

U N I V E R S I T Y O F C O P E N H A G E N

MSc in Computational Physics

Deterministic wavelet estimation methods in
the tie-to-well approach

Pedro Martínez Saiz
Supervised by Klaus Mosegaard

May 20th, 2022

Pedro Martínez Saiz
Deterministic wavelet estimation methods in the tie-to-well approach
MSc in Computational Physics, May 20th, 2022
Supervisor: Klaus Mosegaard

University of Copenhagen
Niels Bohr Institute
Section for the Physics of Ice, Climate and Earth
Tagensvej 16
2200 Copenhagen N

Acknowledgements

I cannot begin to express my thanks to Klaus, who has encouragingly guided me and
introduced me to the world of seismology with this project. All the experience acquired
along the way is always very satisfactory.

Very special thank you to my family, who, from the distance, has supported me in every
single aspect and made this experience possible. Special mention to my little brother Hugo.
Your endless child love knows no borders, you are my pillar and you do not know it yet.

Likewise, I could have not undertaken this journey without the family I found in Copen-
hagen. Lasse, Anne, Roosa, Alicia and many more: you are my motor and my energy. I
am also very grateful to my MSc office mates for their moral support every day. Special
mention to Martin, time flies and “we made it”.

I would be remiss in not mentioning Teresa, with whom I started taking the first steps in
Physics. I wish I could have you by my side in person and not on a screen.

Lastly, I very much appreciate the assistance of Niels. SPECFEM did not take over me,
but the other way around thanks to him.

iii

Abstract

Wavelets are wave-like functions with short extension, i.e., they oscillate over a short distance
and damp very fast. Their main value over the whole domain is zero. These properties give
wavelets the localization power, useful in a wide range of disciplines.

In seismology, the wavelets are hidden in the seismic data. Seismic processing methods
are aimed at removing the wavelets from the seismic data to yield the response of the Earth
to an initial perturbation: the reflectivity. The reflection coefficient series carry information
about the structure of the subsurface. The aim of the project is to exploit deterministic
inversion tools to estimate the wavelet function (our unknown) hidden in the data.
Deterministic inversion theory covers the those minimization problems that are solved

using least squares approaches. During the project we will see that the least squares fit, in
its simplest form, is not robust enough, and needs to be reformulated. More specifically,
we will deploy Tikhonov regularization to render the problem robust and stable. Dumped
Tikhonov regularization will be presented too as need of introducing prior information about
the wavelets.
A forward model that parametrizes the problem is required. The convolutional model

will be employed as the connecting bridge between the data space and the parameter space.
Our parameters will be the wavelet itself, which must fulfil the foregoing requisites. We will
explore its limitations, as well as up to which extent it works. We will simulate our own
data using the SPECFEM software.

iv

Contents

1 Introduction 1

2 Inverse problems 3
2.1 Tikhonov regularization . 4

3 Convolutional model 7
3.1 Reflection coefficient series . 8
3.2 Seismic wavelet . 9
3.3 Noise component . 10
3.4 Deconvolution as an inverse problem . 11

4 Inversion of real 1D data 14

5 Simulation of 2D data 21
5.1 How do we simulate data? . 21
5.2 Velocity and density models . 23
5.3 The need of preprocessing . 23
5.4 Two layer model . 26
5.5 Multilayer model . 28

6 Inversion of simulated data 33
6.1 Two-layer model . 33
6.2 Multilayer model . 36
6.3 Increase non-linearities . 38

7 Data preprocessing 42
7.1 NMO correction . 42
7.2 Migration . 44

8 Conclusion 47

9 Bibliography 49

A Time-depth conversion 51

B Dynamic Time Warping 53

v

Chapter 1.

Introduction

Waves are our best tool to gain information of the material they travel through. It is
well known that when a wave encounters a change in the material (interface), part of it is
reflected back and the other part continues its course as the refracted wave. The refracted
wave may meet further interfaces or reflectors, leading to multiple reflections that carry
information about the structure of the Earth right beneath us. Consequently, reflection
of waves plays a pivotal role when it comes to inferring the sub-surface structure. Some
receivers are usually laid out along the surface waiting for signals from all these reflections
to arrive. Yet, the reflections are not recorded directly, but encoded in the so-called seismic
data, which are the Earth’s response to a perturbation in form of wave, also referred to as
seismograms or seismic traces. As a result, the wave field recorded is called seismic section,
and, after some treatment, can be used as a rough “image” of the structure.

The aim is then twofold: collect the responses of seismic waves propagating through some
media (forward simulations) and deploy some tool to extract information hidden in the
seismic data. It is in the latter stage of knowledge extraction where inversion takes place. It
means inferring information about our model parameters from the seismic data.

This is a generic overview of the project, which involves the simulation of seismic waves
propagating through media, also known as full waveform modelling. Seismic waves are
elastic displacements or vibrations in the Earth. In an elastic material at least two types of
waves can propagate: pressure waves and shear waves, whereas in an acoustic material only
pressure waves do. Both types are governed by the same equation, the wave equation. It is
peculiar to them the fact that their speed of propagation depends only upon the underlying
media, and not upon their frequency or wavelength.
Nowadays, there are specific softwares which efficiently run such simulations in a wide

range of scenarios. Namely, we will be using SPECFEM, which deploys the numerical
spectral element method for full waveform modelling and allows the user to perform 2D and
3D simulations of acoustic, elastic, viscoelastic and poroelastic seismic wave propagation.
In the project, we will design our own mesh structure with Gmsh (PyGmsh for Python
interface) and run acoustic simulations only, which means set shear velocity to zero vs = 0.
From now on, every time we talk about velocity v, the pressure velocity vp is implied.

Once we have the software, we are in a position to explore inversion methods that can be
applied on the data we generate. Different scenarios can be posed. Through this project,
we will work around the case of well-to-tie seismic data exploited and explained from the
convolutional model. It consists in having a middle shot point surrounded by receiver

1

stations, which capture what happens around the middle trace. The signal recorded right
at the shot point is called zero-offset trace, and accounts for the vertical phenomena only.
With real borehole data, one usually has access to velocity and density models which can
be translated into reflectivity, as we will see. The convolutional model will help us wrap
everything as an inverse problem.

2

Chapter 2.

Inverse problems

The field of inverse problems spans those problems where data are used to compute the
internal structure of physical objects. Conversely, the forward problem consists on predicting
the outcome of some measurements given a complete description of a physical system.
While the forward problem is deterministic in the sense that its solution is unique, the

inverse problem is not (Tarantola, 2005). Let us consider measurements of the gravity field
around a planet, a recurrent example to illustrate inversion. According to Newton, given
the distribution of the mass inside the planet, we can uniquely predict the values of the
gravity (forward problem). However, there are different mass distributions that give that
same value of the gravity (inverse problem). Therefore, the inverse problem has multiple
solutions. This leads to the need of any prior information of the parameters (distribution of
mass) that we may have.
The first step in any approach is to describe the problem through the forward problem.

In its most general way, we could express it as:

d = g(m) (2.1)

where d is the data, m the parameters and g the forward problem. As said, many (not
to say infinite) sets of parameters m reproduce d within some uncertainty. The one that
preforms the best will be the one that minimizes the misfit, which is the mismatch between
the observed data and the result of a theoretical calculation:

E(m) = ‖d− g(m)‖22 (2.2)

In order to minimize (2.2), various data fitting methods like least squares try to obtain
the best match. However, one needs to be very careful in the representation of the
data uncertainties, as Hadamard warned when he faced the heat conduction equation
(Mosegaard, 2020). In his inversion approach, Hadamard found that small changes in the
model parameters led to exploding changes in the predictions, causing the solution to be
highly unstable. When this happens, we say that the inverse problem is ill-posed.
Ill-posed problems are the weak point of methods like least squares. Least squares are

popular for solving inverse problems because they lead to the easiest computations. Their
drawback is the lack of robustness, i.e, their strong sensitivity to a small number of large
errors (outliers) in the data, or to the non-uniqueness of the solution.

3

Because of this, methods of regularization like Tikhonov regularization are required. They
reformulate the ill-posed problem for numerical treatment, which typically involves including
additional assumptions.

2.1 Tikhonov regularization

Tikhonov regularization is a typical regularization technique in which an extra expression
is added to the least squares misfit function that controls the prior knowledge introduced
through a regularization parameter.

We shall consider the linear case of expression (2.1), as it is the type of problem we will
be dealing with during the whole project:

d = Gm (2.3)

If the problem is ill-posed, the least squares estimation leads to an overdetermined and/or
underdetermined system of equations. Let us discuss a bit more about this.

When there are more data than unknowns (parameters), there is not an exact solution and
the problem is overdetermined. The matrix G maps the parameter space into a subspace
of possible estimates. The least squares solution will find the solution that minimizes the
distance between the true data and the estimated data ‖d− d̂‖2, where d̂ = Gm̂. It also
means that it will try to fit the noise present in the data.

Under this situation, the linear least squares problem is to minimize:

E(m) = ‖d−Gm‖22 = (d−Gm)T(d−Gm) =
N∑
i=1

di − M∑
j=1

Gijmj

[di − M∑
k=1

Gikmk

]
(2.4)

whose solution m̂ can be found analytically by solving

∀q : ∂E

∂m̂q
= 0 (2.5)

Following (Menke, 2012) one ends up solving the equation

GTGm−GTd = 0 (2.6)

Presuming that GTG exists, we get the following estimate for the model parameters:

m̂ =
[
GTG

]−1
GTd (2.7)

This is the least squares solution for an overdetermined problem, which, as said, is
unstable towards ill-posed problems.
On the other hand, when there is too few data to determine uniquely all the model

parameters, the problem is underdetermined. In this case there will be a whole subspace of

2.1 Tikhonov regularization 4

infinite points where all of them are equally good. In order to single out precisely one of the
infinite number of solutions, we must add to the problem some external a priori information
not contained in Gm = d. This is, information that is not based on the actual data.
For instance, consider the previous case of the gravity and the distribution of mass.

Even without making any measurements, one can state with certainty that the density is
everywhere positive. Furthermore, if we have a broad knowledge of the materials it is made
of, we can establish some range known to characterize such materials.

The first kind of a priori assumption we shall consider is the expectation that the solution
to the inverse problem is simple, where the notion of simplicity is quantified by some measure
of the length of the solution (Menke, 2012). One such measure is simply the Euclidean
length of the solution L = mTm = ∑

im
2
i . So, a solution is therefore defined to be simple

if it is small when measured under L2 norm. Realistic or not, it can be useful occasionally,
and we shall describe later on how it can be suitably generalized.
(Menke, 2012) poses the following minimization problem: find m̂ that minimizes L =

mTm subject to the constraint E = d−Gm = 0. This can be solved using the method of
Lagrange multipliers:

Φ (m) = L+
N∑
i=1

λiEi =
M∑
i=1

m2
i +

N∑
i=1

λi

di − M∑
j=1

Gijmj

 (2.8)

where λi are the Lagrangian multipliers. Minimizing with respect to mq and taking the
derivatives one obtains:

∂Φ
∂mq

=
M∑
i=1

2 ∂mi

∂mq
mi −

N∑
i=1

λi

M∑
j=1

Gij
∂mj

∂mq
= 2mq −

N∑
i=1

λiGiq (2.9)

Setting this to zero and rewriting it in matrix notation yield the equation 2m = GTλ, which
must be solved along with the constraint equation Gm = d. Plugging the first equation into
the second one gives d = Gm = G[GTλ/2]. If the inverse of the square matrix GGT exists,
we can then solve this equation for the Lagrange multipliers, λ = 2[GGT]−1d. Inserting
this expression into the first equation yields the solution

m̂ = GT
[
GGT

]−1
d (2.10)

For a solution to exist, the problem Gm = d must be purely underdetermined, which is
that the corresponding system of equations contain no inconsistencies. However, this is not
the case for most of the problems.

In general, most inverse problems are neither completely underdetermined nor completely
overdetermined, i.e., mixed-determined problems. This is where Tikhonov regularization
steps in. We would like to sort the unknown model parameters into two groups: those that
are overdetermined and those that are underdetermined. In order to give preference to a

2.1 Tikhonov regularization 5

particular solution with desirable properties, we determine a solution that minimizes some
combination Φ of the prediction error and the solution length for the model parameters:

Φ(m) = E − ε2L = ‖d−Gm‖22 + ε2‖m‖22 (2.11)

where ε is the so-called regularization parameter, which controls the relative importance
given to the prediction error and solution length.
Large values of ε will minimize the underdetermined part of the solution, but it also

tends to minimize the overdetermined part of the solution. As a result, the solution will not
minimize the prediction error E and will not be a very good estimate of the true model
parameters. If ε is set to zero, the prediction error will be minimized, but no a priori
information will be provided to single out the underdetermined model parameters. There is
no simple method to determine a suitable value of ε, it must be done by trial and error.
Minimizing (2.11) in a way analogous to the least squares derivation (2.7), we obtain:

m̂ =
[
GTG + ε2I

]−1
GTd (2.12)

This is the Tikhonov regularization method, under the constraint of solutions with small L2

norms. We have the tool, but the actual formulation of the problem is yet to be described.
Our approach is based off the convolutional model, discussed in the next section.

2.1 Tikhonov regularization 6

Chapter 3.

Convolutional model

In this section we discuss the convolutional model as our approach to infer information
from the data. It is a basic one-dimensional model that assumes that the seismic trace is
simply the convolution of Earth’s reflectivity r(t) with a seismic source function w(t) with
the addition of a noise component η(t). Mathematically, this can be expressed as:

s(t) = w(t) ∗ r(t) + η(t) (3.1)

We can also picture the case of having noisy reflectivity data. In such case the noise
would be convolved with the wavelet too:

s(t) = w(t) ∗ (r(t) + η(t)) = w(t) ∗ r(t) + w(t) ∗ η(t) (3.2)

At first, we shall assume the noise component to be zero, in which case the seismic trace
is simply the convolution of the wavelet with the Earth’s reflectivity:

s(t) = w(t) ∗ r(t) =
∫ ∞
−∞

w(t− τ)r(τ) dτ (3.3)

Figure 3.1 illustrates convolution (3.3) with actual data. From left to right, we see a
reflectivity profile that is convolved with some wavelet, yielding the synthetic seismogram
shown. Additionally, it should be noted that convolution is symmetric, which translates
into s(t) = w(t) ∗ r(t) = r(t) ∗ w(t).
Let us now discretize equation (3.3) by means of a quadrature sum on a uniform grid,

and store the signal at equidistant points:

si =
n−1∑
j=0

wjri−j (3.4)

which is called discrete convolution. Discrete convolution can also be thought of as matrix-
by-vector multiplication:

s(t) = Rw(t) (3.5)

where R is known as Toeplitz matrix and contains the reflectivity coefficients arranged
in the matrix such that the convolution operation is preserved. The elements of R are
given as Rij = ri−j , i.e., they depend only on the difference between the row index

7

0 1 2 3

Time t (s)

�0.1

0.0

0.1
Reflectivity

0 1 2 3

Time t (s)

0.0

0.5
Synthetic

�0.2 0.0 0.2

Time t (s)

0

1
Ricker wavelet

Figure 3.1.: Seismic trace in time domain as the convolution of the reflectivity with a time source
function (wavelet).

and the column index. Assuming the reflectivity has zero entries in times prior to zero
r−1 = r−2 = · · · = r1−n = 0, the Toeplitz matrix looks like:

R =

r0 0 0 · · · 0
r1 r0 0 · · · 0
r2 r1 r0 · · · 0
...

...
...

rn−1 rn−2 rn−3 · · · r0

(3.6)

If we define the Fourier Transform (spectrum) of a function h(t) as:

H(f) =
∫ ∞
−∞

h(t)e−2πiftdt (3.7)

we obtain another but equivalent picture of s(t) which takes place in the frequency domain.
So, the Fourier Transform applied to equation (3.3) yield:

S(f) = W (f) ·R(f) (3.8)

where S(f), W (f) and R(f) are the Fourier transforms of s(t), w(t) and r(t), respectively.
Note that convolution becomes multiplication in the frequency domain. However, Fourier
transform is a complex function, so we would have the amplitude and phase θ spectra:

|S(f)| = |W (f)| · |R(f)|
θs(f) = θw(f) + θr(f)

(3.9)

3.1 Reflection coefficient series

The reflection coefficient series or reflectivity is one of the fundamental pillars in this
seismic method. Basically, each reflection coefficient may be thought of as the response of
the seismic wavelet to an acoustic impedance change within the Earth, where impedance
is defined as the product of the compressional velocity and density. Mathematically, the
mapping between acoustic impedance and reflectivity entails dividing the difference in

3.1 Reflection coefficient series 8

<latexit sha1_base64="ypdwVBzm5WJPIklzrg5LLSqwTG8=">AAAB8HicbVBNS8NAEJ34WetX1aOXYBE8laSIeix60VsF+yFtKJvNpF26uwm7G6GU/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvTDnTxvO+nZXVtfWNzcJWcXtnd2+/dHDY1EmmKDZowhPVDolGziQ2DDMc26lCIkKOrXB4M/VbT6g0S+SDGaUYCNKXLGaUGCs93okUIyIp9kplr+LN4C4TPydlyFHvlb66UUIzgdJQTrTu+F5qgjFRhlGOk2I305gSOiR97FgqiUAdjGcHT9xTq0RunChb0rgz9ffEmAitRyK0nYKYgV70puJ/Xicz8VUwZjLNDEo6XxRn3DWJO/3ejZhCavjIEkIVs7e6dEAUocZmVLQh+IsvL5NmteJfVM7vq+XadR5HAY7hBM7Ah0uowS3UoQEUBDzDK7w5ynlx3p2PeeuKk88cwR84nz+/P5Bh</latexit>

Impedance
<latexit sha1_base64="82Wagtsp/CiKTBMACjVnLNm1ObE=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rGK/YA2lM120i7dbMLuphBK/4YXD4p49c9489+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJZAn6ER1IHnJGjZW6jxgKZIaPucl6pbJbcecgq8TLSRly1Hulr24/ZmmE0jBBte54bmL8CVWGM4HTYjfVmFA2ogPsWCpphNqfzG+eknOr9EkYK1vSkLn6e2JCI62zKLCdETVDvezNxP+8TmrCG3/CZZIalGyxKEwFMTGZBUD6XNmPRWYJZYrbWwkbUkWZsTEVbQje8surpFmteFeVy4dquXabx1GAUziDC/DgGmpwD3VoAIMEnuEV3pzUeXHenY9F65qTz5zAHzifP25jkfM=</latexit>

Reflectivity
<latexit sha1_base64="S3cpdbjbijJqqhwCngpslGr7CYI=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48VmrbQhrLZTtqlm03Y3Qil9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777RQ2Nre2d4q7pb39g8Oj8vFJSyeZYuizRCSqE1KNgkv0DTcCO6lCGocC2+H4fu63n1BpnsimmaQYxHQoecQZNVbym4oy7JcrbtVdgKwTLycVyNHol796g4RlMUrDBNW667mpCaZUGc4Ezkq9TGNK2ZgOsWuppDHqYLo4dkYurDIgUaJsSUMW6u+JKY21nsSh7YypGelVby7+53UzE90GUy7TzKBky0VRJohJyPxzMuAKmRETSyhT3N5K2IjaAIzNp2RD8FZfXietWtW7rl491ir1uzyOIpzBOVyCBzdQhwdogA8MODzDK7w50nlx3p2PZWvByWdO4Q+czx+4d46i</latexit>

Trace

Figure 3.2.: Illustration of the reflectivity as delta functions when there is a change in the media.
This is the ideal case, and as soon as there is noise present it differs from a delta
function and broadens.

the acoustic impedances by the sum of the acoustic impedances. This gives the reflection
coefficient at the boundary between two layers:

ri = ρi+1vi+1 − ρivi
ρi+1vi+1 + ρivi

= Zi+1 − Zi
Zi+1 + Zi

(3.10)

where ρ, v and Z are density, compressional velocity and acoustic impedance, respectively.
However, equation (3.10) is expressed in the depth domain, which means that all the

model quantities depend upon the spatial variable only. We must convert from depth to
time by integrating the sonic log travel times or slowness, which is the inverse of the velocity.
Then we are in a position to apply equation (3.3). Time-to-depth conversion is a recurrent
procedure during the calculations, and more details can be found in Appendix A.

Ideally, the reflectivity can be interpreted as a sum of delta functions: r(t) = ∑
i riδ(t−ti),

where ri are the different reflection coefficients at each interface after time-depth conversion.
It is later masked out through the wavelet, as Figure 3.2 illustrates.
It is important to realize that equation (3.10) applies only to normal incidence cases.

This means that only vertical phenomena is accounted for, which is a major shortcoming in
the convolutional approach. This is an aspect that is discussed later.
Once we have two of the three quantities in equation (3.3) at our disposal, such as

the wavelet and the recorded seismogram, we can infer the third one through inversion.
Mathematically speaking, it does not make much difference whether to infer the wavelet or
the reflectivity since convolution is symmetric.

3.2 Seismic wavelet

There is not a single, well-defined wavelet which produces the seismic trace. The wavelet
is, overall, both time-varying and complex in shape. However, the assumption of a simple
wavelet at first is reasonable. In our case, the Ricker wavelet will be our choice of simple
wavelet.

The Ricker wavelet, also referred to as Mexican hat, consists of a peak and two side lobes
as shown in Figure 3.3a. The Ricker wavelet is dependent only on its dominant frequency,
that is the peak frequency of its amplitude spectrum or the inverse of the dominant period

3.2 Seismic wavelet 9

−0.04 −0.02 0.00 0.02 0.04

Time (s)

−0.5

0.0

0.5

1.0

A
m
p
lit
u
d
e

f0 = 20 Hz

f0 = 40 Hz

(a) Ricker wavelet.

0 25 50 75 100 125 150

Frequency (Hz)

0

500

1000

1500

F
F
T
A
m
p
lit
u
d
e

f0 = 20 Hz

f0 = 40 Hz

(b) Spectrum of Ricker wavelet.

Figure 3.3.: Ricker wavelet. (a) In time domain for two different dominant frequencies 20 Hz and
40 Hz. (b) In frequency domain, i.e., Fourier space. We see that they peak at the
dominant frequency in each case: 20 Hz (red) and 40 Hz (green).

in the time domain. The dominant frequency provides the resolution power: the smaller it
is, the more events will capture when convolved with the reflectivity. Figures 3.3b shows
exactly this in the frequency domain.
Mathematically, the Ricker wavelet is the second derivative of the Gaussian function

e−t
2/2, which can be expressed as:

ψ(t) =
(
1− 2at2

)
e−at

2 with a = (πf0)2 (3.11)

where f0 is the dominant frequency.
The Ricker wavelets are zero-phase, or perfectly symmetrical. This is a desirable char-

acteristic of wavelets since the energy is then concentrated at a positive peak, and the
convolution of the wavelet with a reflection coefficient will better resolve that reflection.
Zero-phase wavelets have energy before time zero, which makes them non-causal, and hence
not physically realizable.

On the other hand, minimum-phase wavelets do have physical meaning and, therefore, are
the ones found in real life. Unlike the zero-phase kind, minimum-phase wavelets are causal
and their energy is zero before time zero. This kind of wavelets are of great importance,
since if the source wavelet is not minimum-phase, the results are likely to be unstable as we
will discuss. Figure 3.4 shows an example of minimum-phase wavelet.

3.3 Noise component

The situation that has been discussed so far is the ideal noiseless case. That is, we have
interpreted every reflection on a seismic trace as being an actual reflection from a lithological
boundary. Actually, many of the “wiggles” on a trace are not true reflections, but are
actually the result of seismic noise. Seismic noise can be grouped under two categories:

• Random noise. Noise which is uncorrelated from trace to trace and is due to mainly
environmental factors.

3.3 Noise component 10

0.00 0.05 0.10 0.15 0.20

Time (s)

−0.02

−0.01

0.00

0.01

0.02

A
m
p
lit
u
d
e

(a) Minimum-phase time source.

0 20 40 60 80 100

Frequency (Hz)

0

10

20

30

F
F
T
A
m
p
lit
u
d
e

(b) Spectrum.

Figure 3.4.: Minimum-phase wavelet. We can see on the left panel (a), the energy is zero prior to
time zero, rendering it causal and physically realizable.

• Coherent noise. Noise which is predictable on the seismic trace but is unwanted.
An example is multiple reflection interference.

Random noise can be thought of as the additive component η(t) in equation (3.1).
Correcting for this term is the primary reason for stacking our data. As we will see, stacking
actually does an excellent job at removing random noise.
Multiples, one of the major sources of coherent noise, are caused by multiple “bounces”

of the seismic signal within the Earth. Multiples cannot be thought of as additive noise and
must be modelled as a convolution with the reflectivity.

3.4 Deconvolution as an inverse problem

So far, the 1D convolutional model has been introduced, which is mathematically expressed
through equation (3.1). It is overly simple, but also a convenient starting point for inversion.
Thus, it is possible to showcase its early difficulties and limitations.

We shall start off with the ideal noiseless case from equation (3.3). As said before,
seismograms serve as a useful seismic image, but wavelets are filters that keep us from seeing
what we set out to see in seismic data: the Earth’s reflectivity. Through deconvolution,
we try to remove the wavelet from the data. Any noise that might be present further
complicates the problem.
When well logs are known, we should be able to compute an impedance profile which

corresponds to the seismic traces near the well control. The impedance log can then be used
to estimate the reflectivity sequence. Under the assumption of horizontal layers, equation
(3.10) can be used for this task. Once the reflectivity sequence is known, the wavelet may
be estimated using a number of methods.
One first approach is spectral division. It involves equation (3.8) to find W (f) in the

frequency domain:

W (f) = S(f)
R(f) (3.12)

3.4 Deconvolution as an inverse problem 11

However, it is usually the case that R(f) is zero for some values of f . In this case, W (f) is
approximately given by:

W (f) = S(f)R∗(f)
R(f)R∗(f) + ε2 = S(f)R∗(f)

|R(f)|2 + ε2
(3.13)

where W ∗(f) is the complex conjugate of W (f) and ε2 a small positive constant chosen
large enough to secure a numerically stable solution (Mosegaard, 2012). The wavelet w(t)
can now be computed via the inverse Fourier Transform:

w(t) =
∫ ∞
−∞

W (f)e2πiftdf (3.14)

Alternatively, we can solve the problem in the time domain as a least squares problem.
Equation (3.5) represents the linear forward problem of convolution, which can be identified
with (2.3). Here, s is the seismic data and w the set of parameters to estimate, linked
together through R. This allows us to solve the problem deterministically through Tikhonov
regularization (2.12):

ŵ =
[
RTR + ε2I

]−1
RTs (3.15)

where ŵ is the estimated wavelet. The inversion scheme may be set up by forward modeling
to compute the seismogram. The synthetic seismogram is then compared to the seismic
trace, and we can assess how close we are to the solution.
Deterministic wavelet methods must make a number of estimates which leave some

questions regarding the final wave shape left on the data. Equation (2.12) was derived under
the assumption that the solution must be simple, which is the reason why the regularization
term ‖m‖22 comes about in equation (2.11). However, it could be that simplicity is not
enough for regularization to be able to find the right solution. As a mixed-determined
problem, external (prior) information must be added according to the problem. In our
case, some a priori information could be compact support of the wavelet, which means
sufficiently fast decay to obtain localization (Foufoula-Georgiou and Kumar, 1994). Such
measure of compact support can be introduced by redefining L in equation (2.11). The
compact support of w can be ensured by applying exponentially growing weights ark·i to
its components {w0, w1, . . . , wi, . . . , wM}, so that the tails or long term high energy terms
are heavily penalized:

wc = a

rk·0 0 · · · 0 · · · 0
0 rk·1 · · · 0 · · · 0
...

...
0 0 · · · rk·i · · · 0
...

...
0 0 · · · 0 · · · rk·M

w0

w1
...
wi
...

wM

= Cw (3.16)

3.4 Deconvolution as an inverse problem 12

where the matrix C contains the measure of compact support. The overall compact support
of the solution is then:

Lweighted = wT
c wc = [Cw]T [Cw] = wTCTCw = wTWw

.= ‖w‖2weighted (3.17)

The matrix W = CTC can be interpreted as a weighting factor that comes about in
the calculation of the w-norm ‖w‖2weighted. We just need to find the right values of the
parameters a, r and k that enter into the diagonal of C in equation (3.16).
The inverse problem solutions derived in (2.10) and (2.12) can be modified to take into

account a priori information of the solution. The derivations are substantially the same as
for the unweighted case (Menke, 2012, pp. 56–58), which results in:

• Weighted undetermined solution:

ŵ = W−1RT
[
RW−1RT

]−1
s (3.18)

• Weighted Tikhonov solution. It is solved by minimizing Φ(w) = E − ε2Lweighted,
where Lweighted = ‖w‖2weighted = wTWw:

ŵ =
[
RTR + ε2W

]−1
RTs (3.19)

3.4 Deconvolution as an inverse problem 13

Chapter 4.

Inversion of real 1D data

The wavelet is a key factor in logging-constrained seismic inversion. Our approach for
seismic wavelet extraction is to use the least squares method to calculate the wavelet based
on the existing logging data and adjacent seismic records. This approach is affected by
seismic noise and logging errors, so we will exploit the addition of noise to the model.
We shall start off by deploying some simple, but real, one-dimensional data as a first

approach. We have at our disposal the reflectivity (from well ‘Løgumkloster-1’ in South
Jutland) and the wavelet (from DRUM dataset in Scotland). They are shown in Figure 4.1
and are “free of noise”. In quotations because some noise might be inherent, but we do not
know it and, if so, we do not know its origin. Mention that the wavelet array 4.1b has been
re-sampled so that it has got the same time duration as the reflectivity 4.1a.

Let us now address the inverse problem s = Rw, aimed at finding ŵ from the data. Since
the true wavelet w is known, the inversion procedure can be set out so that the true seismic
data s is synthetically computed through convolution in the first place (Figure 4.1c). Next
is to use s to estimate the wavelet ŵ by any of the methods discussed in chapters 2 and 3.
Lastly, the estimated data ŝ = Rŵ can be compared with the true, synthetic seismic trace.
One of the methods is simply least squares, with no constraints and which only tries to

fit the data. Often it is also referred to as the naïve solution. It means solving equation
(2.7), which comes from minimizing E(w) = ‖Rŵ − s‖22. The naïve solution is exposed in
Figure 4.2a in black. At first sight, we see that it already performs well as it fits perfectly
the true wavelet (dotted blue line). The right panel of Figure 4.2a shows the distribution
of the residuals, defined as ri = ŵi − wi. Thus, the mean-squared error can be defined as
σ2
w = M−1∑M

i=1 r
2
i ' 47.5, where M is the dimension of the wavelet array. This leads to an

error in the wavelet estimate of σw ' 6.9.
Figure 4.2a also exposes the spectral division approach in red. Its solution is worse, as it

shows non-zero energy terms in the long term. This makes the estimate not very useful,
something that is borne out by the distribution of the residuals on the right. The deviation
of the predictions increases fourfold with respect to the naïve solution: σw ' 27.3.

Let us see how well the estimates reproduce the data in Figure 4.2b. The naïve solution
reproduces the data perfectly (red line): σs ' 0.0. This is the reason why its distribution
of residuals is not plotted. In fact, the correlation coefficient between the real data and
estimated data is 1.0 (so, full overlap). On the other hand, the spectral division (green line)
seems to perform fairly well too, in spite of the long term reverberations. It gives a spread
of about σs ' 5.3.

14

0 10 20 30 40 50 60 70 80

Sample number

−0.2

−0.1

0.0

0.1

0.2

R
efl

.
co

effi
ci

en
t

(a) Reflectivity profile.

0 10 20 30 40 50 60 70 80

Sample number

0

500

A
m

p
lit

u
d

e

(b) True wavelet.

0 10 20 30 40 50 60 70 80

Sample number

−200

−100

0

100

200

A
m

p
lit

u
d

e

(c) Seismogram after convolving the reflectivity (a) with the wavelet
(b).

Figure 4.1.: Noise-free real data. We have access only to the reflectivity (a) and the wavelet (b).
Then, the seismic trace (c) is obtained through convolution of these two.

So far, no regularization has been needed to find sensible solutions. Nonetheless, it was
mentioned before that the least squares approach is not robust against noise. We will see
that it tries to fit the noise present in the data by all means, leading to meaningless solutions.
This is where regularization comes into play to render the process stable.

Let us introduce white Gaussian noise in the synthetic data, leaving the reflectivity intact.
Thus, the noisy seismic data is

sN = s + c‖s‖2 ·N (µ, σ) (4.1)

where N (µ, σ) is the normalized Gaussian distribution of the noise and c a parameter that
controls how much of it is introduced. The subsequent results in this section are obtained
using the parameter values: µ = 0, σ = 0.5 and c = 0.2.

15

0 10 20 30 40 50 60 70 80

Sample number

0

500

A
m

p
lit

u
d

e

Näıve solution

Spectral division

True wavelet

−50 0 50

Residuals ri

0

10

20

30

40

C
ou

nt
s

σw = 6.9

σw = 27.3

(a) Wavelet estimates ŵ.

0 10 20 30 40 50 60 70 80

Sample number

−200

−100

0

100

200

A
m

p
lit

u
d

e

Data

Näıve

Spectral division

−10 0 10

Residuals ri

0

5

10

C
ou

nt
s

σs = 5.3

(b) Data estimates ŝ.

Figure 4.2.: Noise-free solutions. (a) On the left, wavelet estimate using the reflectivity 4.1a and
the data 4.1c. The naïve solution in black, spectral division in red and true wavelet in
dotted blue. On the right, the distribution of the residuals ri = ŵi − wi. (b) On the
left, the predictions on the data. On the right, the distribution of residuals ri = ŝi − si.
Only the residuals of the spectral division are plotted.

The naïve solution with noisy data is plotted in Figure 4.3. As expected, the solution
becomes very unstable as soon as we introduce noise. Least squares gets lost in the noise,
as it tries to fit the data to its best (noise included). Thus, we do not get a meaningful
wavelet because it strongly reverberates throughout its whole duration. The energy of the
estimated wavelet ‖ŵ‖2 ' 1992 almost doubles the energy of the true wavelet ‖w‖2 ' 1102.
It is time to implement Tikhonov regularization, intended to add a constraint on the

shape of the solution through the regularization term. First off, we shall inspect equation
(3.15). It yields the left profile of Figure 4.4a, which is closer to be a wavelet since the
dominant high energy terms are found at the beginning. A value of ε = 0.05 is chosen
by trial and error until we get a reasonable solution. Even though ε is meant to reduce
those long term reverberations, there are still undesirable non-zero values along the tail.
The reason is that for this solution only the simplicity constraint of the wavelet applies
(L = mTm), which seems to not be enough to find a good solution in the parameter space.
The right panel of Figure 4.4a shows the distribution of the residuals. Although plain
Tikhonov outperforms the naïve solution, there is room for improvement.

16

0 10 20 30 40 50 60 70 80

Sample number

−500

0

500

A
m

p
lit

u
d

e

True wavelet

Näıve solution

−500 0 500

Residuals ri

0

5

10

C
ou

nt
s

σw = 186.5

Figure 4.3.: Naïve wavelet estimate with noisy data.

The wavelet estimate from Figure 4.4a results in the red estimate of the data in Figure 4.4c.
Overall, it reproduces the data fairly well, something that is backed up by the distribution
of the residual. Yet, we still appreciate some noise overfitting.

Ideally, we would like the solution to meet compact support, and have zero energy terms
in the tail. Provided we know the length of the wavelet, one quick, but cheating, way of
achieving this is by forcing all the wavelet energy to be in the first few samples by means of
a projector operator. The projector operator P̂ is an N ×N matrix with all of its entries
zero but the first elements on the diagonal corresponding to the first few samples where
we want the energy to be concentrated. These positions are filled with ones, so we are
basically killing the terms with zeros on the diagonal. Then, we apply it to R to obtain the
projection:

RP = P̂ ·R (4.2)

Now, we only have to replace R with RP in equation (3.15). The resulting wavelet estimate
is exposed in Figure 4.4b. As expected, all the energy is located in the first few samples,
giving it the wavelet-like shape we aim for. So, thus Tikhonov is able to get a closer match
with a smaller deviation σw. We force it to happen though. Not surprisingly, in Figure 4.4c
we see in green a slightly better estimate of the data that gives σ ' 10.0.

However, at the end of the day, this is not a good practice as we are not introducing prior
information. We are rather interested in introducing a priori information that penalizes
some solutions over others, helping better Tikhonov find the right solution.

Weighted Tikhonov regularization

In section 3.4 the W matrix came in as a way of introducing prior information determinis-
tically. This results in solving equation (3.19), which, in a nutshell, minimizes the weighted
length L = wTWw = ‖w‖2weighted under the misfit constraint E(w) = ‖s−Rw‖22.

The reasoning is the same as before, but some fine-tuning of ε and {a, r, k} is required in
order to find the best solution, where {a, r, k} are the exponential parameters that enter
into equation (3.16). For the shake of simplicity, a = 1 and r = e are fixed, so that the
weights on the diagonal are ruled by ek·i.

17

Let us now inspect a range of values for both ε and k to get kind of a landscape of the
misfit. Then, we only have to get the minimum of the landscape to obtain the optimal
values of {ε, k}. However, by doing only this we fall back into the problem of overfitting
the noise. We would like to fit the data within some uncertainty ∆: ‖s−Rŵ‖22 ' N∆2.
Hence, we have to find the minimum of the misfit landscape that allows for ∆, i.e., the
minimum of the quantity ‖s−Rŵ‖22 −N∆2, for a given value of ∆.

Figure 4.5 exhibits the landscape of the misfit. The ranges for ε and k have been chosen
within the intervals [0.01, 2.5] and [0.01, 5], respectively. The red dot is where minimum of
the misfit lies: (ε0, k0) = (0.28, 1.24). The minimum of the misfit has been found within an
uncertainty of ∆ = 10. Additionally, it is reasonable that the misfit increases as we increase
either ε or k, since we would be killing more and more desirable high energy terms at the
beginning of the wavelet.
Figure 4.6 collects the results we get out of plugging in (ε0, k0). As expected, we get

a solution that is stable against noise, and, therefore, it does not reverberate. All the
energy is concentrated in the first few samples (Figure 4.6a), without the need of a projector
operator. Consequently, it reproduces the data within the uncertainty we set in the first
place: σ ' ∆ ' 10.0 (Figure 4.6b). For instance, by looking at the first 30 samples, the
noise in the data (gray) manifests with many ups and downs which are not fitted by the
estimated data.

18

0 10 20 30 40 50 60 70 80

Sample number

0

500

A
m

p
lit

u
d

e

True wavelet

ε = 0.05

−200 0

Residuals ri

0

5

10

C
ou

nt
s

σw = 43.0

(a) Wavelet estimate using Tikhonov.

0 10 20 30 40 50 60 70 80

Sample number

0

500

A
m

p
lit

u
d

e

True wavelet

ε = 0.05 and RP

−100 0

Residuals ri

0

20

40

60

C
ou

nt
s

σw = 25.1

(b) Wavelet estimate through RP .

0 10 20 30 40 50 60 70 80

Sample number

−200

−100

0

100

200

A
m

p
lit

u
d

e

Data

Tikho.

Proj. Tikho

−50 −25 0 25

Residuals ri

0

5

10

15

20

C
ou

nt
s

σs = 14.4

σs = 10.0

(c) Reproduced seismic data.

Figure 4.4.: Noisy Tikhonov solutions. (a) On the left panel, wavelet estimate using Tikhonov
with regularization parameter ε = 0.05. On the right, the distribution of the residuals.
(b) On the left, wavelet Tikhonov estimate using the projected reflectivity RP and
ε = 0.05. On the right, distribution of the residuals. (c) Reproduced seismic data using
the two wavelet estimates (a)-red and (b)-green. In gray, the true data. On the right
panel, distribution of the residuals for both solutions.

19

0.5 1.0 1.5 2.0 2.5
ε

1

2

3

4

5

k

Minimum

0

50000

100000

150000

200000

250000

300000

Figure 4.5.: Misfit landscape. The red dot marks the values of {ε, k} which minimize ‖s−Rŵ‖2
2 −

N∆2. The black lines are the contour lines of the surface.

0 10 20 30 40 50 60 70 80

Sample number

0

500

A
m

p
lit

u
d

e

True wavelet

ε = 0.28 and k = 1.24

−50 0 50

Residuals ri

0

20

40

60

C
ou

nt
s
σw = 17.1

(a) Wavelet estimate ŵ.

0 10 20 30 40 50 60 70 80

Sample number

−200

−100

0

100

200

A
m

p
lit

u
d

e

Noisy data

W-Tikho

Noise-free data

−20 0 20

Residuals ri

0

5

10

C
ou

nt
s

σs = 10.0

(b) Data estimate ŝ.

Figure 4.6.: Noisy weighted Tikhonov solutions. Parameter values are ε = 0.28 and k = 1.24. (a)
Wavelet estimate, with the distribution of the residuals on the right. (b) Data estimate,
with the distribution of the residuals on the right.

20

Chapter 5.

Simulation of 2D data

In section 4 we apply deterministic inversion tools on 1D real data. Yet, we know nothing
about the structure of the Earth where the data was recorded, nor the velocity and density
models. We can make assumptions based off the larger spikes of the reflection coefficients,
meaning that there is some activity, and, consequently, the seismic waves are encountering
some set of interfaces. Nevertheless, we do know that the previous inversion methods based
on convolution work, so we might inquire up to what extent they perform well.
One way of testing models and results is by means of simulations. They allow us to

come up with different structures of the Earth, run models on them and gather the seismic
responses. These simulated seismic data are 2D and are deemed to be real, as they are
meant to reproduce real life experiments. At the end of the day, simulations solve, in a very
efficient manner, the wave equation on grids and structures that shape real life situations.
We shall consider rather simple scenarios at first, and then build on the outcomes we get.

Learn how to use the actual software can be cumbersome, but that is a whole different
story. In section 5.1 we mention briefly which software we will be using, as well as how to
give shape to the whole problem itself: from the idea to the results.
Before going any further, we should bear in mind the early limitations of the convolu-

tional model. It only accounts for linear phenomena that occurs vertically (normal wave
reflections), so it does not explain nonlinear migration or any other geophysical effects that
imply horizontal communication. So, we should correct for them first thing. This is why
preprocessing is a crucial step.

The procedure is straightforward: we simulate data and preprocess it in such a way that
in the end we are able to compare the simulated data with the convolutional data. If they
agree up to some extent, then we should be in a position to apply inversion as described in
section 3.4.
Final mention to the wavelet. Throughout the entire project the Ricker wavelet with a

dominant frequency of 7 Hz will be employed. Higher frequency wavelets might be desired
for higher resolution, but, for some reason, they would render the simulation unstable and
extremely sensitive to the precision of the structure.

5.1 How do we simulate data?

We will leverage SPECFEM2D to run the 2D simulations. It also has its 3D counterpart
(SPECFEM3D) for 3D modelling. It is a powerful tool to perform all sorts of simulations of

21

wave propagation, as well as full waveform imaging and adjoint tomography, but we are
only interested in the part of simulating the data. Further information can be found in the
API documentation (Komatitsch, 2018). Although it is written in Fortran, it contains a
Python-like master script called Parfile which contains all the parameters and conditions
that apply to our problem.
A mesh that keeps track of the structure we want to realize must be specified, but

SPECFEM turns out to be a bit restrictive when it comes to using its inner meshing tool.
Because of this, it also works in concert with external tools to import external grids. In our
case we will use PyGmsh, which is the Python interface of Gmsh, a finite element mesh
generator (Geuzaine and Remacle, 2002).
Parallelly, the velocity v and density ρ models must be created accordingly. They are

defined in the depth domain, which, together with the grid, serve as an input for SPECFEM.
Depth domain means that all the quantities, such as the velocity at each point or the
positions of the layers, potentially depend on both spatial coordinates x and z. However, we
get as an output the seismic data in the time domain. Moreover, the convolution equation
(3.3) is also in the time domain. Hence, time-depth conversion is necessary. We must convert
v(x, z) and ρ(x, z) into the time domain: v(x0, t) and ρ(x0, t). In the latter representation,
the x0 variable stands for the position of the receivers. A time-depth relationship can be
constructed as:

ti = ti−1 + dz
vi−1

with zi = zi−1 + dz (5.1)

This is, each time step ti can be computed as the previous time step ti−1 plus the time it
takes to go through the depth element dz (assuming it is the same everywhere) at velocity
vi−1. More detailed information on how to implement it can be found in the Appendix A.

Within the Parfile we can also specify the kind of boundary conditions. In our case, we
will use absorbing boundary conditions. More technical details can be found at (Komatitsch,
2018, Section 3).

Finally, SPECFEM expects two more files: SOURCE and STATIONS. Inside SOURCE,
we specify the coordinates of the shot point, as well as the time source or wavelet. Given
that the final goal is to make a comparison with the convolutional model, the same wavelet
should be used (spoiler: Ricker wavelet). On the other hand, the STATIONS file contains
the coordinates of the receivers, so we will get as many gathers as the number of receivers.
Note that if we place the source in the middle at the surface of the section, we will obtain
CMP (common midpoint) gathers. CMP gathers are useful for our purposes, since the
middle trace is common for all the receivers it will be very representative of what the rest
of stations record.
Once all of the above is specified, we only have to compile and run. As an output, we

can also specify the format of the seismic data, e.g., SU format. The time and precision of
the simulation is governed by the number of time steps (Nt) and the duration of each time
step (dt), so that the one-way travel time is just Nt × dt.

5.1 How do we simulate data? 22

5.2 Velocity and density models

In the previous section, it was stated that the v-ρ models in the depth domain must
be specified. We would like to design a model that reproduces the reflection coefficients
from Figure 4.1a. According to equation (3.10), we can set out a relationship between the
reflection coefficients and the density and velocity values:

ri = vi+1ρi+1 − viρi
vi+1ρi+1 + viρi

←→ vi+1ρi+1 = ri + 1
ri − 1viρi (5.2)

Assuming some kind of relationship between the velocity and the density vi = αρi, we get:

ρi+1 =
√
−ri + 1
ri − 1

viρi
α

(5.3)

By fixing α and setting some initial values (v0, ρ0), the rest of the series (vi, ρi) would be
completely characterized, and they would reproduce the desired reflection coefficients.
A simple geological model, in harmony with all of the above and which links to the

simulations, is one that consists of horizontal layers. That is, as many horizontal interfaces
as reflection coefficients. Through equation (5.3) we can attribute constant v-ρ values to
each layer between two interfaces. This simple setting is 1D in the sense that it only depends
on z. The resultant reflectivity looks like the one shown in Figure 5.1.

−4000−3500−3000−2500−2000−1500−1000−5000

Depth z (m)

−0.2

−0.1

0.0

0.1

0.2

R
efl

ec
ti

on
co

eff
.

Figure 5.1.: Reflection coefficient series for the multilayer model.

Note that all the materials are acoustic, so it is implicit the foregoing velocities refer to
the P velocity (vp).

5.3 The need of preprocessing

Let us illustrate an example of a simulation. Figure 5.2 exposes the results using a
horizontal multilayer structure. On the left, we see the velocity model in the depth domain.
It has been conceived using (5.2) and (5.3), with α = 1.8 and initial values v0 = 1750 m/s
and ρ0 = 1000 kg/m3. The little stickers mark the position of the receivers. There are a
total of 61 evenly spaced stations, positioned around the shot point in the middle (red stick).
This structure leads to the seismic data shown on the right. The first thing we may notice
is the uppermost signal which pertains to the direct wave travelling through the first layer.

5.2 Velocity and density models 23

0 500 1000 1500 2000 2500 3000 3500

x (m)

−2500

−2000

−1500

−1000

−500

0

z
(m

)

1750 2000 2250 2500 2750 3000

vp (m/s)

(a) Velocity vp model.

0 10 20 30 40 50 60
Receiver number

0.0

0.5

1.0

1.5

2.0

T
W

T
(s

)

−0.0010 −0.0005 0.0000 0.0005 0.0010

(b) Simulated data.

Figure 5.2.: Results from running the simulation on the horizontal multilayer model. (a) Velocity
model in the depth domain. The source is located in the middle at the surface. The
little sticks along the top point out the position of the stations. There are 50 stations
evenly distributed around the shot point. (b) Simulated seismic data. TWT stands for
two-way-travel time, which is the time it takes to reach the reflector and come back.

It does not provide any valuable information about the structure, so we only have to mute
it, i.e., setting its amplitude to zero. This makes up the very first step in the preprocessing,
also called muting.
Another noteworthy effect is the curvature that the data suffers, even though we are

dealing with flat layers. It follows a hyperbola whose curvature depends on the distance to
the multilayer from the surface z, as well as on the distance between the source and the
receiver x. This phenomenon arises from the fact that the propagating wave is spherical,
meaning that the time it takes for the wave to hit the reflector and reach the receiver is
different for each of them. Given a horizontal reflector, the further the station is from the
source, the longer it takes. Mathematically, the reflected time traduces into the following
hyperbolic expression:

tr =
√
x2 + 4z2

v
(5.4)

This geological effect is known as normal moveout (NMO). A more detailed explanation can
be found in Chapter 7. For this simulation, the multilayer is located at a certain distance
from the surface. Each layer in the multilayer is around 7.23 m big each. The deeper it is
located, the less the curvature the data suffers, but the longer the simulation takes. There is
this trade-off between the simulation time and the precision dt we can afford. Additionally,
the further apart the stations are, the more of this curvature is captured.
NMO correction is then another step in our preprocessing. Section 7.1 shows how to

implement it, for which the velocity model v is needed. However, one limiting problem is
that NMO correction, as it was implemented, works up to some curvature. When NMO is
too strong, its conventional correction fails. It turned out to be a shortcoming in, say, cases

5.3 The need of preprocessing 24

where a rather smaller first layer is set in order to have a shorter simulation time, thus
entailing a greater curvature. More sophisticated implementations that I was not aware
of may have performed well. Instead, some time was spent in implementing an intriguing
non-conventional method to correct for normal move-out.
The idea of this alternative method comes from (Chen et al., 2018), and it is based on

Dynamic Time Warping (DTW), a common practice in signal processing. Such method
looks into the similarity between two time series x and x′, and matches points up from both
series (xi, x′j) which are deemed similar. The sequence of all the similarity pairs is referred
to as path, and it serves as a bridge to group time series together. Overall, if two time
series are highly similar, then they belong in the same category. The differences themselves
between time series can be due to any reason, e.g., a time perturbation. Appendix B is
entirely about DTW and how it can be implemented.

DTW can be deployed to correct for NMO. It relies on the assumption that two adjacent
seismic traces are similar. We start off with the zero-offset trace s0, which is our middle
trace. This one remains intact, as it does not have NMO, and serves as a reference for the
two adjacent gathers s−1 and s1. Next, DTW calculates the similarity path between two
adjacent traces, say, {(si0, s

j
1) | 1 ≤ i, j ≤ Nt} for s0 and s1. The similarity path happens to

contain the information about the time shift |j − i|, so NMO can be compensated by setting
sj1 = si1 for all the (i, j) pairs. The trace s1 is now corrected, and becomes the reference for
the next adjacent trace s2. This process goes on cumulatively between contiguous traces
until they are all corrected.
DTW approach differs greatly from the conventional method, as it does not look into

reflected times and, hence, it does not need a velocity model. Figure 5.3 exhibits the results
of both methods when they are applied to Figure 5.2b. The conventional NMO correction
on the left, and the DTW approach on the right. We notice the conventional method
has troubles correcting the time shift for larger offsets. For its part, the DTW method
outperforms the conventional one, and goes around the problem of far stations. Stacking is
exhibited in Figure 5.3c for both methods. It is clear that DTW gives a closer match to the
middle trace, while the conventional approach distorts the waveform.

Conventional NMO correction usually stretches out the amplitude of seismic waveforms,
as it is shown in section 7.1. The degree of stretch increases with increasing offset. DTW
goes around this problem as it has got the zero-offset trace as reference. However, NMO
correction does an excellent job improving the quality of the data when noise is present. One
of the problems encountered when employing the DTW tool is that the noisy amplitudes are
rounded when the number of samples in the data is not large enough. Or when contiguous
traces are not close enough, so their similarity drops. The original shape of the wave would
not be fully preserved. Computation wise, it becomes long and heavy. So, in the end we
would like to restrict ourselves to scenarios under which we know that the conventional
method works.

5.3 The need of preprocessing 25

0 10 20 30 40 50 60
Receiver number

0.0

0.5

1.0

1.5

2.0

T
W

T
(s

)

(a) Conventional NMO correction.

0 10 20 30 40 50 60
Receiver number

0.0

0.5

1.0

1.5

2.0

T
W

T
(s

)

(b) NMO correction using DTW.

0.0 0.5 1.0 1.5 2.0

TWT (s)

−0.001

0.000

0.001

A
m

p
lit

u
d

e

Conventional

DTW

Middle trace

(c) Stacking data from (a) and (b).

Figure 5.3.: NMO correction using conventional method (a) and dynamic time warping (b). (c)
Stack of all the gathers after correction.

5.4 Two layer model

We shall start off using the simplest geological setting: a horizontal two-layer model. The
purpose is to see what the data looks like when the simulated wave meets a single interface,
and whether it is compatible with the convolutional model or not. If so, we proceed with
the multilayer, which, in the end, is a set of horizontal interfaces.

Figure 5.4 shows the outcome of a simulation free of noise. The interface is 1200 m under
the surface. Above it, the velocity is vp = 1800 m/s, and, below, vp = 1200 m/s. Once
more, Figure 5.4a proves the need to correct for NMO. The conventional NMO correction
is chosen and exposed in Figure 5.4b. Next, the gathers are stacked together, resulting
in the red profile of Figure 5.4c. For the shake of comparison, the zero-offset trace in the
CMP is plotted on top too (dashed blue line). Although there is no noise and, hence, they
should look the same, we notice they are slightly different. This is because NMO alters the
frequency content and stretches the data waveform out. However, it does not seem to be a
big problem here.

Figure 5.4c depicts in black the result of convolution, i.e., the seismogram computed using
equation (3.3). Note that both the stack and the convolutional traces have been shifted

5.4 Two layer model 26

0 10 20 30 40 50 60
Receiver number

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

T
W

T
(s

)

(a) Muted data.

0 10 20 30 40 50 60
Receiver number

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

T
W

T
(s

)

(b) Conventional NMO correction.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

TWT (s)

−0.2

0.0

0.2

0.4

0.6

A
m

p
lit

u
d

e

Stack data

Middle trace

Convolutional

(c) Data.

Figure 5.4.: Results of the noise-free horizontal two-layer simulation. In (c)-black, the seismic trace
computed using convolution sconv. In red, stacked data after NMO correction (sstack).
The dashed blue profile represents the middle trace of the muted CMP.

apart for better visualization. At first sight, it seems like SPECFEM introduces some
kind of phase rotation to the data with respect to the convolutional profile. Nonetheless,
the convolutional model is an overly simple model, whereas the gathers capture the real
behavior of a wave being reflected, so differences must be expected.

Let us look into the frequency content of each signal. The amplitude and phase spectra
can be visualized in Figure 5.5. We see that differences in frequency amplitude between the
stacked data and the zero-offset trace are rather negligible. Additionally, SPECFEM shifts
slightly the dominant frequency to the right, compared to the convolutional data. This
traduces into a shorter duration of the pulse. It is noteworthy the fact that, since there is
only one interface (only one delta-like reflection coefficient), the shape of the data waveform
follows that of the wavelet. This is why the spectra have then same form as that of Ricker
wavelet. Phase wise, the convolutional model diverges from SPECFEM. This clearly reflects

5.4 Two layer model 27

0 10 20 30 40 50 60

Frequency (Hz)

0

200

400

600

A
m

p
lit

u
d

e

Stack data

Middle trace

Convolutional

(a) Amplitude spectra.

0 500 1000 1500 2000

Frequency (Hz)

−5000

0

5000

10000

P
h

as
e

(r
ad

s)

Stack data

Middle trace

Convolutional

(b) Phase spectra.

Figure 5.5.: Noiseless two-layer model. Spectra of all the signals: stack, zero-offset and convolutional
data. Note that the 2π radian cycles are sequentially stacked up together, so that there
is a single increasing/decreasing graph for each plot.

some kind of phase rotation in SPECFEM, as expected by looking at the shapes in the time
domain.
Overall, the convolutional model and SPECFEM produce signals compatible with each

other, making the former one a valid approach.
We shall now add some noise to see if all of the above is preserved. White Gaussian noise

is added to the velocity model, followed by a Gaussian kernel which correlates neighboring
noisy points and smoothes the final landscape out. Figure 5.6a exhibits the noisy velocity
model. As expected, the otherwise perfectly horizontal boundary is now rather bumpy,
which makes it a near-horizontal reflector. Note that, this way, noise is introduced into the
reflectivity, and, hence, convolved with the wavelet. The recorded signals after muting and
NMO correction are included in Figure 5.6b, which results in the stacked trace of Figure
5.6c. Stacking helps reduce the signal-to-noise ratio, improving the quality of the data. Due
to the noise, the NMO stretching is a bit larger though. Despite this, the shape of the
wavelet is conserved and comparable with the convolutional one. The dashed magenta line
represents the noiseless convolutional trace. The noise in the reflectivity causes it to not be
a delta function anymore and it is consequently broadened. Then, when it is convolved with
the wavelet, the resulting trace waveform adopts a slightly different shape. This is why the
noisy and the noiseless data do not follow the same waveform, but similar. If the noise was
only introduced in the trace free of noise, both would have the same base wavelet form.
All in all, we can say that the convolutional model is valid approximation for a single

interface, as the results show comparable behaviors, with a phase rotation off. Let us see
now if the convolutional approach is able to capture the multiple reflections that occur
inside the multilayer.

5.5 Multilayer model

The test model looks like the one depicted in Figure 5.2. The structure entirely consists
of horizontal layers, which means no dependence on x: vp = vp(z) The first layer is 1500 m,

5.5 Multilayer model 28

0 500 1000 1500 2000 2500 3000 3500

x (m)

−3000

−2500

−2000

−1500

−1000

−500

0

z
(m

)

1200 1400 1600 1800
vp (m/s)

(a) Noisy vp model.

0 10 20 30 40 50 60
Receiver number

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

T
W

T
(s

)

(b) Data after muting and NMO correction.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

TWT (s)

−0.2

0.0

0.2

0.4

A
m

p
lit

u
d

e Stack data

Middle trace

Convolutional

Noise-free conv.

(c) Data.

Figure 5.6.: Results of the noisy horizontal two-layer simulation. (a) The velocity model after
adding Gaussian noise. (b) Seismic data after muting and NMO correction. (c) Data
stacked (red), the zero-offset trace (dashed blue), the noisy convolutional trace (black)
and the convolution free of noise (dashed magenta).

followed by 83 thinner layers of about 7.23 m each. The velocity profile is exposed in Figure
5.7a. This is the noiseless scenario, which is always a convenient starting point. Figure 5.7b
summarizes the outcome of the simulation.
The resemblance between the stacked trace and the convolutional trace throws some

light to our approach. Namely, the convolutional model is capable of reproducing the real
data to a high degree. We see that the stacked data showcases a more wiggly tail than the
convolutional model. This is attributed to the presence of echos or multiples, which are
convoluted signals that root in the inner reflections that occur inside the layers.
Figure 5.8 shows the spectra of our three recurring signals: stacked, zero-offset and

convolutional. The frequency content had to be re-scaled so it could be compared with
the spectrum of the convolutional trace. The observations are twofold: firstly, the Ricker
wavelet-like envelope is conserved for all the signals and, secondly, NMO reduces a bit the

5.5 Multilayer model 29

−3000−2500−2000−1500−1000−5000

Depth z (m)

1800

2000

2200

2400

V
el

oc
it

y
v p

(m
/s

)

(a) Velocity vp profile.

0 10 20 30 40 50 60
Receiver number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
W

T
(s

)

−0.5 0.0 0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Stack data

Middle trace

−0.5 0.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Convolutional

(b) Simulation results.

Figure 5.7.: Simulation free of noise. (a) 1D velocity profile: vp = vp(z). (b) Results: data after
muting and NMO correction, together with the stacked trace and the convolutional
model. Mention that the stacked data has been rescaled for better visualization.

frequency with respect to the middle trace. On the other hand, the phase tells us about the
time transformation that the wavelet may experience. In the two-layer case, we could see
a clear phase shift between data and convolution from the very beginning. Here, for the
initial small frequencies the data (red) follows convolution’s phase (black), then for high
frequencies it takes a turn in direction of the middle trace (blue). So, stacking seems to
make up for the time shift in a large scale, but not for events that occur in a smaller time
scale. It could be that these latter events have their origin in the multiples.
As a whole, the convolutional model preserves the main features of the real data in

a multilayer. We shall add noise in order to be a bit closer to a real situation. This is
exhibited in Figure 5.9. Again, white Gaussian noise is added and convolved with a 2D
Gaussian kernel to smooth it out and correlate points, which results in the velocity model

5.5 Multilayer model 30

0 10 20 30 40 50 60

Frequency (Hz)

0

100

200

300

400

500

A
m

p
lit

u
d

e

Stack data

Middle trace

Convolutional

(a) Amplitude spectra.

0 500 1000 1500 2000

Frequency (Hz)

−5000

0

5000

10000

15000

P
h

as
e

(r
ad

s)

Stack data

Middle trace

Convolutional

(b) Phase spectra.

Figure 5.8.: Noiseless multilayer. Spectra of all the signals: stack, zero-offset and convolutional
data.

of Figure 5.9a. The small changes between thin horizontal layers are no longer present or
well defined, but only the significant ones. Either way, a Ricker wavelet with frequency of
f0 = 7.0 Hz captures up to 2/f0 ' 0.28 s of precision. So, a layer about l = 7.23 m big with
velocity 1800 m/s traduces into a TWT 2l/vp ' 0.008 s, which is two factors smaller than
the time scale the wavelet is sensitive to. This means that the single reflection events are
not relevant for the wavelet, but an average of a couple of them.

Figure 5.9b includes the data gathers after muting and NMO correction, which are stacked
resulting in the red waveform of Figure 5.9c. On top, the dashed blue line, we see the middle
(zero-offset) trace. It is clear that stacking reduces the noise impact, thus improving the
signal-to-noise ratio to a great extent. The black data represents the noisy convolutional
model, which, again, reproduces the real data fairly well. For comparison purposes, the
dashed magenta line shows the noiseless counterpart of the convolutional trace. Once more,
even when noise is added to the reflectivity, the overall seismogram waveform remains
because the wavelet is only sensitive to large events on average that stand out in the noise
sea.
In short, the convolutional model is able to reproduce data to a valid degree. So, we

would be in a position to use convolution as the forward model for inversion.

5.5 Multilayer model 31

0 500 1000 1500 2000 2500 3000 3500

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

1600 1800 2000 2200 2400
vp (m/s)

(a) Noisy vp model.

0 10 20 30 40 50 60
Receiver number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
W

T
(s

)

(b) Data after muting and NMO correction.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

TWT (s)

−1

0

1

2

3

A
m

p
lit

u
d

e Stack data

Middle trace

Convolutional

Noise-free conv.

(c) Data.

Figure 5.9.: Results of the noisy multilayer. (a) The velocity model after adding Gaussian noise.
(b) Gathers after muting and NMO correction. (c) Data stacked (red), the zero-offset
trace (dashed blue), the noisy convolutional trace (black) and the convolution free of
noise (dashed magenta).

5.5 Multilayer model 32

Chapter 6.

Inversion of simulated data

Given the magnitude of the foregoing velocity models, the convolutional model seems to
account for the real data. This makes convolution a candidate forward model for inversion,
as explained in section 3.4. It is appropriate to inquiry how will the convolutional model
take in the real behavior of the data.

6.1 Two-layer model

Starting off with the ideal noiseless data from Figure 5.4c, we will apply inversion to
estimate the wavelet ŵ from both the convolutional (sconv) and the stacked (sstack) traces.
The results are shown in Figure 6.1. Due to the simplicity of this inversion scenario, the
weighting matrix W from the Tikhonov formulation was not required. The solutions have
been all found through equation (3.15) with ε = 0.1. The estimated wavelets from both
convolution (ŵconv) and stacking (ŵstack) are shown, respectively, in Figures 6.1a and 6.1b.
In both cases, the Ricker wavelet is plotted too (pink line), as it is the theoretical wavelet
used in both cases.
The shape of ŵconv coincides perfectly with the theoretical Ricker wavelet. This is

expected since the convolutional trace itself is synthetically produced by convolving the
Ricker wavelet with the single reflection coefficient. There is no noise hindering this
convolution operation, so Tikhonov correctly estimates the wavelet. This also gives a perfect
match when estimating the data ŝconv = Rŵconv, as shown in purple in Figure 6.1c. Right
on top, with a dashed black line, the true convolutional data sconv is plotted.
Conversely, the estimated wavelet off the stacked data ŵstack looks like a phase rotated

version of the theoretical Ricker wavelet. This aspect was already spotted in the discussion
of Figure 5.4c, due to the difference between the stacked and the convolutional data. So, it
seems like the non-linearities that occur in real life are warped up within the convolutional
frame through a phase rotation in the wavelet. So, when this time perturbed wavelet is
convolved with the reflection coefficient, it reproduces perfectly the original, real data.
Note that the resultant wavelets in Figures 6.1a and 6.1b have been re-scaled to have unit
amplitude.
Mention also that the depicted wavelets are a time window of the full wavelet, which is

all zeros for the rest of its duration until the end of the simulation. Theoretically, the Ricker
wavelet, as it is defined in equation (3.11), is a zero-phase wavelet. Yet, here we treat it as
a mixed-phase wavelet. This is, a wavelet that is zero at time zero, but whose maximum

33

0.00 0.05 0.10 0.15 0.20 0.25 0.30

TWT (s)

−0.5

0.0

0.5

1.0

A
m

p
lit

u
d

e

Ricker

Estimate

(a) Wavelet estimate from convolution ŵconv.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

TWT (s)

−0.5

0.0

0.5

1.0

A
m

p
lit

u
d

e

Ricker

Estimate

(b) Wavelet estimate from stacking ŵstack.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

TWT (s)

−0.2

0.0

0.2

0.4

0.6

A
m

p
lit

u
d

e Estimate ŝstack

Original sstack

Estimate ŝconv

Original sconv

(c) Estimated seismic data.

Figure 6.1.: Results of inversion on the two-layer model. Not-weighted Tikhonov equation (3.15)
used for inversion. (a) Wavelet estimate from convolutional trace. Note that it has
been rescaled to unit for better comparison with the Ricker wavelet (pink). (b) Wavelet
estimate from stacked trace. (c) The data estimates using the convolutional model as
the forward model ŝ = Rŵ.

energy is located in the middle of its duration. It can be thought of as a theoretical Ricker
wavelet that has been fully shifted to the range of positive times. Here, the wavelet starts to
make sense at the moment when the simulation starts, and not anymore when the simulation
finishes. This is why the wavelet is defined within the whole positive simulation time, but
only the Ricker-like pulse of energy at the beginning contributes. Thus, compact support is
fulfilled.
Tikhonov regularization works fine with the clean, ideal data. Let us now jump to

the noisy scenario exposed in Figure 5.6c. Here, the simplicity constraint of the solution
based on the L2 norm is not enough, and it requires the weighted Tikhonov regularization
approach, i.e., equation (3.19). The noisy solutions found for both convolution (̂sn

conv) and
stacking (̂sn

stack) are illustrated in Figure 6.2.
In section 3.4, it was said that one way of introducing prior information to our problem was

through exponentially increasing weights, so the reverberating terms in the tail are highly
penalized. This was carried out by defining the diagonal of the C-matrix as an exponential

6.1 Two-layer model 34

0.0 0.5 1.0 1.5 2.0

TWT (s)

−0.5

0.0

0.5

1.0

A
m

p
lit

u
d

e

Ricker

Estimate

(a) Wavelet estimate from convolution ŵn
conv.

0.50 0.75 1.00 1.25 1.50 1.75 2.00

TWT (s)

−0.5

0.0

0.5

1.0

A
m

p
lit

u
d

e

Ricker

Estimate

(b) Wavelet estimate from stacking ŵn
stack.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

TWT (s)

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

A
m

p
lit

u
d

e Estimate ŝn
stack

Original sn
stack

Estimate ŝn
conv

Original sn
conv

(c) Estimated seismic data.

Figure 6.2.: Noisy inversion results for the two-layer model. (a) Wavelet estimate from convolutional
trace. Note that it has been rescaled to unit for better comparison with the Ricker
wavelet (pink). (b) Wavelet estimate from stacked trace. (c) The data estimates using
the convolutional model as the forward model ŝ = Rŵ.

function ark·i, where i is the position on the diagonal (not the complex number). Yet, the
results obtained out of this weighting were still unfeasible and unstable. The estimated
wavelets successfully fulfilled compact support, but sometimes they became very wobbly
and doubtful at the beginning, with non-zero energy at time zero. For the wavelet to have
physical meaning, thus retrievable through regularization, it must also meet causality, which
entails zero amplitude at time zero. In the endeavor to find solutions in the model space
that lived up to both causality and compact support, an additional decreasing exponential
is added to the constraint when needed. It is aimed at penalizing the first few terms of
the wavelet, forcing it to start at zero. This way, the weights along the diagonal of the
C-matrix follow the sum of two exponentials a1r

k1·i
1 + a2r

−k2·i
2 , with k1, k2 > 0.

The wavelet ŵn
conv estimated off the convolutional trace (Figure 6.2a) was obtained

without the need of the decreasing exponential (a2 = 0), and with parameter values
a1 = 1.0, r1 = 1.035 and k1 = 0.13. The regularization parameter was set to ε = 10. We
see how the tailing terms are killed, giving the wavelet compact support. The initial pulse
of energy resembles the Ricker wavelet almost perfectly. Likewise, an almost perfect match

6.1 Two-layer model 35

is then expected when estimating the data ŝconv. Indeed, we appreciate how the original
and the estimated convolutional traces match up altogether (purple plot in Figure 6.2c).
Let us comment now on the SPECFEM data sn

stack. The estimated wavelet ŵn
stack was

extracted using a1 = 10.0, r1 = 1.023, k1 = 0.12, a2 = 1.0, r2 = 1.15 and k2 = 0.3. The
regularization parameter is ε = 10. An exponential with more penalizing power was required
to suppress wiggly high energy terms in the tail. Playing around with the parameters one
always ends up with a wavelet which, again, shows a time perturbation with respect to the
Ricker wavelet. Namely, it experiences a phase rotation that comes from the fact that the
data is real, as discussed above. The data estimate ŝn

stack (orange waveform) captures the
real wave response when reflected through this time transformation of the wavelet. The
solution does not get lost in the sea of noise.
The misfit of the real, stacking case is Estack = ‖sn

stack − ŝn
stack‖

2 ' 35 when their
amplitudes are suitably normalized so they become comparable with the convolutional case,
where Econv ' 0.07. Figure 6.3 shows the Z-score distribution of the residuals ri = ŝi − si.
In the convolution population (purple) more samples are contained within 1σ compared
to the stacking population. The standard deviation of the former one is σs ' 0.003, and
σs ' 0.06 for the latter one. A better performance with the noisy convolutional model was
expected, but it also does a good job with the SPECFEM model.

−2 0 2 4

Z-score zs = (s− ŝ)/σs

0

500

1000

1500

2000

2500

C
ou

nt
s

σs = 0.0589

σs = 0.0026

Figure 6.3.: Z-score distribution of the residuals, defined as the difference between the estimated
and the real data.

6.2 Multilayer model

We now proceed likewise for the multilayer model. The noiseless results are obtained
applying Tikhonov to the data sconv and sstack from Figure 5.7b. They are shown in Figure
6.4. In the convolution example, the decreasing exponential ∝ r−kx in the weighting matrix
W was still not needed to find a valid solution ŵconv. It was obtained setting a1 = 1.0,
r1 = 1.01, k1 = 0.09 and ε = 1.1. Even tough it incurs into very minimal instabilities along
the tail of the wavelet, the data estimate ŝconv = Rŵconv agrees perfectly with the original
synthetic trace sconv derived from convolution.

6.2 Multilayer model 36

0 1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
W

T
(s

)

Wavelet

wRicker

ŵconv

−0.5 0.0

Seismic

ŝconv

sconv

0 1

Wavelet

wRicker

ŵstack

0.00 0.01

Seismic

ŝstack

sstack

Figure 6.4.: Inversion results using noiseless data sconv and sstack. From left to right: convolutional
wavelet and seismic estimates, followed by the stacking wavelet and seismic estimates.
All the plots include the estimates and the original/reference quantities.

For the stacked data, the two increasing and decreasing exponential weights were required
to find a sensible solution. The parameters used were a1 = 1.0, r1 = 1.015, k1 = 0.07,
a2 = 1.0, r2 = 1.15, k2 = 0.5 and regularization ε = 1. Again, the estimated wavelet ŵstack

showcases a phase rotation with respect to the Ricker wavelet. The wiggly tail comes about
due to the presence of echos that manifest in the data, but still it can be deemed a wavelet.
The reproducibility of the data is optimal either way.

Let us now switch to the noisy scenario, which arises from the data in Figure 5.9c, and
yields fairly good results too. They are exposed in Figure 6.5. Tikhonov still manages to
come up with valid results. On one hand, the convolution solution matches the theoretical
Ricker wavelet, except for a minimal reverberating tail due to the noise. It gives an
estimate on the data that reproduces the synthetic trace almost perfectly. At this point one
might question the overfitting of the noise. It happens that there are no discrepancies or
approximations committed between how the data is synthetically produced and the actual
forward model. Loosely speaking, the data are forwarded the same way they are inverted,
so the perfect match is reasonable.

On the other hand, the SPECFEM solution, apart from the usual phase rotation, presents
a very wobbly tail that roots in the noise on top of the non-linear multiples. In spite

6.2 Multilayer model 37

0 1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
W

T
(s

)

Wavelet

wRicker

ŵconv

−0.25 0.00 0.25

Seismic

ŝconv

sconv

−1 0 1

Wavelet

wRicker

ŵstack

−0.005 0.000 0.005

Seismic

ŝstack

sstack

Figure 6.5.: Inversion results using noisy data sn
conv and sn

stack. From left to right: convolutional
wavelet and seismic estimates, followed by the stacking wavelet and seismic estimates.
All the plots include the estimates and the original/reference quantities.

of the penalizing weights in W, it is not physically possible to find a ŵstack with a less
reverberating tail that, at the same time, fits the data. Again, it is all about this trade-off
between the undetermined part of the wavelet controlled by its Lweighted norm and the
misfit in the data estimates. We can only aim at a sensible wavelet-like solution which does
not overfit the noise and still describes the main features contained in the data.

The residuals are included in Figure 6.6. For the distributions to be comparable in terms
of spread, the signals have been re-scaled to the same order. The convolutional distribution
shows an excellent match as envisaged, with the majority of its predictions within one
σs ' 0.02. The misfit is Econv ' 9. Conversely, the stacked distribution doubles the spread
of the convolution σs ' 0.04. The misfit is Estack ' 25, but everything within acceptable
fitting values given that we are not interested in fitting the noise at all.

6.3 Increase non-linearities

The convolutional model is able to estimate the data fairly well given the magnitude of
the reflection coefficients. But, up to what extent will the convolutional model be able to
account for the non-linearities that occur in real life? This is the question we will attempt

6.3 Increase non-linearities 38

−6 −4 −2 0 2 4 6

Z-score zs = (s− ŝ)/σs

0

2000

4000

6000

C
ou

nt
s

σs = 0.0414

σs = 0.0245

Figure 6.6.: Z-score distribution of the residuals, defined as the difference between the estimated
and the real data.

to respond in this section. One way of increasing the non-linearity of the problem is to scale
up the reflection coefficient series, resulting in stronger echos and, consequently, stronger
attenuation or transmission losses. This can be achieved by getting sharper changes in the
layered media. Since the convolutional reflectivity depends on the velocity, it suffices to
scale up the velocity in a way that preserves the average velocity 〈vp〉. Mathematically:

vsc
p = ζ · (vp − 〈vp〉) + 〈vp〉 (6.1)

where vsc
p is the scaled velocity model by a factor ζ. Figure 6.7 shows the noiseless velocity

and reflectivity profiles for three values of ζ = 2, 4, 5. A value of ζ = 1 means no scaling,
and one retrieves the same results and conclusions as before. We see that larger spikes in
the reflectivity are obtained, specially at the beginning.

Proceeding the same way as before, we get the estimates shown in Figure 6.8. The results
are obtained without any noise. For each subfigure, we find the wavelet estimate on the left
and the data on the right. In black the true, original data, and, colored, the estimate. As
we increase ζ more energy is accumulated in form of multiples along the tail in the real data.
These echos are inherited by the wavelet estimate, so they are overfitted when it comes to
predicting the data. In return, solutions lose the sense of wavelet as they present longer
oscillations impossible to get rid of.
When the echos become too strong they mask the information about the structure that

the reflectivity carries, and the estimated wavelet tries to fit them as part of the data. Other
seismic inversion approaches must be employed in order to get such information out, where
echos and other non-linearities do not hinder the whole perspective. So we have arrived to
a clear bottleneck in our approach.
For the shake of completeness, let us include some noise in the ζ = 2 case. The same

conclusions apply, but for this case more restrictive weights had to be applied.
For all of the above, NMO has been corrected using DTW. As the non-linearities increase,

it becomes harder for the conventional approach to correct the time shift in the reflected
times.

6.3 Increase non-linearities 39

0.0 0.5 1.0 1.5 2.0 2.5 3.0

TWT (s)

1000

2000

3000

4000

v p
(m

/s
)

ζ = 1

ζ = 2

ζ = 4

ζ = 5

(a) Velocity profiles for 4 different scales: ζ = 1, 2, 4, 5.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

TWT (s)

−0.025

0.000

0.025

0.050

0.075

r c
co

effi
ci

en
ts

ζ = 1

ζ = 2

ζ = 4

ζ = 5

(b) Scaled reflectivity series.

Figure 6.7.: (a) Scaled velocities profiles from ζ = 1 (no scaling) to ζ = 5, following equation (6.1).
(b) The corresponding convolutional reflection coefficient series for the different scales
ζ.

6.3 Increase non-linearities 40

0.0 0.5 1.0 1.5 2.0

TWT (s)

−0.001

0.000

0.001

Wavelet estimate

0.0 0.5 1.0 1.5 2.0

TWT (s)

−0.001

0.000

0.001

Seismic

True

Estimate

(a) Wavelet and data estimates for ζ = 2.

0.0 0.5 1.0 1.5 2.0 2.5

TWT (s)

−0.002

−0.001

0.000

0.001

0.002

Wavelet estimate

0.0 0.5 1.0 1.5 2.0 2.5

TWT (s)

−0.002

0.000

0.002

0.004

Seismic

True

Estimate

(b) Wavelet and data estimates for ζ = 4.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

TWT (s)

−0.002

−0.001

0.000

0.001

0.002

Wavelet estimate

0.0 0.5 1.0 1.5 2.0 2.5 3.0

TWT (s)

−0.004

−0.002

0.000

0.002

0.004

Seismic

True

Estimate

(c) Wavelet and data estimates for ζ = 5.

Figure 6.8.: Noiseless estimates from the scaled profiles from Figure 6.7.

0.0 0.5 1.0 1.5 2.0

TWT (s)

−0.0010

−0.0005

0.0000

0.0005

0.0010

Wavelet estimate

0.0 0.5 1.0 1.5 2.0

TWT (s)

−0.0010

−0.0005

0.0000

0.0005

0.0010

Seismic

True

Estimate

Figure 6.9.: Noisy wavelet and data estimates for ζ = 2.

6.3 Increase non-linearities 41

Chapter 7.

Data preprocessing

Data preprocessing is a must in every seismic processing procedure. In our case, the data is
2D and comes from simulating the propagation of spherical waves. The convolutional model,
instead, is 1D and allows for normal reflections only, i.e., assumes that the waves are planar
wavefronts. Over large distances, spherical waves can be approximated as planar. However,
that would require considerably more simulation time, memory and disk space. Instead,
we resort to NMO correction to correct the curvature. Finally, stacking renders the data
amenable for our convolutional purposes. Moreover, we have seen that NMO correction and
stacking improves the quality of the data when noise is present.
Additionally, the problem of seismic migration is also introduced. It was one of the

late ideas to test in the project, but that, unfortunately, could not be carried all the way
through. In essence, when the reflectors are tilted, the velocity and density models do
not depend solely on the depth z anymore, but also on x. Migration effects are those
that involve horizontal displacements, and lead to miscalculations if they are not corrected.
Migration, in combination with NMO correction, was attempted with the purpose of using
our convolutional approach.

7.1 NMO correction

Section 5.3 mentions that due to the spherical nature of the waves, the receivers do not
receive the signal from a single source simultaneously, but accordingly to the reflection time
it takes for the wave to travel from the source to the receiver, thus shaping a hyperbola.
Let us show this graphically. For a near-horizontal reflector, the ray paths from a single
source is shown in Figure 7.1. A single layer of depth z and velocity v is illustrated, where
we distinguish two main rays: the direct wave (red) and the reflected wave (black). The
direct wave follows the straight line td = x/v, perceptible in Figure 5.2b. It provides no
information, it is just a wave travelling from the source to the receiver, so it can be muted.
On the other hand, the reflected wave involves both the distance to the receiver x and the
depth of the reflector z. The shape of this wave front is hyperbolic:

tr =

√
t20 + x2

v2 =
√
x2 + 4z2

v
(7.1)

where t0 = 2z/v is the two-way-travel vertical time. It is the minimum time at which a
reflection will be recorded. The time delay ∆t = tr − t0 is the so-called normal moveout.

42

All of this is depicted on the right panel of Figure 7.1. By correcting for this time shift, the
reflection events appear to arrive simultaneously to the receiver.
In order to implement NMO correction, for each two-way-travel time step t0 we find its

corresponding reflected time tr, which depends upon the distance x to the receiver. The
amplitude of the trace at tr is found by sampling the trace s(t = tr). Finally, the correction
is applied s(t0) = s(tr). This must be done for all the gathers in the CMP. The pseudo-code
in Algorithm 1 summarizes NMO correction.

Algorithm 1: Conventional NMO correction. Here, Nt is the number of time steps and
Noffsets the number of offsets or gathers. For each time t0 and gather si, the corresponding
reflected time tr is calculated (reflection_time). The function sample_trace samples
s(t) at tr to get the amplitude of the signal.
Input: CMP gathers s, offset positions x and velocity model v
Output: NMO correction

1 for nt = 0, . . . , Nt − 1 do
2 t0 ← nt ×Nt

3 for i = 0, . . . , Noffsets − 1 do
4 tr ← reflection_time(t0, xi, vt0) // Computes reflection time (7.1)
5 A← sample_trace(si, tr) // Amplitude of signal s(t_r)
6 si(t0)← A

If there are additional layers, then the seismic energy at each interface is refracted/reflected
according to Snell’s law. The energy no longer travels in a straight line, as showed in Figure
7.1, and, hence, the travel times are affected. For small offsets, the travel time curve is
still approximately hyperbolic, but the velocity, which controls the shape of the curve, is
an average velocity of the velocities of all the layers above the reflector. This is, RMS
(root-mean-square) velocity vrms (GeoSci.xyz, n.d.).

Figure 7.1.: On the left, raypath from source to receiver for a single layer of thickness z and velocity
v. The receivers are located at positions x1, x2, The zero offset gather is at x0. On
the right, reflected time diagram. In blue, the hyperbolic wave front. The NMO time
shift is measured as tr − t0.

7.1 NMO correction 43

0 10 20 30 40 50 60
Receiver number

0

1

2

3

4

T
W

T
(s

)

(a) Data before NMO correction.

0 10 20 30 40 50 60
Receiver number

0

1

2

3

4

T
W

T
(s

)

(b) Data after NMO correction.

Figure 7.2.: Normal move-out correction and the problem of stretching.

For each hyperbola:

tr '

√
x2 + 4z2

i

vRMS
i

(7.2)

where vRMS
i is the RMS velocity for each layer of the N -layer model (i = 1, . . . , N). The

RMS velocity for the ith layer is given by:

vRMS
i =

√√√√∑i
k=1 v

2
kτk∑i

k=1 τk
(7.3)

One of the problems with NMO correction is that stretches the waveform out, as we
perceive in Figure 7.2, thus decreasing the frequency content of the wavelet. However, it
does not seem to be a big problem within the first 30 offsets. Figure 7.2 shows a total of 60
offsets evenly distributed in 3500 m. Throughout the thesis, the offsets are laid out in the
same way, but with the shot point in the middle, so that there are 30 receivers on either
side.

7.2 Migration

Migration is the process of reconstructing a seismic section so that the reflection events
are repositioned under their correct surface location and at a corrected vertical reflection
time. In the project dipping reflectors were addressed in their simplest version: tilted
boundaries; which results in a geometric displacement of the data. So, migration must be
applied to place them in their true spatial position rather than at an assumed point in
depth between the source and the receiver.
Figure 7.3 illustrates why the seismic section does not capture the true position of the

events when it comes to dipping reflectors. The points x1, x2 and x3 are the shot and

7.2 Migration 44

Figure 7.3.: Diagram showing the raypath for a zero-offset reflection from a dipping reflector and
the resultant apparent dip. The angles βr and βa are, respectively, the angles of the
real and apparent reflectors with respect to the horizontal. The point sa is the apparent
point one would observe before migration, while sr refers to the real position obtained
after migration.

receiver points on the surface. In the real case scenario (red in Figure 7.3), the spherical
wavefront of the seismic wave will encounter the real dipping reflector at sr after some time
t, then the reflected wave will travel back to, say, x1. Distance-wise, it traduces into d = vt,
or d = vt/2 if the two-way total travel time is measured, being v the velocity in the medium.
Yet, in the data we would see the point sa, which is sr but shifted along the wavefront up
to the vertical position right below the shot point. Such a point sa is the same distance d
from x1 as sr, since they lay on the same spherical wavefront (circular for 2D). If we now
interpolate all the sa points from all the shot points xi, we get the apparent dip (blue in
Figure 7.3). So, in the end of the day, the role of migration is to send the points laying on
the apparent dip back to their real positions.

The migrator’s equation

tan βa = sin βr (7.4)

relates the angle of the real reflector βr with the apparent dip βa.
Figure 7.4 shows an actual simulation on a very simple setting with only one dipping

reflector. On the left panel, what the velocity model looks like. On the right, we see that
the tendency of the wiggles bend down. In an otherwise horizontal case, there would be
a hyperbola with its maximum in the middle (assuming the shot is placed in the middle
x-wise). The dip makes this maximum deviate upwards.

Zero-offset data is important to a geophysicist because the migration operation is much
simpler, and can be represented by spherical surfaces. When data is acquired at non-zero
offsets, the sphere becomes an ellipsoid and is much more complex to represent (both
geometrically and computationally).
Migration can be broadly split into two fundamental types of migration, defined by the

domain they are applied: time migration and depth migration.

7.2 Migration 45

0 1000 2000 3000 4000
x (m)

−6000

−5000

−4000

−3000

−2000

−1000

0

z
(m

)

1300 1400 1500 1600 1700 1800

vp (m/s)

(a) Velocity vp model.

0 10 20 30 40 50
Receiver number

0

1

2

3

4

T
W

T
(s

)

(b) Simulation data.

Figure 7.4.: Results from running the simulation on a simple two dipping layers geological setting.
(a) The vp model. The markers along the surface are the position of the receivers. The
upper layer (yellow) has vp = 1840 m/s, and the lower one (blue) vp = 1250 m/s (b)
Seismic data.

• Time migration. It is applied to seismic data in time coordinates. This type of
migration makes the assumption of only mild lateral velocity variations.

• Depth migration. It is applied to seismic data in depth coordinates, which must
be calculated from seismic data in time coordinates. If lateral velocity gradients are
significant, we need to use depth migration.

Adding now the possibility of having pre- and post- stacked data, four combinations
can be made when applying migration: post-stacked time migration, post-stacked depth
migration, pre-stacked time migration and pre-stacked depth migration. Plenty of methods
are available for each scenario, but in principle we are interested in those that apply to
pre-stacked time migration. Although our geological setting is not complex, pre-stacked
methods are preferred as the complexity of the structure increases at the expense of higher
computational costs.

7.2 Migration 46

Chapter 8.

Conclusion

During this thesis we have exploited deterministic inversion tools for wavelet estimation.
Firstly, on 1D borehole data, where we saw the need of regularization. The naïve solution
was unstable against noise and would give meaningless solutions for the wavelet. The
mean value of the reflectivity is zero 〈rc〉 = 0, which results in the desirable zero-mean
property of a wavelet, but at the cost of having a wavelet that oscillates indefinitely around
zero, thus not fulfilling compact support. Regularization is used to get around it, which
penalizes high-norm solutions or solutions with infinitely many non-zero terms. This is the
undetermined part of the problem. Namely, Tikhonov regularization serves as a tool to get
valid solutions: wavelets with energy concentrated at the beginning.

Another big chapter in this project is the simulation of seismic data using SPECFEM.
This becomes our source of real data under the scenario of horizontally placed layers. It
is an overly simple scenario that gives us a first well-to-tie approach, with a middle shot
surrounded by receivers. This means that the middle gather (or zero-offset trace) in the
CMP section collects the vertical activity, while the surrounding characteristics are captured
by the adjacent stations.

Stacking yields the final 1D trace that encompasses all the effects that come about when
a real wave propagates in a layered media. It helps reduce the noise and improve the quality
of the stacked trace. Therefore, the final 1D seismogram contains non-linear phenomena not
explained by a convolutional point of view. The convolutional model boils every process
down to a 1D convolution of the wavelet with the reflectivity series that only cares about
normal reflections. However, we see that for small non-linear perturbations the real stacked
data and the convolutional model agree to an acceptable degree.
Regarding NMO correction, we got to work in a range of distances and velocities under

which our own implementation of NMO correction performs well, e.g., Figure 5.6. Conversely,
this approach relies on the assumption of small offsets, or, alternatively, small changes
between offsets. Larger separation among offsets brings about events that cannot be fitted
with hyperbolas in the case of the multilayer. So, parallelly, I worked on an alternative
DTW method to correct for NMO which rather looks into the similarity between adjacent
gathers. Even tough it works in such cases, it is computationally expensive as it requires a
large number of points.

With velocity models in the range exposed in Figure 5.7a, the convolution gets to explain
the data to a great extent. So it is used as forward model for inversion. Non-linear effects
manifest in form of multiples or echos, which are internal reflections inside multilayer that

47

suck energy out of the system. This leads to the problem of attenuation or transmission
loss within the multilayer. When these phenomena are not strong, convolution accounts for
them with a different wavelet. One that experiences a shift rotation with respect the Ricker
wavelet. This was already sensed and mentioned when discussing Figure 6.1. Yet Tikhonov
is able to find that solution for the case of the multilayer.
When inversion was applied, further prior information was required that would tell

Tikhonov to find solutions that fulfilled compact support. It entered into the measure of
the L-norm in form of exponential functions. This way, we saw that Tikhonov is a robust
tool even against noise.

As a final step, the velocity changes between layers were scaled up as a way of introducing
stronger multiples. When they become comparable to the data, the solution loses the sense
of wavelet. It is not possible to find a solution that, maintaining the properties of a wavelet,
did not fit echos as well. This is the bottleneck of the convolution approach. So, this is a
simple approach that works in near-linear scenarios.
So this is a beautiful example that works around the small set of near-linear problems,

and wells that are wrapped in a closely horizontal structure. In real life, this is unfeasible
since effects are far-from linear and more complicated.
In the GitHub page (Martínez, 2022) it is possible to find all the code implementations

used for the project.

48

Chapter 9.

Bibliography

Bianco, Evan (2014). “Geophysical tutorial: Well-tie calculus”. In: The Leading Edge 33.6,
pp. 674–677. doi: 10.1190/tle33060674.1.

Brown, Raymon L., Wendy McElhattan, and Donald J. Santiago (1988). “Wavelet estimation:
An interpretive approach”. In: The Leading Edge 7.12, pp. 16–19. doi: 10.1190/1.
1439470.

Chen, Shuangquan, Song Jin, Xiang-Yang Li, and Wuyang Yang (2018). “Nonstretching
normal-moveout correction using a dynamic time warping algorithm”. In: GEOPHYSICS
83.1. doi: 10.1190/geo2016-0673.1.

Fichtner, Andreas (2013). Full Seismic Waveform Modelling and Inversion. Springer Berlin.
Foufoula-Georgiou, Efi and Praveen Kumar (1994). “Wavelet Analysis in Geophysics: An
Introduction”. In: Wavelets in geophysics. Academic Press.

GeoSci.xyz. Seismic travel times. url: https://gpg.geosci.xyz/content/seismic/
traveltimes.html.

Geuzaine, Christophe and Jean-François Remacle (2002). Gmsh API. url: https://gmsh.
info/.

Komatitsch, Dimitri (2018). User manual SPECFEM2D. url: https : / / specfem2d .
readthedocs.io/en/latest/.

Li, Ming and Yimin Zhao (2014). “Seismic Inversion Techniques”. In: Geophysical Exploration
Technology: Applications in lithological and Stratigraphic Reservoirs. Elsevier, pp. 133–198.

Martínez, Pedro (2022). MSc thesis code. url: https://github.com/pedro-mrtnz/msc_
thesis.

Menke, William (2012). Geophysical Data Analysis: Discrete Inverse theory. Elsevier, Aca-
demic Press.

Mosegaard, Klaus (2012). “The Seismic Reflection Method”. In: Lecture Notes 2012.
Mosegaard, Klaus (2020). “Inverse Problems: an Introduction”. In: Lecture Notes 2020.
Russell, Brian H. (2009). Introduction to Seismic Inversion Methods. Society of Exploration
Geophysicists.

Tarantola, Albert (1984). “Inversion of seismic reflection data in the acoustic approximation”.
In: GEOPHYSICS 49.8, pp. 1259–1266. doi: 10.1190/1.1441754.

Tarantola, Albert (2005). Inverse Problem Theory and Methods for Model Paramenter
Estimation. Society for Industrial and Applied Mathematics.

49

http://dx.doi.org/10.1190/tle33060674.1
http://dx.doi.org/10.1190/1.1439470
http://dx.doi.org/10.1190/1.1439470
http://dx.doi.org/10.1190/geo2016-0673.1
https://gpg.geosci.xyz/content/seismic/traveltimes.html
https://gpg.geosci.xyz/content/seismic/traveltimes.html
https://gmsh.info/
https://gmsh.info/
https://specfem2d.readthedocs.io/en/latest/
https://specfem2d.readthedocs.io/en/latest/
https://github.com/pedro-mrtnz/msc_thesis
https://github.com/pedro-mrtnz/msc_thesis
http://dx.doi.org/10.1190/1.1441754

Tavenard, Romain. An introduction to Dynamic Time Warping. url: https://rtavenar.
github.io/blog/dtw.html#dynamic-time-warping.

50

https://rtavenar.github.io/blog/dtw.html#dynamic-time-warping
https://rtavenar.github.io/blog/dtw.html#dynamic-time-warping

Appendix A.

Time-depth conversion

Transform model quantities from a scale of depth (which is the one that provides a picture of
the structure) to a scale of time (which is the domain in which the seismic data is acquired)
is a recurrent process throughout the project. Therefore, a relationship between depth and
time must be established.

In real life, when working with borehole data, it is common to have the sonic logs, among
other measurements, in the depth domain. It can be used to establish this relationship
between time and depth. The sonic log is the inverse of the velocity, so the integral over a
depth interval yield a time-depth relationship (TD):

TD =
∫ z

0
s(z′)dz′ (A.1)

Once the time-depth relationship has been set out, it is usually confirmed by generating
a synthetic seismogram via convolution and compare it with the real one (inherently in the
time domain). If the synthetic seismogram is a good match to the seismic means that the
time-depth relationship is robust.
In our tie-to-well approach, we create our own velocity model, which means that we

know the value of the velocity at each point of the grid in the depth domain. So, given the
precision dz, the simplest way of associating a time ti to zi is:

ti = ti−1 + dz
vi−1

with zi = zi−1 + dz (A.2)

where each time step ti can be computed as time it takes for the wave to go through dz
with velocity vi−1.

Ideally we would like to sample the model with the same time precision as the seismic
data. This is, dt. Algorithm 2 shows how this is implemented for the project. Two times
are defined tz and tt. The former one is defined just like in (A.2), i.e., with sampling rate
that depends on dz and the velocity. On the other hand, tt is defined according to dt:
ti+1 = ti + dt. The number of time steps in ti is then tz/dt. Let us imagine now that
we would like to convert the density ρ(z) from depth domain to time domain. Through
equation (A.2), it is straightforward the one-to-one mapping to ρ(tz). Then an interpolating
function (interpolation in the pseudo-code) that takes into account both tz and tt is used
to obtain the desired quantity ρ(tt) with sampling rate 1/dt.

51

Algorithm 2: Time-depth relationship. It is written in a pythonic way, with indexes
starting at 0. The time tz is sampled according to dz and the velocity, whereas tt follows
the given time precision dt. Nz (Nt) is the number of points in the depth (time) domain.
The final model in the time domain q(t) is obtained using an interpolating function that
takes into account q(z), tz and tt.
Input: Velocity model vp(z), quantity we want to convert qz, time precision dt and

depth precision dz.
Output: A model quantity in the time domain qt

1 tz ← 0Nz×1
2 t0z ← dz/v0

p

3 for i = 1, . . . , Nz − 1 do
4 tiz ← ti−1

z + dz/vip
5
6 Nt ← dtNz−1

z /dte
7 tt ← 0Nt×1
8 for j = 1, . . . , Nt − 1 do
9 tit ← ti−1

t + dt
10
11 qt ← interpolation(qz, tz, tt)

52

Appendix B.

Dynamic Time Warping

Dynamic time warping (DTW) is a technique used in time series analysis for measuring
similarity between two temporal sequences. An idea that was extrapolated to seismic
sections for the first time by (Chen et al., 2018) as a workaround of the problem of stretching
in normal-moveout correction. In the end, any data that varies with time can be turned
into a linear sequence amenable for DTW to analyze.
In general, DTW is a method that calculates an optimal match between two given

sequences by means of alignment-based metrics, which rely on temporal alignment of the
series in order to assess their similarity. Before getting into further details, we will refer to
Figure B.1, which compares it with the usual Euclidean metric (not aligning-based). In
both cases, the similarity metric is the sum of distances between matched points. We can
see that DTW matches distinctive points in both series candidates to be the most similar.
It must be stressed the fact that both series in Figure B.1 are shifted vertically for the sake
of visualization, but one should keep in mind the zero-shift situation.

0 10 20 30 40

−4

−3

−2

−1

0

1

Euclidean distance

0 10 20 30 40

−4

−3

−2

−1

0

1

DTW distance

Figure B.1.: Illustration of both DTW (right) and Euclidean (left) metrics. The axes have no units
for the sake of simplicity, as it is a mere illustration without real physical meaning.
Also, the sequences are shifted vertically, but one should imagine that y-axis values
match.

We review now how dynamic time warping works, (Tavenard, n.d.). Let us consider two
time series x and x′ of respective lengths n and m. Here, all elements xi and x′j are assumed
to lie in the same p-dimensional space, and the exact timestamps at which the observations
occur are disregarded: only their ordering matters.

53

Figure B.2.: Sketch of how time alignment attempts to minimize the Euclidean distance. There
are two time series x and x′, where a time scale perturbation that shrinks x is
applied to obtain x′. The observations

{
x′

j , x
′
j+1, . . . , x

′
i

}
(say there are N of them)

between tj and ti have been all aligned (matched) with xi, so that when one maps out{
x′

j , x
′
j+1, . . . , x

′
i

}
→ {x′

i}
N retrieves the unperturbed x.

Dynamic time warping seeks for the temporal alignment, i.e., matching between time
indexes of the two time series. This temporal alignment is constructed so that minimizes the
Euclidean distance between aligned series. Figure B.2 illustrates this idea. It exhibits two
time sequences x and x′, where x′ is obtained by applying a time scale perturbation to x
that shrinks it. When both series are analyzed using DTW, the algorithm finds out that the
data points

{
x′j , x

′
j+1, . . . , x

′
i

}
(say there are N of them) between timestamps tj and ti are

aligned (matched) with xi, since for all the alignments applies that the Euclidean distance
is minimum. Therefore, if we map

{
x′j , x

′
j+1, . . . , x

′
i

}
→ {x′i}

N we retrieve the original x.
But, how does the algorithm work? Formally, the optimization problem can be written

as (Tavenard, n.d.):

DTWq
(
x, x′

)
= min

π∈A(x,x′)

 ∑
(i,j)∈π

d
(
x, x′

)q 1
q

(B.1)

Here, an alignment path π of lengthK is a sequence ofK index pairs ((i0, j0) , . . . , (iK−1, jK−1))
and A (x, x′) is the set of all admissible paths. In order to be considered admissible, a path
should meet the following constraints:

1. The first (last) index from x must be matched with the first (last) index from x′ (but
does not have to be its only match):

• π0 = (0, 0)

• πK−1 = (n− 1,m− 1)

2. The sequence is monotonically increasing in both i and j, and all time series indexes
should appear at least once:

• ik−1 ≤ ik ≤ ik−1 + 1

54

• jk−1 ≤ jk ≤ jk−1 + 1

Another way to represent a DTW path is to use a binary matrix whose non-zero entries
are those corresponding to a matching between time series elements. This representation is
related to the index sequence representation used above through:

(Aπ)i,j =

 1 if (i, j) ∈ π
0 otherwise

(B.2)

Using matrix notation, dynamic time warping can be written as the minimization of a dot
product between matrices:

DTWq
(
x, x′

)
= min

π∈A(x,x′)

〈
Aπ, Dq

(
x, x′

)〉 1
q (B.3)

where Dq(x, x′) stores distances d(xi, x′j) at the power q.
Although the optimization problem in equation (B.1) is a minimization over a finite set, the

number of admissible paths (coined Delannoy number) becomes very large even for moderate
time series lengths. Assumingm and n are the same order, there existsO

(
(3+2

√
2)n

√
n

)
different

paths in A(x, x′), which makes it intractable to list all paths sequentially in order to compute
the minimum.

Fortunately, an exact solution to this optimization problem can be found using dynamic
programming. Dynamic programming relies on recurrence, which consists in linking the
solution of a given problem to solutions of easier sub-problems. Once the link is known,
the dynamic programming approach solves the original problem by recursively solving the
sub-problems and storing their solutions for later use, so as not to re-compute sub-problems
several times.

In the case of DTW, we rely on the quantity:

Ri,j = DTWq(x→i, x′→j)q (B.4)

where the notation x→i denotes times series x observed up to timestamp i (included). Then
we can break down the original problem into:

Ri,j = min
π∈A(x→i,x′

→j)

∑
(k,l)∈π

d(xk, x′l)q

∗= d(xi, x′j)q + min
π∈A(x→i,x′

→j)

∑
(k,l)∈π[:−1]

d(xk, x′l)q

∗∗= d(xi, x′j)q + min (Ri−1,j , Ri,j−1, Ri−1,j−1)

(B.5)

where

(∗) comes from constraint 1 on admissible paths π: the last element from an admissible
path should match the last elements of the series.

(∗∗) comes from the contiguity constraint 2 on admissible paths π. A path that would
align time series x→i and x′→j necessarily encapsulates either:

55

Figure B.3.: Valid DTW transitions.

• a path that would align time series x→i−1 and x′→j , or
• a path that would align time series x→i and x′→j−1, or
• a path that would align time series x→i−1 and x′→j−1

Figure B.3 illustrates the foregoing reasoning in terms of DTW transitions. The iteration
determined by (i, j) can be broken down into the minimum path that leads up to any of
the three previous π-points ((i− 1, j), (i− 1, j − 1), (i, j − 1)) and the distance between the
current observations xi and x′j .

This implies that filling a matrix which would store Ri,j is sufficient to retrieve DTWq(x, x′)
as Rn−1,m−1

1/q. Algorithm 3 shows how DTW can be implemented.

Algorithm 3: DTW algorithm.
Input: Time series x and x′, and norm type q
Output: Optimal path Rn−1,m−1

1 R ← 0n×m // R matrix of size (n x m) filled with zero values
2 for i = 0, . . . , n− 1 do
3 for j = 0, . . . ,m− 1 do
4 Ri,j ← d(xi, x′j)q
5 if i > 0 and j = 0 then
6 Ri,j ← Ri,j +Ri−1,j
7 else if i = 0 and j > 0 then
8 Ri,j ← Ri,j +Ri,j−1
9 else if i > 0 and j > 0 then

10 Ri,j ← Ri,j + min (Ri−1,j , Ri,j−1, Ri−1,j−1)

11 DTWq(x, x′)← Rn−1,m−1
1/q

So far, the most general version of dynamic time warping has been discussed. However,
additional constraints can be set, as (Tavenard, n.d.) describes in-depth. Namely, the
Sakoe-Chiba band and the Itakura parallelogram constraints are introduced. They typically
translate into enforcing nonzero entries in Aπ to stay close to the diagonal. However, the
were not needed for our purposes.

56

	Acknowledgements
	Abstract
	1 Introduction
	2 Inverse problems
	2.1 Tikhonov regularization

	3 Convolutional model
	3.1 Reflection coefficient series
	3.2 Seismic wavelet
	3.3 Noise component
	3.4 Deconvolution as an inverse problem

	4 Inversion of real 1D data
	5 Simulation of 2D data
	5.1 How do we simulate data?
	5.2 Velocity and density models
	5.3 The need of preprocessing
	5.4 Two layer model
	5.5 Multilayer model

	6 Inversion of simulated data
	6.1 Two-layer model
	6.2 Multilayer model
	6.3 Increase non-linearities

	7 Data preprocessing
	7.1 NMO correction
	7.2 Migration

	8 Conclusion
	9 Bibliography
	A Time-depth conversion
	B Dynamic Time Warping

