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Abstract

In this thesis we investigate the viability of comparing bulk flow magnitudes to

predictions from linear theory, in order to test ΛCDM cosmology. This investi-

gation is motivated by a current disagreement with ΛCDM by some bulk flow

measurements in the literature, claiming observations of bulk flows larger than

predicted in ΛCDM. We focus on observational effects that might bias our mea-

surements of bulk flows, such as the effects of survey geometry, and the asymmetry

of the bulk flow magnitude distribution. We find that all techniques to measure a

value for the bulk flow overestimate its magnitude, and this is made worse both by

sparse sampling and by incomplete sky coverage. Further work is needed before

these effects are fully understood, and until that work has been carried out we

conclude that the standard χ2 analysis of the bulk flow vector components is still

the most viable method to compare bulk flow measurements with theory. Finally,

future work should perform the same analysis but calculate cosmological param-

eters rather than bulk flow velocity, and see if the same biases exist. Since our

study shows observational effects will cause false detections of large bulk flows, it

is critical to confirm that the same observational effects do not bias cosmological

parameters.
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1 Introduction

1.1 Brief Summary of Concordance Cosmology

The model that is currently the main contender for describing the evolution and

structure formation of the universe is the ΛCDM model, where Λ is a dark energy

component causing accelerated expansion of the universe and CDM is a Cold Dark

Matter component dominating at the early stages of cosmological evolution. The

ΛCDM model gained favour after Perlmutter et al. (1999) and Riess et al. (1998)

observed a number of standardisable type Ia supernovae (SNe) and found that a

ΛCDM cosmology with Ωm ∼ 0.3 and ΩΛ ∼ 0.7 was the best fit model to the

data. Here Ωm and ΩΛ are the unitless matter and dark energy density compo-

nents. The ΛCDM cosmology has been successful at explaining observations from

the Cosmic Microwave Background (CMB), Baryon Acoustic Oscillations (BAO)

and a number of standardisable candles, where type Ia SNe are currently the most

prominent one. Where the ΛCDM model falls short is in explaining the actual

physics behind the accelerated expansion of the universe, giving no physical jus-

tification for introducing the Λ parameter, which has gone in and out of favour in

the astrophysical community since Einstein introduced it in 1917 (Einstein, 1917).

Additionally, tension currently exists in measurements of the cosmological bulk

flow; the bulk flow of our local group with regards to the CMB. Some of these

measurements are in apparent agreement with ΛCDM (Carrick et al., 2015; Colin

et al., 2011; Dai et al., 2011; Hong et al., 2014; Lavaux et al., 2013; Ma & Pan, 2014;

Ma & Scott, 2013; Nusser & Davis, 2011; Osborne et al., 2011; Planck Collabora-

tion et al., 2014; Turnbull et al., 2012) where others are not (Abate & Feldman,

2012; Feix et al., 2014; Feldman et al., 2010; Kashlinsky et al., 2008; Watkins

et al., 2009). Relieving this tension is important if we are to gain physical insight

into whether dark energy actually exists, and if it does then what the nature of

it is. It does not appear that cosmologists will be left with nothing productive to

do in the near future, as this is not a simple task.

1.2 Observables - What do we observe?

An excellent way to probe cosmology is to measure galaxy peculiar velocities, and

combine those measurements into a bulk flow of our local group of galaxies. The

bulk flow refers to the total net velocity of a region of space with respect to the

cosmic microwave background rest frame, and is represented by a vector with an

element for each of the three spatial dimensions. Imprinted in the galaxy pecu-

liar velocities is the fingerprint of large scale structure formation, which in turn

is determined by the underlying cosmology. So by measuring the local bulk flow

through peculiar velocities we gain constraining power on the underlying cosmol-

ogy. A very popular probe of peculiar velocities is the standardisable candle type
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Ia supernovae (SNe). In the following chapters the source of the peculiar velocity

measurement is assumed to be one behaving like type Ia SNe, although the meth-

ods derived are equally valid for other distance indicators as long as they measure

position on the sky, distance and peculiar velocity.

As mentioned above the pursued observable is the peculiar velocity of nearby

galaxies. What we directly observe is the redshift of the host galaxy, zobs, as

well as the distance modulus, µobs, derived from fitting an empirical model to the

light curve of the type Ia SN. To convert the distance modulus to a distance and

recession redshift, zr, we need to assume a cosmological model. See Fig. 1 for

a schematic overview of the measurement method. This makes it more difficult

to use type Ia SNe observations to distinguish between different models and de-

termine which is the better model, but it has little effect if the objective is to

perform best parameter estimation for a specific model. Finally we can combine

the recession and observed redshift to derive the line-of-sight peculiar velocity of

the galaxy

v = v · r̂ = c

(
zobs − zr
1 + zr

)
(1)

where c is the speed of light in vacuum, zobs is the observed redshift of the galaxy

and zr is the redshift due to the comoving expansion of space, also known as the

Hubble flow. v is the full velocity vector and r̂ is the unit vector pointing from

the observer to the observed object. A small but important point is to not use

the simple Hubble law v = cz − H0 d, as is sometimes incorrectly done in the

literature. The simple Hubble law is only appropriate for small redshifts, and will

introduce a significant error on larger scales (Davis & Scrimgeour, 2014).

1.3 Scope of Thesis - Why do we observe?

The field of using large scale bulk flows to constrain cosmology has historically

been plagued by systematic errors and poor results. As we begin using distance

probes where the systematics are understood better, such as the type Ia SNe, we

move into a regime where bulk flow measurements could become a highly valued

addition to the effort of constraining the parameter space of models such as the

ΛCDM. Traditionally a standard χ2 analysis has been used to compare observa-

tions of the three individual bulk flow moments to the theoretical prediction of

zero bulk flow that comes from assuming the cosmological principle to be true at

all scales. When this analysis yields a larger than expected bulk flow it is impor-

tant to be clear about what exactly that means. Does it mean that σ8
1 is larger

than expected? That bulk flows indicate that structure formation has proceeded

faster than expected? Or does it mean that bulk flows are faster than expected

1σ8 is the rms mass fluctuation amplitude in spheres of size 8 Mpc h−1 and measures the
normalisation of the matter power spectrum.
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Figure 1: Schematic view of the measurements and method needed to detect peculiar
velocities of nearby galaxies. By observing galaxies and type Ia SNe within those
galaxies we can measure the peculiar velocities and use those observations to test
ΛCDM.

given the structure we see? In one case the bulk flow has revealed a larger than

expected structure, in the other case it indicates that the gravitational influence

of structures is larger than we expected in standard ΛCDM cosmology. In this

thesis we examine what it means to say that a measured bulk flow is larger than

expected in ΛCDM. Through the use of a cosmological simulation we look at the

predictions ΛCDM makes for the velocity distribution of galaxies in a given vol-

ume of space and note how this prediction should be dependent on the geometry

of that volume, i.e. how the velocity distribution changes for equal volumes but

different shapes.

As we shall see in chapter 2 we have an alternative to the standard χ2 analy-

sis of the bulk flow vector components from linear theory where the magnitude of

the bulk flow measurement can be directly compared to the theoretical prediction

of linear theory.

When working with bulk flow vector magnitudes, it is important to take into
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consideration that the distribution of possible bulk flow magnitudes is not sym-

metric around zero, since only positive values are permitted. The main focus of

this work is to investigate the effects of this asymmetry, as well as the effects of

survey geometry, in the context of comparing measurements of the local bulk flow

magnitude with the theoretical prediction made by linear theory. In chapter 2

we introduce linear theory as well as explain how we could practically compare

an observation of bulk flow magnitude to the theoretical prediction. In chapter 3

we define exactly what is meant with geometry in this survey, and introduce the

spherical cone geometry that we will work with in this thesis. Then in chapter

4 we will review the two methods of estimating a bulk flow from peculiar veloc-

ity observations that we apply in this thesis: the Maximum Likelihood Estimate

(MLE) and the Minimum Variance (MV) method. These are the most common

bulk flow estimators used in the literature. In chapter 5 we explain the details

of the cosmological simulation used in this work, the Horizon Run 2 simulation.

The method that we use to test the effects of survey geometry on our bulk flow

magnitude measurements is explained in chapter 6, and in chapter 8 we apply

that method to bulk flow magnitude measurements for various geometries using

the MLE and MV method. Finally in chapter 9 we discuss and summarise the

findings of this thesis.

2 Linear Theory

Before delving deeper into converting peculiar velocity observations to a bulk flow

we will have a look at the theoretical background needed to compare our measured

bulk flow magnitude with a theoretical prediction.

We start by applying the cosmological principle and assuming that the universe

is statistically isotropic and homogeneous. This leads us to predict that the mean

bulk flow velocity at any location is zero. The root mean square (rms) variance

will however not be zero, and depends on the matter power spectrum, the scale at

which it is measured as well as the window function for that measurement. The

matter power spectrum is a way to measure structure in statistical fluctuations

in the cosmological density field. It is measured in units of k which is given by

k = 2π/r (where r is the radial extent defined in chapter 3) and is thus inverse of

length. This inverse relationship corresponds to looking at large scale fluctuations

when we have small k values, and small scale fluctuations when k is large. The

window function is a function of k that measures how sensitive we are to measur-

ing the statistical fluctuations at a particular scale, given by the input value of

k. If the window function is large for a particular k value it means that we are

highly sensitive to measuring fluctuations at the scale k represents; the opposite

is true as well with a smaller value of the window function for a particular k value
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indicating less sensitivity to measuring fluctuations at the scale of k. Understand-

ing the influence of the window function on our measurement is not trivial, but is

nonetheless important when measuring bulk flow magnitudes, particularly for the

Minimum Variance (MV) method.
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Figure 2: Window function for a spherical mock survey containing 100 galaxies.
The window function has been calculated using Minimum Variance (MV) weights
with an ideal radius of 50/10 Mpc h−1 for the blue/red lines. The full, dashed and
dash-dotted lines represent the three spatial components of the bulk flow vector.

If we assume that we are in the linear regime where the infall of mass is a simple

process that includes no rotation or other non-linear terms2, which is typically a

good assumption on large enough scales, then linear theory tells us that the rms

variance should be (Coles & Lucchin, 2002)

σ2
V (R) = 〈V (R)2〉 − 〈V (R)〉2 = 〈V (R)2〉 =

H2
0f

2

2π2

∫ ∞
k=0

dkP (k)W̃ (k;R)2 (2)

where the Hubble constant, H0, growth rate, f , and matter power spectrum P (k)

define our particular cosmology and W̃ (k;R) is the Fourier transform of the win-

2The extreme opposite of the linear regime is the virial regime, which is typically only valid
on small scales.
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dow function, W (R), of the specific bulk flow measurement. The window function

will be dependent on the geometry of the measurements taken to derive the bulk

flow, and is therefore unique for each particular survey. It is often approximated

to be an all sky gaussian window function of the form

W̃G = exp (−(kR)2/2) (3)

which is also what we will use in this work when using Eq. 2 to calculate the

theoretical bulk flow variance for a given effective radius. The Fourier transform

of a particular survey’s window function will only have the same functional form if

it is an all-sky survey, spherically symmetric and gaussian with an effective radius

R (We will define R more carefully in chapter 3). How strongly the window func-

tion of a particular survey will deviate from this gaussian approximation will be

determined by the geometry of the survey in question. To calculate the maximum

likelihood bulk flow magnitude VML(R) we assume that the peculiar velocity dis-

tribution is Maxwellian (Li et al., 2012) which gives us a probability distribution

for the bulk flow amplitude of the form

p(V )dV =

√
2

π

(
3

σ2
V

)3/2

V 2 exp

(
−3V 2

2σ2
V

)
dV. (4)

For this distribution the maximum probability is then given by the relation

VML(R) =
√

2/3σV (R). (5)

When referring to the theoretical bulk flow magnitude throughout this thesis, it

is this maximum likelihood value that we are referencing.

2.1 Comparison with Theory

In the above discussion of linear theory we derived an expression for the maximum

likelihood bulk flow magnitude as a function of scale. We implicitly made the

choice to consider only bulk flow magnitudes; that is we look at the magnitude of

the full three dimensional vector and compare that to the theoretical prediction of

equation 5. It is important to note that this theoretical model has an associated

uncertainty, given by equation 2. Therefore, when using this method to compare

with theory we need to compare our observed bulk flow magnitude with that from

equation 5 and then take into account that both the observed and expected bulk

flow magnitudes have uncertainties associated with them. One advantage of this

approach is that we can fold non-linear behaviour into the powerspectrum, P (k),

term. This is especially useful on smaller scales where the assumption of being in

the linear regime is not strictly held true. However, it requires that the scale at

which we perform the measurement, R, is a well defined quantity. Later, in chapter
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9, we will review the viability of comparing bulk flow magnitude measurements

with linear theory in the fashion explained above, in the context of the main

themes of this thesis; the asymmetry of the bulk flow magnitude distribution and

survey geometry.

3 Geometry Defined

To determine the effects of survey geometry on measurements of the bulk flow,

it is fruitful to first properly define what is meant by geometry. By geometry we

refer to the spatial distribution of the galaxies in the survey used to measured

the bulk flow. More specifically, to define the geometry of a survey, the redshifts,

right ascensions and declinations (or equivalent) need to be known, but not the

measured peculiar velocities. A typical survey would observe a patch of the sky

and all the galaxies in such a survey would lie within a spherical cone, illustrated

in Fig. 3, with a radius given by

r =

(
3V

2π(1− cos (θ/2))

)1/3

. (6)

Here V is the volume and θ the opening angle of the spherical cone. By increasing

the angle to θ = π the spherical cone becomes a hemisphere survey, and for

θ = 2π it becomes an all-sky survey. Most real surveys can be approximated as

having a spherical cone geometry, being either a narrow pencil beam like survey,

a hemisphere survey or an all-sky survey. Therefore the geometries investigated

in this thesis will be spherical cones like the ones illustrated in Fig. 3 with radius

given by Eq. 6.
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Figure 3: Illustration of the spherical cone geometry. When θ = π the spherical cone
becomes a hemisphere, when θ = 2π the geometry is a sphere. Since the volume of
the geometry is kept constant, the radius of the spherical cone geometry decreases as
θ increases towards the maximum 2π. Likewise, the radius diverges towards positive
infinity as θ approaches 0. This puts a practical limit on how small θ can be set.

In the following analysis there are three radii we reference frequently. They are:

1. Radial extent - r

2. Effective radius - R

3. Ideal radius - RI

The first is the radial extent of the data, r(z). The radial extent is the radius

of the largest redshift in the redshift distribution, assuming a certain cosmology

to be true; or put in other words, it is simply the distance to the most distant

galaxy in the survey. The second radius is the effective radius, R, which defines

the radius at which we are aiming to calculate the bulk flow. For a specific survey

with surveyed volume V the effective radius is R = (3V/4π)1/3. This corresponds

to converting the surveyed volume into a sphere with volume V and calculating

the radius associated with that sphere. The effective radius is often used when

comparing results of different surveys with linear theory through Eq. 2. In Fig.

3 we show spherical cones of constant volume but varying opening angle. Since

the volume of all these spherical cones is kept constant, the effective radius R

will also be constant. The final radius introduced is the ideal radius RI . The

ideal radius is used in the construction of an ideal survey, which is given as an

input in the Minimum Variance (MV) method of estimating the bulk flow. The
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constructed ideal radius has a radial distribution that follows the functional form

n(r) ∝ r2 exp (−r2/2R2
I). In chapter 4 we will go into more detail with the role of

the ideal radius, RI , and its effect on the MV bulk flow method.

The ideal radius RI and effective radius R are often set approximately equal.

It can however often be quite difficult to get a meaningful estimate for the ef-

fective radius R for a specific survey, especially if the survey is far from being

spherical.

4 Maximum Likelihood & Minimum Variance Bulk

Flows

To compare the measured bulk flow with the theoretical prediction, it is necessary

to have a method to turn the individually observed peculiar velocities into a bulk

flow. In this thesis we focus on two methods, the maximum likelihood (MLE) and

the minimum variance (MV) methods.

First let us review the assumptions that are made for both methods. The MLE

and the MV methods have in common that they assume that the observational

errors on the peculiar velocities are exactly gaussian in nature. Furthermore linear

theory is assumed to hold so that the line-of-sight peculiar velocity is much smaller

than the cosmological Hubble flow; it will be of order 10-20% of the Hubble flow

for redshifts up to z ∼ 0.01. Finally it is assumed that the non-linear flows on

small scales can be taken into account by a constant cosmic variance term, σ?,

which should be smaller than the average measured peculiar velocities; typically

it is assumed that σ? ∼ 250 km s−1 which is comparable to the expected bulk

flow amplitude. Despite the fact that the assumptions do not always hold true in

the strictest sense, measurements of the local bulk flow are nonetheless a valuable

probe of cosmology, as long as we look in the limit where the assumptions are

true. Furthermore, modern surveys that have just recently been carried out allow

us to move into a regime where the assumptions made above will be adhered to.

This will make bulk flow measurements even stronger at differentiating between

cosmological models that predict the same expansion history than they have been

previously.

4.1 Maximum Likelihood Estimate (MLE)

Of the two methods to estimate a bulk flow, the MLE method is by far the easiest

to implement and is computationally much cheaper than the MV method. It does

however have several disadvantages. Since it is more likely to observe a galaxy

in a dense region than in an underdense one, the MLE method will be density
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weighted rather than volume weighted. Galaxies that are nearer to us typically

have smaller errors on their distance and peculiar velocity measurements, which

means that the MLE method will weigh the nearby galaxies higher than the dis-

tant ones and probe the local bulk flow on smaller scales. From linear theory we

expect a larger bulk flow on average on these smaller scales. This will bias the

MLE method towards measuring bulk flows that are larger than the actual un-

derlying bulk flow of the observed volume. Finally it will have a window function

that is a complex function of survey geometry and measurement uncertainties,

which will be unique for each particular survey. This makes it very difficult to

compare MLE estimates of the bulk flow from different surveys. Nevertheless, its

ease of use and fairly straightforward interpretation have meant that it is the most

common bulk flow estimator used in the literature.

When calculating the Maximum Likelihood Estimate (MLE) of the bulk flow,

the final result is a vector containing the velocity components corresponding to

each of the three spatial dimensions. Each of the three components is given by a

sum over the individual peculiar velocity components multiplied by some weight.

The sum has the form

ui =
∑
n

wi,nSn (7)

where i is the placeholder for either the x, y or z index and the sum goes over all n

peculiar velocities. Sn is the n’th measured peculiar velocity, wi,n is the associated

weight for that peculiar velocity and ui is the calculated bulk flow where again

i = (x, y, z). This equation holds true for both the MLE and the MV methods.

Where they differ is how they go about calculating the wi,n weights.

For the MLE the weights are given by

wi,n =
∑
j

x̂j · r̂n
(σ2
n + σ2

?)
A−1
ij . (8)

The sum is over the j = (x, y, z) components, and x̂j · r̂n is the projection of

the unit vector r̂ pointing from the observer to the galaxy in question. σn is the

uncertainty on the velocity of the n’th measurement, and σ? is a constant of order

250 km s−1 meant to account for the non-linear flows on smaller scales. Finally

A−1
ij is the inverse of matrix Aij given by

Aij =
∑
n

(x̂i · r̂n)(x̂j · r̂n)

σ2
n + σ2

?

. (9)

In practise when calculating the MLE weights the first step is to calculate the

Aij matrix, taking advantage of the symmetry Aij = Aji. The inverted matrix
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A−1
ij is then computed, and the weights wi,n are calculated. This is a fairly simple

process, and is cheap in computation time needed. As described earlier the MLE

method does have a number of downsides that makes comparisons between differ-

ent surveys difficult. For those situations the MV method might be a stronger, but

computationally more expensive, alternative that alleviates some of the concerns

that one might have when using the MLE method.

4.2 Minimum Variance (MV)

The MV method (Watkins et al., 2009) builds upon the MLE method, but con-

structs weights that are volume weighted, instead of density weighted. It is com-

putationally much more expensive than the MLE method. It incorporates a con-

structed ideal survey and minimises the variance between the bulk flow measured

by the survey sample and the bulk flow that would be measured by this ideal

survey. The effect of this is that the MV method has a much simpler window

function that is not strongly a function of the survey geometry, and can probe

the bulk flow at larger scales where non-linear effects from small scale flows are

less significant. The constructed ideal survey is typically an all-sky spherically

symmetric gaussian survey with an ideal radius, RI , that is typically set to 50

Mpc h−1 (Feldman et al., 2010; Ma & Scott, 2013; Watkins et al., 2009), but can

be set to any value dependent on which scale one wishes to probe the bulk flow

at.

The ideal survey is constructed by generating x,y,z coordinates uniformly ran-

domly in the range [−4RI ; 4RI ] and then drawing points according to the dis-

tribution n(r) ∝ r2 exp (−r2/2R2
I). This constructed ideal survey is spherically

symmetric and isotropic. It is constructed such that the window function of the

MV method is sensitive in the range where we wish to probe the bulk flow, namely

on scales of RI . In order to stay consistent RI will be set to 50 Mpc h−1 in this

work, unless otherwise stated. The total number N of points in the constructed

ideal survey is set to 1200 throughout this work. It was found that increasing

the number of points in the ideal survey beyond 1200 did not contribute to the

stability of the MV method but only served to increase the already considerable

computation time.

Like for the MLE method the MV bulk flow vector components ui are given by

ui =
∑
n

wi,nSn. (10)

The tricky bit is then again to calculate the weights wi,n. For i = (x, y, z). For

readability we use matrix notation so that wi,n becomes column matrix wi of n
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elements. We compute wi with

wi = (G + λP)−1Qi. (11)

First let’s discuss the matrices G and P. G is a symmetric square n by m matrix

where n and m correspond to the n’th and m’th measurement. The matrix G is

the covariance matrix for the individual velocities Sn and Sm. In linear theory we

can write the matrix elements Gnm as a sum of two terms

Gnm = 〈SnSm〉 (12)

= 〈vnvm〉+ δnm(σ2
? + σ2

n). (13)

The second term is known as the noise term and is the Kronecker delta function;

0 for n 6= m but σ2
? + σ2

n when n = m. The first term is the geometry term which

is given by

〈vnvm〉 =
Ω1.1
m H2

0

2π2

∫
dk P (k) fmn(k) (14)

where H0 is the Hubble constant3 in units of h km s−1 Mpc−1, and Ω1.1
m is the

growth of structure parameter f2 ≈ Ω1.1
m . P (k) is the matter power spectrum,

which in this work is calculated using CAMB4 (Lewis et al., 2000). The function

fmn(k) is the angle averaged window function which is explicitly given as

fmn(k) =

∫
d2k̂

4π
(r̂n · k̂)(r̂m · k̂)× exp[ikk̂ · (r̂n − r̂m)]. (15)

Although Eq. 15 is often quoted in the literature as the function used to calculate

fmn(k) it is far from being a practical expression and in reality the expression

used is from Ma et al. (2011) who showed that we can express the angle averaged

window function as

fmn(k) =
1

3
cos(α(j0(kA)− 2j2(kA)) ) +

1

A2
j2(kA)rnrmsin2(α) (16)

where

A = ( r2
n + r2

m − 2rnrmcos(α) )0.5 (17)

and α is the angle between the n’th and m’th galaxy given by

α = arccos(r̂n · r̂m). (18)

3Which is always 100, per definition of h = (H0/100) km s−1 Mpc−1.
4http://camb.info/readme.html
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The j0(x) and j2(x) functions are spherical Bessel functions given by

j0(x) =
sin(x)

x
, j2(x) =

(
3

x2
− 1

)
sin(x)

x
− 3 cos(x)

x2
. (19)

Putting all this together gives us the Gnm elements. Finding the Pnm elements of

P is then fairly simple as it is simply the k = 0 limit of fnm which is

Pnm =
1

3
cos(α). (20)

The principal idea of the MV method is to minimise the variance between the bulk

flow measured by the galaxy survey and the bulk flow that would be measured by

an ideal survey. The G and P matrices that we have explained how to calculate

above are the components of the weight calculating that take as input the measured

data. The last component, the Q matrix, takes as input the position and peculiar

velocities from the galaxies of the constructed ideal survey. It is calculated in

much the same way as the Gnm elements with the Qi,n elements being given by

Qi,n =

N ′∑
n′=1

w′i,n′〈vn′vn〉 (21)

and

〈vn′vn〉 =
Ω1.1
m H2

0

2π2

∫
dk P (k) fn′n(k) (22)

where fn′n(k) is analogous to Eq. 16 but with the difference that n′ and n run over

the galaxies in the constructed ideal survey, in contrast to n and m that run over

the galaxies from the actual observed galaxies of our survey. The ideal weights

w′i,n′ will be given by

w′i,n′ = 3
x̂i · r̂n
N

(23)

where N is the total number of galaxies in the constructed ideal survey.

Now the final piece of the puzzle is to solve for the value for λ. λ is a Lagrange

multiplier inherent from the minimisation process. It enforces the normalisation

constraint ∑
m

∑
n

wi,nwi,mPnm =
1

3
. (24)

A simple method to solve for λ is to vary λ and calculate the above sum for each

of them, until a value for λ that makes the above equality true is found.

Calculating the MV bulk flow vector is a rather involved process and is orders

of magnitude more expensive computationally than the MLE method. In this
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work we will perform our analysis using both the MLE and the MV method, as

both have merit in certain scenarios. The MLE method is favourable when the

input data is close to being spherically symmetric, the effects of associated un-

certainties are well understood and computation time is a concern. If the data is

not close to being spherically symmetric the MV method is a stronger choice, at

the cost of computational time. Optimally, both methods should be carried out if

possible.

5 Simulation: Horizon Run 2

The cosmological simulation used throughout this thesis is the Horizon Run 2

(HR2) (Kim et al., 2011) containing 216 billion particles spanning a (7.2 Gpc

h−1)3 volume. It is a dark matter (DM) halo simulation, tracing the motions

of dark matter particles through time. The mass resolution goes down to 1.25 ·
1011M� h

−1. This mass resolution allows for resolution of galaxy-size halos with

mean particle separation of 1.2 Mpc h−1. The power spectrum, correlation func-

tion, mass function and basic halo properties match those predicted by WMAP5

ΛCDM and linear theory to percent level accuracy.

From the full HR2 dataset we draw spherical subsets with radius 1 Gpc h−1.

The origin of each subset is chosen randomly, so that some will be chosen in

higher than average density regions and some in lower than average density re-

gions. Knowledge of our local galactic surroundings could have been folded into

the selection of origins, so that the subsets chosen would more closely represent the

local environment that we find ourselves in. We have not done this, which means

that the results of this work are the zero-knowledge results with no assumptions

made about our position in the cosmological density field. It would be enlightening

to investigate what the effects of assuming the observer to be in an overdense or

underdense region would be on the measured bulk flow for a particular geometry,

but our current knowledge of the local density field is too uncertain to be able to

do this with great confidence.

The HR2 subsets consist of approximately 3.1·106 dark matter haloes, each with

six dimensional phase space information. Unfortunately a mock galaxy survey

that fills the entire volume of the simulation doesn’t exist, so in our analysis we

assume that each DM halo corresponds to one galaxy. The smallest of the DM

haloes are of a mass comparable to that of a galaxy, but the largest DM haloes of

the HR2 simulation have a mass that would be equivalent to hundreds of galaxies.

Effectively we are grouping galaxies in massive clusters into just one datapoint

with the same probability of being subsampled as any other galaxy.
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It is hard to predict exactly how this simplification effects our calculated cosmic

variance, but fortunately a limited number of mock SDSSIII galaxy catalogues

have been produced for the HR2 simulation. In chapter 7 we perform an analysis

of the bulk flow magnitude distribution of galaxies from one such mock catalogue,

and compare the distributions derived from DM halo velocities. Fortunately that

analysis show that the distributions are similar, so that our use of the HR2 simu-

lation in this thesis is justified.

6 Sampling, Completeness & Cosmic Variance

In this chapter the method used to test the effects of a particular survey geometry

on the distribution of bulk flow magnitudes will be broken into three parts, where

each part adds a layer of complexity to the process.
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Figure 4: MLE Sampling variance for a 90 degree opening angle spherical cone,
varying the number n of galaxies used per bulk flow calculation. The asymmetry in
the distribution of bulk flow magnitudes causes the the variance as well as the mean
of the distribution to be a function of n.

The first step is to calculate the sampling variance of a subset of the HR2 simula-

tion. The sampling variance is a measure of how well the observed volume is being

sampled. If all galaxies in a volume have their peculiar velocity measured - which

would be full sampling - the sampling variance would be zero. From the N total

galaxies in the subset, n galaxies are drawn randomly. For these n galaxies both
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the MLE and MV bulk flow is calculated. Another n galaxies are then drawn, and

the MLE and MV bulk flows are calculated again. This process of drawing new

subsamples of n galaxies and calculating the MLE and MV bulk flows is done until

the sampling variance converges. The sampling variance is the variance5 in the

distribution of these calculated bulk flows, for the MLE and MV methods respec-

tively. This is illustrated in the leftmost part of Fig. 7 where the purple gaussian

represents the scatter in the calculated bulk flow values for the particular subset

of the HR2 simulation.
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Figure 5: MLE Completeness variance for a 90 degree opening angle spherical cone,
varying the number n of galaxies used per bulk flow calculation. The asymmetry in
the distribution of bulk flow magnitudes causes the the variance as well as the mean
of the distribution to be a function of n.

In Fig. 4 the MLE sampling variance is computed for a spherical cone geometry

with an opening angle of 90 degrees. As explained above the sampling variance is

simply the variance in the distribution of bulk flows calculated from subsamples of

n galaxies, all taken from the same sample of N galaxies. We would expect that

the sampling variance would decrease when we increase n, with the extreme being

the fully sampled situation where n = N and the sampling variance would be zero.

In Fig. 4 we do indeed see that the sampling variance decreases as a function of

5Variance is defined as Var(x) = σ2 = 1
N

∑N
i=1(xi−µ) where µ is the mean of the distribution.
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n, but furthermore we see that the mean of the bulk flow distribution is also a

function of n, decreasing when n is increased. This is a result of the possible values

of bulk flow magnitudes being restricted to only positive values. The distribution

of possible bulk flows is not a symmetric distribution centred on zero, but instead

an asymmetrical distribution restricted to positive values. An example that illus-

trates this well is an observer embedded in a completely isotropic and spherically

symmetric bulk flow constructed so that the sum of all the peculiar velocities is

exactly zero. If we incompletely sampled this bulk flow, the peculiar velocities in

our sample wouldn’t add up to zero, and we would estimate some non-zero bulk

flow magnitude. This would be true no matter how many times we would perform

this incomplete sampling - each time we would come up with some non-zero bulk

flow magnitude so that in the end we would converge towards a distribution with

some non-zero mean and variance. The less complete our sampling would be, the

larger this variance would be, so that we more often than not would find ourselves

estimating a fairly large bulk flow magnitude. This in turn effects the mean of the

distribution; the variance and the mean of the bulk flow magnitude distribution

are related in much the same way that the variance and mean of the Poisson dis-

tribution are.
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Figure 6: MLE Cosmic variance for a 90 degree opening angle spherical cone, varying
the number n of galaxies used per bulk flow calculation. The asymmetry in the
distribution of bulk flow magnitudes causes the the variance as well as the mean of
the distribution to be a function of n. The red vertical line and red shaded areas
are the maximum likelihood bulk flow VML(R) of Eq. 5 with associated 1 and 2 σ
uncertainties.
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The second step is to calculate the completeness variance. The completeness

variance builds upon the method of sampling variance, but adds rotation. For a

particular geometry a subset of n galaxies is drawn, and the MLE and MV bulk

flows are calculated. The geometry is then rotated about origin, creating a new

subset of HR2. From this new subset we again draw n galaxies and calculate the

MLE and MV bulk flow. This process of rotating the geometry, drawing galaxies

and calculating the associated MLE and MV bulk flows is continued until the

completeness variance converges. The completeness variance is the variance on

the total distribution of calculated bulk flows for all rotations of the geometry.

This process is illustrated in the centre part of Fig. 7. For fully spherically sym-

metric geometries the completeness variance is equal to the sampling variance,

since rotation has no effect on the geometry. Just like the sampling variance the

completeness variance is also a function of the number of galaxies, n, used to

calculate the bulk flow magnitude. This is illustrated in Fig. 5 where the com-

pleteness variance has been computed for the same sample of galaxies as was used

when calculating the sampling variance in Fig. 4. From the two figures it is obvi-

ous that the completeness variance is larger than the sample variance, which will

typically - although not always - be the case.

Both the sampling and the completeness variance are specific for the chosen origin.

The sampling variance is specific both to the chosen origin, and the chosen orien-

tation of the survey geometry, where the completeness variance is specific only to

the chosen origin as the orientation dependence is eliminated through rotation of

the geometry around the origin. The final step in the process is to eliminate the

dependence on the chosen origin; this is done when computing the cosmic variance.

The cosmic variance builds upon the completeness variance and adds transla-

tion. When each subset of n galaxies is drawn, the geometry is then rotated and

translated randomly to a new origin in the full HR2 simulation. This is illustrated

in the right part of Fig. 7. The cosmic variance is a measurement of the variance

in the cosmological velocity field. It will depend on the geometry and scale chosen

for the measurement, decreasing with larger scales where the cosmological prin-

ciple becomes a better approximation. Since when deriving the cosmic variance

we are restricted to calculating bulk flow magnitudes that are exclusively positive,

the cosmic variance is also a function of the number of galaxies in each subsample,

n, just like the sampling and completeness variance. This is illustrated in Fig. 6.

In the figure we also have the linear theory prediction, calculated with Eq. 2,

shown as the red vertical line, with the red shading being the one and two sigma

uncertainties. The theoretical prediction does not exactly agree with the peak of

the bulk flow magnitude distribution. Increasing the number of galaxies used to
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Figure 7: Left/centre/right parts illustrates the method used to derive sam-
pling/completeness/cosmic variance. To derive sampling variance a number of dif-
ferent subsets are drawn from the same distribution, each subsample is then used to
calculate a bulk flow and the standard deviation of the calculated bulk flows give the
sampling variance. The completeness variance is similar to sampling variance in that
it draws subsamples from a distribution, and calculates a bulk flow for each of these
subsamples. Additionally it then adds rotation so that a number of subsamples are
drawn with the observer position kept constant, but the orientation of distribution
to draw samples from rotates around the observer position. The completeness vari-
ance is then derived by calculating the bulk flow for all of the drawn subsamples and
calculating the standard deviation of these bulk flows. The cosmic variance is similar
to the completeness variance in that it draws subsamples from different distributions
through rotation, but it differs in that it also adds translation and does not keep the
observer position constant.

calculate each bulk flow, n, above the maximum plotted n = 2000 was attempted,

but did not significantly change this, so the discrepancy between the theoretical

prediction and the prediction from the simulation must come from some other

source. There are two immediate suspects in explaining this discrepancy. The

first is that the theoretical prediction is based on a window function that assumes

a perfectly spherical and isotropic survey. What we used was a spherical cone with

a 90 degree opening angle which has a window function that would functionally

be different from the assumed ideal window function. The second source is that

the figures throughout this chapter have been produced by calculating the MLE

bulk flow a great many times to derive the underlying distributions. The MLE has

a bias towards measuring larger bulk flows than the underlying actual bulk flow,

which could also be part of the explanation of this discrepancy. Please note that

this bias of the MLE is dependent on the uncertainties on nearby peculiar veloci-

ties being smaller than on more distant measurements. In Appendix A we explain

how the peculiar velocity uncertainties were derived throughout this thesis.
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SDSSIII Mock DM Halo

Sampling
variance

n : 50 - (209.7 ± 98.0)km s−1

n : 100 - (175.6 ± 78.3)km s−1

n : 500 - (131.0 ± 41.5)km s−1

n : 50 - (198.2 ± 91.1)km s−1

n : 100 - (169.8 ± 70.7)km s−1

n : 500 - (137.8 ± 36.6)km s−1

Completeness
variance

n : 50 - (209.1 ± 96.3)km s−1

n : 100 - ( 169.0± 75.5)km s−1

n : 500 - (114.1 ± 46.5) km s−1

n : 50 - (202.6 ± 92.7)km s−1

n : 100 - (166.9 ± 73.4)km s−1

n : 500 - (123.8 ± 49.3)km s−1

Table 1: Sampling and completeness variance for SDSSIII mock survey galaxy cat-
alogue and DM halo slice of the full HR2 simulation, for varying number of galaxies
per bulk flow calculation, n. The numbers should be compared across horizontally.
All the numbers are within 0.1 σ of each other, which shows that using DM Halos
gives comparable results to using a mock galaxy catalogue.

7 Mock Galaxy Surveys versus Dark Matter Halos

As explained in chapter 5 a number of mock SDSSIII galaxy catalogues have been

produced from the HR2 cosmological DM halo simulation. One of these mock

SDSSIII catalogues is a sphere with radius 1 Gpc h−1 and origin at (x, y, z) =

(1.8, 1.8, 1.8) Gpc h−1 . From the full HR2 DM halo simulation we slice a sphere

that also has radius 1 Gpc h−1 and origin at (x, y, z) = (1.8, 1.8, 1.8) Gpc h−1.

The sampling and completeness variance are then calculated for both the SDSSIII

mock catalogue and the sliced sphere of DM halos. The sampling variances are

shown in Figure 8 and the completeness variances in Figure 9. What we see is

that, when we use the same number of galaxies per bulk flow, n, the distributions

look very similar. The means and variances of the distributions are shown in Table

1. From Figure 8 and 9, and Table 1 we can see that the distributions of bulk flow

magnitudes, as well as their mean values and variances, are in good agreement.

This shows that it is indeed possible to use the DM halos of the full HR2 simulation

to perform our analysis, including investigating the effects of survey geometry on

the measurements of bulk flow magnitudes.
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Figure 8: MLE Sampling variances for SDSSIII mock galaxy catalogue subsamples
and DM halo subsamples, both taken from the same position in the full HR2 simula-
tion. The bulk flow magnitude variances for the DM halo subsamples are labelled ‘DM
Halo’, with the variances for the SDSSIII mock catalogue samples labelled ‘Mock’.
The individual pairs of bulk flow magnitude distributions (e.g. n = 500, n = 100 and
n = 50) all show similar behaviour in their velocity distributions.
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Figure 9: Same as Fig. 8 but for completeness variance.
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8 Dependence on survey geometry

With the above discussion of how we derive the cosmic variance for a specific

geometry, we are now ready to probe the cosmic variance as a function of survey

geometry. The method used to estimate the cosmic variance is the one explained

above in chapter 6, and the simulation we draw subsamples from is the Horizon

Run 2 simulation, as discussed in chapter 3. Finally, we apply both the Maximum

Likelihood (MLE) and Minimum Variance (MV) methods of estimating the bulk

flow.

In summary, the process carried out to estimate the cosmic variance for a spe-

cific geometry is

1. Choose random point (x, y, z) from HR2 simulation.

2. Place geometry at chosen point (x, y, z).

3. Rotate geometry to random orientation.

4. Sum the velocities of all the N peculiar velocities that now lie within the

geometry to derive actual underlying bulk flow magnitude. Save this value6.

5. From the total N peculiar velocities that lie within the geometry draw n

peculiar velocities randomly.

6. Calculate MLE/MV bulk flows for the chosen n data points.

7. Rotate the geometry to new random orientation.

8. Compute completeness variance. If converged, store calculated MLE/MV

bulk flows. If not converged, return to and continue from step 3.

9. Compute cosmic variance. If converged, end run. If not converged, return

to and continue from step 1.

Above step 4 performs a simple sum over all the peculiar velocities that lie within

the geometry, and then computes the actual underlying bulk flow magnitude. The

mean and variance of the actual underlying bulk flow is therefore also computed

as a function of geometry, but should remain fairly constant as we are keeping the

volume constant as we vary the opening angle of our geometry. We then use this

mean and variance of the actual underlying bulk flow as a benchmark that the

MLE and MV bulk flow magnitude estimates should strive to recreate.

The first scenario we will look at is a spherical cone geometry with a constant

6Used for the ‘VelocitySum’ grey band in Fig. 10 and 11
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volume. The constant volume is set such that when the opening angle is the

maximum 360 degrees possible the radial extent is 210 Mpch−1 (z ∼ 0.07). The

opening angle is then decreased to a minimum of 22.5 degrees where, to keep the

volume constant, the radial extent is increased to 1 Gpch−1 (z ∼ 0.25). The

constructed ideal surveys used in the MV bulk flow estimate have a constant ideal

radius, RI , of 50 Mpch−1 for all geometries. In Figure 10 we see the results of

this analysis. As we expect the mean and variance summed velocities, estimating

the actual underlying bulk flow mean and variance, stay approximately constant

as we vary the opening angle. The summed velocity mean is shown as the dashed

grey line with the grey shaded band being the 1σ variance. The mean of the

summed velocities is of order 100 km s−1, which is in decent agreement with the

theoretical prediction from equation 5 of 60+65
−45 km s−1, using an effective radius

R of 210 Mpch−1.
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Figure 10: Cosmic variance for spherical cone geometries. The angle is varied from
a full sphere of 360 degrees to 22.5 degrees. For more narrow geometries the radial
extent of the spherical cone diverges quickly towards infinity, since the volume is kept
constant. The Minimum Variance bulk flow is calculated with an ideal radius of 50
Mpc h−1.

The mean value of the MLE is shown as the blue dashed line, with the 1σ variance

shown as the blue shaded band. Similarly the mean value of the MV estimate is
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shown as the dashed orange line, with the 1σ variance shown as the orange shaded

area. For geometries close to the fully spherical geometry with an opening angle

of 360 degrees both the MLE and MV estimate agree fairly well with the summed

velocity, but they do both on average overestimate the bulk flow magnitude by

approximately 20 km s−1. Here it is important to remember from chapter 6 that

the mean of the bulk flow magnitude distribution is a function of the number of

galaxies used in the bulk flow estimate, n. In this analysis we used n = 300,

which maybe the cause of this overestimation. Unfortunately due to computing

restrictions it was not possible to confirm if this is indeed the case.
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Figure 11: Cosmic variance for spherical cone geometries. The angle is varied from
a full sphere of 360 degrees to 22.5 degrees. For more narrow geometries the radius of
the spherical cone diverges quickly towards infinity, since the volume is kept constant.
The Minimum Variance bulk flow is calculated with an ideal radius equal to half of
the radial extent, increasing as opening angle decreases.

This slight overestimation of the bulk flow is a constant trend until the open-

ing angle goes below approximately 180 degrees. As we move into the regime

where the opening angle is below 180 degrees both the MLE and MV methods

increasingly overestimate the mean bulk flow magnitude. This trend continues all

the way to the minimum opening angle of 22.5 degrees. If the opening angle were

to be decreased below the minimum 22.5 degrees of this analysis, the radius would
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diverge rapidly, and become too large to fit into the HR2 simulation cube with

side length 7.2 Gpch−1. Therefore we can only speculate about what would hap-

pen if the opening angle was further decreased below 22.5 degrees, but the trend

indicates that more narrow opening angles leads to a larger overestimates on av-

erage of the underlying bulk flow. For the MLE method we could have suspected

this, since we know from chapter 4 that the MLE method weights the peculiar

velocity measurements by their measurement uncertainty, which increases with

distance. This means that for very narrow geometries, where most of the peculiar

velocity measurements are at large distances, those few nearby points will be up-

weighted heavily. From chapter 2 on linear theory we additionally know that on

smaller scales we expect a larger bulk flow measurement, so these few upweighted

nearby points will bias the bulk flow measurements to larger than expected values.

Surprisingly, the MV method doesn’t fare much better than the MLE method;

the results of MLE and MV methods are virtually indistinguishable in this anal-

ysis. The result of the MV method is dependent on the input constructed ideal

survey, which in this case had an ideal radius, RI , of 50 Mpch−1. It could be that

the ideal radius of the constructed ideal survey is simple too small and the MV

method therefore suffers from the same upweighting of nearby datapoints that

then dominate the bulk flow estimate, and biases it towards higher than expected

average bulk flow measurements. To determine whether or not this is the case we

repeat the analysis that produced Figure 10, except this time the ideal radius, RI ,

of the constructed ideal survey is not kept constant. Rather, it is set to be equal

to half of the radial extent, r, of the geometry in question. The precise values

used as a function of opening angle can be seen in Table 2.

In Figure 11 we see the results of this analysis where the ideal radius, RI , is

increased with the radial extent, r. The MLE and summed velocities results are

included for comparison purposes, and are exactly equal to the results of Figure

10. The only difference between Figure 10 and 11 is a slight shift of the mean MV

bulk flow estimate in Figure 11 to lower values, closer to the actual underlying

mean and variance. So even if it seems that increasing the ideal radius, RI , seems

to improve things and move the MV estimates closer to the expected values, the

shift is so small that the improvement is far from being conclusive. From previous

studies (Watkins et al., 2009) we know that the choice of ideal radius may have a

significant impact on the output value of the MV bulk flow estimate, but in our

analysis neither the mean nor the cosmic variance are shifted significantly when

using a different ideal radius.
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Opening Angle - θ Radial extent - r Ideal Radius - RI
1: 360◦ 210 Mpch−1 100 Mpch−1

2: 270◦ 224 Mpch−1 110 Mpch−1

3: 180◦ 267 Mpch−1 130 Mpch−1

4: 135◦ 316 Mpch−1 160 Mpch−1

5: 90◦ 402 Mpch−1 200 Mpch−1

6: 60◦ 516 Mpch−1 260 Mpch−1

7: 45◦ 631 Mpch−1 320 Mpch−1

8: 22.5◦ 1003 Mpch−1 500 Mpch−1

Table 2: The ideal radii, RI , values used to construct ideal surveys as a function of
opening angle θ in the production of Figure 11.

9 Discussion

In the above chapters we have introduced the necessary background to use the

Horizon Run 2 (HR2) simulation to test the effects of survey geometry on the

mean and cosmic variance of the MLE and MV bulk flow estimates, when ap-

plied to points drawn from the spherical cone geometry with varied opening angle

but constant volume. We found that when we restrict ourselves to look at bulk

flow magnitudes both the variance and the mean are functions of the number of

galaxies used in the bulk flow calculation, n. On top of this we found that when

we calculate the cosmic variance as a function of opening angle for a constant

volume spherical cone geometry both the MLE and MV bulk flow estimates have

an increasing bias towards larger than expected bulk flows as the opening angle is

decreased; in other words, the bias towards measuring larger than expected bulk

flow increases when we move away from fully spherical survey geometries and into

more narrow pencil beam-like surveys. These effects make it complicated to use

measurements of the bulk flow magnitude to compare with linear theory as de-

scribed in chapter 2, or with results of other surveys that may not have the same

number of observed peculiar velocities or survey geometry. If one is to perform

such a comparison, great care has to be taken to make sure that the asymmetry

of the bulk flow velocity magnitude distribution as well as the survey geometry

are accounted for.

As an alternative to looking at bulk flow magnitudes, we might instead choose

to look at the full covariance matrix that includes the individual bulk flow mo-

ments, vx, vy and vz. These bulk flow moments are all symmetric distributions

around 0, which means that only the variance, and emphatically not the mean,

is a function of the number of peculiar velocities, n, used in the bulk flow esti-

mate. If we wanted to use the full covariance matrix to compare with theory we

could perform a χ2 analysis, as is also common in the literature (Feix et al., 2014;
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Feldman et al., 2010; Watkins et al., 2009). The χ2 statistic is here defined as

χ2 =
∑
i,j

uiR
−1
ij uj (25)

where ui and uj are components of the bulk flow vector, with i and j being ei-

ther the x, y or z component respectively. Rij is the full covariance for the bulk

flow moments for a specific set of cosmological parameters. This means that the

sum contains nine terms, one for each element of the covariance matrix Rij . The

important thing to note here is that χ2 contains no term from the theoretical

prediction, since the theoretical prediction for the bulk flow components is zero,

independent of scale. The theoretical prediction is however in the form of the

covariance matrix. In most analyses the data are compared to a model and the

purpose of the covariance matrix is to weight the sum by the uncertainties on each

data point. In contrast, here the covariance matrix is constructed from the model,

and represents the model prediction. While the mean bulk flow is predicted to be

zero, the mean absolute value of the bulk flow will not be zero. In other words,

the rms of the bulk flow is what we would expect to see if we find ourselves at a

random position in the universe. The covariance matrix encapsulates this predic-

tion and varies with the cosmological model that is being tested.

To use the χ2 statistic defined in eq. 25 we then need to calculate the bulk

flow vector components ux, uy and uz as well as the full covariance matrix Rij
for a range of parameters, e.g. Ωm and H0, and compare their χ2 values. The

parameter set that results in the smallest χ2 value is then the best fit parameter

set. For a description of how we can calculate the full covariance matrix Rij please

see Appendix C.

Using predictions of linear theory to directly compare bulk flow magnitude mea-

surements with theory, as an alternative to performing a standard χ2 analysis,

is an enticing idea, but as our analysis shows one has to be very careful to take

into account the asymmetry of the bulk flow velocity magnitude distribution, as

well as survey geometry when performing such an analysis. Before such effects

are better understood, it is preferable to rely on the χ2 analysis of the bulk flow

vector components, when comparing bulk flow velocity measurements with theory.

Additionally, future work should redo the analysis of this thesis, but calculate

cosmological parameters rather than bulk flow velocity, and see if the same biases

caused by geometry and asymmetry exist. Since our study shows observational

effects will cause false detections of large bulk flows, it is critical to confirm that

the same observational effects do not bias cosmological parameters.
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A Estimating Peculiar Velocity Measurement Uncer-

tainty

To estimate the peculiar velocity measurement uncertainty, σv, as a function of

redshift we follow the approach of Davis et al. (2011). Using the terminology of

Davis et al. (2011) the measurement uncertainty is

σv = c · σz = c · σµ ·
ln (10)

5

z̄(1 + z̄/2)

1 + z̄
(26)

where c is the speed of light in vacuum, z̄ is the recession redshift and σµ is the

uncertainty on the distance modulus measurement. To obtain an estimate for the

peculiar velocity measurement uncertainty one has the assume a value for σµ, we

have chosen to set σµ = 0.1 throughout this thesis, as it is the value of σµ that

modern type Ia SNe surveys can achieve, although it is a bit lower than what was

possible for legacy surveys where a value of σµ = 0.15 would be more appropriate.

Below is a plot of σv as a function of recession redshift z̄, assuming different values

of σµ.

Figure 12: Peculiar velocity measurement uncertainty σv as a function of recession
redshift z̄ for various values of σµ, following the approach of Davis et al. (2011).
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B Computational Considerations

To perform the analysis of this thesis many thousands of lines of code have been

written. All of the code as well as instructions on how to use the code is avail-

able for public download at https://github.com/Arkioss/MV-MLE-BulkFlow. In

this appendix we will cover some of the broad term considerations that have been

made in this analysis with concerns to the languages used, and the structure of

the programs.

We wanted a code that was easy to understand and modify, but still flexible

so that we could modify it in case we came across something interesting that we

wanted to explore that wasn’t part of the original plan. Therefore we chose to

program as much as possible in Python, since it is a high level language with lots

of useful functions and modules. All of the plotting has been performed in Python

using the matplotlib package, and all the programs that deal with the initial data

handling and sorting have also been written in Python.

When efficiency was a concern we instead used C++, as it offers excellent man-

agement of typing and memory handling which is either impossible or just very

complicated to achieve in Python. Since we would have to calculate both MLE

and MV bulk flow estimates many thousand times, dedicated code was written in

C++ for both the MLE and MV bulk flow estimates respectively. The code used

for the MV bulk flow estimates is based off of Dr. Morag Scrimgeour’s code which

is available for download at https://github.com/mscrim/MVBulkFlow.

Whenever possible we apply both the MV and MLE methods, but since MV

estimates take orders of magnitude longer to calculate than MLE estimates we

need to prioritise where to spend the available CPU time. Since the MV method

attempts to address some of the geometry dependence issues that exist with the

MLE, when computing the cosmic variance as a function of opening angle for the

spherical cone geometry we did that using both the MLE and the MV method.

However, when we look at the distribution of bulk flow magnitudes for the sam-

pling, completeness and cosmic variance we applied only the MLE method. This

is because the main point, that the distribution of bulk flow magnitudes is a func-

tion of the number of galaxies used to estimate the bulk flow, is a valid point for

both the MLE and MV method, and although it would have been preferable to

have the results for both MLE and MV methods it was simply not possible with

the available computing power.
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C Bulk Flow Estimate Covariance matrix

This appendix explains how to calculate the full covariance matrix Rij for the bulk

flow estimate. The discussion here is based on the equations of chapter 2 and 4,

and assumes that the reader is familiar with the terminology introduced in those

chapters. The full covariance matrix Rij is a sum of two terms, the noise term

R
(ε)
ij as well as the geometry term R

(ν)
ij such that we have

Rij = R
(ε)
ij +R

(ν)
ij . (27)

The noise term is given by

R
(ε)
ij =

∑
n

wi,nwj,n(σ2
n + σ2

?) (28)

and the geometry term by

R
(ν)
ij =

Ω1.1H2
0

2π2

∫ ∞
0

dkW 2
ij(k)P (k). (29)

If we from the full covariance matrix Rij then wish to extract the uncertainties on

the individual x, y and z bulk flow moments we simply get the square root of the

diagonal terms so that if i = (x, y, z) then

σi =
√
Rii. (30)
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