
Massively parallel simulation of dusty
protostellar systems

Implementing physically accurate particle simulation for large scale simulations

Masters project

Written by Rasmus Damgaard Nielsen

September 3, 2023

Supervised by

Troels Haugbølle and Åke Nordlund

University of Copenhagen



Name of Institute: NBI

Name of Department: Department of science

Author(s): Rasmus Damgaard Nielsen

Email: xsz511@alumni.ku.dk

Title and subtitle: Massively parallel simulation of dusty protostellar sys-
tems
- Implementing physically accurate particle simulation
for large scale simulations

Supervisor(s): Troels Haugbølle and Åke Nordlund

Handed in: 1. September 2023

Defended: ??

Name

Signature

Date 03-09-2023

Rasmus Damgaard Nielsen



Abstract

The formation of protoplanetary and protostellar systems is a complex and heterogeneous astrophysical
phenomenon driven by the interaction between magnetohydrodynamical dynamics, selfgravitational
forces, radiation, dust etc., all occurring at temporal and spatial scales spanning many orders of
magnitude. These complexities and more make studying the system very difficult, and especially when
it relates to the dust behaviour outside of the mid-plane of a homogeneous disk, many open questions
are yet to be answered. One such unknown is the degree to which the outflows of the disk can transport
away heated dust particles, enriching the surrounding GMC.

In this study, we introduce a high-performance dust simulation incorporated into the state-of-the-art
three-dimensional code, dispatch[1], integrating dust simulation into a highly detailed model of the
magnetohydrodynamics and self-gravity in the system, modelling full dust-gas feedback. This allows
realistic physical modelling of these complex environments all the way from initial collapse to disk
formation. This approach provides a level of detail in studying the process of planetary formation that
would not otherwise be possible, and its usefulness will continue to increase with the rapid development
of supercomputer hardware.

With this implementation, we were able to simulate a protoplanetary system discretized into 1.5 million
cells of gas and magnetism, as well as 60 million dust particles through more than 10,000 years of early
evolution, at a cost of 150ns/particle update. Our findings validate the implementation’s accuracy.
Furthermore from this simulation, we can conclude that the rate of particles passing near the star and
being ejected is highly particle-size dependent but may be up to on order 10% of the total dust budget.
This result is validated by analysing gas tracers simulated by the simulation framework ramses,
although further study at higher resolution is needed.

With this implementation, we have thus taken a step towards enabling further computational studies
of the behaviour of gas in the highly complex environment that is planet formation.

1



Contents

1 Introduction 4

2 The physics of planetary formation 6
2.1 Formation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Navier Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Thin disk model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Self-gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Magnetohydrodynamics and its Role in Planetary Formation . . . . . . . . . . . . . . 9

2.5.1 The Induction Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.2 Magnetorotational Instability (MRI) and Angular Momentum Transport . . . . 10
2.5.3 Magnetic breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.4 Magnetic Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Dust-gas interplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Numerical simulation 13
3.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Grid methods vs Particle methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Grid methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Particle mathods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Mixed Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Time evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Convergence, consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Mesh definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Units and precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 High-performance parallel computation 22
4.1 Single core performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Pointer-based data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.2 Arrays of structures vs structure of arrays . . . . . . . . . . . . . . . . . . . . . 23
4.1.3 Temporal locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.4 SIMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Parallel computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.1 Task parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.2 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.3 Data ownership and locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Massively Parallel Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.1 Global operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Shared vs distributed memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.3 Hybrid parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.4 Shadow copies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.5 Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Good coding practices and object-oriented programming . . . . . . . . . . . . . . . . . 29
4.4.1 Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.2 Cyclic dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 The Dispatch Framework 31
5.1 Object hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Task Queue and Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Independent Timestepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 Paralellization and load balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Patch-based Adaptive Mesh Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.6 Interaction between components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2



5.7 Initialization and Zoom in simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.8 I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Implementing particles 36
6.1 Code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 Particle Timestep Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 Courant condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.4 Initial distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.5 Integration with Self-Gravity and Gas Backaction . . . . . . . . . . . . . . . . . . . . . 41
6.6 Accretion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.7 Normalization and tracer particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.8 AMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.9 Export/Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.9.1 Mode of communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.9.2 Export procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.9.3 Import procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.10 Patch deallocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.11 Data layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.12 I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.13 MPI parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Results 52
7.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.2 Validation of implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.2.1 Near-core behavior and particle size effects . . . . . . . . . . . . . . . . . . . . . 54
7.3 Preliminary physical results: Processing efficiency analysis . . . . . . . . . . . . . . . . 55

8 Conclusion 59

3



1 Introduction

The formation of planets and stars is a complex and multifaceted problem that has long been studied
in astrophysics. One of the key components in this process is dust. Though it may seem insignificant
at first glance, it plays a crucial role in these systems, for one because they are the building blocks of
planets.

Protoplanetary systems are also quite special, in that they are a uniquely high-density region that
varies in temperature from the deeply embedded central disk of only tens of kelvin to the innermost
part of the disk which is heated by the star can reach much higher temperatures [2]. This allows
complex chemical reactions to occur in these regions [3].

Moreover, a solid understanding has large observational implications, since dust is the main opacity
source in these systems. This means that any interpretation of observations of protoplanetary systems
will inevitably draw assumptions from dust models to arrive at the physical properties.

However, the temporal and spatial scales, as well as the breath of physical processes involved make
comprehensive modeling of these systems a daunting challenge: the molecular cloud in which the
protostar is formed has scales of millions of astronomical units (AU) and exists for millions of years,
while the planets are formed at scales of AU and have dominant dynamical timescales similar to the
orbital timescales of years. Moreover, the environment within these disks is not calm and orderly.
Turbulence caused by a variety of factors including the magnetohydrodynamic (MHD) effects of the
weakly ionized gas in the disk can cause dust particles to move in unpredictable ways, complicating
the process of accretion, and magnetically driven outflows drive outflows of gas and dust moving at
immense velocities.

These complexities make the problem of planetary formation a challenging one to study. Observa-
tionally it is now possible to observe protoplanetary disks [4] [5], which provides a wealth of insight,
but sampling biases, optical thickness, and the inability to explore the three-dimensional structure are
natural limitations.

From an analytical perspective, the standard model of accretion disks known as the α disk model [6]
simplifies the problem to that of a viscous very thin disk driven by turbulence gravitationally dominated
by the central star. Other models apply a semi-analytical approach where the assumptions of a number
of symmetries leave only a much simpler one-dimensional model to be computationally solved such as
the model for the disk vertical structure by [7]. For a more complete overview of the theory of the
formation of planets, see [8]

To augment these observational modeling approaches, astrophysicists have turned to large computer
simulations to study this process. However, the vast scales of time and space involved, coupled with
the need to simulate the behavior of countless dust particles in a turbulent, magnetized gas with
self-gravity, make this a computationally tricky problem.

This is where massively parallel supercomputer models [9][10][11][1] come into play. These models di-
vide the problem into smaller parts, distributing these across thousands of processors working together,
distributing the computational resources according to the temporal and spatial scales relevant at each
point of the system. This allows for the simulation of complex, three-dimensional environments over
long periods of time, making it possible to study the process of planetary formation in a level of detail
that would not otherwise be possible. Furthermore, with the rapid development of supercomputer
hardware, this approach will only become ever more feasible. The numerical models can give new
insights into the processes at play and help in identifying the physics that dominate the evolution,
ultimately allowing us to build a better theory for dust dynamics in protoplanetary disks and planet
formation.

In this thesis, we describe the implementation of dust simulation in the massively parallel state-of-the-
art 3-dimensional magnetohydrodynamical and selfgravitational code dispatch [1], allowing highly
accurate simulation of planetary formation.

4



Section 2-5 aims to give a general overview of the physics and computational concerns of the problem,
Section 6 describes the specific algorithms developed in this thesis, section 7 presents the results, and
finally Section 8 provides conclusion and reflections on future work.

5



2 The physics of planetary formation

The process of planetary formation is a complex interplay of various physical phenomena, operating
over a wide range of time and length scales. To understand how we model this process and why being
able to model the dust is so critical from a theoretical and observational perspective, we will in this
section present the relevant physical processes and equations that we will use in our model, such as
hydrodynamics, magnetism, gravity and drag.

2.1 Formation process

Figure 1: Sketch of stellar and planetary formation
involving the relevant scales. For reference, 1pc =
200.000AU. Source: [12]

We will first outline the canonical model for stel-
lar formation, with the general physical principles
sourced from [13].

The formation of planets is fundamentally the
endstage of gravitational instability and collapse
in the interstellar medium (ISM). In certain re-
gions near the galactic midplane, a high density
of gas and dust collects and can cool down to very
low temperature ∼ 20K such that the atoms can
form molecules, giving these regions the name of
"molecular clouds". Turbulence from e.g. shock
fronts of supernovae causes the density within
these clouds to change, resulting in some regions
of higher density[14]. At this point, the self-
gravity of some of these over-dense regions might
be big enough that pressure can not equalize fast
enough to counteract any increase in self-gravity
due to contraction, making it gravitational unsta-
ble and triggering its collapse. The condition for
this instability, leading to contraction under self-
gravity, is described by the Jeans criterion, which
essentially compares the timescale for sound to
propagate across the region with the gravitational
free-fall timescale. A sphere of gas with a sound
speed cs and average density ρ will be unstable
to density perturbations if its diameter is smaller
than

λJ =

√
πc2s
Gρ

(1)

where λJ is the Jeans length, which typically is of order ∼ 0.1pc.

Initially, the core will collapse quickly isothermally, but as the density rises, so does the opacity, and
at some point, the contraction will become adiabatic. At this point, heating will drastically slow down
the collapse as the core becomes adiabatic and pressure forces counteract the gravitational pull. This
object is called the First Larson Core [15]. Slowly shrinking and heating, the center will reach a critical
temperature of 2000 K where H2 dissociates. The dissociation of H2 into free hydrogen atoms acts as
an energy sink, making the collapse almost isothermal again. This process occurs once again on the
free fall timescale, which is much faster than the radiative cooling timescale.

This collapse is halted when all molecular hydrogen is dissociated, and subsequently, hydrogen and
helium are ionized, resulting in a new adiabatic core at 100.000 K at the center. The second Larson
core, or protostar, is formed. At the same time, conservation of momentum means that the infalling gas

6



will have any rotational velocity amplified by 2-3 orders of magnitude. Viscosity between the gas will
then erase all counteracting rotations, resulting in a protoplanetary disk around the protostar. This
disk, partially supported by pressure and partially by centrifugal forces, will stop further collapses and
slowly become more and more defined.

From this point on, any flux of gas and dust from the disc will require dissipation of the associated
angular momentum to accrete. This dissipation can either happen through viscous diffusion, caused
by the differential rotation at different orbits causing shearing turbulence, or it can happen through
magneto-rotational instability (MRI) where the disk rotation "winds up" the magnetic lines. These
wound-up magnetic lines then couple to the gas through its ionized particles, driving an outflow above
and below the disk.

This outflow transports large amounts of gas and dust away, which has been thermally processed by
the large temperatures near the star. This could potentially either enrich the chemical composition of
the molecular cloud material or, if the material cycles back to the outer disk, enrich the outer regions of
the protoplanetary disk with inner-disk material. This is a very difficult process to model analytically,
and the vast scales and complexity of driving physics have until recently made full modeling unfeasible
computationally. Part of the goal of this project is to open the door to further explore this process
computationally.

2.2 Navier Stokes Equations

Fundamentally, any gas is composed of individual particles moving around more or less at random, but
luckily for physicists, they do not do so independently. If they are given enough time, any collection of
particles bumps into each other and exchanges momentum enough such that they can be well described
at any given point simply as a given density having a net velocity v⃗ and a spread of velocities described
by the Boltzmann distribution, parameterized by the temperature field T .

If we take any small box of gas V with a surface ∂V , a few things may happen to this box:

• The gas around the box may push on the box, aka. pressure.

• There may be a differential velocity dragging on the box of gas known as viscosity

• There may be forces acting on the gas in the box, e.g. gravity or magnetism.

• Gas may be accumulating in the box, flowing in through the sides

• The box may move relative to the gas velocity causing advection.

Adding up all of these effects and applying the conservation of momentum and mass, we arrive at the
Navier-Stokes equations:

ρ
∂u

∂t
= −u⃗ · ∇u⃗−∇p+∇ · τ⃗ + f (2)

∂ρ

∂t
= −∇ · (u⃗ρ) (3)

The first equation called the Cauchy momentum equation expresses the force balance, and the second
equation called the continuum equation expresses mass conservation. τ is called the deviatoric stress
tensor, and in all relevant cases here expresses the shearing drag from viscosity.

For numerical simulation, it is advantageous to write directly the time differential of the quantity that
needs to be conserved (in this case ρu). Applying the product rule we can rewrite equation 2 to the
conservative form:

∂(ρu)

∂t
= −∇ · (ρu⃗u⃗)−∇p+∇ · τ⃗ + f (4)

7



Later we will see how this form allows numerical schemes that conserve e.g. mass and momentum
when doing time updates.

As already mentioned, given enough time, any ensemble of particles can be described through a Boltz-
mann steady-state distribution. The mixing time required to reach the steady state distribution around
the mean particle velocity can be estimated as the ratio between the mean free path of the particle l
and the typical relative velocity ∆v

tmix ∼ l

∆v
=

(
√
2nσ)−1

∆v

where σ is the particle cross section and n is the number density. Thus, if we consider free hydrogen
atoms with cross-section π ·(1Å)2 ∼ 10−16cm2 in molecular clouds where densities are around 100 cm−1

the mixing at relative velocities of a few 100 m/s happens on timescales of 100s of years, and class 0
objects with densities 2 orders of magnitude higher has mixing timescales of single years, much shorter
than any relevant free-fall or orbital timescales for an object of 10000 AU. Therefore the assumption
of homogeneous gas is probably reasonable in stellar and planetary formation theory.

2.3 Thin disk model

Although the Navier-Stokes equations are in general highly nonlinear and complex, under some as-
sumptions they can produce elegant analytical models. In our venture to model dust dynamics in a
protoplanetary disk, it is worthwhile to study for comparison the thin disk model of protoplanetary
disks[16]. We will look at a very simple model in which we have the following assumptions:

• The system is in approximately hydrostatic equilibrium, such that time differentials can be
neglected

• The disk is azimuthally symmetric

• The gas has negligible viscosity

• The disk is thin such that sin(θ) = θ

• The shell theorem applies, meaning that gravity is given by f⃗ = −GmM(|r|)
|r|2 r⃗ where |r| is the

distance from the center and M(|r|) is the total mass within this distance.

Under these assumptions, we can simplify the momentum equations to

ρ(u⃗ · ∇)u⃗ = −∇p+ ρg⃗ (5)

=⇒ 1

ρ
∇p = −(u⃗ · ∇)u⃗+ g⃗ (6)

We would like to derive the radial and vertical density profiles (the azimuthal being constant), so
starting with the radial profile R

1

ρ

∂p

∂R
= −

(
uR

∂uR
∂R

+
uϕ
R

∂uR
∂ϕ

+ uz
∂uR
∂z

−
u2ϕ
R

)
−G

M(R)

R2
(7)

= −
∂u2R
2∂R

+
u2ϕ
R

−G
M

R2
(8)

=⇒
u2ϕ
R

=G
M

R2
+

1

ρ

∂p

∂R
+

∂u2R
2∂R

(9)

We used azimuthal symmetry and mirror symmetry across the disc plane to remove the differentials
in ϕ and z, as well cos(z/R) = 1 for the gravitational term. In the typical case, the radial gas velocity
will also be completely negligible removing the last term. This means that in the limit of zero pressure
gradient, we are left with uϕ =

√
GM
R , i.e. regular Keplerian rotation. Any non-zero pressure gradient

8



will be pointing inwards, meaning that the pressure is highest at the center and the gradient with
respect to R is negative. Thus the azimuthal (or orbital) speed will be lower than the Keplerian speed.
As the disk develops, the balance of these terms changes, going from an initial pressure-supported
Class 0 object to a later rotationally supported disk.

Now investigating the vertical profile, we get:

1

ρ

∂p

∂z
= −

(
uR

∂uz
∂R

+
uϕ
R

∂uz
∂ϕ

+ uz
∂uz
∂z

)
−G

M(R)

R2

z

R

Where we used sin(z/R) = z/R. Furthermore, assuming negligible vertical velocity and velocity
gradient with respect to R, we are left with just

1

ρ

∂ρ

∂z
= −G

M(R)

R3
z

Where we recognize the right-hand side to simply be Ω2
kz, with Ωk being the Keplerian rotational

frequency. In the thin disk approximation, given that the disk is optically thin and can radiate equally
from everywhere, the disk will be vertically isothermal. Under this assumption, we can solve the
equation analytically using p = c2sρ:

c2s
ρ

∂ρ

∂z
= −Ω2

kz

=⇒ ρ = ρ0 exp

(
−
Ω2
k

2c2s
z2
)

Defining the disk scale height h = cs/Ωk, we see that the density profile is simply a Gaussian with this
width.

The degree to which all of these assumptions apply to the various stages of the protoplanetary disk
evolution is debatable, but we can use these equations as first-order approximations of the disk struc-
ture, which also gives us some idea of realistic parameters and important structures to capture in our
model.

2.4 Self-gravity

Newton’s law of gravity might seem innocent enough, but with just 3 interacting bodies, analytically
calculating the trajectories is impossible in all but a small selection of cases. For this reason, it shouldn’t
be surprising that modeling the mutual attraction between any two points of any given density field is
completely unfeasible in all but very specific special cases. For planetary models, this means that the
best we can do is to treat any mass from the disk or a protoplanet as perturbations to the solar mass.
The removal of this assumption by itself can be a big advantage of using numerical simulations.

When simulating self-gravity, it is often useful to not solve for the forces directly, but rather to solve
the Poisson equation ∇2ϕ = 4πGρ, and then calculate the gravitational acceleration as ∇ϕ.

2.5 Magnetohydrodynamics and its Role in Planetary Formation

One of the most complex but important aspects in understanding planetary formation is the interaction
between magnetic fields and gas, the so-called magnetohydrodynamics (MHD). Magnetic fields can play
a crucial role in protoplanetary disks due to the low densities and a small ionized fraction in the gas
allowing them to build up. Important MHD concepts to model are the transport of magnetic fields,
their coupling to the surrounding gas, and the removal of angular momentum from protoplanetary
disks. This removal occurs through the magneto-rotational instability (MRI) in the radial direction of
the disk [17] and through magneto-centrifugal winds and jets in the vertical direction orthogonal to
the disk [18].

9



2.5.1 The Induction Equation

Magnetic fields are an integral component of many astrophysical systems, including protoplanetary
disks. To comprehend how magnetic fields evolve and transport, we turn to the induction equation,
a fundamental equation in MHD. The induction equation describes how magnetic fields change over
time due to two processes: advection (mass transport) by the flow of a conducting fluid and magnetic
diffusion.

Mathematically, the induction equation can be expressed as follows[19]:

∂B

∂t
= ∇× (u×B)− η∇2B (10)

Where B is the magnetic field vector, u denotes the velocity vector of the conducting fluid (the gas in
our case, if it is at least weakly ionized) and η is the magnetic diffusivity, a measure of how efficiently
magnetic fields can diffuse through the gas. This diffusivity is defined as the η = 1

µ0σ
with µ0 being

the vaccum permeability and σ being the electrical conductivity.

In equation 10, the first term on the right-hand side represents the advection of the magnetic field by
the fluid flow, causing the field lines to be carried along with the motion of the gas. The second term
represents the diffusion of the magnetic field, which tends to smooth out and disperse the field lines.
The balance between these two processes governs the evolution of magnetic fields in the protoplanetary
disks.

An important special case is if the diffusion term is small compared to the advection term. This
limiting case is called Ideal MHD, and without dissipation the magnetic field and gas will be "frozen"
together, causing the fields to be transported by the gas.

The coupling between the magnetic field and gas can cause magnetic waves to propagate, known as
Alfven waves. In the case of Ideal MHD, these have a velocity [20] of

vA =
|B⃗|
√
ρµ

with µ being the magnetic permeability of the medium. These waves often set the maximal propagation
speed of information, which we will see later is very important for the stability of numerical simulation.

2.5.2 Magnetorotational Instability (MRI) and Angular Momentum Transport

The magneto-rotational instability (MRI) [17] is a critical mechanism that governs the removal of
angular momentum from protoplanetary disks, allowing material to accrete onto the central star and
form planets.

The MRI arises when the gas in the disk rotates at different speeds at various radii causing the
magnetic field lines become to wound up, storing magnetic energy. If the gas is sufficiently ionized and
the magnetic diffusivity is low enough, the MRI can be triggered.

The MRI is significant only when there is a weak magnetic field and enough free charges ( 10−10 in
fractional density) in the disk to cause gas-magnetic field coupling. While the mathematical analysis of
the instability is relatively complex, conceptually it is simple. A field line connecting two fluid elements
at different radii will be stretched in the angular direction by the differential rotation, due to the frozen-
in condition of ideal MHD. The restoring magnetic force will then transfer angular momentum from the
inner fluid element to the outer fluid element resulting in the inner fluid element moving inwards and
the outer fluid element moving outwards, further stretching the field line and amplifying the field. In
the non-linear regime, this creates a turbulent toroidal field which is fed by the energy of the differential
rotation.

10



2.5.3 Magnetic breaking

In the presence of a strong vertical magnetic field during the initial collapse, the magnetic tension
force becomes important and the MRI is suppressed [18]. The differential rotation will try to reorient
the field into a toroidal geometry and in doing so large amounts of angular momentum of the gas are
lost, prompting effective collapse and strong accretion. The angular momentum can be transported
away from the system electromagnetically as a Poynting flux related to the winding of the magnetic
field lines. Alternatively, it may be removed through the launching of a magneto-centrifugal wind or
jet when gas in the upper layers of the disk moving along the field lines reaches an Alfvén velocity
larger than Kepler velocity and is thus ejected from the system carrying with itself a large amount of
momentum.

2.5.4 Magnetic Pressure

In addition to the magnetic field’s role in the MRI and the launching of outflows, magnetic pressure is
another important aspect of magnetohydrodynamics (MHD) that significantly influences the dynamics
of protoplanetary disks.

Magnetic pressure arises from the energy stored in the magnetic field lines as they become tangled and
twisted within the disk. When the magnetic field lines are compressed or stretched due to the motion
of the gas, the magnetic pressure increases, exerting a force on the surrounding material.

Mathematically, the magnetic pressure PB can be expressed as [21]:

PB =
|B|2

8π
(11)

The magnetic pressure competes with the gas pressure within the protoplanetary disk. When the mag-
netic pressure dominates over the gas pressure, the magnetic field plays a significant role in shaping the
disk’s structure and dynamics. This situation can lead to various phenomena, including the formation
of magnetically supported regions or the launching of powerful outflows.

Furthermore, magnetic pressure can also affect the disk’s stability and the formation of structures such
as rings and gaps. In regions where magnetic pressure is substantial, the gas may experience magnetic
levitation, creating regions of reduced density and influencing the accumulation of material.

Understanding magnetic pressure is crucial for characterizing the complex interactions between mag-
netic fields and the gas in protoplanetary disks. It has implications for the formation and evolution
of planets, as well as for interpreting observational data of young star systems. As research in MHD
continues, the role of magnetic pressure in planetary formation remains an exciting and active area of
investigation[21].

2.6 Dust-gas interplay

The motion of dust particles within a protoplanetary disk is significantly influenced by drag forces.
These forces arise due to the interaction between the dust particles and the gas in the disk. The specific
form of the drag force depends on the relative sizes of the dust particles and the gas molecules, as well
as their relative velocities [22].

In the Epstein regime, where the dust particles are smaller than the mean free path of the gas molecules,
the drag force can be described by the Epstein drag equation

F⃗E = −4

3
πρs2yth∆v⃗ (12)

with ∆v⃗ being the gas-dust relative velocity, vth being the gas thermal velocity, ρ being the gas density
and vth being the gas thermal velocity.

11



In the Stokes regime, where the dust particles are larger than the mean free path of the gas molecules,
the drag force is instead described by the Stokes drag equation

F⃗S = −1

2
CDπs

2ρ|∆v⃗|∆v⃗ (13)

where CD is the drag coefficient of order unity.

The finite drag on particles means that they will have a non-zero stopping time, i.e. time scale of
coming to a stop defined as τs = ms/F . The ratio between this number and the timescales of the
relevant dynamics T is defined as the Stokes number S = τs/T , which is a relevant quantity to describe
the hydrodynamical properties of a particle. The dynamical timescale may be the Keplerian orbital
time, or the overturn time of turbulent vortexes. In essence, this number specifies whether the particle
is bound to the gas and simply traces it, or whether it moves decoupled from the gas. This will also
become important later when discussing how to simulate the equations of motion.

When particles become decoupled from the gas, the dust density might locally become a significant
part of the mass. One of the leading explanations for the initial condensation of pebbles of dust into
planetesimals is the streaming instability [23]. For this to activate, the dust-to-gas ratio needs to be of
order unity. Thus the locations and conditions necessary for dust over-densities are of prime interest
to planetary physics.

On the large scales where no significant size selection has occurred, the PDF of dust at different masses
takes the shape of power law distribution [24]. In the protoplanetary disk, the density of dust will
cause these to condense, fracture, and otherwise evolve. In our project, we will neglect this aspect, but
modeling this would be a natural future stem.

There is a priori no reason to believe that any regions would have an over-density of particles would
have any given velocity relative to the gas, nor significant variation in the size distribution in different
regions. Analysing such shifts from homogeneous distributions is one of the principal applications for
a particle solver as part of a larger MHD simulation.

12



3 Numerical simulation

Numerical simulation is a powerful tool for studying complex physical systems like protoplanetary
disks. It allows us to model the behavior of these systems over long timescales and large spatial scales,
providing insights that would be difficult to obtain through observation or experiment alone. This
section provides an overview of the key concepts and techniques used in numerical simulation.

3.1 Discretization

The first step in doing any computational simulation of a physical system is to perform discretization
of the system: trying to simulate the evolution and interaction of virtually infinite numbers of gas and
dust particles and the continuous electromagnetic and gravitational fields in continuous time would be
a hopeless venture.

The solution to this problem is to approximate the physical quantities (pressure, velocity, magnetic
field, gravitational gradient, etc.) with a finite number of variables, which can then be advanced with
finite time steps to approximate the time evolution. Such a numerical scheme is called consistent if the
error in the approximation vanishes as the number of variables and time steps are increased to infinity.

In theory, given realistic boundary and initial conditions, enough patience, and a powerful enough
computer, not much more knowledge is needed to perform a numerical simulation of these systems: do
a naive discretion of the equations with an almost infinitely high resolution in both time and space,
and the output will be arbitrarily close to the analytical result. But of course, we would like to model
the physics as accurately as possible within the given computational constraints, and the rest of section
3 and 4 will explore the techniques used to achieve this goal.

To maximize the "physics for bucks", it is important to consider the scales relevant to the physics under
study. If the resolution chosen is far too large, then computational time and memory are wasted, and
if it is too coarse, then relevant physics may be smoothed over. In this project we would like to capture
the physics relevant to star and planet formation, thus it is important to capture the orbital timescale
and the outflow width in the simulation.

3.2 Grid methods vs Particle methods

In numerical simulations, the fundamental elements of our system either have almost infinitely many
variables (the gas particles) or even uncountable many, as in the case of the continuous magnetic
and gravitational fields. To simulate these systems, it is therefore necessary to approximate the full
complexity with a finite representation which can then be stored and evolved in finite space and time.
This spatial discretization of the physics can be performed in two main ways: using grid methods, or
by describing the system as a collection of meta-particles. These methods have different advantages
and disadvantages, which we will go through here.

3.2.1 Grid methods

In grid methods, we require that all of our variables are represented by scalar and vector fields and
that our time evolution can be written in the form of partial differential equations on these fields. For
the magnetic and gravitational fields, this is fundamentally true, and in section 2.2 we described how
to approximate a gas with such a description, yielding the Navier Stokes equations.

Given these fields and PDEs, we can perform the spatial discretization by defining a so-called mesh1

which splits the domain into a large number of small cells. In each cell, we then approximate each
field to be represented by only a single number or vector (or possibly, one per cell surface if using
"staggered" or offset grids, typical for vector quantities).

With this finite representation, we can come up with many ways of similarly discretizing the differential
equations. We will here present the finite element method but note that other approaches exist, e.g.

1Specifics on how to do this discussed in section 3.5.

13



the Finite Difference Method.

In the finite element method, we integrate the fluxes over the surfaces between the cells and use these
to calculate the changes to the variables in each cell. For instance, consider the equation for the density
ρ of gas in the Navier-Stokes equation:

dρ

dt
= −∇ · (ρu⃗) (14)

Given a cell with volume Vi and boundary ∂Vi, the change in the mass mi within a cell i can be found
by integrating both sides over the boundary:

dmi

dt
=

d

dt

∫
Vi

ρdV (15)

=

∫
Vi

dρ

dt
dV Assuming smooth fields (16)

=

∫
Vi

∇ · (ρv⃗)dV Applying Naviers-Stokes (17)

=

∫
∂Vi

n̂ · (ρv⃗)dA Gauss theorem (18)

And thus we see that the change in the mass is given by the total flux through all the boundaries. An
analogous procedure can be performed for the other simulated quantities such as the internal energy,
momentum, magnetic field, etc., integrating the respective PDEs over each cell.

The next step is to actually calculate the integral of the field values over the faces of each cell. While
the integration of the PDE over the volume of the cell was simply an analytical rewriting with no
approximation, this calculation of the flux is where the approximation comes in. Since we only store
an approximated field representation, we can never calculate this integral exactly, but many numerical
methods exist for doing this with maximal accuracy. For a simple cubic cell mesh of side length ∆x
we can simplify this to first order as a sum over each face, with v⃗j being the jth component of the
velocity, and lj and uj subscripts denoting values at the lower and upper face of the cell:

dmi

dt
=

∫
∂Vi

n̂ · (ρv⃗)dA (19)

≈
3∑

j=1

−ρlj
⃗
vjlj∆x2 + ρuj v⃗uj

j∆x2 * (20)

≈ ∆x3
3∑

j=1

d

dxj
(ρv⃗j) First order taylor expansion (21)

* Since to first order the average of the integrand is simply the central value.

It is worth noting that no matter how precisely we estimate the fluxes, as long as the estimation of
the flux through a cell face is done consistently from both sides, we still have mass conservation. This
is a central advantage of this approach. For the magnetic field update, it is additionally desirable to
conserve ∇·B = 0, and so a special algorithm for calculating the fluxes called "constrained transport"
[25] is used.

To first order, one might just assume the flux to be linear between cell centers as in the above example.
This might work for some applications, but by fitting polynomials to a whole region of cells, we can
approximate the integral to higher accuracy, meaning that a given field can be represented using fewer

14



grid points. This comes at the cost of making each timestep more computationally costly (as well
as possibly more unstable), so the optimal degree of the differentials depends on the specifics of the
problem and should be experimentally tuned.

Within this framework, it is natural to simulate gravity by solving the Poisson equation ∇2ϕ = 4πGρ
for the potential field ϕ(x, y, z, t). This equation can be solved in multiple ways, notably the following
two:

• In the case of a rectilinear grid (i.e. one where all faces are rectangles), this differential equation
can be converted to an algebraic equation using Fourier transforms. By performing inverse
Fourier transforms to both sides one gets −|q|2F(ϕ) = 4πGF(ρ) =⇒ ϕ = 4πGF−1(−|q|2F(ρ)).
Furthermore, if the grid has a constant size in each direction, this can be calculated using the
Fast Fourier Transform (FFT). The problem with this method is that boundary conditions on
the potential or non-cyclic boundaries cannot be solved with this method.

• Alternatively, by discretizing the equation, one can write down the N3-dimensional problem (N
being grid side length) as a linear system to be solved. Although this is far too complex to solve
directly through matrix inversion (since matrix inversion is cubic, the total complexity would be
O(N9)), the Jacobi method can solve the problem approximately to arbitrary precision by taking
a guess for the solution and refining this iteratively. The issue here is that the Jacobi iteration
acts as a diffusion operator on the potential, only approximating the local problems in each step,
meaning that the information takes N2 steps to be communicated across the N cells. The issue
is fundamental that the global problem is solved as a large number of local problems, only slowly
building up the global solution.

To speed up the convergence of Jacobi iterations, multigrid methods work by exploiting the linear
nature of the Laplace equation, solving the gravitational potential of a lower-resolution copy of
the mass distribution, then refining this low-resolution approximation to the global potential
to also approximate increasingly more local structures[26]. This approach can reduce the error
of the solution to the gravitational potential in linear time in the number of cells, which is
asymptotically faster than the fast Fourier method, making this approach very desirable.

Since the time taken by this approach is mainly dependent on the accuracy of the initial guess,
the quality of this is important. Conveniently, the gravitational potential changes according to
the transport of mass, and the mass distribution in a single timestep only changes the level of a
fraction of a cell, therefore the solution to the previous timestep is a nearly perfect guess. This
means that the solver only has to solve the difference in the potential at every iteration, a much
simpler problem.

3.2.2 Particle mathods

Unfortunately, while the grid methods lend themselves naturally to simulating gasses and MHD, they
lend themselves badly to describing dust since the equilibration timescale (∼ the drag timescale) may
be arbitrarily long. This may also be a problem even for gasses in some regions, like the outflow where
high-temperature, high-velocity gas meets colder stationary gas, or in low-density regimens like the
ISM where cold, warm, and hot gas components coexist. With the assumption of a finite number of
different populations, these can be modeled using multiple fluid fields [9].

A particle description, on the other hand, models the system using a collection of so-called metaparti-
cles, each representing a population of gas or dust particles with a given position, velocity, and other
properties. These individual metaparticles can then be updated using the equation of motion given
by drag, gravity, and other potential forces. One such code is Phantom [11]. In this way, multiple
coexisting populations can exist at any given position. Additionally, the trajectories can be tracked,
which can have scientific advantages. On the other hand, these advantages come with some costs:

• Interactions are more difficult to handle efficiently in this setup. Gravity is an all-to-all force,
and drag makes each metaparticle interact with nearby metaparticles, a neighbor relationship

15



that has to be updated frequently. To avoid having to consider every pair of metaparticles, of
which there are quadratically many, it is essential to have some efficient setup for reducing this
problem to a sub-quadratic one. The typical approach taken is using spatial tree structures,
where the space is represented by a tree structure with each node representing a partitioning of
the previous level, with the particles stored in the leaves or nodes of this structure. This makes it
possible to query for particles within some sphere of a given (small) radius from a given particle
by recursively exploring nodes covering regions intersecting with this sphere. This makes collision
detection and handling feasible.

• Gravity can be handled by using the method of softening to the acceleration [27]. Consider the
gravitational force from a small group of particles within a distance of ∆L from each other on a
particle a distance of L away. If ∆L ≪ L, this force is well approximated by the gravitational
attraction from their center of mass. The leading term in the relative acceleration error is the
dipole correction which is at most of order ∆L

L . Thus for an efficient procedure for evaluating
the gravity of all particles, we store the total mass and centre of mass of all particles within
each branch of the spatial tree. For each particle, we recurse through the tree until the size of
the region results in a maximum relative error in the gravitational acceleration that is smaller
than some softening tolerance ϵ (or some other criteria, e.g. based on the contained mass). This
method comes with the advantage that the solution of the potential tracks the resolution in the
particle distribution. Alternatively, if a certain minimum scale is already known, e.g. in the case
where the particle method is coupled to a grid, the mass may be deposited to the grid and the
gravitational potential and force can be calculated at the grid scale using the methods outlined
above.

• While the fluid description naturally handles density variations across many orders of magnitudes
(like the one occurring in the gravitational collapse of a prestellar core) by simply varying the
number representing the density, such a density variation in the particle description corresponds
to a large number of metaparticles condensing into a small area. Thus an excessive amount
of computational resources are used in a small area, while the dynamics in the area with low
density may not be captured at all. This sampling problem can be remedied by splitting particles
far from any others, while pruning particles very close to each other with similar velocities and
representing the same particle type (e.g. 1 mm dust grains). This procedure can be performed
efficiently when the drag timescale is very short, e.g. due to high density, since many particles
will in this case be co-moving and can be merged, but some variation in velocity is inevitable
and will in general result in a loss of information.

3.2.3 Mixed Methods

As demonstrated the grid and particle methods have different strengths and weaknesses. The grid
methods are highly regular and fast and represent gravitational potentials, magnetic fields, and equili-
brated gasses nicely. On the other hand, their fundamental property of representing single-valued fields
lends itself badly to simulating dust, planets, stars, or other “particles” that are collisionless and there-
fore potentially multi-valued in a small volume. The grid methods on the other hand have the exact
opposite properties. As is typical in numerical schemes, it is advantageous to consider a heterogeneous
approach. By carefully overlaying particles moving on a background of gas and magnetic fields, one
can reap the benefits from both methods at the cost of programmatic complexity. The interactions
within this heterogeneous setup can be handled as follows:

• Gravity can be handled by the multigrid Jacobi methods introduced above acting on a source
term of the total gravitational mass, i.e. the sum of gas and particles within each cell. The
resulting gradient of the potential which is calculated to accelerate the gas similarly is added to
the dust acceleration.

• Drag between dust and gas works by calculating the momentum transfer in a timestep from the
dust to the gas in the cell they exist in, and moves that amount of momentum from the dust to
the gas.

16



• In a similar way, accretion can be performed by subtracting mass and corresponding momentum
from the dust particles and gas cells close to a given accretion target and adding it to the accretion
target.

3.3 Time evolution

With the proper spatial representation of the system, we can evaluate a suitable approximation to du
dt =

h(u, x, t) for any property u where u is an arbitrary function, possibly involving spatial differentials.
Mathematically, we would like to evaluate u(t+ dt) = u(t) + h(u, x, t)dt continuously, but numerically
we have to make do with finite evaluations with some finite ∆t. We will take as examples three obvious
choices for how to do this discretization (where i and i + 1 subscripts denote the value at time t and
t+∆t respectively):

ui+1 = ui + h(ui, xi, ti)∆t Forward time diff (22)
ui+1 = ui + h(ui+1, xi+1, ti+1)∆t Backward time diff (23)

ui+1 = ui +
h(ui, xi, ti) + h(ui+1, xi+1, ti+1)

2
∆t Centered time diff (24)

The forward differentiation scheme is called an "explicit" scheme since the right-hand side can readily
be calculated explicitly from the current state of the system. In contrast, the backward and centered
schemes are "implicit" since they are formulated using the system state in the future and are thus
implicit equations in ui+1. For special cases, this can be derived explicitly, but in general, an iterative
solver is used for this. Explicit schemes are typically significantly cheaper to evaluate, but at the cost
of often requiring a large number of evaluations, or even becoming unstable. To illustrate this, let’s
look at a particle moving under drag in a steady liquid, in units where the stopping time is unitless:

dv

dt
= −v (25)

The three discretizations of this problem look as follows:

vi+1 = vi − vi∆t Forward time diff (26)
= vi(1−∆t) (27)

vi+1 = vi − vi+1∆t Backward time diff (28)

=⇒ vi+1 =
vi

1 + ∆t
(29)

vi+1 = vi +
−vi − vi+1

2
∆t Centered time diff (30)

=⇒ vi+1 = −vi
∆t− 2

∆t+ 2
(31)

(32)

It is clear that forward differentiation breaks catastrophically at ∆t = 2: At this point, the time
update exponentially increases the velocity while flip-flopping the direction. Intuitively this is because
we linearly extrapolate the deceleration far beyond time where this is physical. This instability at
large-time steps is normal for explicit schemes and is characterized using the Courant–Friedrichs–Lewy
condition. This heuristically states that the time-step ∆t has some maximum value (in this case, 2
times the stopping time) above which it does not converge. Therefore we should choose the timestep
to be some fraction (called the courant number, C) of this maximum stable timestep.

Calculating this maximal stable value is difficult for all but the simplest schemes, and will typically
depend on the state of the system, like the gas viscosity in the example above. For grid-based methods,
the Courant number is often a function of the smallest time for information propagation across a cell,
i.e. in a simple hydrodynamic fluid it is

δtmax ∝ max{v + cs, v − cs}/∆x (33)

17



10 2 10 1 100

Time step

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r a
t t

=5

Error of integration of dv/dt=-v using different schemes
Forward difference
Backward difference
Centered difference

Figure 2: Convergence behavior of various integration
schemes. The oscillation breakdown of the implicit
schemes is not visible, since they still damp the velocity.
The dip for the forward difference is artificial: it simply
corresponds to an oscillating solution that randomly is
near.

with the exact proportionality constant depend-
ing on the exact method used.

The two implicit schemes, on the other hand,
have very different behavior for ∆t ≫ 1: As we
can see from figure 2, the error increases for larger
timesteps, but this is simply a misestimation of
the exact breaking behavior and not numerically
unstable behavior. This means that if we are
integrating particles through a low Stokes num-
ber, i.e. high-density gas where the stopping time
may be orders of magnitude lower than any scales
of interest, an implicit integrator may drastically
speed up computations.

In figure 2 it is also worth noting the slope of
the schemes. While the error of the forward and
backward difference decreases linearly in the time
step, the error of the centered difference scheme
decreases quadratically. This shows that while
both methods are convergent, meaning that they
will in theory exactly replicate the correct physics if allowed small enough time steps, the centered
difference method will achieve the desired accuracy using far fewer time steps.

3.4 Convergence, consistency

A discretization of a differential equation is said to be convergent if results from simulations performed
at increasingly higher resolutions approach a fixed value, while it is called consistent if this fixed
value is physically correct. To show this property mathematically, one must show that any error
scales inversely with the resolution, and thus disappear for infinite resolution. Total convergence of
a numerical scheme as the resolution approaches infinity is typically impossible, due to the finite
precision of floating points on computers, but instead, the scheme is analyzed under a computational
model assuming infinite precision.

For example, to show analytically that the forward time difference discretization of the drag problem
is consistent, as figure 2 indicated, consider the relative error in the value of vi+1 given a value vi:

∆vi+1 = vie
−∆t − vi(1−∆t)

= vi(1−∆t+O(∆t2)− vi(1−∆t)

= viO(∆t2)

Thus the error of each timestep is quadratic in the time step and the method is said to be accurate to
first order.

This mathematical proof of convergence gives certainty in the method, but for highly coupled, het-
erogeneous simulations, showing this is often impossible. Furthermore, for physical study the error
of interest is typically not the microscopic error of each quantity, but one of the statistical and/or
macroscopic quantities, e.g. the initial mass function, the strength of an outflow, or the flux of dust
crossing some barrier, etc. This much weaker "convergence" criteria can be experimentally validated
by performing experiments at increasingly higher resolutions, with the assumption that if the quantity
approaches some value this is physical, while a spurious result arising due to resolution or quantization
effects would disappear at higher resolutions.

18



Although there are many dials to tune when it comes to varying the resolution, some of which we will
discuss in section 3.5, it is often not meaningful to tune these independently. If we decrease the timestep
by some orders of magnitude, we may remove a large fraction of the temporal discretization error,
but the spatial error remains, meaning that small structures can still not be represented. Worse, as
argued in the previous section, increasing the spatial resolution independent of the temporal resolution
increases the Courant number and may make the whole simulation unstable. In general, we want to
pick the lowest hanging fruit, and so if any individual source completely dominates the error, improving
this should be prioritized.

3.5 Mesh definition

When defining the mesh, there are two main decisions to make:

• Regular or irregular: The domain can be split into a regular pattern using eg. wedges, cubes, or
some other shape, or it may be using a more irregular partition, shaped to reflect the domain of
interest, e.g. according to the shape of a wing in aerospace applications. In general, the regular
grid is much more computationally efficient, so in a case like a planet and star formation where
the modeled physics is not affected by rigid boundaries present in e.g. engineering problems of
the flow around a structure, regular is an obvious choice.

• Static or Adaptive: The mesh defined can either stay constant during the simulation or dynam-
ically adapt to structures that form in the simulation, like turbulence vortices or overdensities.
When simulating a star-forming region, we would like to model outflows, disks, envelopes, shocks,
etc. with much higher accuracy than the rest of the system. Unfortunately, we do not a priori
exactly know where these will form, so the solution is to allow the grid to adapt in a process
called adaptive mesh refinement (AMR). This significantly complicates the algorithms, but given
the vast range of scales involved, this is a necessary sacrifice.

As one might imagine, there are many additional implementation choices to make for such an
adaptive mesh, such as when to refine, how often to allow the grid to change, etc. One of the
most important of these choices is how big of a region to refine at a time: If we refine just a single
cell at a time if it exceeds some set criteria, then the mesh will be able to very accurately capture
features of interest like shocks or outflows. But on the other hand, the resulting highly irregular
mesh is computationally not very efficient. On the other hand, some AMR techniques refine
whole blocks of cells at a time, and thus do not quite as precisely refine the areas of interest, but
may be more computationally efficient.

The type of mesh refinement used in this project is called patch-based AMR, illustrated in figure 3
against "standard" cell-based AMR. This works using "patches" of 2n x 2n x 2n cells, where each
corner of n x n x n cells can be further refined to a new patch of 2n x 2n x 2n cells. This multiplies
the scales that can be represented by a factor of a half and the volumes in each cell are reduced to
an eights2. These coarse regions of refinement have computational advantages, in that a large number
of cells (8n3) can be updated in one go, minimizing the computational time used on overhead related
to the tree-based mesh for each cell update. If the size of the full domain has a side length of L
and k recursive refinement steps are allowed, then the highest resolution cells have a side length of
Ln = L

2k·n = L ·2−k−4. Here n is chosen as a trade-off between computational efficiency and the ability
to adapt the mesh to the physical structures modeled, with 16 being a reasonable choice that will be
assumed going forward. To for example perform a simulation spanning from the scale of a molecular
cloud ( parsec) to the scale of tens of cells within a single orbit ( au), i.e. about 6 orders of magnitude,
this requires about 20 levels of recursive refinement.

One complication when using AMR is that to calculate the differential operators for time evolution, it
is necessary to gather eg. the gas properties in the neighboring region. If the neighbor patches are at
a lower resolution, these might have to be interpolated to the desired position. For very fine-grained
AMR, this means that each cell update can require a very large number of accesses to data which

2Though other splitting ratios could be chosen

19



Cell based AMR, Total cells: 469 Patch based AMR, Total cells: 656

Figure 3: Example of Adaptive Mesh refinement, where the area of interest (the center) has much higher
resolution. Thin lines delineate cells, while thick lines delineate separate patches. On the left, 5 levels of
refinement allow the resolution to closely follow the physical structure, while the 3 levels of refinement to the
right do not follow the borders quite as closely, but the 4x4 cell patches can get the same maximum resolution.
Note that the example on the right has neighboring regions with more than 1 level difference, and thus most
applications would require additional refined patches to be valid. This means that in practice, it requires even
more cells to follow sharp structures.

are scattered around in a not very structured manner. For the patch-based AMR on the other hand,
gathering the neighbor data is only necessary on the boundary, drastically reducing the time needed
to perform this process.

One important consideration when using a variable grid size is that of timestep size. As explained in
section 3.4, the longest timestep allowed is inversely proportional to the cell size. In the example of
resolving the planetary orbits in a molecular cloud simulation, the maximum timestep at the highest
resolution will therefore also be 6 orders of magnitude shorter. In practice, it will be reduced even
more, since even closer orbits now resolved have higher gas and dust velocities. This means that to
efficiently perform AMR it is necessary to allow the timestep to vary between different levels in the
simulation.

It can be advantageous to consider the mesh as a tree, where the full domain is the root, and the
patches in each successive layer of refinement are the children of the patches in the previous layer. In
the case of a 3-dimensional grid where each cell can have each of the 8 corners refined, this is an octree.
For extreme refinement criteria where all possible cells are refined up to the maximum set level, the
mesh is then represented by a complete tree. By considering the mesh in this way, it allows us to make
precise statements about the mesh and the relation between any region of the mesh and its neighbors.

When performing time evolution of the system, it is necessary to gather the information from neighbor
cells to calculate eg. fluxes consistently. To significantly simplify this procedure, it is advantageous to
place spatial restrictions on the mesh, like for the difference between neighboring regions to not have
refinement levels differ by more than 1. The patch-based AMR in figure 3 fails on this. The cost is
that these restrictions make the AMR tree broader than it would otherwise be. Notably, when a region
is chosen to be refined, these requirements may necessitate a cascading of mesh refinements to uphold
this requirement since the new regions refined may recursively require even more refinements, resulting
in worst case a number of refinements linear in the refinement level.

A last important consideration is how to handle regions of the lower-resolution patches covered in high-

20



resolution patches: If some cells have been refined, should the data for these cells still be stored and time
stepped forward? Although this is technically an unnecessary overhead, the direct children covering
any given region will contain 23 times as many cells and require ∼ 2 as many time steps, meaning
that the memory overhead is 1/8 and time overhead is on order 1/16. Even for an infinitely deeply
refined region, the overhead of time-stepping the region in parent patches is

∑∞
n=1

1
(2n)4

= 1/16
1−1/16 = 1

15 .
Therefore, duplicating any work at higher levels can be worth it for simplifying code and avoiding a
bunch of special conditions.

3.6 Units and precision

To represent the physical quantities in the simulation, computers provide floating point numbers na-
tively in two variants: 32 bits and 64 bits, called float 32 and float 64, or single and double precision
floats. Roughly, these represent a number in exponential notation as (−1)s1.f · 2e where s is a bit
giving the sign, f is a binary 23 or 52-bit signed number and e is an 8 or 11-bit signed exponent. This
means that the largest number representable by 32-bit numbers is on order 22

7 ≈ 3.4 · 1038, and for
64-bit numbers 22

10 ≈ 1.8 · 10308.

These might both seem excessively large for any practical application, e.g. but a box with side length
1 pc has a volume of ∼ 3 ·1055cm3, and other quantities like the mass in individual cells can easily have
cgs values far larger than that representable by 32-bit numbers. Furthermore, for many intermediate
calculations, one might calculate arbitrary powers of these numbers.

For reasons of memory use as well as the higher performance of multiplying 32-bit values on most
hardware, we want to overcome this difficulty so we don’t have to double our memory budget. The
solution is to use code units more appropriate for the specific physics and not waste the numerical
range on quantities unfit for the setup. Defining e.g. the unit of length as the total domain width and
the unit of mass to equal the total contained mass we avoid the need for extreme exponents. For some
calculations, accuracy may still dictate the use of higher precision 64-bit numbers, but not having to
use them everywhere has considerable advantages.

21



4 High-performance parallel computation

High-performance parallel computation is an umbrella term for a large number of techniques used
to implement numerical schemes and have them run as fast as possible. For large-scale numerical
simulations such as those in this project, this often allows orders of magnitudes more calculations in a
given time frame compared to naïve implementations in e.g. python, and is thus critical to cutting-edge
computational research.

Any large-scale cutting-edge simulation today is run on supercomputers, which may take up whole
warehouses and have thousands of individual computers, or nodes. Each of these nodes contains up to
hundreds of individual hardware threads that independently perform calculations for a simulation. An
example of such a supercomputer is LUMI, which has 200.00 computing cores and is able to perform
375 × 1015 calculations every second, corresponding to 1.5 million modern laptops3. To utilize this
hardware optimally, simulation software mirrors the hardware and employs a vast range of techniques.
These range from ways to improve the raw performance of the algorithm on the thread level, to how
to split the workload across the threads within a node and across the nodes and communicate together
to arrive at a global solution to finally how to practically organize the complex programs that result.

This section will present the concepts of high-performance computing used in and relevant to this
project. For this reason, this should not be seen as an exhaustive walk-through of concepts in this
field, and many important subjects such as GPU computing, NUMA, parallel I/O, and compiler and
environment configuration are left out since they were not of prime concern in this project.

4.1 Single core performance

Figure 4: Illustration of the Von Neumann archi-
tecture. Source: https://history-computer.com/
the-complete-guide-to-von-neumann-architecture/

The first step in simulating a numerical scheme
as fast as possible is to make sure that the fun-
damental calculations utilize the hardware effi-
ciently. This means understanding the hardware.

The standard model for a single-threaded CPU
is the von Neuman architecture as illustrated in
figure 4. In this model, the CPU has a Control
Unit (CU) which dispatches instructions to the
Aritmetic-Logic Unit (ALU) to perform calcula-
tions on numbers and logical comparisons. These
calculations are performed on data that exist in
the memory hierarchy, ranging from the large-
but-slow Random Access Memory, to increasingly
faster but smaller caches much closer to the CPU.

4.1.1 Pointer-based data structures

The memory on computers can be thought of as
one huge array of billions of byte elements, indexed by a pointer. To store any physical quantity like
a 3-D array of scalars, we map this to a single 1-dimensional array, and this is then stored in a chunk
of the memory array. For systematic structures where we a priori know the data to be stored, we can
request that number and size of memory chunks, and store the data there.

For unstructured data structures such as the AMR tree where the amount and location of refined
regions are continuously changing, we need to store each refined region independently around the
memory so that they can be created and deleted independently. We then couple the different regions
by storing pointers from each refined region to e.g. the parents and children, using a special marker
value if these do not currently exist called a "null pointer".

3Most of this on GPUs

22

https://history-computer.com/the-complete-guide-to-von-neumann-architecture/
https://history-computer.com/the-complete-guide-to-von-neumann-architecture/


The pointer-based structure thus offers flexibility, but traversing this structure requires so-called pointer
chasing where we jump around the memory and have to wait for the next address to be fetched in
order to search for the next pointer in a new location, a process known as pointer indirection. This
can take a significant amount of time, and so should be minimized as possible. Modern CPUs are good
at changing the order of individual operations to keep themselves busy while waiting for memory, a
feature called out-of-order execution, but with hundreds of CPU cycles between each memory fetch
there is little to do. An efficient design therefore has many calculations that can be performed for each
pointer indirection.

4.1.2 Arrays of structures vs structure of arrays

Another important concern for efficient memory use is how CPUs fetch and cache data and how this
interacts with the layout of arrays. Consider the case of a structured mesh containing both gas and
gravitational potential for each cell. In that case, there are two primary ways to store this in continuous
memory: Either we can first store all data for cell 1, then store all data for cell 2, etc., cell by cell,
called "Array of Structures". Alternatively, we can choose to store all density data, then the internal
energy, then each of the components of the momentum, and finally the gravitational potential, called a
"Structure of Arrays". This choice might seem arbitrary, but in actuality can have large performance
implications on modern computers.

The memory system stores its data in chunks of typically 64 bytes called cache lines which are always
moved together. This means that when the CPU requests e.g. a 4 byte float, the memory system also
fetches the next 15 and places them in the closest cache. As other data is subsequently fetched, these
newer data elements will displace this cache line in the closest caches.

This means that if we have a large grid and try to run our algorithm for solving the gravitational
potential, then out of every consecutive 6 values the algorithm only use 2 before the line is purged,
wasting 66% of the memory bandwidth. This is very significant for algorithms that are limited by
memory bandwidth.

4.1.3 Temporal locality

The two previous sub-chapters were examples of problems with bad spatial locality, for 4.1.1 because
the pointers were far away from each other, and for 4.1.2 because the data of interest were interleaved
with data not currently of interest.

Another type of locality of interest is temporal locality. Temporal locality is when an algorithm uses
a piece of data and then uses it again shortly after. Imagine that the whole data structure we are
working on is only a tiny amount of data that can fit in one of the smallest caches. In this case, after
a short time, all data will be in the cache, and thus these problems of low spatial locality matter little:
Data access is going to be fast anyway since the cache stores everything.

The canonical example of an algorithm optimization to exploit this principle is chunked matrix multi-
plication. Consider multiplying two square matrices A and B of size NxN , where only a few rows can
fit in the cache. The naive algorithm will loop over each row in A and each column in B and perform
a dot product to calculate a value in the result. After calculating the first row of results, everything in
the cache has been replaced a few times, and calculating the second row thus involves reloading each
column of B all over. This will repeat N times. The solution to this problem is called chunking. Here,
we consider our matrices to consist of eg. submatrices of 16x16 elements (conveniently, 1-2 cache lines
per row), and perform the matrix multiplication of each of these. This makes sure that at any time
the working data set is probably in the cache, minimizing the time used to reload it.

In numerical simulation, such as grid-based MHD, we run a number of algorithms for each timestep,
such as one to determine the max timestep, one to estimate gas flows, one to update the values, etc. If
possible, by chunking these updates on parts of the grid that fit in RAM, we reduce required memory
traffic from the RAM to the cache from being linear in the number of algorithms to being constant.

23



One thing to remember if doing this, and then trying to diagnose the run-time performance of the
code, is that it might significantly skew relative performance. It can be easy to conclude that one
algorithm is extremely slow as compared to the others, but that might be because the time used to
load the chunk of data into the cache is attributed to only this algorithm.

4.1.4 SIMD

Besides optimizing the memory access, significant performance is to be found with a proper imple-
mentation of the algorithm. In the same way that the cache system is optimized for contiguous access
by loading whole lines, the ALU/CU also has similar optimizations that should be considered. Out of
these, the most significant is the ability of the ALU to perform so-called vector operations known as
the Single Instruction Multiple Data (SIMD) paradigm. These are special instructions that the CU
can dispatch to the ALU where a mathematical or logical operation is performed in parallel on multiple
pieces (vectors) of data. Different CPUs support different vector lengths, typically 128 or 256 bits.
This means that for 32 bit float data, up to 8 grid points/particles can be processed in the same time
as 1 normally. This assumes no overhead and that the memory can keep up. Being able to perform
twice as many calculations in a given time makes 32 bit floats very attractive over 64 bit floats when
core algorithms can be vectorized.

In practice, compilers for languages such as c++ and Fortran are able to detect loops where mathemat-
ical and logical operations are applied to simple contiguous loops, and "autovectorize" these[28][28].
From an algorithmic design perspective then, we mainly need to make sure that we are only using
vectorizable instructions, and ideally, that array sizes are multiples of the vector lengths. The main
restriction here is the use of branches (ie. if statements, and variable length loops) and pointer indi-
rections (different loop iterations jumping unpredictably around memory).

Although one cannot use branches in a vectorized loop, some uses of if statements such as the imple-
mentation of piecewise functions or skipping calculations for individual elements can still be performed
by calculating both results and merging or only conditionally saving the results for elements in the
vectors. In cases where special care needs to be taken for boundary elements, it may also be worthwhile
to split loops up to not have to do this duplicate work for every element.

Since vectorization performs operations on vectors of elements, the Structure of Arrays data layout
discussed in sec 4.1.2 is beneficial, since this avoids having to gather non-contiguous data elements and
shuffle them into a vector.

4.2 Parallel computation

Figure 5: Performance improvement of computer hard-
ware. Source: https://www.karlrupp.net/2018/02/
42-years-of-microprocessor-trend-data/

For decades computational physicists could write
fast sequential codes, and trust the code becom-
ing faster every year, simply because the hard-
ware improved drastically year by year, as shown
in figure 5. Unfortunately, we are not so fortu-
nate anymore. The unstoppable rise of single-core
frequencies stopped around 2005 but engineers
were able to keep the performance going for an-
other 5 years using ingenious tricks such as SIMD,
branch prediction, speculative execution, out-of-
order execution, etc. Since 2010, only incremen-
tal improvement has been seen in this field, and
instead, the main improvement has been made
by fitting more and more independent processing
cores into the same chip.

Today, individual CPUs contain up to 64 physical
cores which can each execute independent code.

24

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/


To exploit this hardware efficiently, we therefore need to understand how to perform parallelization
and map our algorithm to a large number of threads of work that can be run on the cores. On a
practical level, this multithreading is often managed in code using the openmp standard [29].

4.2.1 Task parallelism

Different ways of thinking about parallelization exist. We have already looked at SIMD which is a
version of data parallelism where work units are processing individual pieces of data simultaneously
by splitting iterations of a core loop onto multiple threads. This paradigm is also very applicable to
GPUs or libraries like numpy (where e.g. matmul does this). The problem with this paradigm is that
for problems with lots of dependencies, all threads will be waiting ("synchronize") until all threads
have finished that part of e.g. the loop which is paralleled. This means that if each sub-loop in the
simulation is not sufficiently big to parallelize, we will get bad scaling.

In this project, we will instead use the paradigm of task parallelism, where the total work is split into a
number of pieces of work which each process their own data. Typically these tasks are posted in a task
queue where individual threads that finish their work can fetch a new part of the problem to crunch
until all work is done. This more coarse approach to parallelism requires one to explicitly write the
algorithm for a smaller part of the problem and think about how the solution to individual subproblems
can be combined to solve the global problem. For instance, if one task updates the hydrodynamics on
one part of the grid, and another task updates the next part, who handles flows between them? These
are issues that have to be solved specifically for every given problem but should be kept in mind.

4.2.2 Scaling

An important concept in parallel computing is that of scaling, i.e. "If I get a computer with twice as
many cores, how much faster does my code go"?. Ideally, we would want the answer to be "twice",
but many issues may cause this not to be the case. In the same way that we don’t expect 36 PhD
students to finish a thesis in a month, overheads and communication overhead are all but inevitable.
Specifically, we discuss strong and weak scaling. In brief, strong scaling refers to how the computation
time decreases as more processing units are used for a fixed problem size. Weak scaling, on the other
hand, refers to the ability of a system to handle larger problems as more processing units are added,
keeping the runtime constant.

As an extreme example, consider the case of calculating the mass on a mesh. Here, the volume of each
cell should be multiplied by the density and added up. The simplest algorithm would be one where a
float is initialized to 0, and every thread simply adds to this. Unfortunately, every thread would be
sitting almost all of the time and waiting for their turn to add to the value. Worse even, if (as is the
case for modern CPUs) each core has its own cache, then thread A writing to the value would mean
that thread B’s copy was invalid, necessitating significant time used for data transfer between them.
As a result, this algorithm would have negative scaling.

In this case, an easy fix exists: By having each thread count up their mass in a local variable and adding
them together at the end means each thread only has to modify the global sum once. This shows how
algorithmic implementation can affect scaling, and that minimizing communication improves scaling.

4.2.3 Data ownership and locks

In practice, in the above example of threads adding to a shared mass sum, we would not just see
performance degradation, but rather a completely wrong result. This is because as one thread reads
the sum and is in the process of calculating the new answer, some other thread might already have
updated the sum. This is called a read-after-write hazard, a type of race condition where the threads
are "racing" to modify the same variable, conflicting with each other. Only by using special much
slower "atomic operations", one can get the correct but slow behavior assumed above.

Specifically, this problem is caused by having one thread read from the variable while another writes to
it in an unknown order without coordinating their work. Another problematic case is that of multiple

25



threads writing to the same variable. In this case, the final value of the variable may be that coming
from either of them or possibly even a jumbled mess of the output from one and the other. Lastly in
the case of both threads simply reading the data, there is no potential issue or conflict. A program
taking care of synchronizing the accesses to shared data properly is said to be thread-safe, a property
that is necessary for a multithreaded program.

The most important tool at our disposal to avoid these data races is locks, which for this reason is
provided in openmp. When thread A modifies a piece of data, it sets a flag, "activating the lock"
which specifies that the data is unavailable to other threads. When A is done modifying the data, it
will unset the flag, deactivating the lock. If a second thread B then tries to modify the data, it will see
that the lock is already locked and will wait for its turn. Thus all access will be sequential, avoiding
race conditions. Of course, the time spent waiting by B is wasted so this should be minimized as much
as possible.

Furthermore when using locks one has to take care to avoid deadlocking, where the program halts due
to all threads waiting for a lock. This can be (1) mutual deadlocking where thread A is waiting for
thread B to unset a lock, but thread B has already stopped waiting for thread A to unset a lock, or
(2) recursive deadlocking where a thread has set a lock, but within a function tries to set the same
lock, thus waiting for itself.

One optimization related to locks is the so-called "multi-reader lock" which splits "locking" into re-
questing read access and requesting write access. If the lock is currently under a read lock, any other
threads are allowed to get a read lock, while being activated with a write lock prevents any other con-
current threads from locking. In case data are read often but written rarely, this can be a significant
performance improvement. In our project, we will have dozens of tasks for each thread, and thus only
a small percentage is updating at any one time, so this is very useful.

To avoid these problems of race conditions within the context of task parallelism, it is advantageous
to consider all data to be "owned" by a specific task. Any task is then allowed only to update their
own data and not anything else. Communication between tasks e.g. containing fluxes flowing from one
part of the mesh to another is then handled indirectly by sending messages from one task to another.
Any thread is then free to modify its own data, but if any of it is needed for other tasks, this update
happens under the previously mentioned multi-reader lock.

For locking to work, it is important to consider what a data update is, and thus what should be the
scope of a lock. For performance reasons locks should only be held for as short of a time as possible
for correctness, but no shorter. If e.g. a hydrodynamics update has been run and multiple properties
are being updated, it is not sufficient to lock and update one property at a time. As seen from another
thread trying to read the data, this would manifest itself as the system being in an invalid mixture of
the states from two different times. Thus it is important that all externally visible properties are in
a collective "valid" state at any time the locks are not held. Much optimization work can be done to
make this as granular as possible, eg. by preparing the new state outside of any locks, and then just
swapping a pointer under the lock.

From a programmatic perspective, writing a thread-safe program is often quite error-prone and hard to
debug since errors are non-deterministic and often only occur very rarely. To avoid errors, it is therefore
often useful to use already implemented and tested data structures that handle data modification in
a thread-safe manner. Many such algorithms might exist with different performance and complexity
characteristics, but an important one for this project is the "multi-writer single-reader queue". This
allows many threads to append data to a list and a single thread, the reader or consumer, to modify
and delete this data. This queue is implemented as a list of elements - nodes - where each has a pointer
to the next node (and optionally the previous if so-called a doubly linked list), as well as a pointer to
the first element, "head". This is illustrated in 6. Traversal of the list is done by iteratively following
pointers to the next elements. The advantage is that the addition and removal of elements is local, i.e.
only requires modification of the current element and the pointers of the immediate neighbors, also
shown in the figure.

26



Figure 6: Illustration of the workings of a linked list
source showing from the top (1) a list with 3 ele-
ments, (2) appending an element (3) removal of the first
element. Source https://towardsdatascience.com/
linked-lists-vs-arrays-78746f983267

In the multithreaded multi-writer single-reader
scenario, multiple threads are allowed to append
data to the end of the queue by simply adjust-
ing the pointer of the last node, while locking the
reader thread from deleting this node. The reader
is then free to investigate and modify the data in
the list at any time, even without a lock, since it
is always in a valid state and other threads only
depend on the linking pointers. The reader only
has to acquire the lock for the deletion of nodes.
By encapsulating these operations within a well-
tested module, we can reduce the prevalence of
threading errors and remove the complexity of
the locking mechanism from the algorithm using
it.

This is just one example of a thread-safe struc-
ture, and many others may exist with various
characteristics. For example to adapt the above
structure to be a multi-writer multi-reader queue
(i.e., more than one thread is allowed to mod-
ify and remove elements), one would additionally
have to make use of locks during traversal and
data modification since this might cause a read-
after-write conflict. This is illustrative of the trade-off that is often present in thread-free data struc-
tures where the extra preconditions on the use (in this case, only having a single reader) allow a more
efficient implementation with less locking.

4.3 Massively Parallel Computing

If we want even greater performance than what a single computer can offer and/or want to simulate
a model too large to fit even on a large modern computer, huge supercomputers allow us far more
memory and power than a single computer can offer. In order to use these, we need to be able
to run our program on multiple processes (ranks) that are distributed across the many individual
compute nodes that make up a supercomputer (often one rank per node). Just as openmp provides a
framework for doing multithreading, the message-passing interfacempi is the standard used for node-
to-node parallelization [30]. This might sound like a simple generalization from thread parallelization,
but in practice, a number of complications exist when we try to perform massively parallel computing.

4.3.1 Global operations

While scaling is important for parallel computing within a node, scaling to 50-100 threads is usually
sufficient to get good hardware utilization. For massively parallel computing, on the other hand, any
algorithm has to be able to scale to up to thousands or millions of threads. This means that global
operations such as synchronizing between time steps, agreeing on global step sizes and so on will have
far larger impacts, and global operations should be exceedingly rare to get good scaling in this setup.
mpi provides a number of these global operation primitives such as getting the minimum value of some
variable across all ranks.

4.3.2 Shared vs distributed memory

While different threads on a node have different caches and benefit from working on their own part
of the data, all threads still have access to the same view of the data. If one thread as part of the
AMR refines part of the grid or steps part of the system forward, this update is immediately visible

27

https://towardsdatascience.com/linked-lists-vs-arrays-78746f983267
https://towardsdatascience.com/linked-lists-vs-arrays-78746f983267


everywhere. This is in contrast to distributed memory where each node has its own memory and
updates have to be transferred from node to node over networking.

When using mpi, this message handing is performed completely manually by the program, thus we have
to specify in our data both how to send and receive data. Using this interface, most computing clusters
and supercomputers are able to efficiently transfer messages from any rank to any other rank as defined
by the user. Much can be said about how the physical layout of inter-node networking (the topology)
and how the various ways of sending or receiving messages inmpi have performance implications for
the code, as well as how to avoid deadlocking for nodes waiting to receive messages from each other.
For this project, though this is out of scope since it has not been explicitly applied, but keeping in
mind the asynchronous and distributed nature can be important when interacting between tasks.

One important concern in distributed memory is to minimize the amount of information needed on
each rank. A naive approach to AMR where every node has full knowledge of the AMR tree and
broadcasts any changes e.g. when an MHD update is performed or a region is refined will quickly
swamp the intra-node networking, require large overheads destroying scaling and limit the simulation
size to be able to fit in the memory of each individual node. This is an extension of the practical
restrictions on global operations, further highlighting the importance of local simulations.

4.3.3 Hybrid parallelization

On a supercomputer with thousands of nodes, each with hundreds of cores, one way to run anmpi
application would be to initialize a rank per core. This might work, but the restrictions imposed by
the distributed memory model and unnecessary messages to synchronize ranks residing on the same
node would make this approach wasteful. A more optimal solution is therefore to have one (Or in
specific cases e.g. related to scaling or non-uniform memory access between cores on the same rank,
a few) mpi rank per node, with shared memory parallelization within the rank. This hybrid approach
eliminates overhead, but as with all complexity, there may be a cost in code complexity and potential
for bugs.

Typically it is also the case that for larger subproblems, communication requirements grow slower than
the problem size. Take for example the case of mesh simulation where each rank handles a chunk of the
domain. If the domain is properly split over the ranks, the volume of (and thus the cost of updating)
the chunk handled by each rank goes with the side length cubed. We need to synchronize the data with
other ranks only on the surface of the owned volume, the size of which only grows quadratic. Thus
relativempi overhead decreases with larger problems on each rank, allowed by hybrid parallelization

4.3.4 Shadow copies

When we use hybrid parallelization, any piece of code depending on data from other tasks will have to
find out whether the data for the task is on the same rank or a different rank and gather the data in the
appropriate way, e.g. using reading under a lock or getting thempi message. If we have to perform any
time inter/extrapolation to perform updates, e.g. at the boundary between AMR refinement levels,
we might also have to store previous messages. This can significantly complicate the code.

One solution to handling this complication is to handle it in one place using a technique known as
shadow tasks. Here each rank stores not only the tasks owned by itself but also all tasks needed by
all owned tasks. These tasks are identical to owned tasks when not worked on, but an update of these
only involves gathering data from the owning rank. Thus when accessing other tasks we do not have
to worry about where each task is located, minimizing code volume and the prevalence of bugs.

4.3.5 Load Balancing

When performing a simulation, we need to ensure that no rank falls drastically behind other tasks in
its simulation. In case this happens, other ranks would have to wait to let it keep up. Ideally for a
simulation where each part takes a constant amount of time, simply distributing the tasks properly at
the start should ensure this. But for simulations where the runtime is data-dependent such as adaptive

28



mesh refinement or particles moving around, this might change over time. For this, adaptive load
balancing is necessary.

Adaptive load balancing refers to the process where the tasks are moved around the nodes dynamically
to keep the workload for all nodes constant and reduce or eliminate waiting. To do this, the code
should be able to detect that a node is running behind, and then select an appropriate task to hand
off to another node. Done badly, this might quickly result in tasks being scattered around the system,
raising the amount of intra-node communication needed. To avoid this, the load-balancing algorithm
needs to balance the goal of minimizing the "surface area" between tasks on different nodes, with
quickly addressing nodes falling behind.

When a task is chosen to be moved to another rank, it needs to be transmitted. While a task may
contain data spread across multiple arrays in the memory of the sending rank, all data needs to
be packed together into a single array to be transmitted across the networking. This package is then
unpacked on the receiving end. This serialization/deserialization is conveniently identical to the process
of packing the data into a binary file to store on the disc for later data analysis. Notably, to maintain
correctness, moving individual tasks typically does not only require that specific tasks be moved but
also handles the change in the required shadow copies.

4.4 Good coding practices and object-oriented programming

Given the vast scale of codes required for cutting-edge physical codes simulating complex physics in
an optimized, scaleable manner, the complexity and size of the code can be daunting. This is made
even more true by the fact that for performance reasons compiled, low-level languages such as c, c++,
or fortran are often used for this, further increasing the amount of code necessary. On top of this,
these codes are often developed over the years by teams of people with no detailed understanding of
the code beyond the part they are working on.

Without any further care, a code will quickly devolve into so-called "spaghetti code" where the code
has complex inter-dependencies all throughout, many pieces of the code modifying the same global
data, "temporary" fixes, all making the code error-prone and less and less readable and modifiable
over time. To avoid this, the code must be written according to fixed, well-known patterns agreed
upon by all authors called the programming paradigm.

The probably most used paradigm in large codes is called Object Oriented Programming,. In this
paradigm, the fundamental units in the code are Classes (e.g. "task") and instantiations of these,
Objects (i.e. task #4). A "program" is then viewed as a number of these objects interacting with
each other. Each object has its state, a number of properties (e.g. the data and simulation time), and
actions (functions) that may modify these properties (e.g. "update"). These actions may then have
dependencies on other objects, where invoking one action results in invoking other actions on other
objects (e.g. one task asked whether it is ready to update may have to ask neighbor tasks about their
state).

This paradigm thus offers good encapsulation of behavior and state, meaning that code and data
related to the same thing are kept together in code, making it possible to quickly get an overview of
the actions and dependencies of a piece of code, while modeling an intuitive "interacting objects" view
that improve understanding.

Additionally, most modern languages have building support for object-oriented programming, making
these concepts clear in the code.

4.4.1 Polymorphism

Going further, we often have multiple different sub-types, or derived types, of the "base" classes (e.g.
"gas task" and "particles task" are both a type of task). These derived types then inherit the properties
and actions defined for the more general type of object and are able to add new properties and actions

29



or even overload (redefine) the general ones (e.g. updating different tasks will probably be different
function)[31].

Any piece of code using an instance of the base class should be able to use any of the derived types in
its place (e.g. if a function accepts "task" objects, both "gas task" and "particles task" objects should
work for that parameter). In the language, this is enabled by simply declaring a parameter or variable
"polymorphic"4, in which case an argument of any derived type is accepted. This means that when an
action is invoked on this parameter, multiple different implementations may exist to implement this
action (the different update implementations). To facilitate this, the language will check at runtime
at every use of a polymorphic variable which function implementation should be used, and call this
function. This dispatching to the correct function adds overhead to every function call, along with the
uncertainty inhibiting the optimizing compiler. For this reason, programming languages often provide
both polymorphic and non-polymorphic variables and pointers. In practice, this overhead is rarely
significant, but polymorphic function calls should be avoided in performance-critical loops.

Deciding exactly which objects to define and what properties these should have is more an art than a
science, but the two primary concerns are to minimize code replication while maximizing the readability
of the code. A useful set of guidelines for the design of these classes are the SOLID principles [32].
For example, the Liskov substitution principle states that "Where a base class is used, one should be
able to use a sub-class without any changes", which codifies the expected behavior assumed in the
description of polymorphism above. This principle ensures that it is possible to add new physics to the
existing code, e.g. extending a "star" class to a "supernova star" by deriving the star class without
having to duplicate any code. Thus one can add new physics without having to duplicate any existing
code and use the work already done.

In part to enforce this Liskov substitution principle, programming languages typically do not allow
calling functions or addressing properties defined in a derived class on a variable defined as the base
class. In some cases, this restriction is problematic (e.g. if we know the task is a gas task, it could be
useful to read the density). For this, we have typecasting. In the same way that the dynamic function
dispatch can check the object type and call the correct code, the user code may do the same thing. In
this way, we can go from a base object to a specific derived object and use data and functions specific
to this derived implementation. Casting in this direction is called down-casting. The opposite case of
referring to an object according to one of its base classes is called up-casting.

4.4.2 Cyclic dependencies

In the example above, consider if we want to define an interaction between the different types of tasks.
In this case, each type of task will have to know about all other types of tasks. The reusability is
reduced since these two objects are now inseparably coupled together. From a readability perspective,
cyclic dependencies drastically increase the possible dependencies between objects. Lastly from a very
practical perspective, the coupling means that these objects have to be compiled together, making
retesting slower.

4In fortran by specifying parameters as class

30



5 The Dispatch Framework

The dispatch Framework [1] is a developing computational framework for massively parallel, three-
dimensional simulations of various astrophysical phenomena ranging from molecular clouds simulation
to solar physics. It incorporates a range of advanced techniques to efficiently model complex astro-
physical phenomena in an adaptable, object-oriented framework, making it an ideal tool for studying
the process of planetary formation. Using dispatch, we were able to implement particle integration
as part of a heterogeneous particle-mesh simulation.

This section provides an overview of the key features of the dispatch Framework relevant to this
particle implementation and the constraints of this project.

5.1 Object hierarchy

The dispatch framework is an object-oriented framework for performing task-based multithreaded
simulation. On a basic level, the framework handles pieces of work, objects of type task_t. This
class is a definition of a common interface for all possible physical tasks. By calling functions defined
in this common interface, the framework can instruct the task to perform various actions needed for
the simulation, as well as to query for requirements of the task. A task therefore just has to "do as
instructed", responding to the queries from the framework.

Before the task is instructed to perform an update, the framework has made several checks and prepared
a list of all nearby (neighbor) tasks, the so-called nbor list. When selected for execution, the framework
then instructs the task to update in a series of steps such as courant_condition, pre_update,
and delete. We will mention the specific functions and their purpose when relevant.5.

This framework supports a large number of possible configurations, but in this project, we are de-
scribing simulations of the interstellar medium around a forming protostar. In this setup the space
is split into a large number of individual "patches", volumes of space, represented by the patch_t
type, as well as several (proto-)stars represented by the sink_t type. While sink tasks are relatively
simple and isolated to one module, the patch tasks contain several modules that can individually be
added or removed such as cooling, chemical networks, self-gravity, accelerated coordinate systems, and
magnetohydrodynamic solvers. During each of the task_t calls, any number of these will also need to
be called. The job of coordinating and selecting these physics modules resides with extras_t which
is called whenever a patch is scheduled on a thread for task update. This is illustrated in figure 7.

extras_t

sink_t

physics A physics B

patch_t

task_t

nbors

Patch tasks
Sink tasks

Figure 7: Simplified diagram of the classes of dispatch relevant for this thesis. Thick lines denote inheritance,
e.g. sink_t extends task_t. Thin lines denote dependency, e.g. extras_t imports sink_t. Dashed boxes
show task ownership, e.g. extras_t knows about the existence of sink types, but their data is not owned
by the same task, so reading or modifying has to happen with care under a lock. Notably, this is just a tiny,
simplified slice, but it is enough to understand this project. For instance a level above patch, the gpatch_t
will be neglected.

5To be precise, some of these calls are not done by the framework on the task_t type, but rather by the extras_t
derived type solver_t, which calls these functions.

31



5.2 Task Queue and Scheduling

On a fundamental level, the simulation loop of dispatch consists of several threads each grabbing
a task from a task queue, performing this task, and then grabbing a new one. Each of these tasks
represents a piece of work that needs to be done, which in our case will be updating the state of a
patch of the simulation domain or updating a sink, but in general, could be any number of other
physical processes. By carefully scheduling these tasks in an appropriate order, the scheduler ensures
that the simulation progresses in a coordinated and efficient manner. Before any task is selected by a
thread to be updated, it is first checked that they are ready to update, and e.g. their neighbors are
not too far ahead. If this is not true for any tasks not currently updating, for example, if some tasks
are much slower to advance than others, then many threads will have no work to do, bottlenecking the
simulation as a whole.

To avoid a few tasks holding the whole simulation back and other threads wasting valuable computing
time, there should preferably be 10-100 more tasks than threads at the highest resolution to guarantee
that every thread always has something to work on. This means that at any one time by far most of
the tasks are inactive, and so any temporary data should be removed from tasks between updates to
avoid wasting memory.

An important part of the framework is handling their neighbor list (nbors). To perform the update on
a task, it is often necessary to refer to the state of the surrounding local region, and for this, each task
specifies the "size" of its influence. For patches, this would be their width plus the buffer to include
the region necessary for their spatial derivatives (their "guard zones"), and for sinks the radius from
which they are accreting. The framework then makes sure to give the task a list of references to all
tasks within this distance (neighbors), allowing (relatively) easy implementation of communication on
the part of the task.

Important here is data ownership. Every piece of physics data is owned by a specific task and is
updated by that task, while it can only be read under locks by other tasks. The concept has already
been presented extensively in Section 4.2.3, but the dashed boxes in figure 7 illustrate this concept in
the specific case of our setup dispatch, illustrating the boxes of ownership. If a task leaves its domain,
it has to take care to coordinate this with the (potentially active) owner task.

This neighbor referencing could be problematic if tasks are deleted while their neighbor is referencing
them. For this reason, When a task is marked for deletion they are not immediately deleted. Instead,
they are no longer added to any neighbor lists during task update preparation. By keeping track of
the number of references to any task at any time, tasks are then only deleted when safe. This means
that we do not have to worry about neighbor tasks disappearing at any time.

5.3 Independent Timestepping

In the dispatch Framework, each region of the simulation domain is advanced in time independently.
This independent time-stepping means that e.g. high keplarian speeds, outflows, or shocks anywhere
in the simulation will not require a complete slowdown of the global simulation elsewhere. This is in
contrast to a constant sub-cycling factor where child patches are simply updated twice for every parent
patch update, the approach used in [10]. This approach maximizes the efficiency of the simulation,
ensuring that computational resources are not wasted on unnecessary updates. In addition, a possibly
equally important advantage is the lack of global synchronization or communication needed for local
time-steps, improving scaling.

On the other hand, these advantages do come at the cost of a more complex code. Since neighbor tasks
can be either ahead or behind by any arbitrary amount, when values at a specific time are needed (e.g.
for the spatial differentials in the solvers) it is necessary to interpolate in time. Patches handle this
problem by padding their arrays on either side and filling them up with interpolated values at the start
of the update. This is not free but has the advantage that all solvers can simply operate on standard
contiguous arrays of data and not do special treatment of the boundaries.

32



In the case of e.g. hydrodynamics, independent time stepping can result in two neighbors disagreeing
about the fluxes between them. To solve this, each task can add up this difference and compensate for
the difference later.

Another issue is that patches may end up ahead of a neighbor which is currently propagating a
supersonic shock across the mutual boundary. Not capturing this would quickly destroy the shock. To
avoid this, the situation is detected and the patch update is rollen back the previous step and tried
again with a smaller step using the new boundary values. This is amusingly called a Mulligan, which is
a friendly expression used in recreational golf when a player makes a bad shot and tries again without
getting marked down for it.

These are examples of the care that must be taken at the interactions between patches due to local
time-steps, but in some cases this results in a 30 times speedup [1] so is well worth it for a code made
to have cutting edge performance.

5.4 Paralellization and load balancing

dispatch is made to scale to arbitrarily big systems with perfect scaling demonstrated up to systems
with 100.000 cores [1]. This is possible using the techniques described in section 4.3, i.e. by using
local operations and even local time steps, parallelized using a hybrid parallel approach with openmp
to parallelize on individual nodes and mpi to parallelize across ranks, and dynamically load balancing
across ranks with shadow tasks enabling neighbor accesses across patches.

In dispatch, this is all handled "behind the scenes" by the framework, significantly easing the work
when implementing a physics module. only the serialization methods for transferring tasks across
nodes and serialization of the updates of shadow tasks need to be user-defined.

5.5 Patch-based Adaptive Mesh Refinement

The dispatch Framework uses the patch-based adaptive mesh refinement (AMR) technique presented
previously. This allows extremely high per-cell-update performance (a few micro-seconds each) and
means that all bookkeeping and the function call overhead is amortized over in our case 16x16x16=4096
cell updates. This number is a trade-off between being able to focus the resolution where it is needed
(smaller patches are better) and being able to amortize the constant costs (larger is better). Any
module should be patch size-agnostic such that this can be adjusted according to the specific physical
system simulated.

This adaptive mesh refinement works by allowing each of the eight corners of the patch to create a
"child" patch if any number of refinement conditions are met. This means that a patch can have
anywhere between 0 and 26 neighbors at the same level ("siblings") (3x3x3-1) and 0-64 children. If a
patch is lacking any of its siblings, then the guard zones where this sibling would have been is filled up
using data from one of the parent patches. This would make it very complicated if the parent patches
were also only partially filled, and so dispatch guarantees that any patch will always be completely
"supported" by a full set of parents. These guard zones are then striped again just before the end uf
the patch update to avoid wasting memory: With a required guard zone width of e.g. 3 cells in either
direction, the data including guard zones take up (3 + 16 + 3)3/163 = 2.6 times as much memory as
the patch without.

When we talk about a patch, the region that is covered by it is called the region of authority (ROA),
while the region covered by its guard zones AND itself is called the region of interest (ROI). This
nomenclature will become convenient.

The restrict procedure is a key part of the dispatch Framework’s AMR system. Where a patch has
children, those children provide a higher-resolution version of the same physical system. By averaging
the eight cells in the child patch, the restrict procedure ensures that the state at the lower resolution
region is accurately updated, maintaining the overall accuracy of the simulation.

33



5.6 Interaction between components
While the nbor list makes referencing neighbor tasks
easy, different physics modules on the same patch can-
not call each other. This is intended since these types of
interactions would create cyclic dependencies, make the
code very modular, and generally be a mess. But com-
ing down from the high horse of proper coding practices,
how can e.g. the gravitational solver communicate its
calculated gravitational acceleration to the gas integra-
tor?
For this communication between modules, the informa-
tion has to be communicated in a commonly understood
format, in this case, a float array containing the gravi-
tational acceleration in every cell, with agreement about
whether this, includes guard cells or not. When trans-
mitting the data, we have two approaches illustrated in
figure 8:

Extras_t

Physics A Physics B

patch_t

Connect_t
read/m

odify rea
d/

mod
ify

Figure 8: Illustration of how two physics
modules A and B can communicate without
knowing about each other through a common
interface

• We can "go up" communicating through the extras_t module. In practice this works by having
the functions called by extras_t in e.g. pre_update return the relevant arrays, and then
passing it on to pre_update. This makes the dependence between the modules clear at the
cost of making the extras_t module more complex.

• Alternatively we can "go down" through the patch_t module. By having one module write to
a field in the patch_t object, other modules can later access and read this information. This
makes it simpler for the user to add the module, but can be dangerous if the module writing
data and the module reading it both perform this work e.g. the pre_update function since
the dependency is hidden. In this case, simply doing an innocently looking swap of two lines
can make the code silently fail. In the case of e.g. gravity, this is worth it, since many different
physical modules may be interested in adding sources of acceleration or reading the gravitational
acceleration. Adding these up manually in the extras_t module would be a hassle.

To allow custom modules to add data to the patch_t class without actually modifying the class
directly, one of the properties of patch_t are connect_t which is simply a data member
with no functionality and a handful of members defined for this purpose. This is also where the
above-mentioned gravitational acceleration is communicated.

5.7 Initialization and Zoom in simulations

To simulate a system, we need to start somewhere. This can be some generated initial states such as
some turbulent box of gas and dust, but getting from this state to a system of interest (a collapsing
prestellar core in this case) can require an extreme amount of simulation time. This is especially prob-
lematic since it is unknown a priori where in this model the phenomena will occur, so high resolution
will have to be used everywhere. To speed this up, we use a technique called zoom-in simulations, first
presented in [33]. With this technique, a large supercomputer simulation of a Giant Molecular Cloud
has been run, which spontaneously creates proto-stars of many types. In this simulation, a large num-
ber of individual star systems spontaneously form. We then choose one of the formed stars and select
the data of this system just before collapse. These are now ideal initial conditions for simulating the
collapse and early history of this protostar. We then rerun a new simulation with resolution centered
at this protostar and the bulk movement of the core removed with a Galilean transformation. Thus we
can efficiently focus resolution on the specific phenomena of interest. Notably, we do not completely
remove the data far away from the sink, but simply degrade the resolution. This allows the infalling
gas to form realistic boundary conditions for the sink evolution.

34



5.8 I/O

When running a zoom-in simulation, the starting point is getting the data into the simulation, and
similarly, the endpoint will hopefully be a nice plot in a thesis or paper.

To perform this input and output (I/O), we have to be able to map the storage of the data in the
fields of separate task objects, thousands or millions of separate places in memory, to a format of one
or multiple data files stored on disk. This mapping is called serialization and deserialization and is
similar to what is required when transmitting tasks over MPI.

With our setup, every task is asked at a given cadence, e.g. every 20 years of simulation time, to
serialize their data binary data stream, which is then written serially to the disk, with some metadata
written to help locate the section corresponding to any given task. If these files are to be used for later
restarting, a bunch of data known as the header containing all bunch of metadata is usually written
to the start of this stream to reconstruct it precisely.

It is important to consider the volumes of data this can produce: with a simulation using e.g. 15 GB
of RAM, that will also result in every single data output being at the same size, which can quickly
produce impractical amounts of data and use significant time writing to file

When simulating on a supercomputer, in case the code crashes it is also very practical to be able to
restart the simulation from the point at which it stopped. If such a crash occurs after a million CPU
hours, one will be very happy if it is possible to simply up a few tolerances or decrease the max allowed
courant number and reload the last produced output.

35



6 Implementing particles

With a solid understanding of the physics we attempt to model, the relevant numerical techniques,
computational concerns, and existing framework constraints, this chapter will present the particle
integrator component created in this project. Each subsection will present the solution to a given
subset of the problem.

In broad lines, we have chosen a solver that mirrors how gas and potentials are handled by having
a separate instance of a particle solver handle all particles within a given patch and updating these
in lockstep with the gas solver. This simplifies some aspects, like the fact that a thread owning the
particles can also safely access and modify the gas properties. We will in this section describe how the
implementation solves each of the many sub-problems for such an implementation, namely:

• The overacrching structure of the code implementation 6.1

• Updating the particles one time-step, under the influence of self-gravity and gas drag (6.2)

• Initializing the particle population when a patch is created, either when loaded or when the patch
is refined (Sec 6.4)

• Performing proper two-way interaction between particles and other physics modules 6.5

• Accreting particles (Sec 6.6)

• Making sure that the particle distributions are smoothly represented everywhere (Sec 6.7)

• How to represent particles in a manner consistent with the AMR hierachy (Sec 6.8)

• Transferring particles between patches (Sec 6.9)

• How to handle the removal of patches (Sec 6.10)

• Efficiently representing the data with an eye to precision and performance (Sec 6.11)

• Getting data in and out to be able to restart the simulation and analyze the data (Sec 6.12)

Of note, before this project, a particle module was implemented for the article [34]. This particle
module has been used as a rough template for the work done in this project, but an almost complete
rewrite has been done to significantly simplify the code and use of the module, as well as to much better
handle the interaction with adaptive mesh refinement as well as some other improvements. The only
remainging code are the difinition for how particles are described in memory, some of the assosiated
memory management (allocation, deletion), the time-step algorithm and interaction with self-gravity
as well as some error-checking functions, although no functions have been untouched and no code has
simply been copied untouched. At the end of the description of each sub-module, we will properly
attribute the work.6

6.1 Code structure

The implementation of a particle module will require a large amount of code and hopefully be used for
many years, and thus code quality is important. Therefore, even though this is a physics master, we
will describe the overarching architecture in this section. The code is designed and written with the
following constraints in mind:

• Logical code: The code should be structured in a sensical way, with as few internal cross-
dependencies and "smart tricks" as possible to make it easy to read and modify. To achieve
this on a design level, we split the code into two classes:

6Readers note: The textual description is admittedly in some places quite dense, but this describes in detail the
working principles and considerations behind around 3000 lines of complex, carefully written code. Much about the
implementation has been simplified and glossed over in this description.

36



– particles_t is a container for storing a collection of particles. These particles can be
inside of a patch, on their way from one patch to another. Being a container for particles,
this is where arrays for storing particles are allocated and deallocated and can serialize and
deserialize the data. It has several debug functions to make simple sanity checks for the
validity of the data. Lastly, it currently supports the physics functionality, i.e. functionality
for initializing the particles, renormalizing them, and taking a timestep.

– particle_solver_t is the solver exposing all particle functionality to the extras_t
module such as input/output, calling the appropriate update functions at the correct times
in the dispatch update order. This also involves handling particles moving from one patch
to another which is far from trivial.

The physics-related functions of the particles_t class should probably be moved either to a
separate module exclusively handling the physics or into the particle_solver_t, and are only
in the particles_t class for legacy reasons 7.

On a broader level, we have sought to follow standard coding principles of meaningful variable
naming and code commenting, single-responsibility functions, etc.

• Ease-of-use: Adding particle integration to an existing or new experiment should be as simple
as possible. This involves not locking into physics which may not be appropriate in other ex-
periments, such as stars (sinks), magnetism, or gravity, but also being open to possibly adding
other physics like accelerated coordinate systems. Locking into such a physics module would
also prevent the use of any other module handling the specific type of physics, like a different
gravitational solver.

Most of the particle module exists completely separately from the rest of the code and other
implemented physics and simply operates on the particles within a patch, but several exceptions
exist that must be handled. For example, the effect of their drag and gravity needs to be
properly communicated with other physical modules. These will be handled through the solutions
presented in 5.6.

• The structure should allow a maximally efficient implementation. This does not mean that this
specific implementation should be optimal (surely it is not) but simply that data structures
should be designed to allow efficient processing by storing data in flat arrays with an efficient
representation, and the architecture should minimize the number of necessary data copies and
ensure e.g. not to make polymorphic dynamic function calls in performance-critical loops.

• It should be possible to further adapt the code, e.g. for accelerating coordinate systems, different
integration schemes, or adding charged particles.

In practice to do this, one should make a new type inheriting the particle container or the particle
solver, or possibly both. Then any functionality can be added by overloading the relevant func-
tion(s), possibly subsequently calling the "standard" implementation. As previously discussed,
this requires using exclusively polymorphic type pointers and not relying on the exact type.

6.2 Particle Timestep Procedure

For each patch update, in the same way that the gas properties are updated, so should the particle
positions and velocities. For this we will use a slightly adapted version of the implicit integrator
presented in [34]8. The fundamental requirements of the integrator are as follows:

• Speed. We would like to have 10s of particles per cell. With hundreds of thousands of cell updates
per second per core, this easily translates to hundreds of millions of particle updates per second.

• Stability of long time-steps compared to stopping time to handle light particles and high gas
densities. Thus we need an implicit integrator.

7I.e. "don’t fix it if it ain’t broken"
8Same recipe except for first order Euler instead of leapfrog

37



• Correctness for massive particles. When particles break under friction, they impart momentum
to the gas, accelerating the gas.

The acceleration of a neutral subsonic dust particle of radius s, mass m, position p⃗ and velocity v⃗
under the influence of Epstein drag through gas with density ρ and gas velocity u⃗ and thermal speed
uth and gravitational potential ϕ can be written as

m
dv⃗

dt
= −m∇ϕ+

4

3
πρs2uth(u⃗− v⃗) (34)

= ma⃗g +

√
π

8

1

ρd︸ ︷︷ ︸
cd

mρcs
s

(u⃗− v⃗) (35)

=⇒ dv⃗

dt
= a⃗g + cd

ρcs
s︸ ︷︷ ︸

pc

(u⃗− v⃗) (36)

(37)

Where we defined the gravitational acceleration a⃗g used the dust solid density ρd together with a
spherical assumption on the dust and sound speed vth =

√
π
8 cS to define the drag coefficient cd and

the inverse stopping time pc = 1/ts. Similarly, the position update is simply per definition

dp⃗d
dt

= v⃗ (38)

Instead of integrating individual particles, our scheme of meta-particles requires integrating N particles
at a time. Conveniently, the above equation directly applies to these meta-particles, which we will for
sanity’s sake simply call "particles" from now on.

Since we are integrating massive particles, these impart momentum to the gas. For a particle interacting
under drag with a gas with volume V and density ρg, this can be written as

V ρg
du⃗

dt
−mN

dv⃗

dt
= 0 (39)

To remove references to the volume, it is convenient to parameterize the dust mass per metaparticle
using the total mass per cell volume w = mN

V , changing the above equation to

du⃗

dt
=

w

ρg

dv⃗

dt
(40)

Equipped with these updated equations, we would like to discretize them. As previously discussed,
such a discretization of a linear system can happen in many ways. In this case of a particle solver in
lockstep with the gas solver, the timestep needs to be on order 1/5 of the time taken to cross the cell, i.e.
very short in comparison with eg the orbital timescale. Furthermore, for the hydrodynamical simulator
to be accurate, multiple grid points need to resolve any structure of interest, leading to relatively low
gradients on the scale of a fraction of a cell. On the other hand, particles may be arbitrarily tightly
bound to the gas with potentially stopping times orders of magnitudes shorter than the time step.

Due to these factors, we estimate that a high-order discretization in both time and space is of low
importance, but an implicit solver is of high importance. We, therefore, choose a simple implicit Euler
scheme, with gas properties read and written to the nearest cell center. In this scheme, the two above
equations are parameterized as follows, with values indexed with 0 at the current time t and 1 for the
value after the timestep at time t+∆t:

38



∆⃗v = ∆ta⃗1g +∆tp1c

(
u⃗1 − v⃗1

)
(41)

= ∆ta⃗g +∆tpc

(
−∆⃗v + ∆⃗u+ u⃗0 − v⃗0

)
(42)

∆p⃗d = ∆tv⃗1 (43)

∆⃗u = − w

ρg
∆⃗v (44)

We removed the indexes on the gas quantities and gravitational accretion, since those are updated
independently and for this purpose assumed constant. Solving the unknowns ∆⃗v and ∆⃗u yields:

∆⃗v = ∆t

(
a⃗g + pc(u⃗0 − v⃗0)

)
1 + ∆tpc(1 + w/ρg)

(45)

∆⃗u = − w

ρg
∆⃗v (46)

Conveniently the solution is thus rather simple, and we avoid having to use an iterative solver for the
dust evolution. A few limiting behaviors of this solver are interesting:

• For particles with very little mass w ≪ ρg, the gas remains unchanged as expected, while particle

velocity update reduces to the Euler implicit solver without gas feedback ∆⃗v = ∆t

(
a⃗g+pc(u⃗0−v⃗0)

)
1+∆tpc

• For loosely coupled particles ∆tpc ≪ 1, the denominator reduces to 1, and the update reduces
to a simple linearization of the differential equation

• For tightly coupled particles ∆tpc ≫ 1 and negligible gravity compared to drag, the particle
update reduces to ∆⃗v = u⃗0−v⃗0

1+w/ρg
which for very light particles simply corresponds an instant

velocity change to the gas velocity, while any higher velocity corresponds to inelastic collision.

For the Stokes regime where the gas density is extremely low, these equations do not reflect to quadratic
temperature invariant drag force of Stokes drag, and so will yield wrong trajectories in these domains.
With our interest mainly focused on the inner disk, this has little consequence, and having a more
complex dependency of the drag on the velocity would significantly complicate the derivation of the
drag.

Similarly properly implementing mach number correction to the Epstein drag in a self-consistent im-
plicit manner would complicate the derivation since the Mach number is velocity-dependent. One could
assume the Mach number to be constant and simply consider this part of the (constant) stopping fre-
quency pc, but validating this is left for further work.

The original solver described in [34] suggests a kick-drift-kick symplectic integrator, which has the
advantage of conserving the energy of orbital bodies up to numerical accuracy, but due to the mul-
titude of energy loss mechanisms available in Dispatch such as radiation transfer, cooling, chemical
networks, etc, energy conservation is not expected anyway. Additionally with the tiny timesteps the
error from true orbital trajectory for uncoupled particles is all but negible anyway. Therefore the speed
of individual updates has been prioritized, leaving us with this simple analytical prescription for the
time step operator.

It is worth commenting on how this plays out with multiple dust particles: While the above derivation
is correct for one metaparticle interacting with one gas cell, in the simulation dozens of particles
will interact with each gas cell. This means that even if the individual interactions are physical, an
optimized implementation where all particles have their drag calculated in parallel and then afterward
deposit their momentum into the gas might result in unphysical results, such as the gas ending up

39



moving faster than the initial velocity of any individual particle. In theory, the solution is to have the
algorithm identify all N particles in the same cell, and then simultaneously solve the N+1-dimensional
system of equations consisting of the momentum equation and the drag equations of each of the N
particles. Instead of this quite expensive "true" solution, we instead approximate it by considering
each collision to happen independently in an arbitrary order. Each particle then interacts with the
combined result of all previous interactions.

Physically, this drag has another effect on the gas: The drag transforms kinetic or gravitational energy
into internal energy per unit volume (u) in the gas as

∆u = w∆ϕ+
1

2
w((v0p)

2 − (v1p)
2) +

1

2
w((v0g)

2 − (v1g)
2) (47)

. This will then heat it up. Due to concerns about causing numerical instabilities in the gas solver due
to extreme heating, we have chosen for this project to neglect this factor and let that be up for further
work. This can physically be interpreted e.g. as assuming that the energy put into the gas is quickly
radiated away. If one feels particularly pedantic, one might notice that this change in internal energy
during a time-step will change the stopping time, meaning that a fully implicit solver should take this
into the case. In practice though level of accuracy is completely swamped by regular discretization
error sources in all relevant situations.

The probably most important assumption made in this derivation is the spatial gradients of gravity and
the gas being negligible over the length of a timestep. This is in most cases true, but experimentally
we have found that within a couple of cells of the central core, the gravitational gradients are very
large. This means that in a single step, the velocity of the particle changes by an order of magnitude,
making the particle instantly move dozens of cells. This is a consequence of a non-resolved feature,
so we will not attempt to physically capture the true sub-step dynamics. Rather we simply cap the
maximal step to one cell, by changing the update equation for the position to

∆p⃗d = min(max(∆v⃗1,−1), 1) (48)

in units of cells, a process known as "clamping" or "clipping". This should be a very rare save-guard,
owing to its nonphysical nature, and the Courant condition discussed next ensures that to be true.

The integrator described in this chapter was already implemented, but the changed data structure
necessitated syntactic-level changes. Additionally, during the validation of the algorithm, the above-
mentioned race condition was found and fixed, and the clamping of the step was implemented.

6.3 Courant condition

Without the dust integration, the maximum timestep of a patch update is set according to the prop-
agation speed in the gas, which is a combination of advection, pressure waves, and Alfven waves.
With the addition of particles, there is now the possibility of these to move at different speeds. This is
mainly the case in the inner disk, where big particles rotate with Keplerian speed, while the gas rotates
sub-keplarian due to the pressure support. Experimentally, we found during the implementation that
not taking this into account would often result in particles moving a handful of cells or more in a single
update.

The first function call that the framework does to the extras module exists exactly for this purpose,
letting sub-modules adjust the courant number. Therefore when this is called, we set the max wave
speed to the maximal particle speed in any axis.

This works, but particle solvers are in general a lot more stable than gas solvers, so the Courant
multiplier to get the timestep is excessively conservative. This is especially bad since the inner disk
where particle speeds dominate is exactly the region that is already most expensive due to short
timesteps and high resolution. To remedy this, we have introduced a courant_multiplier (as of
now, set to 2.5) which step speed is divided by. For a typical MHD solver courant condition of 0.2
(cells per update), this means that particles are allowed to move at most 0.5 cells per update.

40



6.4 Initial distributions

To trace the particles, they must be created. In the ISM simulation from which we start this zoom-
in simulation, there are no dust particles, so we need to initialize a population according to the gas
density. For this purpose, we sample in each cell several meta-particles intending to accurately capture
the dust population across different dust sizes. Importantly this means that the number density of
meta-particles should be constant and not represent the actual dust density, which is represented by a
"weight" parameter w.

To this end, the dust initialization procedure has five parameters: number of particles per cell ncell,
minimum smin and maximum smax dust size, probability density exponent αdust and dust-to-gas ratio
rd/g. The procedure then samples in each cell ncell particles, each with the following properties:

• Their size are drawn randomly independently such that the logarithm of their size is uniformly
distributed between the min and max ln(s) ∼ U(ln(smin), ln(smin). This ensures that we sample
the full-size spectrum under study.

• To get a uniform initial position distribution, we randomly "jiggle" the position of each within
their cell

• Their total weight w is drawn from w(s) ∼ nd(s)md(s)ds ∝ sαs3s = sα+4 where nd is the number
density of particles at any given size assumed to be a power law distribution, md is the weight of
each and ds is the particle sizes covered by each metaparticle. In our simulations, we will assume
α = −3.5, corresponding to the canonical MRN dust distribution usually assumed for the ISM
[35]. To ensure the dust particles in total have the correct mass irrespective of sampling, their
masses are renormalized for each cell.

• Their velocity is initially assumed to simply be the same as the gas.

The addition of these particles to the system will add momentum, energy, and mass. Besides the
obvious problem of physically simulating a slightly different system than the input, there can also be
numerical stability problems, since this will materialize as a significant change to the gravitational
potential. Therefore the mass added as dust is removed from the gas, along with the energy and
momentum to not modify the velocity and temperature of the gas.

This method already existed and has only been syntactically modified, as well as the removal of the
corresponding mass, pressure, and internal energy from the gas.

6.5 Integration with Self-Gravity and Gas Backaction

For gas-only simulation, the self-gravitational solver simply reads the gas mass and uses this for the
Laplace solver. In this project, we add a new type of mass which is represented separately. To not
rewrite the Laplace solver, we intercept the call to it and deposit the dust mass in the corresponding
cells. This mass is then removed again after the call, allowing for example the hydrodynamics solver
to work on the correct data.

The ∇ϕ calculated by the self-gravity solver is then evaluated at the positions of all particles, yielding
an "external" acceleration for every particle to be used in the solver. This has the advantage that other
types of external acceleration such as the fictitious forces from an accelerated coordinate system can be
added trivially on top. Similarly, the absence of gravity can simply be accommodated by decoupling
the particle solver from the gravitational solver.

For the drag interaction, this might seem trivial since the particle time-step procedure already adds
momentum to the gas. In this case, though, some hydrodynamical solvers may have a prediction step
where knowing the force before applying it improves numerical accuracy. For this reason, we calculate
for each cell the implied force per volume V

F

V
=

ρg ∗∆v

∆t

41



And communicate this to the MHD module through the connect_t based approach presented in
section 5.69

The core of the physical interaction was already present but has been almost completely syntactically
rewritten, with several user-level simplifications.

6.6 Accretion

Accretion is the process where gas and dust are moved from the circumstellar medium to the sink
itself. Physically, this happens when dust and gas fall on the surface of the star, but by its very nature
a sink is not resolved by the grid and thus neither is the infall.

Rather, the sink module looks at the cells in its immediate vicinity and uses a numerical prescription
to estimate how much of the gas in each cell would be accreted onto the star in the given timestep,
based on eg. the gas temperature, rotational vs gravitational energy, etc. To avoid discontinuities in
the density, this prescription is written to smooth the accretion across several cells across, 8 by default.
When the accretion ratio δ of each cell has been calculated, this ratio of the mass, momentum, and
internal energy in each cell is removed and deposited onto the sink. This same accretion ratio we would
like to use for particle accretion.

Unfortunately, the accretion process is currently done on the task of the sink, locking the patches from
which gas is accreted. For this reason, we cannot follow the same prescription, since this would require
modifying the sink module and coupling it to the particle module.

Accretion is thus another interesting case of interaction with another module, this time even more
complex since the other module is running on another task, possibly concurrently.

Due to time constraints, we have chosen to solve a slightly simpler problem, that of only removing the
dust particles, leaving the problem of depositing back the accreted mass and momentum for later.

For this, we have chosen an approach using the connect_t module, adding an accretion_efficiency
field. When the sink module accretes from a patch, it accumulates the previous and new delta to this
field δnew = 1− (1− δ0)(1− δ1) (which simplifies to simply δ1 if δ0 = 0).

When the patch performs its update, this accretion_efficiency is extracted and the field is cleared.
This accretion efficiently, possibly accumulated over multiple sink updates, is then given to the particle
solver. The particle solver then for every particle extracts the accretion efficiency at the relevant
coordinate and then removes the particle according to this probability.

To ease the future implementation of a procedure depositing the mass and momentum back to the
star, the particle simulator accumulates the removed mass and momentum and returns it to the extras
module. Thus in theory no further modifications to this module should be necessary to support proper
accretion.

To avoid any multi-threading conflicts between these two tasks, the modifications to the accre-
tion_efficiency field happen under the patch write lock.

Is all of this necessary? why not just let particles build up near the central core? In the course of
developing the particle integrator, the accretion module was the very last one added, and it has allowed
us to run about an order of magnitude faster simulations. This is because previously huge amounts
of tracer particles accumulated in the very central patch, making updating this extremely expensive.
Since the rest of the simulation has to wait, this effectively bottlenecks the whole simulation.

The previous code had no notion of accretion to a sink, so this is completely written from scratch.
9Technically, here we use a module called Scratch_t which has a slight optimization to avoid allocations, but the

behavior is identical.

42



6.7 Normalization and tracer particles

Although the particle integrator has been derived to implicitly solve the update equation for the particle
and gas velocity simultaneously, we still do not want the code to ever be in a position where only very
few or even none exist in a given cell. This can cause problems due to the approximate handing of
multiple particles interacting with the gas, the discrete representation of the particle distributions as
well as cause problems for the hydrodynamics due to the discontinuous force on the gas.

The opposite situation where particles accumulate in a region is also problematic since this will hurt
load balancing by increasing the computational workload for some patches relative to the rest. This
can lead to a situation where a few patches are bottlenecking the integration of the whole system. On
the other hand, this does not reduce accuracy or lead to numerical instability.

To avoid these situations, we regularly renormalize our distribution of particles in the following two
ways:

• prune is a procedure for merging similar particles. Here "similar" is meant as particles that
are of the same size, move in the same direction, and ideally contain as little weight as possible.
It is important to note that this will inevitably result in numerical diffusion due to the loss of
information in the averaging process here. The exact process of identifying such a pair to merge
is more of an art than a science and needs to reflect which physical aspects are most important to
capture. Ideally, this might for example be formulated using the Stokes number or the velocity
relative to the gas velocity. In practice, an implementation has to weigh performance (which
is very important given the quadratic nature of finding pairs), responsiveness to a rise in the
number of particles, and the accepted accuracy of a particle merge.

In the implementation made for this project, an algorithm was used which selects pairs of particles
that fulfill the following criteria: (1) They exist in the same cell. (2) At least one of them
represents a mass lower than mdust

2ncell
where mdust is the total dust mass in the cell and ncell was

the desired number of particles per cell set for initialization. (3) Their velocity difference is at
most |v⃗i − v⃗j |2 < 0.2|v⃗i|2 + |v⃗j |2. This is quite crude and works poorly with multiple particle
sizes, but for this project, it serves its purpose of load balancing.

When two particles are identified, the process is much more straightforward: One of them is
removed, while the other is assigned the sum of their masses wnew = wi+wj and the sum of their
momentum ⃗vnew =

v⃗iwi+v⃗jwj

wiwj
. The position we leave unchanged for simplicity, since we do not

expect any sub-cell accuracy anyway. Like at initialization, there is also the question of internal
energy, but for this project, we will consider this negligible.

• renormalize is a procedure to split particles with too much weight. The ideal split function is
the inverse of prune, but of course, such a function does not exist, since information is lost on
averaging. Instead, we approximate it. For this project, we chose a very simple implementation
where particles with more weight than e.g. 30% of the total dust in a cell are split into many
particles, such that they on average represent about 1/ncell of the dust mass in the cell. These
split particles are then randomly assigned a position within half a cell distance, and the mass is
split across them. We have chosen not to add any velocity or particle size perturbation.

One important problem with these re-normalization procedures (specifically the lossy text_sc pro-
cedure) is the inherent loss of history: When we merge particles, we lose the ability to say "These
particles originated at location x". For this reason, we have chosen to have a special class of particles
called "tracers". These are particles that are excepted from all normalization rules. Furthermore, we
have added a "particle id" to all particles, so it is possible to either from output files or "online" in
the simulation to track these. Since the lack of normalization means that these can significantly bunch
up, the number of these tracers should be restricted e.g. to 100 per patch initially.

The implementation was made during this project, but the coding itself was done by my co-supervisor
Åke Nordlund based on mutual discussions of the working principles.

43



6.8 AMR

As argued multiple times, any simulation of the extreme variations of temporal and spatial scales
present in star formation all but necessitates adaptive mesh refinement. Handing this aspect correctly
is thus of uttermost importance. If any particles exist in regions, not at the highest resolution, how do
these particles relate to the particles at higher resolutions, and how do we handle the destruction and
creation of patches?

For this description, let us assume just two levels of patches, denoted as the "low" and "high" resolution
areas, with the high-resolution patches considered to be the children of the low-resolution patches. Each
region of interest here will then be either covered by both levels or just in low resolution, separated
by a "high-resolution boundary". This description is without loss of generality since they are applied
recursively throughout the AMR tree, and patch support rules guarantee that the low-resolution region
will cover both sides of the high-resolution boundary. It is useful to keep in mind that the primary
behavior for both particles and gas is simply advection: Particles are flowing in from the downwind
direction and flowing out to the upwind direction. We thus need to be able to transport particles
moving in from a low-resolution area, into a high-resolution area and out of it again.

We have chosen an approach that mirrors the handling of the gas: Like with the gas, the particle
distribution at high resolution is considered the "ground truth", and the parent patch simply contains
a coarse version of this distribution which it then uses for purposes of back-reaction through gas drag
and gravitational self-gravity. The accuracy of this is of low importance since any errors will simply
be overwritten at the next restriction, but the particle density is important to get correct, at least in
the mean, since otherwise, patches at different levels will be attempting to solve completely different
Poisson problems.

For this project, this "restriction" procedure has been written in the simplest possible way, simply
calculating the average velocity, spread in velocity, and average dust density for both the cells of the
parent and child and correcting the parent distribution accordingly. This process involves two different
patches, so to safely read from the child patches we need to lock it from being modified from other
threads, i.e. activating their read lock. Unfortunately, we did not have time to properly activate and
validate this module.

This viewpoint of particles in low-resolution patches representing a coarser version of the same distri-
bution makes the handling of particles exiting a high-resolution area trivial: Through the restriction,
they have already given all information possible to the parent patch particle distribution, and so they
are simply removed with the parent patch particles carrying their legacy. Similarly, if the AMR chooses
to remove a patch, then these particles can be removed without a problem.

Having handled the case of particles moving from a high-resolution area to a low-resolution area,
we shifted the focus to the opposite case. Fundamentally this process of refining the data will be
imperfect, and if we have any hope of accuracy gains, the particle will have to move around in this
high-resolution area for a long time. Since we consider the highest resolution patch at any given point
as the ground truth, these low-resolution dust particles are thus considered to provide the boundary
conditions needed for the high-resolution regions where needed. This is true both in the case of the
downwind and in case of mesh refinement creating a new patch to be filled with particles, and we will
call this process exporting particles down the mesh hierarchy. This process is illustrated in figure 9.

Lastly, let’s consider tracers. On exiting and entering high-resolution areas, or on patch creation and
removal these should not just be copied or removed in the same way, since that would remove the point
of them conserving the history. Instead, as previously discussed, we would like for these to always be
moved to the highest patch level possible.

All ownership change of particles between patches, including particles from a low level moving to a
high level is handled as part of the ordinary particle exchange process described below.

44



Figure 9: Illustration of a particle moving between high resolution (gray) and low resolution (white) sub-
regions of two neighboring patches, providing boundary conditions multiple times at the dots drawn, initiating
a population of particles at the higher level (dotted lines) which disappear at the resolution boundary.

6.9 Export/Import

As particles move around, they pass from patch to patch, transferring across resolution boundaries as
they go. While the previous section presented the desired model, or invariants of the data structure
as relates to the adaptive mesh refinement of the ownership, this section will describe the algorithm
we have developed so that these desired invariants are maintained. This might sound like a trivial
problem, but making this work correctly has been the main work in this project due to the many
systems interacting. In broad strokes, the main concerns for this procedure are as follows:

• Performance:
Being part of a large high-performance simulation with millions of cells, performance is of the
essence. Each patch of 16x16x16 cells and e.g. 40 particles per cell will have ∼163.000 particles,
so each loop is expensive.

• Multithreading correctness:
The import/export procedure needs to handle the transfer of particles between patches which
may be updated simultaneously by different threads.

• Individual timesteps:
When a patch moves from one patch to another they will almost certainly not be at the same
time. For a particle moving from patch A, across the corner of patch B, and finally into patch C,
who owns it at which times, and what happens if patch B never has a time step where the particle
is within it? When we have billions of particles and equally many iterations of the update, what
can happen will inevitably happen.

• Correct AMR behavior : Sending and receiving have to have the behavior described in section
6.8, including tracers, down exporting, and normal advection of particles.

• Correct dependency model: The algorithm should be written such that it can be implemented
using the dependencies of the code, i.e. without referring to the extras_t module.

6.9.1 Mode of communication

First, let us address the mode of communication and how we define the change of ownership. How do
two patches communicate who should own which particles on their boundary? Here, three approaches
could exist for handling the hand-off process and choosing which particles to transfer from one to
another: A "push-based" approach where the previous owner of each particle decides, a "pull-based"
approach where the receiver decides or a "consensus-based" where the two parties collectively decide.
Since the change of ownership necessarily involves removal from the previous owner, and the Dispatch
framework involves no modification of data not owned by the task itself, the deciding party needs to
send a message to the other party about removal or deletion.

For reasons of performance, the pull-based approach is sub-optimal, since it would involve having
to check all neighbors’ data for particles to grab, possibly up to the previously mentioned on-order

45



100k particles for each of the about 100 neighbors. Worse, this would have to happen under a read
lock, further worsening it. The independent timestamps also make the consensus-based approach
problematic, since such an algorithm would have to make consistent choices for the sender and receiver,
even though their view of the state of the system is at different simulation times.

Instead, we choose a push-based messaging approach where each patch investigates its particles, check-
ing for each particle whether it should be handed off to any neighbor, and if so puts them into cor-
responding packages to be sent to the neighbors. These packages are then marked with the time of
their departure and sent to the neighbor. When sent, they are then the responsibility of the receiver
to "import", even though it may happen that the receiver never sees the particle as within their region
of authority. In this case, it might immediately export it further, but that is no problem.

An additional advantage to this message-based model is that it maps naturally onto MPI-based com-
munication if the messages are written in such a way that they can be serialized and deserialized.

We will for simplicity not discuss the possibility of different communication models for the different
types of communication like down-exporting or tracer exporting, since we have found no such useful
model, let alone justifying the extra complexity.

So how does this transfer of the particle packages between tasks work? Each particle solver has a
member imports which is a multi-writer single-reader as described in section 4.2.3. When we iterate
through the neighbor list to get the patches available for export, each of these has a particle solver
associated. The problem here is that accessing this property would require casting the patch to a
extras_t class. Doing this in the particle solver would create a cyclic dependency between the
particle solver, and so this would have to happen in the extras module. This is what the previous code
did, but it has the consequence of "polluting" the extras module with a bunch of code which must
then be replicated between uses of the code. To overcome this, at initialization the extras module
places a pointer in the connect_t of each patch to the particle solver, thus linking the patch to the
particle solver directly. This is illustrated in figure 10, where the resulting possible path is illustrated.
Importantly, the pointer from connect_t to particle_solver_t is upcasted to an arbitrary void
pointer to not create a cyclic dependency and thus has to be downcasted on every use.

extras_t

patch_t

particle_solver_t

imports

connect_t

patch 1

extras_t

patch_t

particle_solver_t

imports

connect_t

patch 2

nbor list

Figure 10: Illustration of the dependency model of particle solvers and how a particle solver locates the import
lists of neighbor patches (transparent red path). Full arrows denote dependency, while dotted lines denote weak
references.

6.9.2 Export procedure

With the process of sending a package of particles handled, the next is to define which particles to send
and to where. For this, we will assume the existence of two functions. try_find_target(level,
particle which checks for all patches at level whether it covers the particle, and tries to return

46



this target. add_to_export(target, particle, remove then adds this particle to the export
package destined for target in local coordinates of the receiving patch, and optionally removes it
from the current patch. 10

For tracers the desired export procedure corresponds to finding the highest level patch which includes
the position of a given particle. Due to AMR, the particle can enter the region of a higher level patch
at any time, but only if it exits the patch we need to consider neighbors at a same or lower level. In
pseudo-code, the process looks like follows

def export_tracer ( ) :
t a r g e t = try_f ind_target ( l e v e l + 1 , p a r t i c l e )
i f t a r g e t e x i s t s :

add_to_export ( target , p a r t i c l e , remove=True )
return

i f p a r t i c l e ou t s i d e s e l f :
t a r g e t = try_f ind_target ( l e v e l , p a r t i c l e )
i f t a r g e t e x i s t s :

add_to_export ( target , p a r t i c l e , remove=True )
return

t a r g e t = try_f ind_target ( l e v e l − 1 , p a r t i c l e )
i f t a r g e t e x i s t s :

add_to_export ( target , p a r t i c l e , remove=True )
return

For "normal" particles carrying mass, this process is slightly different. Here the communication lo lower
levels is handed by the restrict procedure. Furthermore, export to higher levels is not considered to
be a change of ownership but simply provides boundary conditions, and should not result in removal
of the particle from the current patch. On the other hand, we need to keep track of whether particles
leave the high-resolution area and need to be available to again provide boundary conditions. For
this, we define a property level which is increased and decreased to track this. The implementation
therefore becomes:

def export_normal ( ) :
t a r g e t = try_f ind_target ( l e v e l + 1 , p a r t i c l e )
i f t a r g e t e x i s t s and p a r t i c l e%l e v e l == l e v e l :

add_to_export ( target , p a r t i c l e , remove=False )
p a r t i c l e%l e v e l = l e v e l + 1

else i f not t a r g e t e x i s t s and p a r t i c l e%l e v e l == l e v e l + 1 :
p a r t i c l e%l e v e l = l e v e l

i f p a r t i c l e ou t s i d e s e l f :
t a r g e t = try_f ind_target ( l e v e l , p a r t i c l e )
i f t a r g e t e x i s t s :

add_to_export ( target , p a r t i c l e , remove=True )
return

We should note that this export procedure not only provides boundary conditions when the parti-
cles pass into the region of high resolution but also particle initial conditions when patch refinement
creates a new patch. In this case, nothing special happens, since particles throughout the region
of authority (ROA) of the new patch will level defined such that they are ready to export, and
try_find_target will find this patch. On one of the first update iterations, the new patch will thus
receive a bunch of data populating it. Similarly, tracers will register this new export target and be part
of this first package to the new patch. The performance of this is of low importance since refinement
happens rarely.

10In the code the chosen function names and splitting of the export functions are slightly different, and have been
changed here to be more appropriate to this explanation.

47



To maximize performance, the check for particles being outside of the current patch is done in the
particle solver when the particle data is in registers anyway, and recorded for each particle to be used
here. Besides this especially try_find_target needs to have high performance since this has to
check every particle against the possibly 64 neighbors at higher levels (children and nephews) at every
iteration. Similarly, we want add_to_export to be efficient, but since this is only called several
times proportional to the number of exited particles this is much less critical. Due to this performance
requirement, iterating through the linked list of neighbors for every particle is out of the question.
Instead, we preprocess the neighbor list once at the start and construct a structure of array (SOA) for
each of the three levels relevant so try_find_target can check the overlap with all of the patches
efficiently and in a vectorized manner. In addition to the data about the position and size of each of
the patches, this SOA also contains for each neighbor patch a pointer to an export package to which
particles are added as well as a pointer to the receiving import list, allowing easy sendoff and cleaning
when done adding particles.

A small optimization added to this export procedure relates to the export packages. During profiling,
it was found that the allocation of the export containers was significant. To remove this overhead, we
preallocate the arrays to be able to contain all of the particles of one face (16x16 particles per cell),
meaning that appending particles should rarely require resizing. This by itself would be wasteful in
many cases eg. for a fully populated child layer where children are never exported to. To avoid this, we
recycle unused export containers through a cache shared between all threads11. Only if this is empty,
we allocate new containers. This cache is the same linked list datatype used for imports. Since we do
not need to traverse or modify elements of the cache in place, but simply remove and add elements,
no additional locking is necessary.

The try_find_target function looks through the candidate patches for one where the difference
between the particle position p⃗ and the patch position P⃗ differ by less than half the width of the patch
∆x for all coordinates:

|p⃗k − P⃗ k| < ∆x/2 ∀ k ∈ {x, y, z}

which unfortunately on computers is calculated with finite precision. In a 32-bit floating point number,
the 24-bit significance will use all of its precision (at the boundaries of the box) to specify the patch
location and not leave any sub-cell precision at all. Just small rounding errors on the last digit will
thus cause particles to move several cells. To avoid this, we make sure not to convert all positions to
be relative to the sender patch center.

Unfortunately, due to rounding errors, particles at the faces of patches may still compare "outside" of
all patches. This is extremely rare, but that is not good enough: To simulate the formation of a star
for hundreds of kiloyears with a maximal resolution of a day would require some individual patches
to be updated on order billions of times. Thus if the export algorithm due to numerical accuracy has
just a one-in-a-million risk of missing a particle, almost all dust mass will be lost and tracers will be
unusable. To fix this, we accept an export target to "contain" the particle as long as it is within half
a cell of the patch.

With this padding, the only way to lose particles would be if they stepped across a whole neighbor
patch in just one step. The Courant condition and the fail-safe on the integrator make sure this does
not happen. In the code, we check whether the procedure fails to find a proper neighbor, and as of
time, the code has been running for 70 core days without this happening.

6.9.3 Import procedure

While the export procedure was very complex in workings12, the import procedure is much simpler:
When importing particles, the particle solver already has a reference to the import list, the list is
owned by the same task and all particles herein are unconditionally the responsibility of the solver.

11This is identical to just using a specialized allocation
12And similarly so in debugging. Errors occurring at a frequency of core-days are typical in this context.

48



The procedure works by iterating through the import list and checking all particles. In general, we
assume that the particles drift with a constant velocity between these times. If our current patch is
behind the code time at which the package was sent, and the particle has not yet drifted into the patch,
we will just handle this particle later to avoid handing particles outside of the ROA if not necessary.

When importing particles, there are two categories of particles to handle: particle ownership transfer
(i.e. massive particles from the same level and tracers) and boundary condition particles (i.e. particles
from the lower level).

While the first case is very simple, especially since the exporting particle already transformed to
coordinate local coordinates, the second case requires a bit of care. For each cell in the lower level
patch, 8 cells exist in the higher level patch with each 1/8 of the mass. To conserve the number of
particles per cell, we therefore want to split the incoming particles into 8 parts, moving them in one
cell in each direction to ensure an even density between cells.

When particle packages are emptied of all particles, we remove these from the import list and add
them back to the export cache to be recycled for another round of particle exporting.

All code related to importing and exporting is completely written from scratch.

6.10 Patch deallocation

In the same way that AMR creates new patches where they are necessary, it similarly implies the
removal of patches where they are not. To support this, we have to define a proper cleanup procedure.
This involves both low practically deallocating all used memory to not heave leakage, as well as the
physical handling of tracers which should not be lost in this deallocation.

To not lose the tracer particles, we first make sure to import all particles in all packages in the import
list, even those that have not yet drifted into the patch. We can be sure that no more are being prepared
since deallocation only happens when the number of other tasks referencing this patch reaches zero.

After importing the particles, we iterate through the particles and use the normal export functions
to export all tracers to the parent patch, which is not responsible for the region of space. After this,
everything is deallocated, and we ensure the conservation of the tracers.

This code is completely written from scratch.

6.11 Data layout

As the title of the textbook "Algorithms + Data Structures = Programs" eludes, the design of the
data structure should be done with similar care as the algorithms themselves. While particle update
and handling are correct to get right, at any one time by far the majority of patches will be waiting
to update, just consuming memory. While the MHD data has on order 10 variables of four bytes each
in each cell, the dozens of particles in the same cell will consume much more. Reducing the memory
requirement for each particle is thus of prime importance.

As eluded to earlier, float32 precision is completely insufficient for particles if stored in global coordi-
nates. To avoid using 3x4 bytes more per particle, we therefore use local patch coordinates in units
of cells. We have chosen to represent the position as q + p where q is a 3-vector of one-byte integers
specifying the closest cell, and p is a float 32 representing the distance from the center. This has a
slight precision advantage, but primarily it allows efficient lookup for patch gas data since q are the
indexes in these arrays.

With this representation, we use 15 bytes for the position of each particle. Beyond these, each particle
has five floats representing the x-, y- and z-velocity, mass, and particle size, a four-byte particle ID
useful for tracers, and two 1-byte integers saving their level and whether they have left the patch. In
total this representation requires 41 bytes.

49



For obvious performance reasons, these are all stored as separate flat arrays in the particles_mod
structure as a structure of arrays.

The accretion, export, and pruning algorithms all work by removing individual particles. A naive
algorithm to remove a particle as would feasibly be used in e.g. Python List.remove() is copying all
elements after the one being removed, and moving them one step to the left. This would be extremely
expensive to do for every particle removal here. Instead, we have chosen an algorithm where removed
particles are assigned a mess of "-1", clearly distinguishing them from actual particles. A compactify
function can run through arrays and remove any holes.

To similarly optimize particle insertion, we use a classic dynamic array algorithm for adding particles
to not reallocate and move all data at every insertion: At any time the arrays have space for m
particles but only contain n particles, the last of which is at space l (l − n = number of holes and
m − n = number of free spots). If m > l, then adding is as simple as putting the data into slots l
and incrementing l. Otherwise, the data is reallocated to have 2m slots. Like normal dynamic array
insertion, this gives constant time insertion on average.

Currently, we do not ever release this leftover memory, but if memory became an issue resizing when
half full would be reasonable, although given the renormalisation this would not be a typical occurrence

This data structure has not been significantly modified.

6.12 I/O

I/O or Input/ Output is the procedure to get data in and out of the simulation. While the output
procedures are working well, the input procedure allowing simulation restart from a file has not been
written yet. Therefore we will only discuss the output.

Since particle data is huge and gas data already takes up terabytes, we want to be economical about
it. For this reason, we have three different types of output:

• High-frequency tracer output. The tracers compose a tiny fraction of the data, and we may be
interested in tracking these at a high cadence.

• Low-frequency dust averages. When outputting MHD data, we also output the cell-averaged
dust density, momentum, and number of particles. This might e.g. be useful to track dust
concentration over time.

• Very low-frequency dust dump. To restart a simulation from a certain point, we need to dump
all data into a file so it can be reloaded again. This is thus critical for large-scale simulations.

Just after importing and evolving particles and before exporting, the particle solver checks whether it
is time to perform any of the output types. If it is, a file is opened (if not already done), and the data
is written to it.

While the data structure in the program is composed of many arrays connected by pointers, this is not
something we can write to a file. For this, we need to "serialize" or "pack" the data, i.e. transform
it to a flat array of bytes that can be written to e.g. a file. We have implemented a "pack" function
to perform this, selecting the data based on the type of output, putting it together, and writing the
correct metadata.

For this output code to be useful, we need to be able to read it. For this, Python code was written to
parse this and read it in so it could be plotted. For symmetry, the corresponding unpack function was
also written in the particle container.

The packing and unpacking code is almost completely rewritten along with the output type selector,
but the file name handling is pretty unchanged. Due to the high cadence output only present for
tracers, a threading error was found and fixed in the file handling of dispatch.

50



6.13 MPI parallelization

In this project, we did not have time to implement MPI integration with particle integration, but we
have structured the code to make this easy in the future. Due to the task shadow copy model of
dispatch, the problems to be solved will be the following:

• How to forward exports to a "shadow" patch to the real patch on another rank. This should be
made significantly easier by already having pack/unpack methods for the transmitted messages.
And

• How to allow the load balancer to transfer the particle solver and patch to another rank. Similarly,
this will assumably make use of the ability to pack and unpack, and the ability to construct a
particle solver instance from this package data will probably share code with the file input
implementation.

Other challenges will certainly show themselves, but we have at least designed the code to be adaptable
to the anticipated major obstacles.

51



7 Results

In this project, we have implemented active dust and tracer particles into a large, physically realistic
model of star formation. The motivation for this has been to allow the inclusion of dust that can
become dynamically important in the disk, play an important role as an observable tracer, reprocesses
the starlight of the newborn star and set the local temperature of the gas, and ultimately is the raw
material for planets. The short-term goal of the project has been studying the accretion and ejection
ratios of dust in planetary systems, which a functioning and high-performance implementation will
enable. This section will address these two goals in succession.

All plots are produced from the same simulation, which we have run twice for redundancy in case of a
crash. All plots were produced for both result sets producing no notable difference. These simulations
are run as a zoom-in simulation of a forming core in a larger molecular cloud simulation by [36],
specifically core 13 as described in [37]. We simulated this core from initial collapse and 13.000 years
forward.

In the simulation we allow up to patch level 20, giving a max cell resolution of 0.78AU . The refinement
criteria refine patches where the cell size is above 1/16th of a jeans length, resulting in around 550-600
patches at the maximum resolution, corresponding to 2.3 million cells. In total among all levels, a
total of just above 10.000 patches exist resulting in 40 million cells. Of these, only around 4000 are
initially created, with AMR creating most of the rest at levels 8-10.

As for particles, we are simulating sizes distributed logarithmically from 1 micrometer to 1 centimeter,
represented by 40 particles per cell giving 10 particles per cell per decade in particle size, giving a
total of about 100 million particles. At initialization of particles on the original 4000 patches, 1 in 400
particles were selected as tracers across all sizes. This gives 1.45 million tracers. These particles are
all assumed to have densities of 3 g/cm3, similar to the bulk density of primitive chondrites that are
made of primordial Solar System material [38],

For output, we make a trace output every 21 years and do a MHD output every 210 years. Since the
particles in total take up 100 gigabytes and we do not intend to do any analysis on these, we have
disabled full particle output.

The simulated data is the result of running each simulation just shy of three days of simulation on
32 CPU cores, corresponding to 90 CPU days. In this time, each system has evolved around 13.000
years, involving 1.1 · 108 patch updates, corresponding to 400 billion cell updates or 18 trillion particle
updates. This has produced 1420 GB of analysis data.

7.1 Performance

One goal of the project was to create a high-performance simulation of the dust particles. Therefore we
will evaluate the run time consequences of having the dust module activated in a dispatch simulation.
Running dispatch in the described configuration, we have recorded the amount of time used in the
various functions. The parts of the particle integrator using more than 1% of the total simulation CPU
time (i.e. including MHD, sinks, self-gravity and all bookkeeping) are from most to least significant:

• The prune function uses around 13% of the CPU time. Currently, this is a O(n2
cell) algorithm and

is run on every single patch update. This function is a prime candidate for further optimization,
both regarding its algorithm and implementation.

• The implicit update uses 11% of the time. This time includes multiple reads and writes to patch
data as well as a quite expensive update for every single particle, and so this is expected.

• The export function uses 8% of the time. The requirement on the AMR-related checks even
for particles inside the patch makes this very expensive. Part of this expense comes from the
iteration through all neighboors at a given layer for every particle. By implementing a look-up
based check, this may be sped up.

52



• Error checking functions are run multiple times per update, using about 7% of the runtime.
These can readily be disabled.

• Calculating cell averages like mass and momentum which are used in the prune and split functions
as well as for self-gravity and data output use 7%. Currently, this is called multiple times per
update, so reusing the data can remove some of this

• Finally, a handful of percent of the time is used for various bookkeeping not included in the other
times. This could be optimized

Thus in total, the particle integrator running with 40 particles per cell uses quite precisely 50% of
the total runtime. The particle integrator thus uses about ∼ 6 core−µs

cell update at 40 particles per cell or
∼ 150 core−ns

particle update , with the self-gravity and MHD plus the framework for controlling the simulation
using the other ∼ 6 core−µs

cell update

Possibly the particle integrator causes a further performance degradation beyond simply the time spent
in the functions. The unpredictability of the exact runtime of the particle solver for each patch means
that some patches may be slowed down significantly. If this is e.g. a central patch, the extra latency
may bottleneck the whole simulation by starving the task queue from any work. Since only one thread
is working in the particle integrator, it may only show up as 1/32th ∼ 3% of the time used, with 95%
used in no_queue. This was the case before implementing the accretion module.

7.2 Validation of implementation

width = 103142 AU width = 19542 AU width = 3702 AU

width = 25 AU width = 133 AU width = 701 AU

20

18

16

14

12

lo
g 1

0(
[g

/c
m

3 ]
)

Figure 11: The gas density and patch mesh shown across a large range of scales centered on core 13, showing
the state of the system 3842 years after sink creation. On top of these, a random selection of 50 tracer particle
trajectories was integrated for 13.3 kyr. Note that while the gas density is not stationary, the sink is.

In the context of software validation, tests exist on a spectrum from unit tests to integration tests.
Unit tests validate each of the tiny moving parts like "We correctly export particles in this very
specific condition" or "Does this function correctly remove particles according to the accretion ratio".
Integration tests on the other hand validate that all components play nicely together and that the
result has the desired behaviour. In this project, showing validation of every single feature would be

53



completely infeasible. Instead, we have made observations and analyses that support that important
aspects of the resulting behavior are working as intended illustrated by figure 11 and 12. On these
figures, notice the following:

• Particles generally move in sensible paths, moving in almost straight or hyperbolic trajectories
outside of the high-density regions, while having much more curved paths when under the influ-
ence of drag near the core and generally bending towards the core due to gravity. This shows
the correctness of the particle integrator and gravitational solver.

Note that this is simply a 2-dimensional cross-section of a 3-dimensional simulation, so particles
at the center of the plot are not necessarily close to the core, and particles that look stationary
on the plot may be moving in the z-direction. Similarly the gas background changes significantly
over time, this is just one snapshot, while the tracer particle trajectories show the time-dependent
path. Before the start of the integration, the simulation has been Galilean transformed into the
rest frame of the pre-stellar core, making the newborn star relatively at rest, and minimizing
bulk drifts.

• As particles move across the system, passing between patches and up and down levels (shown
as color changes on fig 12), we see no sudden direction or position change or even particles
disappearing, showing the correctness of the export and import modules. Among these close-
approach particles, we interestingly even see a few passing back and forth between levels.

• At the center, a lot of tracks stop as the particles are accreted by the star. This validates the
implementation of accretion.

width = 103142 AU width = 19542 AU width = 3702 AU

width = 25 AU width = 133 AU width = 701 AU

20

18

16

14

12

lo
g 1

0(
[g

/c
m

3 ]
)

Figure 12: Similar to 11, a new set of particles and the particle trajectories are colored by the current particle
level, highlighting patch-level changes. The color ranges from yellow at level 20 to magenta at level 15 or below.

7.2.1 Near-core behavior and particle size effects

Moving closer to the overarching goal of studying near-approaches and accretion of dust, figure 13
shows the behavior of a random selection of particles with close approaches to the core. There is a
very clear selection bias here, with almost all of the particles accreted being small and non-accreted

54



x [au]

40 20 0 20 40

y [
au

]

40
20

0
20

40

z [
au

]

40

20

0

20

40

Accreted particles

x [au]

40 20 0 20 40

y [
au

]

40
20

0
20

40

z [
au

]

40

20

0

20

40

Close approches

10 3

10 2

10 1

pa
rti

cle
 si

ze
 [c

m
]

Figure 13: 3D view of 50 random particles with close approaches (defined as passing within 50 AU). To the left,
only accreted particles are selected, while to the right only non-accreted particles are shown.

particles being big. This is in line with our physical intuition since we expect small particles to be
tightly bound to the gas and thus be accreted with it, while large particles to a larger degree ignore
the gas and move on ballistic trajectories, without any way to dissipate orbital energy. It is also clear
that the small particles are moving in a circular motion around the z-axis which heavily implies that
it traces the forming gas disk.

Notably, if we were able to actually capture the disk at a later time when it had properly formed, we
would expect this to reverse: As the gas rotates at a sub-Keplarian motion with the particles rotating
Keplarian, particles large enough to be only loosely coupled to the gas, e.g. with a Stokes number
close to unity would constantly be slowed down by friction, losing their energy and falling into the star.
In a dynamically cold and thin protoplanetary disk drag forces in the vertical direction will on time
scales similar to the orbital time scale damp the vertical motion of particles larger than 100 microns
accumulating them in the midplane[39]. Radial drag forces then efficiently move them towards the
star. The height of such a dust layer depends on the particle size, the gas scale height, and stirring
caused by large-scale flows from e.g. the vertical shear instability, streamers landing fresh material,
and other disk scale instabilities. Once this happens, large dust grains will not reach the upper layers
of the disk, corresponding to a few gas scale heights, where the wind is launched, and therefore the
wind will be depleted in large dust grains [40]. In the current simulations such a quiescent state is
far from have been reached and it is an open, but very interesting, question when stirring becomes
ineffective in launching large grains. If this only happens in the late Class 0 phase after e.g. 100 kyr
the early outflows that carry most of the mass may be rich in large grains.

This physically plausible behavior gives further confidence to the implicit particle solver and its inter-
action with the gas through drag.

7.3 Preliminary physical results: Processing efficiency analysis

Having validated the algorithms, we turn to the question of accretion and ejection efficiency: How large
a fraction of the particle mass entering the system turns is being ejected again? With the resolution we
are simulating, tracking particles to orbits close enough to get significant heating from the protostar is
not possible. But with a hope of self-similar behavior of the system, we hope to gain information from
the more large-scale dynamics we have simulated. Specifically, we will be tracking particles that enter
a given threshold radius from the star, e.g. 20 AU of the star (about 1 patch). Of these, some will be
accreted, some will simply orbit there until the end of the simulation and finally, some will be shot out

55



due to interactions with the gas. We define "Ejection" to imply that the particle has entered a given
radius, but ends up at least twice as far away. In future work, a much higher resolution simulation that
is able to resolve the inner jet may more precisely look at the exact behavior close to the protostar.

The tracer particles do not represent any dust mass since they are initialized uniformly according
to the resolution, not the density. This means that some tracers may trace the paths of orders of
magnitude more dust mass than others. Since the physical quantity of interest is the ratio of the mass
accreted and ejected, we distribute the gas mass of each patch among the tracers according to the same
α = −3.5 power law distribution as at initialization. In this way, the physical dust mass from all points
in space is equally represented, even if the tracer spacing is not, and we can make statements about
the physical dust population. This has to be done with care since any part of the patch refined by
child patches contains no tracers and only gas, so this gas mass should be subtracted before spreading
it to the particles. Finally, distributing all mass does not follow the dust-to-gas ratio which is only on
order 1%, but as long as we are only discussing ratios, this proportionality is of no consequence.

During the simulation, the core grows from 0.0055M⊙ at the first snapshot after sink creation (the
snapshot used to attribute mass to tracers) to a mass of 0.0325M⊙. Our process of distributing gas
mass to the tracers and summing up all accreted tracers accounts for a total of 96% of this mass. The
lacking 4% deficit physically makes sense, since inertial particles do not accrete as we also saw in figure
13.

Even with the large amount of tracer particles in our simulation, the many orders of magnitude
differences in the densities involved may make individual tracers with large masses dominate the
statistics. In figure 14 we can see how the mass distributuions for accreted and ejected particles are
not dominated by any single particles but rather quite smooth lines. The figure also shows that this
could easilly NOT be the case, since all particles at low patch levels each corespond to a huge amount
of mass. This shows that even though cells at level 8 has 5-10 orders of magnitude lower gas densities
than cells at the core at level 20, each cell has a volume (212)3 ∼ 7×1010 times larger. Just one particle
from level 8 would have completely dominated any statistic.

10 9 10 7 10 5 10 3 10 1

Macroparticle mass [M ]

0.0

0.2

0.4

0.6

0.8

1.0

M
as

s f
ra

ct
io

n

Distribution of particle masses

Accreted n=338868
Ejected n=18600

8

10

12

14

16

18

pa
tc

h 
le

ve
l

Figure 14: Cumulative distribution of accreted and
ejected (threshold 20AU) particle masses as a function
of individual tracer particle masses (thick lines), com-
pared to the initial particle mass distributions for each
patch level (faded lines).

So is the absense of these in the accretion pure
luck? Remember that these particles of very
low resolution are only created at large distances
where the gravitational attraction is similarly
very low. In our simulation, the closest parti-
cle with a mass larger than 10−2M⊙ is a distance
of 24kAU away. Given enough time these parti-
cles may drift in, highlighting the importance of
the particle splitting procedure for particles with
drag and gravitational feedback on the gas.

In figure 15 we show the ratio between the ejected
and accreted mass carried by the tracers as a
function of the cutoff ratio. By normalizing the
accreted mass, we can compare the efficiency of
particle ejection across particle sizes and cutoff
ratios, even though the total mass budget of each
of these vary by many orders of magnitude. In-
terestingly, it seems like particles below 0.1 mm
have very little variation in the accretion. This is
probably because particles this small simply trace
the gas, irrespective of their actual size. This is
futher confirmed by looking at how the 1-0.1 mm particles diverge from smaller particles at 10-20 AU.
At this point, the gas density becomes high enough for mm-sized particles to start feeling the gas
friction and follow the gas motion; their Stokes number becomes less than unity.

56



101 102

Cutoff ratio [au]

10 2

10 1

100

Ej
ec

te
d 

m
as

s /
 a

cc
re

te
d 

m
as

s r
at

io

Particle size dependence on ejection efficiency

10 0cm < s < 10 1cm
10 1cm < s < 10 2cm
10 2cm < s < 10 3cm

10 3cm < s < 10 4cm
Overall fraction

Figure 15: Ratio of ejected (comes within the given cutoff but ends up beyond it) and accreted mass split up
across four size buckets of an order of magnitude. This is plotted as a function of the cutoff ratio chosen to
show the dependence on this parameter.

The smallest scale we can hope to capture in this simulation would be some multiple of the size of the
region from which gas and particles are accreted. In the code, this is currently 8 cells in each direction
or about 6 AU. This is very possibly the cause for the plateauing of around 10 AU of the ejection ratios
for all particle sizes.

Notably, this is all looking at the very early system, a few thousand years after the second Larson core
formation. One might reasonably expect that later in the evolution when the disk is formed and the
vertical outflows are more established, ratios will be different, and that resolving the disk and outflow
properly is central to getting the efficiency right. To investigate this, we have analyzed tracer data from
a level 24 zoom-in simulation performed using ramses [33]. These four extra levels provide 24 = 16
times better resolution resulting in a cell width of 0.05 AU. This should much better resolve the system.
Unfortunately, the particle tracers in ramses are simply non-inertial particles, blindly following the
gas, so we cannot compare them with the particle’s separated ejection ratios. Furthermore, due to the
much higher resolution, supplemented with the fact that dispatch is a much higher performance code
than RAMSES, the available dataset only spans 400 years. This means that for many of the particles,
we do not know where they ultimately end up: Back in the ISM or the star? With this data, we have
an output cadence of two years, but the much lower dynamical timescale means that we are limited
by the sampling frequency: defining the cutoff too small, and only very few of the particles that get
within it are recorded, messing up the statistics. Experimentally, we have found that a radius cutoff
of 10 AU will ensure most particles stay within it for multiple snapshots.

57



23200 23300 23400 23500 23600
Time after formation [yr]

10 6

10 5

10 4

10 3

Nu
m

be
r o

f p
ar

tic
le

s

Accretion by mass (final ratio: 17.4%)

potential ejecta
ejected
accreted

Figure 16: ramses level 24 zoom-in simulation of the
core slightly later showing the amount of cumulative
ejected and accreted medium, as well as mass within
ice radius but not yet ejected (potential ejecta). Note
that the y-label is wrong, and is simply the amount of
accreted mass in code units.

Figure 16 shows the resulting ejection efficiency.
Notably, the resulting 17% is much higher than
the one found with level 20 integration, especially
when considering that one should compare with
the small dispatch particles. This hints that dis-
cretization errors are still very significant, show-
ing the importance of this high-performance par-
ticle integration in dispatch to explore this fur-
ther in future work.

It should be emphasized that the ramses model
is a state-of-the-art, specially tuned version,
which is optimized to zoom-in models, and a few
to 20 times faster in run time than similar mod-
els with gadget[41], enzo[42], flash[43], or the
public ramses code. Not to mention arepo[44]
which is almost 50 times slower, but also gains
a similar factor from individual time stepping of
the cells. Yet, this very model, only using MHD
dynamics and simple passive tracer particles, has
taken close to one month to run with level 20 res-
olution for 20 kyr on 1,000 CPU cores, and the
follow-up level 22 and then level 24 runs for just a
few thousand years have taken another 6 months
to integrate on 1,000 cores. dispatch is radically faster, and even with active dust particles and a much
higher number of particles than in the ramses models, 13 kyr of integration time was accomplished
on a single 32-core machine with three days of integration, which is 100 times faster than ramses, and
close to 1,000 times faster than most leading codes

58



8 Conclusion

In this project, we have demonstrated the functioning implementation of a particle simulator as part
of the large-scale astrophysical simulation framework dispatch, enabling large, detailed heterogeneous
studies of the complex and dynamic systems that are protostellar and protoplanetary. This is motivated
by the desire to study the size-dependent dust enrichment of material as it flows in from the surrounding
molecular cloud and concentrates in the protoplanetary disk, how it is ejected again in outflows, as
well as a general desire to enable future studies of the many consequences of dust in these systems.

Owing to the high performance of the simulation, we have been able to integrate 60 million particles in,
and interact with, the magnetohydrodynamically and self-gravitationally modeled environment around
a forming protostar for more than 10,000 years of simulation time on just a single CPU running for
three days, with an average per-particle cost of 150 core-ns/particle update. We have addressed the
numerous numerical, algorithmic, and programmatic challenges, and presented the algorithms we have
developed for solving these.

Specifically, our implantation mirrors the patch-based adaptive mesh refinement approach already
implemented for gas, gravity, and magnetic fields by having each patch own a large number of dust
particles and updating these in lockstep with the field updates. This enables fast cell-level feedback
with the gas through drag and proper integration with self-gravity while using local time steps and
refinement of the resolution where necessary in a way that scales to multi-core computers. We have
shown how to properly represent large particle collections, initialize them, integrate them using an
implicit Euler method under the influence of gas and gravity, transport them between patch boundaries
and levels, re-normalize to ensure constant sampling resolution over time, and finally accrete into the
star. During the implementation, care has been taken to make the code modular and modifiable by
writing it in an object-oriented manner, easing future expansion of the code.

With the fiducial simulation of the region around a forming star within a larger molecular cloud, we were
able to demonstrate the correctness of the implemented procedures, as well as perform a preliminary
investigation of the particle size fractionation, with heavy particles overwhelmingly scattering around
the protostar, while smaller particles trace the gas and accrete. Looking at the scaling behavior of the
accretion and ejection rates in our simulation, as well as comparing with higher resolution simulations
made in ramses, we can conclude that quite a significant fraction of the dust may be ejected, possibly
up to or more than 10%, but also that higher resolution simulations are needed to determine this more
exactly.

From our simulations, we have observed that in answering this question, special focus should be paid
to the role of particle sizes (or equivalently, Stokes numbers), since at early times, when the stellar
mass is low and the disk is not yet established, small particles that simply trace the gas are much
easier accreted while the ballistic trajectories of big particles to a larger degree pass by instead. How
this will interplay with a resolved outflow will be interesting to see, but simple gas-tracing approaches
probably do not suffice for this study.

Beyond performing higher resolution runs with the simulations, the ability to model non-collisional
mass could also make particle integration useful in the low-density environments of the ISM, possibly
with the integrator changed to model stokes drag. For supercomputer-scale runs, which are especially
needed for these larger-scale models, the MPI integration will also need to be finished, as well as
restarting ability in case code crashes.

In this project, we did not derive any physical consequences of the drag- and gravitational effects on
the gas. Investigating when and where this becomes significant would be interesting in itself, but
would also further guide the normalization procedures and understanding which properties are most
important to conserve in the pruning procedure and where it may be useful to keep more particles
than average.

For even more realistic models of planetary formation, it would be natural to add particle evolution
such as coagulation, fraction, gas accretion, evaporation, etc. This is not too dissimilar to how the

59



re-normalization procedures work, since it similarly compares nearby particles, and produces a new set
of particles from these.

In conclusion, by enabling these future possibilities, this project has taken a small step towards advanc-
ing the state-of-the-art planetary simulations, and will hopefully soon be used for meaningful studies
into the field of dust dynamics, dust-gas coupling, and ultimately establishing when and where the
conditions for planetesimals and planets to form are right in the disks around young stellar objects.
While these are future perspectives, with the first fiducial runs that were carried out at the very end
of the project, we have established that dust can efficiently be recycled early on and carried away
in outflows. Inside 10 AU from a young star dust, dirty ice enriched in metals may evaporate, and
recondense to the bare grains, giving optimal conditions for reprocessing of metals into solid form.
These models are to our knowledge among the very first to demonstrate this and show that young
stellar objects are potentially important for the dust life cycle in the Universe.

60



References
1. Nordlund, Å., Ramsey, J. P., Popovas, A. & Kuffmeier, M. DISPATCH: A Numerical Simulation

Framework for the Exa-scale Era. I. Fundamentals. Monthly Notices of the Royal Astronomical
Society 477, 624–638 (June 2018).

2. Boss, A. P. Temperatures in Protoplanetary Disks. Annual Review of Earth and Planetary Sci-
ences 26, 53–80 (1998).

3. Van Dishoeck, E. F. Chemistry in low-mass protostellar and protoplanetary regions. Proceedings
of the National Academy of Sciences 103, 12249–12256 (Aug. 2006).

4. Sai, J. et al. Early Planet Formation in Embedded Disks (eDisk) V: Possible Annular Substructure
in a Circumstellar Disk in the Ced110 IRS4 System. en. The Astrophysical Journal 954, 67 (Sept.
2023).

5. Currie, T. et al. Images of embedded Jovian planet formation at a wide separation around AB
Aurigae. en. Nature Astronomy 6, 751–759 (June 2022).

6. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. As-
tronomy and Astrophysics 24, 337–355 (Jan. 1973).

7. Lesur, G. A systematic description of wind-driven protoplanetary discs. Astronomy & Astrophysics
650, A35 (June 2021).

8. Birnstiel, T., Fang, M. & Johansen, A. Dust Evolution and the Formation of Planetesimals. Space
Science Reviews 205, 41–75 (Dec. 2016).

9. Binkert, F., Szulágyi, J. & Birnstiel, T. Three-dimensional dust stirring by a giant planet em-
bedded in a protoplanetary disc. Monthly Notices of the Royal Astronomical Society 523, 55–79
(July 2023).

10. Teyssier, R. Cosmological Hydrodynamics with Adaptive Mesh Refinement: a new high resolution
code called RAMSES. Astronomy & Astrophysics 385, 337–364 (Apr. 2002).

11. Price, D. J. et al. Phantom: A smoothed particle hydrodynamics and magnetohydrodynamics
code for astrophysics. Publications of the Astronomical Society of Australia 35, e031 (2018).

12. Colzi, L. Isotopic fractionation study towards massive star-forming regions across the Galaxy (Jan.
2021).

13. Schulz, N. S. The Formation and Early Evolution of Stars (Springer, Berlin, Heidelberg, 2012).

14. Lee, Y.-N. et al. The Origin of the Stellar Mass Distribution and Multiplicity. Space Science
Reviews 216, 70 (June 2020).

15. Larson, R. B. Numerical Calculations of the Dynamics of a Collapsing Proto-Star. Monthly Notices
of the Royal Astronomical Society 145, 271–295 (Aug. 1969).

16. Armitage, P. J. Astrophysics of Planet Formation 2nd ed. (Cambridge University Press, Cam-
bridge, 2020).

17. Velikhov, E. Stability of an ideally conducting liquid flowing between cylinders rotating in a
magnetic field. Journal of Experimental and Theoretical Physics (1959).

18. Lee, C.-F., Li, Z.-Y., Shang, H. & Hirano, N. Magnetocentrifugal Origin for Protostellar Jets
Validated through Detection of Radial Flow at the Jet Base. en. The Astrophysical Journal Letters
927, L27 (Mar. 2022).

19. Freidberg, J. P. Ideal MHD (Cambridge University Press, Cambridge, 2014).

20. Finlay, C. en. in Encyclopedia of Geomagnetism and Paleomagnetism (eds Gubbins, D. & Herrero-
Bervera, E.) 3–6 (Springer Netherlands, Dordrecht, 2007).

21. Krumholz, M. R. & Federrath, C. The Role of Magnetic Fields in Setting the Star Formation
Rate and the Initial Mass Function. Frontiers in Astronomy and Space Sciences 6 (2019).

22. Picogna, G., Stoll, M. H. R. & Kley, W. Particle accretion onto planets in discs with hydrodynamic
turbulence. en. Astronomy & Astrophysics 616, A116 (Aug. 2018).

61



23. Youdin, A. N. & Goodman, J. Streaming Instabilities in Protoplanetary Disks. en. The Astro-
physical Journal 620, 459 (Feb. 2005).

24. Lombardi, M., Alves, J. & Lada, C. J. Molecular clouds have power-law probability distribution
functions. en. Astronomy & Astrophysics 576, L1 (Apr. 2015).

25. Evans, C. R. & Hawley, J. F. Simulation of Magnetohydrodynamic Flows: A Constrained Trans-
port Model. The Astrophysical Journal 332, 659 (Sept. 1988).

26. Ramsey, J. P., Haugbølle, T. & Nordlund, Å. A simple and efficient solver for self-gravity in the
DISPATCH astrophysical simulation framework. Journal of Physics: Conference Series 1031,
012021 (May 2018).

27. Nelson, A. F. Numerical requirements for simulations of self-gravitating and non-self-gravitating
discs. Monthly Notices of the Royal Astronomical Society 373, 1039–1073 (Dec. 2006).

28. Auto-vectorization in GCC - GNU Project

29. Dagum, L. & Menon, R. OpenMP: an industry standard API for shared-memory programming.
IEEE Computational Science and Engineering 5, 46–55 (Jan. 1998).

30. MPI: A message passing interface in Supercomputing ’93:Proceedings of the 1993 ACM/IEEE
Conference on Supercomputing (Nov. 1993), 878–883.

31. Pardoe, J. & King, M. en. in Object Oriented Programming Using C++: An Introduction (eds
Pardoe, J. & King, M.) 177–188 (Macmillan Education UK, London, 1997).

32. Martin, R. C. Design Principles and Design Patterns. en (2000).

33. Kuffmeier, M., Haugbølle, T. & Nordlund, Å. Zoom-in Simulations of Protoplanetary Disks Start-
ing from GMC Scales. The Astrophysical Journal 846, 7 (Sept. 2017).

34. Popovas, A., Nordlund, Å., Ramsey, J. P. & Ormel, C. W. Pebble dynamics and accretion on to
rocky planets – I. Adiabatic and convective models. en. Monthly Notices of the Royal Astronomical
Society 479, 5136–5156 (Oct. 2018).

35. Mathis, J. S., Rumpl, W. & Nordsieck, K. H. The size distribution of interstellar grains. The
Astrophysical Journal 217, 425–433 (Oct. 1977).

36. Jørgensen, J. K. et al. Binarity of a protostar affects the evolution of the disk and planets. Nature
606, 272–275 (May 2022).

37. Tuhtan, V., Al-Belmpeisi, R., Bregning Christensen, M., Kuruwita, R. L. & Haugbølle, T. Sim-
ulated Analogues I: apparent and physical evolution of young binary protostellar systems July
2023.

38. Consolmagno, G., Britt, D. & Macke, R. The significance of meteorite density and porosity. en.
Geochemistry 68, 1–29 (Apr. 2008).

39. Lebreuilly, U., Commerçon, B. & Laibe, G. Protostellar collapse: the conditions to form dust-rich
protoplanetary disks. en. Astronomy & Astrophysics 641, A112 (Sept. 2020).

40. Bjerkeli, P., van der Wiel, M. H. D., Harsono, D., Ramsey, J. P. & Jørgensen, J. K. Resolved
images of a protostellar outflow driven by an extended disk wind. en. Nature 540, 406–409 (Dec.
2016).

41. Pakmor, R., Edelmann, P., Röpke, F. K. & Hillebrandt, W. Stellar GADGET: a smoothed particle
hydrodynamics code for stellar astrophysics and its application to Type Ia supernovae from white
dwarf mergers. Monthly Notices of the Royal Astronomical Society 424, 2222–2231 (Aug. 2012).

42. The Enzo Project

43. team, T. F.-X. Flash-X: A Multiphysics Scientific Software System en.

44. Weinberger, R., Springel, V. & Pakmor, R. The Arepo public code release. The Astrophysical
Journal Supplement Series 248, 32 (June 2020).

62


	Introduction
	The physics of planetary formation
	Formation process
	Navier Stokes Equations
	Thin disk model
	Self-gravity
	Magnetohydrodynamics and its Role in Planetary Formation
	The Induction Equation
	Magnetorotational Instability (MRI) and Angular Momentum Transport
	Magnetic breaking
	Magnetic Pressure

	Dust-gas interplay

	Numerical simulation
	Discretization
	Grid methods vs Particle methods
	Grid methods
	Particle mathods
	Mixed Methods

	Time evolution
	Convergence, consistency
	Mesh definition
	Units and precision

	High-performance parallel computation
	Single core performance
	Pointer-based data structures
	Arrays of structures vs structure of arrays
	Temporal locality
	SIMD

	Parallel computation
	Task parallelism
	Scaling
	Data ownership and locks

	Massively Parallel Computing
	Global operations
	Shared vs distributed memory
	Hybrid parallelization
	Shadow copies
	Load Balancing

	Good coding practices and object-oriented programming
	Polymorphism
	Cyclic dependencies


	The Dispatch Framework
	Object hierarchy
	Task Queue and Scheduling
	Independent Timestepping
	Paralellization and load balancing
	Patch-based Adaptive Mesh Refinement
	Interaction between components
	Initialization and Zoom in simulations
	I/O

	Implementing particles 
	Code structure
	Particle Timestep Procedure
	Courant condition
	Initial distributions
	Integration with Self-Gravity and Gas Backaction
	Accretion
	Normalization and tracer particles
	AMR
	Export/Import
	Mode of communication
	Export procedure
	Import procedure

	Patch deallocation
	Data layout
	I/O
	MPI parallelization

	Results
	Performance
	Validation of implementation
	Near-core behavior and particle size effects

	Preliminary physical results: Processing efficiency analysis

	Conclusion

