
 

 

 

 

U N I V E R S I T Y  O F  C O P E N H A G E N
F A C U L T Y  O F  S C I E N C E

N I E L S  B O H R  I N S T I T U T E

Master of Science in Physics

Solving the turbulence closure problem II
Determining the deep ocean stratification

Rasmus Ranum Hansen

Supervisor
Markus Jochum

Handed in: May 20, 2023



ii



A B S T R A C T

This thesis aims to formalize the stratification of the deep ocean as a function of buoyancy

and wind forcing. With the use of the ocean only model VEROS the AMOC is analysed

in a idealistic Atlantic ocean model. Firstly the conclusions from Greatbatch and Lu (2003)

were used as a starting point, analysing the relation between the AMOC strength and the

meridonal buoyancy gradient found in Bryan (1987). Contrary to their paper we do not find

that the Stommel box model closure from Bryan (1987) does not hold for low horizontal

friction, but instead find it to be a good fit. We also find the southern ocean wind forcing to

be in a superposition with the buoyancy forcing.

We then found that the closure described in Brüggemann and Eden (2011) is a good 2.5

dimensional prognostic model for coarse resolution models, speeding up modeling time.

Finally using a new closure following closely the theory from Bryan (1987), however without

the use the desperate approximation of changing the gradient in the thermal wind relation.

We find this closure to be dynamically consistent with a clear theory behind all assumptions,

and we find it to match the model data as well as the old closure. We therefore suggests this

new closure as a better alternative.
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Part I

I N T R O D U C T I O N



1

M O T I VA T I O N

The worlds climate is an incredibly intricate and complex system, with many different pro-

cesses and connections interacting and evolving. This makes the task of trying to understand

and explain the climate systems incredibly hard. However the climate is one of the most

important areas of science for humankind, and understanding the dynamics is therefore of a

high level of importance.

One of the more important climate systems is the Atlantic meridional overturning circulation

(AMOC), as it has an important role in the redistribution of heat on a global scale. The

AMOC moves warm water from the tropics towards the northern polar regions, and also in

turn, colder water towards the equator. Due to the scale of the AMOC, the redistribution of

heat from equator to the northern hemisphere has a enormous effect on the climate in Europe

and eastern north America. When comparing northern Europe’s climate with locations of

similar latitudes, one should compare the climate in the United Kingdom and Denmark,

with that of Alaska of northern Canada. This difference in climate is due to the heat being

transported by the Gulf stream, which is part of the AMOC.

Because of the Importance of the AMOC it would be of great interest to understand the

dynamics driving the overturning and how one could describe it from measurable values.
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2

G O A L

As stated the AMOC is highly important for the climate system, and we therefore wish to

understand the dynamics driving the system. Now the processes describing the dynamics of

the AMOC and the more general thermohaline circulation (THC) are more or less understood

in general, however some parts are still uncertain, such as the tropical upwelling (and a

walk-through will be done later), however the goal of this thesis is to make a connection

between the AMOC and the ocean surface forcings. More precisely we wish to describe how

the deep ocean stratification is controlled of the surface wind stresses and the buoyancy

forcings. This is of high interest as this would allow estimations of the AMOC purely from

atmospheric values, which are much easier to observe compared to anything in the deep

ocean. We will in this project be looking at the Strength of the AMOC as the value describing

the deep ocean stratification.

We therefore aim for a mathematical relation between the AMOC strength and the surface

buoyancy forcings from salinity and temperature and the wind stress acting on the surface.
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3

B A C K G R O U N D

The AMOC is part of the general THC which is the global density driven circulation, we

will focus on the AMOC and the Atlantic. The AMOC is density driven, meaning the water

transport is forced by a density difference between the tropics and the poles. The heat from

the sun is not evenly distributed over the planets surface, and there is therefore a surplus of

heat in the tropics, which is carried towards the colder northern Atlantic, due to a difference

in temperature and salinity, and therefore density. This difference comes from the down

welling water in the polar regions. Here the water cools and the surface salinity decreases

due the precipitation and ice. This leads to the fresh surface water from the tropics to get

heavier, than the water below and it therefore sinks and creates North Atlantic deep water

(NADW). The NADW cell then becomes the return flow, moving in the abyssal ocean back

to the tropics. Here we now have a clear stratification of a deep heavy return flow and a

warm fresh northward flow. We will not be discussing any zonal structure of the AMOC

and will see it as a zonal average, where these two cells can be clearly seen.

There is however one problem. When the cold NADW reaches the tropics it is heavier than

the warm surface layer, so there is no clear density difference to drive an up welling of the

abyssal waters. Now there are different theories describing how the NADW reached the

surface again to complete the system. Two very influential papers and theories regarding

this problem is Stommel (1961) and Stommel and Arons (1959). Using the theory from

4



B A C K G R O U N D 5

Figure 1: The Global Ocean Meridional Overturning cells without zonal structure, from Lumpkin and

Speer (2006)

the Stommel paper Bryan (1987) derived a relation between the AMOC strength and the

buoyancy forcings, which then describes what drives this up welling. However Straub (1996)

showed that there is an inconsistency between the Stommel box model and the Stommel and

Arons model, and the relation found in Bryan (1987) is therefore not dynamically consistent.

We will now shed some light on both of these models and the dynamical inconsistency.

For both models we start with the Navier-Stokes equation, as they describe the motion in a

viscous fluid:

∂u⃗
∂t

+ (u⃗ · ∇)u⃗ + 2Ω⃗ × u⃗ = −1
ρ
∇p + µ∇2u⃗ + ρgẑ (1)

Where the terms are acceleration, advection, Coriolis force, pressure gradient, diffusion

and gravity respectively. In both models we assume the system to be in a steady state and
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Figure 2: Simple schematic of the Stommel box model, from Stommel (1961)

working with a inviscid, hydrostatic and adiabatic fluid, which results in the geostrophic

balance and the hydrostatic equation:

− f · v = −1
ρ

∂p
∂x

(2)

f · u = −1
ρ

∂p
∂y

(3)

0 = −∂p
∂z

+ ρg (4)

where f is the Coriolis parameter. The geostrophic balance, states that the Coriolis force is

balanced by the gradient of the pressure field. Now this is where our models diverge.

Firstly we look at the box model proposed by Stommel (1961). Here he describes the ocean

as two well mixed boxes connected in a upper layer overflow and a bottom capillary. These

boxes are then seen as separate, with different temperatures, salinities and densities. The

main assumption that Stommel makes is that the meridional velocity between these boxes

is proportional to the meridional density gradient. If we assume no other surface forcing

besides salinity and temperature, we can use scaling analysis to show this. Doing this Bryan

(1987) ended up with a relation for the AMOC strength. We will not follow the exact steps

of Bryan as we will continue in Cartesian coordinates, we will follow Vallis (2017) instead,
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but the assumptions made and the result will be the same. We start by taking the vertical

derivative of eq. (2) and inserting eq. (3):

∂

∂z
(− f · v) =

∂

∂z
(−1

ρ

∂p
∂x

) (5)

f
∂v
∂z

=
1
ρ

∂2 p
∂z∂x

(6)

f
∂v
∂z

=
1
ρ0

∂ρ

∂x
(7)

(8)

We have arrived at the thermal wind relation. Now this is where a large inconsistent

assumption is used. In Bryan (1987) he assumed that the zonal derivative could be exchanged

with a meridional derivative. Doing this change and using scaling analysis we get:

f
V
D

=
g
ρ0

ρ

L
(9)

Where D is the abyssal layer depth and L is the meridional length scale. We now define

Stommel’s two boxes, as we split the ocean into a tropical box and a polar box so we get:

f
V
D

=
g
ρ0

ρ2 − ρ1

L
(10)

f
V
D

=
g
ρ0

∆ρ

L
(11)

To do this we also assume the boxes to have different densities. To remove the unknown

D from the relation, we use mass conservation for our two dimensional setup, as we have

assumed zonal averaging, and Munk’s (1966) advection-diffusion balance for temperature:

∂v
∂y

+
∂w
∂z

= 0 (12)

w
∂T
∂z

= kT
∂2T
∂z2 (13)

Again we use scaling analysis, to get an equation for D:

V
L
+

w
D

= 0 (14)

w
T
D

= kT
T

D2 (15)

⇒ D =
kT L
V

(16)
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Combining this with eq. (11) and defining the mass transport as the flux over the area we

arrive at:

Φ = VDL (17)

Φ =
gD

L f ρ0
∆ρ(

f kTρ0L2

g∆ρ
)1/3L (18)

Φ = (
gL4k2

T
f ρ0

)1/3∆ρ1/3 (19)

Φ = α · ∆ρ1/3 (20)

The actual value of α is not important, but from Stommel’s box model we find that there

is a cubic relation between the AMOC and the density gradient. This means that from the

Stommel box model closure of the geostrophic balance we find a relation of:

Φ = a · ∆ρ1/3 + b (21)

To find the precise relation described in Stommel (1961) one can do a first order Taylor

expansion of the relation. This scaling and discretization was done in Bryan (1987), where he

showed this one third relation, together with a two third relation of the vertical diffusivity.

This relation is both somewhat empirical as it uses the Munk advection-diffusion balance

(1966), and it also have a huge, non theory based, desperate, assumption in changing the

derivative in the thermal wind balance.

Contrary to the box model where the AMOC is parameterized as described above, in the

model described by Stommel and Arons in (1959) the strength and structure of the AMOC

is defined and the horizontal flow is then calculated. If we go back and take the zonal

derivative of eq. (2) and subtract the meridional derivative of eq. (3) we find:

∂

∂x
( f · u)− ∂

∂y
(− f · v) =

∂

∂x
(−1

ρ

∂p
∂y

)− ∂

∂y
(−1

ρ

∂p
∂x

) (22)

f0(
∂u
∂x

+
∂v
∂y

) + βv = 0 (23)

f0
∂w
∂z

+ βv = 0 (24)
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To get eq. (24) we have used mass conservation, and arrived at the Sverdrup relation. Now

the key assumption in the Stommel Arons model is that the upwelling from the abyssal cold

layer is uniformly distributed, meaning w will be uniform:

v =
f0w0

βD
(25)

From geostrophy we can then write the pressure as a zonal integral:

p =
∫ x

xE

f 2w0

βD
dx′ (26)

Since there is no flow at the eastern boundary, we can set P = 0 here and find:

p = − f 2

βD
w0(xE − x) (27)

u =
2
D

w0(xE − x) (28)

We can now find the flow by firstly defining some source S0 and using these velocities and

mass conservation (this is for a basin going from equator to a northern pole and source):

S0 + TI(y) = TW(y) + E(y) (29)

TI =
∫ xE

xW

vDdx =
f
β

w0(xE − xW) (30)

E =
∫ xE

xW

∫ y

yN

wdxdy = w0(xE − xW)(yN − y) (31)

TW =
S0

yN
(2y − f0

β
) (32)

Where the first equation is mass conservation and TI is the interior pole ward transport, E is

the integrated loss due to upwelling and TW is the equator ward transport at the western

boundary. here we can see that in the Stommel Arons model we define the AMOC and solve.

Now the two models are clearly different as they are based on different key assumptions

and they work in two different ways. Straub (1996) points out the inconsistency between the

two models and show that the Stommel Arons model does not predict any relation between

the meridional density gradient and the AMOC strength as found in Bryan (1987) from the

Stommel box model. The Stommel Arons model is however dynamically consistent, and not
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Figure 3: Simple schematic of the water structure in the Stommel Arons model, Stommel Arons (1959)

being able to merge this with the Stommel box model, hints that the assumptions made in

Bryan (1987) are dynamically inconsistent. We will therefore in this thesis try to produce a

relation between the AMOC strength and buoyancy forcing that is dynamically consistent,

and therefore not use desperate assumptions such as the one made in Bryan (1987).

Lastly we would also like to include the wind stress forcing in the relation for the AMOC

strength, and will therefore also analyse how a difference in windstress, specifically over the

Antarctic ocean, affect the strength of the AMOC.



4

T H E S I S O U T L I N E

The structure of this thesis will a bit alternative. After this introduction section, we will

have a general methodology section, where the model used will be described, as well as the

many different model setups done. After this we begin section I, which will have its own

introduction, where the Stommel box model closure found in Bryan (1987) will be tested,

loosely following the method used in Greatbatch and Lu (G&L) (2003). Then We have a

short methodology describing more specific runs for this experiment, followed by a Results

and analysis where we check how to Stommel closure hold for different setups. After this

we have a discussion where we compare our own results with that of G&L (2003) to see if

we can support the claims made in the paper. Following this we have section II, which will

focus on a new closure instead of the Stommel box model. Again we will have a introduction

describing the closure from Brüggemann and Eden (2011) (B&E). Same procedure as in

section I, as we again will have a methodology, results and analysis and a discussion, debating

how well this new closure works and how it improves from the old. Then we have section

III, having the same chapter structure, where we will describe a new relation between the

AMOC and atmospheric forcings, using the new closure. The penultimate section will be an

overarching discussion, where we will look at all three experiments together, and discuss the

problems and drawbacks of the old closure and what improvements follow with the new

one. Lastly we have a conclusion.

11
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M E T H O D O L O G Y



5

M O D E L D O M A I N A N D S E T U P

To study the deep ocean stratification we will be running the ocean only model VEROS,

described in Häfner (2018). VEROS is a primitive equation model written in pure Python

based on the FORTRAN model pyOM2. VEROS simulates the Boussinesq equations of

motion with full thermodynamics on a staggered Arakawa C-grid, meaning tracers and

fluxes are calculated in different positions in all three dimensions. VEROS uses the finite

difference approximation and a linear solver to solve the system. Our model will also have

the turbulent kinetic energy model active, based on Gaspar (1990) for vertical mixing. Since

VEROS is a pure ocean model, we will be running the model on both CPUs and GPUs.

Our model domain will be a idealistic version of the Atlantic ocean, With a long rectangular

Figure 4: Schematic of tracers and momentum positions in a C-grid

13



M O D E L D O M A I N A N D S E T U P 14

Figure 5: Schematic of the model basin and the forcings values and position

basin, with a channel in the south. We will base our model on that of Laurits S. Andreasen

(2019). Our basin will have a width of 60 degrees and height of 120 degrees, going from

60 degrees south to 60 degrees north. The southern channel will be the bottom 30 degrees,

where cyclic boundaries will be in effect. The depth of the model will be 4000 meters,

however at the edges of the channel we will have a depth of 2000 meters to recreate the

effects of the Drakes passage in the Southern ocean.

Since our model has full thermodynamics we will not be required to add any sources, we

can instead add a general surface heat forcing. The surface will be relaxed with a wide sine

wave, peaking at the equator with a value of 25 degrees Celsius and having a minimum of 0

degrees at the southern boundary and 5 degrees at the northern boundary. The heat forcing

will have a relaxation timescale of 10 days. The model will have 40 layers in depth using a

Vinkour grid refined towards the surface with initial interval of 10 meters. The model will

initially be run in a coarse resolution of one degree by one degree. The model will have

timesteps of one hour to make sure the Courant–Friedrichs–Lewy-criterion (CFL) is satisfied.

We will also be running the model in a eddy resolving resolution of 1/6 degrees with a time

step of 10 minutes. We will make use of VEROS inbuilt overturning output which is the

meridional transport sampled 48 times a year.
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To make sure the model reaches a steady state we will be running the coarse resolution for a

100 years to make sure the spin up is complete and the results are from a steady ocean. As

the high resolution runs are costly, we will only be running these for 40 years, however they

also reach a steady state.

The values changed in the runs will be the windstress, with a large focus on the windstress

over the southern ocean, the horizontal friction and the salinity forcing. The wind, excluding

over the southern ocean, is the same as described in Andreasen (2019), where most of the

model setup is taken from, to mimic a simplified wind field over the Atlantic. The southern

wind has a Gaussian peak around 40 degrees south and a e-folding of 15 degrees. The

strength of the southern ocean winds varies with model runs, and some models will also

have the wind outside of the southern ocean turned off. The Horizontal friction changes

will be discussed in the next section. The salinity forcing will be varying, only be on the

upper 20 degrees and will be uniform, with a timescale of 10 days. This forcing is to force a

AMOC cell to appear even for low horizontal frictions. In the real world the salinity decrease

towards the north, however if we do this, the AMOC cell will turn off, and we therefore

decide to increase it instead.



Part III

S E C T I O N I



6

I N T R O D U C T I O N A N D T H E O R Y

In this section we will analyse the inconsistency between the Stommel Arons model and the

Stommel box model as noted in Straub (1996). We will base our work on that of G0&L (2003),

who used a simple two layered model to analyse this inconsistency. Here they simulate a

simple rectangular basin with a southern ocean channel to signify the Atlantic to see if there

is any relation between the meridional density gradient and the AMOC strength. To do

this they simulate for different values of a parameter R and then compare the meridional

transport with the layer displacement height. The closer these are linked the more it supports

Stommel’s box model and in turn the relation found in Bryan (1987). The parameter R in

question is the ratio between the propagation time scale to the dissipation time scale in

the model and will be a key parameter in this thesis. In other words the ratio between the

wave (mostly Kelvin waves) time scale and the time scale associated with the horizontal

friction. This will tell us what is dominant in our ocean. For R << 1 we are in a weak

dampening scheme and the Kelvin (and Rossby) waves will dominate and distribute the

information around the basin and to the interior. When we have R >> 1 we are in the

strong dampening scheme and the horizontal friction will kill of most of the waves and

dominate. This can also loosely translate to numerical model resolution, as we need the weak

dampening to resolve eddies, however for low resolution models there can be problems. R is

17



I N T R O D U C T I O N A N D T H E O R Y 18

more precisely calculated as the ratio between the Kelvin wave timescale and the horizontal

friction timescale:

R =
Tk

TD
(33)

Tk =
L
c

(34)

TD =
L2

D
Ah

(35)

R =
L · Ah

c · L2
D

(36)

Where L is the kelvin wave length scale, LD is the dissipation length scale, c is the kelvin

wave speed and Ah is the lateral viscosity or horizontal friction. In G&L (2003) they vary the

parameter R for different setups with different water source strengths and different southern

ocean windstress. R is changed by using different linear horizontal frictions. They draw two

main conclusions. Firstly they find that with no southern ocean windstress and no channel,

the model is in the Stommel Arons regime for R << 1 and in the Stommel box regime for

R >> 1 with the latter breaking down around R = 1. This means they find that for high

dampening there is a relationship between the meridional density gradient and the AMOC

strength, while this is not the case in the weak dampening regime. Secondly they find that

with a channel and increasing the southern ocean wind stress, the model tends to move

towards to Stommel box regime even for lower R values. This means that they find southern

ocean wind stress to strengthen the relation between the meridional density gradient and

the AMOC strength.

We will in this section use this R parameter to see if there is a dependency on how strong

the relation between the AMOC and the density gradient found in Bryan is, and test how

the southern ocean wind stress affects this. We will use a primitive equation model with

thermodynamics instead of just a two layered model. This also means we will not have need

for any water sources as in G&L (2003).



7

M E T H O D O L O G Y

The model domain has already been described in the previous section, however we will

here go through the specific model values for the three main variables that will change.

The parameters: Windstress, Salinity forcing and horizontal friction (the R parameter) is

what will be changing. As in G&L (2003) we would like to test how R affects the relation

from Bryan (1987). We will therefore run models of both high R values and low R values.

Now to estimate R from the Horizontal friction we use eq. 36. We estimate the kelvin wave

length scale, L, to be 25000 km which is a rough estimate of the distance the Kelvin wave

has to travel. The dissipation length scale we estimate to be around the grid spacing of

approximately 111 km. The wave speed, c, is approximated to be c =
√

g′H, where g′ is the

reduced gravity of around 0.01 and H is the upper layer thickness which is around 100 m.

This gives us an estimated wave speed of 1. All this gives us a relation between R and Ah of:

R =
L · Ah

L2
D · c

≈ Ah · 2 · 10−3 (37)

Now we want to vary R to be in both the weak dampening regime and the strong dampening

regime. The chosen values are shown in table 1. Secondly we want to explore G&L’s (2003)

second point of southern ocean windstress. We will therefore run for the parameters for the

magnitude of the Gaussian peak in the southern ocean shown in table 2. Now, to test the

relation between the AMOC and the density gradient we will need multiple model runs

19
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R [unitless] Ah [m2s−1]

0.01 5 · 100

0.1 5 · 101

1 5 · 102

10 5 · 103

100 5 · 104

Table 1: Horizontal friction values

Name τ0 [Nm−2]

Wind 1 0

Wind 2 0.1

Wind 3 0.2

Table 2: Southern ocean windstress values

with the same wind and R value. We therefore vary the salinity forcing in the upper 20

degrees, to simulate different strengths of the AMOC as shown in table 3. In the real world

the salinity forcing would be lower in the north, however we need to force a AMOC cell,

and will therefore be increasing it. The theory should still hold. 35 is the standard forcing.

All salinity forcings will be run for all R values, which will be run for all windstresses. The

names will then be denoted like the following example: w1r01s_3 is for the windstress of 0.0,

an R value of 0.1 and a salinity forcing of 38. If no s_# is added then it is implicit s_0.

In G&L (2003) they compare the interface height displacement with the AMOC strength

at all latitudes. It is not possible to make such a comparison in any meaningful way for

our setup. We will therefore instead find a single AMOC strength value and single density

gradient value to compare per run. How these are found will be discussed later.

We expect some grid-scale noise for the lower viscosity runs, and we will try to average
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Name S0 [PSU]

salt 0 35

salt 1 36

salt 2 37

salt 3 38

salt 4 39

salt 5 40

Table 3: salinity forcing values

this away using a two point box car filter. This will however have a possible large effect

as grid-scale noise can induce grid-scale friction, which will then alter the true horizontal

friction present in the system as described in Jochum (2008). We will therefore also be

running a setup of High resolution eddy resolving models at 1/6 th degree resolution, to test

if this induced grid scale noise affects the results significantly. These models will have wind

1 and a R value of approximately 0.2, meaning it will be in the low dampening scheme.
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One of the big assumptions we make is that the models have reached a steady state, and

therefore no longer have any large temporal fluctuations. As can be seen from fig. 6 the

models reach a steady state after around 10 years, so the long spin up of 100 years (and

the high resolution spin up of 40 years) is more than enough the ensure this assumption is

valid. Nonetheless we do still have some temporal oscillation, which we will average out, by

taking the average of the last five model years, as shown by the dotted lines. This will be

done after the box car filter discussed earlier.

To test the Stommel box model closure, specifically the density gradient part of it, we need

to firstly chose a way to determine the strength of the AMOC. We chose 20 degrees North as

the latitude where we will be measuring the AMOC strength, as we will see a cell of varying

intensity for most of the model runs and we will see a change in strength. We also assume

this value will be representable of the strength of the entire AMOC and do not expect any

positional bias. Depth wise, we decide on a little flexibility, and will find the maximum value

between 250 meters and 2100 meters depth, as this is the range where the AMOC cell will

be for the model runs at the chosen latitude. A few model runs are shown in fig. 7. The

overturning is in Sverdrup.

Now the second thing we need to find is the density difference of the two boxes. Here we

will follow Guido et al. (2022) on how to define the boxes. Firstly we will only be using

22
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Figure 6: Time series of a arbitrary set of model runs

Figure 7: Meridional overturning circulation with measured point of a arbitrary set of model runs
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the surface layer, as we want the density gradient to be a function of atmospheric forcings,

and this way we can describe it as a atmospheric boundary condition. this way we also

separate it as much from the AMOC as possible. Following Guido et al. (2022) we split the

Atlantic into a southern box and a northern box, to mimic the Stommel setup. The northern

box will go from 40 degrees north and up, to make sure we get no affect from the equator.

The southern box will be a bit smaller, as we also want to be away from the equator, but we

also need to be above the channel, and not have any of the sharp density gradient from the

edge of the channel do to Ekman suction. We therefore define it from 20 degrees south to

15 degrees south. We also follow Guido et al. (2022) by using buoyancy forcing instead of

density, by using:

∆b = − g
ρ0

∆ρ (38)

Where g is the gravitational acceleration, ρ0 is the standard seawater density which we

define as 1024 kg
m3 and ∆ρ is the difference between the density of the south Atlantic and

north Atlantic boxes.

We are then able to test the relation of AMOC = a · ∆b1/3 + b. We start by looking at the

models with no southern ocean winds in fig. 8. Here we see that for very low R values, the

fit is not perfect, but it does still capture the trend. As R increase the fit becomes a better

representation of the data, and from R = 1 and up, the fit captures the trend of the data. In

fig. 9 and fig. 10 we see the same plot for the windstress of 0.1 and 0.2. We here see the same

thing, however we see that even for the very low R value, the fit is still a fine representation

of the data, and that for the higher R value, the data is very well captured.

In fig. 11 we compare runs for the highest R value of different windstresses. What we see is

that the southern ocean wind stress has a additive effect on the relation between the AMOC

strength and the buoyancy gradient. This means we can treat the buoyancy forcings and the

windstress forcing in a superposition.

Lastly we also want to use the eddy resolving runs. As stated earlier there is some numerical
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Figure 8: Meridional overturning circulation plotted against the buoyancy forcing for the model runs

of w1

Figure 9: Meridional overturning circulation plotted against the buoyancy forcing for the model runs

of w2
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Figure 10: Meridional overturning circulation plotted against the buoyancy forcing for the model

runs of w3

Figure 11: Meridional overturning circulation plotted against the buoyancy forcing for the model

runs of r = 100
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Figure 12: Meridional overturning circulation plotted against the buoyancy forcing for the model

runs of w1, including the eddy resolving models

noise in the coarse resolution models with low horizontal friction. This numerical noise can

induce a numerical friction, which will then change the actually horizontal friction in the

system. We therefore use the eddy resolving model, to see if it matches well with the results

from the coarse resolution models. If this is the case we can assume that the numerical

friction in negligible. The high resolution runs are done with no southern ocean windstress,

so a comparison with the coarse resolution runs with the same winds are shown in fig. 12.

we see that the eddy resolving model relation, does not have any large differences from the

coarse resolution. The fit captures the data well, and the parameters of the fit are within

range of the coarse resolution parameters. We do however see that the AMOC strength is

generally higher. from this we can assume that the coarse resolution results are good and

the numerical friction is negligible as the eddy resolving model does not show any largely

different results.
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This section is about analysing how well the relation between the AMOC and the buoyancy

gradient proposed in Bryan (1987) based on Stommels box model, holds for a primitive

equation model using the Boussinesq equations and thermodynamics. We used the study

conducted in G&L (2003) as a basis, and the parameter, R, they defined. The first major

claim made in G&L (2003) was that the Stommel box model does not hold for low horizontal

friction, i.e. R << 1, but only when R >> 1. As we discussed earlier and can be seen in

fig. 12 this is not the case in our model. We do see that the relation based on the Stommel

box model is not great for R = 0.01, it is however still a fair fit for the general trend of the

data. now for R = 0.1 and R = 1 we see that the relation does describe the data well, and it

is therefore a good fit. This is in direct contrast with the claim made in G&L (2003), as we

believe the Stommel box model relation describes the system well, even for low R. Now G&L

(2003) does only use a simple two layered model, so this could be why we see this difference.

One could say that our claims are based on coarse resolution runs and the numerical noise

could therefore be the reason that we see the Stommel relation hold even for low R values,

as they might not actually be low due to numerical friction. However we argue that this is

not the case, as we have also tested the relation on a eddy resolving model with low R value,

and found it to be consistent with our previous coarse resolution results. We can therefore

not support this claim made in G&L (2003).
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The second claim made in G&L (2003) was that southern ocean wind stress has a strengthen-

ing effect on the relation between the AMOC and the buoyancy gradient. We do not find this

to be the case for higher R value, but for low R value, the fit does describe the trend of the

data for higher wind stress somewhat better than for lower. We can however not support

this claim on this little evidence. However we do find southern ocean wind stress to have an

impact. We find that the windstress is in a superposition with the buoyancy forcing, and

therefore seems to have a linear impact on the AMOC.



Part IV

S E C T I O N I I
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I N T R O D U C T I O N A N D T H E O R Y

One of the big faults of the Bryan (1987) closure is the assumption that you can shift out

the zonal gradient with a meridional one, which is not the case for most of the ocean. We

will therefore in this section look into a alternative closure proposed in B&E (2011). Here

instead of using the Stommel box model and split the ocean into a southern and northern

box, they instead propose a zonal split. The ocean is split into a western boundary box and

an interior box, which are then zonally averaged separately. This would mean that instead

of having a expensive three dimensional prognostic model, you could get away with having

two coupled two dimensional models, which we will call 2.5 dimensional. The B&E (2011)

closure is also dynamically consistent compared to the Stommel one. The B&E (2011) closure

builds on a zonal split between the western boundary and the interior of the ocean, and

results in the following main assumption:

Bv̄ = Bbv̄b + Biv̄i (39)

Here B is the zonal length of the basin and the subscripts means boundary and interior

respectively. This closure builds a zonally averaged model, And we therefore start by taking

31
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the zonal average of the momentum equations and the continuity equation over each box

separately, to get:

∂ūα

∂t
− f v̄α = − 1

ρ0

∆pα

Bα
+ F̄u

α (40)

∂v̄α

∂t
+ f ūα = − 1

ρ0

∂ p̄α

∂y
+ F̄v

α (41)

∂b̄α

∂t
+

∂b̄α

∂y
v̄α +

∂w̄α

∂z
b̄α =

∂Kα

∂z
∂b̄α

∂z
− ϵαuδ

b̄α

Bα
(42)

∂v̄α

∂y
+

∂w̄α

∂z
= −ϵα

uδ

Bα
(43)

Here the subscript α can be b or i and the F̄ terms contain all the friction terms, and will be

described later. Here B&E (2011) define some parameterizations for the pressure gradients

to close the set of equations:

uδ = γ1ūb (44)

∆pi = ρ0(∆pi(y = 0) + γ1

∫ y

0
f ūbdy′) (45)

∆pb = γ2( p̄i − p̄b) (46)

Here two tuning parameters are defined. The first parameterization is made as they demand

that the thickness balance for the interior regime yields the averaged form of the Sverdrup

balance. This demand is made by the first parameterization (for more detail see B&E (2011)).

The integration constant ∆pi(y = 0) can be found be using the steady version of the zonal

momentum balance at the equator. The second parameterization is a simple ansatz. Our

goal is to describe a model for the AMOC and would therefore like to use their model and

parameterization to find a equation for the AMOC based on their 2.5 dimensional model.

The AMOC strength we define as the meridional flux:

Φ = h(Bbv̄b + Biv̄i) (47)
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Now as we are looking at the steady state, we set the acceleration term to zero and isolate

the meridional velocity in the steady momentum equations and insert them:

Φ =
h
f
(

1
ρ0

(∆pb + ∆pi)− (Bb F̄u
b + Bi F̄u

i )) (48)

We chose to neglect the F̄u
α terms, as the diffusive and viscous terms are small. The windstress

will also be part of the F̄ terms, but for now we assume no wind stress. We now have 2.5

dimensional zonally averaged set of equations to find the AMOC as a function of the pressure

field. This set of equations are still prognostic and need to evolve in time, but they are only

2.5 dimensional and therefore much faster than a expensive three dimensional model.
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The goal of this section is to see if the closure from B&E (2011) can be used as a dynamically

consistent prognostic zonal averaged 2.5 dimensional model. For this we will be analysing

the north Atlantic, and here we can use the model runs already described in earlier sections.

We will make use of the high resolution runs and compare the AMOC found using the

derived equations and compare this to the output directly from VEROS. We will however do

a new run to simplify things even more. We will do a coarse resolution run with no wind

forcing at all, with a R value of 100 and a salinity forcing of 38.

From the model runs we will use the density output directly from VEROS to compute the

pressure field. We can also safely assume no wind forcing term for the coarse resolution

run. We will also make use of the stream function from VEROS to calculate the western

boundary width, as this is needed to split the ocean into the two boxes. Here we will define

the boundary width as the first minimum of the stream function at 20 degrees north as this

should encapsulate both the northward flow and the return flow. The value found for the

coarse resolution run, will then also be used for the high resolution run, as a quick estimate

of the boundary width.

34
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We start by looking at the coarse resolution run with no wind stress. In fig. 13 we see the

three parameterizations from the B&E (2011) closure. When comparing these to the results

from the paper we see a good resemblance for most of it. The ∆pb is as seen calculated

from the pressure field, while the others are calculated from the zonal velocity field. We see

a strong positive cell in ∆pb with a strong negative cell below it. In ∆pi the most notable

features are the positive cell in the lower right corner, and the negative cells in the outer

upper ocean. When these parameterizations are then used to calculate the AMOC, we

see a good resemblance with the AMOC directly from VEROS shown in fig. 14. We see

a strong positive cell going from a couple meters depth down to the bottom, in both the

AMOC calculated from the closure and the AMOC from VEROS. Both cells do also reach

Figure 13: The three parameterizations from the B&E (2011) closure for the 1 deg model

35
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Figure 14: The overturning calculated from the closure and the overturning from VEROS for the 1

deg model

the northern boundary, where they both strengthen towards to bottom of the ocean. The big

difference between the two is at around 55 degrees north, where the calculated cell weakens

drastically, however it is still positive. This is due to the fact that the negative bottom cell in

∆pb is wider than the positive bottom cell in ∆pi. However the cell is still positive in this

section, so it can be seen as one large cell in stead of two, meaning a very good resemblance

between the AMOC from the closure and the AMOC from VEROS for coarse resolution.

One thing we need to chose is the tuning parameters. We use 1 and 1.5 for γ1 and γ2

respectively. This matches good with the values found in the B&E (2011) paper of 1.2 and 1.7.

These tuning parameters can roughly be seen as tuning the strength of the parameterizations

∆pi and ∆pb respectively. Meaning when you increase γ1 you also increase ∆pi and in turn

the AMOC will look more like this parameterization. Now for the coarse resolution we were

able to get good results using tuning parameterization very similar to the ones found in

B&E (2011). This was however not the case for the high resolution runs. As will be describe

below, the ∆pi was a good match and we therefore kept the tuning parameter of 1, however
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Figure 15: The three parameterizations from the B&E (2011) closure for the 1/6 deg model

because the ∆pb parameterization change so much, we needed to minimize its impact on the

AMOC while still keeping it relevant, and landed on a value of 0.2 for γ2.

When looking at the eddy resolving models, the ∆pi and uδ parameterizations match well

with B&E (2011) and the results found from the coarse resolution run as seen in fig 15.

However there is a large discrepancy in the ∆pb parameterization. In all high resolution

runs the lower negative cell is dominating most of the north Atlantic. This means that the

gradient between the interior and boundary pressure fields are not well balanced. This large

negative cell offsets the AMOC. The cell in the coarse resolution made sure the AMOC was

not bottom intensified, however in these high resolution runs, it more or less destroys the

AMOC, as shown in fig. 16. As we have turned the tuning parameter down for the ∆pb to try

and mitigate the damage and to make sure it does not completely remove the positive lower

cell seen in the ∆pi parameterization, we only see a smaller, bottom intensified northern

AMOC cell for all of the high resolution cells.
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Figure 16: The overturning calculated from the closure and the overturning from VEROS for the 1/6

deg model
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The B&E (2011) closure uses two coupled zonally averaged models and are therefore much

faster to evolve in time than a expensive three dimensional one. We have shown that in

coarse resolution this 2.5 dimensional model is a good substitute, and you are able to recreate

the AMOC from the Closure. We do see some differences, however the strength and form

of the AMOC cell are mostly the same. We also see that in coarse resolution you can safely

ignore the nonlinearities. You do need to define tuning parameters for this closure however.

We see that for a coarse resolution models tuning parameters around unity (1 and 1.5) does

recreate the AMOC nicely.

Now for the high resolution models we do see large discrepancies between the AMOC found

from the closure and the AMOC directly from VEROS. As stated earlier this is largely due to

the parameterization ∆pb, which have a large negative cell for most of the north Atlantic.

This indicates that the pressure (and in turn density) gradient between the two boxes are far

to large, and uniform throughout the water column. From this we can not recommend using

this simplified version of the B&E (2011) closure for eddy resolving models. However if

one were to include the non linear terms for the calculation, we expect that the result would

improve greatly, as we see the closure does reproduce the AMOC for the coarse resolution

model.

We would therefore recommend the B&E (2011) closure as a faster prognostic model as it

39
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is 2.5 dimensional for coarse resolution, where you can safely ignore the nonlinearities for

modeling the AMOC. For eddy resolving models we expect the closure to work well if the

nonlinearities are included, but we can not show this. We however see that the closure does

not work for high resolution models when these terms are ignored.



Part V
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I N T R O D U C T I O N A N D T H E O R Y

The current relation between the strength of the AMOC and the buoyancy forcings, has it

fair share of problems as shown earlier. We will in this section propose a new closure to get a

relation, broadly following the steps of Bryan 87, but without the assumption of switching

the derivative. We have also tested the B&E (2011) closure, and we see that, at least for coarse

resolution, it recreates the AMOC well from the density field. We therefore started going

from this closure. However after multiple attempts at closing a simplified version of the B&E

(2011) closure we found that this was not possible (See appendix closures for further detail).

Nevertheless This new closure will take its starting point in the zonal splitting of the ocean

as proposed in B&E (2011). We again start from the geostrophic balance, specifically for the

boundary box:

f vb =
1
ρ0

∂p
∂x

(49)

f
∂vb

∂z
= − g

ρ0

∂ρ

∂x
(50)

We have rewritten to the thermal wind relation using the hydrostatic relation. We then do

scaling of the equation:

f
Vb

D
=

g
ρ0

ρb − ρi

B
=

g∆xρ

ρ0B
(51)

Where D is the layer height, B is the width of the boundary layer, Vb is the meridional flow in

the boundary layer, ρb is the density in the boundary and ρi is the density in the interior. Here
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we make the assumption that in the abyssal layer all water going south in the north Atlantic

is in the boundary layer, and as in the Stommel Arons model all the water going north is

in the interior. Going on this assumption we know that all southward going flow is made

and submerged in the polar region and we can therefore say that ρb = ρpole. This means

we can find the density in the boundary directly from atmospheric boundary conditions.

Now using the Stommel Arons model we know that the flow going north throughout the

interior is the water originally submerged in the polar region. We now assume that the most

important and dominating process affecting the density is diffusion. We therefore propose

the simple parameterization:

ρi = ρpole −
∆zρ

D
· κT · ∆t (52)

Where κT is the vertical diffusivity, ∆t is the time scale of the density modification and ∆zρ is

the vertical density difference. Now we know the abyssal density is the water submerged at

the polar region. The upper surface water is equal to the upwelling in the tropics. We can

therefore make the following relation:

∆zρ = ρsur f ace − ρabyssal = ρtropic − ρpole = ∆yρ (53)

As we see, this way we can get the meridional density difference sought after in Bryan (1987),

without making the desperate change in density gradient. Inserting this:

Vb · B =
gD
f ρ0

(ρpole − (ρpole −
∆yρ

D
· κT · ∆t)) (54)

Vb · B =
gκT

f ρ0
∆yρ · ∆tVb · B =

gκT L
f ρ0Vi

∆yρ (55)

Here we define the time scale of the density modification simply as the meridional length

over the interior flow velocity. To find a relation for the interior flow velocity we use Munk’s
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advection-diffusion balance for temperature and the Sverdrup balance (we do not use mass

conservation as in Bryan (1987), see appendix closures):

w
∂T
∂z

= κT
∂2T
∂z2 → w =

κT

D
(56)

βvi = f
∂w
∂z

→ βVi = f
w
d

(57)

Vi =
f κT

βD2 (58)

This is very close to the relation found in Bryan (1987), when you see f /β as a length scale.

With this relation, we can find a relation for the layer depth, by utilizing the assumption of

all the flow going south in the boundary is going north in the interior:

Vi · L = Vb · B (59)

f κT L
βD2 =

gκT L
f ρ0Vi

∆yρ (60)

f
βD2 =

g∆yρ

f ρ0

βD2

f κT
(61)

D4 =
f 3

β2
ρ0κT

g∆yρ
(62)

With this we can find a relation for the overturning strength:

Φ = Vb · B · (H − D) = Vi · L · (H − D) = Vi · L · H · (1 − D
H
) (63)

Φ =
f κT

βD2 · L · H · (1 − D
H
) (64)

Φ =
f
β

κT · L · H · (β2

f 3
g∆yρ

ρ0κT
)1/2 · (1 − D

H
) (65)

Φ = (
gL2H2

f ρ0
)1/2 · κ1/2

T · ∆yρ1/2 (66)

Where H is the total water column height and L is the meridional length. We end up with a

relation close to that of Bryan (1987), however we end up with a squared relation instead of

the cubic relation found in the paper. We also assume that D << H.

We now have a dynamically consistent, semi empirical (due to the Munk relation) relation

between the AMOC strength and the buoyancy forcing. This would be a big improvement

on the relation found in Bryan (1987), as we here do not use the very loose and dynamically



I N T R O D U C T I O N A N D T H E O R Y 45

inconsistent assumption of changing the zonal density gradient to meridional. In this section

we want to check how well this new fit holds up, similarly to what was done in section one.

We want to use the buoyancy gradient as done in section one, however we also want to

check the relation for the vertical diffusivity as done in Bryan (1987).
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We will be using the already described coarse resolution runs and the eddy resolving runs,

to test the relation between the AMOC and the buoyancy forcing as done in section three.

However we will also be using the vertical diffusivity and see how the relation between this

and the AMOC strength holds up. As shown in Bryan (1987), a change in vertical diffusivity

will lead to a large difference in AMOC, and we will therefore, hopefully, be able to take a

closer look at the difference between this new fit and the old one.

We will be running an additional four models based on the coarse resolution run with no

wind, a strong horizontal friction with an R value of 100 and a salinity forcing of 38. This is

chosen due to the numerical stability and the strong overturning. The vertical diffusivity has

so far been set to 2 · 10−5m2/s. We will be making large changes, factors of ten, as we want

to see a difference between a cubic (2/3 will be called cubic for convenience) and squared

function. We therefore will use the values sown in table. 4. k1 is then the model already

described earlier.
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Name κT [m2s−1]

k001 2 · 10−7

k01 2 · 10−6

k1 2 · 10−5

k10 2 · 10−4

k100 2 · 10−3

Table 4: Vertical diffusivity values
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The data we will fit the new closure to is the same as used in section one, and how it is defined

and collected is described in that section. We test the relation of AMOC = a · ∆b1/2 + b. As

can be seen in fig. 17 the new fit is almost identical to the previous relation. Again we see

that for the lowest R values, the fit is not great, but it does capture the general trend of the

data. We also see that for the other R values, the fit is a good match for the data. for a more

descriptive analysis of the fit against the data, see section one as, in this interval at least, the

new fit is identical to the old fit.

Nevertheless since the two fits are different polynomials, the parameters are different as

seen in fig. 18. We see that a general shift upwards is the case for both parameters going

from the cubic to the squared function. This can however be explain as the constants in the

relation are different. Again we also see the windstress having a additive effect. In fig. 19 we

see that the eddy resolving model is no different and the fit captures this well to.

Now a cubic and a squared function are quite similar when the interval is not to large, as we

can see here, we would therefore like to have some data with a higher buoyancy difference.

We could do this by increasing the salinity forcing to very extreme heights, however we

instead choose to do this by analysing another component of the AMOC relation. As shown

in eq. 65 we do also find the vertical diffusivity to have a squared relation with the AMOC

instead of the cubic relation found in Bryan (1987). This parameter was also the main value
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Figure 17: Meridional overturning circulation plotted against the buoyancy forcing for the model

runs of w3

Figure 18: fitting parameters for the two closures. Stars represent the new closure
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Figure 19: Meridional overturning circulation plotted against the buoyancy forcing for the model

runs of w1, including the eddy resolving models

studied in Bryan (1987), and we therefore chose this. As stated we changed the diffusivity in

orders of ten to capture a larger interval.

In fig. 20 we have both closures fitted against the data with a logarithmic x-scale to capture

the changes. We see that both closures does capture the general trend and even captures

the large rise going towards a increase of 100. There is a unexplained dip at around 2 · 10−4

which is not expected in either closure, which throws both models off, however both models

does fit the straightness of the first couple of data points quite well, and both expect the

large rise. To quantitative this a bit more we do a simple χ2 goodness-of-fit test. The cubic

and squared functions have a χ2 value of 1.8 and 2.76 respectively. With three degrees of

freedom, they have a χ2 probability of 0.61 and 0.43 respectively. From this, we can say that

both closures do fit the data very well. However due to the dip we can not definitively say

that the old closure is better, as it captures this dip slightly better, as this dip is may be a

modelling error.
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Figure 20: Meridonal overturning circulation plotted against the vertical diffusivity
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D I S C U S S I O N

We have showed a different way to close the system and get a relation for the AMOC

based on buoyancy forcing. This new closure does not use the desperate assumption of

switching the gradient in the thermal wind relation as done in Bryan (1987). We instead find

a dynamically consistent model relation based on physical properties, and end up with a

relation close to that of Bryan (1987). We find a squared relation between the strength of the

AMOC and the meridional buoyancy gradient. As shown this relation works just as well

as the old closure on this set of data (at least in the interval used). This is due to the two

polynomials not being very different over smaller intervals. From this we can also assume

the Buoyancy forcing and the southern ocean wind stress to be in a superposition as for the

old closure. Now this result in it self would be good, as we show a relation that works just as

well as the old, however without the desperate assumption. Nevertheless we also look into

how the vertical diffusivity affects the AMOC as this is also a squared relation in our closure

and a cubic relation in Bryan (1987). Here we do a large interval of changes in factors of 10 to

actually see a difference in the two polynomials. We see that the old closure does capture the

data slightly better for this parameter, however this is possible due to the unexplained dip.

Both closure do however capture the data well and both have a good χ2 probability. From

this we can argue the new fit to be a good substitute for the old Closure, as it is based on

dynamically consistent physics and it captures the model runs to the same level of precision.
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S U M M A R Y

In the first section we looked at the Stommel box model closure found in Bryan (1987) and

tested how well the cubic relation found in the paper between the AMOC strength and the

meridional buoyancy gradient. We used G&L (2003) as a benchmark and made use of their

parameter R. We found the relation to match the model runs for most used R values, however

we did see that for very low R values the fit was not great. In G&L (2003) they conclude

that for low R values the relation should not hold. We do not believe we can support this

claim, as we saw the relation describe the general trend of the data for very low R values

and we say it match the data quite well for low R values. We speculated that this might

be due to numerical friction however. We therefore also tested against a eddy resolving

model with a low R parameter, where we also saw the relation hold. We therefore do not

support this claim from G&L (2003). The second point that was made in the paper, was

that southern ocean wind stress strengthened the relationship between the AMOC and the

buoyancy forcing. We did not see this for higher R values (from around one and up) as the

relation was already good with no southern ocean wind stress. We do however see the fit

follow the data slightly better for very low R value, but we do not believe we can support

the claim based only on this. Nevertheless we did find that the wind stress was in a super

position with the buoyancy forcing.

In the second section we looked into the dynamically consistent closure described in B&E
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(2011). We found a relation for the AMOC from the density field, by ignoring non linear

terms and using the parameterizations described in the paper. We found this closure to

work well for coarse resolution models, where we were able to recreate most of the structure

and strength of the AMOC. This was however not the case for the eddy resolving models,

were the zonal density difference were to strong and negative. We speculate that this is due

to the negligence of the non linear terms. We do therefore still believe that the B&E (2011)

closure is a good basis for a faster and dynamically consistent zonally averaged model, as

the parameterization creates two coupled two dimensional models.

In the last section we formulated a new closure close to that from Bryan (1987). We do

however not make the gradient change made in Bryan (1987), and we therefore end up with

a dynamically consistent closure. The closure gives a squared relation between the AMOC

strength and the buoyancy forcing. We compared this to the data the same way as done in

section one, and found the two fits to be identical. To see if there was any different, we also

tested the relation between the AMOC and the vertical diffusivity as the relation is the same

as for the buoyancy forcing. Here we could use a larger interval. Doing this we found the

old closure to fit the data slightly better, however both closures followed the data very well

with a good χ2 probability. We therefore concluded this closure to be a better general choice

as it is based in physical properties instead of the desperate gradient change, and the results

we found suggested the relation to be as precise.
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G O A L S A N D A N S W E R S

The main objective of this thesis is to describe the stratification of the abyssal ocean from

atmospheric forcings. We quantified this by trying to describe the AMOC as this is a big

part of the THC. The AMOC describes the overturning and therefore the stratification in

the North Atlantic. The AMOC is density driven with down welling in the arctic region,

and up welling in the tropical region. What drives the up welling is not agreed upon. We

therefore wanted to test how well the Stommel Box model closure works. In Bryan (1987) a

relation for the strength of the AMOC was defined, and we wanted to test how well it works

for different horizontal friction. We found that the closure was generally a good description.

However we would like to find a different closure for the strength of the AMOC without

the assumption that you can change the density gradient in the thermal wind relation from

zonally to meridionally. We found a new closure on section three that does not use this

change and instead uses physical properties. This means this new closure is dynamically

consistent compared to the old. We find this new relation to work just as well for describing

the relation between the AMOC strength and the buoyancy gradient. To see a different we

also checked the relation between the AMOC strength and the vertical diffusivity. From

this we therefore have a dynamically consistent relation that describes the AMOC strength

from the atmospheric buoyancy forcing. We also find the windstress to be in a superposition
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with the buoyancy forcing. To describe the structure of the AMOC, we find the B&E (2011)

closure to be a good choice for coarse resolution models.
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P R O B L E M S

Lastly we would like to point out some of the problems still present. Firstly we will talk

about the B&E (2011) closure for the 2.5 dimensional model. We found that this closure can

be used to recreate the AMOC from the density field and the zonal velocity field by ignoring

the non linearities. Now firstly this is still a prognostic model and need to evolve in time.

As can be seen in the appendix we tried solving the closure using the parameterization and

ignoring the non linear terms, however the system could not be closed due to scaling of

the mass conservation in three dimensions. We also see that this closure only recreates the

structure of the AMOC for coarse resolution models and not eddy resolving models. We

expect this is due to the non linear terms being neglected. Lastly this closure also need to

arbitrary tuning parameters.

Secondly for the new closure and new relation for the AMOC strength, we do still make some

assumptions. Firstly the model still uses the empirical Munk’s equation, making the closure

quasi-empirical and not entirely based on theory. There are other assumption, however we

believe these to be founded in physical properties. However we do still see the divergence

from this closure for very low R values. This would need to be studied more in depth, and

with eddy resolving models to make sure that numerical friction does not affect the R value.

Numerical friction is still a worry in our results, even though the eddy resolving models do

agree with the results. To be sure one would need to do the very low R value runs in high
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resolution as well.

We also see a stranger dip in the vertical diffusivity runs, which we currently can not explain.
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C O N C L U S I O N
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C O N C L U S I O N

In this thesis we have outline some of the problems with the current descriptions of the THC.

The drive for the tropical up welling is still up for debate and one of the current solutions is

the Stommel box model closure and the relationship between the AMOC and the buoyancy

forcings as described in Bryan (1987). This model is dynamically inconsistent and another

solution based on theory is desirable. However we showed that this Closure does still hold,

even for small horizontal frictions, however it does not work great for very small values. we

then looked into using the B&E (2011) closure to solve this problem, but did not find a way

to close the system. Nevertheless this closure is great for a fast prognostic 2.5 dimensional

model of the AMOC, for coarse resolution models. Lastly we looked into a new closure

based on the zonal split of the ocean done in B&E (2011). We found that using this, and

some other assumptions, one could get a dynamically consistent relationship between the

AMOC and the buoyancy forcing. We found this relationship to hold as well as the old one.

However when looking at the relationship between the AMOC and the vertical diffusivity,

this old closure is slightly better, but the results needs to be taken with reservation due to the

dip. We also found the wind stress to be in a superposition with the buoyancy forcing. We

therefore conclude that this new closure would be a better choice, as it does not make use of

the radical gradient change assumption done in Bryan (1987), and it matches the data just as

well for the buoyancy gradient, and in fact better for the vertical diffusivity.
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F A I L E D C L O S U R E S

We start from the zonally averaged momentum equations defined in equation 27 ans 28 in

Brüggemann and Eden:

∂ūα

∂t
− f v̄α = − 1

ρ0

∆pα

Bα
+ F̄u

α (67)

∂v̄α

∂t
+ f ūα = − 1

ρ0

∂ p̄α

∂y
+ F̄v

α (68)

Where the α subscript can be either b or i, describing the boundary box and interior box

respectively. We now firstly assume the geostrophic balance (we also assume no windstress):

f v̄α =
1
ρ0

∆pα

Bα
(69)

f ūα = − 1
ρ0

∂ p̄α

∂y
(70)

We then take the vertical derivative:

f
∂v̄α

∂z
=

1
ρ0Bα

∂∆pα

∂z
(71)

f
∂ūα

∂z
= − 1

ρ0

∂

∂y
(

∂ p̄α

∂z
) (72)

In eq (72) n we can now simply insert the hydrostatic equation:

f
∂ūα

∂z
=

g
ρ0

∂ρ̄α

∂y
(73)

63



F A I L E D C L O S U R E S 64

For the zonal equation we need to handle each box separately. We start with the boundary

box, where the following parameterization is defined in equation 31 in Brüggemann and

Eden:

∆pb = γ2( p̄i − p̄b) (74)

Where γ2 is a tuning parameter. We insert this into the zonal equation above and again use

hydrostatic:

f
∂v̄b

∂z
=

γ2

ρ0Bb
(

∂ p̄i

∂z
− ∂ p̄b

∂z
) (75)

f
∂v̄b

∂z
= − gγ2

ρ0Bb
∆xρ (76)

Here ∆xρ = ρ̄i − ρ̄b and the x is the remind us of the direction of the difference.

We now go to the interior where we in equation 31 in Brüggemann and Eden have the

following parameterization:

∆pi = ρ0∆pi(y = 0) + ρ0γ1

∫ y

0
f ūbdy′ (77)

Where ∆pi(y = 0) is the interior pressure difference at the equator, and is defined from the

momentum balance at the equator, which is zero in our assumptions. We now insert into our

zonal momentum balance:

f
∂v̄i

∂z
=

γ1

Bi

∂

∂z
(
∫ y

0
f ūbdy′) (78)

f
∂v̄i

∂z
=

γ1

Bi

∫ y

0
f

∂ūb

∂z
dy′ (79)

We now have four equations that we can scale:

f
∂v̄b

∂z
= − gγ2

ρ0Bb
∆xρ → f

Vb

D
= − gγ2

ρ0Bb
∆xρ (80)

f
∂v̄i

∂z
=

γ1

Bi

∫ y

0
f

∂ūb

∂z
dy′ → f

Vi

D
=

γ1

Bi
f

Ub

D
L (81)

f
∂ūb

∂z
=

g
ρ0

∂ρ̄b

∂y
→ f

Ub

D
=

g
ρ0

∆yρb

L
(82)

f
∂ūi

∂z
=

g
ρ0

∂ρ̄i

∂y
→ f

Ui

D
=

g
ρ0

∆yρi

L
(83)
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Here D is the depth, L is the meridonal distance, Bb is the zonal width of the boundary, Bi is

the zonal with of the interior and ∆yρb and ∆yρi is the meridonal difference of the density in

the boundary and interior respectively.

We now want to eliminate D, and for this we use the density equation described in equation

29 and the continuity equation described in equation 30 in Brüggemann and Eden:

∂b̄α

∂t
+

∂b̄α

∂y
v̄α +

∂w̄α

∂z
b̄α =

∂κα

∂z
∂b̄α

∂z
− εαuδ

b̄α

Bα
(84)

εα
uδ

Bα
+

∂v̄α

∂y
+

∂w̄α

∂z
= 0 (85)

Where εα is 1 for b and -1 for i, b̄α is the buoyancy and uδ is the last parameterization defined

as:

uδ = γ1ūb (86)

We now simplify the density equation:

∂w̄α

∂z
b̄α =

∂κα

∂z
∂b̄α

∂z
(87)

We then scale both equations:

∂w̄α

∂z
b̄α =

∂κα

∂z
∂b̄α

∂z
→ Wα

D
bα =

κα

D
bα

D
(88)

Wα =
κα

D
(89)

εα
uδ

Bα
+

∂v̄α

∂y
+

∂w̄α

∂z
= 0 → εα

Uδ

Bα
+

Vα

L
+

Wα

D
= 0 (90)

We then merge these two equations and the parameterization. We also decide to look at the

boundary box (meaning α will be b) as the parameterization uses the zonal velocity from

this box:

−κb

D
=

UδD
Bb

+
VbD

L
(91)

D2 = − κbBbL
γ1UbL + VbBb

(92)
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We then insert the scaled momentum equations:

D2 = − κbBbL

γ1(
gD
ρ0 f

∆yρb
L )L + (− gγ2D

ρ0Bb f ∆xρ)Bb
(93)

D3 =
f ρ0LBbκb

g(γ2∆xρ − γ1∆yρb)
(94)

We now have everything we need, and can find the AMOC, which we define as the meridonal

flux:

Φ = DBV (95)

We here use equation 10 from Brüggemann and Eden:

Φ = D(Bbv̄b + Biv̄i) (96)

We start by inserting our scaled momentum equations:

Φ = D(Bi
γ1L
Bi

Ub − Bb
γ2gD
f ρ0Bb

∆xρ) (97)

Φ = D(γ1L
gD

f ρ0L
∆yρb − γ2

gD
f ρ0

∆xρ) (98)

Φ =
g

f ρ0
D2(γ1∆yρb − γ2∆xρ) (99)

We now lastly insert our equation for D:

Φ =
g

f ρ0
(

f ρ0LBbκb

g(γ2∆xρ − γ1∆yρb)
)

2
3 (γ1∆yρb − γ2∆xρ) (100)

Φ = (
g

f ρ0
)

1
3 (LBbκb)

2
3
(γ1∆yρb − γ2∆xρ)

(γ2∆xρ − γ1∆yρb)
2
3

(101)

Φ = −(
gκ2

b B2
b L2

f ρ0
)

1
3 (γ2∆xρ − γ1∆yρb)

1
3 (102)

The problem with this closure is the scaling of the three dimensional mass conservation. The

scaling done in this closure does not hold, and we can therefore not close the set of equations

from the B&E paper. We have also tried using the Sverdrup relation, however the set could

still not be closed



23

F I G U R E S

Figure 21: AMOC strength plotted against the buoyancy forcing for the model runs of w1
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Figure 22: AMOC strength plotted against the buoyancy forcing for the model runs of w2
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Figure 23: AMOC strength plotted against the buoyancy forcing for the model runs of w3
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Figure 24: The overturning calculated from the closure and the overturning from VEROS for the 1/6

deg model with no salinity forcing

Figure 25: The overturning calculated from the closure and the overturning from VEROS for the 1/6

deg model with 36 salinity forcing
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Figure 26: The overturning calculated from the closure and the overturning from VEROS for the 1/6

deg model with 37 salinity forcing

Figure 27: The overturning calculated from the closure and the overturning from VEROS for the 1/6

deg model with 38 salinity forcing
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