + 10b1b2 + 5b22)jz + (

1

2
b21 − 15b1b2 +

45

2
b22){jx, jy})

+ P4(
7i

2
(b21 − 6b1b2 + 21b22)jz + (

1

2
b21 + 9b1b2 −

3

2
b22){jx, jy}), (C.49)

α2
yx = P3(

9i

2
(b21 + 10b1b2 + 5b22)jz + (

1

2
b21 − 15b1b2 +

45

2
b22){jx, jy})

+ P4(P4(−
7i

2
(b21 − 6b1b2 + 21b22)jz + (

1

2
b21 + 9b1b2 −

3

2
b22){jx, jy}). (C.50)

C.3 Elements of g and g2

The Hermitian matrix gi = i[α, ji] desribes the coherent evolution of the atomic spin
component i:

gx =





0 ia1jy − a2{jx, jz} ia1jz + a2{jx, jy}
−ia1jy − a2{jx, jz} −2a2{jy, jz} 2a2(j

2
y − j2z )

−ia1jz + a2{jx, jy} 2a2(j
2
y − j2z ) 2a2{jy, jz}



 , (C.51)

gy =





2a2{jx, jz} −ia1jx + a2{jy, jz} 2a2(j
2
z − j2x)

ia1jx + a2{jy, jz} 0 ia1jz − a2{jx, jy}
2a2(j

2
z − j2x) −ia1jz − a2{jx, jy} −2a2{jx, jz}



 , (C.52)

gz =





−2a2{jx, jy} 2a2(j
2
x − j2y) −ia1jx − a2{jx, jy}

2a2(j
2
x − j2y) 2a2{jx, jy} −ia1jy + a2{jx, jz}

ia1jx − a2{jy, jz} ia1jy + a2{jx, jz} 0



 . (C.53)

Again if one instead expresses the Hamiltonian in terms of γ one gets the g̃-matrices from
section 7.1:

g̃ =





a2{jy, jz} −a2{jx, jz} −a1jy
a2{jx, jz} a2{jy, jz} a1jx

−2a2{jx, jy} 2a2(j
2
x − j2y) 0



 , (C.54)

g̃0 = a2





−{jy, jz}
{jx, jz}

0



 . (C.55)
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We need elements of g2 when we consider the noise correlations for fX and fP . These hold
for both F = 3 and F = 4:

g2
x(x, x) = a2

1(j
2 − j2x) + 4a1a2j

2
x + a2

2(4jx(j2 − j2x − 1) + j2 − j2x), (C.56)

g2
x(y, y) = a2

1j
2
y + 2a1a2(j

2 − 2j2x) + a2
2(2j

2(2j̄2 − 3) + 4(3 − j2)j2x + jy(1 − 4j2x)jy),

(C.57)

g2
x(x, y) = 2a1a2(jxjy − i(j2 − j2x)jz) + a2

2(4jx(j2 − j2x − 2)jy + 2i(j2jz − 3jxjzjx)),
(C.58)

g2
x(y, x) = 2a1a2(jyjx + ijz(j

2 − j2x)) + a2
2(4jy(j

2 − j2x − 2)jx − 2i(j2jz − 3jxjzjx)),
(C.59)

g2
y(x, x) = a2

1j
2
x + 2a1a2(j

2 − 2j2y ) + a2
2(2j

2(2j2 − 3) + 4(3 − j2)j2y + jx(1 − 4j2y)jx),

(C.60)

g2
y(y, y) = a2

1(j
2 − j2y) + 4a1a2j

2
y + a2

2(4jy(j
2 − j2y − 1) + j2 − j2y), (C.61)

g2
y(x, y) = 2a1a2(jxjy − i(j2 − j2x)jz) + a2

2(4jy(j
2 − j2y − 1)jy + j2 − j2y), (C.62)

g2
y(y, x) = 2a1a2(jyjx + i(j2 − j2y)jz) + a2

2(4jy(j
2 − j2y − 1)jy + j2 − j2y), (C.63)

g2
z(x, x) = a2

1j
2
x + 2a1a2(j

2 − 2j2z ) + a2
2(2j

2(2j2 − 3) + 4(3 − j2)j2z + jx(1 − 4j2z )jx),
(C.64)

g2
z(y, y) = a2

1j
2
x + 2a1a2(j

2 − 2j2z ) + a2
2(2j

2(2j2 − 3) + 4(3 − j2)j2z + jy(1 − 4j2z )jy),
(C.65)

g2
z(x, y) = a2

1jxjy − 2ia1a2(2j
2 − j2z − 1)jz

+ a2
2(6i(jxjzjx + jyjzjy) + 4ij2jz − 4jxj

2
z jy + jxjy), (C.66)

g2
z(x, y) = a2

1jyjx − 2ia1a2(2j
2 − j2z − 1)jz

+ a2
2(−6i(jxjzjx + jyjzjy) + 4ij2jz − 4jyj

2
z jx + jyjx). (C.67)

And for the α34 part we only state the part which has F = 4:

g2
x(x, x) = 12(b1 − 5b2)

2j2x + (b21 + 18b1b2 − 3b22)j
4
x, (C.68)

g2
x(y, y) = 12(b1 − 5b2)

2j2x + (b21 + 18b1b2 − 3b22)jxj
2
yjx, (C.69)

g2
x(x, y) = (

1

2
b21 + 9b1b2 −

3

2
b22)jx{jx, jy}jx +

7i

2
(b21 − 6b1b2 + 21b22)jxjzjx, (C.70)

g2
x(y, x) = (

1

2
b21 + 9b1b2 −

3

2
b22)jx{jx, jy}jx − i

7

2
(b21 − 6b1b2 + 21b22)jxjzjx, (C.71)

g2
y(x, x) = 12(b1 − 5b2)

2j2y + (b21 + 18b1b2 − 3b22)jyj
2
xjy, (C.72)

g2
y(y, y) = 12(b1 − 5b2)

2j2y + (b21 + 18b1b2 − 3b22)j
4
y (C.73)

g2
y(x, y) = (

1

2
b21 + 9b1b2 −

3

2
b22)jy{jx, jy}jy +

7i

2
(b21 − 6b1b2 + 21b22)jyjzjy, (C.74)

g2
y(y, x) = (

1

2
b21 + 9b1b2 −

3

2
b22)jy{jx, jy}jy −

7i

2
(b21 − 6b1b2 + 21b22)jyjzjy, (C.75)
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g2
z(x, x) = 12(b1 − 5b2)

2j2z + (b21 + 18b1b2 − 3b22)jzj
2
xjz, (C.76)

g2
z(y, y) = 12(b1 − 5b2)

2j2z + (b21 + 18b1b2 − 3b22)jzj
2
yjz, (C.77)

g2
z(x, y) = (

1

2
b21 + 9b1b2 −

3

2
b22)jz{jx, jy}jz +

7i

2
(b21 − 6b1b2 + 21b22)j

3
z , (C.78)

g2
z(y, x) = (

1

2
b21 + 9b1b2 −

3

2
b22)jz{jx, jy}jz −

7i

2
(b21 − 6b1b2 + 21b22)j

3
z . (C.79)

C.4 Decay matrix ξ elements

When we consider the decay we the elements of ξi = α2ji + jiα
2 − 2αjα = i[α, gi]. In our

work we have only used the (x, x)-element, but the other could also be interesting:

ξx(x, x) = 2a2
1jx + 4a1a2(2(j

2 − j2x) − 1)jx + 2a2
2(8j

2
x − 4j2 + 1)jx, (C.80)

ξx(y, y) = a2
1jx − 2a1a2(4jyjxjy + jx) + a2

2(8j
3
x − 4j2jx + 9jx + 24jyjxjy + 8jzjxjz),

(C.81)

ξx(x, y) = −ia2
1jzjx + 2a1a2((2j

2 − 1)jy − 4jxjyjx − 3ijxjz)+

a2
2(−4j3y + 5jy + 12jxjyjx − 4jzjyjz + i(9 − 4j2)jxjz), (C.82)

ξx(y, x) = ia2
1jxjz + 2a1a2((2j

2 − 1)jy − 4jxjyjx + 3ijzjx)+

a2
2(−4j3y + 5jy + 12jxjyjx − 4jzjyjz − i(9 − 4j2)jzjx), (C.83)

ξy(x, x) = a2
1jy − 2a1a2(4jxjyjx + jy) + a2

2(8j
3
y − 4j2jy + 9jy + 24jxjyjx + 8jzjyjz),

(C.84)

ξy(y, y) = 2a2
1jy + 4a1a2(2(j

2 − j2y) − 1)jy + 2a2
2(8j

2
y − 4j2 + 1)jy , (C.85)

ξy(x, y) = −ia2
1jyjz + 2a1a2((2j

2 − 1)jx − 4jyjxjy − 3ijzjy)

+ a2
2(−4j3x + 12jyjxjy + 12ijzjy + 3ijyjz − 4jzjxjz − 4ij2jzjy), (C.86)

ξy(y, x) = ia2
1jzjy + 2a1a2((2j

2 − 1)jx − 4jyjxjy + 3ijyjz)

+ a2
2(−4j3x + 12jyjxjy − 12ijyjz − 3ijzjy − 4jzjxjz + 4ij2jyjz), (C.87)

ξz(x, x) = a2
1jz − 2a1a2(4jxjzjx + jz) + a2

2(8j
3
z − 4j2jz + 9jz + 24jxjzjx + 8jyjzjy),

(C.88)

ξz(y, y) = a2
1jz − 2a1a2(4jyjzjy + jz) + a2

2(8j
3
z − 4j2jz + 9jz + 24jyjzjy + 8jxjzjz),

(C.89)

ξz(x, y) = ia2
1(j

2 − j2z ) − 2a1a2(2(jxjyjz + jzjyjx) − i(j2 − 3j2z ))

+ ia2
2(4{jx, jy}2 + {jx, jz}2 + {jy , jz}2 + 4j4x + 4j4y − 8j2xj

2
y), (C.90)

ξz(y, x) = −ia2
1(j

2 − j2z ) − 2a1a2(2(jxjyjz + jzjyjx) + i(j2 − 3j2z ))

− ia2
2(4{jx, jy}2 + {jx, jz}2 + {jy , jz}2 + 4j4x + 4j4y − 8j2yj

2
x). (C.91)

And for the α34 we again only give the F = 4 part:

ξx(x, x) = 24(b1 − 5b2)
2jx + 2(b21 + 18b1b2 − 3b22)j

3
x, (C.92)

ξx(y, y) = (25b21 − 222b1b2 + 597b22)jx + 2(b21 + 18b1b2 − 3b22)jyjxjy, (C.93)

ξx(x, y) =
1

2
(b21 + 18b1b2 − 3b22)(4jxjyjx + jy) + i

7

2
(b21 − 6b1b2 + 21b22){jx, jz}, (C.94)

ξx(y, x) =
1

2
(b21 + 18b1b2 − 3b22)(4jxjyjx + jy) − i

7

2
(b21 − 6b1b2 + 21b22){jx, jz}, (C.95)
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ξy(x, x) = (25b21 − 222b1b2 + 597b22)jy + 2(b21 + 18b1b2 − 3b22)jxjyjx, (C.96)

ξy(y, y) = 24(b1 − 5b2)
2jy + 2(b21 + 18b1b2 − 3b22)j

3
y , (C.97)

ξy(x, y) =
1

2
(b21 + 18b1b2 − 3b22)(4jyjxjy + jx) +

7i

2
(b21 − 6b1b2 + 21b22){jy , jz}, (C.98)

ξy(y, x) =
1

2
(b21 + 18b1b2 − 3b22)(4jyjxjy + jx) − 7i

2
(b21 − 6b1b2 + 21b22){jy , jz}, (C.99)

ξz(x, x) = (25b21 − 222b1b2 + 597b22)jz + 2(b21 + 18b1b2 − 3b22)jxjzjx, (C.100)

ξz(y, y) = (25b21 − 222b1b2 + 597b22)jz + 2(b21 + 18b1b2 − 3b22)jyjzjy, (C.101)

ξz(x, y) =
1

2
(b21 + 18b1b2 − 3b22)(jz{jx, jy} + {jx, jy}jz) + 7i(b21 − 6b1b2 + 21b22)j

2
z ,

(C.102)

ξz(y, x) =
1

2
(b21 + 18b1b2 − 3b22)(jz{jx, jy} + {jx, jy}jz) − 7i(b21 − 6b1b2 + 21b22)j

2
z .

(C.103)



Appendix D

Miscellaneous

D.1 Subsection - Spherical basis

The spherical basis is given by:

e+ = −(ex + iey)/
√

2, (D.1)

e− = (ex − iey)/
√

2, (D.2)

e0 = ez. (D.3)

The different spherical basis vectors obey:

e∗q = e−q(−1)q, eq·e∗q′ = δq,q. (D.4)

An arbitrary vector A may be written as:

A =
∑

q

Aqe
∗
q =

∑

q

(−1)qAqe−q, (D.5)

A·eq = Aq,A·e∗q = (−1)qA−q. (D.6)

This is used for the contruction of the interaction Hamiltonian in section 3.1.

D.2 Useful commutation relations

When we contruct the interaction Hamiltonian we find the evolution of such transition
elements as σF,m;F ′,m′ . We will use primes for exited states and tildes and bare symbols
for ground states. First we observe that:

[σµ,ν ;σµ′ν′ ] = σµ,ν′δµ,ν′ − σµ′,νδν′,µ. (D.7)

Using that the exited states are weakly populated it is straightforward to contruct the
commutators needed for [Hint, σF,m,F ′,m′ ]:

[σF,m;F ′,m′ ;σF̃ ,m̃;F ′′,m′′ ] = σF,m;F ′′,m′′δF ′,F̃ δm′,m̃ − σF̃ ,m̃;F ′,m′δF ′′,F δm′′,m = 0, (D.8)

[σF,m;F ′,m′ ;σF ′′,m′′;F̃ ,m̃] = σF,m;F̃ ,m̃δF ′,F ′′δm′,m′′ − σF ′′,m′′;F ′,m′δF̃ ,F δm̃,m

≈δF ′,F ′′δm′,m′′σF,m;F̃ ,m̃. (D.9)

For the commutator needed for [HA, σF,m;F ′,m′ ] we find:

[σF,m;F ′,m′ , σF ′′,m′′;F ′′,m′′ ] = σF,m;F ′′,m′′δF ′,F ′′δm′,m′′ − σF ′′,m′′,F ′,m′δF,F ′′δm,m′′

= δF ′,F ′′δm′,m′′σF,m;F ′′,m′′ . (D.10)
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D.3 Wigner-Eckart

The Wigner-Eckart theorem [WE] is a deep result of QM and states that the matrix
elements for interactions can be factored in a geometric part and a pure interaction part.
For a discussion we refer to chapter 3 in [25]. We make use of the WE in the form:

〈F ′,m′|dq|F,m〉 =
〈F ′||d||F 〉〈F ′,m′|F,m; 1, q〉√

2J + 1
. (D.11)

And because the dipole operator only talks to the electron, we can factor out the nuclear
part and express the reduced element as [7]:

〈F ′||d||F 〉 = 〈J ′||d||J〉(−1)F+J+I+1
√

(2F + 1)(2J + 1)

{

F F ′ 1
J ′ J I

}

. (D.12)

Here the last term is a Wigner 6j-coefficient[30]. Combining the two expressions we get:

〈F ′,m′|dq|F,m〉 = (−1)F+J+I+1
√

2F + 1〈J ′||d||J〉〈F,m; 1, q|F ′,m′〉
{

F F ′ 1
J ′ J I

}

.

(D.13)

For our purpose it is:

〈F ′,m+ q|dq|F,m〉 = (−1)F+J+I+1
√

2F + 1〈J ′||d||J〉cF ′,m+q
F,m

{

F F ′ 1
J ′ J I

}

. (D.14)

In a similar fashion one obtains:

〈F̃ ,m+ q − q′|d−q′ |F ′,m+ q〉 = (−1)F̃+J+I+1+q′
√

2F̃ + 1〈J ||d||J ′〉cF ′,m+q

F̃ ,m+q−q′

{

F̃ F ′ 1
J ′ J I

}

.

(D.15)

Using that we may write the product of the two matrix elements from (3.28):

〈F ′,m+ q|dq|F,m〉〈F̃ ,m+ q − q′|d−q′ |F ′,m+ q〉, (D.16)

as:

C = (−1)F+F̃+q′cF
′,m+q

F,m cF
′,m+q

F̃ ,m+q−q′
|〈J |||d||J ′〉|2 ×

√

(2F + 1)(2F̃ + 1)

{

F F ′ 1
J ′ J I

}{

F̃ F ′ 1
J ′ J I

}

=
α0

2J + 1
(−1)F+F̃+q′fF,F̃ ,F ′c

F ′,m+q
F,m cF

′,m+q

F̃ ,m+q−q′
. (D.17)

Note that the (−1)q
′
cancels the same factor in (3.28).

D.4 Detailed derivation of the interaction Hamiltonian

In chapter 3 we find that the interaction Hamiltonian may be written as:

Hint =
∑

q,q′

E
(−)
q′ CF,F

q,q′ (m)E(+)
q σF̃ ,m+q−q′;F,m. (D.18)
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We are just looking at the case F = F̃ are insert the elements from App.B.2. That way
we get:

Hint =
1

∆

∑

m

[(a0 + a1m+ a2m
2)E

(−)
+ E

(+)
+ + (a0 − a1m+ a2m

2)E
(−)
− E

(+)
−

+ (a0 + F (F + 1)a2 − 2a2m
2)E

(−)
0 E

(+)
0 ]σF,m;F,m+

√

(F +m)(F + 1 −m)

2
((a1 − a2 + 2a2m)(E

(−)
+ E

(+)
0 σF,m−1;F,m + E

(−)
0 E

(+)
+ σF,m;F,m−1))+

√

(F −m)(F + 1 +m)

2
((a1 − a2 − 2a2m)(E

(−)
− E

(+)
0 σF,m+1;F,m + E

(−)
0 E

(+)
− σF,m;F,m+1))+

a2

√

(F + 1)(F + 1 +m)(F −m)(F + 1 −m)(E
(−)
− E

(+)
+ σF,m+1;F,m−1 + E

(−)
+ E

(+)
− σF,m−1;F,m+1).
(D.19)

Applying the sum rules from App.B.1. one can make the m-sums and express them through
angular momentum operators:

Hint =
1

∆
(a0E

(−)E(+) + a1jz(E
(−)
+ E

(+)
+ − E

(−)
− E

(+)
− ) + a2j

2
zE

(−)E(+) + a2(F (F + 1) − 3j2z )E(−)E(+)+

1√
2
([a1 − a2](j−E

(−)
+ E

(+)
0 + j+E

(−)
0 E

(+)
+ + j+E

(−)
− E

(+)
0 + j−E

(−)
0 E

(+)
− )

+ 2a2(j−jzE
(−)
+ E

(+)
0 + jzj+E

(−)
0 E

(+)
+ − j+jzE

(−)
− E

(+)
0 − jzj−E

(−)
0 E

(+)
− ))

+ a2(j
2
+E

(−)
− E

(+)
+ + j2−E

(−)
+ E

(+)
− )). (D.20)

Collecting the terms and expressing the spherical components of the electric fields and
angular momentum with cartesian ones, we get finally after some rearranging:

Hint =
1

∆
((a0 +

a2

3
j2)E(−)E(+) + ia1E

(−)·j × E(+) − 2a2

∑

ij

E
(−)
i (

{ji, jj}
2

− δij
j2

3
)E

(+)
j )

= H(0) +H(1) +H(2). (D.21)

D.5 Noise inclusion

Let us forget about the coherent part for a moment and focus on the decay and associated
noise. In chapter 5 and 6 we EOM of the form:

ḃ =
√
γf(t) − γ

2
b. (D.22)

What would happen if we would throw away the noise and keep the decay?

ḃ = −γ
2
b. (D.23)

It would mean that b(t) = b(0)e−
γ
2
t giving that the commutator [b(t), b†(t)] would decay

exponentially at rate γ. This is a big violation of the principles of QM, the commutator
should be preserved at all times. But if we now include the noise f(t) in the EOM we can
write the solution as:

b(t) = b(0)e−
γ
2
t +

√
γ

∫ t

0
f(t′)e−

γ
2
(t−t′)dt′. (D.24)



84 APPENDIX D. MISCELLANEOUS

And this time the commutator is preserved:

[b(t), b†(t)] = e−γt + γ

∫ t

0
dt′
∫ t

0
dt′′e−

γ
2
(2t−t′−t′′)[f(t′), f †(t′′)], (D.25)

= e−γt + γ

∫ t

0
e−γ(t−t′)dt′ = e−γt + (1 − e−γt) = 1. (D.26)

Here we have used that the noise operators are delta-correlated in time:

[f(t), f †(t′)] = δ(t− t′). (D.27)

So we see that it really nessecary to include the noise to have meaningfull description of
the system - neglecting the noise gives decaying commutators.

D.6 X,P coordinateshift

The following transformations will prove to be useful in our calculations. We will have
equations of the form:

d

dt

(

X
P

)

=

(

−Γ −C
C −Γ

)(

X
P

)

= A

(

X
P

)

. (D.28)

Here C and Γ are real numbers and for our purposes the determinant of A will always be
non-zero. Not we perform the unitary transformation:

(

X̃

P̃

)

=

(

cos(Ct) sin(Ct)
− sin(Ct) cos(Ct)

)(

X
P

)

= B

(

X
P

)

. (D.29)

These shifted X and P obey:

d

dt

(

X̃

P̃

)

= Ḃ

(

X
P

)

+B
d

dt

(

X
P

)

= C

(

P̃

−X̃

)

+A

(

X̃

P̃

)

= −Γ

(

X̃

P̃

)

. (D.30)

So by using the unitary transform we have eliminated the coherent part and are left with
the decay. Note that since the transformation is unitary, the noise operators satisfy the
same relations as the untransformed ones.

D.7 Fluctuation-dissipation theorem

In this section we give a small discussion of the fluctuation-dissipation theorem, but for
a deeper analysis we refer to [19]. To get a more broad description we consider at set of
operators {Aµ}, where µ is a suitable label for the operator in question - labelling whether
we deal with a light- or atomic operator and for instance polarization. When we neglect the
coherent part (that ideally does not introduce noise above shot noise level), as we have seen
in the thesis we end up with the Langevin equation, where F and D is the drift (decay):

Ȧµ = Dµ(t) + Fµ(t). (D.31)

The noise operators have zero mean and are delta-correlated:

〈Ȧµ〉 = 〈Dµ〉, (D.32)

〈Fµ(t)Fν(t′)〉 = 2〈Dµν〉δ(t− t′). (D.33)
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Here Dµν is the diffusion element and it gives the strength of the correlated fluctuations.
First we start with the general identity:

Aµ(t) = Aµ(t− δt) +

∫ t

t−δ
dt′Ȧµ(t′). (D.34)

From here we get the (same time) correlation between noise and the observables of interest:

〈Aµ(t)Fν(t)〉 = 〈Aµ(t− δt)Fµ(t)〉 +

∫ t

t−δ
dt′〈(Dµ(t′) + Fµ(t′))Fν(t)〉. (D.35)

In the Markov approximation the operator A cannot depend on future noise, so the first
term vanishes. Same argument applies for 〈Dµ(t′)Fν(t)〉, which is only possibly nonzero
when t = t′, but then the integral gives zero anyway. As a result we are left with:

〈Aµ(t)Fν(t)〉 =

∫ t

t−δ
dt′〈Fµ(t′))Fν(t)〉. (D.36)

Assuming that our noise is stationary we extend the limits of integration:

〈Aµ(t)Fν(t)〉 =
1

2

∫ ∞

−∞
dt′〈Fµ(t′)Fν(t)〉. (D.37)

Which according to (C.30) gives:

〈Aµ(t)Fν(t)〉 = 〈Dµν〉, (D.38)

〈Fµ(t)Aν(t)〉 = 〈Dµν〉. (D.39)

Now examining the mean of a product of operators:

d

dt
〈AµAν〉 = 〈ȦµAν〉 + 〈AµȦν〉,

= 〈DµAν〉 + 〈FµAν〉 + 〈AµDν〉 + 〈AµFν〉. (D.40)

We can insert what we found above and that way get the generalized Einstein relation:

2〈Dµν〉 = −〈AµDν〉 − 〈DµAν〉 +
d

dt
〈AµAν〉. (D.41)

It is a quantum fluctuation dissipation theorem and gives the connection between the
diffusion coefficients 〈Dµν〉 and drift Dµ and Dν . If one had a method to calculate the
time evolution of 〈AµAν〉 one could find the diffusion elements from the drift coefficients.
A related theorem is the quantum regression theorem, which also can be easily obtained
from the equations above. If we are interested in the two time correlation between two
operators Aµ and Aν , we obtain immediately (t′ < t):

d

dt
〈Aµ(t)Aν(t′)〉 = 〈Dµ(t)Aν(t′)〉 + 〈Fµ(t)Aν(t′)〉. (D.42)

Again we affect the Markov approximation and eliminate the term 〈Fµ(t)Aν(t′)〉 since the
operator cannot depend on future noise. We are left with the desired result, namely:

d

dt
〈Aµ(t)Aν(t′)〉 = 〈Dµ(t)Aν(t′)〉. (D.43)

It shows that the two time correlation function 〈Aµ(t)Aν(t′)〉 obeys the same EOM as the
single time 〈Aµ〉 does. We have not made use of these theorems in our work, but they
are actually very powerful tools and possibly they could provide more insight and derive
correlations in a more elegant way, than we have done it.
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