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Abstract
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A Graph Neural Network Approach to Low Energy Event Reconstruction in
IceCube Neutrino Observatory

by Rasmus F. Ørsøe

This work investigates a graph neural network (GNN) approach to low energy event
reconstruction in IceCube Neutrino Observatory by treating level7 oscNext samples
as point cloud graph representations of low energy neutrino events. A GNN model
is proposed and tested against current low energy reconstruction methods in both
classification and regression tasks in MC data and on IC86.11 measurements. In MC
data, this work finds a 15% increase in neutrino signal as compared to the current
final level7 neutrino classifier, or equivalently, a reduction of background by 80%
at the same neutrino signal strength. In addition, this work records 11.7%, 22.4%
and 16.3% improvement in the widths of error distributions for regression targets
azimuth, energy_log10 and zenith, respectively, as compared to RetroReco in the neu-
trino oscillation relevant energy range of 0 to 1.5 log10 GeV. The proposed model is
capable of producing reconstructions at speeds of 15.000 events pr. second as com-
pared to 5 - 40 seconds pr. event for RetroReco, which opens the potential for cosmic
alerts from low energy neutrinos. Lastly, this work contains a characterization of at
least part of the current pulse noise in IceCube Upgrade MC data, and finds these to
originate from suspicious same-pmt activation patterns from mDOMs.
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Reader’s Guide

This is a reading guide that seeks to provide context to the reader from which the
work can be understood.

The Problem

The motivation for this thesis comes from a few observations that was made both
within and outside IceCube, and by providing you with these I hope the structure of
this work becomes logical. Let’s start with the observations made outside IceCube
prior to the start of this work:

1): Machine Learning is often many orders of magnitudes faster than traditional,
statistical methods, and it is already used in physics experiments to analyze data.
2): A new type of machine learning algorithm called graph neural networks (GNN’s)
have been shown to work well with irregularly spaced data in classification prob-
lems, but (at the time) nearly no papers existed on applications of GNN’s in physics.

Within IceCube, the following observations were made:
1): Reconstruction of low-energy neutrino events in IceCube is done using a sta-
tistical model named RetroReco, which takes around 5-40 seconds to reconstruct a
single event. This is considered to be slow.
2): The IceCube neutrino detector is built as an irregular shape.
3): Low-energy events are important because they are used to study neutrino oscil-
lations, a still relatively ill understood physical phenomenon.

The core question of this work then naturally became:
Can a GNN be used to reconstruct low-energy neutrino events in IceCube, and if
so, how does it compare to RetroReco?

Because the RetroReco algorithm is slow, it would be considered a success if compa-
rable, even if slightly inferior, results could be obtained at increased reconstruction
speed.

Structure of This Work

In Chapters 1 and 2, the reader is introduced to a short overview of a few historic
neutrino experiments, a description of IceCube and it’s research goals. In Chapters
3 to 5 follows a description of the data from IceCube, an introduction to Machine
Learning and a brief explanation of graph neural networks. This establishes the
foundation for the work.

In Chapter 6 is a detailed description of the development process of the GNN, which
can be skipped completely. In Chapter 7 is a description of the final model. In Chap-
ter 8, a comparison between RetroReco and the model developed in this work is
shown in level7 MC data. In Chapter 10 a real data comparison is shown on the
level7 IC86.11 sample.

Code related to this work is available at: https://github.com/RasmusOrsoe/GNNIceCube

https://github.com/RasmusOrsoe/GNNIceCube
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Chapter 1

The History of the Neutrino

The standard model is a modern take on the conclusion that Leucippus and Dem-
ocritus arrived at sometime in the 5th century, when they philosophically deduced
that if one were to keep dividing a substance, one would eventually arrive at some-
thing that is indivisible [1]. That something is today referred to as elementary particles
and the standard model of particle physics is the current framework in which these
are understood. Within the scope of the standard model (SM) such particles are
divided into two main categories: fermions and bosons. On the technical side of
things, Fermions are half-integer spin particles that obey Fermi-Dirac statistics and
are divided into two further categories: quarks and leptons and their respective
anti-particles. From a philosophical perspective, it is perhaps the quarks that resem-
bles the ancient Greek ideas best as quarks are both massive and indivisible. Not
all Leptons are described by the standard model as massive, since all current neu-
trino flavors are considered to be massless - a direct consequence of the choice of
description - which leads to scientific anomalies at the very center of the theoretical
foundation of this work.

(A) label 1 (B) label 2

FIGURE 1.1: (A): (B):

While the Greek Atomos theory correctly envisioned that the configuration of ele-
mentary particles played a role in a substance’s properties, it failed to shed much
light on the ways in which matter can influence matter. In the SM interactions
are handled by bosons. In technical terms, Bosons are integer spin particles that
obey Bose-Einstein statistics and are further divided into two sub-categories: Gauge
bosons and Scalar Bosons. It is the gauge bosons that acts as mediators or carriers
of the fundamental interactions described by the SM, which currently include:
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electromagnetic interaction, mediated by the photon γ, the weak interaction,
mediated by W and Z, and the strong interaction, mediated by gluons g. Quarks
are also divided into different types; the whole zoo is depicted in purple in 1.1.
Quarks, because they carry color charge, cannot exists as an individual, free particle
and must therefore as minimum come as a pair. This effect is named color confine-
ment. In addition, the energy associated with the color field between two quarks
increase as a function of distance between the quarks in the pair, much like the en-
ergy deposited in a rubber band increases when it’s stretched. When the quark pair
is stretched sufficiently, the energy in the color field is converted to new particles,
that didn’t exists before the stretching. This mechanism is exploited in large scale at
particle accelerators such at LHC at CERN to probe the fundamental building blocks
of the universe1.

However, in this work, the part of the standard model with highest relevance is
the sub-categories of leptons, illustrated in green in Figure 1.1, here specifically the
muon, tau and electron neutrinos. Below is a condensed review of the history of the
neutrino - from it’s theoretical inception to it’s role in frontier research.

The Theoretical Inception

Henri Becquerel’s discovery of radioactivity in 1896 is often attributed as the birth of
nuclear physics. Soon after the discovery of radioactivity, Ernest Rutherford identi-
fied two different kinds of radioactive emissions, now known as β+ and β− decays,
where a neutron in a radioactive nucleus is converted to a proton, and where a pro-
ton is converted into a neutron, respectively. In the early stages, the decay processes
were studied as a two-body process, e.g:

p+ −→ n0 + e+ (1.1)

n0 −→ p+ + e− (1.2)

where no and p+ are still bound to the nucleus, and the particle being emitted is
the electron or positron. The assumption that the decays were a two-body problem
directly suggested that the energy of the emitted electron/positron should take on
a distinct value. To see this, consider a radioactive source X at rest that decays to Y
and emits an electron:

Xa
z −→ Ya

z−1 + e− (1.3)

By conservation of energy, one has that

EX = EY + Ee− = (mY + me−) · c2 + TY + Te− (1.4)

Since the radioactive source X is at rest, this directly implies that

Te− = (mx −my −me−) · c2 − TY (1.5)

Since the electron is much lighter than Y, it can be safely assumed that the electron
would have the bulk of the released energy, which allows for the approximation
Te− >> TY:

Te− ≈ (mx −my −me−) · c2 (1.6)

1This is also referred to as jet physics.
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However, early experiments from 1907 and into mid 1910 suggested that the
energy spectrum of the decay products were not discrete, as energy conservation
would dictate2, but that the velocity distribution of the decay products were contin-
uous! [2].

The continuous spectrum puzzled physicist for the next two decades, where a
wide variety of ideas were proposed. Niels Bohr suggested that perhaps the con-
servation of energy were only true in a statistical sense 3, but the bounds of the
energy distributions ruled this out. At last German physicist Wolfgang Ernst Pauli
suggested that perhaps the decays were not two-body problems at all but that there
were a 3rd particle involved [3]. Simply by viewing the decays as three-body prob-
lems would allow for the electron/positron to take on a continuous energy spectrum
- and by applying other conservation laws, one could characterize the properties of
the elusive particle. By conservation of charge, it would have to be neutral - by
conservation of angular momentum, the spin would have to be 1/2, and so on. In
conclusion the particle theorized is what is today called the Neutrino, which had to
be a massless particle that only interacts via the weak force4.

FIGURE 1.2: (a): The charged current (CC) interaction vertex. (b): the
neutral current (NC) interaction vertex.

Such a characterization of it’s interaction abilities means that, within the scope
of the standard model, the neutrino will only be able to interact with the W and
Z bosons in Figure 1.1. These interactions are in modern language represented by
Feynman diagrams, an illustrative tool used to carry out calculations on particle in-
teractions in quantum field theories. The fundamental interaction verticies of the
neutrino is depicted in Figure 1.2, where α denotes lepton flavour. In experimental
physics, one often distinguishes between charged current and neutral current inter-
actions as these can gives rise to different detector readouts on a nucleus interaction
level[4].

Finding the Neutrino

The Savannah River Experiment was conducted in 1956 by Clyde L. Cowan and
Frederick Reines. The aim of the experiment was to test the neutrino hypothesis

2Energy conservation is not the only conservation law broken in the two-body assumption. Since
spin conservation is broken, it’s directly seen that angular momentum is not conserved in the process.

3This is interestingly the current interpretation of the quantum vacuum
4It’s later been confirmed that the neutrino is indeed not massless as this would make it impossible

for it to oscillate between flavours, which in turn means it also interacts via gravity.
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FIGURE 1.3: Oscilloscope readings from the Savannah River Exper-
iment. The three detectors (representing the three scintillator tanks)
are labelled I, II, III. a) and b) are examples of accepted signals. d) to

f) represents rejected signals. Kindly borrowed from [5].

proposed to explain the continuous energy spectrum of beta decays. The detection
method was indirect via inverse beta decay, where an anti electron neutrino collides
with a proton to form a neutron and a positron, i.e :

v̄e + p −→ e+ + n (1.7)

The positron would quickly react with an electron, producing gamma-ray photons,
which are detectable by photo-multiplier tubes (PMT’s). The neutron could then
bind to a nearby nucleus and produce a third detectable gamma-ray. The reasoning
was then that if all three gamma-rays were detected within a short period of time,
an inverse beta-decay must have taken place and therefore an anti electron neutrino
must have existed.

After flirting with the idea of using nuclear weapon tests as a neutrino source for
their experiment [5], Cowan and Reines eventually settled on using the nuclear reac-
tor at Savannah River as their neutrino source. The experiments utilized water tanks
with dissolved cadmium chloride, which is a compound that was added to better
facilitate the neutron capture. The water tanks was placed between other tanks con-
taining liquid scintillator, a liquid material that would emit light when struck by the
gamma-rays. This light would then be captured by PMT’s. The experiment kept
running under a planned shut down of the reactor to check if the neutrino flux de-
creased. The results of the experiment was published in 1956, making it the first
confirmation of neutrinos [6].
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FIGURE 1.4: Dr. Davis by the 12-inch naval gun

The Homestake Experiment

Brookhaven Solar Neutrino Experiment, also often referred to as The Homestake
Experiment, was a solar neutrino experiment lasting from the late 1960’s to the late
1990’s. The experiment, headed by Raymond Davis, Jr. and John N. Bahcall, had
the purpose of measuring the flux of neutrinos emitted from fusion reactions tak-
ing place inside of the sun. The experiment was located within a mine in South
Dakota, nearly one and a half kilometers underground. Within the mine, a special
tank containing approx. 460.000 liters of perchloroethylene, a dry-cleaning fluid rich
in chlorine, had been placed. The neutrino detection was indirect in the sense that
the chemical reaction

νe + Cl37 −→ Ar37 + e− (1.8)

allowed for counting the amount of detected neutrinos by counting the amount of
argon-37 atoms in the tank. Given the elusive nature of the neutrino, namely that it’s
interactions with the chlorine atoms are dominantly via the weak force, means that
even over a period of a few weeks of measurements, the amount of argon atoms in
the tank was expected to be tiny, estimated to be between 1.5 and 5 neutrino captures
pr. day. Increasing the sample time was difficult because the argon-37 atoms are ra-
dioactive with a half-life of approx. 35 days. To capture the argon-37 atoms, helium
would be used to bubble through the tank to trap the argon atoms in a special char-
coal filter that would then be analysed. The actual counting of the atoms was done
by measuring the radioactivity of the sample, and to ensure the accurate counting,
the counting device was placed inside of a 12-inch navy gun barrel to shield the
counting process from background radiation.[7].

The Brookshaven Solar Neutrino Experiment is significant in the history of sci-
ence as it was the first time that the solar neutrino flux as predicted by the standard
solar model was tested and, more importantly, the experiment showed a deficit of
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neutrinos by about one third compared to the theoretical value. By the time the ex-
periment started, two different flavours of neutrinos had been experimentally found,
the electron neutrino νe and the muon neutrino νµ. During the experiment, some-
time in the 1970’s, a third flavor was theorized, the tau neutrino ντ but it was not
experimentally verified at the time.5 Eventually the physical interpretation of the
neutrino deficit was settled around the idea of neutrino oscillation, first theorized
by Italian Physicist Bruno Pontecorvo 1957[8]. The conceptual idea of neutrino os-
cillation is that the state of any neutrino can be written as a linear combination of
it’s flavour states, and that the probability of measuring the neutrino as being in
any one of those states oscillates as the particle moves through space. In effect this
means that an electron neutrino emitted from the sun could be in any of it’s three
flavour states by the time it reaches earth, leaving experiments sensitive to only one
neutrino state at a flux deficit. This was exactly the issue of the Homestake Experi-
ment as the chemical reaction used to produce argon-37 could only be facilitated by
electron neutrinos.

Neutrinos Oscillate!

The standard model of particle physics describes neutrinos as massless point par-
ticles. If one goes beyond the standard model and assumes that the neutrino does
have mass 6, and that the mass of a neutrino is not definite but a linear combination
of mass eigenstates 7 v1, v2, v3, neutrino oscillation becomes theoretically possible.
To explain the concept of neutrino oscillations and the implications it has in the sim-
plest of terms, I will in the following focus on a two-neutrino system, and effectively
neglect the third lepton multiplet. It is also assumed that the neutrinos are located
in vaccum.

Let’s denote two arbitrary neutrino flavour states as va and vb. We can now write
the flavour states as linear combinations of the mass eigenstates

va = vi cos øij + vj sin øij (1.9)

vb = vj cos øij − vi sin øij (1.10)

where øij is the mixing angle, which is a parameter that needs to be found exper-
imentally. Suppose such these particles existed with momentum p at t = t0, we’d
have:

|va, p〉 = e−
Ei ·t

h̄ |vi, p〉 cos øij + e−
Ej ·t

h̄ |vj, p〉 sin øij (1.11)

|vb, p〉 = −e−
Ei ·t

h̄ |vi, p〉 sin øij + e−
Ej ·t

h̄ |vj, p〉 cos øij (1.12)

When t = 0 the resulting state is considered a pure neutrino state, but as time evolves
the pure state becomes mixed between the mass eigenstates. One can make the ob-
servation that the flavor states |vb, p〉 and |vb, p〉 are both related to the same mass

5It was discovered in 2000 in the experiment DONUT (Direct observation of the nu tau) hosted by
Fermilab.

6which is experimentally verified to be correct
7This is usually referred to as neutrino mixing
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eigenstates, which means that one can write a time-evolving neutrino state as a lin-
ear combination of it’s flavor states, e.g:

|va, p〉mixed = A|va, p〉pure + B|vb, p〉pure (1.13)

By doing a little bit of algebra, one finds that:

A = e−
Ei ·t

h̄ cos øij
2 + e−

Ej ·t
h̄ sin øij

2 (1.14)

B = cos øij · sin øij(e−
Ej ·t

h̄ − e−
Ei ·t

h̄ ) (1.15)

The probability of measuring a vb state is then

|B|2 = sin 2øij
2 sin

(
(Ej − Ei)t

2h̄

)2

(1.16)

here it’s very clear that no oscillation can take place unless the energy associated
with the mass eigenstates are different. By employing Ei >> mic2 one can show
that:

Ej − Ei ≈
m2

j c4 −m2
i c4

2pc
(1.17)

This effectively means that the oscillation probability depends on the square mass
difference, which is one of the reasons why estimating the neutrino masses is diffi-
cult. Since the particles are assumed to be in a vacuum, we can estimate t as t = L

c ,
where L is the distance travelled since emission. Also, in the ultra-relativistic limit
we can assume E ≈ pc. This together with Eq. 1.17 allows us to approximate the
probability of measuring the mixed neutrino in state vb as

|B|2 ≈ sin 2øij
2 sin(

L
L0

)2 (1.18)

where L0 = 4Eh̄c
(m2

j−m2
i )c

4 . This shows that the oscillation can be written as a function of

the length travelled since emission.
This effect is enhanced when the neutrino travels through a medium such as the
earth 8. Since the squared difference of the neutrino masses is very small, the char-
acteristic oscillation length L0 is quite big, typically several hundreds of kilometers,
depending on the medium in which the neutrino travels 9 [9]. A more mature nota-
tion to describe the oscillation is (

va
vb

)
= U

(
vi
vj

)
(1.19)

where

U =

[
cos øij sin øij
− sin øij cos øij

]
(1.20)

8This gives rise to interesting oscillation bands. More on this in chapter 3.
9This is why neutrino detectors that wish to be sensitive to neutrino oscillation needs to be big
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If we now upgrade the the flavor state to include three neutrinos: ve, vµ, vτ with mass
eigenstates v1, v2, v3 Eq. 1.21 become:ve

vµ

vτ

 =

 cos ø12 sin ø12 0
− sin ø12 cos ø12 0

0 0 1

v1
v2
v3

 (1.21)

One may notice that the neutrino mixing matrix U takes the form of a generator of
infitesimal rotation, a symmetry generator from the Lorentz group. It’s important
to mention that U still only describe the mixing of v1 and v2. With the introduction
of a third neutrino, we require a matrix describing the rotation of v2, v3 and v1, v3.
These can be found by repeating the steps taken above for those specific cases. This
introduces two new mixing angles; ø23 and ø13. If one does this, one should find:

U12 =

 cos ø12 sin ø12 0
− sin ø12 cos ø12 0

0 0 1

 (1.22)

U23 =

1 0 0
0 cos ø23 sin ø23
0 − sin ø23 cos ø23

 (1.23)

U13 =

 cos ø13 0 sin (ø13) · e−ia

0 1 0
− sin (ø23) · eia 0 cos ø13

 (1.24)

here e−ia represents a phase, which needs to be zero if neutrino oscillations should
obey CP symmetry. A current theoretical idea for the matter-antimatter asymmetry
in the universe evolves around CP symmetry breaking in neutrino oscillations, so
it’s left - as is - in this work [10]. Another thing to point out is that the amount
of phases depends on description. If one takes the neutrino to be a Dirac particle,
one arrives at the above result. If one takes the neutrino to be a Majorana particle,
additional phases are introduced which plays a central role in neutrinoless double
beta-decays [11], which is outside the scope of this work. Finally we arrive at:ve

vµ

vτ

 = U12U23U13

v1
v2
v3

 (1.25)

where U12U23U13 is the PMNS-matrix, named after Pontecorvo, Maki, Nakagawa
and Sakata, who first derived it [12]. The elements of the matrix needs to be deter-
mined experimentally, and are therefore of interest to neutrino experiments. When
reduced it should contain 4 parameters ø12, ø23, ø13 and the phase 10.

Sterile Neutrinos

At the very frontier of neutrino research lies the search for additional flavor states
of neutrinos called sterile neutrinos. Their possible existence is well founded from
a theoretical standpoint: firstly because all known fermions have both right and left
handed chirality, but only left handed chirality for the current known neutrinos have

10Neutrino oscillations were first definitively confirmed in 1998 by the Japanese neutrino experiment
SuperKamiokande
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been observed. If neutrinos mixed with additional states carrying right handed chi-
rality, the anomaly would be explained. However, if such a state exists and still
remains hidden, it must be because it’s not directly participating in the fundamental
interactions described by the standard model. For this reason they’re theorized to in-
teract only via gravity, making them candidates for dark matter particles. Secondly,
one may make the observation that the experimentally found mass of neutrinos are
quite close to but not exactly 0 eV while the remaining fermions has larger masses
by many orders of magnitudes. While the mass of fermions are given via the Higgs
mechanism, certain extensions of the standard model uses sterile neutrinos together
with the seesaw mechanism, to explain the observed neutrino masses. Several such
seesaw models exists, each characterized by its assumed number of right handed
neutrinos in existence, as the seesaw mechanism doesn’t come with a natural con-
straint on the number of sterile neutrinos like electroweak theory has for ordinary
neutrinos [13].
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Chapter 2

IceCube Neutrino Observatory

From deep under the antarctic ice, not far from Amundsen–Scott South Pole Station,
a telescope looks through earth, beyond cosmic clouds and into the universe.

Research Mission

The Collaboration itself spans over 400 physicists and covers everything from glaciol-
ogy to cosmology. The following is a brief condensed explanation of some of the re-
search being carried out in the IceCube Collaboration, selected after it’s periphery
relevance to this work 1.

Cosmic Alerts

Observations in astrophysics has historically been made by capturing light from
light sources in the universe and analysing them. While that is largely the cur-
rent method today, other methods now exists to examine astrophysical events via
medium other than light. This includes gravitational waves from experiments like
LIGO and neutrino telescopes such as IceCube. Because neutrinos doesn’t interact
electromagnetically, they are capable of leaving the wild inferno in supernova explo-
sions before the light, creating a timely delay that can be exploited to capture the full
supernova light signal by conventional telescopes. In effect, this make the neutrinos
’early warnings’ of cosmic events. This is indeed an area of contribution for the Ice-
Cube telescope, as the experiment itself is a member of SNEWS (Supernova Early
Warning System), which is a consortium of neutrino experiments around the globe.
If a number of different SNEWS members observe cosmic alert candidates within
the same 10-second timespan, and passes a series of quality checks, a message to the
astrophysical community is transmitted containing the information required to redi-
rect available telescopes[15]. One example of this is the 2017 IceCube-170922A alert
identification of a high energy neutrino that was eventually discovered to originate
from a blazar (TXS 0506 + 056) [16]. 2

Point Source Search

Analogues to how conventional telescopes search the universe for stars and other
light emission sources, neutrino telescopes scan the sky for point emission sources
to get a ’picture’ of the universe. In IceCube, neutrino maps of the sky are devel-
oped, which are similar to maps such as the cosmic microwave background. The
maps can be constructed by observing neutrino flux over a long period of time and

1You can find the official research highlights here
2These Neutrino alerts are also available to amateur astronomers. More information here.

https://icecube.wisc.edu/science/research/
https://snews.bnl.gov/amateur.html
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FIGURE 2.1: An illustration of the IceCube Detector array with a size
comparison to the Eiffel Tower. [14]

reconstructing the angle from which the neutrino came. One emission source of par-
ticular interest is gamma-ray bursts (GRB), a short and very bright burst of gamma
rays which is an astrophysical phenomenon not completely understood. By compli-
menting conventional observations of GRBs’ with neutrino observations, one might
better understand the emission candidates and the physics involved leading to the
GRB’s. Other possible sources for GRB’s includes Active Galactic Nuclei (AGN) [17].
As of now, IceCube is most sensitive to the northern hemisphere because that direc-
tion is better shielded from atmospheric interference. Work has been done to extend
the sky search to the southern hemisphere by including ANTARES, another neutrino
experiment [18].

Dark Matter

The current conventional understanding of the matter composition of the universe
shows that only approx. 15% of the universe is made of matter, leaving 85% un-
known. This portion is referred to as dark matter and in recent decades many the-
ories using WIMP’s (Weakly Interacting Massive Particles) has been proposed as
explanations to the full or parts of the mass deficit. Some of such proposed particles
would be indirectly detectable by neutrino telescopes such as IceCube. One such
theory proposes dark matter particles called Kaluza-Klein (KK) particles, whos an-
nihilations should produce muon neutrinos. The proposed theory dictates that such
annihilations should be present in the sun, and that an excess of neutrinos originat-
ing from the sun should be measurable. In 2009, IceCube analysed data taken over
104.3 days during 2007, and concluded that no excess was recorded [19].

Neutrino Oscillations

The mixing parameters from in Chapter 1 needs to be found experimentally. Gener-
ally, there’s a variety of different methods and environments in which it’s possible
to observe neutrino oscillation - in IceCube the mixing parameters are estimated by
observing oscillation induced patterns in the atmospheric neutrino flux [20]. Ice-
Cube is believed to be sensitive to atmospheric oscillations as low as approx. 5 GeV,
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FIGURE 2.2: An illustration of the IceCube Detector DeepCore Sec-
tion. Kindly borrowed from [21].

enough to produce one oscillation band in the neutrino flux. The planned upgrade
of the detector is expected to increase sensitivity to higher order oscillation bands.

Current Detector Array

The current IceCube detector array consists of 86 strings arranged in a hexagonal
pattern. A string is a 2820m long signal and power transmitting cable that begins
at the surface of the antarctic ice and runs down to bedrock depth. Along a string,
60 digital optical modules (DOM’s) are distributed, giving a total of 5160 DOMS.
These DOMS measure Cherenkov Radiation using photo-multiplier tubes. 6 of
these strings comprises the DeepCore, a section of the detector located centrally
in the hexagonal pattern, at a depth of around 2100m. The DeepCore strings has
a different distribution of DOMS and also contains High Quantum Effiency DOMS
(HQE DOMS). A DeepCore string has 10 DOM’s situated with a spacing of 10 me-
ters right above the horizontal dust layer in the ice. Right under the dust layer a
DeepCore string has 50 HQE DOM’s with a spacing of 7 meters. DeepCore was in-
stalled and operational by May 2010 and were commissioned to increase the sensi-
tivity of the detector by an order of magnitude, making it possible to detect neutrinos
with energies as low as 10 GeV. The increase of sensitivity is due to a combination
of several factors. Firstly because the density of DOMS in that area of the detector
is now higher, secondly because the PMT’s has a higher quantum efficiency, thirdly
because the ice at this depth is very clear and lastly because of a clever scheme where
the part of the detector that is not DeepCore (which is the majority of the detector)
is used as a veto to filter out unwanted signal from cosmic muons [21].
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FIGURE 2.3: An illustration of an IceTop frozen water tank Cherenkov
Radiation Detector. Kindly borrowed from [22]

At the top of the ice, a pair of frozen water tanks are installed in close proxim-
ity to each of the strings in IceCube, in total comprising what’s referred to as IceTop,
a surface Cherenkov Radiation detector that is both used to study air showers, here
especially cosmic muons, but also as a veto against cosmic muons, which are un-
wanted signal in IceCube. Each tank contains two DOMs spaced 58cm apart.

In total, the IceCube array spans a volume of a cubic kilometer under the ice,
making it the largest man made object by volume.

Planned detector upgrade

A further installation of 7 strings around DeepCore is planned for 2022/2023 arc-
tic summer. The strings will in total carry around 700 detector modules, which is
comprised of ordinary DOM’s and two new DOM types: Multi-PMT Digital Opti-
cal Modules (mDOM’s) and Dual Optical Modules (D-Eggs). The mDOM contain
24 PMT’s distributed evenly around the mDOM’s spherical shape. Having multi-
ple PMT’s in a single DOM gives a better sense of direction and provides a larger
PMT area than that of the ordinary DOM [23]. D-Eggs contain two HQE PMT’s, one
facing up and one facing down, together with 12 LED’s for calibration purposes.

FIGURE 2.4: An illustration of the different DOM types present in the
detector when the Upgrade is installed. Kindly borrowed from [24]
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D-Eggs are expected to greatly increase the understanding of the hole ice - the
ice in the drill holes where the strings are located [25]. This configuration is referred
to as IceCube Upgrade, and is intended to increase the sensitivity of the detector to
neutrinos with energies as low as a few GeV, and also to improve calibration capa-
bilities. IceCube Upgrade is also a stepping stone towards a much bigger upgrade
of IceCube called IceCube Gen2, that will increase it’s volume to 8 cubic kilometers
and double the amount of optical modules [26].
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Chapter 3

Data From IceCube

The data from IceCube can generally be divided into two unsurprising categories:
real measurements from the telescope and simulated data. Both data types are
shipped to the collaboration in an internally developed file format called .i3. The
i3 format is intended to be read using IceTray, an internal environment developed
for analysis in the IceCube collaboration. While containing dependencies on the Ice-
Tray source code, several alternative ways of reading i3 files exists that circumvents
the necessity of intimate knowledge of internal IceCube software. For reference to
the reader that is unfamiliar with the i3 file format - the file structure once read
resembles that of an ordered dictionary, where each principal key corresponds to
either the original reconstructable particle attributes used in the simulation, or a de-
tector readout after a given selection on DOM signal is made. Full documentation is
available at [27].

Simulated Data

The simulated data originates from different Monte Carlo simulations (MC) im-
plemented by the IceCube Collaboration. MC simulation is a broad umbrella term
for different simulation algorithms that simulates probabilistic outcomes in systems
where a deterministic approach is ill-suited. This way of simulating data is therefore
ideal for particle physics as the interactions at a quantum level are probabilistic.

The inner workings of the simulations are the result of years of iterative improve-
ment and therefore the reader is encouraged to seek these details from the internal
documentation available for collaboration members, as a detailed walkthrough of
these would constitute a thesis on it’s own 1. However, conceptually the simulations
seek to answer the question:

Given a particle with energy E, direction of travel R and interaction vertex V, what read-
out will the detector produce?

To answer this question the simulation models not only the particle interactions
from a theoretical stand point but also models experimental aspects that are vital to
predict the detector readings. This includes accounting for the properties of the ice,
as the clarity of the ice changes with the depth, and a dust-layer exists in the upper
half of DeepCore, as mentioned in Chapter 2. The simulations also models the noise

1Technical papers can be found in [28], [29] and [30] but these algorithms are developed outside of
IceCube and to understand the precise implementation in IceCube, one must see the internal pages.
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from the detector - cases where DOM’s register charge despite none being there. The
following event generators has been used in this work:

• MuonGun: Simulation models atmospheric muons that makes it into the ice
and it’s interaction with the ice molecules [28].

• CORSIKA: CORSIKA stands for Cosmic Ray Simulations for Kaskade. The
simulation tracks the propagation of the particle through the atmosphere and
describes how it either decays or interacts with the air molecules, leading to
what’s referred to as an atmospheric shower [29].

• GENIE: Simulates the interaction between the neutrinos and the ice molecules
[30].

An important point to make is: To accurately represent all sources of signal for
real measured data, a union of all (or some) of these simulations are required in a
realistic distribution, as each represents different sources. One of the inputs of the
simulations are the spatial configuration of the detector. This information includes
position of the DOMs and the type of DOMs - it acts in effect as a snapshot of the
detector at the time of simulation. Therefore, there exists simulations for the current
detector and the planned upgraded version. Because the planned upgrade includes
new DOM types, the corresponding detector readout contains additional variables.

Event Variables

With the word event we associate a particle, either a muon or a neutrino, and its
truth and feature variables. The truth variables represents the reconstructable at-
tributes of the particle, such as energy and its direction of travel, whereas the feature
variables correspond to the detector readout from that specific particle. In practice
this means that every event has a single set of values with a fixed number of rows
and columns that represents the reconstructable attributes, and that the feature vari-
ables represents the amount of DOMs that triggered and the information of each
DOM, which produces a matrix with a variable amount of rows but a fixed amount
of columns.

Feature Variable Meaning Upgrade Only Data Type
dom_x The x-position of the specific DOM float
dom_y The y-position of the specific DOM float
dom_z The z-position of the specific DOM float
dom_time The time at which the DOM triggered float
dom_charge The charge that the DOM measured float
rqe Relative Quantum efficiancy float
pulse_width width of pulse in ns integer
pmt_x x-unit vector of the PMT float
pmt_y y-unit vector of the PMT float
pmt_z z-unit vector of the PMT float
pmt_area The surface area of the PMT float
pmt_type The type of the DOM integer

TABLE 3.1: Table containing the most relevant input fields from .i3
event data files. These features are simulated values of IceCube de-

tector readouts.
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The positional variables dom_x, dom_y and dom_z are given relative to the de-
tector, where as the unit vector variables pmt_x,pmt_y and pmt_z makes out the
position of a specific PMT on the new DOM types that contain multiple PMTs such
as D-Egg and mDOM. These unit vectors are given relative to the DOM, and not the
detector. As we shall see later, the fact that each event has a variable amount of rows
of feature data gives rise to certain technical issues that needs to be addressed. The
feature data will always have the variables presented in Table 3.1 but the different
selection methods will rule on which DOMs are included in the readout. This is a
construction made since not all types of analysis requires all DOMs to be included,
and certain selections represents noise reduction attempts.

Truth Variable Description Data Type

energy_log10
The logarithm in base 10 to the
energy of the particle in GeV

float

position_x
The x coordinate of the
interaction vertex

float

position_y
The y coordinate of the
interaction vertex

float

position_z
The z coordinate of the
interaction vertex

float

azimuth

The azimuth angle of the
particle’s interaction vertex
as seen from a spherical
coordinate transformation
of its interaction vertex

float

zenith

The zenith angle of the
particle’s interaction vertex
as seen from a spherical
coordinate transformation
of its interaction vertex

float

pid
The identity of the particle
following the convention from [31]

integer

muon_tracklength The length of the muon track float

TABLE 3.2: Table containing the most relevant truth variables for
an event for both the current detector and the upgrade. The
muon_tracklength variable only exists in the cases where the particle

is a muon.

The most relevant principal keys used in this work are:

• MCInIcePrimary: This field contains the truth variables depicted in Table 3.2

• SplitInIcePulses: This field represents an uncleaned selection of feature data
depicted in Table 3.1.

• SplitInIcePulsesSRT: This field is the SplitInIcePulses features that has passed
through a noise cleaning method based on special relativity, where causality
of the signal is taken into consideration. This SRT cleaning method will not
matter much for reconstruction on DeepCore data, but will play a big role in
dealing with noise in the simulated IceCube Upgrade data, as we shall see.
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IceCube Data Filtering Levels

The data selection used in this work is the data selection utilized and developed
by the Oscillation Group within the IceCube collaboration, and the following is a
conceptual condensation of their data selection, which is described in detail in [32].

Level 1 (Initial Trigger)

The initial data selection is collaboration-wide and quite unsurprising - it is simply
a trigger that recognizes the readings as an event if it passes a single multiplicity
trigger (SMT) check. The SMT labels a detector readout as an event if a multitude of
DOMs register signal within a short window of time. At this stage the rate of events
recorded is around 2500Hz.

Level 2 (DeepCore Filter)

This level removes any signal from level 1 that does not have more than 3 SMT’s.
The SRT cleaning algorithm is run on that selection, and a further causal selection
is made to minimize the probability of the signal originating from a muon flying
across the detector. At this level a veto mechanism as described in Chapter 2 is also
applied.

Level 3 (MC to Real Data Agreement)

At this level derived features of the data that passed level 2 are calculated. These fea-
tures are known to allow simple cuts to be applied to remove events where agree-
ment between real data and simulated data are known to be poor. A list of these
derived variables are available in [32] in table 7, page 28.

Level 4 (Boosted Decision Tree Classification)

This level applies Boosted Decision Trees (BDTs), which is a type of machine learn-
ing algorithm, to classify the data passing the level 3 selection into three categories:

• Muon Events

• Pure Noise Events

• Neutrino Candidate Events

Applying machine learning at this stage is possible because the level 3 data se-
lection makes sure that any data passing into level 4 has good agreement between
simulation and real data. The specific BDT algorithm used is LightGBM2, and the
model configuration used is available in [32] in table 9, page 34.

Level 5 (Removing Sneaky Muons)

Muons passing level 4 selection are either those who have been able to travel unde-
tected through corridors in the detector into the DeepCore section, or given rise to
signal outside the DeepCore section. At level 5 a Containment cut is made, effec-
tively removing any events that are not in the DeepCore section of the detector. A
further Corridor cut is made that limits the amount of sneaky muons. At this stage
the sample is dominantly neutrino.

2This is an algorithm known for its speed and performance. Technical paper is available in [33]
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Level 6 (High Statistic Reconstruction)

The data from level 5 is split into a high and low statistic batch, and the high statistic
batch is reconstructed using RetroReco, a statistical model used for reconstructing
the particle attributes shown in Table 3.2 using a likelihood approach that utilizes a
table look-up method that takes approx. 5 - 40 seconds pr. event.

Level 7 (Final Cleaning)

BDTs are used to classify the same categories as in Level 4, but this time based on
reconstruction results from Level 6. The final energy estimate is calculated after this.
Event rates are available in Figure 3.1.

FIGURE 3.1: Event rates as a function of cleaning filters. ’All Filters’
represents general Level 2 common to all collaborations and ’DC Fil-
ter’ represents the Level 2 (DeepCore) filter described above. Figure

is kindly borrowed from [34]

Another important point to mention is that these cleaning steps are developed for
DeepCore data, and currently no well-established cleaning methods of same level of
sophistication exists for the simulated Upgrade data, as we shall see.
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Chapter 4

Machine Learning

The debate on Artificial Intelligence, of which Machine Learning is officially con-
sidered a sub-field, suffers like many other debates seem to do in these times, from
an urge to categorize it as either ’good’ or ’bad’. There are those that envision a fu-
ture characterized by E.M. Foster’s 1909 novella The Machine Stops in which he writes

"The Machine develops — but not on our lines. The Machine proceeds — but not to our
goal. We only exist as the blood corpuscles that course through its arteries, and if it could
work without us, it would let us die."

And then there are those that trust The Machine and it’s architects to such an extent
that they’re willing to let it replace something as sensitive as a criminal sentencing
process [35].

Those who approach the debate more objectively might see that Machine Learn-
ing is a specific way of analysing data, and that forcing such a categorization upon
a tool makes as much sense as discussing the morality of a hammer. Any morality
must inherently be tied to its intended application. From a utilitarian perspective,
the lowest ranking application of Machine Learning (ML) could very well be the
Chinese mass-surveillance program that utilizes ML techniques such as Facial and
Speech recognition together with a wealth of private information to compute a Citi-
zen Score, that seems to determine whether or not your children may attend higher
education, or whether or not you may board a train or an air plane [36]. In the other
end of the utilitarian spectrum, one might find the 2020 breakthrough by DeepMind
in prediction of protein folding, a notoriously difficult problem for medical sciences,
as the folding of a protein highly characterizes its medical properties. Being able
to predict the folding of a protein by simply knowing it’s amino-acid sequence and
structure, researchers will be able to better understand disease and dramatically im-
prove the time it takes to produce new medicine [37].

Somewhere between the two utilitarian extremes lies a ML-based classification and
reconstruction of neutrinos in the IceCube detector. Determining exactly where is
left as a exercise for the reader.

Supervised and Unsupervised Learning

In the broadest of terms, the usage of Machine Learning can be divided into super-
vised and unsupervised learning. Exotic mixtures do exist 1. Unsupervised learning

1This is typically called semi-supervised learning. This is actually quite common for graph neural
networks
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covers the cases where a general labeled structure of the data isn’t known. It can con-
ceptually be thought of as the answer to a question of the type:

Given this box of 1000 items, if you were only to divide these into N different categories,
which category would you assign each item?

While human interpretation of such categories can be quite difficult, it is common
among data scientists beginning a ML analysis to use unsupervised learning to check
whether or not there even exists structure in the data, which is a prerequisite for any
further analysis. In this sense, it’s a method usually most practical for an abstract
categorization of data, and not suitable for any predictive tasks. Supervised learning
covers the cases where a labeled structure in the data is known, and of such a learning
from example scheme can be implemented. Again in broad terms, supervised learning
can be divided into two further sub-categories:

• Classification

• Regression

Common among these is the learning from example scheme. They first learn from
examples that you present, and then they grow capable of applying that experience
to examples they have not yet seen.

Classification is a ML task that categorizes data according to categories that it has
been taught. A typical example of this is image recognition. If a given algorithm
is presented with a 1000 pictures of either a cow or a cat, and you specify which is
which for every picture, then if you present it with a picture it has not seen before, it
will attempt to classify it as either a cow or a cat2.

Regression is a ML task that closely resembles the conceptual foundation of regres-
sion analysis. In the examples on which such an algorithm trains, one must provide
not only the data but also the known value representing the truth. Suppose you for
times T = [0, 1, 2, 4, 5] measured X = [0, 1, 4, 16, 25], and you wanted to apply ML
regression to X given T. Effectively this would let the algorithm learn the function
f (X) = X2 as defined on the domain given by T. After the learning one could present
the algorithm with T = 6 and it would attempt to forecast f (6). This is, obviously, a
completely unnecessary exercise for cases where the analytical expression for a given
problem can be achieved, but it’s very powerful for complex systems where the an-
alytical expression is unknown. It’s also worth noting that in cases, especially for
simulations of fluid dynamical systems, where an analytical or numerical solution
to the problem exists already, serious computational advantages exists with using
ML to regress the problem instead of using a simulated result. This is due to the fact
that evaluating an already trained regression model beyond it’s training domain e.g
asking for f (6) is often much quicker than solving a complex system numerically 3

[39].
2And it does so pretty well. But if you present it with a picture that falls outside the categories on

which it has trained, perhaps a picture of your girlfriend, you better hope it picks the cat category!
3This is actually how most 4K rendering is done in graphics cards. Newer generation GPU’s from

Nvidia renders the images in a lower resolution and uses AI to predict how that image would look like
if it had actually rendered it in 4K, and then displays that. The method is called Deep Learning Super
Sampling [38]
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Artificial Neural Networks

In the Chapter 3, I briefly mentioned Boosted Decision Trees, a category of ML al-
gorithms. There exists many different categories, too many to address in this work,
and for this reason I will here only briefly explain the central idea of one such cat-
egory, Neural Networks - more specifically feed-forward multi-layered perceptron
neural networks, as it will become relevant later.

FIGURE 4.1: An illustration of a MLP with a single hidden layer. Data
flows from left to right. As depicted by lines in the diagram, every
neuron in one layer is connected to all neurons in the next layer. For
this reason this architecture is often called fully connected. Kindly

borrowed from [40]

Artificial Neural Networks began as a joint venture between Warren McCulloch,
a neurophysiologist, and a mathematician named Walter Pitts who in 1944 published
[41], in which they proposed how the neural workings of brains could be artificial
modelled in computers. After decades of iterations and different neural architec-
tures, the feed-forward multi-layered perceptron neural networks, or just simply
MLP, is the most dominant today. As illustrated in figure 4.1, the architecture con-
sists of neurons, the circular objects, which are arranged in an input layer, a hidden
layer and an output layer. Each layer of neurons receives data and outputs, as de-
picted in the diagram, the results of an activation function, typically given by

OL = f (bL + wL ·OL−1) (4.1)

where OL is the output of the L’th layer, f is the activation function, typically the
sigmoid activation function, wL is the weights of the current layer and OL−1 is the
output of the previous layer. The feed-forward mechanism simply means that the
output of one layer flows into the next layer as input. Both bL and wL are learnable
parameters, variables that are tweaked in order to minimize the loss of the output of
the output layer. Minimizing the loss is essentially the only thing any supervised
ML algorithm does. The process of tweaking these parameters is called backpropa-
gation.
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Backpropagation, Loss Function and Optimizers

Eq. 4.1 is applied iteratively throughout a network until an output is calculated. This
is referred to as a forward pass. First time this is done, typically the learnable parame-
ters used are some initialized values that is most likely far from the ideal parameters
obtained after lots of training. But how are the variables tweaked? Consider a case
where we’ve completed the very first forward pass in the regression of X given T,
as mentioned earlier, and now have a single value from the MLP as a result. Since
this is supervised learning, we have some true value to compare the output to. Since
this is the first pass, T = 0 and the true value is X = 0. Suppose our network outputs
X̃ = 3. This result is far from correct, and the way we can specify this to the algo-
rithm is to quantify ideal. The way to do this is to specify a loss function, a function
L : Rd −→ R1 which we then ask to keep the value of as low as possible. A common
loss function chosen for regression problems is the mean squared error (MSE):

Loss =
1
n

n

∑
i=n

(Xi − X̃i)
2 (4.2)

where n is the number of outputs of the algorithm. In our case n = 1, so our loss is
Loss = 9. Now that we calculated the loss, we need to perform backpropagation,
which is to move backwards in the diagram in Figure 4.1 and update the weights and
biases in each layer such that the loss gets smaller. The scheme of updating weights
are called optimizers, and there exists many, each with their own advantages. In
this particular case, let’s pick a simple Gradient Descend. This is typically done as:

wL = wL − k · ∂Loss
∂wl

(4.3)

bL = bL − k · ∂Loss
∂bl

(4.4)

where k is the learning rate, a scalar parameter for each learnable parameter
that dictates how big of a nudge the weight and bias gets on every backward pass.
Since Loss depends on X̃, which in turn depends on every other learnable parameter in
the model, the partial derivatives in Eq. 4.4 and Eq. 4.3 requires the chain rule, and
grows to quite inhuman complexity quickly as the number of hidden layers, usually
referred to as depth and number of parameters in each hidden layer, usually referred
to as width, increases.

Once the weights are updated one would expect the next forward pass to carry
a lower loss. A complete pass of the entire training data T is referred to as a training
epoch, and typically one would require multiple training epochs to achieve a global
minima in the loss landscape. Defining a loss function that suits the problem that
the ML algorithm is being applied to is quite important. Take for instance a dumb
loss function F = X − X̃. Because the job of the algorithm is to minimize the loss,
the algorithm would simply output larger and larger X̃, as this would produce a
smaller and smaller loss, and as the loss gets smaller, the actual goodness of the out-
put would become worse and worse. Therefore, good loss functions tends to have a
lower bound.
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FIGURE 4.2: An illustration of loss landscapes. Each landscape rep-
resents a slightly different model architecture. Each point in a land-
scape represents a loss function evaluated at a specific set of weights

and biases. Shows well how cumbersome ML prototyping can be!

Validation and Early Stopping

If we gave the simple algorithm above infinite training time, eventually it would
reach a perfect loss on the domain in which it’s asked to train. Effectively the loss
in Eq. 4.3 would reach zero. The point of supervised learning is not to perform well
on training data as the labels of such is already known. The goal is to perform well
on a new subset of data on which the labels are unknown. If we were to present
the algorithm with new labeled data, a so called validation set, the loss would most
likely not be zero. This is due to overfitting, a common problem in ML, as models

FIGURE 4.3: An illustration of Loss as a function of training epochs.
Loss plots are not often as beautiful as this fictitious illustration makes

it look!

often pick up variance and bias only present in the sub-sample of data they train on,
and therefore expects this in the new sample. One great source of bias is obviously
the initial data selection - the training data needs to be a randomized sub-sample
of the total data set. Assuming this is the case, a common practice is to use a vali-
dation set actively - another sub-sample of the data set, on which a validation loss
is calculated. While validation schemes can be different, the one used in this work
is to evaluate the model on a validation data set after every training epoch. If the
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validation loss is lower than the one previously recorded as the lowest, the specific
weights of the model is saved. The idea of early stopping is then to stop the training
once the validation loss stops improving, which is at the point where the training
and validation loss begins to diverge. One can apply this logic in a so-called k-
fold validation scheme, where the entire labeled data set is split into k parts, and
where the designation of validation and training set is rotated such that one even-
tually have results that have trained and validated on the entire labeled data set.
One would then average the validation performance to get a gauge on how well the
model generalizes.

Test Set, Generalization Error and the Bias-Variance Trade off

A k-fold validation does not guarantee that performance on labelled data will be
close to performance on unlabeled data. Since labelled data is typically a sub-set of
all data, any error estimates made on data with labels should be considered a biased
estimate on a general error. Mathematically, the general error J of a function f can be
expressed as:

J( f ) =
∫

L( f (x), x̃)ρ(x, x̃)dxdx̃ (4.5)

where x denotes training data, x̃ represents the labels and L is the user-specified loss
function. ρ(x, x̃) is a joint probability distribution which describes the probability
of finding a pair (x, x̃) in a specific range or discrete set4. However, typically ρ is not
known in ML problems, and one can then regroup and calculate the empirical loss

J( f )n =
1
n

n

∑
i=n

L( f (xi), x̃i) (4.6)

This is a typical way of calculating loss on an epoch level, and as such J( f )n
represents our validation loss from above. An obvious but important observation to
make is that neither of the equations above are defined for domains in which there
are no labels. This is another reason why general error estimation in ML is difficult.
A practical workaround is to claim that a model is general if

lim
n→∞

J( f )− J( f )n = 0 (4.7)

A common approximation to J( f ) is then made by introducing another sub-
sample of the labelled data called the test set, from which one can calculate the
generalization error G(f)

G( f ) = J( f )n̄|test
− J( f )n |validation

(4.8)

G(f) serves as a gauge on how predictions made on unseen (not unlabeled) data
differs between unseen data sets. In practice, one can only hope to reduce this error
down to level of noise present in the data set [42]. Certain alternatives to the choice
of approximating J(f) with an empirical loss of a test set exists. Instead one could
attempt to characterize G( f ) = J( f ) − J( f )n |validation

by producing bounds. Hoeffd-
ing’s inequality [43] is one such method, that eventually gives rise to what’s known
as the Bias-Variance Trade off, where it’s seen that one can decrease the variance of
the outputs of a model by increasing it’s bias. In practice this often translates to that

4In the case where the variables are in-dependant, the joint probability distribution simply becomes
the product of the marginal (unconditional) probability densities.
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models of higher complexity will generally have a lower probability of generalizing
well [44].
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Chapter 5

Graph Neural Networks

The first steps towards Graph Neural Networks (GNNs) were taken in the 1997 pa-
per [45] to address the challenge of incorporating any specific information about the
relationship between components in data in ML. As it turns out, relational infor-
mation can be the major source of information in certain problems [46]. Examples
of such are social, transportation and telecommunication networks where the non-
Euclidean relations in the data cannot be ignored. Most of the techniques known to
work well on Euclidean data have since 1997 been included in the GNN domain -
this includes auto-encoders, temporal, recursive and convolutional models [47].

A (Very) Brief introduction to Graph Theory

The ’Graph’ part of Graph Neural Network has its meaning from a mathematical
field called Graph Theory. The following definitions are from [47].

A graph G = (N, E) 1 is a set of nodes N and edges E. A node ni ∈ N can be
connected to another node nj ∈ N via an edge eij = (ni, nj) that starts at nj and ends
at ni

2. The neighbourhood of a node n is given by f (n) = {k ∈ N|(n, k) ∈ E}.
The adjacency matrix is a matrix A where elements Aij = 1 if eij ∈ E and otherwise
zero. One can extend this definition to what is usually referred to as a attributed
graph, where one associate node features X with every node, and edge features Xe

with every edge. All graphs in this work is attributed graphs. A graph is a (simple)
directed graph if every node is connected once and not with itself. A graph is called
Spatial-Temporal if the node features X changes dynamically along a time-like pa-
rameter t.

For all intends and purposes of this work, one can get away with thinking of graphs
as a series of circles and vectors. As illustrated in Figure 5.1, every circle is a node
that effectively represents some data (formally node features), and those nodes are
connected to other nodes via vectors that originates from one node and ends and
another (formally edges). The connection itself is information, and together with the
connection one can associate other data (formally edge features). In Graph Theory,
one differentiates between methods of extracting information from graphs. Techni-
cally, the methods deviate on how the Laplacian of the graph is interpreted. The
Laplacian of a graph is defined as the difference between the adjacency matrix of the
graph and the degree matrix, a matrix containing information about the number of

1Some defines a graph as the set G = (N, E, A), where A is the adjacency matrix. This work
excludes the adjacency matrix in the formal definition as any information present in the adjacency
matrix is already present in edges.

2This is also called a directed edge. An undirected edge is simply in the case where you have
directed edges pointing in opposite directions, and is therefore not included here.
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FIGURE 5.1: An illustration of a simple directed graph.

edges each node has. In essence, the Spectral domain characterizes the graph by an
eigen-decomposition of the Laplacian as developed in Spectral Graph Theory, this
is analogous to a Fourier decomposition in signal analysis. This breaks down the
graph to subgraphs called graphlets, giving rise to models such as [48], and effec-
tively carries out computation in a pseudo frequency space [49]. The Spatial method
treats the Laplacian as a measure of the spatial connectivity of a graph, and does not
decompose the graph via a graph Fourier transform. This is the approach used by
geometric graph neural networks, such as point clouds. Details on the full mathe-
matical rigour of topological graphs is available in [50].

A current topic of research is to better understand the connections between results
obtained in either domain. [46] presents a framework from which certain results can
be interpreted as equivalents between the domains.

Message-Passing Schemes

Common for all GNNs is that the input of the models are graphs. As data from the
wild rarely comes pre-packed as graphs, one typically have to transform data into
a graph format and specify the edges between the nodes. Once the graph exists,
a GNN acts as a function on the graph, in the same sense as an ordinary artificial
neural network can be seen as a function acting on its input. The GNN itself can be
viewed as a series of applied operations, that eventually produces the output. The
difference between a Convolutional GNN and an Attention GNN is the operations
on the graph itself.

A general framework in which to interpret how these operations work on graphs
is to view them as Message-Passing Schemes. In broad terms, every node in a
graph receives a message from its neighbours that is then used to update the node
features of the node receiving the messages. To see this, consider a single node ai
that receives a list of messages mi from all or some of its neighbours ni. The message
can be defined as

mi = f (ni)W (5.1)
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where W represents a matrix of learnable weights, and f some operator-specific func-
tion on the node features of the neighbours of ni. These messages are then aggre-
gated according to some operator-specific way:

m̃i = Aggr(mi) (5.2)

The node features of ai are then updated as:

ai = G(m̃i) (5.3)

where G, again, is some operator-specific function. Note that this little example
doesn’t include edge features - some operators do, but the underlying scheme is the
same.

Additional Learning Goals on Graphs

Certain interesting possibilities on learning goals arises when using GNNs. One
such learning goal is relational prediction, or link prediction. Instead of training
a model to predict a certain value for a certain problem, GNNs can be trained to
output a graph representing a state of a social network sometime in the future, ef-
fectively predicting new edges in the graph [51]. This could represent a prediction
on a new friend on your favorite social media platform, or a prediction on your
next purchase on a very dominant e-commerce platform. Another exotic example is
semi-supervised clustering, where only parts of the nodes in a graph carry labels.
Message-passing schemes can be utilized to predict how labels flow from labeled
nodes to unlabelled nodes, effectively creating a pseudo-classification model that
[52], in principle, can mix simulated and real data in HEP.

Graph Neural Networks as a Generalization of Convolutional
Neural Networks

Convolutional Neural Networks (CNNs) are popular tools in fields such as machine
vision, which includes technologies as Facial and fingerprint Recognition. The effec-

(A) label 1 (B) label 2

FIGURE 5.2: (A): An illustration of a CNN architecture used in image
recognition of handwriting data. The handwritten letter 5 is given
as argument to a convolutional operator that produces a feature-
extracted version of that image (second column), which is then passed
to an MLP that then produces a categorization of in the input but
based on the feature extracted version of the input. (B): An illustra-

tion of a convolution operation. Kindly borrowed from [53].
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tiveness of CNNs comes from the convolution and pooling scheme that is deployed
before feeding the information to an ordinary MLP. A convolution operator applies
a filter, also known as a kernel, to the input data. The filter slides across the entire
input and extracts a feature map. The specific output on the feature map is typically
the sum of an element-wise matrix multiplication. The specific filter used can vary.
The convolution operator is then in a sense an operation that examines a local area
of an image and extracts local features. The pooling is effectively an aggregation of
the feature maps. It carries the benefit of introducing invariance to small translation
in the input data. Generally, a pooling operation divides the input into batches that
then gets aggregated via a non-linear mapping. A common type is max pooling,
where the non-linear map just outputs the maximal value of each batch [54].

There exists an underlying assumption on the way the input data is structured for
CNNs. Because CNNs are developed to primarily analyze image data, the input
is expected to come in the form of an image, typically a matrix, where regularity
in the spacing of the pixels are taken for granted. If a CNN is being applied to a
problem that doesn’t have this regularity in it, the data must be altered such that
this underlying assumption fits. This is not the case for GNNs. GNNs carry no in-
herited assumption on the structure in which the input data comes - it asks you to
specify this explicitly. The structure is specified in GNNs by specifying the relational
information between nodes (the edges) in the graphs. In this sense, Convolutional
Graph Neural Networks are a generalization of CNNs, as one can simply arrange
the structure of the input graphs in such a way that it effectively becomes image
data, effectively creating a CNN. This can be done in the spatial domain by simply
representing every pixel as a node with RBG values as node features. Every pixel
would then be connected to its nearest pixel.
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Model Development

In the following I will attempt to describe the process of developing the GNN model
to regress and classify on IceCube data. If you’re simply interested in seeing the final
model, see the last section.

The process of development has been long, as the vast majority of time spent on
this work has been spent here. Including every thought is impossible, and therefore
only the most relevant choices and considerations are highlighted here.

Initial Thoughts

Early on I became painfully aware that the vast majority of GNN papers were fo-
cused on classification problems in unrelated fields. Out of an already limited amount
of published papers on ML-driven reconstruction in IceCube, an even smaller subset
of these revolved around GNNs. In fact, all I was able to find that involved GNNs
on IceCube data were [55], which is focused on classification. Widening the net to
include larger HEP collaborations, such as CERN, introduced me to [56], which in-
dicated that reconstruction using GNNs in the spatial domain might be possible in
IceCube. But generally, a clear picture was emerging - namely that reconstruction
and classification of particles in HEP were typically done using deep learning algo-
rithms such as CNNs, one example of this is [57], and that GNN classification in
HEP seemed to be an active area of research, with little results to be inspired from.
Therefore, it was initially an open question to whether or not a GNN could even pro-
duce reasonable reconstruction results. I therefore set the initial goal of attempting
to produce a reasonable regression on energylog10 in Table 3.2 1.

Choosing a Library

At the beginning of this work, a comparison between popular libraries such as py-
torch geometric 2, deep graph learning and stellar graph, showed, at least at that
time, that a larger number of implemented operators and models from papers on
GNNs existed in the pytorch geometric. It was relayed through consultation with
members of the Danish Institute of Computer Science (DIKU) that pytorch geomet-
ric offered the best computational performance on GPU - and knowing that compu-
tational speed were central to the relevance of any reconstruction made in this work,

1I much later realized that judging a GNN approach solely from its ability to reconstruct energy
might not be a very fair criteria, as the GNNs ability to capture non-Euclidean aspects of the IceCube
data might be better evaluated in reconstruction of the zenith angle in 3.2

2A larger list is available here

https://libraries.io/pypi/torch-geometric
https://libraries.io/pypi/torch-geometric
https://libraries.io/pypi/dgl
https://libraries.io/pypi/stellargraph
https://libraries.io/search?keywords=graph-neural-networks
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made it seem like the better choice at the time. As seen in 6.1, this is still the case for
GPU-based calculations - but not for CPU!

FIGURE 6.1: Computational performance benchmark from Decem-
ber 2020 between pytorch geometric (PyG) and deep graph learning
(DGL). Results are calculated based on computation unit (either CPU

or GPU) on popular datasets. Kindly borrowed from [58].

As fellow students with experience with the torch library pointed out, pytorch
geometric is a library with little in-built convenience. It does not contain the mod-
ularity that libraries like Tensorflow offer, and that this increased degree of self-
reliance could very well result in hours spent being stuck in trivial coding errors.
However, having the confidence of a 25-year old, I decided to settle with pytorch
geometric.

Preprocessing

Initially, only simulated data from the current detector setup at IceCube were avail-
able to me. Therefore this data was used in prototyping. The data were delivered in
the shape of sqlite databases that contained already preprocessed events. All data
were prepossessed using the

sklearn.preprocessing.RobustScaler(unit_variance = True)

which is a common preprocessing transformer from the scikit-learn library. It trans-
forms data as

x̃i =
xi −median(x)

IQR(x)
(6.1)

where xi is the i’th element of the set of observables x and IQR(x) is the inter-quartile
range of x. As it will turn out, the unit variance of data as a result of this transforma-
tion will be import in the discussion of batch normalization.

The sqlite databases used for the first half of this work originates from a i3-to-
sqlite pipeline that Mads Ehrhorn, a now former master student from NBI, devel-
oped as part of his master thesis. Having access to this early on meant that this work
didn’t have to begin with long considerations on preproccessing steps and decipher-
ing the not-so well documented internal IceCube software 3. The pipeline offers a
variety of convenient features - among the most practical is the ability to order data
from a central archive. In such an order, one can specify the desired level of filtering

3Source code for the pipeline named CubeDB is available here

https://github.com/ehrhorn/cubedb
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of the events, the simulation origin, and the particle type. The pipeline also incor-
porates the event number, a unique event identifier across i3-files, which is used to
pull data out of the databases in a very computationally efficient way. Generally a
database contain two fields: features, which contains the variables listed in 3.1, and
truth, which contains the variables in 3.2. One can then pull specific events from the
database without loading the whole database into memory. Suppose one wanted
to extract event 1001 from a database - such a request could be done using:

import pandas as pd
import sqlite3

db_file = "mydbfile.db"
desired_event = 1001
with sqlite3.connect(db_file) as con:

truth_query = 'select * from truth where event_no == %s'%desired_event
truth = pd.read_sql(truth_query, con)

feature_query = 'select * from features where event_no == %s'%desired_event
features = pd.read_sql(feature_query, con)

LISTING 1: Simple query example
which extracts the features and truth data associated with event 1001 in a pandas
format. Similar requests can be made to extract events based on particle identity.
As seen in 6.2, even extraction of a small number of events become efficient. Usu-
ally extraction times pr. event become very computationally inefficient when the
number of events extracted is small. This is due to the fact that there is a minimum
overhead of computation associated with opening files from disk and loading them
into memory. While utilizing the i3-to-sqlite pipeline does add another step to the
data flow, this step only have to be done once, and as evident from 6.2 one can then
read the events from the databases directly during training without creating a bottle-
neck. Reading directly from i3-files is not a suitable alternative, as the i3-file format
requires sequential reading. Alternatives to sqlite databases does exist, such as a
i3-to-numpy pipeline4, but while reading numpy arrays from disk is quicker than
reading i3-files, it does not provide a comparable efficiency to sqlite databases.

Representing IceCube Data as Graphs

With the ability to designate relational information in IceCube data by represent-
ing it in terms of graphs, one naturally gets to wonder how to do this best. In the
domain of GNNs, no general method exists other than the edge configuration of
the graphs should depict some information that is not apparently embedded in the
array-format in which the data comes. If one finds such a configuration, a model
utilizing the connection between nodes in a computation, should perform better on
an information-rich edge configuration compared to an edge configuration that is
completely random. This gives rise to a method of testing the graph configurations,
but requires a working model first. So in order to first build a working model, one
needs to work from an ansatz.

The work presented in [56] suggested that an edge configuration of graphs based

4This is offered by the unofficial IceCube package i3cols, code available here

https://pypi.org/project/i3cols/
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FIGURE 6.2: Extraction time pr. event in microseconds versus batch
size (number of events extracted together) of a sqlite database con-
taining level 5 DeepCore simulation data. Based on mean extraction
times of 10 repetitions. These extraction times includes both extrac-

tion of feature and truth data.

on a nearest-neighbour, as calculated from a Euclidean distance, provides grounds
for reasonable results and can effectively represent the irregular geometry of a par-
ticle detector. Results achieved in the master thesis of former NBI master student
Bjørn Mølvig, where a BiDirectional GRU model is used, suggested that treating
IceCube data as a pseudo time-sequence also leads to reasonable results. This was
also shown in the master thesis of Mads Ehrhorn in his application of a temporal
convolutional neural network (TCNN).

These observations lead to two competing edge configurations, which would even-
tually lead to two different GNN prototypes. To better implement the experience
from previous work, and to better facilitate interpretation, this work choose to rep-
resent each event in IceCube data as a single graph. This representation then di-
rectly allows for the following translation between data and graph theory

• node −→ Active DOM ( E.g. A DOM that registered a pulse)

• node features −→ Pulse data (DOM-specific measurements and related infor-
mation depicted in 3.1)

In such a representation, every node in a graph represents a DOM, and the associated
node features is then feature data dom_x, dom_y, dom_z, dom_time, dom_charge. In
the cases where a DOM is activated more than once during the same event, the
DOM is represented in the graph more than once, where the time and charge is
adjusted accordingly. This means that only DOMS that activate during an event
are included in the graph for that event. The differences between the graphs in this
work lies in the edge configuration, which are:

• k-nearest neighbours: This configuration provides an edge configuration that
connect nodes based on their Euclidean distance from each other, calculated
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based on the spatial information of the DOM that they represent. The number
of neighbours is set as a variable.

• time series: This edge configuration connect nodes based on the time at which
they activated, namely the variable dom_time. This provides a graph where
the nodes are connected on a line, where the first node is the first DOM to
activate during the event, and the last node is the last DOM to activate during
the event. In effect, this mimics time-series data.

Another ansatz related to graph representation of the IceCube data is that the
fact that some DOMs are not activated during an event is in itself information. In
theory this could be incorporated by modeling the whole detector array in a single
graph, such that all DOMs, and not just the active, gets represented by a node in a
graph. Node features for inactive DOMs could be set to some constant value, but
not zero, as Eq. 6.1 centers the input data around that value. The practicality of this
were tested initially and were deemed too computationally expensive as memory
requirements for edge specification grows exponentially with the number of nodes
in a graph, effectively removing any chance of a GNN producing significantly faster
reconstructions compared to current methods.

The above described choice of representation directly leads to another technical
choice. If the graphs are to only include active DOMs, any graphs produced will
have a variable amount of nodes. From a technical perspective this forces the ques-
tion of whether or not to impose a zero-padding scheme, like CNNs would require,
as a significant number of implemented graph operators requires static dimensions,
not only in node features, but also in node count. If one zero-pads, one would also

FIGURE 6.3: 2D histogram of event DOM count and energy from
500.000 muon-neutrinos at level 5 filtering. Raw pulses.

have to set an upper bound on DOM count and reject events exceeding the bound.
From Figure 6.3 it’s evident that a choice to cut at around 100 DOMs would only
remove a tiny amount of events, but since the average amount of active DOMs in an
event is around 40-45, such a cut would more than double the node count in each
graph on average, without adding meaningful information to the problem.
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EdgeConv

In [59], a point-cloud graph convolutional operator called EdgeConv is presented.
It acts as the backbone of their proposed point cloud model capable of learning ge-
ometric shapes. The proposed model dynamically calculate graph configurations of
the point clouds and apply the EdgeConv operator to extract local topological infor-
mation. In 6.4 point clouds from the EdgeConv paper is depicted together with an

(A) (B)

FIGURE 6.4: (A): Comparison of results on segmentation learning be-
tween the proposed model in [59] and an older point cloud model
PointNet[60]. Kindly borrowed from [59]. (B): A plot of active DOM
positions in a muon-neutrino event. Colorbar depicts time variable

dom_time.

illustration of an IceCube event. While the geometry of the EdgeConv data is more
suggestive - One can arguably by intuition see the resemblance of point clouds in
IceCube data. The EdgeConv operator acts on nodes as

x̃j = Aggr({ f (xi, xj)|xi ∈ ε(nj)}) (6.2)

where ε(nj) is the neighbourhood of the j’th node, and xi, xj denotes the node fea-
tures of the i’th and j’th node, respectively. Aggr() denotes a message aggregation
scheme and f (xi, xj) a function on node features.

In this work, the point cloud approach for the k-nearest-neighbours graphs were
chosen as it seemed to be the most fit way to extract geometric data from the graphs.
The EdgeConv operator were chosen specifically because it was known at the time
to be the best in terms of performance and because it offers good flexibility on both
aggregation schemes and the convolution function itself f (xi, xj), leaving much to
be tinkered with. In addition, the operator is insensitive to a variable amount of
nodes, which removes immediate need for zero-padding. In the pytorch implemen-
tation of EdgeConv5, the aggregation schemes Aggr() can be chosen as either the
sum, maximal or mean value of messages { f (xi, xj)|xi ∈ ε(nj)}. f (xi, xj) is left as
a user-defined input. [59] discusses several choices of f (xi, xj) and how this spe-
cific choice have significant consequences on the information learned on the point

5which is available here

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html##torch_geometric.nn.conv.EdgeConv
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clouds. For initial prototyping f (xi, xj) were set to a simple MLP with LeakyReLU
activation function

conv = torch.nn.Sequential(torch.nn.Linear(l1*2,l2),
torch.nn.LeakyReLU(),
torch.nn.Linear(l2,l3),
torch.nn.LeakyReLU())

where LeakyReLU is a piece-wise linear version of ReLU that allows for negative
values, a quality of necessity as 6.1 centers input variables around 0.

Node Aggregation Methods

In the broadest of terms, a machine learning model receives an input with certain di-
mensions and returns an output that typically has different dimensions. If the input
is an array, this would mean that somewhere along the way, the amount of columns
and the amount of rows have to be adjusted somehow. This is also the case for GNNs,
and in order to meet dimensionality in a supervised learning problem where each
event is represented with its own graph, a GNN would have to adjust the number
of node features (columns) and the number of nodes (rows) in order to meet the di-
mension of the regression target. In other words, the model needs to output a new
graph where the number of nodes is equal to the number of rows in the truth array
(which is 1, as we make a graph for each event), and the amount of node features is
equal to the amount of truth variables.

As evident from Eq. 6.2, EdgeConv only acts on node features. Given the choice of
MLP as f (xi, xj), the EdgeConv layer has the ability to change the number of node
features of each node. To change the number of nodes, one can choose between
either using graph pooling layers or simple aggregation schemes like the ones avail-
able in EdgeConv. Since the pooling operators tend to only accept a ’keep-fraction’
as input, and therefore doesn’t let one specify the desired dimensionality of it’s out-
put, simpler aggregation schemes were chosen for the final many-to-one projection
of nodes.

Evaluation Metrics and Loss Functions

In order to compare different architectures and choices, the prototypes needs a com-
mon metric for evaluation. Since the nature of the regression targets are different,
different choices on loss functions are chosen. The reason for this is that a variable
like energy_log10 is a real value that mostly6 lies in the range [0, 4], which corre-
sponds to an energy spectrum 1 GeV to 10 TeV. For comparison, azimuth is a real,
cyclical variable in the range [0, 2π], where 2π and 0 represents the same point on a
circle. An evaluation metric that is common between all choices of loss function is
the width of the error distribution given as:

W(e) =
IQR(e)
1.349

(6.3)

6The available upgrade simulation data does produce events with energy lower than 1 GeV, which
produces a small number of negative values for energy_log10.
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where e is the error, and the factor 1.349 is added such that W(e) approximately cor-
respond to one standard deviation under the assumption that the errors are Gaus-
sian. This is an unbounded distribution that serves as a descriptor on prediction
consistency with easy interpretation - the lower a width the better. This measure,
however, does not capture any bias in prediction and can as such not serve as the
only measure of evaluation. Below the additional measures listed.

Energy Regression

The quantity of interest for energy regression in this work is percentage error, a
relative error measure on the form

e =
EReco − ETrue

ETrue
(6.4)

which describes the error of the prediction EReco in percentage of the true energy
ETrue. Using this error measure as a loss function in training directly provides a
series of immediate issues. Firstly, the scale of the energy is wide, meaning that the
output of a GNN needs to cover several orders of magnitude, which is generally
known to lead to a sink in prediction quality in ML. This has been addressed in
preprocessing by taking the logarithm to the quantities, so if we were to plug in
those values directly in Eq. 6.5, we’d get

e =
log10(EReco)− log10(ETrue)

log10(ETrue)
(6.5)

But this is problematic as this effectively corresponds to changing the base of the
logarithm to be in the true energy 7. To accommodate this, one can then apply the
fact that log10(A)− log10(B) = log10(

A
B ) to write a error measure on the form

e = log10(EReco)− log10(ETrue) = log10(
EReco

ETrue
) (6.6)

Eq. 6.1 is applied on the quantities, such that if the preprocessed data is plugged in
directly in Eq. 6.6, we’d get

e = C · log10(EReco) + B− C · log10(ETrue) + B = C · log10(
EReco

ETrue
) (6.7)

in simpler terms, this corresponds to:

e = output− ẼTrue = C · log10(
EReco

ETrue
) (6.8)

where output is the output of the GNN and ẼTrue is the preprocessed truth. This
isn’t problem free either, as this loss function is unbounded from below, and a mini-
mization of Eq. 6.8 would simply mean outputting large negative values, effectively
producing gibberish. What makes Eq. 6.8 appealing is the property

|log10(2ETrue)− log10(ETrue)| = |log10(
1
2

ETrue)− log10(ETrue)| (6.9)

7Early on this was actually tested out of curiosity, and it did not produce good results. One can also
conclude this apriori by realizing that the measure is diverging on the lower end of the energy scale.
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which means that the numerical size of the loss in cases where the GNN predicts
twice the true energy is equal to the cases where it predicts half the true energy. What
remains to be chosen is the way in which this numerical size is generated. In this
work two such methods are tested: 1) e = Abs(output− ẼTrue) and 2) Log10Cosh(output−
ẼTrue).

FIGURE 6.5: Plot of the two loss functions.

As evident from Figure 6.5, when the difference between output and truth is
close to 0, the logcosh function offers a smoother surface for differentiation, which
in theory should be more forgiving to the size of the learning rate.

Angular Regression

The zenith angle lies in the range [0, π] where the bounds correspond to two different
points on a line. As of such, the zenith angle can be regressed by minimizing the
numerical difference between the predicted and true angle. e.g.

e = (output− zenithscaled)
2 (6.10)

However, this isn’t a viable option for azimuth, as a numerical difference of 2π
would punish the GNN despite producing good results. This will produce azimuth
predictions too high at the lower end of the angle range and too low at the higher
end. If one thinks of the an arbitrary azimuth angle ø as a point on a circle in R2, one
realizes that a learned regression of ø f : Rd −→ R2, where d is the dimension of
the input data, cannot be surjective. The surjectivity of the GNN can be controlled
via the choice of activation function, as tanh(x) is surjective, while LeakyReLU is
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not. Alternatively, instead of predicting azimuth directly, one could predict sin (ø) or
cos (ø) as these defines a line in R, like the zenith angle. Both methods are examined
and evaluated in this work. If one chooses to regress azimuth directly, one could
attempt a circular numerical difference such as The Cosine Loss

e =
√
(1− cos (output− azimuthscaled))2 (6.11)

A more indirect option is to minimize the angle between the predicted and true
direction, eg:

e = 1−
R̄pred · R̄true

|R̄pred| · |R̄true|
= 1− cos (∆ø) (6.12)

where ∆ø is the angle between the true and predicted direction. This should also
minimize the zenith and azimuth errors, and they could be recovered by a bit of
algebraic effort, eg.

zenithpred = arccos(
R̄predz

r
) (6.13)

azimuthpred = arccos(
R̄predx

r sin (zenithpred)
) (6.14)

An obvious reason for choosing Eq. 6.12 is that one regresses 5 variables at once,
but it might not be the optimal choice for all variables involved. Another choice of
azimuth regression is the Sine-Cosine Pair Loss, where the azimuth angle is repre-
sented as a pair

p = [sin(azimuth), cos(azimuth)] (6.15)

and the GNN then outputs a prediction for each element in the pair, such that a loss
on the form

e =
√
(output1 − sin(azimuth))2 + (output2 − cos(azimuth))2 (6.16)

can be calculated. The azimuth prediction can then elegantly be extracted by

azimuthpred = arctan(
output1

output2
) (6.17)

A last angular method investigated in this work is a probabilistic regression
based on a von Mises-Fisher distribution with probability density

pn(x̄|ū, k) = Cn(k) exp (kū · x̄) = Cn exp (k cos ∆ø) (6.18)

where x̄ and ū are n-dimensional unit vectors of predicted and true direction, re-
spectively, and k resembles 1

σ2 from a normal distribution. Cn is the normalization
constant written in terms of modified bessel functions I n

2−1 (k)
, given by

Cn(k) =
k

n
2−1

(2π)
n
2 I n

2−1 (k)
(6.19)

which in the 3-dimensional case reduces to

C3(k) =
k

2π sinh(k)
(6.20)
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Eq. 6.18 defines a probability distribution on a (n-1)-sphere embedded in Rn, and
as written it’s simply a probabilistic version of Eq. 6.12, but ∆ø could be any de-
sired angle. A loss function can be created from Eq. 6.18 by using the negative log
likelihood trick, which is

e = − ln pn(x̄|ū, k) = − ln (k) + ln (4π) + k + ln (1− exp−2k)− k cos (∆ø) (6.21)

Eq. 6.21 optimizes Eq. 6.18 by minimizing it’s exponent. The benefit of a probabilis-
tic regression is that if one lets the GNN output an estimate of k together with its
prediction, it serves as the networks own error estimation. This is a valuable tool for
later data selection and for producing valid error estimations. A clear problem with
Eq. 6.21 is that the logarithmic terms are singular for k = 0 and the introduction of k
in general can lead to the network paying more attention to k than minimizing the
angular-related loss. [61] proposes two regularization terms to Eq. 6.21 to counter
this behavior

L1 = 0.2 · k (6.22)

L2 = −0.2 · cos (∆ø) (6.23)

and present results superior to an unregularized Eq. 6.21. In this work Eq. 6.21 with
both regularization terms and with none, as [61] shows that this should produce the
biggest comparative difference, will be tested. Also, a series of experiments are ran
with the unit vectors in Eq. 6.18 changed to be on the form∣∣∣∣∣∣

sin (æ)
cos (æ)

1

∣∣∣∣∣∣
such that a probabilistic version of the Sine-Cosine Loss can be obtained. The last
entry of 1 is added to meet the dimensionality, such that the simple normalization
constant can be kept.

Most Notable Conclusions From Prototyping

The above considerations lead to a geometric prototype for energy regression that
has the architecture illustrated in Figure 6.6. In this model the data is put through
the EdgeConv layer, where the node features are convoluted and aggregated. The
data is then interpreted by an MLP, and its output is aggregated to a graph with a
single node. A final MLP interprets the node features of the single node graph and
outputs a prediction directly.

FIGURE 6.6: Graphic explainer of the architecture of the first geomet-
ric prototype.
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Aggregation Schemes

In Figure 6.6, the EdgeConv layer needs to have a node aggregation scheme speci-
fied. Also, after the first MLP layer, a choice on a node aggregation scheme needs
to be made to carry out the many-to-one projection of nodes. First notable round of
experimentation were oriented at testing which aggregation schemes for the Edge-
Conv layer, and which aggregation schemes for the nodes, were best.

The data set used for testing aggregation schemes is a subset of a level 5 filtered
data set originating from the GENIE simulation. Such a filtering level is chosen to
minimize the chance of any poor performance being the result of noise. The data set
consists of 2 million muon-neutrinos. The training sample is a randomly selected
subset accounting for approx. 75% of the prototyping sample. The rest is reserved
for validation. Distributions for key variables is available in Appendix A.

The EdgeConv layer supplies 5 ways of aggregating node features:

• summation

• mean

• maximal

• Concatenation of the three

The many-to-only projection of nodes can be done in 5 ways:

• minimal

• maximal

• mean

• summation

• Concatenation of the four

This leaves 20 possible configurations for testing. The concatenation is included
as the MLP layers in Figure 6.6 should be able to learn which aggregation to rely on
in certain cases if none of them are consistently better than the others. As the ex-
periments ran, it became clear that the model utilizing the concatenation scheme for
the EdgeConv aggregation were able to converge to a lower validation loss than its
single aggregation counterparts. In Figure 6.7 the validation loss for the prototype
using the concatenation of convolution aggregation is shown. The different runs rep-
resent choice of many-to-one node aggregations. As seen in Figure 6.7, it’s difficult
to conclude with absolute certainty from the validation loss that the combined node
aggregation is the better performing model, as the validation loss is spiky between
some epochs. The spiky-ness is an indicator of that the learning rate is not optimized
perfectly, as such spikes can be produced in cases where the learning rate is too high.
A second contribution to this behavior also lies in the fact that improvement made
on the training set does not necessarily translate into improvement on the validation
set.

In Figure 6.8 the energy error measure as defined in Eq. 6.8 is shown as a function
of energy for the runs in Figure 6.7. As evident, the difference between models is
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FIGURE 6.7: Comparison of validation loss for the EdgeConv Con-
catenation model. Different runs here represents different many-to-
one node aggregation schemes. The Y axis is the accumulated valida-

tion loss within a given epoch.

small in the low to mid energy range, again making a definite conclusion difficult, as
the difference in performance is so small that it is not impossible that the difference
could lie in the weight initialization.

FIGURE 6.8: log(
Epred
ETrue

) as a function of neutrino energy. Center of
error bars correspond to the median of the errors in the energy bin.
Error bars span the IQR of errors. Points are plotted in the mean
of the given error bin. Background histogram displays the energy

distribution of the validation sample.

What can be concluded is that in the data rich area, roughly between 10 - 100 GeV,
the median error sits comfortably close to 0 across all models, effectively showing
that a reasonable energy reconstruction using GNNs is possible. In Figure 6.9 the
width of the errors in Figure 6.8 is shown. Here a difference in consistency is clear.
Across the energy spectrum, the concatenation model most often produce the errors
with the smallest width. Based on this small analysis, the architecture was changed
to Figure 6.10.
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FIGURE 6.9: Width of log(
Epred
ETrue

) as a function of energy. Points are
plotted at the location of the mean in the given error bin. Background

histogram is the energy distribution of the validation sample.

FIGURE 6.10: Graphic showing the architecture of the geometric
model with full aggregation scheme.

Pooling Operators and Batch Normalization.

In Figure 6.6, one can see that the architecture is quite similar to that one would ex-
pect from a CNN. The key differences lies in the absence of any pooling and batch
normalization layers, as these would typically follow after a convolutional opera-
tor. The pooling operator in CNNs are used to introduce translational invariance
to the model, a property that decreases a CNNs tendency to assign importance to
the location of the extracted features. In this work the following pooling operators
were tested both in Figure 6.6 and Figure 6.10 architectures: TopKPooling[62], AS-
APooling[63], SAGPooling[64] and EdgePooling[65]. From their respective bench-
marking results, especially those presented in [65], one would expect an increase in
performance by utilizing pooling operators. However, experiments carried out in
this work showed that the graph pooling operators did not increase performance
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FIGURE 6.11: Width of Zenith angle prediction errors for the basic
model, denoted with dynedgev3 and the basic model + TopKPooling
operator denoted dynedgev3_TopKPool. This particular run utilized

the architecture shown in Figure 6.10 with no batch normalization.

and in some cases, as seen in Figure 6.11, the pooling operator could lead to worse
prediction consistency. While these results were surprising initially, an explanation
might lie in two factors. Firstly, the results presented in the above mentioned bench-
marks are not point cloud problems, and as such, a direct comparison is difficult.
For point clouds, Pooling nodes alters the topology of the graph by decreasing the
amount of nodes and replacing edges. This could lead to sub-optimal graph rep-
resentations, as evident for TopKPooling. Secondly, as mentioned in [65], pooling
operators on graphs are under-developed compared to convolutional operators. For
this reason pooling operators were not included in the final model.

Batch Normalization is a tool to combat the change in distribution of the output
of single layers in a ML model, which can prolong the time it takes for a model to
converge to a global minima in the loss landscape. This change in distribution is
referred to as an internal covariate shift in literature[66]. Generally, a batch normaliza-
tion is done as

x̂i = c · xi −mean(xi)√
Var(xi) + ε

+ b (6.24)

where c and b are learnable parameters, and ε a scalar for numeric stability. Batch
normalization were tested in this work both as a direct correction to the output of
the EdgeConv and node aggregation layer in Figure 6.10 separately. Tests were
also carried out where the batch normalization were used to correct the output of
the pooling operators. The results of the experiments were that convergence time
were increased by a significant amount. The increased time for convergence is due
to the increase in trainable parameters. It’s plausible that Figure 6.10 simply isn’t
deep enough to benefit from batch normalization. While this might seem atypical,
it comes with several benefits; decreased training time and restored independence
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within mini-batches. For this reason batch normalization were not included in the
final model. This issue was revisited much later in the process, and interestingly [67]
presents a normalization free ResNet and argues that such models are superior.

Choosing Angular Loss Functions

In Figure 6.12 and Figure 6.13 the width of zenith and azimuth predictions from the
angular loss function experiments are displayed. Only a subset of the discussed loss
functions discussed earlier are displayed. The cosine loss ( Eq. 6.11), the loss related
to the angle between unit directional vectors (Eq. 6.12), and the von Mises distribu-
tion of the angle between unit directional vectors (Eq. 6.21) have been omitted from
Figure 6.12 and Figure 6.13 as these all performed worse than those displayed8. To
much excitement and surprise, the numerical difference as initially proposed as loss
function for zenith, did not outperform the the fancier loss function alternatives pro-
posed for azimuth. As evident from Figure 6.12, picking a clear winner isn’t easy.
While the regularized von Mises, denoted by von Mises-az-zen, outperforms its
competitors on the higher end of the energy scale, the performance gain from regu-
larization doesn’t seem to hold in the rest of the energy scale. The Sine-Cosine Loss,
denoted by zenith-cosine-pair-tanh, seems to be the worst performing in general.

FIGURE 6.12: width of the zenith predictions as a function of energy.
von Mises-az-zen denotes the probabilistic regression of both zenith
and azimuth with regularization terms. zenith-cosine-pair-tanh de-
notes the zenith regression using the Sine-Cosine Loss with tanh as
final activation function. von Mises-az-zen-noreg denotes the prob-
abilistic regression of both zenith and azimuth without regularization
terms. von Mises-Sine-Cosine-Zenith represents the probabilistic
zenith regression using the Sine-Cosine-style unit vectors with reg-

ularization.

This leaves only probabilistic loss functions, which is good news as this gives access

8But not out-of-plot worse
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to estimates on k without loss of performance. This work chooses Eq. 6.21 with the
Sine-Cosine unit vectors as zenith loss function as it’s width of prediction on zenith
lies lower and outside the uncertainty on the widths of it’s competitors on the lower
energy bins and well within their uncertainty on the higher energy bins.

FIGURE 6.13: width of the azimuth predictions as a function of en-
ergy. von Mises-az-zen denotes the probabilistic regression of both
zenith and azimuth with regularization terms. azimuth-cosine-pair-
tanh denotes the azimuth regression using the Sine-Cosine Loss with
tanh as final activation function. von Mises-az-zen-noreg denotes the
probabilistic regression of both zenith and azimuth without regular-
ization terms. von Mises-Sine-Cosine-Azimuth represents the prob-
abilistic azimuth regression using the Sine-Cosine-style unit vectors

with regularization.

In Figure 6.13 a clearer picture emerges for azimuth regression. Neither the reg-
ularized or unregularized von Mises loss functions, denoted by von Mises-az-zen
and von Mises-az-zen-noreg respectively, outperforms the alternative loss functions
on any energy bin. However, for the probabilistic and regular Sine-Cosine-pair loss
functions, denoted by von Mises-Sine-Cosine-azimuth and azimuth-cosine-pair-
tanh respectively, results are almost identical, except in a few energy bins on the
higher end of the energy spectrum. While it’s clear that widths produced by the
regular Sine-Cosine-pair loss function is superior around 2.9 - 3.4, this work chooses
the probabilistic von Mises Sine-Cosine-pair loss as this gives access to estimates on
k without unbearable sink in performance.

Testing The Geometric Edge Configuration

As briefly mentioned in the introduction to this chapter, the initial development of
a working GNN requires working from an ansatz on how a meaningful edge con-
figuration of a graph representation of IceCube data looks like. A priori, one would
expect a completely random edge configuration to add no meaningful information
to the graph representation of IceCube data, and that graph operators relying on
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edges, such as EdgeConv, should perform better on graphs with information rich
edge configurations as compared to random edge configurations. With a working

FIGURE 6.14: width of zenith predictions as a function of en-
ergy.von Mises-az-zen-noreg denotes the probabilistic regression of
both zenith and azimuth without regularization terms trained and
validated on the k-nearest-neighbours edge configured graphs. von
Mises-az-zen-noreg-rando denotes the probabilistic regression of
both zenith and azimuth without regularizfation terms trained and

validated on the randomly configured graphs.

GNN prototype, the k-nearest-neighbours ansatz can be tested against a random
configuration. Results from such an experiment is shown in Figure 6.14 in terms
of azimuth prediction error width. The test were carried out by selecting a model,
in this case the angular regression model utilizing the von Mises probabilistic loss
function (Eq. 6.21) to regress both zenith and azimuth, were chosen. One copy of the
model were trained and validated on graphs with k-nearest-neighbours edge con-
figuration, while another copy of the model were trained and validated on graphs
with a random edge configuration scheme. As evident from Figure 6.14, the geomet-
ric graphs does indeed lead to clear improvement in predictions as compared to a
random configuration.

Learning Rate Schedules

This work experimented with a number of different available learning rate sched-
ules. The motivation for learning rate schedules is that adjusting the global learning
rate of an optimizer can speed up convergence of a model without adding addition
learnable parameters to the model. One schedule tested is the CyclicLR schedule
proposed in [68] and implemented in PyTorch, where the global learning rate os-
cillates between an upper and lower bound. Another scheduler, also implemented
in PyTorch, is the ReduceLROnPlateau9 which monitors the validation loss during
training and consequently decreases the global learning rate if the validation loss

9No paper on this, but source code is available here

https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html##ReduceLROnPlateau
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hasn’t decreased in a specific amount of epochs. An additional two custom learning
rate schedules have been implemented as part of this work: The Inverse (IS) sched-
ule, and the Piece-wise Linear (PLS) schedule, both heavily inspired by the learning
rate schedules used in the master thesis of Bjørn Mølvig. They’re defined as:

PLS(step) =

{
step LRmax−LRinit.

stepsup
+ LRinit. step ≤ stepsdown

step LRmin−LRmax
stepsdown

+ LRmax − LRmin−LRmax
stepsdown

· stepsup step ≥ stepsdown

IS(step) =

{
step · γ step ≥ stepstepsup
LRmax
LRinit.

s
s+step−stepsup

else

where s = stepsdown · LRmin
LRmax−LRmin

and γ = LRmax
LRinit

1
stepsup . In Figure 6.15, the iterations be-

FIGURE 6.15: An example of the Linear and Inverse learning rate
schedules.

tween LRinit. and LRmax is the warm-up period, a technique proposed in [69] where
the global learning rate starts low and increases to a maximal value. This trick is
reported to increase generality and convergence speed for optimization algorithms
such as ADAM. The bounds for the schedules are determined by completing a learn-
ing rate scan, a method where the change in validation loss as a function of global
learning rate is recorded. LRmax represents the learning rate where the change in
validation loss is highest. LRinit. is set to a value comfortably under LRmax such
that optimization steps taken under the warm-up period starts out gentle. Results
from the learning rate scan is available in Table 6.1. The piece-wise linear schedule

LRinit. LRmax LRmin
7e-4 2.5e-3 1e-4

TABLE 6.1: Results from the learning rate scan of Figure 6.10 using
ADAM optimizer with a batch size of 1024.

were included in the test to check if a steadier change in the learning rate could have
an impact on performance compared to the inverse schedule, as the linear schedule
’hangs around’ the learning rate with the greatest impact for longer.
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FIGURE 6.16: Width of Energy predictions of Figure 6.10 from runs
with different learning rate schedules. dynedgev3-const. represents

a model without schedule with global learning rate set to LRmax

When the validation loss as a function of epoch were inspected from the runs
depicted in Figure 6.16, it became evident that the plateau schedule did not produce
a model that converged to a global minima. However, the model without schedule
(const), PLT and IS all converged to roughly the same validation loss in roughly the
same amount of epochs. As seen in Figure 6.16, the widths of the error predictions
between the const., PLS and IS models are very close - but generally PLS seems to
produce the most consistent results. Therefore, this schedule is adopted in this work.

Weighted Ensemble

As evident in Figure 6.11 and the other plots, performance changes with the energy
spectrum. A contributing factor to this is the distribution of the data. In general, it is
optimal for the GNN to perform well in data rich areas. Therefore, it is less important
if errors are higher in the data sparse areas of a given distribution, as such errors
would be less frequent. This work attempts to negate this effect by introducing a
weighted ensemble of models. Weights are designed on training and validation
data to increase the models focus on a particular range of a variable distribution.
This yields three models - one specifically for the lower range of a given variable
distribution, and one for the higher range. A model with no weight is then added to
represent the range between the two. The weights are calculated as:

w(x, xmax)low =

{
c x ≤ xmax

c
1−xmax+x x ≥ xmax
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w(x, xmin)high =

{
k x ≥ xmin

k
1+xmin−x x ≤ xmin

where c and k are constants that are chosen such that the weights have a mean of 1.

FIGURE 6.17: wlow(x, xmax = 0.5) and whigh(x, xmin = 2.5) illustrated
for an arbitrary variable x.

These weights are then used directly in the loss function. In the case of the log-
cosh for energy regression, this would equal

e(output, x̃, w) = w · log10(cosh(output− x̃)) (6.25)

This concept was tested on energy regression and the results showed that both
errors and error widths lied within each others uncertainties between low, high and
no weight models. This was quite surprising given this approach had improved
energy regression results in the master thesis of Bjørn Mølvig, but since the model
architectures in his and this work is quite different, such conclusions are not guar-
anteed to carry over here. From a practical perspective this is good news, as having
to evaluate three separately weighted models and feed the input into a meta-learner
to produce the final energy regression adds complexity and increases reconstruction
time.

Notes on the Time-series Model

Similar steps as those described above were taken for the time series model, for-
mally a Gated Recurrent Unit Graph Neural Network (GRUGNN) which eventu-
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Input

torch.nn.Linear(input_size,32)

ResidualBlock(32,64,32)

torch.nn.Linear(32,64)

GatedGraphConv(64,64)
n_lay = 5

aggregation = 'add'
+ dropout(0.2)

torch.nn.Linear(64,98)

ResidualBlock(98,98,64)
+ dropout(0.2)

LeakyRelu
torch.nn.Linear(64,32)

LeakyRelu

Max Aggregation Sum Aggregation

output

torch.nn.Linear(2*32,32)
LeakyReLU

torch.nn.Linear(32,16)
LeakyReLU
dropout(0,2)

torch.nn.Linear(16,out_size)

FIGURE 6.18: Illustration of the time series model. Direction of arrow
depicts the flow of data.

ally took the architecture in Figure 6.18. The ResidualBlock is my custom graph
implementation of [70], a proposed residual learning method where it’s argued that
deep neural networks trains better when emphasis is put on learning residual func-
tions instead of target values directly. The GatedGraphConv is the PyTorch Geomet-
ric implementation of [71], a GatedRecurrentUnit operator on graphs that resembles
the traditionally known operator. While this model offered comparable performance
on energy_log10 regression, it’s angular performance were inferior, as compared to
the geometric model. It’s not impossible that this model, with further tweaks and
changes to architecture, might outperform it’s geometric counter-part on energy re-
gression, perhaps even angular regression, but due to limitations on computational
resources and the impracticality of developing two models at once, it was decided
about one third through the project to pick a single model - of which the geometric
model were the best.

Additional Implementations

The Graph Factory

Because the input of GNNs are graphs, an additional step must be added in the
data flow after the i3-to-SQLite pipeline, as the data stored in the SQLite databases
are not in the shape of graphs. Early on it became apparent that if a GNN is ever
to rival other ML methods of reconstruction, this additional step in the data flow
must be swift. PyTorch Geometric offers a data set class, either for in-memory or
direct disk reading, that originates from a different library called torchvision - a li-
brary for image processing. It was decided that this work would not implement the
torch geometric data set classes as a method of creating and reading graphs, as this
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part of the library 10 is poorly supported with documentation and examples to work
from in a graph domain. Instead Graph Factory were implemented, a completely
purpose-built SQLite-to-Graph pipeline utilizing high performance python compil-
ing libraries such as Numba11 and multiprocessing to build a fast and scalable pipe
line to facilitate GNN prototyping and operation.

Parallel Data Loader

A custom data loader has been implemented in this work to minimize GPU utiliza-
tion throttling. This is done by making sure that the computational bottleneck is the
capabilities of the GPU itself and not disk read speed or CPU. This is also known
as GPU saturation. An illustration of the data loader is shown in Figure 6.19. The

FIGURE 6.19: Graphic Illustration of the custom parallel data loader
written to support training

’Program Phase’ indicates the phase of the main code and the device columns ’GPU’
and ’CPU’ shows their tasks in the phases. The task of the CPU is to load data into
memory before it is needed by the GPU, allowing the GPU to seamlessly transition
between training and validation phases without throttling. The CPU fills the graphs
into a Queue from multiple processes which is then passed to the GPU for consump-
tion. This is known as a Producer-Consumer pattern and is quite memory efficient
as graphs consumed by the GPU is automatically removed from memory.

10The data set examples are available here
11Additional information on Numba is available here

https://pytorch-geometric.readthedocs.io/en/latest/notes/create_dataset.html
https://numba.pydata.org/
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Chapter 7

The Final Model: dynedge

With a confirmed working model and a sufficiently explored landscape of LR-schedules
and aggregation methods, it was now possible to further investigate if performance
could be gained by making drastic changes to the chosen architecture as depicted
in Figure 6.10. By fast forwarding to the conclusion of said investigation we arrive
at Figure 7.1. This is final model chosen in this work, and the results shown in the
following chapters originates from models with this architecture. As seen in the left

EdgeConv

KNN

EdgeConv

Input

KNN

EdgeConv

Feature
Aggregation
(Concat.)

KNN

EdgeConv

MLP

Node Aggr.
(mean)

Node Aggr.
(min)

Node Aggr.
(max)

Node Aggr.
(add)

Feature
Aggregation
(Concat.)

MLP

Output

FIGURE 7.1: Final architecture of the geometric model.

side of Figure 7.1, the final architecture of the geometric model allows for the input
of one convolutional operator to flow into the next while saving the state of each
convolution. While this might seem dull, there’s a point with this that can be eas-
ily interpreted: By feeding the output of a convolutional operator into the next the
next convolutional operator is applied on the neighbourhood defined by the pre-
vious operator. Since one can interpret the convolutional operator itself as a trans-
lation of node features, this effectively corresponds to giving the model the ability
to freely move nodes within the graph 4 times before these results are interpreted
by the MLP-sequence on the right hand side of Figure 7.1. To get a gauge on how
the model works on a technical level, let’s go through a single forward pass on the
fictive neutrino event shown in Figure 7.2.

In Figure 7.2 we have a neutrino event with 6 individual pulses recorded. For
simplicity, let’s pretend that for the i’th pulse we have measurements xi = [dom_x, dom_y, dom_time]
which make up our node features. We then construct the edges between the nodes
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KNN Graph Example
This a simple point cloud representation of a fictive
neutrino event in IceCube where the number of
nearest neighbors are set to 2. The nodes
represents DOMs registering Cherenkov pulses
and the opaque lines between the nodes
represents the edges of the graph. Here {i,j}
denotes a directed edge from node i to node j. 

FIGURE 7.2: Example of a geometric graph where knn = 2.

according to dom_x and dom_y such that the i’th node is connected to it’s 2 near-
est neighbours. On the technical side, this means that the input for dynedge be-
comes an (n_nodes x n_features) = (6x3) array along with the edges shown in Figure
7.2. When the input flows into the first EdgeConv block, the convolution operation
changes the node features of all nodes in the graph by considering the specified
neighbourhood. Let’s consider an update of node 1 (n1) in Figure 7.2:

x̃1 = fblock1 ([x1, x1 − x2] + [x1, x1 − x3])

where x̃1 represents the updated node features of n1 and where f () is a learned
function specified by us. Through testing, this was chosen to be

f_block1 = torch.nn.Sequential(torch.nn.Linear(l1*2,l2),
torch.nn.LeakyReLU(),
torch.nn.Linear(l2,l3),
torch.nn.LeakyReLU())

which takes the form of a typical encoder-decoder but where l1 != l3, so dimensions
change after the input flows through the first EdgeConv Block. Notice that

[x1, x1 − x2] = [dom_x, dom_y, dom_time, ∆dom_x, ∆dom_y, ∆dom_time]

is a (1,2*n_features)-dimensional matrix, and that [x1, x1 − x2] + [x1, x1 − x3] there-
fore follows vector addition rules. In this manner, every node features are updated
by the first EdgeConv block, and since the dimensions change, the number of fea-
tures associated with each node has changed accordingly. Also, since the values
within each feature now have changed, one can think of this as if the node has
moved, and the initial edges designating nearest neighbours are no longer valid.
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Now the output of the first EdgeConv block is saved, and a copy flows into the
KNN-block, which simply calculates the new edges. But now that the node features
are no longer physical, which do we choose to calculate the nearest neighbours with?
It turns out this doesn’t matter much, and the columns used (e.g. the columns that
formerly contained positional information) are reused in this model, as the model
adjusts for this choice. Based on this new edge configuration the second EdgeConv
is applied and the above is repeated, such that the output of each EdgeConv block
is saved, and a copy of it defines the edges for the next EdgeConv block which takes
the copy as input.

When a total of 4 EdgeConv blocks have been applied to the data, each state along
with the inital input is concatenated into a single array and passed through the MLP-
interpreter sequence in the right hand side of Figure 7.1. The Pytorch model class is
available in Appendix G.

Hyperparameter optimzation

The hyperparameter optimization was carried out by completing a full scan of the
parameters below on an approx. 800k event sub-sample of the prototyping dataset
with test-train split of 80%-20%.

Parameter Variation Result
k [1,2,3,4,5,6,7,8,9,10,11,12,13,14] 8
f [Single,Double,Triple] Double
C [1,2,3,4,5,6,7] 3
Optimizer [ADAM, ADAM + LR (ADAM Rec)] ADAM Rec

Here k denotes the k-nearest-neighbours used when computing edges, f denotes the
user-specified mapping used by the convolutional operator, where Single,Double,Triple
represents either a single, double or triple layered MLP. C represents the factor mul-
tiplied to the existing dimensional structure of the model. For details on the dimen-
sions, see definition of l1,..,l7 at 4th line of Appendix G.
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Chapter 8

Pre-Upgrade MC Results

In this section I display the MC reconstruction and classification results from the
geometric model, dynedge.

Evaluation Data Details

The performance plots in this chapter is produced by models that has trained and
predicted on data originating from i3-files stored at Cobalt in the following directo-
ries

"/data/ana/LE/oscNext/pass2/genie/level7_v02.00/120000"
"/data/ana/LE/oscNext/pass2/genie/level7_v02.00/140000"
"/data/ana/LE/oscNext/pass2/genie/level7_v02.00/160000"
"/data/ana/LE/oscNext/pass2/muongun/level7/130000"

As evident from the paths, these are events passing to level7 in oscNext event fil-
tering. Level 7 events are chosen for evaluation in this work as these exclusively
contain reconstructions from RetroReco, which will be included for reference. The
directories contain a combined ≈8.1 million events. The pulses used to create the
graphs for the model originates from the SplitInIcePulsesSRT i3-key. In an attempt
to keep things brief, only performance plots from a models that has trained on all
neutrino types is presented in this section. A prediction width comparison between
PID selection is added in the following sections. The distributions of key variables
are located in appendix.

Note: The version of RetroReco which was run on these events was a version that
trades uncertainty quality for speed, which means that the uncertainty comparison
shown in this section is quite unfair. If the version with better uncertainties had been
accessible I would’ve included that instead.

Runtime Information
1

Model Training Time (h) Sample Size (mio) Learnable Parameters
dynedge energy_log10 8 8.1 775539
dynedge angle 8 8.1 775539
dynedge classification 0.5 0.4 775539

1GPU used were NVIDIA RTX3090
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Regression Results

There will be two types of figures shown for each of the three key regression targets:
energy_log10, zenith, azimuth respectively.

1) The Performance Plot
The first figure is a performance figure containing 4 subplots. The upper rows con-
tain the bias plot - e.g. the angular difference for angles and the percentage-error for
energy. The second rows contain the error width plot. The columns (left to right)
represents a cut made in uncertainty, such that the first column shows data without
cut and the second column shows the 50% most certain regressions. The uncer-
tainties from which the cuts are made comes from either RetroReco or the model
developed in this work, dynedge. The column title will indicate from which model
the uncertainty cut originates, as there will be a separate figure in each case. This
is included because any operational usage of regressions is likely to include cuts in
uncertainties.

2) Prediction Distributions The second figure contains 6 sub-plots of distributions
and 2D histograms of predictions. The first rows show distribution of predictions
from RetroReco and dynedge. The second rows show a 2D histogram of RetroReco’s
predictions vs the true values. The third rows show dynedge’s predictions vs the
true values.

Figure title indicates interaction type. Also, the performance plots are available in a
version where performance is measured as a function of number of pulses in each
event instead of energy - these are located in Appendix A.18, A.19, A.17.
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Relative Improvement in Error Width

To better summarize the performance across all variables as compared to RetroReco,
it was decided to create a relative improvement plot depicting

relative improvement = 1−
widthdynedge

widthretro

which is shown in Figure 8.10 for both the full regression and for the 50% most
certain.
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FIGURE 8.10: Relative improvement plot for error width in regres-
sions of azimuth, zenith, energy_log10 for both cut and pre-cut regres-
sions. 50% most certain is from uncertainties produced by dynedge.

Bear in mind that the most interesting part of the energy range is between [0,1.5]
log10 GeV as this is where neutrino oscillation occurs. Starting with azimuth and
zenith, one sees that there’s an improvement on the entire energy range which is ex-
pected given the their performance plots in Figures 8.3 and 8.7. Interestingly, one can
also see that while the zenith performance increases in the oscillation range after the
cut in uncertainty, it actually decreases after 1.5 log10 GeV. On average, dynedge of-
fers a 11.7%, 22.4% and 16.3% improvement for regressions of azimuth, energy_log10
and zenith, respectively, in the oscillation relevant energy range.

Classification Results

The ν− µ classification model is merely a version of the final geometric architecture
depicted in Figure 7.1 where the loss function is changed to

torch.nn.CrossEntropyLoss(reduction = 'mean')
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which combines a logarithmic softmax with a negative log likelihood loss, a quite
common choice of loss function for classification tasks2. This choice of loss func-
tion leads to a model that outputs a pseudo-probability for both PID classes. In the
development of the classification model, no major deviations to the architecture of
the final geometric model were explored due to time constraints, and because of the
identical structure, none of the hyper-parameters, besides learning rate, were subject
to further optimization tests. It is therefore plausible that increased performance of
results shown in this section can be achieved by carrying out such tests, much of
which resembles what’s explained in the previous chapter.

AUC
dynedge 0.963
"lvl7_probnu" 0.924
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FIGURE 8.11: ROC Curve for the unbiased ν− µ classification model.
"lvl7_probnu" represents the oscNext level 7 muon/neutrino classi-
fier.dynedge MPS corresponds to the PID selection where the event
PID is concluded on the basis of the maximal estimated PID from

dynedge.

It was initially pondered upon whether or not the training set for the classifier
should biased. Because there isn’t an even distribution in PID classes in real data,
it was thought that creating a training set with a realistic PID distribution would
lead to optimal results. However, it was found that the classifier worked best when
the training set had an even distribution of classes, e.g an even amount of neutrino
and muon samples. Therefore, the results shown in Figure 8.11 is from the unbiased
model3. As evident, the dynedge classification offers either a 15% increase in true
positive rate at the same false positive rate as the current oscNext classifier, or one
fifth the false positive rate at the same true positive rate.

2Documentation can be found here
3This effect could also be because the chosen distribution for the biased model is sub-optimal. This

is discussed further in Chapter 10

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
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dynedge’s Uncertainties

By the central limit theorem, the pull

g =
Prediction− True

σ
(8.1)

should follow a unit Gaussian distribution. To test the validity of the uncertainties
produced by the probabilistic regressions of azimuth and zenith, a set of comparative
pull-plots is presented for zenith in this section. Similar figures for azimuth can be
found in appendix. in Figures 8.12 and A.16, the pull associated with RetroReco’s
reconstructions are shown together with a unit Gaussian distribution for reference.
Please recall that this version of RetroReco produces inferior uncertainties as com-
pared to other versions.
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FIGURE 8.12: Pull plot for zenith regression from the (νe, νµ, ντ) -
model.

Just by simply comparing the standard deviation of the dynedge pull distribu-
tions between azimuth and zenith, it’s evident that the general quality of the error
estimation is correlated with the reconstruction performance. This is no surprise as
the model is asked to produce realistic uncertainties together with optimizing the rel-
ative angle between the sine-cosine vector representation of the angles.

However, it’s quite clear that the pulls made on the basis of reconstructions
produced by dynedge fits a unit Gaussian distribution better than this version of
RetroReco. However, a more rigid test kindly proposed and first carried out by the
supervisor of this work, Troels C. Petersen, is to check how the standard deviation
of the pull changes as a function of the σ-percentiles. This is shown for zenith in
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FIGURE 8.13: Running pull plot for zenith regression from the
(νe, νµ, ντ) -model. Notice that only data satisfying σ < 5 has been

displayed in this figure for both RetroReco and dynedge.

Figure 8.13. As evident, the standard deviation of the pull for the zenith regres-
sion is reasonable constant at around 1 - which is approximately the same value as
seen in Figure 8.12. This suggests that the quality of the uncertainty estimation from
dynedge is consistent. This is good news as this means that dynedge doesn’t only
offer many orders of magnitude in computational speedup, but also reconstructions
with reasonable error estimates. In analytical work, this will be valuable as the re-
construction performance can be ’tuned’ by simply selecting events with better un-
certainties.
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PID-dependency in Performance

Because a dependence on PID in reconstruction performance was noticed during
development, it was decided to display this difference in performance for the MC
results. To keep things brief, the difference in zenith reconstruction performance is
shown in this section only. Similar plots for energy_log10 and azimuth is available in
appendix.

The performance plot in Figure 8.14 aims to shed light on two things. Firstly, how
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FIGURE 8.14: Performance plot showing PID dependence in regres-
sion performance for zenith. (νe, νµ, ντ)|να denotes a model trained
on all neutrino types but evaluated only in α. Sample size in legend.
Data contains both CC and NC events, at ratios of approx. 90% and

10%, respectively.

big of a difference can one expect to see in reconstruction performance for individual
neutrino types? And secondly, what is the relative difference between a model that
has trained to regress all neutrino types as compared to a model that has trained on
a single type? As evident from Figure 8.14, muon neutrino events produces much
better regression results as compared to it’s tau and electron cousins. Also, while
there’s a slight difference for muon neutrinos, it seems like there’s little performance
gain (if any) to be expected in general from restricting a training sample to a single
neutrino type, as compared to a model that trains on all types.

In an operational sense, it wouldn’t make much sense to increase the complexity
of the reconstruction process by having a regression model for each neutrino type
when the difference is this small. If you find your way to the appendix and look at
the same plot but for azimuth ( Figure A.13) you’ll see the same behavior as shown
in this section. However, for energy_log10, it’s difficult to see PID dependence in
regression performance.
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MC Neutrino Oscillation

By using oscillation weights attributed to the oscNext events, it’s possible to produce
MC neutrino oscillation plots by considering the cosine of the reconstructed zenith
angle. The weights are contained in physics frames in

frame['I3MCWeightDict']["weight"]

With reconstructions that seems to rival those of RetroReco, which has been the back-
bone of neutrino oscillation analysis at IceCube, it was thought to include an oscil-
lation plot in this section of the work to showcase what the increased reconstruction
performance from utilizing dynedge means for neutrino oscillations.
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FIGURE 8.15

The results are displayed in Figure 8.15. The oscillation plot shows cos(zenith)
from RetroReco, dynedge and from truth. Results are shown with and without cut
in the uncertainties produced by dynedge. The zenith reconstruction from dynedge
originates from the (νe, νµ, ντ)|νµ -model.
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Chapter 9

Application on Upgrade Data

In the following I’ll describe the application of the GNN on upgrade data and the
challenges I met in doing so.

Waking Up to Noise

The only adaptations needed to make the GNN work on upgrade data is to expand
the dimensions of the node features to include the upgrade-only feature data shown
in Table 3.1. In theory. After reviewing the first reconstruction, it became painfully
apparent that strange behavior from the GNN began showing. As seen in Figure
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FIGURE 9.1: First zenith reconstruction on Upgrade data. Y-axis de-
notes zenith reconstruction and x-axis true zenith target values. Red

line represents ideal alignment. Units in Rad.

9.1, the result were utterly useless. While such a result can make one briefly doubt
that the sun will ever rise again, a review of code ruled out the behavior to be due
to mistakes. An investigation into the data showed that an impressive amount of
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activity among the new mDOMs and the dEggs for events where virtually no or-
dinary DOMs were active. As seen in Figure 6.3, there’s a correlation between the
number of active DOMs and the energy associated with an event - and it was then
thought that the issue was due to pure-noise events in the upgrade data. Initially
a scheme to identify the pure-noise events revolved around a k-fold training and
validation scheme where reconstructed events lying in the ’bad-band’ of the zenith
reconstruction, as seen in in Figure 9.1, were tagged and removed from the data set.
A set of ’clean’ events, e.g. those that didn’t inhabit the bad-band, were then trained
and predicted upon. The result of this naive approach were better but did not fix the
problem. Viewing this approach in retrospect one should add that it is dangerous to
simply remove events that leads to poor performance for a GNN as such a scheme
would make even the worst of algorithms look good. The fact that it didn’t lead
to massive improvements on the reconstruction performance is a strong indicator
of how troublesome the data is. Also, it indirectly shows that the issue at hand is
noisy mDOM and dEgg activations within meaningful events, that isn’t filtered out
during the SRT-cleaning.
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As seen left in figure in Figure 9.2, the vast amount of mDOMs activate in events
where less than three DOMs register signal. This behavior is expected as the reason
for installing the new DOM types, as mentioned in 2, is for the detector to be able
to register events that the current detector can’t and to increase signal for those that
it can. But the sheer amount of activation suggests that the vast majority of mDOM
activations are noise. This was the topic of an IceCube technical call on upgrade
reconstruction on 11th November 2020, where the above results were shared. A
temporary selection on data were proposed by TUM PhD student Martin Ha Minh:

• n_mDOMs ≥ 16
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• n_DOMs ≥ 8

If one plots the energy distribution of the events on either side of the cut, as depicted
in right figure of Figure 9.2, it is evident that the "noise" events are real neutrinos
covering the entire energy spectrum. As such, one is presented with the choice of
’solving’ the reconstruction issue by simply making cuts in the data based on activa-
tions or to attempt to address the underlying problem, namely by identifying noise
activation as there currently exists no MC labeling for this. As a first step, the GNN
was run on either side of the proposed cut to evaluate its quality.

FIGURE 9.3: 2D histogram of true vs predicted zenith on ’good side’
of the proposed data cut. Units in degrees.

As seen in Figure 9.3, the cut removes the ’bad band’ of horizontal nonsense that was
present in the uncleaned zenith regression. As expected, the run on ’the bad side’ of
the cut resulted in a horizontal line, and as such seems to very effectively distinguish
between reconstructable and un-reconstructable events. However, when comparing
reconstruction performance with DeepCore, as shown in Figure 9.4, it’s evident that
the upgrade regressions are inferior to DeepCore results in part of the energy scale
that is relevant for oscillations - which is problematic as increased performance in
this part of the energy spectrum is one of the arguments for installing the upgrade. A
likely explanation for this effect is that enough noise is still present in data selection
to influence results. Therefore an investigation into possible pulse cleaning methods
were launched.

Pulse Cleaning Attempts

It’s been attempted in this work to address pulse cleaning of current upgrade data by
using local coincidence - which proved to be poor as there’s simply too much noise
present in the data. It has also been attempted to use a ’semi-supervised’ cleaning
block in tandem to the ordinary regression to filter out noise based on three ideas:

1): Produce a score [0, 1] for each node in a graph and multiply the node features with
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FIGURE 9.4: energy_log10 and zenith reconstruction performance
plots on ’the good side’ of the proposed cut. DeepCore recon-
struction performance shown in grey for comparison. Note that
the DeepCore results originates from different events and as such
only serves as a rough comparison. Upgrade model trained only
on dom_x, dom_y, dom_z, dom_charge, dom_time to be comparable to

DeepCore.

this score before passing it through the ordinary model architecture. This would ef-
fectively allow the GNN to dampen contributions from nodes that didn’t optimize
the loss function. This failed.
2): Remove nodes entirely from the graph before passing it on to the model by us-
ing the score described in 1). This would effectively allow the GNN to remove any
nodes that didn’t contribute to the optimization of the loss function. This failed as
the GNN never learned to keep a realistic amount of nodes - as it at best kept only
around 18% of available nodes - a far too low amount to be realistic.
3): Consult industry-standard and current research in point cloud cleaning. Quite a
bit of literature and promising methods exists, such as [72], but requires both clean
and noised data for training, which isn’t possible to produce since noise activations
isn’t labeled in icecube data at the moment. Most methods seem to revolve around
cleaning bias in node features rather than removing nodes. For these reasons this
approach was not taken.

With an amounting number of failed attempts, it was decided to return to what was
known to work: The proposed cut. What the cut from Martin Ha Minh showed was
that the general noise profile of the data can effectively be cut into two parts - but
what’s missing is an exact explanation for why this cut works well. What’s known
is that the noise comes in the form of false DOM activations, and that the vast ma-
jority of the total activations come from mDOM’s simply because they carry more
pmt’s. For this reason mDOM activation diagrams were made on individual events
on both sides of the proposed cut in the hope that suspicious activation patterns
could be spotted manually. After manually reviewing a painful amount of events
on both sides of the cut, a general pattern seemed to emerge. An example of suspi-
cious mDOM activity is shown in Figure 9.5. The Y-axis of Figure 9.5 is in essence a
histogram of individual mDOM activations in the given event. Since the X-axis de-
notes time, the dots will appear in a horizontal pattern if the same mDOM activates
several times during the event. Since the mDOMs carry multiple pmts, all of which
may activate during the event for valid reasons, each pmt is assigned a unique color
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FIGURE 9.5: An example of an mDOM activation diagram for a sin-
gle event on ’the bad side’ of the proposed cut containing a suspi-
cious activation pattern. Y-axis denotes unique mDOMs in the given
event. X-axis shows the trigger time. Color-coding indicates which

pmt. Data is SRT cleaned.

such that individual pmts can be identified using the color coding. In the case of the
event displayed in Figure 9.5, which contains a total of 16 mDOM activations, it can
be directly seen that those activations originate from only 5 unique pmts and that
the majority originates from the pink and blue pmts. While it’s possible for multiple
same-pmt hits to appear from signal, it seems highly unlikely that this would be the
case for the blue and pink pmt. One possible explanation for this activation pattern
might lie in the fact that the SRT cleaning is originally developed for cleaning or-
dinary DOMs and not multiple-pmt DOMs, and that this specific implementation
of SRT was a temporary solution to the new upgrade data. On a technical level,
it seem plausible that the SRT cleaning doesn’t check (or maybe not well enough)
whether or not the causality is checked on the basis of same-pmt activations. For
an initial study it was decided that pmts activating more than three times during a
single event would be tagged and labeled as "noise". With this definition, a quick
density calculation showed that on ’the good side’ of the proposed cut, 29% of the
DOM activations within an event originates from "noise" and 40% on ’the bad side’
of the proposed cut. While there is a difference of 11% in "noise" between the cuts,
it seems unlikely that this should be whole explanation behind why the ’bad-side’
seems unreconstructable and the ’good-side’ isn’t. One could also argue that this
adhoc choice of ’three or more’ pmt activations might be too loose. Either way, as
an initial study to test if these activation patterns are genuine or noise related, a first
occurrence filter (FO) were applied to SRT cleaned upgrade data such that any sin-
gle pmt activating more than three times would be replaced with it’s first activation.
Such a filter would reduce the 16 activations in Figure 9.5 down to 7, since only the
first pink and blue pmt activations would be kept. Average activations pr. event on
’the good side’ of the proposed cut is available in Table 9.1, with comparison to SRT
and raw activation rates.

As seen in the performance plots in Figure 9.6, the FO filtering leads to quite big
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Cleaning Method avg. mDOM avg. dEgg avg. DOM
SRT + FO Filter 36.94 13.02 18.16
SRT 58.34 13.77 20.90
No SRT (baseline) 75.65 15.74 48.81

TABLE 9.1: Average pulses (active DOMS) in each event on ’the good
side’ of the cut by cleaning method. ’No SRT’ indicates no pulse
cleaning, SRT + FO Filter represents the method developed and ex-

amined in this work.

FIGURE 9.6: energy_log10 and zenith reconstruction performance
plots on ’the good side’ of the proposed cut. DeepCore reconstruc-
tion performance shown in grey for comparison. SRT + FO denotes
model trained on pulse cleaned data using the FO-filtering after SRT.
Note that the DeepCore results originates from different events and
as such only serves as a rough comparison. Upgrade model trained
only on dom_x, dom_y, dom_z, dom_charge, dom_time to be compara-

ble to DeepCore.

improvements in the prediction width of energy_log10 and makes the performance
comparable to DC results in the high-statistics area of the oscillation region. How-
ever, when inspecting the prediction width on zenith regression, a small decrease
in performance is visible. While this might seem counter-intuitive, an explanation
might lie in the fact that there’s a correlation between number of activated DOMs
and energy, while such a correlation doesn’t exists for angular results. With this in
mind, one could argue that the big increase in performance on energy_log10 regres-
sion as a result of the FO-Filter might simply be because the filtering itself strength-
ens the correlation between energy and DOM count. In essence, it might not matter
so much which DOM is kept but rather that the number of DOMs is consistent. For
zenith however, the geometric picture represented by the graphs is sensitive to false
activations, and as such keeping the wrong activation would decrease performance.
With this interpretation, one could argue that perhaps keeping the ’first occurrence’
of a pmt if it activates more than three times is on average wrong, as a more complex
cleaning scheme is needed.

Because noise labeling is currently underway, it was decided to not pursue this
problem further.
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Chapter 10

Application on Real Measurements
From IceCube

Evaluation Data Details

The MC data used in this chapter is contained in i3 files located at cobalt in the
following directories:

"/data/ana/LE/oscNext/pass2/genie/level7_v02.00/120000"
"/data/ana/LE/oscNext/pass2/genie/level7_v02.00/140000"
"/data/ana/LE/oscNext/pass2/genie/level7_v02.00/160000"
"/data/ana/LE/oscNext/pass2/muongun/level7/130000"

The real measurements used is the full IC86.11 data sample totaling approx. 64.000
events, and is located at

"/data/ana/LE/oscNext/pass2/data/level7/IC86.11"

The rates used to distribute PID’s to mimic what’s expected at level 7 oscNext filter-
ing is contained in Table 10.1

PID lvl7 rate (10−6 Hz)
µ 40
νµ 700
νe 200
ντ 60

TABLE 10.1: Rates at level 7 oscNext filtering obtained by manually
reading 3.1

Classification between real data and MC data

Initially, when the first real data samples had to be put through the pre-processing
pipeline, a question emerged: Should one fit and transform a new sklearn.preprocessing.RobustScaler
to the real measurements to ensure unit variance and mean zero of the input, or
should one simply transform the real measurements using the sklearn.preprocessing.RobustScaler
already fitted to the training data? To answer this question a test were constructed
where the IC86.11 measurements would be blended with an equal amount of MC
neutrino events from the 8.1 million lvl7 sample used for regression. The MC sam-
ple were constructed such that the relative rates of neutrino types matched what
one would expect at level7 filtering. One experiment had a new scaler fitted to the
IC86.11 measurements and another experiment simply used the scaler fitted to the
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MC events to transform the IC86.11 sample. The idea was then this: The best method
of scaling would then be the scaling leading to the worst mc / real measurements
classification ROC-curve, since a bad ROC curve indicates difficulty in distinguish-
ing between the MC and real data.

As seen in Figure 10.1, using the sklearn.preprocessing.RobustScaler that is fit-
ted to the MC data to transform the IC86.11 sample produces the worst performing
classification. For this reason the MC scaler was chosen as the transformer applied
on real data. However, as depicted by the orange curve in Figure 10.1, simply mod-
elling level 7 data with neutrinos only doesn’t produce a great fit to real data. To get
a gauge on the agreement effect by including muons, muons from the muongun sim-
ulations were included in a separate run, as depicted by the green curve in Figure
10.1. As evident, this greatly decreases the classification model’s ability to distin-
guish between MC and real measurements, despite muons making up only around
4% of events at level 7. It should be noted that Figure 10.1 cannot be considered
a rigid test of mc-data agreement as the deviation between the green curve and the
(ideal) straight line indicating complete inability to distinguish mc and real data, has
multiple contributing factors besides the quality of simulation:
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1) Perhaps most obviously - the rates in Table 10.1 is produced by visual inspec-
tion of Figure 3.1 and can therefore only be considered approximations. This crude
method of producing the PID distributions in the MC data for this classification task
is likely the greatest contributing factor to the difference between the the green curve
and the ideal straight line. In theory though, one could use this method to tweak the
PID distributions in the MC set until a straight line is observed and obtain thereby a
reasonably quantified measure of the mc-data agreement.
2) The rates depicted in Figure 3.1 is produced by applying the oscNext filtering
to MC data and it’s therefore likely that there exists small deviations in the rates
observed in MC data and in real data. These possible deviations is essentially a
measure of the MC and real data agreement.
3) The MC data used in this classification does not contain pure noise events.
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Muon / Neutrino Classification Results

The unbiased classifier from Chapter 8 was evaluated on the IC86.11 sample.
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As visible from Figure 10.2, the distribution in ν score is quite similar between
MC and real data. This gives good reason to think that comparable results to the
quite effective classification observed in MC can be expected in real data, and sug-
gests that a simple transformation of ν score could produce a near-perfect agreement.

Regression Results

This section contains regression results for azimuth, zenith and energy_log10 from
dynedge and RetroReco for comparison. First row in the figures contain the pre-
diction distributions. Second row contains a 2D-histogram where predictions from
dynedge and RetroReco in real data are plotted against each other. Third row is the
same as the second, with the exception that only predictions on events labeled as
neutrinos by the dynedge neutrino/muon classifier is shown. 4th row is the same as
the second and third, with the exception that the predictions are made on MC data.
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Chapter 11

Conclusion & Outlook

Conclusions

The initial question that was shared in one of the very first pages of this work was

Can a GNN be used to reconstruct low-energy neutrino events in IceCube, and
if so, how does it compare to RetroReco?

It is clear from this work that GNN’s can be used to reconstruct low energy events
in IceCube. In comparison to RetroReco, it is seen in Chapter 8 that dynedge offers
an increase in performance in the metrics considered in this work in the oscilla-
tion relevant energy range of 11.7%, 22.4% and 16.3% for regression targets azimuth,
energy_log10 and zenith, respectively. From the oscillation comparison in Figure 8.15
it’s seen that the increased performance in zenith leads to visible improvements in
the MC oscillation plot. Also, it is seen in Figure 8.11, that a quite significant boost
in event classification can be expected at level 7 if the current final oscNext classi-
fier is replaced with dynedge. Effectively one can either increase the neutrino count
with approx. 15% or keep the current neutrino count but with one fifth the false
positives (In MC, at least). The pre-fit results for classification shown in Figure 10.2
suggests that the classification behavior in MC and in real data is similar and a quite
simple (nearly linear) fit would make the distributions to match. In addition, this
work records reconstruction speeds at 15.000 events pr. second as compared to 5 - 40
seconds pr. event for RetroReco, which opens the possibility of cosmic alerts from
low energy events. While the regressions for azimuth and zenith offers uncertainties
that from Figures 8.12 and A.16 seems superior to those produced by this version of
RetroReco, the kink in the 50% most certain zenith predictions visible in Figure 8.5
and indirectly visible in Figure 8.10 suggests that further work in post-processing of
these uncertainties could lead to further improvements in cases where cuts in uncer-
tainties are considered.

Outlook

If time had permitted, I would’ve liked to have addressed the following areas:

1): Exploring (and fixing) the cause that makes error estimations poor at approx.
140 Deg. in zenith angle. This effect was first recorded very late in the process as it
first showed when sample size was increased from 2 million to the 8.1 million used
to produce the final results. Superficial examinations of this have showed that the
kink seems to originate from events where σz

pull > 1.
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2): Revisit the ’realistic’ mc-data composition. Here especially, use a more rigid
method of obtaining the rates for noise, neutrinos and muons. Also; experiment
with using CORSIKA as the main muon generator. At level7, it was explained to
me (and this is perhaps evident from the classificaiton score plot) that muongun is
an OK muon generator. However, at lower cleaning levels this might not be the case.

3): Check if the FO filter method can strengthen the correlation between dom count
and energy in non-upgrade data.

4): Examine other methods of including / dealing with multiple DOM activations
during an event in non-upgrade data. (Currently the DOM is just included multiple
times, but this might impact the KNN calculation negatively)

5): Explore further a ’pulse-cleaning’ pooling layer that allows the model to drop
nodes it doesn’t like. If this works robustly, the model could be applied already at
trigger-level. Warp speed!

6): Apply the model in high-energy regimes and use the moon-analysis to estimate
performance. If it works well there, which it should, one could train and apply the
model to the entire energy range.

7): Try to do an oscillation analysis in real data. This is probably the ultimate test!
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Appendix A

Prototyping Dataset Distributions
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FIGURE A.1: Energy distribution for the main dataset

FIGURE A.2: Zenith distribution for the main dataset
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FIGURE A.3: Azimuth distribution for the main dataset
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8 6 4 2 0 2 4 6
Transformed position_y

0.0

0.2

0.4

0.6

0.8

1.0

1e6 position_y
Training Sample
Validation Sample
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FIGURE A.9: Azimuth distribution for the prototype dataset
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Appendix B

Quick guide: NBI HEP Cluster

Below is a collection of good-to-know information for NBI students wishing to use
the NBI Cluster. Most high-performance computational clusters are set up as Linux
servers and this is the case for the NBI HPC Cluster too, for this reason this little
guide contains basic examples of some of the most relevant Linux commands.

Login

Make sure that you have received login credentials. You can obtain login credentials
by talking to your thesis supervisor. It is a good idea to put in your home ip ad-
dress in the application, otherwise you will only be able to access HEP when you’re
at NBI. If you forgot to do that, you can mail them and beg for forgiveness. It is also a
good idea to setup two-factor authentication - this gives you the ability to temporar-
ily white-list an outside ip. When you have your credentials, open up your favorite
terminal. I’ve been using anaconda prompt from the Anaconda python distribution.
You can log in via the secure shell command:

ssh username@server.domain

You’ll then be asked to write your password. If you login for the first time you’ll be
prompted with

The authenticity of the host 'server.domain' can't be established.
CDSA key fingerprint is {some long hash}
Are you sure you want to continue connecting (yes/no)?

Type yes and hit enter - now you’re in! Here’s a list of servers I used during my
work at NBI:

• hep01.hpc.ku.dk

• hep02.hpc.ku.dk

• hep03.hpc.ku.dk

• hep04.hpc.ku.dk

hep01 - hep03 is cpu only, whereas hep04 contains two RTX3090 GPU’s.

example

ssh username@hep02.hpc.ku.dk
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notes

It is possible to setup your ssh in such a way that you do not have to write your
password every time you attempt to login. There’s plenty of guides on how to do
this online.

Installing Python

Using an anaconda distribution is the easiest way to install python of a higher ver-
sion that what hep comes with. Installation guide is available on anaconda’s own
webpage. I’ve placed an anaconda installer on HEP which you can use by running
the command

./ /groups/hep/pcs557/tmp/Anaconda3-2020.11-Linux-x86_64.sh

’Mounting’

You can access your directory on hep by ’mounting’ your home directory on hep
directly as a disk image on your pc. Doing so will make it appear as a new hard
drive. Doing so is easiest on Linux machines. It can be done on windows using a
tool named ’Putty’. Plenty of guides available online.

Using Modern Editors Directly on hep

If you mount your hep directory to your machine, you’ll be able to edit scripts using
your favorite editors. If you do not mount hep (which I didn’t), you can access
your scripts on hep using ssh via the editor Visual Studio Code. A guide to this is
available here.

Good Practice

It is custom to check for available resources before you run your jobs on any of the
machines, and to have a reasonable sense on how demanding your code is. If your
code eats up all available RAM, or clogs up the CPU, it could impact the jobs that
other people are currently running. You can check if CPU and RAM usage via

top

which shows a table containing current jobs, their CPU usage and RAM usage. In-
terpreting the table from top can be a little difficult so please ask if in doubt. You can
get a better gauge on available RAM using

free -h

You can check GPU resources by installing the python package gpustat which is
available via pip. Once installed, you can run

gpustat --watch

to get a top-like status of utilization and available VRAM.

For reference: All hep servers have at least 128gb of RAM and more than 24 cores.

https://code.visualstudio.com/docs/remote/ssh
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Useful Commands

Changing Directory

You can change your current directory using the

cd

command. The general file structure on hep´is

'\groups\group-name\username\your_home_directory'

So if Einstein were a member of hep, and had a folder named ’thisisrelative’ in his
home directory, you could check it out via

cd '\groups\hep\einstein\thisisrelative'

notes

When you’re accessing your own home directory, you don’t have to write out the
full path every time, as the following paths

'\groups\hep\yourusername\yourcoolfolder'
'~\yourcoolfolder'

are equivalent.

Copying files

You can copy files from your PC to hep via scp. The general syntax is

scp copy_this place_it_here

Suppose you had a file named ’results.txt’ located in your C drive and you wanted
to copy it onto your home directory in hep in a folder named results. You could do
so by

cd C:\
scp results.txt yourusername@hep02.hpc.ku.dk:~/results/results.txt

If you want to copy a whole folder from your PC you need to add -r :

cd C:\
scp -r folder_on_c-drive yourusername@hep02.hpc.ku.dk:~/results/folder_on_c-drive

If you wanted to copy files the other way around, e.g. from hep to your PC, all
you have to do is to reverse the arguments:

scp -r yourusername@hep02.hpc.ku.dk:~/results path_to_where_you_want_it_on_your_pc

notes

The disk space is shared between hep servers. So if you copy something to a location
on hep02, it will be available on hep04. As an alternative, you can install an sftp
program like WinSCP - this reduces copying to-and-from hep to a drag-and-drop
operation.
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List Content of Directory

You can print a list of contents of a folder by entering

ll path_to_folder

if you do not specify a path, the command prints the contents of the folder you’re
currently in.

Creating a Folder

You can create a folder by

mkdir path_to_folder\foldername

if you do not specify a path, the folder is created in the folder you’re currently in.

Support

The HPC HEP cluster at NBI is maintained by HPC UCPH. Their official website
is here. You can contact them via support@hpc.ku.dk . Two Factor Authentication
guide is available here.

https://hpc.ku.dk/
https://hpc.ku.dk/documentation/otp.html
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Notes on i3, CVMFS and Shovel

Activating a CVMFS

CVMFS (CernVM-File System) is a virtual file system used at IceCube to distribute
local, virtual environments containing IceCube software tools for development. Us-
ing CVMFS at NBI does not require an official IceCube account and doesn’t come
with a complicated installation process. It is therefore an ideal solution to get hold
of IceTray, an IceCube software package used to read, write and process i3 files.

When you’re signed into hep, you can activate a CVMFS by typing

eval /cvmfs/icecube.opensciencegrid.org/py3-v4/setup.sh
/cvmfs/icecube.opensciencegrid.org/users/Oscillation/
software/oscNext_meta/releases/latest/build/env-shell.sh

Notice I had to break up the last line to make it fit here. The first line selects the
python version - this particular CVMFS runs Python 3.6.5. You can choose different
versions by replacing the first line. To see a list of supported versions, simply

cd /cvmfs/icecube.opensciencegrid.org/
ll

You can install any libraries you want within a CVMFS without it interfering with
your other installations outside the CVMFS. To install packages in the CVMFS, sim-
ply load the CVMFS and

pip --user install mypackage

Checking out an i3 file via Shovel

Shovel is an IceCube software tool that can visualize the contents of a specific i3 file
graphically. Suppose you wanted to check out this i3 file

/groups/icecube/stuttard/data/oscNext/pass2/genie/level7_v02.00/
120000/oscNext_genie_level7_v02.00_pass2.120000.000644.i3.zst

Notice I had to break up the path to make it fit here. This particular file is from
Tom Stuttards personal directory - it’s a level7 neutrino sample from the GENIE
simulation. To check out the contents visually, simply load your CVMFS of choice
and

dataio-shovel pathtoi3file
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if you replace ’pathtoi3file’ with the path from above, your terminal will now dis-
play the contents of the file. On the bottom right is a sequence of frames, showing
which frame of the i3 you’re currently browsing.

The I and Q frames are of little interest for physics analysis, as any data relating
to the physical properties are stored in P (physics) frames. In an i3 file, a P-frame
represents a single event. To change frame simply use the arrow keys. Below is a
picture of the first P frame of the i3 file.

The name of the i3 keys within the P frame is shown under the Name column.

These keys are used to access the underlying data associated with the specific P
frame, much like a key in an ordered dictionary. To much frustration, most of the
keys in any P frame is not documented at all.

I3 Keys

Below is a list of i3 keys and their meaning used in this work

• f rame[′ I3MCTree′][0].energy : The energy of the primary particle

• f rame[′ I3MCTree′][0].pos.x : The x coordinate of the interaction vertex of the
primary particle

• f rame[′ I3MCTree′][0].pos.y : The y coordinate of the interaction vertex of the
primary particle

• f rame[′ I3MCTree′][0].pos.z : The z coordinate of the interaction vertex of the
primary particle

• f rame[′ I3MCTree′][0].dir.azimuth : The azimuth angle of the primary particle
relative to the detector
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• f rame[′ I3MCTree′][0].dir.zenith : The zenith angle of the primary particle rela-
tive to the detector

• f rame[′ I3MCTree′][0].pdg_encoding : The particle identity of the primary par-
ticle as given by the pdg encoding convention in HEP

• f rame[′L7_reconstructed_azimuth′] : RetroReco Reconstruction of azimuth,

• f rame[′L7_reconstructed_time′] : RetroReco Reconstruction of interaction time

• f rame[′L7_reconstructed_total_energy′] : RetroReco Reconstruction of energy.
(Notice total refers to track + cascade energy).

• f rame[′L7_reconstructed_vertex_x′] : RetroReco Reconstruction of position_x

• f rame[′L7_reconstructed_vertex_y′] : RetroReco Reconstruction of position_y

• f rame[′L7_reconstructed_vertex_z′] : RetroReco Reconstruction of position_z

• f rame[′L7_reconstructed_zenith′] : RetroReco Reconstruction of zenith

• f rame[′L7_retro_crs_pre f it__azimuth_sigma_tot′] : RetroReco Reconstruction
Uncertainty for azimuth

• f rame[′L7_retro_crs_pre f it__x_sigma_tot′] : RetroReco Reconstruction Uncer-
tainty for position_x

• f rame[′L7_retro_crs_pre f it__y_sigma_tot′] : RetroReco Reconstruction Uncer-
tainty for position_y

• f rame[′L7_retro_crs_pre f it__z_sigma_tot′] : RetroReco Reconstruction Uncer-
tainty for position_z

• f rame[′L7_retro_crs_pre f it__time_sigma_tot′] : RetroReco Reconstruction Un-
certainty for interaction time.

• f rame[′L7_retro_crs_pre f it__zenith_sigma_tot′] : RetroReco Reconstruction Un-
certainty for zenith.

• f rame[′L7_retro_crs_pre f it__energy_sigma_tot′] : RetroReco Reconstruction Un-
certainty for energy.

• f rame[′L7_MuonClassi f ier_FullSky_ProbNu′] : Final OscNext neutrino classi-
fier.

• f rame[′L4_MuonClassi f ier_Data_ProbNu′]] : First OscNext neutrino classifier.

• f rame[′ I3GENIEResultDict′][′y′] : Elasticity

• f rame[”I3MCWeightDict”][”InteractionType”] : Interaction type

• f rame[′L2_oscNext_bool′] : If true passed level2

• f rame[′L3_oscNext_bool′] : If true passed level3

• f rame[′L4_oscNext_bool′] : If true passed level4

• f rame[′L5_oscNext_bool′] : If true passed level5
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• f rame[′L6_oscNext_bool′] : If true passed level6

• f rame[′L7_oscNext_bool′] : If true passed level7

• f rame[′ I3MCWeightDict′][”weight”] : Oscillation weight. Needed to produce
oscillation bands.
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The NBI Intergalactic IceCube
Predictions Treaty

What You Need to Provide

Your results shall come in the form of a pandas dataframe saved as a .csv-file with
a column for event_no and columns representing the target variables of your model.
The column names in the dataframe needs to follow the variable naming convention
outlined below.

Variable Naming Convention

The following is the naming convention for truth variables indigenous to the i3-files.

• event_no : The integer event identifier as provided by the database pipeline.

• energy_log10 : logarithm in base 10 of the energy of the primary particle as
extracted from f rame[′ I3MCTree′][0].energy

• position_x : The x coordinate of the interaction vertex of the primary particle
as extracted from f rame[′ I3MCTree′][0].pos.x

• position_y : The y coordinate of the interaction vertex of the primary particle
as extracted from f rame[′ I3MCTree′][0].pos.y

• position_z : The z coordinate of the interaction vertex of the primary particle
as extracted from f rame[′ I3MCTree′][0].pos.z

• azimuth : The azimuth angle of the primary particle relative to the detector as
extracted from f rame[′ I3MCTree′][0].dir.azimuth

• zenith : The zenith angle of the primary particle relative to the detector as
extracted from f rame[′ I3MCTree′][0].dir.zenith

• pid : The particle identity of the primary particle as given by the pdg encoding
convention in HEP as extracted from f rame[′ I3MCTree′][0].pdg_encoding

In order to not confuse true values with predicted values, the names of your columns
in the dataframe containing predictions needs have an additional _pred. Uncertain-
ties should have an additional _sigma. The results should have the same units and
scaling as the truth variables in the database you’re predicting on.
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Example

If your model regresses only energy_log10 you would provide a pandas dataframe in
.csv format containing a column event_no representing the events chosen for regres-
sion and a column energy_log10_pred representing the corresponding regression of
energy_log10. Uncertainties of this regression would be contained in energy_log10_sigma.
The rows must be ordered such that i’th value in energy_log10_pred represents the
regression of the energy of the i’th event in event_no and similarly for the uncertain-
ties. If the energy regression model doesn’t produce uncertainties, simply omit the
_sigma column.

Submissions via submit_results.py

Start by making sure that your .csv file containing your results are located somewhere
on hep. You’ll need a modern version of python and the pip distributed package
sqlalchemy. If you’re unsure about any of this, please review appendix B. A mod-
ern installation of Anaconda comes with all the packages required.

Now, with your data on hep, all you need to do to make a submission is to call

python submit_results.py --database 'db' --path 'path' --model 'model' --init 'init'

where the arguments represents

• database : The name, not path, to the database containing the events which
you have results for. For a list of available databases, please see the next sec-
tion.

• path : The path to the .csv file on hep containing your results in the correct
format as outlined above.

• model : The name of your model. Please keep it brief.

• init : Your initials. Please be consistent.

submit_results.py then produces a dedicated table for your predictions in the predic-
tion database associated with the chosen database. The name of the table will be on
the form ’init’_’model’, eg. RFO_dynedgev3_energy_log10.

Additional Functionality

To get an overview of the databases accepting predictions currently, simply call:

python submit_results.py --list_databases True

This will print a list of databases that accepts predictions, e.g. a list of valid argu-
ments for db.
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An Example of Extraction

Suppose you wanted to extract predictions made on dev_level7_oscNext_IC86_003.
By construction, the prediction database would be located at

/groups/hep/pcs557/databases/dev_level7_oscNext_IC86_003/predictions/predictions.db

You could then obtain a list of all submitted predictions by simply printing the sub-
mitted tables as:

import sqlite3
mc_db = 'path_to_prediction_database'

with sqlite3.connect(mc_db) as conn:
cursorObj = conn.cursor()
print('Submitted Predictions: ')
cursorObj.execute("SELECT name FROM sqlite_master WHERE type='table';")
print(cursorObj.fetchall())

This will print a list of submitted predictions, each on the form ’init’ - ’model’, eg.
RFO - dynedgev3_energy_log10. Suppose you were very interested in the energy
regression made by RFO. You could then extract these as a pandas dataframe on the
same format as the input you’re supposed to deliver by

import sqlite3
import pandas as pd
mc_db = 'path_to_prediction_database'

with sqlite3.connect(mc_db) as conn:
query = 'select * from RFO_dynedgev3_energy_log10'
predictions = pd.read_sql(query,con)

Easy!
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SQLite Databases

In this appendix is a brief list and explanation of the databases produced during this
work, in case you find yourself at NBI wondering what’s in them. The databases are
located in:

'/groups/hep/pcs557/databases'

Please notice that event_no is unique within each database only. E.g. event 0 in
database A is NOT the same as event 0 in database B. All the databases below con-
tains pulses from SRTSplitInIcePulses.

dev_lvl7_mu_nu_e_classification_v003

This database contains all events contained in the following directories on cobalt:

"/data/ana/LE/oscNext/pass2/genie/level7_v02.00/120000"
"/data/ana/LE/oscNext/pass2/genie/level7_v02.00/140000"
"/data/ana/LE/oscNext/pass2/genie/level7_v02.00/160000"
"/data/ana/LE/oscNext/pass2/muongun/level7_v02.00/130000"

This means that the database contains all neutrino types + muons from muongun,
all at level7, which in turn means that reconstructions from RetroReco is available.
Everything in this database is MC. Please note that this database does not contain
pure noise events.

IC8611_oscNext_003_final

This database contains all events contained in the following directory on cobalt

"/data/ana/LE/oscNext/pass2/data/level7/IC86.11"

This is the entire IC86.11 real measurements sample at level7. Approx. 64000 events
with RetroReco reconstruction. The features in this database have been scaled us-
ing the feature scalers fitted to dev_lvl7_mu_nu_e_classi f ication_v003. It is therefore
intended that one should train on dev_lvl7_mu_nu_e_classi f ication_v003 in order
to predict on this dataset. If you prefer something else, it is advised to rescale this
database using whatever standardization your training set has undergone.

dev_level2_mu_tau_e_muongun_classification_wnoise

This database contains all events contained in the following directories on cobalt:

"/data/ana/LE/oscNext/pass2/genie/level2_v02.00/120000"
"/data/ana/LE/oscNext/pass2/genie/level2_v02.00/140000"
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"/data/ana/LE/oscNext/pass2/genie/level2_v02.00/160000"
"/data/ana/LE/oscNext/pass2/muongun/level2_v02.00/130000"
"/data/ana/LE/oscNext/pass2/noise/level2_v02.00"

This means that the database contains all neutrino types, muongun muons and pure
noise events at level2. Please notice that the noise events have fictional truth vari-
ables. You can select / deselect noise events by querying after sim_type =′ noise′

or abs(pid) = 1. Exclusively to this database, a boolean variable in the truth table
called passed_lvl2 is added. If this boolean is true, then the specific event passed the
level 2 filtering, qualifying it for level3. So in essence, this database contains both
level2 and level3 events. Everything in this database is MC.
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Making Databases

This is intended as documentation for those who wish to carry on the torch with
SQlite database production at NBI for the IceCube ML group. The code is available
here.

i3_converter.py n small,
temporary
databases

MergeDatabases.py

Scaled Database

Unscaled
Database

I3 SQLite

(parallelized)

I3 Files

FIGURE F.1: Illustration of the I3-SQLite pipeline used in this work.

The pipeline is illustrated in F.1. The entire process is broken into three steps:

• load_cvmfs.sh

• i3_converter.py

• MergeDatabases.py

load_cvmfs.sh

In order to access the software tools to open the specially designed file formats in Ice-
Cube, a software package called IceTray is required. Getting access to this software
is usually reserved to people inside IceCube who’ve got the credentials to download
and install the environment (you know - real physicists). However, lucky for us, a
much simpler alternative exists - this is the cvmfs - where no logins are required and
virtually no setup needed. Therefore, the pipeline begins by loading this distributed
environment such that we have the software required to open the files. Protip: You
can install packages to the cvmfs by using:

pip --user install mypackage

https://github.com/RasmusOrsoe/GNNIceCube
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i3_converter.py

i3_converter.py reads a series of directories containing i3-files and converts all these
into temporary databases using multiprocessing. This script requires the cvmfs to
be active. The script is called as

python i3_converter.py --outdir outdir --mode mode --workers n_workers

where outdir is the outdir for the temporary databases, workers is the number of
cores used and mode is the read mode which can be either: data, data-retro, mc,
mc-retro. Here ’-retro’ simply implies that reconstructions and uncertainties from
RetroReco are included. Within i3_converter.py an list-object named paths exists.
One must add the paths to the directories (not the files themselves!) where the i3-
files you wish to convert into databases are, like so:

paths = []
lvl3_vmu = '~/i3_workspace/data/oscNext/genie/level3/level3_v02.00/140000'
paths.append(lvl3_vmu)

if you have multiple paths, simply append those as well. The script will find all i3-
files and gcd-files in those directories and build temporary databases from them. If
a gcd-file exists in the directory, this gcd-file will be used. Otherwise, a fail-safe gcd
will be loaded and used instead.

MergeDatabases.py

This script merges all the temporary databases into one big unscaled database. Once
the unscaled datbase is built, the script then fits a sklearn.preprocessing.RobustScaler
to each variable chosen for scaling. (You can adjust which variable that gets trans-
formed by appending the variable name to the list in the script called ’no_scale’.
This script requires you to exit the cvmfs. The script is called as:

python MergeDatabases.py --outdir outdir --mode mode --path path --db_name db_name

where outdir is the outdir of the scaled and unscaled database, path is the path to
the temporary databases produced by i3_converter.py, db_name is the name of the
database, and mode is the mode from which the temporary databases was made,
e.g. ’data’, ’data-mc’, ’mc’ or ’mc-retro’.

FAQ

I want the pipeline to extract a feature or a truth that it currently doesn’t

This requires changes to both the extracting script and the merging script. First, go to
i3_converter.py and make sure the truth or feature variable is extracted in the func-
tion extract_fit_vector() and passed back to WriteDicts(). Add the feature or truth
variable to either the features- or truths-dictionary by assigning it a field. Remem-
ber the name of this field. Now, go to MergeDatabases.py and add this as a column
in the parts of the code where the empty scaled and the empty unscaled databases
are initialized. (One has to define the name of the columns for the table on creation).
Now you’re done!

I want the pipeline to extract pulses from a different key than SRTInIcePulses

You can specify the name of the key in WriteDicts() where extract_fit_vector is called.
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The pipeline crashes after the unscaled database has been filled

Right after the unscaled database has been created, the process of fitting scalers to it
begins. This is memory intensive and if the unscaled database contains more than 10
million events, it’s likely that the servers in HEP will run out of memory as it’s fitting
the scalers. This is because the fitting itself requires us to load the entire feature into
memory - so for a 10 million event database, this would be roughly 108 rows of data.
You can get around this by either: a) Make a smaller database. b) Use an already
fitted scaler instead.

Why is this not a one-step process?

The cvmfs comes with this annoying version of pickle that gives errors when Merge-
Databases.py tries to save the dictionary with transformers as a pickle file, so one
needs to exit cvmfs in order to do this. One could probably fix this, either directly or
by wrapping the process into a shell script. So what are you waiting for?

Why do we need to specify ’mode’?

Maybe we dont. This was chosen because this pipeline has been developed side-by-
side with changing needs in terms of data procurement. Since the pipeline needed
to be flexible, e.g. to extract different things, an if-approach was chosen. In essence,
the mode simply lets the script know what it can expect there to be in the i3-files.
It’s possible that one could write a smarter piece of code that would simply check
which of a series of desired variables is available, and extract only those. What are
you waiting for?

When I use my own script to make databases, they are quite slow to query from.
Why are yours faster?

The speed of the databases comes from a crucial step in their definition. You should
assign a primary key in the truth table (I choose event_no) and an indexation for the
features table (I choose event_no). To see how this is done, have a look at Merge-
Databases.py, or look it up!
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Geometric Model

def __init__(self, k):
super(Net, self).__init__()
c = 3
l1, l2, l3, l4, l5,l6,l7 = 8,c*16*2,c*32*2,c*42*2,c*32*2,c*16*2,3
self.k = k

self.nn_conv1 = torch.nn.Sequential(torch.nn.Linear(l1*2,l2),
torch.nn.LeakyReLU(),torch.nn.Linear(l2,l3),
torch.nn.LeakyReLU()).to(device)
self.nn_conv2 = torch.nn.Sequential(torch.nn.Linear(l3*2,l4)
,torch.nn.LeakyReLU(),torch.nn.Linear(l4,l3),
torch.nn.LeakyReLU()).to(device)
self.conv_add2 = EdgeConv(self.nn_conv2,aggr = 'add')
self.nn_conv3 = torch.nn.Sequential(torch.nn.Linear(l3*2,l4),
torch.nn.LeakyReLU(),torch.nn.Linear(l4,l3),
torch.nn.LeakyReLU()).to(device)
self.conv_add3 = EdgeConv(self.nn_conv3,aggr = 'add')
self.nn_conv4 = torch.nn.Sequential(torch.nn.Linear(l3*2,l4),
torch.nn.LeakyReLU(),torch.nn.Linear(l4,l3),
torch.nn.LeakyReLU()).to(device)

self.conv_add4 = EdgeConv(self.nn_conv4,aggr = 'add')

self.nn1 = torch.nn.Linear(l3*4 + l1,l4)
self.nn2 = torch.nn.Linear(l4,l5)
self.nn3 = torch.nn.Linear(4*l5,l6)
self.nn4 = torch.nn.Linear(l6,l7)
self.relu = torch.nn.LeakyReLU()
self.tanh = torch.nn.Tanh()

def forward(self, data):
k = self.k
x, edge_index, batch = data.x, data.edge_index, data.batch
x,edge_index = KNNAmp(k, x, batch)
a = self.conv_add(x,edge_index)
_,edge_index = KNNAmp(k, a, batch)
b = self.conv_add2(a,edge_index)
_,edge_index = KNNAmp(k, b, batch)
c = self.conv_add3(b,edge_index)
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_,edge_index = KNNAmp(k, c, batch)
d = self.conv_add4(c,edge_index)
x = torch.cat((x,a,b,c,d),dim = 1)
del a,b,c,d
x = self.nn1(x)
x = self.relu(x)
x = self.nn2(x)
a,_ = scatter_max(x, batch, dim = 0)
b,_ = scatter_min(x, batch, dim = 0)
c = scatter_sum(x,batch,dim = 0)
d = scatter_mean(x,batch,dim= 0)
x = torch.cat((a,b,c,d),dim = 1)
x = self.relu(x)
x = self.nn3(x)
x = self.relu(x)
x = self.nn4(x)
x[:,0] = self.tanh(x[:,0]) # ONLY WHEN PREDICTING ANGLES
x[:,1] = self.tanh(x[:,1]) # ONLY WHEN PREDICTING ANGLES

return x
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