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Abstract

In this thesis I will find Yu-Shiba-Rusinov states, living in a multi terminal junction con-
sisting of an Anderson impurity coupled to N different superconductors in the the weak
coupling limit. I will examine the states and their energies, and show that the topology
of the system seem to heavily involve a coupling parameter, which I will examine in
detail. I will also find the supercurrents and study a simple model involving two of
these junctions placed in a circuit. This is done with a perspective to outside of this
thesis further the study, by considering topological properties of the states involved.



Contents

1 Introduction 1

2 Preface 3
2.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 The system 5
3.1 Superconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Quantum dot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Combined elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Schrieffer-Wolff transformation - An interaction expansion 12
4.1 Hamiltonian subspace and other approximations . . . . . . . . . . . . . . 18

5 Lead summed basis 21

6 Bound states and their energies 25
6.1 Green’s function formalism - The bound state energies . . . . . . . . . . 25
6.2 Analysis of lead parameter χ . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3 Bogoliubov-de Gennes formalism - The bound states . . . . . . . . . . . 36
6.4 Ground state energy and many body energies . . . . . . . . . . . . . . . . 41
6.5 Supercurrent and Ground state minima . . . . . . . . . . . . . . . . . . . 44

7 Circuits 47
7.1 Types of Josephson circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Double junction system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

8 Discussion 51
8.1 Multi-terminal/junction circuit correspondence . . . . . . . . . . . . . . 51
8.2 Topological matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9 Conclusion 52

A Finding the energy of a Bogoliubov quasi-particle 55
A.1 The energy of a Bogoliubov quasi-particle without a magnetic field . . . 55

i



A.2 The energy of a Bogoliubov quasi-particle in magnetic field . . . . . . . . 56

B Schrieffer-Wolff quantities 58
B.1 Commutators of the Schrieffer-Wolff transformation . . . . . . . . . . . . 58
B.2 Schrieffer-Wolff transformation coefficients . . . . . . . . . . . . . . . . . 59

C Determinant of special block matrices 61

ii



Chapter 1

Introduction

In recent years multi-terminal devices have found a resurgence in academia because
of predictions of topological properties of Andreev bound states formed by the junc-
tions as described by Riwar et al. in 2016 [1] and Heck et al. before them in 2014 [2].
These junctions made use of the scattering approach set forth by Beenakker in his pa-
per on Superconductor-Normal metal-Superconductor (SNS) junctions [3]. From this a
multitude of other papers have been written, on the topic of topological properties in
multi-terminal junctions, some of which use the same scattering approach [4, 5], while
others use a Hamiltonian description [6].

At the same time Josephson junctions have also been predicted to have diode character-
istics, both as normal two terminal Josephson junctions [7], but also as multi-terminal
devices [8, 9]. These characteristics allow for fabrications of diodes with superconduct-
ing properties, which has been previously not possible by use of conventional electrical
components.

Apart from these new discoveries of Josephson junction, they are also very popular in
the construction of quantum electromagnetic circuits acting as quantum bits (qubits)
[10, 11]. There are three common types of qubits constructed with the use of Josephson
junctions called a charge, flux or phase qubit, depending on what parameter the circuit
is most robust with respect to. A proposed type consist of two different types of Joseph-
son junctions, called 0 and π junctions, which when placed in a large superconducting
loop can create a phase qubit [12, 13].

In this thesis I will follow in the footsteps of Kiršanskas et al. [14], but generalize to
a multi-terminal system. This will be done with a Hamiltonian description describing
a multi-terminal Josephson junctions consisting of N similar s-wave superconductors,
which I will refer to as the leads. These leads will differ only in their complex phases,
they will all couple to a singly occupied spin-split Anderson impurity, which I will refer
to as the dot. This will be done in the weak lead-dot coupling limit, while allowing
unequal couplings, with the spin of the dot polarized. In this limit I will find the type
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of bound states which are commonly known as Yu-Shiba-Rusinov (YSR) states [15–
17], which are different to the Andreev bound states studied by most. I will in detail
examine the parameters of the states and their energies, to get a sense of the topological
properties of the system, and show how one might use these multi-terminal junctions
in circuits to possibly create qubits.
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Chapter 2

Preface

2.1 Prerequisites

Throughout this thesis I will assume that the reader in their education of quantum
mechanics have learned about second quantization, to the same level of understanding
as having read "Modern Quantum Mechanics" by Sakurai [11]. For a full understanding
of this thesis I also recommend having read most of the book "Many-body quantum
theory in condensed matter physics - an introduction" by Bruus and Flensberg [18] or
any similar introductory book on theoretical condensed matter physics.

2.2 Notations

I will throughout the thesis make use of natural units, in the sense that everything is
measured in units of h̄, which amounts to setting h̄ = 1.

I will also for variables with multiple arguments write the arguments as subscripts on
a compact form to minimize used space, such that for a variable v with arguments a
and b, the notation vab is to be understood as va,b = v(a, b). At times however the
notation va,b means (va)b, like the case of the free Green’s functions G0, where G0,k is
to be understood as the free Green’s function as a function of momentum (G0)k. This
should however be quite clear from the context.

I will also be working with matrices and vectors in two different bases, one for the
physical system of N leads with an index α ∈ {1, 2, . . . , N} running over the different
superconductors coupled to the dot, and a non-physical basis of N channels with an
index ν ∈ {1, 2, . . . , N} running over respective channels. In this non-physical basis I
will write the matrices and vectors with a ∼ above, to make it easier to differentiate
between the two types. Meaning that M̃ is a matrix in the non-physical basis, while M
is the same matrix but written in the physical basis. This will be made more clear in
chapter 5, where the non-physical base is introduced.
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I will also at times, such as in chapter 4, make use of collective indices, to minimize used
space, where I will write µ = {α, σ, k} as a collective index, and define the negative of
this as µ̄ = {α,−σ,−k}.

I will also at times work with matrices where I will neglect to write identity matrices
1 if possible, such that for a number a ∈ C and a matrix M ∈ MN×N(C), the formula
a − M is to be understood as a1N×N − M. I will also neglect to write the size of the
identity matrices such that the size of 1 is to understood from the context.
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Chapter 3

The system

I will be examining a system comprising of N ≥ 2 identical s-wave superconductors,
as described below in section 3.1, surrounding a single quantum dot with electron-
electron Coulomb repulsion and a magnetic spin splitting, which is described in section
3.2. This creates what I will call a multi-terminal quantum dot Josephson junction or in
the case of a specific number of superconductors an N-terminal quantum dot Josephson
junction.

While this system can be thought of as a something one can create in a lab, like in the
examples of physically realized multi-terminal junctions from the experimental papers
by Graziano et al. [19] and Chiles et al. [9] as seen in figures 3.1a-3.1c. An impurity
coupled to N superconducting leads, is also analogous to a superconductor with an
impurity embedded inside. Here the number of leads in my system would then corre-
spond to the number of channels coupling to the impurity inside, which would depend
on the type of superconductor.

In this thesis, my system will have no lead-lead coupling, even though according to
paper by Klees et al. [6] it might lead to important physics. This is done for simplicity
of the model, but might be a subject of later research.
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(a) (b)

(c)

Figure 3.1: Three different physically realized three terminal junctions; (a) and (b) adapted from
[19], and (c) adapted from [9]

QD SC1

SC2. . .
SCN−1

SCN

Figure 3.2: Schematic of the multi-terminal quantum dot Josephson junction, consisting of a quan-
tum dot (QD), surrounded by N superconductors (SCα).
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3.1 Superconductors

In this section I describe superconductivity by using the model called the Bardeen-
Cooper-Schrieffer (BCS) model. By applying a mean field approach this will turn into
a theory describing the most common type of superconductivity. The BSC model is as
follows in a momentum basis

HBCS = ∑
kσ

ξkc†
kσckσ + ∑

kk′
Vkk′c

†
k↑c†

−k↓c−k′↓ck′↑ , (3.1)

with the biased dispersion ξk = ϵk − µ, where ϵk = k2

2m is the usual electron dispersion
relation, such that ξ−k = ξk, µ is a chemical potential and c†

kσ (ckσ) is the usual creation
(annihilation) operator for electrons with momentum k and spin σ. Note that the an-
nihilation operator will at times be called a hole creation operator because I assume a
background of filled states called the Fermi sea, such that removing an electron is the
same as creating a hole.

For simplicity ξk is here taken to be spin independent. It is in appendix A.2 found
for with spin, which will be used later on. The first term describes the energy of the
single electrons, while the second term describes a potential interaction between pairs
of quasi-particles called Cooper pairs, which are pairs of electrons with opposite mo-
mentum and opposite spins that behave as a composite bosonic particle. By taking this
model and describing it using a Hartree-Fock mean field approach, the Hamiltonian
changes to the form

HSC ≡ HMF
BCS = ∑

k,σ
ξkc†

kσckσ − ∑
k

(
∆kc†

k↑c†
−k↓ + ∆∗

k c−k↓ck↑

)
, (3.2)

where the so called order parameter is given as

∆k = −∑
k′

Vkk′⟨c−k′↓ck′↑⟩ . (3.3)

With the usual notation of ⟨A⟩ being the expectation value of an operator A. I will
throughout the rest of the thesis only consider the type of superconductors for which
Vkk′ is even in k, such that ∆−k = ∆k. Further down I will restrict this even more to
s-wave superconductors for which ∆k = ∆, but for the time being I will keep it gen-
eral. Also crucially note that the superconducting order parameter ∆k ∈ C is generally
complex, which will be very important for the rest of the thesis. It can from here be
shown that this will lead to zero resistivity and therefore also infinite conductance,
among other things, whereby the name superconductor comes, this however is outside
the scope of this thesis, but can be found in most modern condensed matter textbooks
[18, 20].

Bogoliubov quasi-particles

To diagonalize this mean-field BCS Hamiltonian (3.2), quasi-particles called Bogoliubov
quasi-particles or sometimes just Bogoliubons are introduced. A hint of how to define
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them is found by taking the commutator of the annihilation and creation operators of
the electrons with the Hamiltonian to see how they evolve in time, since Heisenberg’s
equation of motion tells us, for an operator A

dA
dt

= −i[A, H] +
∂A
∂t

. (3.4)

By inserting the Heisenberg picture annihilation operator, it then becomes

i
dckσ

dt
= [ckσ, H] = ξkckσ − σ∆kc†

−k−σ , (3.5)

where the commutator was found using the relation [A, BC] = {A, B}C − B{A, C}
together with the fermionic anti-commutator relation {cµ, c†

µ′} = δµ,µ′ , with µ and µ′

being collective indices µ = k, σ. Since the Hamiltonian is hermitian (H† = H) it also
follows that

i
dc†

−k−σ

dt
(t) = [c†

−k−σ(t), H] = −[c−k−σ(t), H]† = −ξkc†
−k−σ(t)− σ∆∗

k ckσ(t) . (3.6)

This shows that electrons evolve into holes, and holes similarly evolve into electrons.
Therefore stable quasi-particles will have to involve some mix of both electron and hole
operators. Taking inspiration from equation (3.5) I define that the electron annihilation
operator is a mix of this proposed stable quasi-particle’s creation and annihilation op-
erators.

ckσ = ukγkσ + σvkγ†
−k−σ . (3.7)

These quasi-particles are defined to be fermionic particles, such that they also obey the
fermionic anti-commutation relation {γkσ, γk′σ′} = {γ†

kσ, γ†
k′σ′} = 0 and {γkσ, γ†

k′σ′} =
δkk′δσσ′ , meaning that the change from electrons to this quasi-particles is a canonical
transformation. By then writing the usual anti-commutation relations for the electrons
in terms of the quasi-particles, it follows that

{ckσ, ck′σ′} = σ(vku−k − v−kuk)δk,−k′δσ,−σ′
!
= 0 (3.8)

{ckσ, c†
k′σ′} = (|uk|

2 + |v−k|
2)δkk′δσσ′

!
= δkk′δσσ′ (3.9)

which is most readily solved by letting u−k = uk and v−k = vk, as well as |uk|
2 + |vk|

2 =
1. This means that for the time evolution of the quasi-particle to be stable it must hold
that

i
dγkσ

dt
= [γkσ, H]

!
= Ekσγkσ , (3.10)

which by calculating the commutator

[γkσ, H] =
[
ξk(|uk|

2 − |vk|
2) + ∆ku∗

k v∗k + ∆∗
k ukvk

]
γkσ

+
[
2σξkvku∗

k − σ∆k(u
∗
k )

2 + σ∆∗
k v2

k

]
γ†
−k−σ , (3.11)
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shows us that

Ekσ = ξk(|uk|
2 − |vk|

2) + ∆ku∗
k v∗k + ∆∗

k ukvk (3.12)

0 !
= 2ξkvku∗

k − ∆k(u
∗
k )

2 + ∆∗
k v2

k . (3.13)

Note that even though the quasi-particle have a spin degree of freedom, from the right
hand side (RHS) of equation (3.12) it follows that the energy of the quasi-particle is
spin-independent Ekσ = Ek. This however is only true because of the assumption of the
electron energy ξk being spin independent, the general case is considered in appendix
A.2. In appendix A.1 I then find that the energy and the constants uk and vk must follow
from the relations

E2
k = ξ2

k + |∆k|
2 (3.14)

|uk|
2 =

1
2
+

ξk
2Ek

(3.15)

|vk|
2 =

1
2
− ξk

2Ek
(3.16)

arg(∆k) ≡ arg(uk) + arg(vk) (mod 2π) . (3.17)

Note that this gives two energy solutions, one positive and one negative. I can therefore
define that the quasi-particle creation or annihilation operator gives either a positive or
negative energy excitation. I will here consider creation operators γ†

kσ as being positive
energy excitations, such that

HSC = ∑
kσ

Ekγ†
kσγkσ + const (3.18)

Ek =

√
ξ2

k + |∆k|
2 . (3.19)

In the more general case shown in appendix A.2, with a spin dependent electron en-
ergy ξkσ = ξk + ξσ, the quasi-particle energy gain the same energy contribution as the
electrons

Ekσ = Ek + ξσ (3.20)

=

√
ξ2

k + |∆k|
2 + ξσ . (3.21)

3.2 Quantum dot

Quantum dots are one of the most simple systems, one can think of. It is a point like
system with just one electron level, such that the system have three different configura-
tions: empty, singly or doubly occupied.

Physically it can be approximated by having large enough level splittings to allow for
just a subset of levels to be considered. In this thesis I will consider a level with a

9



spin splitting and a charging energy U > 0, accounting for effects such as Coulomb
repulsion, giving the dot Hamiltonian

HD = ∑
σ

ξdσd†
σdσ + Un↓n↑ , (3.22)

with the biased energies ξdσ = ξd +
σgdB

2 = ϵd + µd +
σgdB

2 being the energy levels of
an spin σ electron in a magnetic field, where gd is the coupling factor of the electron
on the dot to the magnetic field, and nσ = d†

σdσ being the electron number operator for
spin σ on the dot, such that the Coulomb repulsion energy U is only experienced from
having a fully filled level, such that a spin up and a spin down electron is located on
the dot. The energy levels is seen in figure 3.3, where one can see that there exists a
special tuning for the potential µd, which allow for a particle-hole symmetry to form
for the singly occupied states, meaning that the energy needed to remove an electron is
the same as adding one.

(a) (b)

0

ξd↑

ξd↓

ξd

2ξd + U 0

ξd↑

ξd↓

ξd

2ξd + U

n = 0 n = 1 n = 2 n = 0 n = 1 n = 2

Figure 3.3: Energy levels of a quantum dot with spin splitting. In (a) level position ξd is
larger than 0, while in (b) the level position follow the relation 2ξd = −U.

3.3 Combined elements

By combining each element of the system, and allowing for tunneling between the dot
and each superconductor (but not directly from superconductor to superconductor),
the system is then described by the total Hamiltonian

H = HSC + HD + HT , (3.23)

with the elements

HSC = ∑
αkσ

ξαkσc†
αkσcαkσ − ∑

αk

(
∆αc†

αk↑c†
α−k↓ + ∆∗

αcα−k↓cαk↑

)
(3.24)

HD = ∑
σ

ξdσd†
σdσ + Un↓n↑ (3.25)

HT = ∑
αkσ

(
tαc†

αkσdσ + t∗αd†
σcαkσ

)
. (3.26)
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Where the index α ∈ {1, 2, . . . , N} run over the different superconductors coupled to
the dot. The superconducting order parameters ∆α = |∆α|e

iϕα are taken to be momen-
tum independent.

I will note that in a more in depth description [21], the phases ϕα need to be quantum
operators which are the conjugate of the Cooper pair number operator in the large
Cooper pair limit, [ϕα, n(CP)

α ] = i, but here it is just considered a parameter, because of
the mean field description of the order parameter in equation (3.3).

The biased electron energy dispersions ξαkσ = ξαk +
σgαB

2 ≡ ξαk + ξασ, are taken to
be spin dependent by coupling to a magnetic field B, with coupling factors gα. The
term HT describes the tunneling from the different superconductors to the dot with a
complex coupling strength t.

Note that to be more precise, one would have to use momenta kα which depend on the
superconductor they belong to, however I will not keep track of it here and therefore
implicitly assume equal sets of momenta in each superconductor {kα} = {kα′} ≡ {k}
for all α and α′. I immediately perform N different U(1) gauge transformation for the
creation and annihilation operators of the electrons in the superconductors

cαkσ → eiϕα/2cαkσ .

Which moves the phases onto the coupling constants tα instead, giving the transformed
Hamiltonians

HSC → ∑
αkσ

ξkσc†
αkσcαkσ − ∑

αk
|∆α|

(
c†

αk↑c†
α−k↓ + cα−k↓cαk↑

)
(3.27)

HT → ∑
αkσ

(
tαe−iϕα/2c†

αkσdσ + t∗αeiϕα/2d†
σcαkσ

)
. (3.28)

Which in turn also mean that the coefficients of the Bogoliubov quasi-particles vαk, uαk ∈
R can be defined to be real from equation (3.17).
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Chapter 4

Schrieffer-Wolff transformation - An
interaction expansion

Since the Hamiltonian for the system is quite complicated, it can be more enlightening
to make use of some sort of expansion, which can be truncated to some appropriate or-
der, to make the model simpler. The most common type is the usual perturbation theory
described in most quantum mechanics textbooks [11], where by expansion in a small
parameter the Hamiltonian can be truncated to some appropriate order of the parame-
ter. Here I will follow the example of reference [14], and make use of a Schrieffer-Wolff
(SW) transformation [22, 23], which is a perturbation theory that uses an expansion in
interactions, much like a Feynman diagram expansions. I will do this by closely follow-
ing the paper of Salomaa [24].

Mathematically the SW transformation is a unitary transformation, which is defined as

HS ≡ eSHe−S (4.1)

H(1)
S

!
= HSC + HD = H0 , (4.2)

where H(1)
S is the first order expansion of HS in terms of HT and S, meaning that to

the first order, the interaction HT is removed. Since the transformation is unitary, it
preserves the eigenenergies and has similar eigenstates ψS = eSψ, where ψ is the eigen-
states of the original Hamiltonian. This transformation is generated by some time-
independent skew-hermitian operator S† = −S, which is easily satisfied by defining

S = S+ − S−, with
(

S+
)†

= S−. To determine the form of this operator, I start of by
making use of the Baker–Campbell–Hausdorff (BCH) relation

eSHe−S = H + [S, H] +
1
2!
[S, [S, H]] +O(S3) .

Note that since the expansion is in terms of higher and higher orders of S, to be able to
truncate it to some order, the system must be in a regime where the scale of S must be
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smaller than 1. As I will show this scale is related to the scale of the removed interaction
compared to all other energy scales of the system.

To the first order in HT and S the BCH expansion shows that

H(1)
S = H0 + HT + [S, H0]

!
= H0 . (4.3)

Meaning that I need to find an operator S+ such that

HT + [S+, H0] + [S+, H0]
† !
= 0 (4.4)

Since a lot of indicies are involved in the description of electron in the superconductors,
I will here define some collective indices µ = {α, k, σ} and µ̄ = {α,−k,−σ} and phase
shifted couplings, such that the electron and Bogoliubov quasi-particle operators and
the couplings are

cµ ≡ uµγµ + vµγ†
µ̄ (4.5)

γµ ≡ uµcµ + vµ̄c†
µ̄ = uµcµ − vµc†

µ̄ (4.6)

uµ ≡ uαk (4.7)

vµ ≡ σvαk (4.8)

tµ ≡ tαe−iϕα/2, (4.9)

such that in terms of Bogoliubov quasi-particles the transport Hamiltonian is given as

HT = ∑
µ

tµ

(
uµγ†

µdσ + vµγµ̄dσ

)
+ H.C . (4.10)

To find an S+ that cancel this I will make use of the ansatz that it must be of a similar
form in terms of creation and annihilation operators

S+ = ∑
µ

tµ

(
xµγ†

µdσ + yµγµ̄dσ

)
. (4.11)

The commutator in equation (4.4) is then given by

[H0, S+] =

∑
µ

Eµγ†
µγµ + ∑

σ

ξdσd†
σdσ + Un↓n↑, ∑

µ′
tµ′

(
xµ′γ†

µ′dσ′ + yµ′γµ̄′dσ′

) . (4.12)

Assuming that xµ and yµ behaves as numbers for the operators involved, such that
[xµ,Oµ′ ] = [yµ,Oµ′ ] = 0 for Oµ′ ∈ {γµ′ , γ†

µ′ , nσ′}, and making use of the relevant com-
mutators which I have found in appendix B.1, the commutator becomes

[H0, S+] = ∑
µ′

tµ′

[ (
Eµ′ − ξdσ′ − Un−σ′

)
xµ′γ†

µ′dσ′ −
(

Eµ̄′ + ξdσ′ + Un−σ′

)
yµ′γµ̄′dσ′

]
.

(4.13)
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Meaning that to solve [H0, S+]
!
= HT, I can simply define that

xµ ≡
uµ

Eµ − ξdσ − Un−σ

(4.14)

yµ ≡
−vµ

Eµ̄ + ξdσ + Un−σ

. (4.15)

Here the number operator in the denominator is to be understood by the Taylor ex-
pansion of the functions. Since electron number operators satisfy ⟨nk

σ⟩ = ⟨nσ⟩ for
k ∈ N \ {0}, only two terms are involved

xµ ≡ x(0)µ + n−σ x̃µ (4.16)

yµ ≡ y(0)µ + n−σỹµ , (4.17)

with the number operator evaluated constants being defined as

x(0)µ = xµ(n−σ = 0) (4.18)

x̃µ = xµ(n−σ = 1)− xµ(n−σ = 0) , (4.19)

with the y constants being similarly defined. It is also important to note that since the
electron energies are even in k, the operators are also even xαkσ = xα−kσ, yαkσ = yα−kσ,
and because only electron number operators are involved, they are also hermitian xµ =

x†
µ and yµ = y†

µ.

This mean that the S+ operator can be defined as

S+ = ∑
µ

tµ

(
(x(0)µ + n−σ x̃µ)γ

†
µdσ + (y(0)µ + n−σỹµ)γµ̄dσ

)
. (4.20)

This then sets the scale of S, which shows directly that the regime the system must be
in for the truncation to some low order in S to be valid, must be one where

|tα| ≪ |U + ξdσ − ξασ ± Eαk| (4.21)
|tα| ≪ |ξdσ − ξασ ± Eαk| , (4.22)

meaning that the coupling between each lead and the dot must be small compared to
the other energies of the system.

Since the system of H(1)
S is one without interaction, to regain some interesting physics I

will move on to second order in S and HT, such that I get back some effective interac-
tions

H(2)
S = H0 + HT + [S, H0] + [S, HT] +

1
2
[S, [S, H0]]

= H0 +
1
2
[S, HT] . (4.23)
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Then by again splitting it into S+ and S−, and also splitting HT into H+
T and H−

T with

H−
T = ∑

µ

t∗µd†
σcµ , (4.24)

and H+
T = (H−

T )†, I get that for the part of the second order contribution involving H−
T ,

I find the commutator

[S+, H−
T ] = ∑

µ,µ′
tµt∗µ′ [(x(0)µ + n−σ x̃µ)γ

†
µdσ + (y(0)µ + n−σỹµ)γµ̄dσ , d†

σ′cµ′ ] . (4.25)

By making use of the other commutators from appendix B.1, this simplifies to

[S+, H−
T ] = ∑

µ,µ′
tµt∗µ′{(x(0)µ + x̃n−σ)(−uµnσδµµ′ + γ†

µcµ′δσσ′) + x̃µn̄σcµ′γ†
µδ−σσ′ (4.26)

+ (y(0)µ + ỹn−σ)(−vµnσδµµ′ + γµ̄cµ′δσσ′) + ỹµn̄σcµ′γµ̄δσ′−σ} ,

where I have defined a dot spin flip operator as n̄σ ≡ d†
−σdσ.

By writing out the definition of the Bogoliubov operators defined by equation (4.6), the
commutator in terms of the electron annihilation and creation operators become

[S+, H−
T ] = ∑

µ,µ′
tµt∗µ′{(x(0)µ uµ + y(0)µ vµ)(c

†
µcµ′δσσ′ − nσδµµ′) (4.27)

+ (x̃µuµ + ỹµvµ)(n−σc†
µcµ′δσσ′ − n−σnσδµµ′ − n̄σc†

µcµ′δ−σσ′)

+ (ỹµuµ − x̃µvµ)(n−σcµ̄cµ′δσσ′ − n̄σcµ̄cµ′δ−σσ′)

+ (y(0)µ uµ − x(0)µ vµ)cµ̄cµ′δσσ′} .

Similarly for the part of the second order contribution involving H+
T , I find the commu-

tator

[S+, H+
T ] = ∑

µ,µ′
tµtµ′ [(x(0)µ + n−σ x̃µ)γ

†
µdσ + (y(0)µ + n−σỹµ)γµ̄dσ , c†

µ′dσ′ ] , (4.28)

which by making use of the rest of the commutators from appendix B.1, reduce to

[S+, H+
T ] = ∑

µ,µ′
tµtµ′{ − x(0)µ vµd−σdσδµµ̄′ + x̃µd−σdσc†

µ′γ†
µδ−σσ′ (4.29)

+ y(0)µ uµd−σdσδµµ̄′ + ỹµd−σdσc†
µ′γµ̄δ−σσ′} .

Once again inserting the definition the Bogoliubov operators, this in terms of the elec-
tron operators gives

[S+, H+
T ] = ∑

µ,µ′
tµtµ′{(ỹµuµ − x̃µvµ)d−σdσc†

µ′cµ̄δ−σσ′ (4.30)

+ (x̃µuµ + ỹµvµ)d−σdσc†
µ′c†

µδ−σσ′ + (y(0)µ uµ − x(0)µ vµ)d−σdσδµ̄µ′}} .
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By then combining each of the two commutators, the full commutator [S, HT] = ([S+, H+
T ]+

[S+, H−
T ]) + ([S+, H+

T ] + [S+, H−
T ])† becomes

[S, HT] = ∑
µ,µ′

tµt∗µ′{(x(0)µ uµ + y(0)µ vµ + x(0)
µ′ uµ′ + y(0)

µ′ vµ′)(c†
µcµ′δσσ′ − nσδµµ′) (4.31)

+ (x̃µuµ + ỹµvµ + x̃µ′uµ′ + ỹµ′vµ′)[(n−σδσσ′ − n̄σδ−σσ′)c†
µcµ′ − n−σnσδµµ′ ]

+ (y(0)µ uµ − x(0)µ vµ)cµ̄cµ′δσσ′ + (y(0)
µ′ uµ′ − x(0)

µ′ vµ′)c†
µc†

µ̄′δσσ′

+ (ỹµuµ − x̃µvµ)(n−σδσσ′ − n̄σδ−σσ′)cµ̄cµ′

+ (ỹµ′uµ′ − x̃µ′vµ′)(n−σδσσ′ − n̄σδ−σσ′)c†
µc†

µ̄′}

+ ∑
µ,µ′

tµtµ′{(y(0)µ uµ − x(0)µ vµ)d−σdσδµ̄µ′

+ (ỹµuµ − x̃µvµ)d−σdσc†
µ′cµ̄δ−σσ′

+ (x̃µuµ + ỹµvµ)d−σdσc†
µ′c†

µδ−σσ′}

+ ∑
µ,µ′

t∗µt∗µ′{(y(0)
µ′ uµ′ − x(0)

µ′ vµ′)d†
−σd†

σδµ̄µ′

+ (ỹµ′uµ′ − x̃µ′vµ′)d†
−σd†

σc†
µ̄′cµδ−σσ′

+ (x̃µ′uµ′ + ỹµ′vµ′)d†
−σd†

σcµ′cµδ−σσ′} .

Since this is a very unruly quantity to work with, it is useful to combine different terms
into coefficients, such that these coefficients describe amplitudes for different processes
as follows

[S, HT] = ∑
µ,µ′

{Wµµ′(c†
µcµ′δσσ′ − nσδµµ′) (4.32)

+ Jµµ′ [(n−σδσσ′ − n̄σδ−σσ′)c†
µcµ′ − n−σnσδµµ′ ]

+ Zµµ′cµ̄cµ′δσσ′ + Z†
µµ′c†

µc†
µ̄′δσσ′

+ Tµµ′(n−σδσσ′ − n̄σδ−σσ′)cµ̄cµ′ + T†
µµ′(n−σδσσ′ − n̄σδ−σσ′)c†

µc†
µ̄′

+ Dµµ′d−σdσδµ̄µ′ + D†
µµ′d†

−σd†
σδµ̄µ′

+ Lµµ′d−σdσc†
µ′cµ̄δ−σσ′ + L†

µµ′d†
−σd†

σc†
µ̄′cµδ−σσ′

+ Kµµ′d−σdσc†
µ′c†

µδ−σσ′ + K†
µµ′d†

−σd†
σcµ′cµδ−σσ′} .
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These coefficients are defined in terms of the variables x, y, u and v as follows

Wµµ′ = tµt∗µ′(x(0)µ uµ + y(0)µ vµ + x(0)
µ′ uµ′ + y(0)

µ′ vµ′) (4.33)

Jµµ′ = tµt∗µ′(x̃µuµ + ỹµvµ + x̃µ′uµ′ + ỹµ′vµ′) (4.34)

Zµµ′ = tµt∗µ′(y(0)µ uµ − x(0)µ vµ) (4.35)

Tµµ′ = tµt∗µ′(ỹµuµ − x̃µvµ) (4.36)

Dµµ′ = tµtµ′(y(0)µ uµ − x(0)µ vµ) (4.37)

Lµµ′ = tµtµ′(ỹµuµ − x̃µvµ) (4.38)

Kµµ′ = tµtµ′(x̃µuµ + ỹµvµ) . (4.39)

For the coefficients written in terms of the energies of the system, I have written them
out in appendix B.2.

By then noting that the spin operator in a second quantized formulation can be written
as

Sd =
1
2 ∑

σ,σ′
d†

στσσ′dσ′ =
1
2 ∑

σ,σ′
d†

σ[δ−σσ′ , −iσδ−σσ′ , σδσσ′ ]dσ′ , (4.40)

such that

Sd · τσ,σ′ = n̄σδ−σσ′ +
1
2
(nσ − n−σ)δσσ′ , (4.41)

some of the terms in the commutator can be rewritten in the form of the spin operator
of the dot

n−σδσσ′ − n̄σδ−σσ′ =
1
2
(nσ + n−σ)δσσ′ − Sd · τσσ′ . (4.42)

This mean that the commutator can be written in terms of the dot spin operator as

[S, HT] = ∑
µ,µ′

{Wµµ′(c†
µcµ′δσσ′ − nσδµµ′) (4.43)

+ Jµµ′

[(
nσ + n−σ

2
δσσ′ − Sd · τσ,σ′

)
c†

µcµ′ − n−σnσδµµ′

]
+ Zµµ′cµ̄cµ′δσσ′ + Z†

µµ′c†
µc†

µ̄′δσσ′

+ Tµµ′

(
nσ + n−σ

2
δσσ′ − Sd · τσ,σ′

)
cµ̄cµ′ + T†

µµ′

(
nσ + n−σ

2
δσσ′ − Sd · τσ,σ′

)
c†

µc†
µ̄′

+ Dµµ′d−σdσδµ̄µ′ + D†
µµ′d†

−σd†
σδµ̄µ′

+ Lµµ′d−σdσc†
µ′cµ̄δ−σσ′ + L†

µµ′d†
−σd†

σc†
µ̄′cµδ−σσ′

+ Kµµ′d−σdσc†
µ′c†

µδ−σσ′ + K†
µµ′d†

−σd†
σcµ′cµδ−σσ′}
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4.1 Hamiltonian subspace and other approximations

I will for the rest of the thesis instead of working with a Hamiltonian in terms of a gen-
eral dot level, constrict this to a subspace of the Hamiltonian in which the dot is singly
occupied, such that nσ + n−σ = 1. For this to be physically realised, the singly occupied
levels will have to be much lower than the empty and doubly occupied configurations.
Meaning that the approximations ξdσ ≪ 0 and ξdσ ≪ 2ξd + U must hold. In particular,
this forces the signs of the energies to be negative ξd < 0, with respect to some reference
potential, and for the electron-electron interaction on the dot to be repulsive as previous
assumed U > 0.

By these approximations a lot of terms drop from the commutator

[S, HT](e f f ) = ∑
µ,µ′

{(
Wµµ′ +

Jµµ′

2

)
c†

µcµ′δσσ′ − Jµµ′Sd · τσ,σ′c†
µcµ′ (4.44)

+

(
Zµµ′ +

Tµµ′

2

)
cµ̄cµ′δσσ′ +

Z†
µµ′ +

T†
µµ′

2

 c†
µc†

µ̄′δσσ′

− Tµµ′Sd · τσ,σ′cµ̄cµ′ − T†
µµ′Sd · τσ,σ′c†

µc†
µ̄′

}
.

I will also follow the example of reference [14], and tacitly assume that the dot spin can
be written as

Sd = Sẑ , (4.45)

where ẑ = (0, 0, 1)T is defined to be the unit vector in a direction which I define as the
z-direction. This assumption is therefore a spin polarization approximation, which also
at times is called a classical spin approximation. By this approximation it follows that
Sd · τσ,σ′ = σSδσσ′ , giving the commutator

[S, HT](e f f ) = ∑
µ,µ′

{(
Wµµ′ +

Jµµ′

2
− σSJµµ′

)
c†

µcµ′δσσ′ (4.46)

+

(
Zµµ′ +

Tµµ′

2
− σSTµµ′

)
cµ̄cµ′δσσ′

+

Z†
µµ′ +

T†
µµ′

2
− σST†

µµ′

 c†
µc†

µ̄′δσσ′

}
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Given the new form of the commutator, it is useful to redefine the coefficients as follows

2W ′
µµ′ = Wµµ′ +

Jµµ′

2
(4.47)

2J′µµ′ = −Jµµ′ (4.48)

2Z′
µµ′ = Zµµ′ +

Tµµ′

2
(4.49)

2T′
µµ′ = −Tµµ′ , (4.50)

giving the full effective Hamiltonian for the system to second order in terms of electron
operators as

H(2)
S = ∑

µ

ξµc†
µcµ − ∑

µ

σ∆α

2

(
c†

µc†
µ̄ + cµ̄cµ

)
(4.51)

+ ∑
µ,µ′

{(
W ′

µµ′ + σSJ′µµ′

)
c†

µcµ′δσσ′ +
(

Z′
µµ′ + σST′

µµ′

)
cµ̄cµ′δσσ′ +

(
Z′†

µµ′ + σST′†
µµ′

)
c†

µc†
µ̄′δσσ′

}
Lastly to get the Hamiltonian to a more familiar form, as seen in reference [14], with no
creation-creation and annihilation-annihilation terms as well as no momentum or spin
dependence, it is assumed that

|Eαk| ≪ |ξασ − ξdσ − U| (4.52)
|Eαk| ≪ |ξασ − ξdσ| (4.53)∣∣∣∣σB

2
(gα − gd)

∣∣∣∣≪ |ξd + U| (4.54)∣∣∣∣σB
2
(gα − gd)

∣∣∣∣≪ |ξd| . (4.55)

These assumptions both remove these terms (Z′
µµ′ ≈ 0 and T′

µµ′ ≈ 0), and makes the
remaining coefficients of the form

W ′
µµ′ ≈ −

tµt∗µ′

2

(
1

ξd + U
+

1
ξd

)
(4.56)

J′µµ′ ≈ tµt∗µ′

(
1

ξd + U
− 1

ξd

)
(4.57)

Note that these coefficients are the same as the coefficients one would get from a SW
transformation of normal metals (cf. the textbook [18]), but here used in the context
of superconductors. This is because of the assumption from equation (4.52), is a very
strong assumption which in essence forces the dot level to be far from the BCS energy
gap ∆. For future work this assumption might very well be relaxed, but for the remain-
der of the thesis I will work within this regime.
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Introducing the dimensionless distance from the particle-hole symmetric point x =

1 + 2ξd
U , which by the earlier assumption is forced to be in the interval |x| < 1, this can

be simplified even further as

W ′
µµ′ ≈ tµt∗µ′

2x
U(1 − x2)

≡ t̂µ t̂∗µ′W (4.58)

J′µµ′ ≈ tµt∗µ′
4

U(1 − x2)
≡ t̂µ t̂∗µ′ J (4.59)

with t̂µ ≡ tαe−iϕα/2
√

∑α |tα|
2 ≡ t̂αe−iϕα/2 ≡ ťα, such that W and J are real and proportional to the

summed tunnelling rate Γ = ∑α Γα = ∑α πνF|tα|
2.

Note that as one approach the particle-hole symmetric case for the dot x → 0 the po-
tential W disappears W → 0.

Lastly I will for simplicity assume that all of the superconductors are expressed by the
same quantities, and are therefore all of the same type, such that ∆α = ∆ and ξαkσ = ξkσ.
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Chapter 5

Lead summed basis

Given all of the approximations from the chapter above, an effective Hamiltonian of
the system is found as

H = ∑
αkσ

[
ξkσc†

αkσcαkσ −
σ∆
2

(
c†

αkσc†
α−k−σ + cα−k−σcαkσ

)]
(5.1)

+ ∑
αα′kk′σ

(W + σSJ) ťα ť∗α′c
†
αkσcα′k′σ ,

where one sees that since the coefficient in the new spin term is positive J > 0, this
is in essence an anti-ferromagnetic interaction between the dot spin S and the super-
conductor electrons, meaning for σS < 0 the energy is lower. One also notes that the
new terms have the operators c†

αkσcα′k′σ, taking electrons from a superconductor α and
creating a new electron in any superconductor, making this an effective scattering in-
teraction. Since the dot taken to effectively always be singly occupied, this scattering is
cotunneling, meaning that transport is of the form of two virtual tunnelling processes,
one to and one from the dot.

Because of this (α, k) → (α′, k′) scattering it is useful to work in a new basis, in which
the scattering interaction term become diagonal

HV = ∑
kk′σ

(W + σSJ)

(
∑
α

ťαc†
αkσ

)(
∑
α′

ť∗α′cα′k′σ

)
(5.2)

≡ ∑
kk′σ

(W + σSJ) c̃†
Nkσ c̃Nk′σ . (5.3)

Note that from here on out I use the notation that vectors and matrices written in this
lead summed basis have a ∼ above, such that a vector ṽ is to be understood as being in
this new basis, with v corresponding to the vector in the usual basis.
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This change of basis is defined by a unitary transformation matrix U, such that the new
fermion operators become

c̃νkσ = ∑
α

Uναcαkσ , (5.4)

with the condition defined by equation (5.2), that

(U†)αNUNα′ = ťα ť∗α′ . (5.5)

This corresponds to diagonalizing the matrix defined by the phase shifted tunnel cou-
plings

Θαα′ = ťα ť∗α′ = (ť ⊗ ť†)αα′ , (5.6)

where the vector of phase shifted tunnel couplings ť is defined by the elements ťα =

t̂αe−iϕα/2, and the ⊗ being the outer product without complex conjugation, sometimes
called the Kronecker product. Because Θ can be written as a outer product as above,
its eigenvalues must be 0 and 1, where N − 1 of the eigenvalues are 0 and only one
eigenvalue is 1. Meaning that the transformation used above is

UΘU† = δN , (5.7)

where δN is a matrix with elements (δN)νν′ = δνNδν′N , such that only the (N,N)’th
element is filled.

I then define that the transformation matrix U is given as

U† =
(
v1 . . . vN

)
, (5.8)

where the vectors vα are N linearly independent eigenvectors of Θ, such that U†U = 1.

In particular I will choose that the N’th eigenvector is vN = eiψ ť, such that the eigen-
value is 1, where the overall phase ψ ∈ R can be chosen arbitrarily. This new phase ψ
allows for an overall U(1) gauge-choice, such that only phase differences between the
superconductors are gauge invariant. This restricts the parameter space from being N
dimensional to instead an N − 1 dimensional. This is to be expected, since one could
have just as easily absorbed the phase into the cαkσ operators.

All the other eigenvectors with eigenvalue 0 can be chosen if needed from the unit
tangent space defined by the vector vN = ťeiψ ∈ SN−1(C) = S2N−1, meaning that the
N − 1 other eigenvectors are vα ̸=N ∈ UTvN

S2N−1.

If needed, it would be possible to write the unitary matrix U in terms of hyper-spherical
coordinates, but as one might suspect, the choices of the vectors vα ̸=N , correspond to
a choice of gauge, and will not contribute to any meaningful quantity, so I will leave it
abstract for now.
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Now that I have crated a transformation matrix, I will use this to construct a Nambu
space in this lead summed basis. The reason for going to a Nambu space is useful, is
because of the off-diagonal terms in the Hamiltonian. In this Nambu space the trans-
formation between the the usual and the lead summed basis then become

C̃†
kσ ≡

(
c̃†

1kσ . . . c̃†
Nkσ −σc̃1−k−σ . . . −σc̃N−k−σ

)
(5.9)

=
(

c†
kσU† −σcT

−k−σUT
)

(5.10)

= C†
kσ

(
U† 0
0 UT

)
, (5.11)

where the usual Nambu basis is defined as

C†
kσ =

(
c†

kσ −σcT
−k−σ

)
. (5.12)

In this Nambu space, the interaction in Nambu space become diagonal

HV =
1
2 ∑

kk′σ

C†
kσ

(
(W + σSJ)Θ 0

0 − (W + (−σ)SJ)Θ
T

)
Ck′σ (5.13)

=
1
2 ∑

kk′σ

C̃†
kσ

(
(σSJ + W) δN 0

0 (σSJ − W) δN

)
C̃k′σ (5.14)

≡ 1
2 ∑

kk′σ

C̃†
kσ

(
Vσ+δN 0

0 Vσ−δN

)
C̃k′σ (5.15)

≡ 1
2 ∑

kk′σ

C̃†
kσṼσC̃k′σ . (5.16)

Here I have defined the spin dependent potentials Vσ± = σSJ ± W, since it makes it
easier to generalize later if needed.

Similarly in this Nambu space the freely moving part of the Hamiltonian become

H0 =
1
2 ∑

kσ

C†
kσ

(
ξkσ ∆
∆ −ξ−k−σ

)
Ckσ (5.17)

=
1
2 ∑

kσ

C̃†
kσ

(
ξk + ξσ ∆UUT

∆U∗U† −ξk + ξσ

)
C̃kσ (5.18)

≡ 1
2 ∑

kσ

C̃†
kσ

(
ξk + ξσ ∆P

∆P† −ξk + ξσ

)
C̃kσ (5.19)

≡ 1
2 ∑

kσ

C̃†
kσH̃0,kσC̃kσ , (5.20)

where the new unitary matrix P = UUT is defined to save space, since the U matrices
from here on always appear in pairs.
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All in all this mean that the full Hamiltonian in the lead summed basis is given as

H =
1
2 ∑

kk′σ

C̃†
kσ

[
H̃0,kσδkk′ + Ṽσ

]
C̃k′σ . (5.21)

The usefulness of this transformation will be made clear in the next section.
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Chapter 6

Bound states and their energies

From the Hamiltonian that I have found in chapter 5, I will now determine the energies
of any possible bound states in the system as well as finding a description of the actual
states themselves. Because of the type of dot I have made use of, the states will be gen-
eralizations of the states first found by Yu, Shiba and Rusinov in the case of particle hole
symmetry and without phase difference [15–17]. Even though my states are technically
generalized states I will still call them Yu-Shiba-Rusinov (YSR) states.

The energies will first be found by use of a Green’s functions formalism, following the
example set by reference [14], and then reconfirmed in a Bogoliubov-de Gennes (BdG)
formalism in which I also will find the states following the example of Pientka et al.
[25].

6.1 Green’s function formalism - The bound state energies

I start of by writing the formula for the full retarded Green’s function, in terms of the
retarded Green’s function of freely moving fermions

GR = [1 − GR
0 V]−1GR

0 , (6.1)

where GR
0 is a general Green’s function for non-interacting moving particles, and V is

some interaction. For my system this correspond to a Green’s function for the super-
conductors and the effective potential at the dot respectively.

Since I am concerned with the states which are bound by the dot, I will only make use
of the subspace in which the Green’s functions are local

GR
0, local = ∑

k
GR

0,k . (6.2)

The reason why this is a local Green’s function can be seen by remembering the defini-
tion of Fourier transforms, which shows that since f (r) = ∑k fkeikr, the Green’s function
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is GR
0,local = GR

0 (δx = 0). This mean that it describes transport of particles right next to
one another.

From equation (5.20) the retarded local Green’s functions for the non-interacting fermions
is then found as a matrix

GR
0,σ,local = ∑

k

[
ωσ −H0,kσ

]−1 ≡ ∑
k

[
Ωσ −H0,k

]−1 , (6.3)

where I have defined the magnetically shifted energy Ωσ = ωσ − ξσ.

Inverting the matrix is quite simple because of the structure of H0,k, giving

GR
0,σ,local = ∑

k

(
Ωσ − ξk −∆P
−∆P† Ωσ + ξk

)−1

(6.4)

= ∑
k

1

Ω2
σ − ∆2 − ξ2

k

(
Ωσ + ξk ∆P

∆P† Ωσ − ξk

)
. (6.5)

To be able to calculate the sum I will approximate it as an integral

∑
k
≈ L

2π

∫
dk =

∫ D

−D
dξk

(
L

2π

dk
dξk

)
=
∫ D

−D
dξkD(ξk) ≈ νF

∫ D

−D
dξk . (6.6)

Where D(ξk) is the density of states, and the integration boundary D defines the band-
width of the superconductors. I will make use of the wide-band approximation, such
that |Ωσ|, |∆| ≪ D and the density of states is assumed to be constant D(ξk) ≈ νF.
The integral is performed using a contour integral assuming |∆| > |Ωσ|, since it can
be shown that there are no consistent solutions for either assuming |∆| < |Ωσ| or
|∆| = |Ωσ|. Meaning that there are no bound states in the continuum (BIC) in this
system. The non-interacting local Green’s function therefore become

GR
0,σ,local =

−πνF√
∆2 − Ω2

σ

(
Ωσ ∆P
∆P† Ωσ

)
. (6.7)

These energies will be those for which the full retarded Green’s function have poles,
which is the same places where the matrix 1 − GR

0,σ,localṼσ is singular. This mean that I
can find the energies from the determinant equation

det
(

1 − GR
0,σ,localṼσ

)
!
= 0 . (6.8)

Here it is now clear why the lead summed basis is useful

1 − GR
0,σ,localṼσ =

(
1 + Ω̂σV̂σ+δN ∆̂σV̂σ−PδN
∆̂σV̂σ+P†δN 1 + Ω̂σV̂σ−δN

)
, (6.9)
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where V̂σ± ≡ πνFVσ± = σg ± w, with the dimensionless potentials defined as g ≡
πνFSJ and w ≡ πνFW. And for convenience in intermediate calculations I have also
defined the dimensionless energy ratio ∆̂σ = ∆√

∆2−Ω2
σ

, and similarly for Ω̂σ.

The form of this matrix makes finding the determinant easy, as it reduces quite nicely
as seen in appendix C, to the form

det
(

1 − GR
0,localṼσ

)
=

∣∣∣∣1 + Ω̂σV̂σ+ ∆̂σV̂σ−PNN
∆̂σV̂σ+P†

NN 1 + Ω̂σV̂σ−

∣∣∣∣ . (6.10)

Writing this out and multiplying all terms by
√

∆2 − Ω2
σ the energies of the bound

states, must follow the formula(√
∆2 − Ω2

σ + Ωσ (σg + w)

)(√
∆2 − Ω2

σ + Ωσ (σg − w)

)
− ∆2uχ

!
= 0 . (6.11)

Where the lead parameter χ = PNN P†
NN and the potential u = V̂σ+V̂σ− = g2 − w2 were

introduced. From my earlier assumptions one can see from equations (4.58) and (4.59)
that this potential is positive u > 0. Note that I choose to define u with a different sign
than reference [14] and [26], since it is more natural to have it be defined as V̂σ+V̂σ−.

Solving for the magnetically shifted bound state energies Ωσ, I find that

Ωσ± =
sgn(Ωσ±)∆√
(1 − u)2 + 4g2

[
(1 − u)(1 − uχ) + 2g2 ± 2|g|

√
g2 − u(1 − χ)(1 − uχ)

]1/2

.

(6.12)

The sign of Ωσ± can then be found directly by the determinant equation (6.11), giving
the relation

sgn(Ωσ±) = sgn

−σ
Ω2

σ±(u − 1) + ∆2(1 − uχ)

2g
√

∆2 − Ω2
σ±

 , (6.13)

which after simplification gives two different signs, depending on the value of ±

sgn(Ωσ+) = −σ sgn(S) (6.14)
sgn(Ωσ−) = −σ sgn(S) sgn(1 − uχ) . (6.15)

This means four different bound state energies are found to have the form

ωσ± =
−σ sgn(S)c±∆√
(1 − u)2 + 4g2

[
(1 − u)(1 − uχ) + 2g2 ± 2|g|

√
g2 − u(1 − χ)(1 − uχ)

]1/2

+ ξσ .

(6.16)
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where the signs c± are c+ = 1 and c− = sgn(1 − uχ).

These energies are plotted in figure 6.1, in the case of equal lead-dot couplings (tα =
tβ ∀ α, β).

I will for the rest of the thesis without loss of generality assume that S = 1
2 , such that

spin is chosen to be positive in the direction ẑ. The spin σ, stemming from the super-
conductor electrons, should then be considered as aligned for σ = 1 and anti-aligned
for σ = −1, instead of up and down.

Note that the energies depends on many parameters, some of which are not controllable
and some of which are. I will consider the particle-hole symmetry distance x of the dot
as controllable, by coupling a gate to the dot, as in figure 3.1c, and thereby changing the
potential µd, which changes ξd and therefore also x. This however might prove difficult
to realize in practice, without introducing couplings to the gate, and therefore putting
the situation outside of my model.

I will also consider χ as controllable, since as shown below it depends on the phase
differences of the different superconductors, which are controllable by use of magnetic
fluxes i loops created by connecting the leads.

Interestingly the energies of the bound states with spin up are related to the down states
by a sign flip

ωσ± = −ω−σ± ≡ −σω± (6.17)

In the case of no phase difference the lead parameter χ = 1, the energies become

Ωσ±(χ = 1) =
−σc±∆√

(1 − u)2 + 4g2

[
2g2 + (1 − u)2 ± 2g2

]1/2
(6.18)

=

−σ∆ for ± = +

−σ∆ sgn(1 − u)
√

(1−u)2

(1−u)2+4g2 for ± = −
(6.19)

Meaning that the two + state energies have moved out into the superconductor ener-
gies, such that they no longer are bound states, while two other states remain. In the
particle hole symmetric case x = 0, these two remaining states recover the well known
Yu-Shiba-Rusinov energies

Ωσ−(χ = 1, x = 0) = −σ∆
1 − g2

1 + g2 . (6.20)

In the opposite end of the spectrum of lead parameters, the cancellation of the lead
parameter χ = 0, can happen in certain scenarios, which will be discussed in detail in
section 6.2. For now I find the energies in this case

Ωσ±(χ = 0) =
−σ∆√

(1 − u)2 + 4g2

[
(1 − u) + 2g2 ± 2|g||w|

]1/2

. (6.21)
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It is then clear that in the x = 0 case, the + states and − states, become doubly degen-
erate, with the energies

Ωσ+(χ = 0, x = 0) = Ωσ−(χ = 0, x = 0) =
−σ∆√
1 + g2

, (6.22)

which can be seen in figure 6.1. Where for the two lead systems as seen in figures 6.1a
and 6.1b, it occurs at phase difference ϕ12 = π, while for the three leads in figure 6.1d, it
occurs at phase differences (ϕ12, ϕ13) = ±

( 2π
3 , −2π

3

)
. The reason that χ = 0 for exactly

these phase differences will be discussed in great detail below in section 6.2.

Lastly as seen in the figures, there can also be points for which ω↑− = ω↓−, like in figure
6.1a, however from 6.1b it is clear that this is not always the case. I will find these in the
case of B = 0, such that the sign factor sgn(1 − uχ) = 0 determine when this happens,
such that

ω↑−

(
B = 0, χ =

1
u

)
= ω↓−

(
B = 0, χ =

1
u

)
= 0 (6.23)

For B ̸= 0, the formula becomes more complicated, but it follows from setting ωσ− = 0.
Whether or not there exist a point such that χ = 1

u will be examined in the discussion
in section 6.2.

Note that in the limit Γ
U → ∞ as well as for the limit g → 0 while w is held constant, the

energies reduce to an expression similar to the usual Andreev bound state energies [3]

ωABS
± = ±∆

√
1 − T sin2(2θ) , (6.24)

with T being a transmission coefficient. Here they are of the forms

Ωσ±

(
Γ
U

→ ∞
)
→ ∓σ∆

√
χ

N=2
= ∓σ∆

√
1 − 2 sin2(2θ) sin2

(
ϕ

2

)
(6.25)

Ωσ±(g = 0) = −σ∆

√
1 + w2χ

1 + w2
N=2
= −σ∆

√
1 − w2 sin2(2θ)

1 + w2 sin2
(

ϕ

2

)
, (6.26)

with θ being the angle defined by (cos(θ), sin(θ)) = (|t̂1|, |t̂2|). Note that these limits are
not a part of my model, since they break the approximations I have used. It however
shows that a Hamiltonian of the form in equation (5.1) can give the normal Andreev
bound states, if the potentials J and W are defined in some different way than mine.
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(a) (b)

(c) (d)

Figure 6.1: The bound state energies of an N terminal quantum dot Josephson junction with equal
lead-dot couplings tα = tβ ∀ α, β, and no magnetic field B = 0. For (a)-(c) N = 2 and for (d) N = 3.
In subfigures (a), (b) and (d) there is particle hole symmetry x = 0, while in (c) x = 0.1. The potential
strengths Γ

U are in (a),(c) and (d) 0.7, while in (b) it is 0.3
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6.2 Analysis of lead parameter χ

I have found that the energies of the bound states are dependent on some parameter
χ, which I have shown to encode some kind of properties of symmetric points like for
ωσ+ = ωσ+. This parameter seem to also be the one to encode the information about
the amount of superconductors that are coupled to the dot, up to a scaling of Γ. Starting
with the definition of χ, it can be written as

χ = PNN P†
NN = (UUT)NN(U

∗U†)NN = ∑
αα′

(
U†

αNUNα′

)2
(6.27)

= Tr
[
ΘΘ

T
]

(6.28)

= ∑
αα′

t̂2
α(t̂

∗
α′)

2e−iϕ
αα

′ , (6.29)

where ϕαα′ = ϕα − ϕα′ .

By then writing the normalized coupling vector components as t̂α = |t̂α|e
iθα , since they

in general can be complex, and using the fact that the summands sαα′ are related by
s∗αα′ = sα′α, meaning that the imaginary parts sum to zero, the parameter simplifies as

χ = ∑
αα′

|t̂α|
2|t̂α′ |

2e−i(ϕ
αα

′+2θ
αα

′ ) = ∑
αα′

|t̂α|
2|t̂α′ |

2 cos
(
ϕαα′ + 2θαα′

)
. (6.30)

Which by using the cosine sum formula, can be split into two separate sums

χ =

(
∑
α

|t̂α|
2 cos(ϕα + 2θα)

)2

+

(
∑
α

|t̂α|
2 sin(ϕα + 2θα)

)2

(6.31)

One can recognize this as being distance from a sum of vectors, such that if I write the
square distance of a 2-dimensional vector r, which is a sum of some other vectors {vα},
it is of the form

|r|2 =

∣∣∣∣∣∑α

vα

∣∣∣∣∣
2

=

(
∑
α

|vα| cos(φα)

)2

+

(
∑
α

|vα| sin(φα)

)2

(6.32)

with |vα| and φα being the polar coordinates of the vectors vα. This also mean that
by scaling each vector by a factor of N, the equation (6.32) become a center of mass
equation, such that by plotting |vα| = N|t̂α|

2 as radii and φα = ϕα + 2θα as angles, the
distance to the center of mass of the plot gives the value of

√
χ, as seen in figure 6.2.

This allows for an easy understanding, of what possible values χ can take for different
phase differences ϕαα′ + 2θαα′ , without having to calculate it directly.

Note that this mean that for any two leads α and α′, if one were to fix the phases to
be equal ϕαα′ + 2θαα′ = 0, then they would behave as a collective lead, with a scaled
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coupling strength |t̂(collective)|2 = |t̂α|
2 + |t̂α′ |

2. Meaning that even though I have not
explicitly considered what would happen if each lead couple to the dot via multiple
channels, it is still the same model as long as the phases of the channels in the leads are
equal.

From this center of mass picture it is therefore clear that the maximum must occur when
all phases differences are set to zero, such that all of the vectors lie on top of one another,
and the value become

max(χ) =

(
∑
α

|t̂α|
)2

= 1 , (6.33)

which is independent on the number of leads, and the magnitude of each individual t̂α

since the sum is defined to be normalized.

The minimum however must depend on the magnitude and number of tunnel cou-
plings. As can be seen in 6.2c as soon as t1 ̸= t2 for an N = 2 lead system the minimum
of χ can no longer be zero, whereas for a N = 3 lead system, there is a range for the
magnitudes of the couplings t̂α where the minimum can still be zero as seen in 6.2d.

The reason for this is relatively easy to see because if one radius |vα| become larger than
the sum of all other radii, then the minimum can no longer be zero, since the minimum
then instead become the one where all other radii lie opposite the large |vα|, such that
min(χ) = (|vα| − ∑β ̸=α |vβ|)

2.

By writing out the inequality for which the minimum is non-zero, and using the fact
that t̂ is normalized, one finds that

min(χ) ̸= 0 if |t̂α|
2 > ∑

β ̸=α

|t̂β|
2 = 1 − |t̂α|

2 . (6.34)

Meaning that the minimum of χ must be as follows

min(χ) =

{
N2(2|t̂α|

2 − 1)2 if ∃ tα : |t̂α| > 1√
2

0 otherwise
(6.35)

This way of thinking allows finding the geometry of the points for which χ = 0. By
assuming that the couplings are such that |t̂α| < 1√

2
for all α , meaning min(χ) = 0.

Then by the construction of the plots, it follows that for 2 leads there is only one point
for which χ = 0, which is then for ϕ∗

12 = π. Where * signifies that it is the point for
which χ(ϕ∗

12) = min(χ).

For 3 leads there must be two points, since if χ = 0 at one point (ϕ∗
12, ϕ∗

13), then by an
inversion the value of χ is preserved, while the angles must change to (−ϕ∗

12,−ϕ∗
13).

This can be thought of as two points which describe a winding of phase, going either
clockwise or counterclockwise.
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For 4 leads because of the much larger freedom, it is possible to do continuous move-
ments of the two vectors such that the points form a line. For example if t1 = t3 and
t2 = t4 then the transformation (ϕ∗

12, ϕ∗
13, ϕ∗

14) → (ϕ∗
12 + x, ϕ∗

13, ϕ∗
14 + x) leave χ = 0

invariant.

Note however that this invariance most likely will be broken if one consider the more
physical model with nearest neighbor superconductor-superconductor coupling as in
reference [6], since this breaks the lead labeling/positioning invariance, which is the
part of my model that allows for any lead to cancel the contribution of any other. If one
include the interaction, it will most likely break into a two point case once again, with
clockwise and counterclockwise winding. However this is purely speculation and, will
have to be examined properly in detail in later works.

In my system the generalization of the two cases considered above, is such that if there
exist a point ϕ∗ in the phase difference space P = TN−1 = [−π, π)N−1 for which
χ = 0 and there are N > 2 leads in the system, then that point is a part of an N −
3 dimensional space S∗ ⊂ [−π, π)N−1 for which any point ϕ∗ ∈ S∗ give the value
χ(ϕ∗) = 0.

A reason for why this generalization must hold, is that there are placed two restrictions
for these points, they have a specific value χ(ϕ∗) = 0 and since they are minima they
must also have no gradient (∇ϕχ)(ϕ∗) = 0. Note that even though such conditions
must be true for all extrema of χ, for any given set of couplings t, not all extrema define
a N − 3 dimensional space. Since for certain points under inversion they transform
into themselves ϕ

(trivial)
max/min ≡ −ϕ

(trivial)
max/min (mod 2π). These points will be ϕmax/min =

[ η1π , η2π , . . . , ηN−1π ]T with ηi = {0, 1}, meaning that the space S∗ is just points. In
the center of mass plots, these correspond to either all vectors on top of one another
or some opposite all others. Another reason that χ = 0 is so special, is that as shown
earlier ωσ+ = ωσ− at these points for x = 0, which mean that these points might have
topologically interesting properties. Since they are the point for which the energies
touch in conical intersections for N = 3, meaning they might be either Weyl or Dirac
points. For higher N these become nodal lines and other N − 3 hypersurfaces.

Similarly I will find the points for which two of the bound state energies go to zero,
which I in the case of B = 0 have shown to be the ones for which χ = 1

u . Here since
this condition is satisfied by one restriction, if the points exist they must lie in either
a 0 dimensional or an N − 2 dimensional surface of points. Note that the case of a 0
dimensional surface is a highly tuned situation. The surfaces can be seen in figure 6.1.
The interval of χ allows the existence of such points if

min(χ) ≤ 1

g2 − w2 ≤ 1 , (6.36)
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which by writing out the definitions of g and w become

4 min(χ) ≤ (1 − x2)

(
Γ
U

)−2

≤ 4 . (6.37)

Meaning that the inequality sets an interval for the potential strength, where the points
exist

1
2

√
1 − x2 ≤ Γ

U
≤ 1

2

√
1 − x2

min(χ)
. (6.38)

In the case min(χ) = 0, the upper limit is to be ignored.
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(a) (b)

(c) (d)

Figure 6.2: Visualizations of the minimum value of χ for 2 and 3 leads, rotated such that ϕ1 = 0: (a) is
for two leads with equal tunnel couplings t1 = t2; (c) is for two leads with unequal tunnel couplings
t1 > t2, whereby min(χ) ̸= 0; (b) is for three leads with equal tunnel couplings t1 = t2 = t3 and (d)
is for three leads with unequal tunnel couplings t1 > t2 = t3, but still min(χ) = 0
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6.3 Bogoliubov-de Gennes formalism - The bound states

Now that I have shown in section 6.1 that, there exists in general four different bound
states with energies ω±σ as defined in equation (6.16), I will follow Pientka et al. [25],
to find the eigenspinors associated with the states. Starting from the Bogoliubov-de
Gennes Hamiltonian in the lead summed basis (5.21), I assume a eigenspinor decom-
position as

H̃kk′σ = ∑
±

ωσ±ψ̃σ±k ⊗ ψ̃†
σ±k′ + H̃NBS

kk′σ , (6.39)

where the product ψ̃σ±k ⊗ ψ̃†
σ±k′ is to be understood as an outer product of two 2N com-

ponent vectors, leading to a 2N × 2N matrix. Here H̃NBS
kk′σ is the part of the Hamiltonian

describing any other state than the bound states. Multiplying both sides by ψ̃σ±′k′ , and

using the orthogonality properties ψ̃†
σ±k′ · ψ̃σ±′k′ = |ψ̃σ±k′ |

2δ±±′ and H̃NBS
kk′σ · ψ̃σ±′k′ = 0,

and then summing over momentum the eigenspinors ψ̃σ±′k′ must satisfy

∑
k′

[
H̃0,kσδkk′ + Ṽσ

]
ψ̃σ±′k′ = ωσ±′ψ̃σ±′k ∑

k′
|ψ̃σ±′k′ |

2 . (6.40)

I define that these spinors are normalized in momentum space, such that this reduces
to finding the solution to the equation

(ωσ± − H̃0,kσ)ψ̃σ±k = Ṽσψ̃σ±(r = 0) . (6.41)

Where ψ̃σ±(r = 0) = ∑k ψ̃σ±k is the Fourier transform defining the spinors value at
the placement of the dot r = 0. This equation neatly determines the full momentum
dependent eigenspinors in terms of the value at the dot. Writing it out

ψ̃σ±k =

(
Ωσ± − ξk −∆P
−∆P† Ωσ± + ξk

)−1

·
(

Vσ+δN 0
0 Vσ−δN

)
ψ̃σ±(0)

=
1

Ω2
σ± − ξ2

k − ∆2

(
(Ωσ± + ξk)Vσ+δN Vσ−∆PδN

Vσ+∆P†δN (Ωσ± − ξk)Vσ−δN

)
ψ̃σ±(0) . (6.42)

By a Fourier transform using the wide-band approximation and constant density of
states once again this becomes the eigenequation

ψ̃σ±(0) = ∑
k

ψ̃σ±k ≈
−πνF√

∆2 − Ω2
σ±

(
Vσ+Ωσ±δN Vσ−∆PδN
Vσ+∆P†δN Vσ−Ωσ±δN

)
ψ̃σ±(0) , (6.43)

which written in a collective side is

0 =

(
1 + V̂σ+Ω̂σ±δN V̂σ−∆̂σ±PδN
V̂σ+∆̂σ±P†δN 1 + V̂σ−Ω̂σ±δN

)
ψ̃0

σ± . (6.44)
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Where for notation I have defined ψ̃0
σ± = ψ̃σ±(0). Here it again show how it is helpful

to work in this lead-summed basis, since writing out what the eigenequation shows the
simple relations

ψ̃0
σ±ν = −V̂σ−∆̂σ±Pν,Nψ̃0

σ±2N for ν ∈ [1, N − 1] ∩ Z (6.45)

ψ̃0
σ±ν = −V̂σ+∆̂σ±P†

(ν−N),Nψ̃0
σ±N for ν ∈ [N + 1, 2N − 1] ∩ Z (6.46)

ψ̃0
σ±N =

−V̂σ−∆̂σ±PNN

1 + V̂σ+Ω̂σ±
ψ̃0

σ±2N (6.47)

ψ̃0
σ±2N =

−V̂σ+∆̂σ±P†
NN

1 + V̂σ−Ω̂σ±
ψ̃0

σ±N . (6.48)

From (6.47) and (6.48), it follows that

0 =

(
1 − V̂σ+V̂σ−∆̂2

σ±χ

(1 + V̂σ+Ω̂σ±)(1 + V̂σ−Ω̂σ±)

)
ψ̃0

σ±N . (6.49)

This gives precisely the same equation as (6.11), which therefore also gives the bound
state energies as expected.

By writing the eigenspinors as vectors with 2N elements it become of the form

ψ̃0
σ± =


−V̂σ−∆̂σ±P(1→N−1),Nψ̃0

σ±2N

ψ̃0
σ±N

−V̂σ+∆̂σ±P†
(1→N−1),Nψ̃0

σ±N

ψ̃0
σ±2N

 =


P(1→N−1),N

V̂σ+V̂σ−∆̂2
σ±P†

NN
1+V̂σ−Ω̂σ±

ψ̃0
σ±N

ψ̃0
σ±N

P†
(1→N−1),N

V̂σ+V̂σ−∆̂2
σ±PNN

1+V̂σ+Ω̂σ±
ψ̃0

σ±2N

ψ̃0
σ±2N

 , (6.50)

where the vectors P(1→N−1),N and P†
(1→N−1),N are to be understood as the N-1’st entries

in the N’th column of the matrices P and P†.

By using the energy relation from equaitons (6.16) and (6.49), and defining the basis
vector of the N’th elements as δ⃗N = êN = [0, . . . , 0, 1]T, the eigenspinor can be written
on the compact form

ψ̃0
σ± =

 ((1 + V̂σ+Ω̂σ±)
P

PNN
− V̂σ+Ω̂σ±)δ⃗Nψ̃0

σ±N

((1 + V̂σ−Ω̂σ±)
P†

P†
NN

− V̂σ−Ω̂σ±)δ⃗Nψ̃0
σ±2N

 . (6.51)

Where the element P†
NN is as follows

P†
NN = ∑

α

(U†
αN)

2 = ∑
α

ť2
α = ∑

α

t̂2
αe−iϕα = ť · ť , (6.52)

and similarly for PNN = (P†
NN)

∗ = ť∗ · ť∗.
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The leftover factors ψ̃0
σ±N and ψ̃0

σ±2N , must be determined by normalization of the
spinors

1 !
= ∑

k
|ψ̃σ±k|

2 ≈ νF

∫
dξ|ψ̃σ±(ξ)|

2 . (6.53)

For finding the normalization factors, I make use of equation (6.42), such that

|ψ̃σ±k|
2 =

1

D2
σ±k

(ψ̃0
σ±)

†

(
V2

σ+((Ωσ± + ξk)
2 + ∆2)δN 2Vσ+Vσ−∆Ωσ±PNNδN

2Vσ+Vσ−∆Ωσ±P†
NNδN V2

σ−((Ωσ± − ξk)
2 + ∆2)δN

)
ψ̃0

σ± .

(6.54)

Where the denominator is defined as Dσ±k ≡ Ω2
σ± − ξ2

k − ∆2. Expanding out the matrix
product this reduces to

|ψ̃σ±k|
2 =

1

D2
σ±k

[
V2

σ+((Ωσ± + ξk)
2 + ∆2)|ψ̃0

σ±N |
2 + 2Vσ+Vσ−∆Ωσ±PNN(ψ̃

0
σ±N)

∗ψ̃0
σ±2N

+ 2Vσ+Vσ−∆Ωσ±P†
NNψ̃0

σ±N(ψ̃
0
σ±2N)

∗ + V2
σ−((Ωσ± − ξk)

2 + ∆2)|ψ̃0
σ±2N |

2

]
.

(6.55)

By approximating the sum as an integration, and once again making use of the wide-
band approximation and constant density of states, the normalization condition be-
comes

1 !
=

πνF√
∆2 − Ω2

σ±
3

[
∆2(V2

σ+|ψ̃
0
σ±N |

2 + V2
σ−|ψ̃

0
σ±2N |

2) (6.56)

+ Vσ+Vσ−∆Ωσ±(PNN(ψ̃
0
σ±N)

∗ψ̃0
σ±2N + P†

NNψ̃0
σ±N(ψ̃

0
σ±2N)

∗)

]
.

By converting to the unit-less variables V̂σ±, Ω̂σ± and ∆̂σ± this can be written as

1 !
=

(πνF)
−1√

∆2 − Ω2
σ±

[
∆̂2

σ±(V̂
2
σ+|ψ̃

0
σ±N |

2 + V̂2
σ−|ψ̃

0
σ±2N |

2) (6.57)

+ V̂σ+V̂σ−∆̂σ±Ω̂σ±(PNN(ψ̃
0
σ±N)

∗ψ̃0
σ±2N + P†

NNψ̃0
σ±N(ψ̃

0
σ±2N)

∗)

]
.

By inserting from equation (6.47), this must be the same as

1

|ψ̃0
σ±2N |

2
!
=

∆̂2
σ±V̂2

σ−(πνF)
−1√

∆2 − Ω2
σ±

[
V̂2

σ+∆̂2
σ±χ

(1 + V̂σ+Ω̂σ±)
2 + 1 − 2V̂σ+Ω̂σ±χ

1 + V̂σ+Ω̂σ±

]
. (6.58)
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Which by use of equation (6.49) tells that the normalization must have the size

|ψ̃0
σ±2N |

!
=

√
1

V̂σ−(1 + V̂σ−Ω̂σ±)

√√√√√√ πνF

√
∆2 − Ω2

σ±
V̂σ+∆̂2

σ±
1+V̂σ+Ω̂σ±

+
V̂σ−∆̂2

σ±
1+V̂σ−Ω̂σ±

− 2Ω̂σ±

. (6.59)

Now that I have the normalization constant up to some arbitrary phase, I will find the
bound states in momentum space using equation (6.42) and (6.51)

ψ̃σ±k =
1

Dσ±k

(
(Ωσ± + ξk)Vσ+δN Vσ−∆PδN

Vσ+∆P†δN (Ωσ± − ξk)Vσ−δN

)
 ((1 + V̂σ+Ω̂σ±)

P
PNN

− V̂σ+Ω̂σ±)δ⃗Nψ̃0
σ±N

((1 + V̂σ−Ω̂σ±)
P†

P†
NN

− V̂σ−Ω̂σ±)δ⃗Nψ̃0
σ±2N

 . (6.60)

By matrix multiplication this is the same as

ψ̃σ±k =
1

Dσ±k

[
(Ωσ± + ξk)Vσ+δ⃗Nψ̃0

σ±N + Vσ−∆Pδ⃗Nψ̃0
σ±2N

Vσ+∆P†δ⃗Nψ̃0
σ±N + (Ωσ± − ξk)Vσ−δ⃗Nψ̃0

σ±2N

]
. (6.61)

Now that it is of a simple form, I will transform back to the physical Nambu space, by
use of the transformation defined by equation (5.11)

ψσ±k =

[
U† 0
0 UT

]
ψ̃σ±k =

1
Dσ±k

[
(Ωσ± + ξk)Vσ+ψ̃0

σ±N ť + Vσ−∆ψ̃0
σ±2N ť∗

Vσ+∆ψ̃0
σ±N ť + (Ωσ± − ξk)Vσ−ψ̃0

σ±2N ť∗

]
. (6.62)

Inserting from equation (6.47) and equation (6.59), this becomes

ψσ±k =
eiΘ

Dσ±k

√
V̂σ−

1 + V̂σ−Ω̂σ±

√√√√√√
√

∆2 − Ω2
σ±

πνF

[
V̂σ+∆̂2

σ±
1+V̂σ+Ω̂σ±

+
V̂σ−∆̂2

σ±
1+V̂σ−Ω̂σ±

− 2Ω̂σ±

]
−(Ωσ± + ξk)

V̂σ+∆̂σ±
1+V̂σ+Ω̂σ±

PNN ť + ∆ť∗

−∆ V̂σ+∆̂σ±
1+V̂σ+Ω̂σ±

PNN ť + (Ωσ± − ξk)ť
∗

 . (6.63)

Here Θ is the complex phase of ψ̃0
σ±2N such that ψ̃0

σ±2N = |ψ̃0
σ±2N |e

iΘ, which I will
choose later. I will then once again make use of equation (6.49), such that the spinor can
be rewritten as

ψσ±k =
eiΘ

Dσ±k

√√√√√√
√

∆2 − Ω2
σ±

πνF

[
V̂σ+∆̂2

σ±
1+V̂σ+Ω̂σ±

+
V̂σ−∆̂2

σ±
1+V̂σ−Ω̂σ±

− 2Ω̂σ±

]
−(Ωσ± + ξk)

√
V̂σ+

(1+V̂σ+Ω̂σ±)χ
PNN ť + ∆

√
V̂σ−

1+V̂σ−Ω̂σ±
ť∗

−∆
√

V̂σ+

(1+V̂σ+Ω̂σ±)χ
PNN ť + (Ωσ± − ξk)

√
V̂σ−

1+V̂σ−Ω̂σ±
ť∗

 (6.64)
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Note however by equation (6.49) as χ → 0 to get something finite (1+V̂σ+Ω̂σ±)(1+V̂σ−Ω̂σ±)

V̂σ+V̂σ−∆̂2
σ±χ

→
0 as well, meaning that to avoid 0

0 expressions the relation

V̂σ±′

1 + V̂σ±′Ω̂σ±
=

V̂σ±′(1 + V̂σ∓′Ω̂σ±)

(1 + V̂σ±′Ω̂σ±)(1 + V̂σ∓′Ω̂σ±)
=

1 + V̂σ∓′Ω̂σ±

V̂σ∓′ ∆̂2
σ±χ

, (6.65)

can be usefull some places. Then by inserting equation (6.47) and the normalization
(6.59)

ψσ±k =
eiΘ

Dσ±k

√√√√√ χ
√

∆2 − Ω2
σ±

πνF

[
V̂σ++V̂σ−
V̂σ+V̂σ−

+ 2Ω̂σ±(1 − χ)
]

−(Ωσ± + ξk)

√
1+V̂σ−Ω̂σ±
V̂σ−∆̂2

σ±χ2 PNN ť + ∆
√

1+V̂σ+Ω̂σ±
V̂σ+∆̂2

σ±χ
ť∗

−∆
√

1+V̂σ−Ω̂σ±
V̂σ−∆̂2

σ±χ2 PNN ť + (Ωσ± − ξk)

√
1+V̂σ+Ω̂σ±
V̂σ+∆̂2

σ±χ
ť∗

 (6.66)

Converting Ω̂σ± and ∆̂σ± back to the quantities with units, and simplifying this gives
the final expression for the momentum eigenspinor

ψσ±k =
1

Dσ±k

√√√√√√√
√

∆2 − Ω2
σ±

3

πνF

[
(V̂σ+ + V̂σ−)

√
∆2 − Ω2

σ± + 2Ωσ±V̂σ+V̂σ−(1 − χ)

]
−

Ωσ±+ξk
∆

√
V̂σ+(

√
∆2 − Ω2

σ± + V̂σ−Ωσ±)τ̌ +

√
V̂σ−(

√
∆2 − Ω2

σ± + V̂σ+Ωσ±)τ̌
∗

−
√

V̂σ+(
√

∆2 − Ω2
σ± + V̂σ−Ωσ±)τ̌ +

Ωσ±−ξk
∆

√
V̂σ−(

√
∆2 − Ω2

σ± + V̂σ+Ωσ±)τ̌
∗


(6.67)

where I have chosen the phase −2Θ = arg

(√
P2

NN
χ

)
= arg

(√
PNN

P†
NN

)
= arg (PNN) =

arg
(
ť∗ · ť∗

)
, such that I define τ̌ ≡ e−iΘ ť =

(
ť∗·ť∗
ť·ť

)1/4

ť.

It is possible to now write out the bound state annihilation and creation operators, from
equation (5.21) and (6.39), it is clear that I can define some operators

γBS
σ±k ≡ ψ̃†

σ±k′ · Ck′σ (6.68)

which diagonalize the bound state part of the full Hamiltonian, and have the energies
ωσ±. However I will not make further use of these states in this thesis, and instead
leave them for use outside of this thesis.
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6.4 Ground state energy and many body energies

Now that I have found the bound states and energies for single particle excitations, I
will make use of the Bogoliubov-de Gennes formalism to find the ground state energy
up to a constant. This can be done by using ωgs =

1
2 ∑ω<0 ω, which when written out

by using the fact that ωσ± = −σω± gives

ωgs = −∑
±

|ω±|
2

. (6.69)

This shows that there are four different non-interacting many body cotunnelling states
for which this ground state can become [26]. The fact that these are cotunnelling states,
as explained earlier, stems from the assumption that the dot must be singly occupied,
such that any dynamics of the system must be governed by processes where as soon as
one electron leaves the dot, another must enter. The energies of these many body states
are therefore up to a common constant given by

ωs0 =
ω↑+ + ω↓−

2
=

Ω↑+ + Ω↓−
2

(6.70)

ωs1 =
ω↓+ + ω↑−

2
=

Ω↓+ + Ω↑−
2

(6.71)

ωu0 =
ω↑+ + ω↑−

2
=

Ω↑+ + Ω↑−
2

+ ξ↑ (6.72)

ωu1 =
ω↓+ + ω↓−

2
=

Ω↓− + Ω↓+
2

+ ξ↓ . (6.73)

These can be seen in figure 6.3, in the case of two and three leads. Note that the conical
intersections still exist for these states. The energies are split into two types, ωs the
screened many body state energies which are independent on the magnetic field B, and
ωu the unscreened energies which do depend on B.

Since the ground state for some given phase differences is the the same as the lowest of
the four many body state energies seen in figure 6.3, there are for B = 0 two possibilities
for the energy state, either ωs0 or ωu0. As seen in figure 6.4, for the case of larger
coupling like Γ

U = 0.7 (figure 6.4a), the ground can undergo a transition between the
states with energies ωs0 and ωu0 corresponding to a spin-flip, while for lower couplings
like Γ

U = 0.45 (figure 6.4b), the state remain in the state with energy ωu0.

It is easy to see that the condition of this change of the ground state, is the same as

finding when ωs0
?
= ωu0, which by the definition of these energies for B = 0 is the same

condition as ω↑−
?
= ω↓−, which I have already shown to be χ = 1/U. Equation (6.38)

therefore explain why for x = 0 as in figure 6.4, a transition can occur for figure 6.4a
where Γ

U = 0.7 > 0.5, while no transition can occur in figure 6.4b where Γ
U = 0.45 < 0.5.
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(a)

(b)

Figure 6.3: The many body energies of the quantum dot Josephson junction with equal tunneling
amplitudes tα = tα′ as well as particle hole symmetry x = 0, zero magnetic field B = 0, and potential
strength Γ

U = 0.7, (a) in the case of two leads and (b) the case of three leads
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(a)

(b)

Figure 6.4: The ground state energies for a three terminal junction, with equal tunneling amplitudes
t1 = t2 = t3 as well as particle hole symmetry x = 0, zero magnetic field B = 0, and for (a) a
potential strength of Γ

U = 0.7, while for (b) Γ
U = 0.45
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6.5 Supercurrent and Ground state minima

From the ground state energy it is possible find the supercurrent flowing between the
different leads. Such that the supercurrent flowing from a lead α′ to another lead α
follow the formula

IS
αα′ = 2e

∂ωgs

∂ϕαα′
, (6.74)

where e is the electron charge. This can be determined from something like a Green’s
function, T- and S-matrix formalism, but I will tacitly assume it to be true as in reference
[14]. However since I have N different leads, it is more useful to define the current
flowing from the dot into a lead α

IS
α = 2e

∂ωgs

∂ϕα

. (6.75)

Note that current conservation immediately follows

∑
α

IS
α = 2e

(
∑
α

∂

∂ϕα

)
ωgs = 2e0̂ωgs , (6.76)

where 0̂ is the null operator, since the phases sum as ∑α ϕα ≡ 0 (mod 2π).

Since ωσ± only have a phase dependence in the variable χ, by use of the chain rule it
follows that

∂ωgs

∂ϕα

=
∂χ

∂ϕα

∂ωgs

∂χ
. (6.77)

Showing both that the extrema of ωgs corresponds to either places of discontinuities

in the derivative
∂ωgs
∂ϕα

or maxima and minima of χ, and that for these extrema of χ no

current can flow since ∂χ
∂ϕα

= 0 for any α there.

Whether the minima of ωgs corresponds to minima of χ or maxima of χ, is decided
by the values of B, Γ

U , x and the largest relative coupling t̂α, in the two cases shown
in figure 6.4, both types are shown. For figure 6.4a the minima of ωgs corresponds to
maxima of χ, while in figure 6.4b the minima of ωgs corresponds to minima of χ.

From the discussion in section 6.2, it is understood that χ can have two different types
of minima depending on the size of the largest relative coupling strengths t̂α. If t̂α < 1√

2
for all α, then the minimum of χ is for the three lead junction is doubly degenerate,
and for the N > 3 lead junction it is infinitely degenerate as min(χ) is in a N − 3
dimensional space.

Because of these different types of minima of the ground state energy ωgs, it has become
commonplace in the case of a two lead junction to classify it depending on where the
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Naming Value of χ location of minimum for ωgs
0 χ = 1 ϕ = 0
π χ = N2(2|t̂α|

2 − 1)2 ϕα = π and ϕβ = 0 for all other
χ χ = 0 ϕ = ϕ∗ ∈ S∗ where dim(S∗) = N − 3

Table 6.1: The classifications of a N lead junction

minimum is. Which for two leads gives rise to the names 0 and π junctions where in
the case of min(ωgs) = ωgs(ϕ = 0) and min(ωgs) = ωgs(ϕ = π) respectively. Some
people also classify whether or not discontinuities in the current occur by adding a ’ to
the respective names giving 0′ and π′ junctions.

Expanding this naming scheme for a general N lead junction gives six types, which I
here choose to call 0, 0′, π, π′, χ and χ′, where ’ still signifies a discontinuity of the
current. This naming convention is summed up in table 6.1.

Note that the discontinuities of the supercurrent, happen whenever the ground state
switches its state, which as explained earlier corresponds to a spin-flip in the state. This
happens at the places where the single bound state excitation energies ωσ− cross zero
energy, which as pointed out in equation (6.23) happens at χ = 1

u , in the case of zero
magnetic field B = 0, if the condition of equation (6.38) is fulfilled. An example of
this discontinuity can be seen in figure 6.5, where the supercurrent corresponds to the
ground state energy of figure 6.4a.
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(a) (b)

(c) (d)

(e)

Figure 6.5: Plots of the supercurrents in a three lead quantum dot Josephson junction with equal
tunneling amplitudes t1 = t2 = t3 as well as particle hole symmetry x = 0, zero magnetic field
B = 0, and potential strength Γ

U = 0.7: (a) shows the current flowing into lead 1; (b) shows the
current flowing from into lead 2; (a) shows the current flowing from into lead 3; and (d) and (e)

shows the total magnitude |I| =
√

I2
1 + I2

2 + I2
3 of the current flowing.
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Chapter 7

Circuits

In this section I will describe a scenario in which one can use two of these multi-terminal
Josephson junctions in a circuit. The type of circuit which I will use here have already
been shown to allow for the creation of qubits in the case of two terminals [12, 13].

7.1 Types of Josephson circuits

When building circuits there are 3 major effects to take into account inductive, capaci-
tive and resistive effects. In building Josephson junction circuits however because the
leads are superconductors resistance can be neglected.

Instead one might consider circuits build of just junctions and superconductors where
the circuit interacts inductively and capacitively. This mean that one can set up the
Hamiltonian

H = 2e2
(

n − ng

)T
C−1

(
n − ng

)
+

1
2

IT MI + UJ(ϕ) , (7.1)

where C is the capacitance matrix between all superconductors, n is the vector of copper
pair number operators nα for each superconductor and ng is the vector of gate biases
or charge offsets ngα for each superconductor. I is the vector of currents flowing in the
superconductors and M is the inductance matrix which contains both mutual- and self-
inductance. The last term UJ(ϕ) is the Josephson energy potential part of the circuit,
which is a sum of ground state energies (6.69) for each junction in the circuit. The phase
differences for each superconductor at the dots is then determined by the inductances
and the geometry of the circuit, because of the wavefunction single-valuedness relation
[21]

∑
l∈loop

∆ϕl + 2π

(Φloop

Φ0
+ k
)
= 0 (7.2)

47



where ∆ϕl is the phase differences in the loop, Φ0 = h
2e is the magnetic flux quantum,

and Φloop is the total magnetic flux penetrating the loop, which is the sum of the flux
induced by any flowing current as well as any externally supplied flux Φ = Φind +Φext.
Lastly k is some integer, which only have influence on something like the Little-Parks
effect which will not be covered in this thesis [21, 27].

For the purposes of this thesis, I will assume that the capacitance contribution is irrele-
vant, meaning that the circuit is large enough such that |C−1| is small, meaning that the
system can be described as

H ≈ Uind(Φind) + UJ(ϕ) (7.3)

7.2 Double junction system

I will be considering a generalization of the circuit considered in reference [12], but here
with two multi-terminal Josephson junctions connected to each other by some amount
of terminals, such that the full circuit consists of two quantum dots, D and D̄, and N
superconducting wires as seen in figure. Here the total energy can then be written as

Utot = UD(ϕ) + UD̄(ϕ̄) + Uind(Φind) , (7.4)

Then by the single-valuedness, it follows that

ϕi,i+1 + ϕ̄i+1,i + 2π

(
Φi,i+1

Φ0
+ li,i+1

)
= 0 (7.5)

Which can be written on a vector form as

ϕ − ϕ̄ + 2π

(
Φ

Φ0
+ l
)
= 0 , (7.6)

where the elements ϕi = ϕi,i+1, and similarly for ϕ̄ and Φ. This relation fixes N − 1 of
the variable since there are N − 1 loops, meaning I can write the total energy in terms
of the fluxes, and the phase differences at one of the dots

Utot = UD(ϕ̄, Φ) + UD̄(ϕ̄) + Uind(Φind) . (7.7)

D

D̄

. . .

Figure 7.1: A sketch of a two dot - N lead cicuit. Superconducting leads are red and the
dots signify the N − 4 other leads)
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Where the inductive energy term can be written as

Uind(Φind) =
1
2

IT MI =
1
2

Φ
T
ind M̃−1MM̃−1

Φind , (7.8)

where M̃ is the self inductances, which is the same as the diagonal of M. To then
minimize with respect to either the phases or the fluxes (depending on what one is
most interested in), the differential equation

∂Utot
∂Φ

=
∂ϕ

∂Φ

∂UD
∂ϕ

(ϕ) +
∂Uind
∂Φ

(Φind)
!
= 0 , (7.9)

is set up.

This can be numerically solved with respect to the phases ϕ, and then reinserted this
into the energy equation. This can be seen in figure 7.2, for a circuit with three wires.
Here one can see that for this specific case the circuit give two degenerate minima,
much like the two lead system in reference [12].

This suggests that it might be possible to construct a qubit using this new system, but
further work outside of this thesis will be needed to properly describe how this would
work, and how robust this might be compared to other types of qubits.
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(a)

(b)

Figure 7.2: The numerically minimized circuit energies, for a 3 wire 2 dot circuit, with a 0′ junction
and a χ junction, with strong self inductances.
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Chapter 8

Discussion

While I have found the bound states and their energies, as well as tried to insert this
new type of junction into an existing circuit, I have have simply laid the groundwork for
further work. I will here summarize further work which I expect could be interesting.

8.1 Multi-terminal/junction circuit correspondence

Circuits have been studied theoretically in the case of circuit with two terminal junc-
tions, to create artificial topological matter in an paper by Fatemi et al. [28]. In that
paper they find that for a three Josephson junction circuit, where the three terminals
are connected by an upper and lower common line, that for an offset of cooper pair
charge being n = 0.5, there exist two Weyl nodes. These nodes seem to be located
close to the same phase differences as the x = 0 conical intersections as in my three
terminal Josephson junctions for equal coupling tα = tα′ . Suggesting that there might
be the same symmetries in both systems for these parameters, which might mean that
there exist some N-terminal junction/N junction circuit correspondence for some set of
parameters.

8.2 Topological matter

In chapter 6 I found the bound states and their energies. Where I have hinted that there
might be something interesting happening in terms of topological quantities. However
I have not in any details studied the actual topological properties which Riwar et al. in
their paper [1] have pointed out as interesting. It therefore might be really interesting in
further works, to determine these with an in depth description of the topology involved
in the system.

51



Chapter 9

Conclusion

I have found that by having N superconductors weakly coupling to a single spin split
Anderson impurity, bound states appear in the form of Yu-Shiba-Rusinov states. These
states can be described as depending a parameter χ which lives in a N − 1 dimensional
quasi-momentum space of phase differences.

I have found these states and their energies, and have extensively examined the sym-
metries and other properties of the parameter χ. I found that it encodes the information
of lead asymmetry, and depends on both the individual lead-dot coupling strengths as
well as differences in phases between leads. I have found that the extrema of the ener-
gies of the states must also be at the extrema of this parameter χ. Here I have shown
that the parameter allows for extrema which are in a certain interval, meaning that for
these N terminal junctions the 0 and π junction classification has to be generalized to
allow for a new type, which I have chosen to call a χ junction.

I have then found the supercurrents that form in these N terminal junction, and have
used these in a simple example of a quantum electromagnetic circuit, which might have
characteristics needed for creating a quantum bit.

Lastly I have given an overview of two areas of research, within an overarching topic
of topology and symmetries, where I suspect this thesis might be of further use.
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Appendix A

Finding the energy of a Bogoliubov
quasi-particle

A.1 The energy of a Bogoliubov quasi-particle without a mag-
netic field

From the main text it was found that (in equations (3.12) and (3.13))

Ek = ξk(|uk|
2 − |vk|

2) + ∆ku∗
k v∗k + ∆∗

k ukvk (A.1)

0 !
= 2ξkvku∗

k − ∆k(u
∗
k )

2 + ∆∗
k v2

k (A.2)

Note that since Ekσ ∈ R either ∆ku∗
k v∗k , ∆∗

k ukvk ∈ R or ∆ku∗
k v∗k + ∆∗

k ukvk = 0 (while I
will not show it here, the second case is a special case of the first, meaning that the first
is the most general). This means that I can find a real number r, such that

u∗
k v∗k = ∆∗

k
r

|∆k|
2 (A.3)

by then multiplying equation (A.2) by ukv∗k , it follows that

0 !
= (2ξkvku∗

k − ∆k(u
∗
k )

2 + ∆∗
k v2

k)ukv∗k = 2ξk
r2

|∆k|
2 − |uk|

2r + |vk|
2r (A.4)

I then see that by squaring equation (A.3), it also follows that

r2 = |uk|
2|vk|

2|∆k|
2 (A.5)

Inserting this new relation it follows that

0 !
= 2ξk|uk|

2|vk|
2 − |uk|

2r + |vk|
2r (A.6)
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Meaning the real number must be

r = 2ξk
|uk|

2|vk|
2

|uk|
2 − |vk|

2 (A.7)

Substituting the real number into equation (A.1), then shows that

Ek = ξk(|uk|
2 − |vk|

2) + 2r

= ξk(|uk|
2 − |vk|

2) + 4ξk
|uk|

2|vk|
2

|uk|
2 − |vk|

2

=
ξk(|uk|

2 + |vk|
2)2

|uk|
2 − |vk|

2

=
ξk

|uk|
2 − |vk|

2

By then once again using that |uk|
2 + |vk|

2 = 1 I get the relations that

|uk|
2 =

1
2
+

ξk
2Ek

(A.8)

|vk|
2 =

1
2
− ξk

2Ek
(A.9)

where the complex phases of uk and vk can be chosen semi arbitrarily such that arg(uk)+
arg(vk) ≡ arg(∆k) (mod 2π). Which shows that

|uk|
2 − |vk|

2 =
ξk
Ek

(A.10)

Inserting this into equations (A.7) and squaring (A.5) and also dividing by |uk|
2|vk|

2, I
find the energy from

4E2
k |uk|

2|vk|
2 = E2

k

(
1 − ξ2

k

E2
k

)
= |∆k|

2 (A.11)

Meaning that I get the energy as

E2
k = ξ2

k + |∆k|
2 (A.12)

A.2 The energy of a Bogoliubov quasi-particle in magnetic field

By adding a spin index to the energy for the electrons, such that ξkσ = ξk + ξσ, I find
that the commutator of the quasi-particle in equation (3.11) now instead gives

Ekσ = ξkσ|uk|
2 − ξk−σ|vk|

2 + ∆ku∗
k v∗k + ∆∗

k ukvk (A.13)

0 !
= (ξkσ + ξk−σ)vku∗

k − ∆k(u
∗
k )

2 + ∆∗
k v2

k (A.14)
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which simplifies to

Ekσ = ξσ + ξk(|uk|
2 − |vk|

2) + ∆ku∗
k v∗k + ∆∗

k ukvk (A.15)

0 !
= 2ξkvku∗

k − ∆k(u
∗
k )

2 + ∆∗
k v2

k (A.16)

This mean that the only change is that the energy of the quasi-particle now also have
the same spin energy as the electrons.

Ekσ = Ek + ξσ (A.17)

where the energy Ek =
√

ξ2
k + |∆|2 following the same arguments as in appendix A.1.
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Appendix B

Schrieffer-Wolff quantities

B.1 Commutators of the Schrieffer-Wolff transformation

Below is a list of all the involved commutators of the first order SW transformation[
γ†

µγµ, γ†
µ′dσ′

]
= γ†

µdσδµµ′ (B.1)[
γ†

µγµ, γµ̄′dσ′

]
= −γµd−σδµµ̄′ (B.2)[

d†
σdσ, γ†

µ′dσ′

]
= −γ†

µ′dσδσσ′ (B.3)[
d†

σdσ, γµ̄′dσ′

]
= −γµ̄′dσδσσ′ (B.4)[

n↓n↑, γ†
µ′dσ′

]
= −n−σ′γ†

µ′dσ′ (B.5)[
n↓n↑, γµ̄′dσ′

]
= −n−σ′γµ̄′dσ′ (B.6)

For the second order I make use of the commutators below

[γ†
µdσ , d†

σ′cµ′ ] = γ†
µcµ′δσσ′ − uµnσδµµ′ (B.7)

[n−σ , d†
σ′cµ′ ] = d†

−σcµ′δ−σσ′ (B.8)

[n−σγ†
µdσ , d†

σ′cµ′ ] = n−σ(γ
†
µcµ′δσσ′ − uµnσδµµ′) + n̄σcµ′δ−σσ′γ†

µ (B.9)

[γµ̄dσ , d†
σ′cµ′ ] = γµ̄cµ′δσσ′ − vµnσδµµ′ (B.10)

[n−σγµ̄dσ , d†
σ′cµ′ ] = n−σ(γµ̄cµ′δσσ′ − vµnσδµµ′) + n̄σcµ′γµ̄δ−σσ′ (B.11)
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[γ†
µdσ , c†

µ′dσ′ ] = −vµd−σdσδµµ̄′ (B.12)

[n−σγ†
µdσ , c†

µ′dσ′ ] = d−σdσc†
µ′γ†

µδ−σσ′ (B.13)

[γµ̄dσ , c†
µ′dσ′ ] = uµd−σdσδµµ̄′ (B.14)

[n−σγµ̄dσ , c†
µ′dσ′ ] = d−σdσc†

µ′γµ̄δ−σσ′ (B.15)

B.2 Schrieffer-Wolff transformation coefficients

Wµµ′ = tµt∗µ′

(
ξασ − ξdσ − Eαk

(ξασ − ξdσ)
2 − E2

αk
+
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(B.16)
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αk
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αk
(B.17)

+
ξα′σ′ − ξdσ′ − U − Eα′k′

(ξα′σ′ − ξdσ′ − U)2 − E2
α′k′

−
ξα′σ′ − ξdσ′ − Eα′k′

(ξα′σ′ − ξdσ′)2 − E2
α′k′

)

Zµµ′ = tµt∗µ′
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2 − E2

αk
(B.18)
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(
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(B.19)
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αk
(B.20)

Lµµ′ = tµtµ′

(
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αk
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)
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Kµµ′ = tµtµ′

(
ξασ − ξdσ − U − Eαk

(ξασ − ξdσ − U)2 − E2
αk

− ξασ − ξdσ − Eαk

(ξασ − ξdσ)
2 − E2

αk

)
(B.22)

The special redefined coefficients read as

W ′
µµ′ =

tµt∗µ′

4

(
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αk

+
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(B.23)

+
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(ξα′σ′ − ξdσ′ − U)2 − E2
α′k′

+
ξα′σ′ − ξdσ′ − Eα′k′
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+
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(B.24)

the others trivially follow from the ones above this.
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Under the approximation of the main text for ∆α = ∆ the other redefined coefficients
become

Z′
µµ′ ≈

tµt∗µ′

4

(
∆

ξ2
d
+

∆

(ξd + U)2

)
= 2tµt∗µ′

∆(1 + x2)

U2(1 − x2)2 ∝
∆Γ

U2 (B.25)

T′
µµ′ ≈

tµt∗µ′

2

(
∆

ξ2
d
− ∆

(ξd + U)2

)
= 8tµt∗µ′

∆x
U2(1 − x2)2 ∝

∆Γ

U2 (B.26)
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Appendix C

Determinant of special block
matrices

For a 2N x 2N block matrix M of the form

M =

(
1 + aδN VδN

WδN 1 + bδN

)
=


[1](N−1,N−1) [0](N−1,1) [0](N−1,N−1) [v′](N−1,1)

[0](1,N−1) 1 + a [0](1,N−1) vNN

[0](N−1,N−1) [w′](N−1,1) [1](N−1,N−1) [0](N−1,1)

[0](1,N−1) wNN [0](1,N−1) 1 + b


(C.1)

Where [_](i,j) signifies that the block is a i × j matrix, with its elements described by
what is inside of the parenthesis, and the vectors v′, w′ are the first N-1 entries in the
vector vi = (VδN)i,N . The following simplification of the determinant then takes place

61



det(M) =(1 + a)

∣∣∣∣∣∣∣
[1](N−1,N−1) [0](N−1,N−1) [v′](N−1,1)

[0](N−1,N−1) [1](N−1,N−1) [0](N−1,1)

[0](1,N−1) [0](1,N−1) 1 + b

∣∣∣∣∣∣∣
+ (−1)NvNN

∣∣∣∣∣∣∣
[1](N−1,N−1) [0](N−1,1) [0](N−1,N−1)

[0](N−1,N−1) [w′](N−1,1) [1](N−1,N−1)

[0](1,N−1) wNN [0](1,N−1)

∣∣∣∣∣∣∣ (C.2)

=(1 + a)(1 + b)

∣∣∣∣∣[1](N−1,N−1) [0](N−1,N−1)

[0](N−1,N−1) [1](N−1,N−1)

∣∣∣∣∣
+ (−1)NvNN(−1)N−1wNN

∣∣∣∣∣[1](N−1,N−1) [0](N−1,N−1)

[0](N−1,N−1) [1](N−1,N−1)

∣∣∣∣∣ (C.3)

=(1 + a)(1 + b)− vNNwNN (C.4)

Showing that ∣∣∣∣1 + aδN VδN
WδN 1 + bδN

∣∣∣∣ = ∣∣∣∣1 + a VNN
WNN 1 + b

∣∣∣∣ (C.5)
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