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Abstract

This thesis is devoted to the study of the dynamics of the resonant-level model. A particular

emphasis is given on the emergent transient phenomena, that are connected to the underlying

microscopic properties. In the first part of the thesis we present the theoretical framework of

the Keldysh formalism, that will be the main tool of our non-equilibrium description, which

follows the construction of the path integral. The second part of the thesis presents the

numerical method that is implemented for the solution of the Dyson equation in time domain.

This is applied to the resonant level model in the wide-band limit, in both the non-interacting

regime, as well as in a mean field approximation and the numerical results are compared to

the analytic expression derived in the Keldysh formalism. In addition, an extension is provided

to a more general form of time dependent tunneling. In the final part, the advantages and

possible bottlenecks of the numerical method are presented, as well as possible extensions of

the implementation.
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1Motivation

The notion of non-equilibrium in physics is as inviting and challenging as it is ubiquitous in the

macroscopic world. In the last decade technological advancements in experimental techniques

[1, 2] have sparked substantial research efforts to explore the dynamics of many- body

quantum systems. In contrast to the conventional phase transitions occurring in equilibrium,

which take place when an external parameter is changed, e.g. temperature, pressure, these

could be governed by a time dependent perturbation, e.g. an electromagnetic field. Such

phenomena include light induced superconductivity [3], insulator to metal photoexcitation

induced transitions in perovskite manganites [4]. Also, a superfluid to Mott insulator phase

transition has been realized in a cold atom system trapped in a three-dimensional lattice

[5]. In the spirit of the recent discoveries in the field of topological insulators, the notion

of Floquet-topological insulators has been studied. The topological features of the Floquet

bands of atomic or electronic systems in periodic lattice potentials can be manipulated by an

external drive. An open question in this particular field is under which parameter regime

can a topologically non-trivial steady state be observed [6]. Therefore, the combination

of an external perturbation, which pushes the system far from equilibrium combined with

the inherent correlation effects sets the stage for a challenging physical description. The

exploration of such phenomena warrants the formulation of theoretical tools that will be able

to describe such processes as well as numerical methods to test them. While in their infancy,

methods such as time-dependent density matrix renormalization group (TD-DMRG) [7, 8]

time-dependent numerical renormalization group (TD-NRG) [9], functional renormalization

group (FRG)[10] diagrammatic many-body methods such as Quantum Monte Carlo [11]

are the most prominent efforts. All the aforementioned methods have their advantages and

limitations, but are also heavily reliant on the system they are applied in [12]. As an example,

TD-DMRG cannot describe the non-equilibrium transport of a non-interacting resonant level

model for large bandwidths [13].

In the present thesis the method of non-equilibrium Green’s functions (NEGFs) in the Keldysh

formalism is applied to the resonant level model, that provides an accurate description of

both the steady state of the system, as well as its transient dynamics.
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2Introduction

2.1 The non-equilibrium regime

Before we set off to provide the theoretical foundations on which our numerical method is

based, it is instructive to unambiguously define what the non-equilibrium regime entails. In

general, the definition of thermodynamic equilibrium of a system is inherently tied to the

existence of an environment with which the system interacts. Thermodynamic systems are

characterized by their extensive (e.g. entropy, internal energy) and intensive (e.g chemical

potential, temperature) variables. Depending on the system studied, a unique set of these

quantities define its properties. If they are time invariant and remain unchanged after isolating

the system from its environment, the system is said to be in thermodynamic equilibrium

[14]. A system which does not satisfy the aforementioned properties is a non-equilibrium

one. In the present thesis, emphasis will be given on the transient behavior, which takes

place after the introduction of a perturbation. Additionally, depending on the nature of the

perturbation, the system may relax to a steady state governed by the characteristics of the

perturbation itself as well as the initial conditions, which can be very different from the

equilibrium one. Whether we push the system "gently" out of equilibrium so that its response

will be a perturbation of its established equilibrium properties, or if the push is too "violent",

can cause the emergence of interesting physical phenomena.

2.2 The Keldysh formalism

The method described in this section is named after Leonid V. Keldysh from his seminal

paper in 1964 [15], although attempts to implement quantum field methods to describe non-

equilibrium statistical mechanics took place even earlier, especially in Scwhinger’s paper[16],

where the concept of the closed time contour was first introduced. The most prominent

feature of this method is that it inherits the structure of standard, equilibrium Green’s function

theory, allowing the diagrammatic perturbation theory to be extended to the non-equilibrium

regime with minor alterations [17]. The formulation described in the next chapters is based
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on the work of Kamenev [18], which utilizes a path integral description. It should be noted in

passing that the theory can be formulated with operators as well [19]. To provide an intuitive

understanding, that necessitates the Keldysh formalism we can consider the time evolution

of a pure state |ψ〉 and that of an ensemble, which is more generally described by a density

matrix ρ (we set ~ = kB = 1 hereafter):

i∂t |ψ〉 = Ĥ|ψ〉 → Û(t, t0) |ψ〉 (2.1)

∂tρ̂(t) = −i[Ĥ(t), ρ̂(t)]→ ρ̂(t) = Û †(t, t0)ρ(t0)Û(t, t0) (2.2)

Where Û(t, t0) = T e−i
∫ t
t0
Ĥ(t′)dt′ is the unitary time evolution operator. We can immediately see

that, to fully describe a pure state we need only know its propagation forward in time, whereas

time evolution for the density matrix requires propagation both forward and backward in

time, as evidenced by Û †(t, t0) = Û(t0, t).

Let us now fully formulate the problem. We assume a system that is governed by the following

Hamiltonian:

Ĥ(t) = Ĥ1 + V̂ (t) (2.3)

where Ĥ1 is the time independent part, which can be separated in a quadratic term, and a term

which contains interactions and warrants a more intricate treatment. V̂ (t) is a time-dependent

perturbation introduced at t0. Prior to t0, the system is assumed to be in a known state,

described by a density matrix ρ(t0), which need not be an equilibrium one. We are in general

interested in calculating a physical observable:

〈Ô(t)〉 =
tr
î
Ôρ(t)

ó
tr[ρ(t)] = 1

tr[ρ(t)] tr
î
Ût0,tÔÛt,t0ρ(t0)

ó
=

tr
î
Ût0,tf Ûtf ,tÔÛt,t0ρ(t0)

ó
tr[ρ0] (2.4)

It is evident that the mathematical operation of the trace connects the two time "branches"

prompting us to introduce the notion of a closed time contour. This is the cornerstone of the

Keldysh formalism. Thus the closed time contour (Fig.2.1) C is comprised by Cf that starts

from time t0 and goes up until time tf and Cb which describes the evolution from tf back to

t0. Finally, the observable can be generated with the inclusion of a time-dependent source

field χ(t), which breaks time reversal symmetry along the two branches of the contour and so

the evaluation of the observable can be performed after calculating the generating functional

Z[χ]. Thus:

〈Ô(t)〉 = δZ[χ]
δχ(t)

∣∣∣∣
χ=0

(2.5)

In the case of no source term it easy to check that along the contour:

4 Chapter 2 Introduction



Figure 2.1.: The Keldysh contour.

ÛC = Ût0,tf Ûtf ,t0 = 1 (2.6)

Having laid the basic foundation for the non-equilibrium formulation, we can move on to

evaluate the partition function Z.

2.3 The non-equilibrium path integral

2.3.1 Fermionic coherent states

Before treating the path integral proper, we introduce the concept of coherent states, which

are defined as the eigenstates of the annihilation operators:

âν |ξ〉 = ξν |ξ〉 (2.7)

Where the label ν refers to the single particle states that span the Fock space. The values of ξ

for bosons are conventional complex numbers. Their fermionic counterparts are elements

that belong to the Grassmann algebra G. The algebra G is defined over the field of complex

numbers C, equipped with an associative and anticommutative product. Thus, the generators

that span the algebra obey the following property:

ξαξβ = −ξβξα, ξ2
α = 0 (2.8)

The Grassmann algebra contains all expressions of the form:

f(ξ) = f 0 +
∑
i

fiξi +
∑
i<j

fifjξiξj +
∑
i<j

fifjξiξj +
∑
i<j<k

fifjfkξiξjξk + . . . (2.9)

Where the fi coefficients are c-numbers belonging to the field. Any functions defined on the

Grassman algebra G are analytic and linear by virtue of eq. 2.8. As such we can construct

2.3 The non-equilibrium path integral 5



a Fock space with Grassmann numbers as expansion coefficients and for coherent states

specifically we have:

|ψ〉 = exp
(
−
∑
i

ξia
†
i

)
|0〉 =

∏
i

(1− ξiâ†i ) |0〉 (2.10)

We provide some additional properties of the fermionic coherent states relevant to construction

of the non-equilibrium path integral. While we do not provide explicit proofs here, the reader

can consult [14] for a more streamlined description of coherent states and [20] for a more

detailed exposition of the Grassmann algebra.

The overlap between two coherent states is given by:

〈ξ|φ〉 = exp
(
−
∑
i

ξ̄iφi

)
(2.11)

Where the quantity ξ̄ is the "left" eigenvalue of:

〈ξ|α̂† = 〈ξ|ξ̄ (2.12)

We note in passing, that ξ and ξ̄, are not complex conjugates. In the Grassmann algebra they

are strictly independent variables, belonging to the set of generators. Finally coherent states

form a set of overcomplete basis states for the Fock space and have the following resolution

of identity: ∫
d(ξ, ξ̄) exp

(
−
∑
i

ξ̄iξi

)
|ξ〉〈ξ| = 1 (2.13)

Where 1 denotes the identity in Fock space and d(ξ, ξ̄) =
∏

i dξ̄idξi is the integral measure.

2.3.2 Path integral construction

With the groundwork laid out, we can begin with the construction of the path integral

representation of the non-equilibrium partition function. By construction, the time evolution

operator along the closed time contour defines the partition function Z to be:

Z =
tr
î
ÛCρ0

ó
tr[ρ0] = 1 (2.14)
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As can be inferred from eq. 2.6, this is a convenient representation for the partition function in

this context, that will nonetheless provide a good starting point from which we can calculate

all correlation functions. Furthermore, the construction of the path integral involves a time

discretization procedure, which is heavily utilized in the numerical method implemented.

We begin by writing out the trace in an eigenbasis of the density matrix and expanding in

coherent states :

tr
î
ÛCρ0

ó
=
∑
n

〈n|ÛCρ0|n〉 =
∫
d(ξ, ξ̄)−

∑
ν ξ̄νξν

∑
n

〈n|ξ〉 〈ξ| ˆ̂
UCρ0 |n〉 (2.15)

=
∫
d(ξ, ξ̄)e−

∑
ν ξ̄νξν 〈ξ| ÛCρ0 |−ξ〉 (2.16)

Notice the minus sign that appears in the coherent state ket, since it is a function of Grassmann

numbers and obeys eq. (2.8). The next step is to describe the time evolution along the contour,

which we do by "breaking down" ÛC into time slices, which is essentially applying a Trotter

decomposition. We do that by introducing 2N discrete points on the contour with tf−t0
N−1 = δt.

We follow the labeling convention in [18]. The + evolution takes place on the forward part of

the contour from i = 0 to i = N and the − from i = N + 1 to 2N . It is also important to note,

that there is no time evolution from N to N + 1, since this corresponds to the closing of the

contour.

Û−C Û
+
C = eiĤ(t1)δteiĤ(t1+δt)δt) . . . eiĤ(t1+(N−2)δt)δte−iĤ(t1−(N−2)δt)δt . . . e−iĤ(t1)δt (2.17)

Since we have assumed δt sufficiently small, we can expand the time evolution operator up to

first order along the infinitesimal of the contour between points tj and tj−1:

Ûδt± = 1∓ iĤ(t− (j − 1)δt)δt+O(t2) (2.18)

where the sign defines the evolution along the two branches of the contour. We now insert

fermionic coherent state resolutions of identity for time point:

Z = 1
tr[ρ0]

∫
D(ξ, ξ̄)e−

∑
ν ξ̄
−
N,νξ

−
N
〈
ξ−N,ν

∣∣ Ûδt−e−∑ν ξ̄
−
N−1,νξ

−
N−1,ν

∣∣ξ−N−1
〉
. . .

×
〈
ξ−1
∣∣ 1e−∑ν ξ̄1,νξ1,ν

∣∣ξ+
N

〉 〈
ξ+
N

∣∣ Ûδt+e−∑ν ξ̄
+
N−1ξ

+
N−1,ν

∣∣ξ+
N−1,ν

〉
. . .
〈
ξ+

1
∣∣ ρ0
∣∣−ξ−N〉 (2.19)

where the integral measure contains all the products from the resolutions and the 1
tr[ρ0]

prefactor:

D[(ξ̄, ξ)] = 1
tr[ρ0] lim

N→∞

∏
τ=±

N∏
i=1

∏
ν

d(ξ̄τi,ν , ξτi,ν) (2.20)

2.3 The non-equilibrium path integral 7



We write out the matrix elements, using eq. (2.18):

〈ξi| Uδt± |ξi−1〉 = 〈ξi|ξi−1〉 e∓iĤ(ξ̄j ,ξj−1)δt (2.21)

which is true for any normal-ordered Hamiltonian. Hence we can finally write:

Z =
∫
D[(ξ, ξ̄)] exp

[
iS(ξ̄, ξ)

]
(2.22)

where:

S(ξ̄, ξ) =
N∑
n=1

∑
ν

δt[iξ̄+
n,ν

ξ+
n,ν − ξ+

n−1,ν

δt
−H(ξ̄+

n , ξ
+
n−1)] (2.23)

−
N∑
n=1

∑
ν

δt[iξ̄−n,ν
ξ−n,ν − ξ−n−1,ν

δt
−H(ξ̄−n , ξ−n−1)] (2.24)

It is important to note that the boundary terms corresponding to the initial density matrix

and the closing of the contour for n = N are contained in H(ξn, ξn−1), which are important

for our discussion. This will become clear in the following sections, where we will find the

form of the partition function of a non-interacting system.

2.4 Non-interacting Green’s functions

Consider the following Hamiltonian:

Ĥ =
∑
k

εk(t)ĉ†kĉk (2.25)

The system is prepared in a Gibbs ensemble, at t0 whose density matrix is given by:

ρ̂0 = e−β
∑
k(ε(t0)−µ)ĉ†k ĉk

Z0
(2.26)

where µ is the chemical potential, β = 1
T

and

Z0 =
∏
k

1 + e−β(εk(t0)−µ) (2.27)
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is the usual partition function for non-interacting fermions. The action can be rewritten as:

S(ξ̄, ξ) =
∑
τ=±

N−1∑
n=2

∑
ν,k

τδt[iξ̄τn,ν
ξτn,ν − ξτn−1,ν

δt
− εk,nξ̄τnξτn−1)]

+iξ̄+
1 (ξ+

1 − ρk)ξ−N + iξ̄−1 (ξ−1 − ξ+
N) (2.28)

where we have introduced the sum over τ for brevity. Grouping everything together, we can

write the action as:

S(ξ̄, ξ) =
∑
k

∑
n

∑
τ

ξ̄τn,kG
−1
0,kξ

τ
n,k (2.29)

Where G−1
0,k is the inverse, bare propagator for each energy level k:

iG−1
0,k =



−1 −ρ0,k

h+ −1

h+
. . .

h+ −1
1 −1

h− −1

h−
. . .

h− −1


(2.30)

and h± = 1 ∓ iεk(t0 + (n − 1)δt)δt ≈ eiεk(t0+(n−1)δt)δt as δt → 0. This is the discretized form

of the i∂t − εk operator on the Keldysh contour, describing the time evolution along the two

branches. We can therefore recognize the partition function as the generating functional for

the Green’s function. Since this particular action is quadratic, we can use Gaussian integration

for Grassmamn numbers [18] and express the propagator as:

〈ξ̄αξb〉 = 1
Z[0, 0]

δ2Z[χ̄, χ]
δχ̄b δχα

∣∣∣∣
χ=0

= iGab (2.31)

Where χα, χb are Grassmann source fields. Owing to the block structure, due to the two

contour branches, the propagator is also a matrix in Keldysh space, which we can write

succinctly as:

G0,k =
[
G++

0,k G+−
0,k

G−+
0,k G−−0,k

]
We thus have four Green’s functions, namely the time ordered G++ = GT , anti-time ordered

G−− = GT̄ , lesser G+− = G< and greater G−+ = G>. To focus on the time structure of the

2.4 Non-interacting Green’s functions 9



Keldysh formalism, we drop the index k labelling each energy level. By inverting the matrix,

the four Green’s functions read:

〈ξ̄+
n ξ
−
n′〉0 = iG<

0,nn′ = 1
det
[
−iG−1

0
]ρ0h

n′−1
+ hn−1

− (2.32)

〈ξ̄−n ξ+
n′〉0 = iG>

0,nn′ = − 1
det
[
−iG−1

0
]hN−n′+ hN−n− (2.33)

〈ξ̄+
n ξ

+
n′〉0 = iGT

0,nn′ = 1
det
[
−iG−1

0
]hn−n′+

−1 n > n′

ρ0(h+h−)N−1 n < n′
(2.34)

〈ξ̄−n ξ−n′〉0 = iGT̄
0,nn′ = 1

det
[
−iG−1

0
]hn−n′−

ρ0(h+h−)N−1 n < n′

−1 n > n′
(2.35)

It is important to emphasize one important aspect of the above notation. The (n, n′) indices

follow the time-ordering introduced in the construction of the path integral and do not simply

label each matrix entry. As an example, the 〈ξ̄+
1 ξ
−
1 〉0 corresponds to the matrix entry (1, N)

and 〈ξ̄−1 ξ+
1 〉0 to entry (N, 1). The manipulation of matrices obeying this indexing scheme, will

be elaborated on in the next chapter. Going to the continuum limit, by taking δt → 0 we

get:

G<
0,k′(t, t′) = i exp

ï
−i
∫ t

t′
dsεk(s)

ò
nk(t0) (2.36)

G>
0,k′(t, t′) = −i exp

ï
−i
∫ t

t′
dsεk(s)

ò
(1− nk(t0)) (2.37)

where nk(t0) is the initial occupation of the energy level. These four Green’s functions are not

independent and are characterized by a degree of redundancy. This can be expressed in the

form of the Keldysh relations:

G++(t, t′) = θ(t′ − t)G+−(t, t′) + θ(t− t′)G−+(t, t′)

G−−(t, t′) = θ(t′ − t)G−+(t, t′) + θ(t− t′)G+−(t, t′)
(2.38)

This is equivalent to the Larkin-Ovchinikov rotations, that brings the Keldysh matrix to a

triangular form. We however do not pursue this avenue here, since our implementation is

performed in the +,− basis.
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2.5 The Dyson equation

We conclude this chapter by the introducing the Dyson equation for the Keldysh propagator.

Let us assume that the action is given by a sum a quadratic term in the form of §0 and a sector

describing interactions Sint. A diagrammatic series can be found if we expand the exponent

in powers of Sint. The remaining Gaussian action is given by application of the Wick theorem.

The interaction-dressed Green’s function reads:

Gαβ(t, t′) = −i
∫
D[ξ̄, ξ]ξα(t)ξ̄β(t′) exp[iS0 + iSint] (2.39)

where α, β = {+,−} label the Keldysh contour branch. The Dyson equation reads:

G = G0 + G0 ◦Σ ◦G0 + · · · = G0 ◦ (1 + Σ ◦G) (2.40)

Where all one-particle irreducible diagrams are included in the self-energy matrix, Σ. The

circular multiplication defines convolution over all internal variables. As such, the only

addition to that of standard diagrammatic theory is the summation over the α, β indices,

imposed by the 2× 2 block structure of the Keldysh formalism.

2.5 The Dyson equation 11





3Time-discretized Dyson equation

The approach to solving the non-equilibrium Dyson equation in real time that will be described

in the following sections, is based on the description in [21]. It relies on the time discretization

procedure, which is an inherent part of the theoretical formulation for the non-equilibrium

path integral, which was discussed in the previous section. We reiterate the following that

are useful for our implementation: All branches of the Keldysh contour are discretized with

a specified time step ∆t, from an intial time t = t0 up until t = tf so that ti − ti−1 = ∆t.
Furthermore, all relevant propagators and their functionals are evaluated on this grid.

Figure 3.1.: The discretized Keldysh contour. Grid points are spaced ti−1 − ti = ∆t apart and a total
of 2N points are required to account for forward and backward evolution. Both branches
coincide with the real time axis and the shift is for illustrational convenience.

Our starting point is the bare Green’s function of a non interacting fermionic energy level.

In the Keldysh formalism it has a block, square matrix structure of dimension 2N , where

N is the number of discrete points on each branch of the Keldysh contour and each block

contains N×N entries, as described in eq. (2.30). Before moving forward, it is important to

emphasize some characteristics of the above expression that are pivotal to the implementation.

The first point we need to address is that the contour ordering is built in each block. To

illustrate this, we can look at the off diagonal blocks. The lesser (+−) component of the

matrix, corresponds to the upper left block. In this section of the matrix, the (1, N) element

contains the initial condition, described by the density matrix ρ0. We can also look at the

greater (−+) component - bottom left block- whose (1, N) entry is one, that corresponds to

the closing of the contour at t = tf . From these two elements we can see that the indexing

scheme, while consistent with the construction of the contour and the theoretical formulation,

is not particularly helpful, as it does not allow conventional linear algebra manipulations,
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without additional book-keeping. Furthermore, this matrix, as we shall see later, will be

represented as a NumPy array, necessitating a more natural way of indexing the entries. To

this end we perform a unitary transformation:

UG−1
0 U (3.1)

where:

U =



1
. . .

1
1

...

1


(3.2)

so that, time is increasing along a row from left to right, and along a column from top to

bottom. All entities (self energy, propagators) that inherit the Keldysh block structure, will

follow the same indexing scheme.

In the previous sections we saw that the Dyson equation in non-equilibrium retains the same

structure as its equilibrium counterpart, with the addition of the the propagators and the self

energy becoming matrices, since integration is done with respect to two contour variables:

G(1, 1′) = g(1, 1′) +
∫
d2
∫
d3g(1, 2)Σ(2, 3)G(3, 1′) (3.3)

where the integration over some numbered argument is to be interpreted as summing over

internal degrees of freedom, e.g.: ∫
d2 =

∑
σ2

∫
dx2

∫ τf

τ0

dτ2

where g is the bare Green’s function, G is the dressed propagator and Σ[G], the self energy

functional, which contains all irreducible diagrams. In the above expression σ could denote a

discrete degree of freedom (e.g. spin), x is a spatial variable and τ parametrizes the Keldysh

contour. The Dyson equation can be brought into a discretized form by first replacing the

integral over the contour variable τ with a sum and following the prescription discussed

above, the propagators and the self energy are replaced by matrices evaluated on the grid

points:

Gij = gij + ∆t2
∑
k

∑
l

gikΣklGlj (3.4)
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We can immediately identify the second term as the matrix product of the matrices g,Σ and

G, which are denoted in bold. We can now rewrite 3.4 as:

G = g + (∆t)2gΣG⇒(1−∆t2gΣ)G = g ⇒ (g−1 −∆t2Σ)G = 1⇒

G = (g−1 −∆t2Σ)−1 (3.5)

Equation 3.5 is the discretized form of the Dyson equation on the Keldysh contour. We can

immediately recognize a few welcoming aspects of this form.

• All integrations are replaced by matrix multiplications.

• The solution to the Dyson equation can be found by evaluating the matrix inverse of the

right hand side.

• The equation is solved on the whole contour and all relevant observables can be

extracted from the appropriate block of G.

Finally we note, that this particular representation is suitable for the description of transient

phenomena, since the initial condition is contained in the form of ρ0 in g−1 and no further

assumption is made for the endpoints of the Keldysh contour.
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4The resonant level model in
non-equilibrium

In this section we will introduce the resonant level model, which is often used to describe

impurities in bulk materials [22]. This will be the focus of our study and the implementation

of the method described above. While a relatively simple physical system, it is can provide

important physical insight and is frequently used as a reference for the development of

numerical methods. It has been recently used in an attempt to explore thermodynamic laws

in a quantum system and establish a connection to the formulation for macroscopic systems

[23].

In the following section we will perform an analytical treatment, that will subsequently be

used as a benchmark for our numerical results.

4.1 The non-interacting case

4.1.1 Non-equilibrium steady state

Before introducing delving into the time dependent realm of this model, let us consider a

system that couples a non-interacting energy level (dot) to two fermionic reservoirs held

at different chemical potentials. This for example could be achieved by the application of

a finite bias voltage, so that the two reservoirs are a source and a drain. The Hamiltonian

that describes a non interacting fermionic level, that can be occupied by one electron is the

following:

H = εdd̂
†d̂ (4.1)

where d†, d are the fermionic creation and annihilation operators for the energy level, obeying

the anticommutation relations:

{d̂†, d̂} = 0 (4.2)
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where d†, d are the fermionic creation and annihilation operators for the energy level, obeying

the anticommutation relations: The coupling to the electron reservoirs, filled up to a chemical

potential µ is introduced, that enables tunneling to and from the level.

HT =
∑

ν={L,R}

∑
k

wν ĉ
†
k,ν d̂+ w∗ν d̂

†ĉk,ν (4.3)

where the label ν labels the two energy continua and wν is a tunneling amplitude. Again, the

fermionic creation and annihilation operators of the leads ĉ†k, ĉk obey:

{ĉk, ĉ†k′} = δkk′ , {ĉk, ĉk′} = {ĉ†k, ĉ
†
k′} = 0 (4.4)

We first note, that we can invoke the non-equilibrium regime by considering, that in the

remote past the electrodes and the level are decoupled, and each region is in thermal

equilibrium. The couplings between the different regions are then introduced and are treated

as perturbations via the standard techniques of perturbation theory, with the only difference

that they are applied on the two branch contour. The above Hamiltonian is invariant under

time translations, due to its time-independence. We can therefore solve the Dyson equations

in Fourier space. We can make use of the Langreth theorem, which is a set of rules that

define the analytic continuation from contour variables to the real time axis. This allows us to

replace integrals over contour variables with integrals over real-time [19]. To determine the

properties of the system, we can solve the closed set of equations for the retarded (advanced)

and lesser Green’s functions:

Gr,a(t, t′) = g(t, t′) +
∫ ∞
−∞

dt1dt2g
r,a(t, t1)Σr,a(t1, t2)Gr,a(t2, t′) (4.5)

G<(t, t′) = (1 +GrΣr)g<(1 + ΣaGa) +GrΣ<Ga (4.6)

where g(t, t′) specifies the Green’s functions of the level without tunneling and:

Σr,a(t, t′) =
∑

ν={L,R}

∑
k

wk,νw
∗
k,νg

r,a
k,ν(t, t′) (4.7)

is the tunneling self-energy. For the purposes of this discussion, since we are interested in the

steady state properties of the system, we neglect the first term of eq.(4.6) that describes the
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initial correlations. To evaluate the above expression we introduce the density of states ν(ε)
to convert the sum over k to an integral and switch to frequency space:

Σr,a(ω) =
∫ +∞

−∞
dε

ν(ε) |w|2

ω − ε+ µ± iη
= (4.8)

P
∫
dε
ν(ε) |w|2

ω − ε+ µ
∓ iπν(ω + µ) |t|2 (4.9)

To make progress with the above expression, we make one more approximation, under the

assumption that the energy scale of the dot and tunneling amplitude are much smaller than

the scale where ν(ε) changes, i.e D � ω and ν is independent of ε. This can be seen as

modelling the dispersion relation for the electrons of the leads as:

εk = υFk (4.10)

This is satisfactory in the case of metallic electrodes and especially at temperatures less than

the Fermi energy of the bath. This approximation is known as the wide band limit. Without

loss of generality we can always shift the band to be filled up to µ = 0, since this can be

absorbed as a shift in D. This is relevant for the principal value integral, which becomes:

ν |t|2
∫ D

−D

dε

ω − ε
= ν |t|2 log

∣∣∣∣D + ω

D − ω

∣∣∣∣
= 2Γ

π

ω

D
+O
Å( ω

D

)3ã
(4.11)

And thus, the real part of the self energy can be neglected. In time domain this describes an

instantaneous tunneling event and so:

Σ r,a(t1 − t2) = ∓iΓδ(t1 − t2) (4.12)

where Γ = ΓL + ΓR. The Dyson equations in frequency space can be written as:

Gr,a(ω) = gr,a(ω) + gr,a(ω)Σr,a(ω)Gr,a(ω) (4.13)

G<(ω) = Gr(ω)Σ<(ω)Ga(ω) (4.14)

With:

gr,a(ω) = 1
ω − iεd ∓ η

(4.15)
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where η is a positive infinitesimal that ensures proper convergence of the transform at ±∞.

Thus the first equation can easily be solved with a trivial inversion:

Gr,a(ω) = 1
ω − εd ± iΓ

(4.16)

And after some algebra:

G<(ω) = 2iA(ω)f̄(ω) (4.17)

where A(ω) is the spectral function:

A(ω) = Γ
(ω − εd)2 + Γ2 (4.18)

and f̄(ω) can be thought of as an "averaged" distribution weighted by the leads’ linewidths:

f̄(ω) = ΓLfL(ω) + ΓRfR(ω)
Γ (4.19)

Finally the steady state occupation of the energy level is given:

nd =
∫
dω

2π 2iA(ω)f̄(ω) =
∑
ν=L,R

∫ µν

−D

dω

π
Γνfν(ω) 1

(ω − εd)2 + Γ2 (4.20)

4.1.2 Time-dependent coupling

We now return to introduce the time dependence in the tunneling term and initially focus on

the case of one lead. We introduce the coupling at time t = 0 in the form of:

HT (t) = θ(t)
∑
k

wĉ†kd̂+ w∗d̂†ĉk (4.21)

where θ(t) is the Heaviside function.

The first step is to evaluate the retarded (advanced) components of the resonant level’s Green

functions. The nature of the Heaviside function in eq.(4.21) imposes a "one-sided" behavior

for this model, starting at t = 0. To handle this initial condition, we can solve the Dyson

equation by means of a Laplace transform, which for the retarded (advanced) components

reads:

Gr,a(t− t′) = gr,a(t− t′) +
∫ ∞
−∞
dt1

∫ ∞
−∞
dt2 g

a,r(t− t1)Σr,a(t1, t2)Gr,a(t2 − t′) (4.22)
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Figure 4.1.: A single electron level εd coupled to a reservoir. The reservoir has a finite bandwidth D
and the coupling introduces a broadening Γ, which in the time domain is seen as a finite
lifetime.

Where g denotes the bare dot Green’s function, G the dressed one and Σ the self-energy of

the system. We first look at the form of the self energy, and evaluate both the lesser, and

retarded (advanced) components here,along with their Laplace transforms. Since the coupling

is introduced at t = 0 and enables tunneling processes from the electrodes to dot and vice

versa, the self-energy reads:

Σr,a(t, t′) = θ(t)θ(t′)
∑
k

wkw
∗
kg

r,a
k (t, t′) (4.23)

where gk is the bare Green’s function for the electrons of the lead. The inclusion of the

Heavisde function however, is trivial and we focus our attention to t > 0, where the calculation

is identical to the case of finite bias. As such, the self energy is a constant in Laplace space too.

The Laplace transform of the bare, retarded Green’s function for the energy level εd, reads:

g r,a(s) = ∓i
∫ ∞

0
dτθ(τ)e∓iεdτ−sτ = − 1

s± iεd
(4.24)

Where τ is a time difference variable. Returning to eq. (4.22), we can see that we have two

convolutions and so, in Laplace space it can be written as:

G r,a(s) = g r,a(s) + g r,a(s)Σ r,a(s)G r,a(s) (4.25)
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which straightforwardly gives:

Gr,a(s) = 1
s− (−Γ∓ iεd)

(4.26)

To evaluate the total time-dependent Green’s function we must find the inverse Laplace

transform of G(s), which is done by integrating over the Bromwich contour and making use of

Cauchy’s residue theorem. We define p so that, p > Re(s0) where s0 is a pole of the function

in Laplace space.

L−1[G(s)] = 1
2πi

∫
p+i∞

p−i∞

ds esτG(s) (4.27)

By taking R→∞ we can evaluate the relevant quantity on the curve γ, as seen in Fig. (4.2).

Figure 4.2.: The Bromwich contour. Reproduced from [24].

Since our function has just one pole, we finally get:

Gr(t− t′) = −iθ(t− t′)esr0(t−t′)

Ga(t− t′) = iθ(t′ − t)esa0(t′−t)
(4.28)

To explore the transient behavior of the system we will focus our attention to the time

dependent occupation n(t). This corresponds to the real time diagonal elements of the lesser
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Green’s function G<(t, t′). We can procceed to solve the Keldysh form of the Dyson equation

for the lesser component, which we now write out in full:

G<(t, t′) =
∫
dt1dt2dt3dt4(δ(t− t2) +Gr(t− t1)Σr(t1 − t2))G<(t2 − t3)

× (δ(t3 − t′) + Σa(t3 − t4)Ga(t4 − t′)) +
∫
dt1dt2 G

r(t− t1)Σ<(t1 − t2)Ga(t2 − t′) (4.29)

Where all integrals run from −∞ to∞. The retarded only component from the first integral

gives:

Gr ◦ Σr ◦ g< =
∫ ∞
−∞

dt1

∫ ∞
−∞

dt2 − iθ(t− t1)e(−Γ−iεd)(t−t1) − iΓδ(t1 − t2)in(0)e−iεd(t2−t′)

= −iΓn(0)e(−Γ−iεd)teiεdt
′
∫ t

0
dt1e

Γt1 = −in(0)e(−Γ−iεd)teiεdt
′(eΓt − 1) (4.30)

Similarly we get an expression for the advanced component:

g< ◦ Σa ◦Ga = in(0)e(−Γ+iεd)t′e−iεdt(eΓt′ − 1) (4.31)

and:

Gr ◦ Σr ◦ g< ◦ Σa ◦Ga =

iΓ2
∫ t

0
dt1

∫ t′

0
dt4θ(t− t1)θ(t′ − t4)e(−Γ−iεd)(t−t1)n(0)e(−iεd)(t1−t4)e(−Γ−iεd)(t′−t4)

= in(0)e−Γ(t+t′)e−iεd(t−t′)(eΓt − 1)(eΓt′ − 1) (4.32)

The last term is straightforward to evaluate:

Gr ◦ Σ< ◦Ga =
∫ t

0
dt1

∫ t′

0
dt2

∫
dω

2π f(ω)e(−Γ−iεd)(t−t1)2iΓeiω(t1−t2)e(−Γ+iεd)(t′−t2)

The final expression for the lesser component is:

G<(t, t′) = ie−Γ(t+t′)e−iεd(t−t′){n(0)

+ Γ
π

∫ µ

−D
d(ω)exp[(Γ + iεd − iω)t] exp[(Γ− iεd + iω)t′]

Γ2 + (ω − εd)2 } (4.33)

Combining everything we get for the time dependent occupation of the dot:

n(t) = −iG<(t, t) = e−2Γtn(0) + Γ
π

∫ µ

−D
dωf(ω)1 + e−2Γt − 2e−Γt cos (ω − εd)t

Γ2 + (ω − εd)2 (4.34)
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Where f(ω) is the lead’s distribution function, which we assume obeys Fermi-Dirac statistics.

In this analysis, as well as in the following treatment we limit our discussion to the temperature

limit T = 0. Furthermore, the system’s Hamiltonian is particle-hole symmetric, therefore

an identical expression can be derived for the hole population nh(t) from G> for energies

ε′ = −εd. So far we have considered the level interacting with one lead. The inclusion of a

second electron reservoir follows the same procedure as described above and reads:

n(t) = e−2Γtn(0) +
∑

ν={L,R}

Γν
π

∫ µν

−D
dωfν(ω)1 + e−2Γt − 2e−Γt cos (ω − εd)t

Γ2 + (ω − εd)2 (4.35)

where Γν is the line-width introduced by the coupling to the lead ν and Γ =
∑

ν={L,R}

Γν is

the total broadening of the level. Inspecting the above equations, we can immediately

observe, that the occupation number exhibits a transient, which is characterized by a lifetime

Γ. Additionally, the cosine integrand characterizes interference effects that take place due

to electrons tunneling from the leads with different energies. This is connected to an

underdamped oscillation transient, which can be seen in an initially empty energy level.

As we shall see in later, there is a dominant contribution to the period of these oscillations

given by T = 2π
εd−µ

. Another important result is that for t → ∞ the system relaxes to the

non-equilibrium steady state result from our previous discussion where we assumed the

coupling was introduced some time in the remote past, given by eq. (4.20).

In Figs. (4.4), (4.3) we explore the behavior of the level occupation for a range of energies.

The dynamics are both dependent on the initial conditions, i.e. n(0), as well as the relative

difference of the energy with the filling of the leads εd − µ. We can see that the occupation

of an initially empty level, exhibits the most interesting dynamics. For energies above the

chemical potential, the occupation relaxes to a small, but non-zero value after a timescale of

t ≈ Γ. If however, the dot’s energy lies below µ, the occupation relaxes to one, as is expected

due to the tunneling amplitude and the availability of the energy level independent of the

initial n(0). An initially filled energy level with εd − µ > 0, decays exponentially to its steady

state, owing to the dominant contribution of the first term in eq. (4.34). We also note that the

steady state values for the occupation number are the same for both empty and filled levels

for the same values of εd.
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Figure 4.3.: Surface plot of the resonant level occupation number as a function of time and energy
for an initially filled level at T = 0, µ = 0 and bandwidth D = 100Γ. The occupation
experiences an exponentially decaying transient, characterized by a lifetime Γ.
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Figure 4.4.: Behavior of an initially empty energy level, for (a) energies below the chemical potential
and (b) energies above µ.

26 Chapter 4 The resonant level model in non-equilibrium



Obviously, an initially filled energy level lying below the chemical potential does not experience

any transient, as the system prior to the connection of the leads, is already found in a state,

that does not allow the occupation number to change, even though tunneling events take

place, due to the Pauli exclusion principle.

4.1.3 Numerical results

In this section we will provide details of the numerical implementation and use the analytic

results as a benchmark to the validity and accuracy of the method. An important aspect of the

implementation is the choice of the coding language. The solution to the Dyson equation was

implemented in Python 3.8.3, making use of NumPy’s routines optimized for array operations.

All programs were run on a home computer with 16 GB DDR4 RAM and an Intel i7-8750H

processor.

As mentioned in the previous section we restrict our discussion to the wide-band limit,

at temperature T=0. The starting point of the algorithm is the initialization of the bare

propagator. While it is a relatively straightforward task from a coding perspective, there are

three important points need to be addressed. The first is the indexing scheme, which was

described in Sec. 3.

The second, is the choice of the time step ∆t that defines the spacing between the grid points

in the Keldysh contour. The energy at which processes take place, define different time scales,

an aspect which is of pivotal importance in the study of transient phenomena. As we saw in

the previous section, the energy required for an electron to tunnel to and from the lead is

given b by Γ. This defines a time scale
1
Γ during which the transient takes place. As such, to

ensure convergence of the algorithm an appropriate time step must be chosen, i.e. it should

be able to resolve processes happening even at the largest energy scale. In the model which is

the focus of our study the highest energy scale is defined by the leads’ bandwidth D and the

time step is taken to be ∆t ≈ 1
D

. In addition, the terms:

h+ = e−iεd∆t, h− = eiεd∆t

in the diagonal blocks of g0, that correspond to the time evolution along the forward and

backward branches of the contour respectively, must be evaluated as exponentials, as the

linear approximation in [ref equation] incurs considerable errors when the matrix is inverted.

This is especially important for values of energy where εd∆t ≈ 1. This particular feature is

illustrated in Fig. (4.5).
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Figure 4.5.: Errors in the calculation of time dependent level occupation caused by approximating
the exponential function in the time evolution terms in the Keldysh propagator. Even for
smaller values there is a noticeable deviation between the results.
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Figure 4.6.: Relative error in the dot occupation between the matrix inversion and eq. 4.34.
∆t = 5× 10−3, εd = 10, D = 100Γ, n(0) = 0. To properly visualize the error behavior, the
first 15 points have been omitted, as they correspond to a trivial NaN value due to the
initial condition.

In all our following calculations energy is expressed in units of Γ. The next step is to construct

the self energy matrices. We first evaluate the lesser (+−) and lesser (−+) components, that

correspond to the off-diagonal blocks of the matrix and using the Keldysh relations for the

self energy [15], we evaluate the time ordered (++) and anti-time ordered (−−) blocks.

Σ++(t, t′) = −
[
θ(t′ − t)Σ+−(t, t′) + θ(t− t′)Σ−+(t, t′)

]
Σ−−(t, t′) = −[

(
θ(t′ − t)Σ−+(t, t′) + θ(t− t′)Σ+−(t, t′)

] (4.36)

We also note, that there is an ambiguity in the equal time value of the Heaviside function,

θ(0). We chose θ(0) = 1
2 , following the author’s suggestion from [21], but tests with different

values did not impact the accuracy of the results. The off diagonal components are given by:

Σ<(t, t′) = 2iΓf(t, t′)

Σ>(t, t′) = 2iΓ(1− f(t, t′))
(4.37)

This requires the evaluation of the Fourier transform of the Fermi function, which in the T = 0
limit reads:

f(t, t′) = F−1(f(ω)) =
∫ µ

−D

dω

2π e
−iω(t−t′) = i

2π
e−iµ(t−t′) − eiD(t−t′)

t− t′
(4.38)

As such, the self-energy in this case is exact and no perturbative expansion with respect to Γ is
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necessary. With the above definitions the solution to the Dyson equation can be found with a

simple matrix inversion. By plotting the time dependent occupation of the energy level given

by eq. (4.34), and the diagonal of G(+−) we recover the expected results, properly describing

the transient oscillations, as well as the steady state value that the system equilibrates to

after the sudden connection to the lead. The accuracy of the results is indeed satisfactory,

with a relative error of < 2% (Fig.4.5)). In Fig. (4.7) the time dependent occupation of

the dot is shown, after the sudden connection to one lead. The transient, under-damped

oscillations that the system exhibits, have a period which is inversely proportional to the

energy of the level. This defines another characteristic time scale due to the "sudden" nature

of the connection to the lead, i.e. the Heaviside function time dependence in the tunneling

part of the Hamiltonian. The oscillations of the level’s occupation exhibit both different period

as well as magnitude, which are related to how close the energy level lies to the chemical

potential of the lead.
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Figure 4.7.: Comparison of the level occupation between the analytic results and the matrix inversion
for different values of ε. ∆t = 5× 10−3, D=100Γ.
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So far we have assumed that the energy level is connected to one lead at a chemical potential

µ = 0. We can extend our discussion and consider two leads held at different chemical

potentials µ1 and µ2, which could be due to an applied bias voltage. The coupling to each

lead is characterized by its respective linewidth ΓL and ΓR. We can see that the behavior

exhibited in the case of one lead is qualitatively reproduced here, albeit with slight alterations.

The transient oscillations are still observed for the case of an initially empty level, with the

same characteristic period, which is inversely proportional to the energy level. However, the
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Figure 4.8.: Comparison of the level occupation between the analytic results and the matrix inversion
for different values of ε. ∆t = 10−3.

lifetime of the transient is now Γ = ΓL + ΓR and as such the system relaxes to its steady state

values faster. This can be seen in Fig. (4.8). For our calculations we have assumed symmetric
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coupling
Γ
2 = ΓL = ΓR. Furthermore, the dot can become filled, only if it lies below the

lowest chemical potential. In the cases, where it lies between the chemical potentials, the dot

attains a fractional steady state value. The relative error follows the same behavior as in the

case of one lead. Some indicative plots are provided in Fig. (4.9).
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Figure 4.9.: Relative error in the dot occupation between the matrix inversion and eq. 4.34.
∆t = 10−3, D = 100Γ.
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4.1.4 Time dependence, revisited

While the step-like time dependence in the tunneling Hamiltonian serves as good starting point

for the non-equilibrium treatment of the resonant level, it imposes a rather nonphysical setting

in the sense that tunneling processes begin instantaneously. A more physically motivated

approach would be to introduce a time dependence in the form of Γ(t, t′). The analytic

solution is rather straightforward, but algebraically involved, since it involves finding the

Fourier transform of a general function of two time variables. In the case of numerical method

it is a matter of extending the evaluation of Γ on the (t, t′) grid. Obviously, this makes the

evaluation of the arrays more demanding, as a new N × N array must be initialized. This

especially important for finely-spaced grids. To model the smooth "ramp-up" of the tunneling

we use a time dependence in the form:

Γ(t, t′) = Γ0 tanh (γt)2 tanh (γt′2)2 (4.39)

where γ is a parameter that we are free to choose and defines how "sudden" the connection to

the leads is and we set its asymptotic value Γ0 = 1. The functional form of Γ depends on the

physical process it describes. The expression above was chosen due to the hyperbolic tangent

being a smooth, well-behaved function. Additionally, for t, t′ → ∞ Γ → 1. We therefore

hope to recover the previously described behavior for an appropriately chosen γ. In Figs.

(4.11,4.10), we explore the behavior of the dot occupation for different values of γ. We can

see that the transition to the steady state now happens over a new characteristic time scale

given as a function of τ = 1
γ

.

For an initially filled dot, with an energy lying above the chemical potential, larger values

of γ, lead to a faster relaxation. The same behavior can be seen for initially empty dot lying

below the chemical potential. An interesting behavior arises again in the case where the

system exhibits the oscillatory transient. In contrast to the previous two cases, there is an

intermediate value of γ, that enables the system to reach its steady state the fastest. This can

be viewed as a critically damped oscillation. When γ is less than this critical value, the system

is over-damped and reaches its steady state slowly. For values larger than τc, the system

exhibits the under-damped oscillations described above. For both initial conditions in the dot

occupation (empty,filled), we recover the behavior that corresponds to the θ-function time

dependence in the tunneling Hamiltonian for very large values of γ.

34 Chapter 4 The resonant level model in non-equilibrium



Figure 4.10.: Time dependent tunneling with Γ given by eq. (4.39). The three different damping
regimes can be observed, with γ increasing along the direction of the arrow. γ

Γ0
=

1, 2, 3, 4, 10, 20, 105. ∆t = 5× 10−3.
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Figure 4.11.: Time dependent tunneling with Γ given by eq. (4.39), with γ increasing along the
direction of the arrow. γ

Γ0
= 1, 2, 3, 4, 10, 20, 105. ∆t = 5× 10−3.

36 Chapter 4 The resonant level model in non-equilibrium



We conclude this section by introducing a time dependence in the energy level εd(t) in the

form of a periodic driving. To focus our discussion on the energy level, we assume one

electronic lead at µ = 0 and that the coupling is introduced in the form of a θ-function turn

on, as per Sec. 4.1.2. The driving is applied at a later time td = 0.4Γ−1. The Hamiltonian of

the dot is now:

Ĥ(t) = εd(t)d̂†d̂, εd(t) =

ε0 t < td

ε0 cos Ω(t− td) t > td
(4.40)

The dynamics of the dot occupation can be seen in Figs. (4.12, 4.13). The system displays the

behavior described in the previous sections, until the driving is turned on. It can be readily

seen that the system relaxes to a steady state defined by the drive’s amplitude as well as its

frequency. One interesting result is that system gradually relaxes to this value and oscillates

around a value which is close to n = 0.5. This becomes clearer when the drive’s frequency is

much larger than the energy level (which in our case is the driving field’s amplitude). Over

the course of one period the energy level oscillates. During this quenching process, the dot

can become filled during the course of the period for a between in the interval [T4 ,
T
2 ]. In

contrast the dot empties when εd > µ. This leads to the relaxation around this mean value.

The steady state behavior is characterized by the interplay of the two time scales, defined

by Γ−1 and Ω−1. If Ω ≈ Γ, then over the course of one period there is "enough" time for an

electron to tunnel in and out of the energy level. In the regime Ω� Γ, the oscillations in the

occupation follow the sinusoidal form of the external drive.

This behavior can be formulated in terms of Floquet theory, in which the steady state of

the system is given in terms of Bessel functions. The physical consequence of this Floquet

expansion is noteworthy, since it can be understood as the absorption and emission of energy

quanta by the driven energy level out of and into the classical external driving field [25].

Indeed, the numerical results agree with the analytic description of [26].
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Figure 4.12.: The effect of an external drive to the dot occupation. The steady state is determined by
the characteristics of the drive. ∆t = 5× 10−3, D = 100Γ.
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Figure 4.13.: The effect of an external drive to the dot occupation. For a larger value of Ω the steady
state follows the sinusoidal dependence of the drive and the oscillations around n = 0.5
can be clearly seen. ∆t = 5× 10−3, D = 100Γ.
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5The Anderson model

The next step for the resonant level in our study, is to include interactions. We shall include an

on-site repulsion term and allow the level to be occupied by two electrons with different spins

(doubly degenerate). To this end we make the following modifications to the Hamiltonian:

Ĥd =
∑
σ

εdd
†
σdσ (5.1)

where σ = {↑, ↓}. Additionally, tunneling should now include both spins.

ĤT (t) = θ(t)
∑
k,σ

wc†kdσ + w∗d†σck (5.2)

where we have also assumed that the tunneling amplitude w is independent of the spin.

Finally we include an onsite repulsion term in the form of:

ĤU = Un̂(t)↑n̂(t)↓ (5.3)

where U is the strength of the Coulomb and n̂σ = d†σdσ. The inclusion of the last term

formulates the definition of the single impurity Anderson model (SIAM). This model was first

introduced by Anderson [27] to describe localized magnetic impurities in dilute metallic alloys.

In its core, the Anderson model looks relatively simple, although its full solution is rather

complicated and is given by the so-called Bethe ansatz [28]. It has aided in the understanding

of various transport phenomena in nanoscale systems. The most prominent example is the

mapping to an effective Kondo Hamiltonian for certain values of the parameters involved

[29]. As in the case of the resonant level model, it is frequently used as a starting point and a

bench-marking tool for the development of new numerical methods.

In the context of magnetic ions, we can think of the interplay between εd and U . If εd < µ, it is

favorable for the energy level to be occupied with two electrons. There is, however an energy

cost with U and when 2(εd − µ) + U > 0, it is favorable to have only one state filled, thus the

ion has a localized magnetic moment. Since the model includes tunnelling from an electron

reservoir, there is a compromise between "hopping" processes and the repulsion, which leads

to distinct regimes for certain values of parameters, as we shall see below.
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5.1 Equilibrium Hartree-Fock

Before proceeding forward it is instructive to remind ourselves of the equilibrium approach,

as it will greatly benefit our discussion later. In the equilibrium regime none of the terms

in the Hamiltonian have an explicit time dependence. Therefore, it is invariant under time

translation and all Green’s functions relevant to the problem can be expressed as a function

of time differences. An intuitive and straightforward approach is through equations of motion

(EoM) for the Green’s functions. We want to solve:

i∂tG
r
d,σ(t− t′) = δ(t− t′)− iθ(t− t′)〈{i∂tdσ(t), d†σ(t′)}〉 (5.4)

Where:

Gr
d,σ(t− t′) = −iθ(t− t′)〈{dσ(t), d†σ(t′)}〉 (5.5)

The time evolution for dσ(t) reads:

i∂tdσ(t) = −[H, d](t) = −eiHt{[Hd, d(0)] + [HT , d(0)] + [HU , d(0)]}e−iHt (5.6)

We evaluate all commutators by making use of the operator identity: [AB,C] = A{B,C} −
{A,C}B, to apply the usual fermionic anticommuation relations (see eq.(4.4)). We are left

with:

i∂tdσ(t) = (εσ − µ)dσ(t)−
∑
k

wck + [HU , dσ(t)] (5.7)

and for the annihilation operator of the lead:

i∂tck(t) = [H, ck(t)] = −(εk − µ)ck(t)− w∗dσ (5.8)

[HU , dσ(t)] = −Unσ′(t)dσ(t)

since [d†σ′dσ′ , dσ(0)] = 0 and [d†σdσ, dσ(0)] = dσ(0). We also define ξν = εν − µ. Plugging

everything in their respective equations:

(i∂t − ξd)Gr
d,σ(t− t′) = δ(t− t′) +

∑
k

w〈{ck(t), d†(t′)}+Dr
σ(t− t′) (5.9)

(i∂t − ξk)Gr
dσ,k(t− t′) = w∗Gr

d,σ(t− t′) (5.10)

where: Gr
dσ,k(t− t′) = −θ(t− t′)〈{ck(t), d†(t′)} and Dr

σ(t− t′) = −θ(t− t′)〈{nσ′(t)dσ(t), d†σ(t′).
Since the last term is quartic in creation and annihilation operators, constructing an equation

of motion for this propagator would give rise to the three point Green’s function, leading to a
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hierarchy of a set of non-closed differential equations. We can simplify Dr(t− t′) by making

the following assumption, which is replacing the number operators by: nσ = 〈nσ〉+δnσ, where

δnσ ≡ nσ−〈nσ〉 is a fluctuation around the mean occupation. Assuming these fluctuations are

small, so that: δn↑δ↓ ≈ 0, we can rewrite the interaction part of the Hamiltonian HU as:

HU = U〈n↑〉n↓ + U〈n↓〉n↑ − U〈n↑〉〈n↓〉 (5.11)

This expansion however, comes with a price. Since the original Hamiltonian obeys SU(2)
symmetry, by allowing a decoupling of this form we allow solutions where 〈n↑〉 6= 〈n↓〉. This

obviously is non-physical for the case of one energy level. It however provides an adequate

description of macroscopic samples. In this approximation Dr
σ(t − t′) = 〈nσ̄〉Gr

σ(t − t′).
Switching to Fourier space, eq.(5.9), can be rewritten as:

(ω + iη − ξd − U〈nσ〉)Gr
σ(ω)− ΣT (ω)Gr

σ(ω) = 1 (5.12)

Where:

Σ(ω) =
∑
k

|w|2

ω − ξk + iη
(5.13)

is the tunneling self-energy. This expression has been already evaluated in the wide-band

limit and so we are finally left with:

Gr
σ(ω) = 1

ω − (ξd + U〈nσ̄〉)− iΓ
(5.14)
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5.1.1 The self-consistency equations

To evaluate the density per spin we make use of the spectral function, which is defined as:

Aσ(ω) = −2Im(Gr
σ(ω))

= Γ
[ω − (ξd + U〈nσ̄〉]2 + Γ2 (5.15)

Thus:

nσ =
∫ 0

−D

dω

2π f(ω)Aσ(ω) (5.16)

where f(ω) is the Fermi distribution of the lead. We can simplify the calculation by assuming

T = 0, which we have assumed so far in this thesis. In this limit f(ω) = θ(−ω). Additionally

we can send D →∞, which is justified since Γ << D. The integral evaluates to:

nσ = 1
2 −

1
π

arctan
Å
ξd + Unσ̄

Γ

ã
(5.17)

We can use the identity cot[π2 − arctan(x)] = x and so we can rewrite:

nσ = cot(πnσ) = Unσ̄ + ξd
Γ (5.18)

Now we can introduce the parameters N = n↑ + n↓ the total occupation of the energy level

and M = n↑ + n↓, the magnetization respectively. The self-consistent equations are thus

defined as:

N = 1
π

∑
σ

arccot
Ç
ξd + U

2 (N − σM)
Γ

å
M = 1

π

∑
σ

σ arccot
Ç
ξd + U

2 (N − σM)
Γ

å (5.19)

where we use σ = ± for brevity. We can see that there exists a trivial solution with no

magnetization, since for M = 0 we just get that the occupation for both spin species is the

same. We focus on the electron-hole symmetric point (n↑ = n↓ = 1
2). As we mentioned

before, we expect a solution with nonzero magnetization. The transition from a non-magnetic

solution to a magnetic one is given by a critical ratio U
Γ , which we can evaluate as follows, by
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first noting that M = 1, requires N = 1. We perform a Taylor expansion of M , around this

critical point.

N = 1
π

∑
σ

arccot
Ç
ξd + U

2 (N − σM)
Γ

å
M = 1

π

UM
Γ

1 + ( ξd+U/2N
Γ )2

(5.20)

where we used:

arccot(a+ bx) = arccot(a)− bx

1 + a2 +O(x2) (5.21)

At the electron-hole symmetric point ξd = −U
2 and from the first equation we get N = 1. The

second one is satisfied if and only if:
U

Γ = π (5.22)

This is the critical value, beyond which symmetry is broken and a solution with a non-zero

magnetization is expected.

5.2 Analytic non-equilibrium treatment

We can perform a perturbative expansion in the case where U is much smaller than the other

energy scales defining the problem and truncate this expansion at first order. This amounts

to only considering the "tadpole" self-energy diagram in Fig. (5.1). This is the mean-field

approximation, also known as the Hartree-Fock approximation. The correction to the energy

level in this regime can be viewed as an effective external potential, and can be expressed as:

εσ(t) = εd + Unσ′(t) (5.23)

In a similar manner to the non-interacting case covered in the previous sections, we are

Figure 5.1.: The Hartree-Fock approximation as self-energy diagrams. In the case of the resonant
level model, the Fock term is zero, since no spin-flips are allowed.

tasked with solving the Dyson equations for the retarded, advanced and lesser components.

The introduction of the interaction in this regime creates a time dependence in the dot energy

as per eq. (5.29). The self energy due to tunneling to the metallic lead has the same form as
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in eq.(4.37). We can again, invoke the Langreth rules to solve the Dyson equations for the

retarded (advanced) components:

[i∂t − εd(t)]Gr(t, t′) = δ(t− t′) +
∫ ∞
−∞

dt1Σr(t, t1)Gr(t1, t′)

[−i∂t′ − εd(t′)]Gr(t, t′) = δ(t− t′) +
∫ ∞
−∞

dt1G
r(t, t1)Σr(t1, t′)

(5.24)

with the boundary condition Gr(t, t′) = 0 for t > t′. An identical set of equations can be

written for Ga(t, t′) with the respective boundary condition Ga(t, t′) = 0 for t < t′. In general,

to close the above set of the equations, some approximation must be made in the self-energy.

In the the wide-band limit (at T = 0), the tunneling self-energy is exact. In addition, the

mean-field approximation we performed does not impact the expression of the self energy

and can be instead absorbed as a time dependence in the total energy for each spin εσ(t).
With these remarks in mind, the equations can be straightforwardly integrated to yield:

Gr(t, t′) = −iθ(t)θ(t′)θ(t− t′)e−Γ(t−t′) exp
ß
−i
∫ t

t′
dτεσ(τ)

™
Ga(t, t′) = iθ(t)θ(t′)θ(t′ − t)e−Γ(t−t′) exp

ß
−i
∫ t

t′
dτεσ(τ)

™ (5.25)

Eq.(5.25) describes the behavior of the system for all times. We want to explore the transient

behavior of the system and follow the same procedure as described in 4.1.1. We define:

ε̃(t) =
∫ t

0
dτεσ(τ) (5.26)

We utilize eq. (4.32) to solve for the lesser Green’s function. The result again, is very similar

to the non-interacting case. One major difference is the exponentiated integral due to the

time dependence of the energy level, which encapsulates memory-related effects:

G<(t, t′) =iθ(t)θ(t′)θ(t− t′)e−Γ(t+t′)e−i(ε̃(t)−ε̃(t
′)){n(0)

+
∑
ν

Γν
π

∫ µν

−D
dωfν(ω)u(ω, t)u∗(ω, t′)}

(5.27)

where:

u(ω, t) =
∫ t

0
dτ exp[Γτ − i(ωτ − ε̃(τ)]
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5.3 Numerical results

For the calculation of the occupation of the level, we now require the initialization of the

propagators as well as the self energies for each spin separately. We are thus required to solve:

Gσ =
[
g−1
σ −∆t2(ΣHF,σ + ΣT

σ )
]−1

(5.28)

where g−1
σ , is the bare propagator for each spin and ΣHF,σ, ΣT

σ the Hartree-Fock and the

tunneling self-energy respectively. The tunneling again follows the procedure of the previous

chapter, in which we first evaluate the off-diagonal Keldysh components and using eq.(4.36),

the diagonal ones are known.

For the calculation of the tunneling self-energy, we remain in the wide-band limit and so ΣT
σ ,

is given by eq. (4.37). In the present study we have not accounted for any spin dependent

transport phenomena, although the generalization in this framework is straightforward, but

would necessitate the inclusion of the Fock diagram. As mentioned previously the Hartree-

Fock decoupling of the interaction part of the Hamiltonian amounts to a time dependent

correction to the energy level, the self-energy ΣHF
σ is equivalent to that from an external

scattering potential. The self energy is thus given by [17]:

ΣHF,σ(t, t′) = Unσ̄(t)δ(t− t′)τ 3 (5.29)

Where τ 3 is the the the Pauli matrix that describes the Keldysh components:

τ 3 =
[

1 0
0 −1

]
(5.30)

The discretized form of eq. (5.29) is:

Σµν
ij = ν

U

∆tn̄iδijδµν (5.31)

Where the the indices µ, ν = {+,−} label the Keldysh contour branches and i, j, the discrete

points in the time mesh and n̄ is the time-dependent occupation of the opposite spin. We

have dropped the σ indices in favor of readability. Notice the division by ∆t, which amounts

to "cancelling" out the integration of one time variable due to δ(t − t′). The last step is to

implement a self-consistent loop that terminates, once a convergence criterion is met. This is

done by iteratively solving eq. (5.28), storing nσ, recalculating the Hartree-Fock self-energy

and checking for convergence in each iteration. This is performed with a while-statement that

uses the relative difference of the dot occupation for one spin between two iterations. This
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parameter is compared to a user-input threshold, which in our calculations was 10−9. The

relevant parts of the code can be found in Appendix A.

The numerical results are provided in Fig.(5.3) and Fig.(5.4). These results agree with the

calculations of references [21, 30], where comparisons with the analytic results of eq. (5.27)

are also provided. It is evident that, there is a dependence of the system’s behavior on the

initial spin configuration. This should not come as a surprise, as the self-consistent equations,

predict such a behavior. For the electron-hole symmetric point, for a given value of the ratio U
Γ ,

there are three distinct solutions. One with M = 0 and the other two with M = ±1. We can
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Figure 5.2.: Time dependent magnetization as a function of U with the self-consistent method. For
values of U < π, the system relaxes to a non magnetic state. As U approaches its critical
value, the relaxation to its equilibrium value increases. ∆t = 5× 10−3, Lead bandwidth
D = 100Γ.

think of the set of eqs. (5.19) as finding the root of f1(N,M) = f2(N,M). Then, the initial

conditions of the problem can be thought of as displacements from this point. Different initial

configurations will lead to different solutions which the system will relax to, since they are

solutions to the mean-field Hamiltonian and thus, energetically favorable [27]. Indeed, for an

initially non-polarized spin configuration, i.e. (n↑(0), n↓(0)) = (0, 0) or (n↑(0), n↓(0)) = (1, 1)
the system always relaxes at n↑ = n↓ = 1

2 . This behavior can be seen even beyond the weak

coupling limit (U >> Γ). However, for large values of U , the dot occupation overshoots its

steady state, which can be seen as a bump-like feature in Fig.(5.4). We note that for larger

values of U the algorithm’s convergence was signifacntly slower. As an example, the solution

to the Dyson equation for a 2000× 2000 array, defining the discretized time-grid, was given

after 94 iterations with a run-time of ≈ 8 minutes, for U = 8Γ, whereas for U = 4Γ, the

solution was given after 16 iterations, with the process taking in total 1.5 minutes.
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Figure 5.3.: Time dependent occupation for both spin species, starting from an initially filled state
(n↑, n↓) = (1, 1). ∆t = 5× 10−3, D = 100Γ.

There is an interesting phenomenon however for an initially spin polarized configuration,

where we expect a magnetic solution for values of U
Γ > π. For U , below this critical value,

the system relaxes to a non magnetic state. However, as U approaches this value, the

magnetization M = n↑ − n↓, converges to 0, albeit much more slowly (See Fig. (5.2)). This

behavior belongs to the class of anomalous effects taking place near the critical point of a

phase transition and is known as "critical slowing down" [31]. It refers to the change in the

dynamics of an order parameter, which in this case is the magnetization. While not in the

scope of this thesis, it would be an interesting question to answer, even in the context of this

mean-field approximation, what is the scaling behavior of the relaxation rate near the critical

point.
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Figure 5.4.: Time dependent occupation for both spin species, starting from an initially empty state
(n↑, n↓) = (0, 0). ∆t = 5× 10−3, D = 100Γ.
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6Conclusions

We have presented a study of the resonant-level model dynamics in non-equilibrium both

in a non-interacting regime, as well as in a mean-field treatment. We utilized a numerical

method that provides the solution to the Dyson equation in time domain via matrix inversion,

by appropriately discretizing the Keldysh contour. This method is facilitated by the Keldysh

formalism itself and essentially follows straightforwardly from the path integral formulation.

At this point it is important to reiterate the algorithm’s main advantages. Due to the solution in

time-domain, it can provide information not only about the steady state of the system, as well

as the transient behavior it exhibits, which as we saw in the simple case of a non-interacting

system, is non-trivial. Furthermore, the inclusion of an arbitrary time dependence in the

system’s parameters is straightforward. This allows for the extension to more complicated

phenomena, as mentioned in Sec. 4.1.4, where for a time dependent tunneling term the

system was characterized by different damping regimes. Another important aspect is that in

the self-consistent method, where interactions are included, there is no need for an initial

"guess", or approximation to the form of the self-energy. The starting point is always the

bare electron propagator and the Dyson equation follows the straightforward extension to

the diagrammatic expansion, that is inherent to the Keldysh formalism. Most importantly,

this method could be applied to more complicated systems that require the Dyson equation

to be solved for example, without performing approximations to the behavior of the leads.

As such, the inclusion of the electronic propagators in these problems is necessary. Such

calculations could benefit from the implementation of the algorithm described in this thesis in

a parallel-programming paradigm.

This method however, poses some limitations. The most prevalent one, is that all quantities

are initialized on a discrete grid. This is especially important for the propagators and self-

energies, which are given as a function of two time variables. The energy parameters in

the problem, define the tolerance for the time step ∆t, as mentioned in Chap. 3. Thus, the

creation of very fine meshes amounts to the creation of sizeable arrays, which can reserve

a lot of RAM. The same argument holds, if we want to study the dynamics of a system in

larger timescales. In addition, the inversion of a matrix, even through NumPy’s calls to highly

optimized BLAS/LAPACK routines, scales as O(n3), where n is the number of rows (columns)
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of a square matrix. The large number numerical operations required to invert large matrices

also introduce rounding-off errors. As such the calculation of the matrix inverse, from a

computational point of view is a rather demanding task.
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AAppendix A

In this appendix, we provide the important parts of the code relevant to the initialization of

the Keldysh propagators and self energies and the solution to the Dyson equation by matrix

inversion.

import numpy as np

x = np.arange(start,stop,Dt)
xx,yy= np.meshgrid(x,x)
N=x.shape[0]
h1=np.exp(1j*epsilon*Dt)
h2=np.exp(-1j*epsilon*Dt)

def solve_dyson(arr1,arr2,step,size):

G=np.linalg.inv(arr1-step*step*arr2)

return G

def f1(xy):
"""This function evaluates the tunneling +- self-energy component for

T=0 (exact ), where the Fermi function↪→

is modeled as a Heaviside theta."""

mask = xy != 0

limit = band_D / (np.pi)
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return np.where(mask, np.divide(1j/(np.pi) * (1 - np.exp(1j * band_D *
xy)), xy, where=mask), limit)↪→

def f2(xy):
"""This function evaluates the tunneling -+ self-energy component for

T=0 (exact ), where the Fermi function↪→

is modeled as a Heaviside theta."""

mask = xy != 0

limit = -band_D / (np.pi)

return np.where(mask, np.divide(1j/(np.pi) * (1 - np.exp(-1j * band_D *
xy)), xy, where=mask), limit)↪→

def g_bare_setup(h1,h2,rho):
"""This function sets up the bare propagator in Keldysh space in the +,-

basis. Contour ordering for all Keldysh↪→

blocks follows the conventional array indexing."""

ginv11=-np.identity(N,dtype=complex)

ginv22=-np.identity(N,dtype=complex)

np.fill_diagonal(ginv11[1:,:],h1)

np.fill_diagonal(ginv22[:,1:],h2)

ginv12=np.zeros((N,N))

ginv21=np.zeros((N,N))

ginv12[0,0]=-rho

ginv21[N-1,N-1]=1

ginv=-1j*np.block([
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[ginv11,ginv12],
[ginv21,ginv22]])

return ginv
"""Setup and evaluate the tuneling self-energy, based on the Keldysh

relations."""↪→

sigma=np.zeros((2*N,2*N), dtype=complex)
sigma[0:N,N:2*N]=-1j*gamma*f1(xx - yy)
sigma[N:2*N,0:N]=-1j*gamma*f2(xx - yy)
sigma[N:2*N,N:2*N]=-(np.heaviside(xx-yy,0.5)*sigma[0:N,N:2*N]+
np.heaviside(yy-xx,0.5)*sigma[N:2*N,0:N])
sigma[0:N,0:N]=-(np.heaviside(xx-yy,0.5)*sigma[N:2*N,0:N]+
np.heaviside(yy-xx,0.5)*sigma[0:N,N:2*N])
ginv_up=g_bare_setup(h1,h2,rho_up)
ginv_down=g_bare_setup(h1,h2,rho_down)

Gnew_up=solve_dyson(ginv_up,sigma,Dt,N)
Gnew_down=solve_dyson(ginv_down,sigma,Dt,N)
nnew_up=np.diagonal(-1j*Gnew_up[0:N,N:2*N])
nnew_down=np.diagonal(-1j*Gnew_down[0:N,N:2*N])
Gold=np.zeros((2*N,2*N))
sigmaHF_up=np.zeros((2*N,2*N))
sigmaHF_down=np.zeros((2*N,2*N))

sigmaHF_up[0:N,0:N]=-U/Dt*nnew_down*np.identity(N)
sigmaHF_up[N:2*N,N:2*N]=U/Dt*nnew_down*np.identity(N)

sigmaHF_down[0:N,0:N]=-U/Dt*nnew_up*np.identity(N)
sigmaHF_down[N:2*N,N:2*N]=U/Dt*nnew_up*np.identity(N)
diff=100.*np.ones(N)
thres=1e-10*np.ones(N)
"""The self consistent while loop to evaluate the HF correction"""

while np.greater(diff,thres).all() :
Gold_up=Gnew_up.copy()
nold_up=np.diagonal(-1j*Gold_up[0:N,N:2*N])
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Gnew_up=solve_dyson(ginv_up,sigmaHF_up+sigma,Dt,N)
Gnew_down=solve_dyson(ginv_down,sigmaHF_down+sigma,Dt,N)

nnew_down=np.diagonal(-1j*Gnew_down[0:N,N:2*N])
nnew_up=np.diagonal(-1j*Gnew_up[0:N,N:2*N])

sigmaHF_up[0:N,0:N]=-U/Dt*nnew_down*np.identity(N)
sigmaHF_up[N:2*N,N:2*N]=U/Dt*nnew_down*np.identity(N)
sigmaHF_down[0:N,0:N]=-U/Dt*nnew_up*np.identity(N)
sigmaHF_down[N:2*N,N:2*N]=U/Dt*nnew_up*np.identity(N)

diff=abs((nold_up-nnew_up)/nold_up)
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