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Preface

1.1 Abstract

This thesis studies the potential/reach for the Proposed IceCube Next Generation Up-
grade (PINGU) with respect to the determination of the octant of the atmospheric mixing
angle 6o3. In the neutrino sector, this is one of the still unknown parameters which have
to be determined by future experiments. Present measurements of 63 are not precise
enough to establish whether this mixing is maximal or not. If it is non-maximal, there
are two solutions to the neutrino oscillation data in that 823 can either be below or above
45 degrees, i.e. it lies in the first or second octant.

From Monte Carlo simulations the event rates of neutrinos in PINGU were calculated
and a chi square fit was done, assuming the theoretical predicted event rates were fitted in
the wrong octant of the atmospheric angle. This provides a way to constrain this mixing
parameter. In turn this can potentially differentiate among various flavour symmetries
which can underly the neutrino mixing matrix and thereby the oscillation parameters.
By implementing multiple flavour symmetries in the simulations, a comparison of the
sensitivities to the various models could be made. This in priciple provides a way to
experimentally determine the flavour symmetry for neutrinos.
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Introduction

The neutrino was proposed by W. Pauli in 1930 [1] and first detected by C. Cowan and F.
Reines in 1956 [2]. Later the solar neutrino deficit [3], the atmospheric neutrino anomaly
[4], and other neutrino oscillation results [5] have revealed that the neutrino masses are
non-zero. However essential questions concerning the absolute scale of their masses, their
type (whether Dirac or Majorana), etc. still remain unanswered.

Besides the reactor [6], Gallium [[7], [8]] and a few other neutrino anomalies, the
available neutrino data can be explained within the phenomenological model of three
light neutrinos with two mass splittings (squared mass differences): Amg; ~ 107° eV?
and |Amgi| ~ 1072 eV? [5]. We call it the conventional neutrino theory (CNT). In case
of Majorana (Dirac) neutrinos the masses and mixings are generically parameterized in
CNT by 9 (7) free parameters: 3 masses, 3 mixing angles and 3 phases (1 phase).

The latest set of data from the reactor-based experiments Daya Bay [9], RENO [10]
and Double Chooz [11] have confirmed beyond all doubt what the accelerator-based ex-
periments T2K [12] and MINOS [13] had indicated earlier - namely the value of the
neutrino mixing parameter sin?(2613) ~ 0.1. The implications of this discovery has far
reaching implications in neutrino physics. On the phenomenological front, this opens up
the possibility for the determination of the two missing links in the neutrino oscillation
physics, namely (i) the magnitude of CP violation in the lepton sector, and (ii) the sign
of Am%l, i.e. the neutrino ’mass hierarchy’. Next generation neutrino oscillation exper-
iments are being proposed to elucidate these two remaining issues. The optimal design
of such experiments will determine just how well they can measure CP violation and the
neutrino mass hierarchy, given that we now know that 613 is much larger than previously
thought. The fact that the sensitivity of the proposed experiment to one of these param-
eters could be restricted by the uncertainty of the other parameter makes the designing
of the experiments all the more challenging.

Of the two unknowns mentioned above, measurement of CP violation is trickier for a
variety of reasons. CP violation in neutrino oscillations is necessarily a sub-leading effect
and is expected to be in the 6;3-driven appearance channel, P(v, — v.). Indeed, the
CP phase dcp would be unphysical and hard to determine if 613 were zero. However, the
fact that 013 has turned to be relatively large might prove counter-productive for the CP
violation searches. Because CP violation effects in the appearance channel become even
more sub-dominant compared to the main CP independent 63 driven oscillations for such
large values of 813. This makes the latter an irreducible background, thereby decreasing
thereby the sensitivity of the experiment for CP searches [14]. The uncertainty regarding
the neutrino mass hierarchy introduces another limitation on these experiments through
the d¢p-mass hierarchy parameter degeneracy, further deteriorating the sensitivity of the
experiment to the CP phase.

Measurements of the neutrino mass hierarchy on the other hand certainly becomes
easier as the value of 613 increases. This parameter is expected to be measured using
the effects of propagation through the Earth on neutrino oscillations. The Earth matter



effect increases monotonically with the value of 613, making their detection in terrestrial
experiments easier for larger 613. The atmospheric neutrino experiments could play a
crucial role in the field of neutrino physics in this regard. The possibility of measuring
the neutrino mass hierarchy in atmospheric neutrino experiments has been widely consid-
ered in the literature. Upcoming detectors for atmospheric neutrinos include the magne-
tized Iron CALorimeter detector at the India-based Neutrino Observatory (ICALQINO),
the megaton-class water Cherenkov detectors such as the proposed Hyper-Kamiokande
project, large liquid argon detectors, as well as the giant ice detector PINGU (Proposed
IceCube Next Generation Upgrade).

PINGU [15] has been proposed as a low energy extension of the already existing and
successfully running IceCube detector. While the energy threshold of the full IceCube
detector is 100 GeV, PINGU is envisioned to have an energy threshold of a few GeV,
thereby allowing it to function as a low energy atmospheric neutrino experiment, with an
effective fiducial mass in the multi-megaton range. The plan is to increase the number of
strings, increasing the optical module density, hence increasing the photo-coverage of the
region. This will reduce the energy threshold for the detection of various particles. The
large fiducial mass gives PINGU an edge over other competitive experiments due to the
statistical amount of neutrino events.

Amongst the other issues in neutrino physics that remains to be probed, is the deter-
mination of the octant of A3 mixing angle, in case it is different from maximal. Various
ways have been suggested in the literature to determine the octant of 693 in the current
and next generation neutrino oscillation experiments. One way is to combine the data
from reactor experiments with the v.-appearance data from conventional accelerator ex-
periments [16]. The reactor experiments return a pure measurement of the mixing angle
sin2(2913), while the v.-appearance data from conventional accelerator experiments mea-
sure the combination sin?(f23) sin?(2613), at leading order. Using this combined analysis,
one could then extract information on the octant of 6s3.

Another approach studied in the literature has been to combine the v.-appearance
channel in long baseline experiments with the v,-disappearance channel [[17], [18]]. The
upshot of this reasoning is that the best-fit 053 preferred by the appearance channel is
different from the best-fit #o3 favored by the disappearance channel. This generates a
synergy between the two data sets in the long baseline experiment, leading to an octant
sensitivity.

The third way is to use Am3, dependent terms in the oscillation probability, which
depends on either sin?(fa3) or cos?(fa3), leading to fa3 octant sensitivity. This was shown
in the context of sub-GeV ve-events from atmospheric neutrinos at a water Cherenkov
experiment like Super-Kamiokande where the Am2; driven oscillatory terms brings in an
octant of 03 dependence in the low energy electron event sample. Finally, one can use
the octant of 623 dependence in the Earth matter effects in the P(v, — v,) channel to
get a measure on this parameter. In particular, the issue of determining the octant of 63
was briefly discussed in [19].

Disclaimer: I have used Mathematica to plot various figures. Mathematica has the ten-
dency to squeeze words together in the plots as I am exporting them to pdf causing
spelling errors.



The Standard Model of particle physics

An important feature of the Standard Model (SM) is that "it works™: It is consistent with,
or verified by, all available data, with only a few compelling evidence for physics beyond.
Secondly, it is a unified description, in terms of "gauge theories” of all the interactions of
known particles (except gravity). The joint description of the electromagnetic and the
weak interaction by a single theory certainly is one of major achievements of the physical
science in this century. The model proposed by Glashow, Salam and Weinberg in the
middle sixties has been extensively tested during the last 40 years. In this chapter the basic
features of the current Standard Model of elementary particle physics are discussed. As
the subject concerns neutrinos, the main focus of this chapter will consider the electroweak
interaction.

3.1 The V-A theory of the weak interaction

Historically, the first theoretical description of the weak interaction as an explanation of
the S-decay was given in the classical paper by Fermi [20]. Nowadays, we rate this as a low-
energy limit of the Glashow-Weinberg-Salam (GWS) model but it is still valid to describe
most of the weak processes. Fermi chose an ansatz quite similar to that in quantum
electrodynamics (QED). In QED, the interaction of a proton with an electromagnetic
field A, is described by a Hamiltonian

Her = e/d?’xp(m)’y“p(x)Au(x) (3.1.1)

where p(x) is the Dirac field-operator of the proton. In analogy, Fermi introduced an
interaction Hamiltonian for $-decay:

Hy = SF [ Eatplonna)eterm@) + he (3.1.2)

The new fundamental constant G is called the Fermi constant which is determined
experimentally to be Gr = 1.16637(1) - 107° GeV 2. If we stay with a four-fermion
interaction, the following question arises: How many Lorentz-invariant combinations of
the two currents involved can be built? The weak Hamiltonian Hg can be deduced from
the Lagrangian L:

Hg = —/d%c(x) (3.1.3)

The most general Lagrangian for S-decay, which transforms as a scalar under a Lorentz
transformation, is [21]

5
L(x) = Z[gjﬁ(x)Ojn(a:)é(z)Ogy(:c) + g}ﬁ(x)Ojn(x)é(x)O;’yg,y(ﬂs)] + h.c. (3.1.4)
j=1
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Operator Transformation properties(¥;OW¥;) Representation with v matrices

Os (S) scalar 1

Oy (V) vector Y

Or (T) tensor Yu Vv — YV
O4 (A) axial vector YuYs
Op (P) pseudo-scalar Y5

Table 3.1.1: Possible operators and their transformation properties as well as their repre-
sentation.

with g, 93 as arbitrary complex coupling constants and O, O;- as operators. The possible
invariants for the operators O are listed in table 3.1.1. The kind of coupling realized in
Nature was revealed by investigating allowed [-decay transitions. From the absence of
Fierz interference terms, it could be concluded that Fermi transitions are either of S or
V type, while Gamow-Teller transitions could only be due to T or A type operators.
P-type operators do not permit allowed transitions at all. After the discovery of parity
violation, the measurement of electron-neutrino angular correlations in S-decay and the
Goldhaber experiment, it became clear that the combination 7,(1—s5) represented all the
data accurately. This is the (V-A) structure of weak interactions. After losing its leading
role as a tool for probing weak interactions, current investigations of nuclear 8-decay are
used for searches S- and T-type contributions motivated by theories beyond the Standard
Model and searches for a non-vanishing rest mass of the neutrino. Models with charged
Higgs particles, leptoquarks and supersymmetry might lead to such S, T contributions. In
summary, classical 8-decay can be written in the form of two currents J (current-current

coupling) .
L(z) = TgJL Ju (3.1.5)

where the leptonic current is given by (e, v as spinor fields)

Jr = e(x)yu(l = y5)v(z) (3.1.6)
and the hadronic current by (using u,d quarks instead of proton and neutron)
Jug = u(z)y"(1 — vs5)d(z). (3.1.7)

As we go from the quark level to nucleons, eq. 3.1.7 must be rewritten due to renormal-
ization effects in strong interactions as:

Ju = p(x)v"(gv — gavs)n(z) (3.1.8)

The coupling constants G, gy = I3, — 2sin?(0y)Qr and ga = I3, where I3, and Q;
are, respectively, the third component of the weak isospin and the charge of fermions.
Measurements of G in muon decay are in good agreement with those in nuclear 5-decay
and lead to the concept of common current couplings (lepton universality), also justified
in measurements of 7-decays. The total leptonic current is

Jr=Je+J+ Jr (3.1.9)

each of them having the form of eq. 3.1.6. The formalism allows most of the observed weak
interactions to be described. It contains maximal parity violation, lepton universality and
describes charged current interactions. How this picture is modified and embedded in the
current understanding of gauge theories will be discussed next



3.2. GAUGE THEORIES )

3.2 Gauge theories

All modern theories of elementary particles are gauge theories. We will attempt to indi-
cate the fundamental characteristics of such theories without going into the details of a
complete presentation.

3.2.1 The gauge principle

The gauge principle can be explained by the example of classical electrodynamics. It
is based on the Maxwell equations and the electric and magnetic fields - measureable
quantities which can be represented as the components of the field-strength tensor F),, =
O0uA, —0,A,. Here the four-potential A, is given by A, = (¢, A), and the field strengths
are derived from it as F = V¢ — 9;A and B = V x A. If p(t,x) is a well-behaved,
differentiable real function, it can be seen that under a transformation of the potential
such as

¢(t,x) = b(t, z) + Ip(t, ) (3.2.1)

A(t,z) = A(t,z) + Vp(t,x) (3.2.2)

all observable quantities remain invariant. The fixing of ¢ and A to particular values in
order to simplify the equations of motion is called fixzing the gauge. In gauge theories, this
gauge freedom for certain quantities is raised to a fundamental principle. The existence
and structure of interactions is determined by the demand for such gauge-fixable but
physically undetermined quantities. The inner structure of the gauge transformation is
specified through a symmetry group. As mentioned before, symmetries and behavior
under symmetry operations play a crucial role and will be considered next.

3.2.2 Global symmetries

Internal symmetries can be subdivided into discrete and continuous symmetries. We
will concentrate on continuous symmetries. In quantum mechanics a physical state is
described by a wavefunction v (x,t). However, only the modulus squared appears as a
measurable quantity. This means that as well as ¢(x,t) the functions

P (x,t) = Y (x, t) (3.2.3)

are also solutions of the Schrédinger equation, where « is a real (space and time inde-
pendent) function. This is called a global symmetry and relates to the space and time
independence of . Consider the wavefunction of a charged particle such as the electron.
The relativistic equation of motion is the Dirac equation:

(1Y" Oy — m)he(x,t) =0 (3.2.4)
The invariance under the global transformation
Yy () = e, 1) (3.2.5)
where e is a constant (for example, the electric charge) is clear

it e (, t) = e (, 1) (3.2.6)

Y0, e (x, 1) = me" . (z, 1) (3.2.7)
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0L (@, 1) = mui (=, ). (3.28)

Instead of discussing symmetries of the equations of motion, the Lagrangian £ is often
used. The equations of motion of a theory can be derived from the Lagrangian £(¢, 0,¢)
with the help of the principle of least action [22]. For example, consider a real scalar field
¢(x). Its free Lagrangian is:

(0,00"p — m*¢?) (3.2.9)

N

‘C(¢7 au¢) =

From the requirement that the action integral S is stationary
5ﬂﬂ:0wﬂlﬂﬂ:/a¢%@w (3.2.10)

the equations of motion can be obtained

o oL _
“0(0ap) 99
The Lagrangian clearly displays certain symmetries of the theory. In general, it can be

shown that the invariance of the field ¢(x) under certain symmetry transformations results
in the conservation of a four-current:

(3.2.11)

" oL B
&J'_%<&%@w)_o (3.2.12)

This is generally known as Noether’s theorem. Using this expression, time, translation and
rotation invariance imply the conservation of energy, momentum and angular momentum
respectively. We proceed to consider local symmetries, in which « in eq. 3.2.3 is no longer
a constant function but shows a space and time dependence.

3.2.3 Local (=gauge) symmetries

If the requirement for space and time independence of « is dropped, the symmetry becomes
a local symmetry. It is obvious that under transformations such as

Y, (z) = @)y () (3.2.13)

the Dirac equation 3.2.4 does not remain invariant

(70 — m) P (x) = €O [(ir"8, = m)vpe(w) + e(Duar(x) )y e (@)
= e(Opo())y"¢e(x) # 0.

The field ¢ (x) is, therefore, not a solution of the free Dirac equation. If it were possible
to compensate the additional term, the original invariance could be restored. This can
be achieved by introducing a gauge field A, which transforms itself in such a way that
it compensates for the extra term. In order to achieve this, it is necessary to introduce a
covariant derivative D,;:

(3.2.14)

D, =8, —ieA, (3.2.15)

The invariance can be restored if all partial derivatives 0,, are replaced by the covariant
derivative D,. The Dirac equation becomes:

ivFDytpe(x) = ivH(0y — teAp)be(x) = mape(x) (3.2.16)
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If one uses the transformed field ¥, (z), it is easy to see that the original invariance of the
Dirac equation can be restored if the gauge field transforms itself according to:

A, — Ay + 0ua(x) (3.2.17)

The equations 3.2.13 and 3.2.17 describe the transformation of the wavefunction and
the gauge field. They are called gauge transformations. The whole of electrodynamics
can be described in this way as a consequence of the invariance of the Lagrangian L or,
equivalently, the equations of motion under phase transformations eiea(®)  The resulting
conserved quantity is the electric charge, e. The corresponding theory is called quantum
electrodynamics (QED) and, as a result of its enormous success, it has become a paradigm
of a gauge theory.

In the transition to classical physics, the gauge field A, becomes the classical vector
potential of electrodynamics. The gauge field can be associated with the photon, which
takes over the role of an exchange particle. It is found that generally in all gauge theories
the gauge fields have to be massless. This is logical because a photon mass term would
be proportional to m?/AMA”, which is obviously not invariant. Any required masses have
to be built in subsequently. The case discussed here corresponds to the gauge theoretical
treatment of electrodynamcis. Group-theoretically, the multiplication with a phase factor
can be described by a unitary transformation, in this case the U(1) group. It has the unity
operator as generator. The gauge principle can easily be generalized for Abelian gauge
groups, i.e. groups whose generators commute with each other. It becomes somewhat
more complex in the case of non-Abelian groups, as we will see in the next section

3.2.4 Non-Abelian gauge theories (=Yang-Mills theories)

Non-Abelian means that the generators of the groups no longer commute, but are sub-
ject to certain commutator relations which constructs non-Abelian gauge theories. One
example for commutator relations are the Pauli spin matrices o;

04, 05] = 2ioy, (3.2.18)

which act as generators for the SU(2) group. Generally SU(N) groups possess N2 —
1 generators. A representation of the SU(2) group is all unitary 2 x 2 matrices with
determinant +1. Consider the electron and neutrino as an example. Apart from their
electric charge and their mass these two particles behave identically with respect to the
weak interaction, and one can imagine transformations

() = () o

where the transformation can be
Ul(ay,ag,a3) = ei%(“1”1+“2"2+“3"3) = e‘%“(x)". (3.2.20)

The particles are generally arranged in multiplets of the corresponding group (in eq.
3.2.19 they are arranged as doublets). Considering the Dirac equation and substituting
a covariant derivative of the normal derivative by introducing a gauge field W, (z) and a
quantum number g in analogy to eq. 3.2.15

D, =0, + %Wﬂ(az) o (3.2.21)

does not lead to gauge invariance. The gauge field W ,(x) also needs to transform in
addition to the introduction of the covariant derivative to have gauge invariance. However,
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because of the non-commutation of the generators, an additional term results, an effect
which did not appear in the electromagnetic interaction. Only transformations of the
gauge fields as

W, =W, + ;8Ma(x) - W, xa(x) (3.2.22)

supply the desired invariance (note the difference compared with eq. 3.2.17). The non-
commutation of the generators causes the exchange particles to carry 'charge’ themselves
(contrary to the case of the photon, which does not carry electric charge) because of this
additional term. Among other consequences, this results in a self-coupling of the exchange
fields.

3.3 Renormalization

When introducing loops in a quantum field theory, they most likely are divergent and
more importantly, they might not be normalizable. In a renormalizable quantum field
theory, however, an amplitude involving divergent diagrams can get a finite result through
renormalization. The renormalization is done using regulators to obtain the physical
masses and coupling constants, that will not depend on these regulators. The resulting
expression for the amplitude is then finite for the cutoff A — co. In a ¢* theory, the
Lagrangian is defined as:

1 9 1 9.9 Aoy
50—5(8/@) *imoéf) *145 (3.3.1)

We now write mg and A\g as the bare mass and coupling constant, not the values measured
in experiments. Since the theory is invariant under ¢ — —¢, all amplitudes with an odd
number of external legs vanish. The only divergent amplitudes are therefore

(unobservable vacuum energy shift);

~AZ + p?log A + (finite terms);

~log A - (finite terms).

Ignoring the vacuum diagram, these amplitudes contain three infinite constants. Our goal
is to absorb these constants into the three unobservable parameters of the theory: The
bare mass, the bare coupling constant and the field strength. To accomplish this goal,
it is convenient to reformulate the perturbation expansion so that these unobservable
quantities do not appear explicitly in the Feynman rules. First we will eliminate the shift
in the field strength. The exact two-point function has the form

/ QT (@)6(0)Q)e?s = 2

P2 —m2
where m is the physical mass. We can eliminate the awkward residue Z from the equation
by rescaling the field:

+ (terms regular at p* = m?) (3.3.2)

=212, (3.3.3)

This transformation changes the values of correlation functions by a factor of Z~1/2 for
each field. The Lagrangian is much uglier after the rescaling;:

Ao

ZZ%;‘ (3.3.4)

1 1
L= §Z(au¢r)2 - 5m32¢? -
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The bare mass and coupling constant still appear in £, but they can be eliminated as
follows. Define

67=2—1 6p=m%Z —m* 6y =XZ*— )\ (3.3.5)
where m and )\ are the physically measured mass and coupling constant. Then the
Lagrangian becomes:

L= 206 — gmih — 6+ 102000 — Jmdh— 6t (336)
The first three terms now looks like the familiar ¢*-theory Lagrangian, but is written in
terms of the physical mass and coupling. The terms afterwards, known as counterterms,
have absorbed the infinite but unobservable shifts between the bare parameters and the
physical parameters. It is tempting to say that we have "added” these counterterms to the
Lagrangian, but in fact we have merely split each term into two pieces. The definition in
eq. 3.3.5 are not useful unless we give precise definitions of the physical mass and coupling
constant. Equation 3.3.2 defines m? as the location of the pole in the propagator. There
is no obviously best definition of A, but a perfectly good suggestion would be obtained by
setting A equal to the magnitude of the scattering amplitude at zero momentum. Thus
we have the two defining relations:

These equations are called renomarlization conditions. Our new Lagrangian gives a new
set of Feynman rules. The propagator and the first vertex comes from the first few
terms in eq. 3.3.6, and are identical to the old rules except for the appearance of the
physical mass and coupling in place of the bare values. The counterterms give two vertices.
We can use these new Feynman rules to compute any amplitude in ¢* theory. The
procedure is as follows. Compute the desired amplitude as the sum of all possible diagrams
created from the propagator and vertices. The loop integrals in the diagrams will often
diverge, so one must introduce a regulator. The result of this computation will be a
function of the three unknown parameters dz, 0, and ). Adjust (or "renormalize”)
these three parameters as necessary to maintain the renormalization conditions. After
this adjustment, the expression for the amplitude should be finite and independent of
the regulator. To make more sense of the renormalization procedure, let us carry out
explicitly at the one-loop level. First consider the basic two-particle scattering amplitude:

iM(pIPQ “‘)p3p4) =

Yol

If we define p = p; + po, then the second diagram is:
(—i))? / d*k i i ey
= (=N -V 3.3.7
2 (2m)4 k2 —m2 (k + p)2 — m?2 (=iA)" - iV (p7) ( )

Note that p? is equal to the Mandelstam variable s. The next two diagrams are identical,
except that s will be replaced by t and u. The entire amplitude is therefore:

iM = —iXd+ (—iN)2[iV(s) + iV (t) + iV (u)] — idy (3.3.8)
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According to our renormalization conditions, this amplitude should equal —i\ at s = 4m?
and t = u = 0. We must therefore set:

Sy = —\2[V(4m?) + 2V (0)] (3.3.9)

We can compute V(p?) explicitly using dimensional regularization. Introduce a Feyn-
man parameter, shift the integration variable, rotate to Euclidian space and perform the
momentum integral. We obtain

/ / ddk 1
dx
d (k2 4+ 2zk - p + xp? — m?2)?
dde 1
/dx/ C R g p— (¢ =k+xp)

dde 1 L
/ / 4 (2 + (1 — x)p? + m2)2 (% = —il?) (3.3.10)

:_/1d:C 2—d/2) 1
0

2 (4m)4/2  (m2 — z(1 — x)p?)2-4/2
d—4 o 1 L
3272

dz <2 — v 4 log(4m) — log(m? — (1 — x)p2)>

where € = 4 — d. The shift in the coupling constant is therefore:

A2T(2 - d/2) 1 2
O\ = 2WW/0 o <(m2 — (1 — x)dm?)?~4/2 " (m2)2_d/2)

2 1
= 3; 2 / dz (6 + 3 + 3log(47) — log(m® — (1 — x)4%) — 21°g(m2)>
T 0 €

(3.3.11)

These expressions are divergent as d — 4. But if we combine them according to 3.3.8, we
obtain the finite (if rather complicated) result:

iX2 [l m? — x(x — x)s m? — (1 — )t
M = —i\ — ] log (= 7 AP
iM i 322 /o da [og (m2 —xz(1-— x)4m2> +log < m? )

+log <m2 - fr(; = m”)]

To determine §7 and d,, we must compute the two-point function. We define —iM?2(p?)
as the sum of all one-particle-irreducible insertions into the propagator:

Then the full two-point function is given by the geometric series:

(3.3.12)

?
P = m? = ()

(3.3.13)

The renormalization conditions require that the pole in this full propagator occur at
p?> = m? and have residue 1. These two conditions are equivalent, respectively, to:

d
‘pzzmz =0 and 7M2( 2)‘p2:m2 =0 (3.3.14)
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Explicitly, to one-loop order:

L[ d%k
_iM2(p2) — i)\ e ., 9 .
iM=(p®) z)\2 / Or)d i —m? +i(p“dz — om)

3.3.15
T2 (4m)dz (meyimaz WP 02T 0
Since the first term is independent of p?, the result is rather trivial: Setting
A I'l1—d/2
0z =0 and 6, = ( /2) (3.3.16)

2(4m)d/2 (m2)1-d/2

yields M?(p?) = 0 for all p?, satisfying both of the renormalization conditions. The
vanishing of 6 at one-loop order is a special feature of ¢* theory, which does not occur in
more general theories of scalar fields. Yukawa theory gives an explicit example of a one-
loop correction for which the counterterm is required. Renormalization has presented a
constraint to the Standard Model, which does not allow non-renormalizable interactions.
However, when expanding the Standard Model, thus often being forced to introduce these
non-renormalizable interactions, a new approach has to be used, namely an effective field
theory approach.

3.4 Effective field theory

When a field theory is non-renormalizable, we have to make use of effective field theory
approach. When the Standard Model is extended to describe new physics, higher dimen-
sional operators are occasionally introduced and thus bring with them non-renormalizability.
To generate neutrino masses, a dimension 5 operator is commonly used, see eq. 4.5.1.
However, the effective field theory approach takes care of this. It is a realistic theory used
to describe physics at accessible energies, being a low energy approximation that includes
an infinite number of non-renormalizable interactions. We make use of the Wilsonian ap-
proach to illustrate how a theory becomes effective. In this functional integral approach,
the degrees of freedom of the quantum fields are variables of the integration. In a ¢*
theory, the generating functional, that is the partition function, is:

Z[J] _ /D¢eif[£+J¢] — (H/d¢(k)> 6z‘f[[l+Jd>] (3'4‘1)
k

Imposing a sharp ultraviolet cutoff A, we restrict the number of the integration variables.
That is, we integrate only over ¢(k) with |k| < A, and set ¢(k) = 0 for |k| > A. This
modification of the functional integral suggests a method for neglecting the influence of
the quantum fluctuations at very short distances or very large momenta. The cutoff is
imposed in Euclidian space to avoid the light-like very large momenta with very small
|k|2. After the cutoff has been applied, and .J = 0, the partition function is:

217 =0= [ Doy e |- [ate|j@u0r + i+ 4ot | Gaz)

In the Lagrangian of eq. 3.4.2, m and X\ are the bare parameters, and so there are no
counterterms and also (9,4)% = ( %)2 + (Ag)?. We now divide the integration variables
¢(k) into two groups. Choose a fraction b < 1. The variables ¢(k) with bA < |k| < A
are the high-momentum degrees of freedom that we will integrate over. To label these
degrees of freedom, let us define:

305 — { <¢E)k:) if A < |k| < A>} (3.4.3)

otherwise
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Next, let us define a new scalar ¢(k), which is identical to the old for [k| < bA and zero
for |k| > bA. Then we can replace the old ¢ in the Lagrangian with ¢ + ¢, and rewrite
eq. 3.4.2 as:

= [ 26 [ Doy (- [t 004907+ g+ d7 + o+ Y]
:/que—fﬁw)/péexp <_/ddx B<8M£)2+;m2$2+)‘<é¢3q§+1¢2$2+é¢$3+i!q?#)])

(3.4.4)
In the final expression we have gathered all terms independent of ¢ into £(¢). Note that
quadratic terms of the form ¢¢ vanish, since Fourier components of different wavelengths

are orthogonal. After the integration over ¢ is performed, we have:

Z = / [D¢lya exp <— / d%ﬁeﬁ> (3.4.5)

This new effective Lagrangian, which contains only momenta below bA, can be found
carrying out the integrals over ¢. We will see that Leg(¢) = L(¢) plus corrections propor-
tional to powers of A\. These correction terms compensate for the removal of the large-k
Fourier components gi), by supplying the interactions among the remaining o(k) that were
previously mediated by fluctuations of the gb The integration over d) is done perturba-
tively since m? << A. Then the leading-order term in the portion of the Lagrangian
involving QAﬁ is:

[eo=5 [ EEswmiw (3.4
0 e . .
2 Joa<ikj<a (2m)4
This term leads to a propagator

Do T 6k)0w) _ Loy sasair 1 o) (3.4.7)

(BN = = = (o)

where O(k) = 1 for bA < |k| < A and 0 otherwise. We will regard the remaining ¢ terms
in eq. 3.4.4 as perturbations, and expand the exponential. The various contributions
from these perturbations can be evaluated by using Wick’s theorem with eq. 3.4.7 as the
propagator. First consider the term that results from expanding to one power of the ¢2$2
term in the exponent of eq. 3.4.4. We find

A gan dk
- [aieas = [ e Amto(in)o(—k) (3.4.5)
where the coefficient Am? is the result of contracting the two gﬁ fields
A d%k 1
Am? == / . 3.4.9
2 Jon<jp<n (2m)4 k2 (3.49)
The integral from this term therefore has the form:
a1 2 2
exp (—/d xiAm »° + ) (3.4.10)

We will soon see that the rest of the perturbation series also organizes itself into this
form. The coefficient Am? therefore gives a positive correction to the m? term in £. The
higher orders of the perturbation theory in the correction terms can be worked out in
a similar way. As in our derivation of the standard perturbation theory for ¢* theory,
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it is useful to adopt a diagrammatic notation. Represent the propagator eq. 3.4.7 by
a double line. This propagator will connect pairs of fields g5 from the various quadratic
interactions. Represent the fields ¢ in these interactions, which are not integrated over,
as single external lines. Then, for example, the contribution of eq. 3.4.8 corresponds to
the following in figure 3.4.1:

Figure 3.4.1: Order X\ contribution to the effective Lagrangian.

At order A%, we will have, among other contributions, terms involving the contractions of
two interaction terms A¢%¢?. Each term corresponds to a vertex connecting two single
lines and two double lines. There are two possible contractions:

Figure 3.4.2: Order A\? contribution to the effective Lagrangian.

Of these, the first, which is a disconnected diagram, supplies the order-A? term in the
exponential in eq. 3.4.10. The second is a new contribution, which will become a cor-
rection to the ¢* interaction in £(¢). Let us now evaluate this second contribution. For
simplicity, we consider the limit in which the external momenta carried by the factors ¢
are very small compared to bA, so we can ignore them. Then this diagram has the value

4 Az AN (3.4.11)

2 /2?2 Ak [ 1\2
AN = 41> (2 / () . 3.4.12
2! <4> ba<|kj<p (2m) \ k2 ( )

The effective Lagrangian is:

where

1 1 A
Log = 5((‘)M<z>)2 + §m2¢2 + Edfl + sum of connected terms (3.4.13)

Higher order contributions can be done similarly. Starting out with a partition function
for all k lower than a cutoff A

1 1 A
7= /D¢k<A exp [— /dda; {2(6,@)2 + §m2¢2 + 4|¢4H (3.4.14)
a rescaling can be made, so that
K =k/b 2’ = xb. (3.4.15)
The integration of

/ dlz [;(1 + AZ)(8,0)% + %(mQ + Am?)¢* + i(x + AN)¢? + AC(9,0)* + AD¢S + ]
(3.4.16)



14 3.5. THE GLASHOW-WEINBERG-SALAM MODEL

can then be done for |k'| > A, which is the same as |k| > bA, leaving the integration over
|k'| < A, that is, the function

1 1 1
[ o= [ ate' |00 + RS+ N+ 0+ D@+
(3.4.17)
where the new field is given by

¢ =[P+ AZ)] V2. (3.4.18)
The new parameters of the Lagrangian are

(m')? = (m* + Am?)(1 + AZ) b2 N=M+AN1+A2)"2%1  (3.4.19)

C'=(C+AC)1+Az) 2! D' = (D + AD)(1+ AZ)3p*¢6 (3.4.20)

plus higher order. The original Lagrangian had C = D = 0, but the same equations
would apply if the initial values of C' and D were non-zero. If the perturbation condition
is justified these corrections are very small and finite. This transformation can then be
continued over another shell of momentum space, which transforms the Lagrangian once
again, and so forth. This leads to an iteration of transformation, so that if b — 1, the
transformations become continuous. This is the Renormalization group.

The Wilsonian approach to effective field theory is therefore to define a quantum field
theory through an action with a momentum cutoff. This cutoff can then be lowered
by integrating out the higher momenta degrees of freedom and from this change the
coefficients in the effective action. At an energy much lower than the initial cutoff, the
results can then be approximated to the same as those for a renormalized perturbation
theory up to small correction proportional to the energy over the initial cutoff. As a
result, every Lagrangian, as long as the couplings are significantly weak, can be described
at the energies of experiments by an effective Lagrangian. This is the effective field theory
approach. It is used when higher mass-dimensional operators are introduced to describe
physics beyond the Standard Model. We now proceed to discuss in more detail the non-
Abelian gauge theories of the electroweak interaction, which are unified in the Standard
Model of elementary particle physics. The main interest of this thesis lies in neutrinos.
Therefore, we concentrate on the electroweak part of the Standard Model.

3.5 The Glashow-Weinberg-Salam model

We now consider a treatment of electroweak interactions in the framework of gauge the-
ories. Theoretically, the Standard Model group corresponds to a direct product of three
groups, SU(3) ® SU(2) ® U(1), where SU(3) belongs to the color group of quantum chro-
modynamics (QCD), SU(2) to the weak isospin and U(1) belongs to the hypercharge. The
elementary particles are arranged as doublets for chiral left-handed fields and singlets for
right-handed fields in the form:

(), (2),0), ), (), (), 659

ur dr Sr Ccr br tr €er HR TR

We discuss the theory taking the first generation of the three known chiral lepton fields eg,
er, and vy, as an example. An extension to all three generations and quarks is straight-
forward. Neglecting any mass and switching off weak interactions and electromagnetism
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the Lagrangian for the free Dirac fields can be written as:

£) = Gaoher(@)r#0,) (M40} + e dens)  352)
This Lagrangian is invariant with respect to global SU(2) transformations on the fields
ver, and er,. Going to a local SU(2) transformation, the Lagrangian clearly is not invariant
but we can compensate for that by introducing a corresponding number of gauge vector
fields. In the case of SU(2) we have three generators and, therefore, we need three vector
fields called Wl}, Wﬁ and Wj’ . The Lagrangian including the W-fields can then be written
as:

1 _ _ . . VeL(x)>
L(x) =— =Tr(W, whe + (Ve ; "0, + igW,
(2) = = ST W) WP7(0) + sl e 0 i) ()
+ er(@)in"Ouer(x)
The introduced gauge group SU(2) is called the weak isospin. Introducing the fields W;,F
as

1
We=—
V2

from eq. 3.5.3 the v-e-W coupling term can be obtained as

3 +
o (vl LW VAW (e
L==gWer,e)r" Wy (eL) 9(Fer, 2107”3 VaWr Wi \ew) (355

g _ _ _ __
= _§[W3(VeL7“VeL —eryter) + \/§W:V€L’Y“GL + \/§W# ey ver)

(W, FiWy2) (3.5.4)

with o as the Pauli matrices. This looks quite promising because the last two terms
already have the 7#(1 — 75) structure. Hence, by finding a method to make the W-
boson very massive, at low energy the theory reduces to the Fermi four-point interaction.
Before discussing masses we want to add electromagnetism. The easiest assumption for
associating the remaining field WS with the photon field does not work, because Wi’
couples to neutrinos and not to eg in contrast to the photon. Going to eq. 3.5.3 beside
the SU(2) invariance one can recognize an additional invariance under two further U(1)
transformations with quantum numbers yr,, ygr:

(1/;;((;))) et (VeeLL((;U))> (3.5.6)
er(z) = eTWRXep(x)

However, this would result in two 'photon-like’ gauge bosons in contrast to Nature from
which we know there is only one. Therefore, we can restrict ourselves to one special
combination of these phase transitions resulting in one U(1) transformation by choosing:

1

v =3 (3.5.7)

yr is fixed later. This U(1) group is called the weak hypercharge Y. We can make this U(1)
into a gauge group as in QED, where the charge @ is replaced by the weak hypercharge Y.
Between charge, hypercharge and the third component of the weak isospin, the following
relation holds:

Q=1+ g (3.5.8)

The necessary real vector field is called B,, and the corresponding gauge coupling constant
g’. Now we are left with two massless neutral vector fields Wg, B,, and the question
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arises as to whether we can combine them in a way to account for weak neutral currents
and electromagnetism. Let us define two orthogonal linear combinations resulting in
normalized fields Z,, and A:

— 1 3 _
Z, = e (gW,, — g By) (3.5.9)
— 1 3.
By writing
/
sin(fyy) = ——— (3.5.11)
9>+
cos(Oy) = 29 _ (3.5.12)
9°+g
we can simplify the expressions to
Zy, = cos(Ow )W — sin(fw) By (3.5.13)
A, = sin(HW)WS + cos(Ow ) B,,. (3.5.14)

The angle sin(fyy) is called the Weinberg angle and is one of the fundamental parameters
of the Standard Model. Replacing the fields WE’, B, in eq. 3.5.5 by Z,,, A, results in:

L=- %(W:%L’WGL + W, eryver)

1 1 . _ _
-\ + 797, |:2776L'7HV6L — §éL’7M€L — sin® (0w )(—ery"er + yreéry er)

/

99 _ _
— ——=Au(—erv"eL + yrery"er)

(3.5.15)
One can note that the Z, coupling results in neutral currents. However, A, no longer
couples neutrinos and is, therefore, a good candidate to be associated with the photon
field. To reproduce electromagnetism we have to choose the following

/

w1
g g

which immediately yields another important relation by using eq. 3.5.11

=e (3.5.16)

(&

sin(fw) = . (3.5.17)

This finally allows us to write the Lagrangian using electromagnetic, charged and neutral
currents

1 1

- _ 12 +5 H — 5, M M
L=—e|AJdh + VZem(ow) (Wi Ver'er, + W ey ver) + S (0m) cos(GW)Z“JNC
(3.5.18)
with the currents
Jb = —epyter — epyter = —eryte (3.5.19)

1 1 .
Jhe = iﬂeL’YMVeL — 5éL’y“eL — sin?(Oy ) JE,. (3.5.20)
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3.5.1 Spontaneous symmetry breaking and the Higgs mechanism

In the formulation of the theory all particles have to be massless to guarantee gauge
invariance. The concept of spontaneous symmetry breaking is then used for particles to
receive mass through the so-called Higgs mechanism. Spontaneous symmetry breaking
results in the ground state of a system having no longer the full symmetry corresponding
to the underlying Lagrangian. Consider the following classical Lagrangian

L= (9,0)(0"d) — *0Td — \(DTD)? (3.5.21)

where ®(x) is a complex scalar field. £ is invariant under the group U(1) of global
transformations equivalent to eq. 3.2.3. The kinetic energy term is positive and can
vanish only if ® = constant. The ground state of the system will be obtained when the
value of the constant corresponds to the minimum of the potential:

V(®) = p20Td 4+ A(BTD)? (3.5.22)

If 2 > 0 and A > 0, a minimum configuration occurs at the origin and we have a
symmetric ground-state configuration. If, however, x? < 0, the minimum is at

p=od" = —p2/2) (3.5.23)

which means that there is a whole ring of radius

0| = % = /—12/2x (3.5.24)

in the complex plane. There are infinitely many ground states, degenerate with each other
but none shows the original symmetry of the Lagrangian any longer. The symmetry is
broken spontaneously. Generally, it can be shown that spontaneous symmetry breaking
is connected with the degeneracy of the ground state. Now we impose invariance under a
local gauge transformation, as it is implemented in the Standard Model. In the electroweak
model the simplest way of spontaneous symmetry breaking is achieved by introducing a
doublet of complex scalar fields, one charged, one neutral

6= (2;) (3.5.25)

where the complex fields are given by:

_ P tigo _ 3+ ida
V2 V2

Adding a kinetic term to the potential eq. 3.5.22 leads to the following expression for the
Lagrangian:

¢! ¢’ (3.5.26)

Litiges = (0u0)1(0"¢) — 1?61 — \(67¢)? (3.5.27)
Proceeding as before, the potential V(¢) has a minimum for p? < 0 at:
2 2
foo AV )
o=~ =7 (3.5.28)

Here again the minima, corresponding to the vacuum expectation values for ¢ lie on a
circle with (¢) = v/v/2 = \/—u2/2X. This ground state is degenerate and its orientation
in two-dimensional isospin space is not defined. It can choose the same radius in any
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orientation between [0, 27]. From this infinite number of possible orientations we choose
a particular field configuration which is defined as the vacuum state as

b0 = = <0) (3.5.29)

which is no longer invariant under SU(2) transformations. The upper component is mo-
tivated by the fact that a vacuum is electrically neutral. The field ¢(x) can now be
expanded around the vacuum

6= \}5 <v . 21@)) (3.5.30)

where a perturbation theory for H(z) can be formulated as usual. Now consider the
coupling of this field to fermions first. Fermions get their masses through coupling to the
vacuum expectation value (VEV) of the Higgs field. To conserve isospin invariance of the
coupling, the Higgs doublet has to be combined with a fermion doublet and singlet. The
resulting coupling is called Yukawa coupling and has the typical form (given here for the
case of electrons):

‘CYuk = —CeéR(éT <1/6L> + h.c.
€L

—Ce |:éR¢Er] <V6L> + (DeL7éL)¢0€R:|

€L
_ 1 1
= —Ce eRE’UeL'i_eLEUCR

1
= —c.v——=(ereyr, + ere
e\/i(RL LER)

v o_
= —Ce—=E€e
€ \/5
Here c. is an arbitrary coupling constant. This corresponds exactly to mass term for the
electron with an electron mass:

(3.5.31)

v

me = Ceﬂ (3.5.32)
The same strategy holds for the other charged leptons and quarks with their corresponding
coupling constant ¢;. In this way fermions obtain their masses within the GWS model.
Neutrinos remain massless because with the currently accepted particle content there are
no right-handed v singlet states and one cannot write down couplings like in eq. 3.5.31.
With the evidence for massive neutrinos, one is forced to generate the masses in another
way such as using Higgs triplets or adding right-handed neutrino singlets. Substituting
the covariant derivative for the normal derivative in £ as in eq. 3.2.15 leads directly to the
coupling of the Higgs field with the gauge fields. The gauge bosons then acquire masses
of

2,2 2,2
s g e*v
= = 3.5.33
mw 4 4sin® (O ) ( )
2 42y, 2 2,2

m% = (9° +9g" v S e“v (3.5.34)

4 4sin” (6w ) cos? (O )

resulting in

W _ cos(By). (3.5.35)

mz
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The gauge bosons has been determined accurately with given values:
myz = 91.1874 4 0.0021 GeV/c? and myy = 80.452 4 0.091 GeV/c? (3.5.36)
An estimate for v can be given by eq. 3.5.33 resulting in:
v=(V2Gp) Y2 ~ 246 GeV (3.5.37)

The inclusion of spontaneous symmetry breaking with the help of a complex scalar field
doublet has another consequence, namely the existence of a new scalar particle called the
Higgs boson, with a mass of mp, such that:

m3 = 2202 (3.5.38)

This particle was recently discovered by CMS (my = 125.540.4(stat) £ 0.5(sys) GeV /c?)
and ATLAS (mp = 126.0 4 0.4(stat) & 0.4(sys) GeV/c?) independently at the LHC-ring.
The discussion at the moment is whatever it is a Standard Model Higgs or a more exotic
Higgs [[23], [24], [25]]

3.5.2 Number of neutrino flavours from the width of the Z°

The number N, of light (m, < mz/2) and active neutrinos was determined at LEP by
measuring the total decay width of the Z° resonance. Calling the hadronic decay width
I'haq (consisting of Z° — ¢g) and assuming lepton universality (implying that there is
a common partial width T’y for the decay into charged lepton pairs £7¢7), the invisible
width T,y is [26]:

Tiww =Tz — Thag — 31y (3.5.39)

As the invisible width corresponds to
liw =N, - Ty (3540)

where the number of neutrino flavours N, can be determined. The partial widths of
decays in fermions Z — ff are given in electroweak theory by [27]

m3
a if@f crl(9v)? + (94)%] = Tocsl(gv)? + (94)7] (3.5.41)
with
_ Gpmy,

0~ 6V 271

In this equation cy corresponds to a color factor (c¢; = 1 for leptons, ¢y = 3 for quarks)
and gy and g4 are the vector and axial-vector coupling constants respectively. They are
closely related to the Weinberg angle sin?(fy) and the third component of weak isospin

=0.332 GeV. (3.5.42)

Ig via
gv = I3 — 2Q sin*(Oy) (3.5.43)

ga = I (3.5.44)

with @ being the charge of the particle. Therefore, the different branching ratios [5] are:

1
(2% = ui, ce) = <§ — 4sin®(0w) + 36 sin4(9w)> Iy = 0.286 GeV (3.5.45)
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L 4
I'(Z° — dd, s5,bb) = <g — 2sin®(w) + 3 sin4(0w)) Iy = 0.369 GeV (3.5.46)

N(Z° = ete ,utp ,7777) = @ — 2sin? (0w ) + 4sin4(9w)> ['p = 0.084 GeV (3.5.47)

1
(2% = vo) = 5T0 = 0.166 GeV (3.5.48)

Summing all decay channels into quarks results in a total hadronic width I'y,q = 1.687
GeV. The different decay widths are determined from the reaction ete™ — ff for f # e
whose cross-section as a function of the centre-of-mass energy /s is measured (v/s = my)
and is dominated by the Z° pole. The cross-section at the resonance is described in the

ALEPH

I.-a?I‘PII-‘ BS i ---5'- -lﬂ-.? #3 ™ o5
Energy (GeV)

Figure 3.5.1: Cross-section as a function of /s for the reaction ete~ — hadron as
obtained by the ALEPH detector at LEP. The different curves show the Standard Model
predictions for two, three and four light neutrino flavours.

Born approximation by a Breit-Wigner formula

2

0 SFZ . 0 e
o(s)=o with o = —- 3.5.49
() (s —m%)? + s2T'% /m?, m? T2, ( )
with 0¥ being the maximum of the resonance. I'z can be determined from the width and
I'.I'f from the maximum of the observed resonance (figure 3.5.1). Experimentally, the Z°
resonance is fitted with four different parameters, namely:

0 127 I'elhad I'had

my FZ 0 = —5 and Rl ==
e Thad T2 2 T,

(3.5.50)
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Ugad is determined from the maximum of the resonance in ete™ — hadrons. Assuming
again lepton-universality, which is justified by the equality of the measured leptonic decay
width, the number of neutrino flavours can be determined as:
L'y
= 3.5.51
() (35.51)

Dy (T 127 R
Nu: n <Z>:[ #_Rﬁ_?’
Using the most recent fit to the data of the four LEP experiments a number of

Ly \Iy M7z0had

N, = 2.9841 4+ 0.0083 (3.5.52)

which is in excellent agreement with the theoretical expectation of three.






Neutrino mass: Beyond the Standard Model

Neutrinos hold a special place in the Standard Model because they only interact through
the weak force. Historically, the neutrino was first postulated by Pauli to explain energy
non-conservation in beta decay. Reines and Cowan observed the first interactions of
electron antineutrinos in 1953, for which Reines received the Nobel prize in 1995. In
1962, Lederman, Schwartz and Steinberger detected muon neutrino interactions showing
that neutrinos come in at least two types; they received the Nobel prize for this work in
1988. Evidence for tau neutrino interactions was published in 2000, thus filling out the
observation of the three neutrinos.

Two historical observations are particularly noteworthy. First, the observation of
neutrino neutral current interactions was key in establishing the Standard Model and
electroweak unification. The second was the observation of neutrino oscillations, first
proposed by Pontecorvo in 1957 [28]. Neutrino oscillations imply massive neutrinos, which
is the first indication of physics beyond the Standard Model. With this description, an
introduction to neutrino physics is presented.

4.1 Helicity and chirality

In quantum field theory spin—% particles are described by four-component wavefunctions
¥ (x) (spinors) which obey the Dirac equation. The four independent components of ()
correspond to particles and antiparticles with the two possible spin projections Jz = £1/2
equivalent to the two helicities H = 41. Neutrinos as fundamental leptons are spin—%
particles like other fermions; however, it is an experimental fact that only left-handed
neutrinos (H = —1) and right-handed antineutrinos (% = +1) are observed. Therefore,
a two-component spinor description should, in principle, be sufficient (Weyl spinors). In
a four-component theory they are obtained by projecting out of a general spinor ¥ (x),
the components with H = +1 for particles and H = —1 for antiparticles with the help of
the operators P, p = %(1 F v5). The Dirac equation is the relativistic wave equation for
spin-1 particles:

i (i7,0" —m) 1 = 0 (4.1.1)

Here v denotes a four-component spinor and the 4 x 4 y-matrices are given in the form

7O:<(1’ (1)> 71.:(_(; ‘6) (4.1.2)

where o; correspond to the 2 x 2 Pauli matrices. The matrix 5 is given by

. -1 0
V5 = 170717273 = ( 0 1> (4.1.3)
and the following anticommutator relations hold

{Vas 18} = 2908 (4.1.4)
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Yo 15} =0 (4.1.5)

with g = (+1,—1,—1,—1). Multiplying the Dirac equation from the left with vy and
using v; = Yoy50; results in:

(760" — ingy50:0" —my) Y =0 i=1,2,3 (4.1.6)

Another multiplication of eq. 4.1.6 from the left with v5 and using vs0; = 0;5 leads to
(’7[%:1775%:1): ‘
(i80'y5 —10;0" + m’}/0’}/5) Yv=0 (4.1.7)

Subtraction and addition of the last two equations results in the following system of
coupled equations:

(i0°(1 +75) — i030" (1 +75) — my0(1 —75)) ¥ = 0 (4.1.8)

(i0°(1 = 75) + i3 (1 — 75) — mAo(1 +75)) ¢ = 0 (4.1.9)

Now let us introduce left- and right-handed components by defining two projection oper-

ators P;, and Pg:
1 1
P = 5(1—75) and Pgr = 5(

Because they are projectors, the following relations hold:

1+ 75) (4.1.10)

PLPr=0 P,+Pr=1 P}=P, Pj=DPg (4.1.11)

With the definition
Y = Pry and Yr = Pry (4.1.12)

it is obviously valid that:
Priypr = Pryr =0 (4.1.13)

Then the following eigenequation holds:

V5%L,R = FYULR (4.1.14)

The eigenvalues F1 to 75 are called chirality and 1y g are called chiral projections of ).
Any spinor 9 can be rewritten in chiral projections as:

Y = (Pr+ Pr)¢ = P+ Pryp = Y + Y. (4.1.15)

The equations 4.1.8 and 4.1.9 can now be expressed in these projections as:

(i0° —i0;0") YR = myoYr, (4.1.16)

(iao + ZUzal) Py, = mYURr (4.1.17)

Both equations decouple in the case of a vanishing mass m = 0 and can be depicted as:

i0°r = i0;0"PR (4.1.18)

10"y = —io; 0y (4.1.19)
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But this is identical to the Schrodinger equation (zg =t¢,h=1)

0 G,
ioVLR = :sz‘%wL,R (4.1.20)

: c 0 _ ;0
or in momentum space (ig; = E, —ig- = pi)

EYr r = Loipitr k- (4.1.21)

The latter implies that the ¢ r are also eigenfunctions to the helicity operator H:

y=2"P (4.1.22)

p|
Wy is an eigenspinor with helicity eigenvalues H = +1 for particles and H = —1 for
antiparticles. Correspondingly ¥ is the eigenspinor to the helicity eigenvalues H = —1

for particles and H = +1 for antiparticles. Therefore, in the case of massless particles,
chirality and helicity are identical. For m > 0 the decoupling of equations 4.1.16 and
4.1.17 is no longer possible. This means that the chirality eigenspinors ¢ and ¥r no
longer describe particles with fixed helicity and helicity is no longer a good conserved
quantum number.

4.2 Charge conjugation

While for all fundamental fermions of the Standard Model a clear discrimination between
particle and antiparticle can be made by their electric charge, for neutrinos it is not so
obvious. If the particle and antiparticle are not identical, we call such a fermion a Dirac
particle which has four independent components. If particle and antiparticle are identical,
they are called Majorana particles. The latter requires that all additive quantum numbers
(charge, strangeness, baryon number, lepton number etc.) have to vanish. Consequently,
the lepton number is violated if neutrinos are Majorana particles. The operator connecting
particle f(x,t) and antiparticle f(x,t) is charge conjugation C:

Clf(z,t)) = nel f(z,1)) (4.2.1)

If ¢(z) is a spinor field of a free neutrino then the corresponding charge conjugated field
¢ is defined by

S e =cpc ! = ncoT (4.2.2)
with 7. as a phase factor with |n.] = 1. The 4 x 4 unitary charge conjugation matrix C
obeys the following general transformations:

C =T ¢Clysc=rf cl=ct=c"=- (4.2.3)

o
A possible representation is C = i7py2. Using the projection operators Pr, g, it follows
that:

Pprp =9r.R S Pp pY° = (Y°).r = (YRr.L)C (4.2.4)

It is easy to show that if ¢ is an eigenstate of chirality, ¢ is an eigenstate too but
it has an eigenvalue of opposite sign. Furthermore, from eq. 4.2.4 it follows that the
charge conjugation C transforms a left(right)-handed particle into a left(right)-handed
antiparticle, leaving the helicity (chirality) untouched. Only the additional application of
a parity transformation changes the helicity as well.
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4.3 Parity transformation
A parity transformation P operation is defined as:

P(x,t) , Pi/}(m,t)P_l =YY (—x,t). (4.3.1)

The phase factor 7, with |n,| = 1 corresponds for real 7, = £1 with the inner parity.
Using eq. 4.2.2 for the charge conjugated field, it follows that:

— P —
Y = 0CPT = e Crg 97 =~y (4.3.2)
This implies that a fermion and its corresponding antifermion have opposite inner parity,
iLe. for a Majorana particle ¥ = =4 holds which results in 7, = —n;. Therefore,

an interesting point with respect to the inner parity occurs for Majorana neutrinos. A
Majorana field can be written as

1
V2

where A, is sometime called creation phase. By applying a phase transformation

Unr = —= (@ + ) with 7o = Ae®, A = £1 (4.3.3)

1
V2

it can be achieved that the field s is an eigenstate with respect to charge conjugation

C

Wnt — age—i = \2(¢6i$ F A ) = (4 + Ah®) = s (4.3.4)

1
V2

with eigenvalues A, = £1. This means the Majorana particle is identical to its antiparticle,
i.e. ¥y and 9§, cannot be distinguished. With respect to CP, one obtains

1/]16\4 = (1/10 + )\cw) = Atnm (435)

c >\C * c
Yar(a,t) S 0 = Aebar 2> S (ot — ActpY0t©)

V2 (4.3.6)
= Acprotvm = Fivom (—x, )
because 7, = —n,. This means that the inner parity of a Majorana particle is imaginary,
np = i if A = £1. Finally, from eq. 4.3.4 it follows that
(190 = 1eCrsPhr = —1eCrs Piap = =¥ = —AcYs¥u (4.3.7)
because Vst = (y5¢ur) 0 = Tﬂj\/ﬂfﬁo = —4yys. Since 1P and ¢ obey the Dirac

equation, ¢y, will also do so [29].

4.4 Dirac and Majorana mass terms

Consider the case of free fields without interactions and start with the Dirac mass. The
Dirac equation can be deduced with the help of the Euler-Lagrange equation from a
Lagrangian

£ = (9,0 — mp) v (4.4.1)

where the first term corresponds to the kinetic energy and the second is the mass term.
The Dirac mass term is

L = mpipi (4.4.2)
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where the combination 1)1 has to be Lorentz invariant and Hermitian. Requiring £ to
be Hermitian as well, mp must be real (m}, = mp). Multiplying two arbitrary spinors ¢
and ¢ with the same chirality gives

brér = PivPro = W% (1 —=75)vPrLo

. B i (4.4.3)
= ¥"05 (14 %5) PLo = ¥ (1+35) Pré = $PrPré =0
YRR =0 (4.4.4)
with ’yg =5 and Y570 = —7Y07)5. It follows that:
Yo = (U1 + Yr)(dL + ¢r) = VLOR + VROL (4.4.5)

In this way the Dirac mass term can be written in its chiral components (Weyl spinors)
as:

L=mpWrr+vpdr) and Prpir = (Yrvr)' (4.4.6)

Applying this to neutrinos, it requries both a left- and right-handed Dirac neutrino to
produce such a mass term. In the Standard Model of particle physics only left-handed
neutrinos exist, that is the reason why neutrinos remain massless.

In a more general treatment including ¢ one might ask which other combinations of
spinors behaving like Lorentz scalars can be produced. Three more are possible: 1¢)°,
)¢ and ; Y°Y¢ is also Hermitian and equivalent to ¥n); 1¢¢ and 1)) are Hermitian
conjugates, which can be shown for arbitrary spinors

(Vo) = (¥T00)" = o1y = do (4.4.7)

using the relation ’y(]; = 0. With this we have an additional Hermitian mass term, called

the Majorana mass term given by

L= Slmarby® + i) = L + he (4.4.5)

were my is called the Majorana mass. Now using the chiral projections with the notation

Vir=W)rL = (YRrL) (4.4.9)
one gets two Hermitian mass terms
L 1 7. C 7.c 1 7, C
R 1 7c 7 c 1 7c
L= imR(¢LwR+wR¢L) = §mR¢L1/JR+h.C. (4.4.11)

with my g as real Majorana masses. Lets us define two Majorana fields

o1 =YL +vr d2=vYr+ YL (4.4.12)

which allows eq. 4.4.10 to be rewritten as

1 _ 1 _
£h = iqublflsl LR = §WR¢2¢2- (4.4.13)
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While 9y, r are interaction eigenstates, ¢12 are mass eigenstates to mp r. The most
general mass term (the Dirac-Majorana mass term) is a combination of equations 4.4.6
and 4.4.10 B ~ B B

2L = mp(Yryr + VIYR) + mLYrvg + meYiyr + hee

= (Yr,¥%) (ZZLL) :Z@ (ij’:) + h.c. (4.4.14)
=V, MUG + UGMUy,

where, in the last step, the following was used

() @) e

(W) = (%L;) _ @ﬁ) s, (4.4.16)

In the case of CP conservation the elements of the mass matrix M are real. Coming back
to neutrinos, in the known neutrino interactions only 7, and v} are present (active neu-
trinos) and not the fields ¢¥r and 9§ (sterile neutrinos), it is quite common to distinguish
between both types in the notation: ¢ = v, Y% = v, Yr = Ng, ¥] = Nj. With this
notation, eq. 4.4.14 becomes:

implying

2L = mD(ﬂLNR + NEIJ%) + mLDLI/f{ + mRNENR + h.c.

) c 4.4.17
~ e (1 0 () e S0
D R R

The mass eigenstates are obtained by diagonalizing M

Y1 = cos(0)yr, —sin(0)yYf  YPir = cos(0)Yy — sin(0)yYr (4.4.18)

or, = sin(0)yr, + cos(0)Ys Y5 = sin(0)yYg + cos(0) g (4.4.19)
while the mixing angle 6 is given by

2mp

tan(20) = p——— (4.4.20)
The corresponding mass eigenvalues are:
- 1
Mg =5 [(mL +mpg) £ \/(mL —mpg)? + 4m3, (4.4.21)
To get positive masses, we use:
mg = epmy  with  mg =|mg| and e =+1 (k=1,2) (4.4.22)

To get a similar expression as eq. 4.4.12, two independent Majorana fields with masses
my and mg (with my, > 0) are introduced via ¢y, = 91, + ex1)fp or, explicitly

&1 = P11 + e = cos(0) (¥, + e1bg) — sin(0) (V] + e19¥R) (4.4.23)

P2 = oy, + 62¢§R = Sin(e)(i/}L + 62¢%) + COS(Q)(wz + 62'[/}R) (4.4.24)
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and, as required for Majorana fields,

& = (Yrr) + esthrr = ex(exir + YrL) = €xdr- (4.4.25)

€ is the CP eigenvalue of the Majorana neutrino ¢;. So we finally get the analogous
expression to eq. 4.4.12:

2L = m1161 + magacs (4.4.26)

From this general discussion one can take some interesting special aspects:

(1) mp, = mp = 0 (0 = 45°): Resulting in m;2 = mp and €12 = F1. As Majorana
eigenstates, two degenerated states emerge:
1 1

¢l:\ﬁ(¢L_¢§%_¢i+¢R):

1 1
= 5L+ U+ 0L+ ) =

These can be used to construct a Dirac field :
1
V2

The corresponding mass term eq. 4.4.26 is (because ¢1d2 + o1 = 0):

(¢ —¢°) (4.4.27)

S

2

b2 (¥ +9°) (4.4.28)

S

2

(1 +¢2) =¢r +Yr="1 (4.4.29)

L= %mD(éf;l + ¢2) (1 + ¢2) = mpiprp (4.4.30)

We are left with a pure Dirac field. As a result, a Dirac field can be seen, using eq. 4.4.29,
to be composed of two degenerated Majorana fields, i.e. a Dirac v can be seen as a pair
of degenerated Majorana v. The Dirac case is, therefore, a special solution of the more
general Majorana case.

(2) mp > mp,mpr (0 ~ 45°): In this case the states ¢; 2 are, almost generated with
m12 ~ mp and such an object is called a pseudo-Dirac neutrino.

(3) mp = 0 (0 = 0): In this case m1o = mp g and €12 = 1. So ¢1 = ¢, + Y% and
¢2 =Yg + §. This is the pure Majorana case.

(4) mr > mp,mr, =0 (6 = (mp/mpr) < 1): One obtains two mass eigenvalues:

2
mp

2
m, =mj = my = Mg = Mg <1+m§)> ~ Mg (4.4.31)
m

mpg R

and
€12 = :Fl. (4.4.32)

The corresponding Majorana fields are:

o1 =YL — YR P2 =YL+ YR (4.4.33)

It is interesting that with the largest Dirac mass eigenvalue of the order of the electroweak
scale, mp ~ 200 GeV, the right handed scale mp ~ 10 GeV which is close to the typical
GUT scales, one obtains the mass of the heaviest of the light neutrinos m,, ~ (1072—1071)
eV, which is just of the right order of magnitude for the neutrino oscillation. The last
scenario is especially popular within the seesaw model of neutrino mass generation and
will be discussed now.
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4.5 See-saw mechanism

Although the Standard Model has been marvelously successful for the last couple of
decades, in 1998 the breakthrough regarding the neutrino flavour oscillations became a
discovery. Indeed, the direct implication was that neutrinos could not be massless. Then
if neutrinos have mass we know they may be either Dirac or Majorana particles. But the
corresponding mass terms are not possible in the Standard Model because:

e Right-handed neutrinos are absent so that a Dirac mass is not possible
e Lepton number is exactly conserved so that a Majorana mass is not possible

Hence, any attempt to generate non-zero neutrino masses has to violate one of the above
two assumptions and is by that way demolishing the dream of the Standard Model as a
final theory. So, how can we extend the Standard Model so as to accommodate non-zero
neutrino masses? We have mainly three theoretical level:

e To extend the scalar content (the mass could come from another VEV)
e To extend the fermion content (coupling with heavy particles could generate mass)
e To enlarge the gauge group (i.e. add new symmetries)

The natural mass scale in the Standard Model is the electroweak scale which is of order
v >~ 246 GeV. The smallness of, e.g., the electron mass m,. >~ 0.511 MeV is not explained;
however, it is easily accommodated in the Standard Model through the proper choice of
the corresponding Yukawa coupling, f. ~ 3-1075. At the same time, similar explanation
of the smallness of the electron neutrino mass, m,, < 5 eV, would require the Yukawa
coupling f,, < 3-107''. Does this pose any problem? If we are willing to accept a very
small Yukawa coupling of the electron, why should not we accept small neutrino Yukawa
couplings as well? After all, 107! may be as good (or as bad) as 107%. The problem is
that, except for neutrinos, the masses of all the fermions in each of the three generations
are within 1-2 orders of magnitude of each other. The inclusion of neutrinos leads to
huge disparities of the fermion masses within each generation. Therefore, if a future
more complete theory explains why there is a large mass hierarchy between generations,
it would still remain to be explained why neutrinos are so light compared to the other
fermions of the same generation.

The see-saw mechanism provides a very simple and attractive explanation of the small-
ness of neutrino mass. It generates a small non-zero mass with the existence of a very large
unknown scale A generated by higher dimensional operators. The operator needed in the
see-saw mechanism, and the lowest dimensional operator beyond the Standard Model, is
the dimension 5 operator,

05 = (670 Cléma0) (4.51)

where M is the cutoff scale of the effective field theory. In the minimal standard elec-
troweak model there exists three types of see-saw models, leading to this effective operator
at tree-level, using only renormalizable interactions. The Standard Model lepton doublet
Y = (vg,lr)" and the Higgs doublet ¢ = (¢F,¢°)T are used in all three models, and
interact in the following ways.
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4.5.1 The type I see-saw mechanism

The most suggestive completion of the minimal Standard Model is the introduction of
vr (per family of fermion), a gauge singlet chiral fermion. This is a right handed neu-
trino, whose existence is appealing from the structural quark-lepton symmetry. A new
renormalizable Yukawa coupling (written here for one generation case only) then follows:

- M
L =yplroa® vr + TRV}_—;CVR + h.c. (4.5.2)
In type I, if we use same condition, we will get eigenvalues for the neutrinos from eq.
4.4.32. This is the original see-saw formula to accommodate small neutrino masses.
4.5.2 The type II see-saw mechanism

Instead of vg, a Y = 2 triplet Higgs A, = A} - o can play the same role. From the new
Yukawas N
L(A) =y T CosALt; + hec. (4.5.3)

where 7,7 = 1, ..., N counts the generations, neutrinos get a mass when Ay, gets a VEV
M, = ya(A). (4.5.4)

The VEV (A) results from the cubic scalar interaction

V = u® oo A5 ® + MATY[AL ALl + .. (4.5.5)
with )
Qv

A ~ 4.5.6

(A) 2 (4.5.6)

where one expects p of order Ma. If Ma >> v, neutrinos are naturally light. Notice
that equations 4.5.4 and 4.5.6 reproduce again eq. 4.4.32 as it must be: For large scales
of new physics, neutrino mass must come from d = 5 operator.

4.5.3 The type III see-saw mechanism

The Yukawa interaction in eq. 4.5.2 for new singlet fermions carries on straightforwardly
to SU(2) triplets too, written now in the Majorana notation (where for simplicity the
generation index is suppressed and also an index counting the number of triplet - recall
that at least two are needed in order to provide two massive light neutrinos):

LX) =yslTCho - TP + MsECE (4.5.7)

In exactly the same manner as before in type I, one gets a type 11l see-saw for My >> v:

1 2
— Y5
Ms, Yz
Again, as in the type I case, one would need at least two triplets to account for the solar
and atmospheric neutrino oscillations (or triplet and a singlet). And, as before, eq. 4.5.8
simply reproduces eq. 4.4.32 for large My,. This is some of the see-saw mechanisms in the

literature and there also exists other ways in generating non-zero neutrino masses. For
more information, look at [[30], [31], [32]].

M, = —y5, (4.5.8)






Neutrino oscillations

In the case of a non-vanishing rest mass of the neutrino, the weak and mass eigenstates
are not necessarily identical. This allows for the phenomenon of neutrino oscillations, a
kind of flavour oscillation which is already known in other particle systems. It can be
described by pure quantum mechanics. They are observable as long as the neutrino wave
packets from a coherent superposition of states. Such oscillations among the different
neutrino flavours do not conserve individual lepton numbers, only total lepton number.
We start with the most general case first, before turning to the more common two- and
three-flavour scenarios.

5.1 General formalism

Let us assume that there is an arbitrary number of n orthonormal eigenstates. The n
flavour eigenstates |v,) with (vg|va) = dap are connected to the n mass eigenstates |v;)
with (v;|v;) = 0;; via a unitary mixing matrix U

|VC¥> = Z Uai|yi> |VZ> = Z 1a|Va Z |Va (511)

«

with the relations
Ut =1 > UaiUji = bap Z UaiUZ; (5.1.2)

In the case of antineutrinos, i.e. U,; has to be replaced by U;;:
Z az’yl (513)

In general, a unitary n x n matrix depends on n(n — 1)/2 angles and n(n + 1)/2 phases.
In the Dirac case, 2n — 1 phases can be removed by a proper rephasing of the left-handed
fields, leaving n(n +1)/2 — (2n — 1) = (n — 1)(n — 2)/2 physical phases. Thus, in the
Dirac case CP non-conservation is only possible in the case n > 3 generations. In the
Majorana case there is less freedom to rephase the fields since the Majorana mass terms
are of the form vy, + h.c. rather than the form gy, + h.c. and so the phases of neutrino
fields cannot be absorbed. Therefore, in the Majorana case only n phases can be removed,
leaving n(n + 1)/2 — n = n(n — 1)/2 physical phases. Out of these, (n — 1)(n — 2)/2 are
the usual Dirac-type phases while the remaining n — 1 are specific for the Majorana case,
so called Majorana phases.
The mass eigenstates |v;) are stationary states and show a time dependence according
to
lvi(t)) = e Fit;) (5.1.4)
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assuming neutrinos with momentum p emitted by a source positioned at z = 0 (t = 0)

[:(0)) = |vi) (5.1.5)

and being relativistic

2 2
m- m
Ei=\/m:+p?e~p+—+~FE+4+ —- 5.1.6
! i TP = Pi 2p; 2F ( )

for p >> m; and E = p as neutrino energy. The flavour neutrino is a coherent superposi-
tion of neutrino states with definite mass. Neutrinos are produced and detected as flavour
states. Therefore, neutrinos with flavour |v,) emitted by a source at t = 0 develop with
time into a mass eigenstate as follows:

Vo (t) Z U,e Yu) = Z UaiUﬂ*ie*iEit]%) (5.1.7)
/L‘?B

Different neutrino masses imply that the phase factor in eq. 5.1.7 is different. This means
that the flavour content of the final states differs from the initial one. At macroscopic
distances this effect can be large in spite of small differences in neutrino masses. The
time-dependent transition amplitude for a flavour conversion v, — vg is given by:

A(a%ﬁ)( ) VB|V04 ZUﬁZ i€ 72Et (518)
Using eq. 5.1.6 this can be written as
L
Al — B)(t) = (vp|va(t) Z UpiUaiexp <—22E> = A(a — B)(L) (5.1.9)

with L = x = ct being the distance between source and detector. In an analogous way,
the amplitude for antineutrino transitions is obtained:

Ala = B)(t) =D UpilUzze (5.1.10)
i
The transition probability P can be obtained from the transition amplitude [33]

Pl = 80 = A O = 2 3 Ul U355

3
Amz. L
. 9 ij
= Sap —4Z>zj:1 Re( UMU/%U :Ug;) sin ( 15 ) (5.1.11)
+4Z§11m UMU&U Ugj)sm< 4E] ) cos ( 4E] )
with
Am?, = m? — . (5.1.12)

If you want the probability for antineutrinos, you have to change the plus sign to a minus
sign in front of the third term in eq. 5.1.11. Using CP invariance (U,; real), this can be
simplified to:

o Am?j L
Pla = B)(t) = dag =4 UailUa;jUsiUs; sin” | — = (5.1.13)

J>i
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Evidently, the probability of finding the original flavour is given by:

Pla—a)=1-> Pla—p) (5.1.14)
ot

As can be seen from eq. 5.1.11 there will be oscillatory behavior as long as one of the
involving neutrino mass eigenstates are different from zero and if there is a mixing (non-
diagonal terms in U) among the flavours. In addition, the observation of oscillations allow
no absolute mass measurement, oscillations are only sensitive to Am?. Last but not least,
neutrino masses should not be exactly degenerated. Another important feature is the
dependence of the oscillation probability on L/E. Majorana phases are unobservable.

5.2 CP and T violation in neutrino oscillations

Comparison of eq. 5.1.8 with eq. 5.1.10 yields a relation between neutrinos and antineu-
trinos

P(a — B)(t) = Pla— B)(t) # P(B — a)(t) (5.2.1)
if CPT is conserved. This relation is a direct consequence of the CPT theorem. CP

violation manifests itself if the oscillation probabilities of v, — v is different from its CP
conjugate process U, — g. So an observable would be:

APSY =P(va —vg) — P(a — ) 20 a# (5.2.2)

Similarly, T violation can be tested if the probabilities of v, — v are different from the
T conjugate process vg — v,. If CPT conservation holds, violation of T is equivalent
to that of CP. From CPT invariance one finds AP,3 = —AP3,. Using Upyns (see eq.
5.4.1) it can be shown explicitly that in vacuum APacﬁP and APgB are equal:

AP%’P = APaTﬁ :4812612813653623323 sin(d)

o lsin (A2l | g, (AmalY | o, (AmisD (5.2.3)
° 2F S 2E 5 5

Again for antineutrinos, you have to do the transformation § — —¢§. This expression
has several interesting features. Note that for CP or T violation effects to be present,
all the angles must be non-zero and, therefore, three-flavour mixing is essential. Second,
it vanishes in the limit 6 = 0 or § = w. Third, since the mass differences satisfy the
relation (if we don’t care about sterile neutrinos) Am3; + Am3, + Am?2; = 0, the CP-odd
asymmetry vanishes if even one of Am?j is zero. To be a bit more specific we now consider
the case of two flavour oscillations.

5.3 Oscillations with two flavours

In this case the relation between the neutrino states is described by one mixing angle

and one mass difference Am? = m3 — m2. The unitary transformation in eq. 5.1.1 is

analogous to the Cabibbo matrix given by (taking v, and v,,):

()= (ot o) () 5o

Using the formula from the previous section, the corresponding transition probability is:
P(ve = v,) = P(vy = ve) = P(Ue = 1) = P(U,, — D)
Am2L
4F

(5.3.2)

= sin?(26) sin? < > =1—Pv. — ve)
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This formula explicitly shows that oscillations only occur if both § and Am? are non-
vanishing. That is the reason why neutrinos need mass. The phase factor can be rewritten
as

Am?c3L  GeV fm " Am? L/km 1967 x Am? L/km
AhE ~  4he eV2 E/GeV ~ eV2 E/GeV

where in the last step some practical units were used. The oscillatory term can be ex-
pressed as:

Am2.L L
sin? ( 45 ) = sin? <7TLO> with Lo = 47mhe

(5.3.3)

E/GeV
=248——— 5.3.4
Am? Am?/eV? (5:3.4)
The oscillation length Lg describes the period of one full oscillation cycle. Increasing
the energy the oscillations becomes more damped whereas increasing Am? more rapid
oscillations occurs. The mixing angle sin?(26) determines the amplitude of the oscillation
while Am? influences the oscillation length.

P (ve— 7))
12 A e e SR
, L_osc = 47E/(An?) ,
1.0¢ Rl CCLEPEPEPLRCES ‘ -
i : —  a=u
0.8 i
0.6 ]
— a=e

0.2}
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0.0l
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000 150000 200000 250000 300000
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Figure 5.3.1: Probability P that a neutrino of flavour e oscillates into a neutrino of flavour

a=e, 1 as a function of baseline L over energy E for the two flavour case. Oscillation
parameters: sin®(20) = 1, Am? = 7.59 - 10~ eV?

5.4 The case for three flavours

A probably more realistic scenario to consider is that of three known neutrino flavours.
The mixing matrix Uppsnyg can be parameterized by the following

0

C12€13 S12€13 S13€
Dirac __ i i
Upnmns = | —S12023 — c12523513€"  c12¢23 — 512523513€" 523C13 (5.4.1)
i i
512823 — €12523513€"°  —C12523 — S12C23513€"°  €23C13

where s;; = sin(6;5), ¢ij = cos(6;5), (i, j =1, 2, 3). In the Majorana case, the requirement
of particle and antiparticle to be identical, restricts the freedom to redefine the funda-
mental fields. For three flavours two additional phases have to be introduced resulting in
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a mixing matrix of the form:
Uppiks ™ = URNi¥sdiag(1, ¢, ') (5.4.2)

Note that now more Am? quantities are involved both in magnitude and sign: Although
in two flavour oscillation in vacuum the sign does not enter, in three flavour oscillation,
which includes both matter effects (will be discussed later) and CP violation, the signs
of the Am? quantities enter and can, in principle, be measured. In the absence of any
matter effects, the probability is given by

3 2
Am?4. L
P(v, =045 — 4 K,5.;) sin? *
(va = v5) =0ap i>§j:1Re( /3,])8111( 1B )

. (5.4.3)
) Am?jL AmgjL
+4 Z Im(Kq,i5) sin T e WY
i>j=1
where
Kag,ij = UaiUpiUs;Ug;- (5.4.4)
P(e—vy)
12 — ‘ :
10r ,
1|— a=e
0.8r 1
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0 50000 100000 150000
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Figure 5.4.1: Probability P that a neutrino of flavour e oscillates into a neutrino of
flavour a = e, u, 7 as a function of baseline L over energy E for the three flavour case.
Oscillation parameters: sin®(012) = 0.8127 , sin®(0;3) = 0.0245 , sin®(023) = 0.5
Am5, = 7.59 - 107%eV? | AmZ, = 2.43 - 10~ %eV? and 6 = 0

As you can see in figure 5.4.1 there are two oscillations, a fast and a slow one. These
oscillations depends on the mass differences, which can be seen from eq. 5.3.4. From
this equation we can determine that the fast oscillation comes from Am3, and the slow
oscillation comes from Am3;. Unlike in the two flavour case, transition probabilities in
general do not have a simple form. There are, however, several practically important
limiting cases in which one can obtain very simple approximate expressions for the oscil-
lation probabilities in terms of the two flavour ones. Assume first that the neutrino mass
difference have a hierarchy:

|Am3 | << |Am3| = |Am3, | (5.4.5)
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This means that either m; << mg << mga (direct hierarchy) or ms << m; ~ mgy
(inverted mass hierarchy). These cases are of practical interest since the solar neutrino
data indicate that one needs a small mass difference Am32, ~ 107° eV? for the solution
of the solar neutrino problem through matter-enhanced neutrino oscillations whereas the
explanation for the atmospheric neutrino experiments through the neutrino oscillations
requires Am3; ~ 1072 eVZ, much larger than Am2,. Consider first the oscillations over
the baselines L for which:

Am3, L

2F

This case is relevant for atmospheric, reactor and accelerator neutrino experiments. It fol-
lows from this assumption that the oscillations due to the small mass difference Am3; are
effectively frozen in this case, and one can consider the limit Am3, — 0. The probability
of v, — vg oscillations then takes a very simple form:

<<1 (5.4.6)

Am2,L
P(vy — vg) = 4|Uqs]?|Ups|? sin® (TEB> (5.4.7)
It resembles the two flavour oscillation probability. The probabilities of oscillations be-
tween ve, v, and v; are
Am3, L

2 2o (AmE L 2 o2 .
P(ve = vy) = 4|Ues|*|Ups|” sin 1B = 555 sin“(26;3) sin —iE (5.4.8)

Am2, L Am2, L
P@%—>W):4u@ﬂﬂUﬁFsm2<Zgl>::c%sm%2&gsm2<zgl> (5.4.9)

Am3, L Am3, L
Py, — vy) = AU, 2| Ups |2 sin? | ToBL2 ) = ¢4y sin?(2053) sin? [ o3 ) (5.4.10)
4F 4F
with P(vg — vo) = P(Va — vg). They depend only on the elements of the third column
of the lepton mixing matrix and one mass difference. The survival probability for electron
neutrinos takes a particularly simple form

Am2,L
P(ve — ve) = 1 — sin?(2613) sin? (Zg) (5.4.11)
i.e. it coincides with the v, survival probability in the two flavour case with mass dif-
ference Am? = Am3; and mixing angle § = ;3. Consider now another limiting case,
which is relevant for the solar neutrino oscillations and also for very long baseline reactor
experiments. We shall be again assuming the hierarchy eq. 5.4.5 and in addition

Am3;L  Am3,L
2E 2F
whereas the condition eq. 5.4.6 is no longer necessary. In this case the oscillations due to

the mass differences Am3; and Am3, are very fast and lead to an averaged effect; the v,
survival probability is:

>>1 (5.4.12)

Amj L
P(ve — 1) ~ ci5 |1 — sin?(2613) sin? (Z%)] + 515 (5.4.13)
Finally, consider the limit U.3 = 0 (the results will be also approximately valid for

|Ues| << 1). In this case one obtains

P(ve — v,) = c345in%(26012) sin®(Ag) (5.4.14)
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P(ve — vy) = 535 8in2(2612) sin®(Ag;) (5.4.15)

Py, = v;) = sin2(923)(—s%20%2 SiDZ(Agl) + 8%2 SinZ(Agl) + 0%2 Sin2<A32>) (5.4.16)

where A;; = Amij /(4F) and no assumption about the hierarchy of the mass differences
has been made. Notice that the limiting cases are not mutually excluding, i.e. have some
overlap with each other. In general, when considering the propagation of solar neutrinos
in the Sun or in the Earth, one should take into account matter effects on neutrino
oscillations. The same is true for the terrestrial atmospheric and long baseline accelerator
neutrino oscillation experiments in which the neutrino trajectories or their significant
portions go through the matter of the Earth. Matter effects on v, <+ v, oscillations are
relatively small (they vanish in the two flavour approximation), but they may be quite
appreciable for v, <+ v, and v, < v, oscillations.

5.5 Experimental consideration

The search for neutrino oscillations can be performed in two different ways - an appearance
or disappearance mode. In the latter case one explores whether less than the expected
number of neutrinos of a produced flavour arrive at a detector or whether the spectral
shape changes if observed at various distances from a source. This method is not able
to determine the new neutrino flavour. An appearance experiment searches for possible
new flavours, which do not exist in the original beam or produce an enhancement of an
existing neutrino flavour. The identification of the various flavours relies on the detection
of the corresponding charged lepton produced in the charged current interactions

v+ N —={0"+X with {=e,pu,71 (5.5.1)

where X denotes the hadronic final state. Several neutrino sources can be used to search
for oscillations. The most important are:

e nuclear power plants ()

accelerators (Ve, Vy, Ve, Uy,)

the atmosphere (ve, vy, Ve, Uy)
e the Sun (ve)

Which part of the Am? — sin2(29) parameter space is explored depends on the ratio L/E.
The relation

Am? < E/L (5.5.2)

shows that the various mentioned sources sometimes cannot probe each other, i.e. high-
energy accelerators (E ~ 1 —100 GeV, L ~ 1 km) are not able to check the solar neutrino
data (E ~ 1 MeV, L ~ 10® km). The equation above also defines the minimal Am? which
can be explored. Three cases have to be considered with respect to a possible observation
of oscillation:

e L/IEK ﬁ, i.e. L <« Ly. Here, the experiment is too close to the source and the
oscillations have no time to develop.
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Figure 5.5.1: Logarithmic plot of the oscillation probability P(ve, — Va) as a function
of L/E for sin®(260) = 0.83. The brackets denote three possible cases: (a) no oscilla-
tions (L/E < 1/Am?); (b) oscillation L/E ~ 1/Am?; and (c) average oscillation for
L/E> 1/Am~”.

o L/E ~ AimQ, i.e. L ~ Lg. This is a necessary condition to observe oscillations and
it is the most sensitive region

o L/E > ﬁ, i.e. L > Lg. Several oscillations have happened between the source
and the detector. Normally, experiments do then measure L /E not precisely enough
to resolve the oscillation pattern but measure only an average transition probability.

Two points which influence the experimental sensitivity and the observation of oscillations
have to be considered. First of all, L is not often not well defined. This is the case when
dealing with an extended source (Sun, atmosphere, decay tunnels). Alternatively, E
might not be known exactly. This might be the case if the neutrino source has an energy
spectrum N(E) and E will not be measured in a detector. Last but not least, for some
experiments there is no chance to vary L and/or E because it is fixed (e.g. in the case of
the Sun); therefore, the explorable Am? region is constrained by Nature.

5.6 Neutrino mass hierarchy, 6»5 octant and matter effects

The mixing angles 6;; and the magnitudes of the mass differences Am?j are well measured
by several neutrino experiments, using neutrinos produced in the Sun, in the atmosphere,
in reactors or with accelerators [[34], [35], [36], [37]]. One remaining question is the order
of the neutrino masses. We differentiate between normal neutrino mass hierarchy (NH),
my < ma < mg, and inverted neutrino mass hierarchy (IH), mg < my < mq (see figure
5.6.1). The problem of the correct mass hierarchy cannot be solved by studying only
neutrino oscillations in vacuum because these oscillations do not depend on the sign of
Am3;. The situation changes if we take into account that neutrinos can interact with
nucleons and electrons if they propagate through matter on their way to the detector.
These matter effects can enhance three flavour transition and depend on the sign of
Am%Q. This is also how the sign of Ams; was measured. Knowing the mass hierarchy will
help alot in the determination of the octant of the mixing angle 23 since there will be
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one less parameter you have to vary in the fit (will be discussed later). However, the 623
octant can be resolved through matter effects even without the knowledge of the neutrino
mass hierarchy.

' — ()" ()" — —
(Am’),,
(m|)24 —
" v
(ﬂrrll]a[m
—l ."IU ('ﬂnll)r.m
H v,
I — (m,ajl
(Am),,
—-— (m])l (m})}l —
normal hierarchy inverted hierarchy

Figure 5.6.1: Pictorial representation of the possible neutrino mass hierarchies. Note

AmZ,, is equivalent to AmZ, and AmZ, is equivalent to Amj,.

5.6.1 Neutrino oscillation in matter

Neutrino oscillations in matter may differ from the oscillations in vacuum in a very sig-
nificant way. The most striking manifestation of the matter effects on neutrino oscilla-
tions is the resonance enhancement of the oscillation probability - the Mikheyev-Smirnov-
Wolfenstein (MSW) effect. In vacuum, the oscillation probability cannot exceed sin?(26y),
and for small mixing angles it is always small. Matter can enhance neutrino mixing, and
the probabilities of neutrino oscillations in matter can be large (close to unity) even if the
mixing angle in vacuum is very small. Matter enhanced neutrino oscillations of solar and
atmospheric neutrinos inside the Earth can be quite important.

How does the matter affect neutrino propagation? Neutrinos can be absorbed by
the matter constituents, or scattered off them, changing their momentum and energy.
However, the probabilities of these processes, being proportional to the square of the Fermi
constant G, are typically very small. Neutrinos can also experience forward scattering,
an elastic scattering in which their momentum is not changed. This process is coherent,
and it creates mean potentials V,, for neutrinos which are proportional to the number
densities of the scatters. These potentials are of the first order in G, but one could still
expect them to be too small and of no practical interest. This expectation, however, would
be wrong. To assess the importance of matter effects on neutrino oscillations, one has to
compute the matter-induced potentials of neutrinos V,, with the characteristic neutrino
kinetic energy differences Am?/2E. Although the potentials V,, are typically very small,
so are Am?/2E; if V,, are comparable to or larger than Am?/2E, matter can strongly
affect neutrino oscillations.

5.6.2 Evolution equation

We shall now consider neutrino oscillations in matter in some detail. Neutrinos of all
three flavours - v,, v, v, - interact with electrons, protons and neutrons of matter through
neutral current (NC) interaction mediated by Z° bosons. Electron neutrinos in addition
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have charged current (CC) interactions with the electrons of the medium, which are
mediated by the W* exchange. Let us consider the CC interactions. At low neutrino
energies, they are described by the effective Hamiltonian [38]

Heo = 3’;[%(1 — )7 (1~ 5)e] = (jg[ém —)elE (1~ )] (5.6.1)

where we have used the Fierz transformation. In order to obtain the coherent forward
scattering contribution to the energy of v, in matter (i.e. the matter-induced potential
for v.) we fix the variables corresponding to v, and integrate over all the variables that
correspond to the electron:

Heﬂ(ye) = <HCC>electron = e Ve, (5.6.2)

Furthermore, we have

Eneh = (e} =N. (e7e) = () {erome) = (Z)  (ese) = (@) (5:63)

where N, is the electron number density. For unpolarized medium of zero total momentum
only the first term survives, and we obtain:

(Ve)eo = Voo = V2GrN, (5.6.4)

Analogously, one can find the NC contributions V¢ to the matter-induced neutrino
potentials. Since NC interaction are flavour independent, these contributions are the
same for neutrinos of all three flavours. In an electrically neutral medium, the number
densities of protons and electrons coincide, and the corresponding contributions to Vyc¢
cancel. The direct calculation of the contribution due to the NC scattering of neutrinos off
neutrons gives (V) nc = —GrN,/v/2, where N, is the neutron number density. Together
with eq. 5.6.4 this gives:

V. =V2Gp <Ne - ‘Z”) V, =V, =V2Gr <—]z"> (5.6.5)

For antineutrinos, one has to replace V,, —+ —V,,. Let us now consider the evolution of a
system of oscillating neutrinos in matter. In vacuum, the evolution is most easily followed
in the mass eigenstates basis. In matter it is more convenient to do that in the flavour
basis because the effective potentials of neutrinos are diagonal in this basis. Consider the
two flavour case. As usual, we write vy, = Uvy,, where vy, and v, are two-component
vectors of neutrino fields in the flavour and mass eigenstate bases and the matrix U is
given by the mixing matrix in two flavour case in vacuum. In the absence of matter,
the evolution equation in the mass eigenstate basis is i(d/dt)|vy,) = Hp|vm), where
H,, = diag(E1, E»). This gives the evolution equation in the flavour basis: i(d/dt)|vy,) =
Hy,|vy) = UH,, Ul |vy,). For relativistic neutrinos E; ~ p+m?/2E;, and we thus obtain:

; d (l/e> B (p+ mi‘;ﬂm%) — —AJEQ cos(26p) —AZS%Q sin(26p) <Ve>
Fn - m24m2 m
dt \v, Am? ¢in(26,) (p+ Zitmzy 4 A47E2 cos(260p) ) \Vu

4E 4E
(5.6.6)
Here v, and v, stand for time dependent amplitudes of finding the electron and muon
neutrino respectively. The expressions in the brackets in the diagonal elements of the
effective Hamiltonian in eq. 5.6.6 coincide. They can only modify the common phase of
the neutrino states and therefore have no effect on neutrino oscillations which depend on
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the phase differences. For this reason one can omit these terms. The evolution equation
describing neutrino oscillations in vacuum in flavour basis then takes the form:

1£ Ve —A—Tg cos(26p) A% sin(26p) Ve (5.6.7)

dt \wu AmZgin(20p) A cos(26p) ) \Vu .
We now proceed to derive the neutrino evolution equation in matter. To do that, one has
to add the matter-induced potentials V. and V), to the diagonal elements of the effective
Hamiltonian Hy, in eq. 5.6.7. Notice that V. and V), contain a common term due to NC
interactions. As we already know, such common terms in the diagonal elements are of

no consequence for neutrino oscillations; we can therefore omit the NC matter-induced
potentials. This gives [39]:

. (ue) _ <—A4’g cos(260p) + V2GpN, %;g sm(290)> (Ve) (5.6.8)

dt A2 sin(26)) Am2 cos(260p) | \Vu

This is the evolution equation which describes v, <+ v, oscillations in matter. The equa-
tion for v, <+ v, oscillations has the same form. In the two flavour approximation, v, < v,
oscillations are not modified in matter since V,, = V;; however, in the full three flavour
framework matter does influence the v, <+ v; oscillations because of the mixing with v.

5.6.3 Constant density case

Let us now consider the evolution equation 5.6.8. In general, the electron number density
N, depends on the coordinate along the neutrino trajectory or, in our description in eq.
5.6.8, on time ¢t. We shall consider a simple case of constant matter density and chemical
composition, i.e. N, = constant. Diagonalization of the effective Hamiltonian gives the
following neutrino eigenstates in matter

vA = Ve coS(0p,) + vy sin(6,) (5.6.9)

vp = —Vesin(bp,) + v, cos(0r,) (5.6.10)
where the mixing angle 6,,, is given by
sin?(26)
(cos(290) ¥ 72\/§§££V6E)2 + sin?(260)

sin?(26,,) = (5.6.11)

where the minus sign is valid for neutrinos and the plus sign for antineutrinos. It is
different from the vacuum mixing angle 6y and therefore the matter eigenstates v4 and
vp do not coincide with mass eigenstates v; and v5. The difference of neutrino eigenmass
in matter is

m%m’Qm = % [(Z +ATF \/(A — Am? cos(y))? + (Am?2)? sin2(290)] (5.6.12)

where ¥ = m2 + m? and A = 2v/2GrEN,. For A — 0, it follows that m%mzm — miZ
and 6 — 6y. Using the relation

2
Am?2, =m3, —mi,, = AmQ\/(AAm2 - cos(290)> + sin?(26y) (5.6.13)
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the oscillation probabilities in matter can be written analogously to those of the vacuum

Am?2 L
Py (ve — v,) = sin®(20,,) sin? SMm (5.6.14)
4F
Pp(ve = ve) =1 — Pp(ve = vy) (5.6.15)
with a corresponding oscillation length in matter
L, = iﬁf _ Lo _ - 81.n(22(90m) Lo. (5.6.16)
my, \/(Aan _ COS(200)) + Sin2(290) Sln( 0)

Note already that eq. 5.6.11 allows the possibility of maximal mixing in matter, sin(26,,,) ~
1, even for small sin(6p) because of the resonance type form. It is called the MSW reso-
nance condition. For the resonance enhancement of neutrino oscillations in matter to be
possible, the rhs. of

A = Am? cos(26)) (5.6.17)

must be positive
Am? cos(260p) = (m3 — m?)(cos®(6p) — sin?(6p)) > 0 (5.6.18)

i.e. if v is heavier than vy, one needs cos?(fy) > sin?(6p), and vice versa. It follows from
eq. 5.3.1 that the condition eq. 5.6.18 is equivalent to the requirement that of the two
mass eigenstates vy and vs, the lower-mass one have a larger v, component. If one chooses
the convention cos(26p) > 0 then eq. 5.6.18 reduces to Am? = A3, > 0. The resonance
condition for antineutrinos is then Am? < 0. Therefore, for a given sign of Am?, either
neutrinos or antineutrinos (but not both - see figure 5.6.2) can experience the resonantly
enhanced oscillations in matter. For a more information about adiabatic approximation
and a more realistic three flavour oscillations in matter, look at [40] and [41]

Sin%(26,) Sin(26y)
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0.81 — 1-2 mixing 0.8F
0.6 06[
— 1-3 mixing, NH
04r 04r
0.2+ — 1-3mixing, IH 0.2+
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Figure 5.6.2: Mizing angle in maitter in two flavour approximation for different vacuum os-

cillation parameters as a function of the matter-induced neutrino potential V = /2GpN,
and the neutrino energy, left for neutrinos and right for antineutrinos.



Atmospheric neutrinos

In recent years the study of atmospheric neutrinos has become one of the most important
fields in neutrino physics. Atmospheric neutrinos are produced in meson and muon decays,
created by interactions of cosmic rays within the atmosphere. The study of these neutrinos
revealed evidence for neutrino oscillations. With energies in the GeV range and baselines
from about 10 km to as long as the Earth diameter (L ~ 10 km), mass differences in the
order of Am? > 10~%eV? or equivalent values in the L/F ratio from 10—10° km GeV~" are
probed. Most measurements are based on relative quantities because absolute neutrino
flux calculations are still affected by large uncertainties. The obtained results depend
basically on four factors: The primary cosmic-ray flux and its modulations, the production
cross-sections of secondaries in atmospheric interactions, the neutrino interaction cross-
section in the detector and the detector acceptance and efficiency. We want to discuss
the first few steps later in a little more detail. More quantitatively the observed number
of events is given by

d + Em 4] +
M _ tobs Z / Nt ¢VZ( ) do (Empe) F(qz)dEl, (601)
+

dQpdp, dQpdE, dpy

where ¢ stands for e* or u*, p, the lepton momentum, F, the neutrino energy, @ the

zenith angle, t.,s the observation time, IV; the number of target particles, ¢§[(EV, ) the
neutrino flux and o(F,,, py) the cross-section. F(q?) takes into account the nuclear effects
such as the Fermi momenta of target nucleons, Pauli blocking of recoil nucleons etc. The
summation (+) is done for v, and 7y, since current observations do not distinguish the
lepton charge (except ICALQINO).

6.1 Cosmic rays

The primary cosmic rays hitting the atmosphere consist of about 98 % hadrons and 2 %
electrons. The hadronic component itself is dominated by protons (=~ 87%) mixed with
a-particles (=~ 11%) and heavier nuclei (=~ 2%). Because the neutrino flux depends on the
number of nucleons rather than on the number of nuclei, a significant fraction of the flux
is produced by He and CNO (+ heavier nuclei). The differential energy spectrum follows
a power law of the form

N(E)dE x E7"dE (6.1.1)
with v ~ 2.7 for E < 10' eV. From this point the spectrum steepens (the ’knee’) to
v ~ 3. At about 10'® eV the sepctrum flattens again (the ’ankle’) and datasets for the
ultra-high energy part of cosmic rays well above are still limited by statistics. The part
of the comic-ray spectrum dominantly responsible for the current atmospheric neutrino
investigations is the energy range below 1 TeV.

The intensity of primary nucleons in that energy range can be approximated by [43]

IN(E) ~ 1.8E727 nucleons cm ™2 s ! sr™! GeV ™! (6.1.2)
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Figure 6.1.1: The all-particle spectrum as a function of E (energy-per-nucleus) from air
shower measurements [42]

where F is the energy per nucleon. In the low energy range several effects can occur. First
of all, there is the modulation of the primary cosmic-ray spectrum with solar activity. The
solar wind prohibits low energy galactic cosmic rays from reaching the earth. This effect is
most prominent for energies below 10 GeV. Such particles have, in contrast, a rather small
effect on atmospheric neutrino fluxes, because the geomagnetic field prevents these low
energy particles from entering the atmosphere anyway. The geomagnetic field bends the
trajectories of cosmic rays and determine the minimum rigidity called the cutoff rigidity
for particles to arrive at the earth. The dynamics of any high energy particle in a magnetic
field configuration B depends on the rigidity R by

R=C =y xB (6.1.3)

ze

with p as the relativistic 3-momentum, z as the electric charge and ry, as the gyroradius.
Particles with different masses and charge but identical R show the same dynamics in
a magnetic field. The cutoff rigidity depends on the position at the Earth surface and
the arrival direction of the cosmic ray. The geomagnetic field, therefore, produces two
prominent effects: The latitude (the cosmic-ray flux is larger near the geomagnetic poles)
and the east-west (the cosmic-ray flux is larger for east-going particles) effect. The last
one is an azimuthal effect not depending on any physics and can be used to check the
shower simulations. Such a measurement was performed by Super-Kamiokande (SK) with
a statistics of 45 kt x yr and cuts on the lepton momentum (400 < p; < 3000 MeV /¢ and
zenith angle |cos(6)| < 0.5) to gain sensitivity, an east-west effect is clearly visible shown
in figure 6.1.2

6.2 Interactions within the atmosphere

The atmospheric neutrinos stem from the decay of secondaries produced in interactions
of primary cosmic rays with the atmosphere. The dominant part is the decay chain [45]:

= uty, pt = ety (6.2.1)

TS U, e Doy, (6.2.2)
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Depending on the investigated neutrino energy additional contributions come from kaon
decay, especially the modes:

K* = pFu,(m,) (6.2.3)

+

K — met v (i) (6.2.4)

The latter is the dominant source for v, above E, ~ 1 GeV. In the low energy range
(E, = 1 GeV) there is the previously mentioned contribution from muon decay. However,
for larger energies the Lorentz boost for muons is high enough in a way that they reach
the Earth surface. For example, most muons are produced in the atmosphere at about 15
km. This length corresponds to the decay length of a 2.4 GeV muon, which is shortened to
8.7 km by energy loss (a vertical muon loses about 2 GeV in the atmosphere by ionization
according to the Bethe-Bloch formula [46]). Therefore, at £, larger than several GeV this
component can be neglected. At higher energies the contribution of kaons becomes more
and more important. The general consensus of all these decays is that the ratio of fluxes

Ve + g
vy + vy,

R=

(6.2.5)

can be predicted with an accuracy of about 5 % which is about 1/2 for sub-GeV and
becomes smaller for (E), ~ 1 GeV) since the muons reach the Earth. Therefore, the only
component of electron neutrinos in the multi-GeV energy range is eq. 6.2.4. Also at really
high energies, the pion and kaon would rather interact with the atmosphere then decay
into the various processes given above. From this fact, the atmospheric neutrino flux
is more steeply in the high energy range compared to neutrino flux coming from charm
decay.

However, in the absolute flux predictions there is some disagreement on the level of
20-30 % in the spectra and overall normalization of the neutrino flux. Recently two new
experimental approaches have arrived which might help to improve the situation con-
siderably. First of all, there are measurements of muons in the atmosphere. Strongly
connected with neutrino production from meson decay is the production of muons. As-
sume the two-body decays M — mj +mg. The magnitude of the momenta of secondaries
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in the rest frame of M are given by:

M — 9M2(m2 2 2 232
pi=py=p" = (my ;\n;?) * (mi = m) (6.2.6)

In the laboratory frame the energy of the decay product is
E; = vE; + Byp* cos(0") (6.2.7)

where 5 and « are the velocity and Lorentz factor of the parent in the laboratory system.
Therefore, the limits on the laboratory energy of the secondary i are:

Y(Ef — Bp*) < E; <~(Ef + Bp) (6.2.8)

In the absence of polarization there is, in addition,

dn dn dn
= — = tant 6.2.9
A~ 2rdcos(6r) < dE; ~ O (6:2.9)
meaning that, in such cases, a flat distribution for a product of a two-body decay between
the limits of eq. 6.2.8 results. For example, for process eq. 6.2.3 this results in

dn dn 0.635

dE, dE, T 1o (mi/m%()p;(

(6.2.10)

with pr as the laboratory momentum of the kaon and the factor 0.635 stems from the
branching ratio of decay eq. 6.2.8. Often we deal with decays of relativistic particles,
resulting in 8 — 1, which would imply for decays M — uv kinematic limits on the
laboratory energies of the secondaries of

2

m
E—-<E,<E (6.2.11)
M
and
m2
0<E, < ( — 2“) E (6.2.12)
M

with E as the laboratory energy of the decay meson. Average values are:

(E,)/Ex =079 and (BE,)/E, =021 for 7 — uv (6.2.13)

(Eu)/Exk =052 and (E,)/Ex =048 for K — v (6.2.14)

It is a consequence of the kinematics that if one of the decay products has a mass close to
the parent meson, it will carry most of the energy. Since low energy muons are absorbed
in the atmosphere and decay with a high probability, only high altitude measurements
allow a precise measurement of muons that are most strictly associated with sub-GeV
neutrino events. A compilation of various atmospheric neutrino flux calculations are
shown in figure 6.2.1. As can be seen it consists basically of v, and v, neutrinos and
its antineutrinos. At very high energies (F, > TeV) neutrinos from charm production
become an additional source. A possible atmospheric v, flux is orders of magnitude less
than the v, flux. As can be seen from the atmospheric neutrino flux at first order, the
energy spectrum reflects the primary cosmic ray spectrum in the energy range from 10 to
100 GeV. At higher energies, it steepens asymptotically to E~7~!. The harder spectrum
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Figure 6.2.1: Comparison of atmospheric neutrino fluxes calculated for Kamioka averaged
over all directions [47]

is a consequence of the decay probability being proportional to E~!, while the hadronic
interaction length stays constant.

Another important feature for the PINGU detector is the ratio of positive to negative
muons in the atmosphere. The measured value of ~ 1.25 is nearly independent of energy.
It reflects the excess of protons over neutrons in the incident cosmic rays. But if this were
all, the charge ratio would go to zero at high energy because of multiplicity per collision
of produced pions (the parents of the muons) becomes very large so that one extra charge
becomes negligible. But this is not the whole story. Because of the steepness of the cosmic
ray energy spectrum, muons of a given energy come from relatively fast secondaries, i.e.
they reflect the projectile fragmentation region. Since the fragmentation region of the
proton reflects the momentum distribution of its quark, and since it has two u-quarks
of charge +2/3 each and only one d-quark (charge -1/3), positive pions are favored in
the fragmentation region. This causes an excess of positive over negative muons at all
energies [[48], [49]].

The zenith distribution for atmospheric neutrinos can be seen in figure 6.2.2. Neutrinos
enter the detector from both sides because the cross-section of neutrinos are so small
that they can pass the Earth’s interior without being absorbed as it is the case for the
atmospheric muons. The zenith distribution is not flat; more neutrinos enter the detector
from near the horizon. For small values of cos(6), the average difference in height needed
for the decay of a pion or kaon is small. With increasing | cos(#)| values, this difference
in height increases for muons, which results in a smaller number of electron neutrinos.
Therefore, the ratio of meson to electron neutrinos increases in these ranges [[44], [47]].

6.3 Neutrino cross-section

Neutrinos can interact with the nucleons in a medium over the exchange of charged W=*-
bosons in charged-current interactions (CC), and neutral Z%-bosons in neutral-current
interactions (NC). For neutrinos detection, the most important process at neutrino ener-
gies F, > 10 GeV is deep inelastic scattering, where the initial nucleon N is destroyed
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and a hadronic cascade X is produced:

w+N—=+X (CO) (6.3.1)

v+ N =+ X (NC) (6.3.2)

This hadronic cascade is produced in both interaction types, CC and NC. A lepton ¢
corresponding to the initial neutrino flavour is only produced in CC interactions. Thus,
the initial neutrino can be observed indirectly by detecting the secondary particles pro-
duced in these weak interactions. With the information from the CC interactions, NC
interactions are even less known, which make them very difficult to predict. This can be
seen in [50].
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Figure 6.3.1: (Anti-)Neutrino CC cross sections divided by the neutrino energy for dif-
ferent processes: Quasi-elastic scattering (QF), resonance production (RES) and deep
inelastic scattering (DIS) [50]

For energies below 10 GeV (which are relevant for PINGU), cross-sections of futher pro-
cesses like quasi-elastic scattering (QE scattering - nucleon remains intact) and resonance



6.4. EXPERIMENTAL CONSIDERATION 51

production (nucleon is excited to a resonance state) start to dominate. For energies above
10 GeV, the total neutrino cross-section increases almost with energy. Because of helicity
arguments, the cross-section of antineutrinos is a factor of about two lower than neutrinos
[50].

The charged leptons, produced in CC interactions, lose energy while travelling through
the medium due to various processes. In the GeV regime, electrons dominantly lose energy
by bremsstrahlung, —dFE /dx = Ey/ X with radiation length X, and muons by ionization,
described by the Bethe-Bloch equation [46]. Taus decay almost instantly (lifetime of
~ 10713 s) into hadrons in ~ 85% of the cases and induce further hadronic cascades.

6.4 Experimental consideration

Atmospheric neutrinos have the potential to resolve the octant of the atmospheric angle
03 via matter enhanced oscillation within the Earth. Resonant oscillation occurs either for
neutrinos in the case of the normal hierarchy, or antineutrinos for the inverted hierarchy.
Determination of the octant requires measurement of the energy and direction of Earth-
crossing atmospheric neutrinos with energies in the range 2 to 10 GeV. Massive detectors
(> Mton) are required to obtain sufficient signal statistics within a few years of operation.
Existing proposals use either water Cherenkov (PINGU, ORCA, HyperK), liquid Argon
TPC (LBNE, LBNO), or magnetized iron calorimeter (INO) detectors. Primary concerns
are detector properties such as total mass, energy resolution and angular resolution.

6.5 The Earth’s matter density profile

The Earth’s matter density profile is given by the Preliminary Reference Earth Model
(PREM) [51], shown in figure 6.5.1. It is based on measurements with seismic waves. The
inner Earth consists of three main density domains in each of which the change in density
is relatively slow: The mantle domain, the outer and inner core domain. The Earth’s core
consists mostly of iron mixed with light elements; its exact composition is not well known.
At the transition of outer core to mantle, the density decreases dramatically by a factor
of almost two, which has a significant impact on the oscillation probability of neutrinos.
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Figure 6.5.1: Matter density (color-coded) according to the Preliminary Reference Earth
Model (PREM). The solid line represents the density profile.
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6.6 Atmospheric neutrino oscillations

The oscillation probability of neutrinos depends on the neutrino energy and on the base-
line. For atmospheric neutrinos traversing the inner Earth, the baseline is a function of
the neutrino zenith angle. Thus, neutrino oscillation in the Earth and the effect of matter
can be described completely by contours of equal oscillation probability in the plane of
neutrino energy versus cosine of the neutrino zenith angle as shown in figure 6.6.1 for
various transition respectively.

The oscillation pattern for electron neutrinos shows several distinct features:

1. Electron neutrinos with cos(f) < 0.84 travel only through the mantle domain and
exhibit a MSW resonance with the main peak between 5 to 7 GeV.

2. The oscillation pattern of core-crossing electron neutrino trajectories (cos(f) > 0.84)
show three resonance ridges at E, > 3 GeV due to parametric enhancement.

3. Below 3 GeV, the core-crossing electron neutrinos exhibit an additional MSW reso-
nance with the main peak between 2.5 to 2.7 GeV.

4. For E, < 5 GeV and cos(f) < 0.84, the oscillation probability shows a regular pattern
as it is expected for vacuum oscillations.

Matter effects in the Earth are driven by 613; higher values lead to more distinctive effects,
and only occur because of 813 being non-zero. In figure 6.6.1, the effects of the 1-2 mixing
are not shown because these effects are only important for energies smaller than about
0.2 GeV, below the expected energy threshold of the PINGU detector.

The oscillations of atmospheric muon neutrinos are also affected by matter due to
their mixing with electron neutrinos. As one can see in the bottom plot of figure 6.6.1,
the regular oscillation pattern for vacuum oscillations is distorted in the energy region
below ~ 10 GeV. In this energy region, matter effects have the strongest effect on the
oscillation probability of electron neutrinos.

Oscillation of neutrinos are enhanced by matter in the case of normal neutrino mass
hierarchy while antineutrinos are not. The opposite is true in the case of inverted neutrino
mass hierarchy. Taking this into account, atmospheric muon neutrinos traveling through
the Earth facilitate to probe the neutrino mass hierarchy and are the subject of the study
on atmospheric neutrino oscillation with the PINGU detector [52].
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Sensitivity of PINGU to the octant of 053

All the tools and knowledge needed for the computations are described in the previous
chapters. In the beginning of this chapter, the introduction of the numerical analysis is
descripted and later the sensitivity to the octant of mixing angle 693 is shown for various
resolution functions for energy and zenith angle. The main idea for the simulations are
taken from this article [53]. More information can be found in these additional articles
[54] and [55]. The intention of this thesis is to go beyond this simulation by considering
new systematic uncertainties, neutrino fluxes and other input.

7.1 Earth matter effects in oscillation probabilities

Atmospheric (anti)neutrinos are produced in both v, and v, (7, and 7.) flavours. The
neutrinos, on their way of production in the atmosphere to the detector, undergo flavour
oscillations. On arrival at the detector, they produce the corresponding charged leptons
through charged current interactions on nucleons. Since the oscillated atmospheric neu-
trino "beam” is a combination of all three flavours, they produce electrons, muons, as
well as tau leptons (and their antiparticle) in the detector. Since the oscillated muon
type neutrinos arriving at the detector are a combination of the survived v, and the
flavour oscillated v, coming from v, produced in the atmosphere, the oscillation proba-
bility channels relevant for atmospheric muon neutrinos are the survival probability P,,
and transition probability P, (we neglect the tau contribution).
The quantity describing the neutrino mass hierarchy is:

Am?Zs = Am2, — (cos?(612) — cos(dcp) sin(fy3) sin(2612) tan(fa3)) Am3, (7.1.1)

The reason as follows: We can see the role of #13-driven Earth matter effects by the
equation 5.6.11 and the neutrino mass hierarchy is determined by these effects. For
f13 = 0, in the limit Am%l = 0, the oscillation probabilities becomes P, = 0 and P, is
the same for both hierarchies. However, for non-zero 613 # 0 we get a difference in P,
and P, between Am2, > 0 and Am%, < 0 due the earth matter effects. All would be
perfect, if it were not for the assumption Am3; = 0. For Amg; # 0, it turns out that
the survival probability P, becomes different for Amgl > 0 and Am%l < 0, even for
013 = 0. This aspect has been discussed in detail [[56], [57]]. To alleviate this issue we use
the definition 7.1.1 as a quantity for the neutrino mass hierarchy and define Amgﬁ >0
(Am?2; < 0) as normal hierarchy (inverted hierarchy) [53]. The impact of the definition of
the neutrino mass hierarchy (whatever to use Am3; or Am?%;) as a measure of the neutrino
mass hierarchy (the sign of these quantities) seems to have no difference in determining
the neutrino mass hierarchy, only the oscillation probabilities [55].

Even though the Amgﬁc depends on d¢p, which is unknown, it will only influence the
value of the effective mass splitting, not the sign of it. This can be used to make a good
measurement of cos(dcp) [57] and atmospheric neutrino can give the first hint of CP
violation [58].
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7.2 Description of numerical analysis

Since the PINGU detector measures charged leptons of the associated neutrino eq. 6.3.1,
the number of v,-like events expected in PINGU after T years of running the experiment
® (c0s(©))i+1 Eji
(Npw)ij = 27rNTT/ dcos(@)/ dE€piceVer(F) X
(cos(©)); E;

d2¢yu p d2¢ue p E (7.2.1)
[(dcos(@’)dE’ s d cos(©")dE' e“) occ(B) o
¢y, &y, _
(dcos(@’)dE’Pﬂﬁ + dcos(@’)dE’Péﬁ> UCC(E)}

where Np are the number of targets in the detector, T is the exposure time, € is the
detector efficiency, pice Veg is the effective mass of the detector, Vg is the effective volume,
d?¢o /dE'd cos(©') is the neutrino flux of flavour « at the South Pole [59], ooc(E) is the
neutrino cross-section given by GENIE. Since the detector is not magnitized, it will not
be able to distinguish between particle and antiparticle. For this reason, the number of
events from neutrinos and antineutrinos are added together.

R(E,E’) and R(©,©’) are the energy and angle resolution functions of the detector
respectively, and P, and P, are the muon neutrino survival probability and electron
neutrino to muon neutrino conversion probabilities respectively. The resolution functions
relate the true energy E’ and true zenith angle © with the reconstructed energy E and
reconstructed zenith angle © of the neutrino. We assume Gaussian functional form for
the resolution functions with widths:

1
op=a+bEGy oco=c- ﬂ (7.2.2)
EGeV

Since the final resolution widths for PINGU is still being estimated from detailed simula-
tions, two sets of values for the energy resolution width o corresponding to a = 0,b = 0.2
and a = 2,b = 0, and two sets of values for the angle resolution width og corresponding to
c¢=1(~60) and ¢ = 0.5 (=~ 30), where c is in radians (degrees), will be assumed. These
values for the resolution functions agree with that in the literature [[15], [19], [60], [61],
[62]]. The effective mass of the detector is read from [63] for the curve labelled "Triggered
Effective Volume, R=100m”. The probabilities P,, and P, are calculated numerically
solving the propagation equation of the neutrinos through the atmosphere and inside the
Earth, and using the PREM profile for the Earth matter density. For simplicity € = 1,
since any flat € can be easily adjusted against the exposure taken at the detector. The
index ¢ runs over the number of cos(©) bins in the data while j runs over the number of
energy bins. We will take cos(0) to run from —1 to 0 while the energy runs from 1 GeV
to 20 GeV. The data is generated for the oscillation parameters given in table 7.2.1 for
either the normal or inverted hierarchy and for a given value of sin?(623). The simulated
xZis fittedwiththewrongoctantsolutiono fsin?(fa3) for the theoretical event rates, allow-
ing the test variables |AmZ2g|, sin(0;3), sin®(f23) as well as the neutrino mass hierarchy
to vary in the fit. The statistical fit is performed using a x? function defined as

Nth Nex
9 . (
X = mlnﬁj Z [ Nex

ij

+ ng (7.2.3)

k
Nityh = Nij (1 + Zﬁjfs) +0(&2) (7.2.4)
s=1
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where N7 is the observed number of muon events in the it" cos(0) and j* energy bin
and ijh is the corresponding theoretically predicted event spectrum for the wrong octant
solution of fa3. The 7 is the 41" systematic uncertainty in the i*" cos(0) and j** energy
bin and & is the pull variable corresponding to the uncertainty w7;. Five systematic
uncertainties are included in the analysis. They are, a flux normalization error of 20 %,
a cross-section uncertainty of 10 %, a 5 % uncertainty on the zenith angle dependence
of the fluxes, a 5 % energy dependent "tilt factor” of the fluxes and a 5 % additional
overall uncertainty [[60], [64]]. The parameters |Am?%;| and sin®(26,3) are varied in the
fit obeying the contours (see figures 7.5.1 and 7.5.2) in the 30 range given in table 7.2.1.
For sin?(f23)(test), we vary it freely in the range [0.4 — 0.6] around the wrong octant for
any given sin®(fa3)(true). The values in the table comes from [65]. Finally, the x? is
computed for both the test hierarchies and the minimum x? is chosen.

Parameter | True value used in data | 3o range used in fit
Am 7.6 x 1075 eV? [7.1 — 8.2] x 1072 eV?
sin?(f12) | 0.323 [0.278 - 0.375]

|AmZg| 2.4 x 1073 eV? [2.1 — 2.6] x 1073 eV?
dcp 0 [0 — 27]

sin?(2013) | 0.093 [0.071 — 0.115]

Table 7.2.1: Benchmark true values of oscillation parameters set in the simulations, unless
otherwise stated. The range over which they are allowed to vary in the 3o contours.
sin®(023) (true) is varied in the range [0.4 — 0.6] around the wrong octant sin®(0s3) for
any given sin®(0z3) (true). In the simulations, Am3,, sin®(02) and Scp are fizved at their
true value.

7.3 Neutrino flux

The fluxes of neutrinos reaching the Earth from the atmosphere are vital to this project.
Taking the data (ic79) of the neutrino fluxes released by the IceCube collaboration [[66],
[67]], it is superimposed to the low energy region by a x? fit; however only the neutrino
fluxes. The antineutrino fluxes have been made by taking the neutrino fluxes and re-
ducing it by ~ 30 % since there are an overproduction of positive charged pions over
negative charged pions. This gives the reason to reducing the antineutrino fluxes and
that phenomenon is described in a previous chapter. The fluxes are shown in figure 7.3.1
with the best chi square fit plus one sigma band. The colors are given as such: Muon
neutrino (red), muon antineutrino (light green), electron neutrino (dark green) and elec-
tron antineutrino (pink). Also shown in the plot are simulations of the neutrino fluxes
from [59] where the colors are given the flavour of neutrinos: Muon neutrino (dark blue),
muon antineutrino (cyan), electron neutrino (purple) and electron antineutrino (orange).
The data points and simulations do not lay on top on each other since the ’knee’ in the
primordial spectrum is neglected in article [59]. The atmospheric fluxes used in various
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IceCube simulations originate from a Honda model, but have an extenstion which takes
the ’knee’ into account [[68], [69]].
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Figure 7.3.1: Power-law fit to the Icecube data of the flux of neutrinos. Also shown is
simulations of fluz from [59].

7.4 GENIE cross-section

GENIE (Generates Events for Neutrino Interaction Experiments) is a universal object-
oriented neutrino Monte Carlo generator supported and developed by an international
collaboration of scientists whose expertise covers a very broad range of neutrino physics
aspects, both phenomenological and experimental. GENIE is currently being used by
T2K, NOvA, MINERvVA, MicroBooNE, ArgoNEUT, LAGUNA-LBNO, LBNE, INO, Ice-
CUBE, NESSIiE and others. To give a familiar picture of the cross-section plus the uncer-
tainty, it is plotted in figure 7.4.1. The cross-section in figure 7.4.1 has similar shape as
the cross-section in figure 6.3.1 in the previous chapter. However, more low-energy points
are needed so that the theoretical predicted cross-section is the same as the experimental
evidence. For more technical information, look at [[70], [71], [72]].

7.5 Contour plots from global data

The measurement of the reactor angle 613 had influence on the other mixing parameters.
The solar angle 012 did not change much, however the atmospheric angle 633 changed
substantially. The figures 7.5.1 and 7.5.2 gives the allowed contours for some of the
mixing parameters [73]. There are several plots in each figure; top is for normal hierarchy
whereas the bottom is for inverted hierarchy. The three sets of columns add more data in
the global fit; left: LBL accelerator + solar + KamLAND, middle: + SBL reactor data
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Figure 7.4.1: GENIE generated cross-section for the charged v, interaction.

and right: + SK atmospheric data. The colors of the contours are different significance:
Pink (10), blue (20) and black (30).

The first figures show the contour of the (sin?(fa3), Am?)-plane whereas the other fig-
ures show the (sin?(f3),sin?(13))-plane. From these plots there is a slightly preference
for non-maximal mixing (fa3 # 45°). However, it gets diluted since T2K data prefer maxi-
mal mixing whereas MINOS and atmospheric data prefer non-maximal mixing. Moreover,
the indications about the octant appears to be unstable in different combinations of data
[73]. These plots are illustrative and gives information about their behavior as the param-
eters are varied. However, the parameters shown in the figures and the ones used in the
analysis are completely different. In the analysis is used sin?(26;3) and Amgﬂ whereas in
the figures are shown sin?(613) and Am? = m3 — (m? + m3)/2 = Am2, — Am3,/2. How-
ever, by folding the mixing parameters correctly, then the mixing parameters used in the
analysis also obeys their own contours. There are only a minimal difference between the
contours shown in article [73] and the contours for the mixing parameters sin?(fa3)(test),
sin?(2613) and Am?g.

7.6 Event rates

The event rates were calculated by eq. 7.2.1 and the fine-binned distribution of events
with A(cos(f)) = 0.025° and AE, = 0.5 GeV are shown in figure 7.6.1. The number of
events decreases with F, and the pattern of events follows the oscillatory picture due to
the main v, — v, mode of the oscillations with a clear distortion in the resonance region.
In the high event density bins the number of events reach ~ 120, and the total number
of events are about O(70.000).

The neutrino fluxes for each neutrino flavour are built into the Monte Carlo generator
and the events are calculated as follows. Every v, event has a characterized true energy
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Figure 7.5.2: As in figure 7.5.1, but in the plane (sin®(023), sin®(0;3)) [73].

and true zenith angle given by the event generator. For this neutrino energy and neutrino
zenith angle, the probabilities P,, and F,, are calculated numerically for any given set
of oscillation parameters. A random number R between zero and one is generated. If
R < P, it is classified as a v, event, whereas if R > (P, + P,,), then it is classified
as a vy event. However, if it happens P, < R < (Pey + Poy), then it means that this
event is an atmospheric v, which has survived as a v, and is hence selected as muon
neutrino event. Only the muon neutrino events are relevant for us, while the others are
discarded. Since we do this for a statistically large event sample, we get a v, "survived”
event spectrum that follows the survival probability. One could also get muon neutrino
events in the detector from oscillations of atmospheric v.s to v,s. To find these events,
they are generated using the atmospheric v, fluxes but v, charged current interactions
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Figure 7.6.1: The fine-binned distribution of the number of v,-like events in the
(Ey,,cos(0)) plane that can be collected by the PINGU detector during 1 year; NH is
assumed.

in the detector, with the oscillation probability part of the code switched off. In order
to get the oscillated muon neutrino event from this sample, another random number S
is generated to classify these events. That is, if S < F,,, then the event is taken as an
"oscillated” v, event, which is the only part relevant for us. The net number of muon
neutrino events are obtained by adding the "survived” and the "oscillated” v, events.

7.7 Sensitivity to the octant of the atmospheric angle 693

Ever since the MINOS experiment have released their results of the atmospheric angle
of sin?(2693) > 0.90 at 90 % confidence limit [74] (more recent results of sin?(fa3) =
[0.35 — 0.65] (90 % C.L.) for NH and sin?(fa3) = [0.34 — 0.67] (90 % C.L.) for TH [[34],
[75], [13]]), the scientific community have speculated if the atmospheric angle is maximal
or not. The global fit of neutrino oscillation data prefers non-maximal, however this is
diluted by the data samples from T2K which prefers maximal. This gives the scientific
community an opportunity to measure the atmospheric angle accurately since the current
precision of the mixing angle 63 is not good enough to solve this issue (see figure 4 in
[76]). The present and future neutrino experiments have entered the precision era.

However, there is a problem, namely a degeneracy if the atmospheric angle is non-
maximal (i.e. 623 # 7). This can be seen from this formula:

1
sin”(623) = 1 - 5 [1 +4/1— sin2(2923)] (7.7.1)

As seen from eq. 7.7.1, if sin?(2623) = 1, then sin?(fa3) = 0.5. This problem enters
in the transition probabilities since it depends mostly on sin?(26s3)-terms which do not
have any sensitivity to the octant. However, the addition of sub-dominant terms in the
oscillation probabilities gives sensitivity to the octant since these terms contains sin(fa3).
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This breaks the degeneracy and gives sensitivity to the octant of the atmospheric angle
623, so it is distinguable between 23 being in the first octant (i.e. 623 < ) or the second
octant (i.e. fo3 > 7).

An idea for a possible way to distinguish between lower or higher octant is given in [77]
where they l(;ok at the transition probabilities [78] written as a series expansion of sin(f;3)
|[Am
EEA
two solutions are reparameterizing the atmospheric mixing angle as fo3 = 7 + ¢. Then
the probabilities have sensitivity to the sign of € and can possibly be able to determine
the value of e. However, there is a dop degeneracy in the formulas which makes the
determination of the sign of € more difficult. This idea was also for constant matter
potential which simplifies the calculation. By considering varying matter, it becomes
even more difficult.

With the event rates calculated, a x? fit is performed by using eq. 7.2.3 where the pull
variables &; are minimized. The difference Ax? = x?(NH) — x*(IH) is plotted on the
y-axis since the neutrino mass hierarchy is still unknown. In the simulations, the number
of years running the experiment is three where the result of our analysis to the octant of
23 is shown in fig. 7.7.1.

The figures shows the impact of a variety of things on the octant sensitivity at
PINGU. Let us start by looking at the impact of the resolution functions on the oc-
tant sensitivity. For top left panel, if the normal hierarchy was true and the test hi-
erarchy was kept fixed as normal, the wrong 053 octant could be ruled out more than
30 C.L. if sin®(fa3)(true) < 0.427 and sin’(fe3)(true) > 0.59 for op = 0.2E(, and
oo = 0.5,/1GeV/E(, . To show the impact of the resolution functions on the oc-
tant sensitivity, the simulations were repeated for different combinations of og and og.
Keeping 09 = 0.54/1GeV/E(,, and changing og from 0.2E(. to 2GeV reduces the
statistical significance of the octant measurement and a 3o sensitivity is expected for
sin?(fa3)(true) < 0.418 and sin®(fa3)(true) > 0.6. The impact of worsening the zenith
angle resolution have even a shaper effect on the sensitivity. This can be seen by keep-
ing op = 0.2E(,y and changing ce = 0.5,/1GeV/E(, . to 0o = 1.0,/1GeV/E(,, this
reduces the statistical significance of the octant measurement significantly and now there
is only 20 sensitivity for sin?(f23)(true) < 0.417 and sin?(f23)(true) > 0.586. For the case
where both energy resolution and angle resolution are worsened to o = 2GeV and gg =
1.0,/1GeV/E(,,,, the wrong octant can be ruled out only at 20 for sin?(fa3)(true) < 0.403
and sin?(fa3)(true) > 0.6.

The top right panel shows the sensitivity of PINGU to the octant of 693 if the inverted
hierarchy was true and the test hierarchy was kept fixed at inverted hierarchy. For inverted
hierarchy the sensitivity falls significantly, and even for sin?(fa3)(true) = 0.4, the wrong
octant lies just below the 20 C.L. As can be seen from the figures, there is a difference
between if the true hierarchy is normal or inverted. The reasoning for this difference can
be found in [53] where the final argumentation gives:

X*(NH)
4

and a = to O(«) for constant matter potential. A way to distinguish between these

XA(ITH) < (7.7.2)

This rough comparison between the expected octant sensitivity between normal and in-
verted mass hierarchy cases are seen to agree rather well with the results.

Another striking result from the plots are the difference between figures in the top and
bottom panel. For the true inverted hierarchy case there is no difference in keeping the
test hierarchy fixed or letting it vary in the fit. It has no impact on the octant sensitivity
of the experiment. However, for true normal hierarchy there is a significant reduction
in the Ax? for low values of sin?(fa3)(true). In particular for sin?(fe3)(true) = 0.4, the
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Figure 7.7.1: Ax? for the wrong octant obtained from the PINGU data with 3 years
statistics, as a function of sin®(f3)(true). The left panel is for normal hierarchy taken
as true while the right panel is for inverted hierarchy taken as true. In the top panels, the
X? is varied over the oscillation parameters, sin®(6s3), sin®(260;3) and \Amfﬁ] as described
i the text, but the mass hierarchy is held fixed to the assumed true case in the fit. In
the bottom panels, the x? is varied over the oscillation parameters, sin®(0s3), sin®(260;3)
and |Amfﬁ\ as weel as the mass hierarchy, keeping mass hierarchy free in the fit. The
four lines are for the four possible combinations for the choices of the energy and angle
resolution of PINGU. See appendix for larger verions.

statistical significance of the octant determination from 3 years of PINGU data, comes
down from Ayx? = 16.9 to Ax? = 7.3 for the optimal resolution case of o = 0.2E¢,. and
oo = 0.5\/1GeV/E{, . For the other choices of the combination of og and og we also
see a similar trend, wherein the data with true normal hierarchy is fitted with the wrong
test inverted hierarchy, reducing thereby the octant sensitivity from PINGU. However, for
sin?(fa3)(true) > 0.44 the variation over hierarchy does not have any impact what-so-ever
on the octant sensitivity of PINGU, even for the case of true normal hierarchy.

With the 3 years of data, there is a region around sin?(fa3)(true) ~ 0.5 where the oc-
tant sensitivity disappears. This disappearence comes from the variation of the oscillation
parameters in the fit. If they were fixed, then the sensitivity to the octant would display
a parabola with only one point being zero, namely in sin?(fa3)(true) = 0.5. However,
this "valley” can become visible by including more data from PINGU and/or include data
from other experiments which can further constrain the other oscillation parameters.
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7.8 Systematic uncertainties

In this section, the systematic uncertainties and their influence on the Ax? are examined.
As mentioned before, there are 5 systematic uncertainties. They are a flux normalization
error of 20 %, a cross-section uncertainty of 10 %, a 5 % uncertainty on the zenith angle
dependence of the fluxes, a 5 % energy dependent "tilt factor” of the fluxes and a 5 %
additional overall uncertainty.

In order to study the impact of these systematic uncertainties on the octant, the
sensitivity is shown with and without systematic uncertainties in figure 7.8.1. Systematic
uncertainties are the combined effect of theoretical and experimental uncertainties and
reduces the sensitivity of the analysis.

Three of the five systematic uncertainties, namely flux normalization, cross-section and
overall uncertainty has minimal impact on the final result. The reason can be understood
from the fact that the atmospheric neutrinos comes from all zenith angles and over a
wide range of energies. The flux normalization uncertainty is the same for all bins, while
the Earth matter effects are important only in certain zenith angle bins and range of
energies. Therefore, the effect of the flux normalization uncertainty get cancelled between
different bins. On the other hand, the "tilt factor” could be used to modify the energy
spectrum of the neutrinos and the zenith angle uncertainty allows changes to the zenith
angle distribution. Therefore, these errors do not cancel between the different bins and can
dilute the significance of the data. In particular, the effects of the zenith angle and energy
dependent systematic errors on the atmospheric neutrino fluxes have a major impact on
lowering the Ax? for the octant sensitivity.

The impact of the systematic uncertainties are shown in figure 7.8.1. For each plot
there is a specific energy resolution given in the upper right corner of the plot. There
the angular resolution is also given, though with a constant c. For each line there is a
specific constant ¢ shown in the plot legend. As can be seen, the dashed lines have ¢ = 0.5
rad while the solid lines have ¢ = 1.0 rad. The red color means there is no systematic
uncertainties in the fit whereas the black has all five systematic uncertainties included
in the fit. The other colors in the plot have one specific systematic uncertainty switch
off: Overall systematic (dark blue), cross-section (cyan), flux normalization (grey), energy
dependent "tilt factor” (purple) and zenith dependence (green). As can be seen in the
figures, the systematic uncertainties that have the most impact on the y? are the energy
and zenith dependent systematic uncertainties while the other uncertainties as mentioned
before have minimal impact as mentioned before. On the right side of the plots are shown
the significance level. Again the plots with normal hierarchy have higher significance than
the plots with inverted hierarchy.

7.9 Another relevant systematic uncertainty

In addition to the systematic uncertainties in the reconstruction of the incident neutrino
and energy, we wish to highlight the particle identification (PID) uncertainty as another
limiting factor for octant sensitivity. The five systematic uncertainties were original from
the article [53], whereas the sixth systematic uncertainty, a PID uncertainty is included
in this section. This is done by introducing a regularization function to the event rate eq.
7.2.1, reducing the effective mass of the detector. This uncertainty scales as a function of
energy, so that only a certain amount of the energy will get deposited into the detector.
The charged current v, will only deposit 30 % of its true energy at 3 GeV into the detector,
70 % at 8 GeV and 90 % at 13 GeV. At 15 GeV, it will be a 100 % up to 20 GeV. There
will be a correlation between the PID uncertainty and those concerning the energy and
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Figure 7.8.1: Impact of systematic uncertainties on the Ax? for the wrong octant obtained
from the PINGU data with 8 years statistics, as a function of sin®(6s3)(true). The solid
lines show the Ax? with og = 1.0+/1Ge V/EL.,y, while the dashed lines are obtained with
oo = 0.5\/1GeV/E,,,. The energy resolution is given in the plot. We show the results
for all combinations of og and og. The left panel is for normal hierarchy while the right
panel is for inverted hierarchy. The test hierarchy is kept fixed at the true value for all
cases. See appendiz for larger versions.

angular dependence of the atmospheric neutrino flux.

The influence of this systematic uncertainty is shown in figure 7.9.1 which shows
the old fit with only five systematic uncertainties and the new fit with six systematic
uncertainties. As can be seen from the figure 7.9.1, this uncertainty have some impact
on the octant sensitivity since the low-energy of the v, gets poorly determined. The
parametric enhancement and the MSW effect gives a higher signal to the octant which
happens in the region below 10 GeV, so if the energy of the neutrinos are more poorly
determined by the PID uncertainty, the signal is reduced. This is the reason why the PID
uncertainty has a bigger influence on the octant sensitivity than the flux normalization
uncertainty. With the reduction of the sensitivity to the octant, a longer time is needed
for making the same confidence level with this sixth systematic included than if it was
without this systematic uncertainty. From figure 7.9.1 in top left corner, you can see that
with the resolution function o = 0.2E(, and 09 = 0.5,/1GeV/E(, ., the reduction
from 30 to below 30 for sin?(fa3)(true)> 0.428 and sin?(fa3)(true)< 0.590 whereas for
the other combinations of resolution functions, the sensitivity also gets worse. In the
top right corner of figure 7.9.1, the old fit with resolution functions o = 0.2E¢,, and
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o9 = 0.5,/1GeV/E(, is already below 20 and the inclusion of the sixth systematic
uncertainty with the same resolution functions gives a 1.40 C.L for sin?(fa3(true)< 0.423
and sin?(fa3)(true)> 0.586. The other combinations of resolution functions gives a C.L.
below 20 and even below 1o for some combinations of resolution functions, with or without

this sixth systematic uncertainty.
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Figure 7.9.1: Same as 7.7.1, but also fits with the sixth systematic uncertainty in particle
identification. See appendiz for larger versions.

With the results in the various plots from different subsections, a comparison between
the simulations from the IceCube-PINGU Collaboration in [15] and this thesis’s results
are presented. In chapter 6 of [15] is an analysis of the sensitivity to non-maximal 6o3
mixing. The main result is given in figure 21 and 22 which show the contour plot of
sin?(f23) vs. Am2,, for both hierarchies and both octants. They show the separation is
achievable in 5 years between the current global best fit and maximal 83 mixing for some
combination of the true f23 octant and the true mass hierarchy. The octant sensitivity
is highly dependent on the true mass hierarchy and true 623 octant. This can be seen in
the two plots of figure 21 and 22 in [15]. If the true oscillation parameter of fa3 lies in
the first octant and the true hierarchy is normal, PINGU may exclude the entire second
octant more than 50. If the oscillation parameter lies in the second octant, then PINGU
may exclude the first octant after five years by 3¢ for normal hierarchy, or by 1o for an

inverted hierarchy.

However, there are differences between the results in [15] and the plots in this thesis.
Their simulations is realized in 5 years of data whereas the projected time in this thesis is 3
years of data. This means they have accumulated more data which gives more significance
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to the octant. This difference can easily be fixed by a scaling factor to the event rates.
However, if Ax? ~ 0, then the scaling would not help and insight of the octant sensitivity
around sin?(fa3) = 0.5 would be lost. However, if the simulations are for 5 years of data,
the sensitivity would rise in the outer edges of this "valley”. A second and more crucial
thing is that the resolution functions in [15] are fixed by a constant, i.e. op = 2.5 GeV
and oy = 8.5° whereas in reality they depend on the energy. In a comparison, the og
is not that important since the energy resolution function could be fixed by a constant.
However, by fixing the oy to a constant increases the signal since there is a cross-over
where the constant oy performs better than one which depends on the energy. This cross-
over happens near 10 GeV (for ¢ = 0.5 rad) which is a crucial energy since the most
sensitivity to the octant is in the low-energy region from 1 to 10 GeV. If the constant in
front of the square root in the angular resolution function is one, then the performance is
even worse compared to a constant oy.






Impact of different flavour symmetries on the
analysis

In the previous chapter the analysis was done from global fit data and without the knowl-
edge of which flavour symmetry is correct. However, in this chapter there is given a
introduction to flavour models and a comparison between different flavour symmetries.
By implementing various flavour symmetries, you will get different sensitivities to the
octant of the atmospheric angle. With this in hand, you can constrain flavour models as
the family symmetry. First is given a introduction to group theory which is an essential
part of flavour models and gives the allow terms in the Lagrangian and output of oscilla-
tion parameters. Thereafter will be shown some examples of flavour symmetries used in
models. These models are not correct any more since the prediction of mixing angles are
not in the allow range from neutrino data. However, it is suppose to show the idea behind
flavour models in the use of various flavour symmetries to explain the current neutrino
oscillation parameters.

8.1 Group theory

Non-Abelian (as well Abelian) discrete symmetries appear to play an important role in
understanding the physics of flavour. These are described by group theory and this is a
brief introduction to the main mathematical concepts of finite group theory. A group G
is a set consisting of elements {g;} together with a rule for multiplication. They satisfy
the following properties [79]:

Closure under multiplication: If g; and go are in G, so is g1 - g2.

Associativity: For any three elements g1, g2, g3 € G, g1 - (92 - g93) = (91 - g2) - g3-

Identity: There exists an element e € G such that e - g = g for every g € G.

Inverse: For every g € G there exists an inverse, ¢! € G, such that g - ¢~ =

g_l-g:e.

The most basic way of defining a group is given in terms of the multiplication table, where
the result of each product of two elements is listed. In the case of the smallest non-Abelian
finite group, the permutation group S3, we have: The six elements are classified into the
identity element e, elements b; whose square is e and finally elements a; for which the
square does not yield e but, as can be seen easily, the cube does. It is generally true for
any finite group that there exists some exponent n for each element g such that ¢g" = e.
The smallest exponent for which this holds is called the order of the element g. This is not
to be confused with the order of a group G which simply means the number of elements
contained in G.



70 8.1. GROUP THEORY

53 e aj a bl b2 b3
e e a1 as bt by b3
al al as € bQ bg bl
a9 a9 e al b3 b1 bQ
b1 b1 b3 b2 & ag aq
b2 bg bl bg al e a9
b3 b3 bg b1 a9 al &

Table 8.1.1: Multiplication table of the permutation group Ss

8.1.1 Group presentation

Clearly, the definition of a finite group in terms of its multiplication table becomes cum-
bersome very quickly with increasing order of G. It is therefore necessary to find a more
compact way of defining G. Noticing that all six elements of S3 can be obtained by mul-
tiplying only a subset of all elements, we arrive at the notion of generators of a group.
Denoting a; = a and b; = b, we obtain ay = a? as well as by = ab and b3 = ba. In
other words, a and b generate the group S3. Being the group of permutations on three
objects which is isomorphic to the group of symmetry transformations of an equilateral
triangle, a corresponds to a 120° rotation and b to a reflection. This observation leads to
the definition of S35 using the so-called presentation

(a,bla® = b* = e,bab™ ! = a7 1) (8.1.1)

where the generators have to respect the rules listed on the right. Depending the these
presentation rules, a group can be defined uniquely in a compact way. Unfortunately, such
an abstract definition of a group is not very useful for physical applications as it does not
show the possible irreducible representations of the group. We therefore quickly continue
our journey through the fields of finite group theory towards the important notion of
character tables.

8.1.2 Character table

In order to understand the meaning of a character table, is it mandatory to introduce the
idea of conjugacy classes and irreducible representations. Conjugacy classes are subsets
of elements of G which are obtained from collecting all these elements related to a given
element g; by conjugation gg;g~', for all ¢ € G. The union of all possible conjugacy
classes is nothing but the set of all elements of G. In the case of S5 we find three different
classes:

1Y (1) = {glg~|g € S} = {1} (.1.2)
2C3(a) = {gag'|g € S3} = {a,a®} (8.1.3)
3C2(b) = {gbg~t|g € S3} = {b, ab, ba} (8.1.4)

Here we have used the notation N;C™i(g;), where g; is an element of the class, N; gives
the number of different elements contained in that class, and n; denotes the order of these
elements, which is identical for all gg;g~' with g € G.

The other ingredient for constructing a character table is the set of possible irreducible
representations of the group GG. In general non-Abelian groups can be realized in terms
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of 7 X r matrices, where the positive intergers » depend on the group. Then, the abstract
generators of a group are promoted to matrices which satisfies the presentation rules. Such
matrix representations are called reducible if there exists a basis in which the r x r matrices
of all generators of G can be brought into the same block diagonal form. If this is not
possible, the representation is called irreducible. Clearly, the trivial singlet representation
1, where all generators of G are identically 1, satisfies any presentation rule and is thus an
irreducible representation of all groups. In the case of S3, the irreducible representations
compatible with the presentation rules of eq. 8.1.1 take the form:

l:ia=1, b=1 (8.1.5)

U:a=1, b=-1 (8.1.6)

627r7l/3 0 0 1
(7 0) (1) o

The fact that Ss has three irreducible representations and also three conjugacy classes is
not a coincidence. It is generally true that the number of irreducible representations of a
finite group is equal to the number of its conjugacy classes. Moreover, summing up the
squares of the dimensions of all irreducible representations always yields the order of the
group G. For example, in S3 we get 1! + 12 + 22 = 6. These two facts can be used to
work out all irreducible representations of a given group G.

In the case of irreducible representations r with r > 1, the explicit matrix form of
the generators depends on the basis. In order to obtain a basis independent quantity,
one defines the character Xé%] of the matrix representation of a group element g; to be its
trace. Since the elements of a conjugacy class are all related by gg;g~! with g € G, it is
meaningful to speak of the character XEI] of the elements of a conjugacy class i. There-
fore one can define the character table where the rows list the irreducible representations
and the columns show the conjugacy classes. Using eq. 8.1.5-8.1.7, we find the following
character table of S3.

Ss | 1C'(1) 2C3(a) 3C3(b)

R 1 1
! 1 -1
2|2 -1 0

Table 8.1.2: Character table of the permutation group Ss

Defining a group in terms of its character table is much more suitable for physical appli-
cations than the previous definitions. First, it immediately lists all possible irreducible
representations which might be used in constructing particle physics models. Secondly,
it is also straightforward to extract the Kronecker products of a finite group G from its
character table.

8.1.3 Kronecker products and Chebsch-Gordan coefficients

Multiplying arbitrary irreducible representations r and s

r@s= drst)t (8.1.8)
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one can calculate the multiplicity d(r,s,t) with which the irreducible representation t
occurs in the product by

1 T S *
d(r,s,t) = N Z Nix%]ng]xgﬂ (8.1.9)

where the sum is over all classes. N denotes the order of the group G and the asterisk
indicates complex conjugation. With this, we obtain the following non-trivial Kronecker
products from the S3 character table:

el =1 (8.1.10)
1'®2=2 (8.1.11)
202=1+1"+2 (8.1.12)

The Kronecker products are necessarily independent of the basis of the irreducible rep-
resentations r with » > 1. When formulating and spelling out the details of a model,
particular bases have to be chosen by hand. With the bases fixed, it is possible to work
out the basis dependent Clebsh-Gordan coefficients of a group. Denoting the compo-
nents of the two multiplet of a product by «; and 3;, the resulting representation with
components v, are obtained from

=Y b (8.1.13)
Z‘)j
where cfj are the Clebsch-Gordan coeflficients. These are determined by the required
transformation properties of the components 7 under the group generators. In the case
of S3 using the basis equations 8.1.5-8.1.7, one gets

191 =1 af (8.1.14)
/ 61
19252 a (8.1.15)
—B2
202—=1 aify+afr (8.1.16)
2021 ai1f—asb (8.1.17)
2022 (0‘262> (8.1.18)
=T 7 a1

where «; refers to the first factor of the Kronecker product and §; to the second. We
conclude our discussion of the most important concepts in finite group theory by pointing
out that - due to the choice of convenient bases - a representation which is real (that is
for which there exists a basis where all generators are explicitly real) may have complex
generators. This is for instance the case for the doublet of S5 in the basis of equations
8.1.5-8.1.7.
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8.1.4 Finite groups with triplet representations

For applications in flavour physics, we are interested in finite groups with triplet rep-
resentations. They can be found among subgroups of SU(3) and fall into four classes
[79]:

e Groups of the type (Z,, X Z,,) x S3
e Groups of the type (Z, X Z,,) X Z3
e The simples groups As and PSLy(7) plus a few more "exceptional” groups

e The double covers of the tetrahedral (A4), octahedral (S4) and icosahedral (As)
groups

The latter are subgroups of SU(2), whose triplet representations are identical to the
triplets of the respective rotation groups. Many of the physically useful symmetries are
special cases within these general classes.

For instance, Sy4, the natural symmetry of tribimaximal mixing in direct models is
isomorphic to A(6n2) = (Z, x Z,) x S3 with n = 2. The presentation rules of A(6n?)
can be given in terms of four generators, a, b, ¢, d:

=0 =(ab)?=c"=d"=1, cd=dc (8.1.19)

aca”' =c '™, adaT'=c¢, beb'=d7', bdb'=ct (8.1.20)

The dimensions of all irreducible representations can only take values 1, 2, 3 or 6. A
faithful triplet representation is found, e.g. in the following set of matrices

010 0 0 1 n 0 0 10 0
a=[0 0 1|, b=—(0 1 0], c=|0 o7t 0|, d={0 n 0
1 00 1 00 0 0 1 0 0 nt
(8.1.21)

where n = €27/3. With n = 2 this triplet representation is explicitly real, and therefore

does not correspond to the basis in which the Sy order three generator T is diagonal and
complex. To make connection to the Sy triplet generators S, U and T" we have to perform
the basis transformation

S = wdw™, U = w(aba w1, T = waw™? (8.1.22)
where
1 1 1 1
w=-—[1 w w? (8.1.23)
V3 1 w? w

2mi/3 —2mi/3

with w = e and w? = e . This shows how the tribimaximal Klein symmetry
Zo X Zs of the neutrino mass matrix in the diagonal charged lepton basis, generated by

S:

Wl

100
2 -1 2|, U=—[0 0 1 (8.1.24)
010

is inherited from A(24) = (Z3 x Z3) x S3: One Zy factor (namely S) originates from the
first factor, Zs x Zs, and the other (namely U) is derived for the second, Ss.
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Another series of groups can be obtained from the presentation of eq. 8.1.20 by
simply dropping the generator b, and consequently all conditions involving b. This results
in the group A(3n?) = (Z, x Z,) x Z3 which only allow for irreducible representations of
dimensions 1 and 3. The case with n = 2 generates the tetrahedral group A4 which will
be discussed later. With the formal introduction to group theory it will be shown where
the mixing matrix enters in the field of neutrino oscillation.

8.2 Flavour symmetries

The experimental efforts of the last decade have shown that neutrinos do mix, and the
mixing angles have been determined to a great degree of accuracy. The question is whether
the elements of the mixing matrix Uppsng, and ultimately the elements of the lepton mass
matrices, are simply random numbers or whether they point to some deeper structure or
symmetry. It is natural to imagine that there is a family (flavour) symmetry that links
the three lepton families. The weak interaction terms involving W and lepton fields are
given by:

g o

Lwe, = EWJ(UJLUEL)WVE’)/MKILQ + h.c. (8.2.1)

The lepton mixing matrix Upysns depends on mixing in both the charged lepton and
neutrino sectors given as:

Upnns = Ul Ut (8.2.2)

The unitary matrices Uy;, and U, diagonalize the charged lepton and neutrino mass
matrices respectively, i.e.

Ul MyUsg = a0y, (8.2.3)

U;LMVU,,R = mkdkj (8.2.4)

where mq (o = e, u, 7) and my, (k = 1,2,3) are the charged lepton and neutrino masses
respectively. The SM symmetries do not constrain the form of the mass matrices; the
matrix M; can be any 3 x 3 matrix. The addition of a family symmetry, Gtamily, extends
the SM symmetries to

G=8U3)c xSU2)L xU(1)y x Gramily (8.2.5)

which constrains the mass matrices further, requiring that the Lagrangian remain invari-
ant under the following transformations of the three generations of left-handed lepton
doublets, right-handed charged lepton singlets and neutrinos:

LL—>XLLL €R—>XR€R V—)XZ,I/ (826)

The unitary matrices X,,, X7 and Xg will belong to a representation of some symmetry
group (Gfamily), thus constraining the form of the mass matrices by:

M, = XIM,X, (8.2.7)

My = X} M Xg (8.2.8)

The models in the literature look to find an underlying symmetry that can explain the
pattern of neutrino mixing [[80], [81]]. Hereafter are given examples of flavour symme-
tries used to predict specific mixing matrices. These are not correct any more due to the
discovery of the non-zero #13. However, they are only to give the idea behind the use of
flavour symmetries to explain neutrino oscillation and they give a good zero order approx-
imation of the mixing matrix. Thereafter, you could extend the model by implementing
various effects which can accommodate the current mixing matrix.
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8.2.1 A p-7 symmetric mass matrix

A class of models proposes a mass matrix that is invariant under exchange of the u and
7 elements. In the basis where the charged lepton mass matrix is diagonal, the neutrino
mass matrix, M, is diagonalized by the unitary mixing matrix U, i.e.:

UTM,U = mydy; (8.2.9)

The neutrino masses are given by my for k = 1,2,3. Now, if M, is p-7 symmetric then

ry vy
M,=MW) =1y 2 w (8.2.10)
y w oz
and atmospheric mixing is maximal (|U,3| = |Urs|). This symmetry can be represented
by the matrix
100
T=(0 01 (8.2.11)
010

so that TM,T = M,, which is a Zo symmetry. Diagonalizing the mass matrix in eq.
8.2.10 gives the mixing matrix:

cos(f12) sin(f12) 0O
(

U— _Sin\(/%m) Cosy%m) % (8.2.12)
__sin(f12)  cos(612) 1

V2 vz V2

If the solar mixing angle is set to sin?(f15) = %, a somewhat ad-hoc estimate, the matrix
eq. 8.2.12 becomes the tribimaximal (TBM) matrix:

2 1 0
o B
Urpm = —? ? 751 (8.2.13)
V6 VB V2

8.2.2 (5 and 53 x Sy symmetry

This model was first introduced by [82], who proposed a simple model based on two
discrete symmetries. Their initial idea is the mass matrices are shown to be related to
the symmetry groups C3 and S3 and their class operators. In order to reproduce TBM,
one can start with mass matrices of the form [82]

a b b z 0 y
Mpy=1|b" a b M,=10 2z 0 (8.2.14)
b b a y 0 =z

where a,b,b* are related to the charged lepton masses, and x,y, z are related to three
independent neutrino masses. The matrix M, is of circulant form, and can be generated
by a C3 symmetry (a cyclic permutation of three objects), whereas the matrix M, is
generated by an Sy x S symmetry. For an Abelian symmetry, a mass matrix that is
invariant under the regular representation of the group is a linear combination of the
representation matrices themselves [83]. In the case of Cj, the regular representation is
given by

100\, /010 /001
0o10|,[loo1],[1t 00 (8.2.15)
001/ \1 00/ \o1o0
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and it is obvious that the matrix My in eq. 8.2.14 is a linear combination of the matrices
in eq. 8.2.15. The mass matrices M, and M, in eq. 8.2.14 are diagonalized by

1 1 1 1 1 1 0 -1

UZL = UZR =— |1 w w2 and U,,L = UI/R =—10 \@ 0 (8.2.16)
V3L w2 W V21 0 1

respectively, where w = €2™/3 and w? = e=27/2. Combining these two matrices using eq.

8.2.2 gives TBM eq. 8.2.13. In the case of the C'5 Abelian symmetry, the columns of the
diagonalization matrix Uy, = Uyr correspond to the one-dimensional representations of
the group:

{1,1,1}, {1, w,w?}, {1,w? w} (8.2.17)

In the case of the Sy x S5 symmetry, the representation to generate the neutrino mass
matrix M, is not the regular representation, but rather:

100\ /010y /001
0o10|,{oo01],lt 00 (8.2.18)
00 1 100/ \o1o0

The mixing matrix U, is in this case not clearly related to the representation of the
symmetry So X So, but the mass matrix M, in eq. 8.2.14 is a linear combination of the
matrices in eq. 8.2.18.

However, the problem with this model is that it is not compatible with the SU(2).
symmetry of the SM, with its left-handed lepton doublets. According to eq. 8.2.15 and
eq. 8.2.18, the left-handed neutrinos transform in a different way to the left-handed
charged leptons, breaking the SU(2);, symmetry. In the general case, "discrete unbroken
generation symmetries (Abelian and non-Abelian) with the SU(2)y constraint...cannot
generate tri-bimaximal mixing” [83], so that Higgs scalars with non-zero VEVs must be
introduced into the framework of neutrino mass models.

8.2.3 Tetrahedral symmetry A,

Assuming TBM, the neutrino mass matrix can be written as
M, = Urpymidi; Ut (8.2.19)

which, combined with eq. 8.2.13 gives

. 0 0 A O A O R
M, = 73 0 1 -1 +?2 111 +71 -2 1 1 ||. (8220
0 -1 1 111 —2 1 1

The eigenvalues of M, are mjy,ms, m3 with eigenvectors (—2,1,1)/v/6, (1,1,1)/v/3 and
(0,1,-1)/ V2, respectively, and the simplicity of these column vectors motivates an under-
lying non-Abelian family symmetry. There have been many attempts in the literature
to construct models of neutrino mass and mixing based on the non-Abelian group Ay,
the tetrahedral group (as well as other flavour symmetries). The natural 3-dimensional
representation (denoted by 3) makes A4 a good candidate for describing the symmetry of
the three families observed in Nature. In constructing a model, different types of particles
are assigned to the irreducible representations of A4, which are 1, 1/, 1” and 3. The
group multiplication rules and product composition rules dictate the form of the resulting
Lagrangian, which in turn gives the structure of the neutrino and charged lepton mass
matrices (see appendix).
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Case study: The Altarelli-Feruglio A; model

In the original Altarelli-Feruglio model [[84], [85]], lepton doublets are assigned to the
3 representation, and right-handed lepton singlets to the 1,1’ and 1” representations.
There are two SM Higgs doublets, which are invariant under A4, along with two real
triplets ¢ and ¢', and a real singlet &, all three of which are gauge singlets. Using the A4
multiplication rules, the Lagrangian of the Yukawa interactions in the lepton sector can
be written as

Lyukawa = Ye€ () 4+ yupt(90)" + yr7(d0) + 2o (00) + 24(¢'0l) + hc. + ... (8.2.21)

where (33) transforms as 1, (33)’ transforms as 1’, and (33)” as 17, and y,, x, and x4 are
coupling constants. The notation in this Lagrangian is simplified (for instance y.e®(¢f)
stands for yee(pl)hg/A, x,£(00) stands for z,&(Lh,lh,)/A? and so on). The dots stand
for higher dimensional operators - in this model these are suppressed by additional powers
of the cut-off A, as long as the VEVs are sufficiently smaller than A. For the model to
work, the scalar fields must develop VEVs along the directions:

<¢> = (2}, v, U) <¢/> = (’U/,O, 0) <§> =u (8‘2'22)

This vacuum alignment is crucial part of A4 models: The realization of these specific
alignments break the A, symmetry in the correct way, so that TBM is achieved. In
general, corrections to the VEV alignment can come from higher order operators or the
tree-level exchange of heavy fermions. Assuming the VEV alignment, the mass matrices
M; and M,, for charged leptons and neutrino are

v Ye Ye Ye
M = vay | Yuw? Ut (8.2.23)
Yr  Yrw  Yrw
’U2 a 0 O
M, = X“ 0 a d (8.2.24)
0 d a
where .
a= xa% d= xd%. (8.2.25)
The matrix diagonalizing the charged lepton mass matrix is
1 1 1 1
Vi=—7= |1 & w (8.2.26)
\/g 1 w w?

which is the same as the matrix in eq. 8.2.16 (with a phase change). This similarity comes
from the fact that C3 is a subgroup of A4. The charged fermion masses are:
v v
A A
To obtain the observed mass hierarchy among the masses in eq. 8.2.27, the authors intro-

duce an additional U(1)r symmetry, which only affects the right-handed lepton sector.
In the flavour basis, the neutrino mass matrix is

Mme = \/gyevd% my = \/gyuvd m, = \/gyTvd (8.2.27)

o fa+2d/3 —d/3  —d/3
v —d/3  2d/3 a-—d/3 (8.2.28)
—d/3 a—d/3 2d/3

v
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which is diagonalized by the transformation

2
Yu

T
l/:
U"M,U A

diag(a + d,a, —a + d) (8.2.29)
with U = Urgm. Thus TBM is achieved. Since the first paper containing A4 as the
flavour symmetry, many authors have constructed models based on A4 and many other
flavour symmetries. The model presented above is a simple case of the application of A4
to neutrino mixing, and this can be extended to more elaborate models.

8.3 Comparison between flavour symmetries

Flavour symmetries construct the neutrino mixing matrix. This gives octant sensitivity
by implementing various symmetries. These models implemented in the simulations were
found in [86] and randomly on the Internet. They are listed in table 8.3.1.

Original was [86] an overview of models which predicted sin?(613) from various flavour
symmetries and a lot of these models have been excluded since this mixing parameter
is now known. The article [86] had original 86 models whereas 55 of these models have
been excluded by the measurement of sin?(f;3) by more than 30. Additionally 4 models
are nearly within the 30 range of sin?(f13) from a global fit result. However, only 10
models from [86] can be used in this thesis since not all models gives their preference of
octant. More models have been found on the Internet which is also listed together with
the other 10 models from [86]. Additional models besides the 14 listed in table ?? are
found, however they all state that they can accommodate the current results from the
neutrino mixing matrix. A simulation based on the current neutrino mixing matrix is
given in the previous chapter, which is why they are not included in this analysis. This
thesis is limited on time, which is the reason it does not include each and every flavour
model.

The table 8.3.1 is divided into various columns with numbers, names and mixing
parameters shown in the top. First is given a specific number to each flavour symmetry
making it easier to distinguish between each model when looking at the figures showing
the octant sensitivity. The next column is the actual flavour symmetry for that model and
thereafter are the various predictions of mixing parameters for the flavour symmetries.
The mass square differences are taken from global fits. Most models can only be realized
with normal hierarchy compared to inverted hierarchy. However, there are also models
which can be realized with both spectrums and models with no preference stated.

In the table there is also shown a star (*) and a dagger (1) symbol. The value of the
oscillation parameter which have a * is near the outer value of the 30 range of the global
fit. So this value can still be used as an oscillation parameter since it should have the
benefit of the doubt when it comes to global fits (in one global fit it is out of the 30 band
and in another global fit it is within the 30 band). The t on the other hand means that
the range listed in the table of some specific oscillation parameter contains the 3o range
and beyond from the global fit. In this case the oscillation parameter will be constrained
to the 3o range of the global fit. Global fits of neutrino oscillation data can be found here
[87] and here [88].

With these models listed, they are implemented in the simulations and the octant
sensitivities are shown in the plots 8.3.1 and 8.3.2. First a description of the plots itself.
They are divided into two groups; one only for normal hierarchy and one for inverted
hierarchy. The 4 plots in each group are given by the combination of resolution functions,
so upper left (upper right) has op = 0.2Ef and 0p = 0.5\/1GeV/E(, rad (0p =
0.2E¢,y and g = /1GeV/E(, rad) whereas the lower left (lower right) has op = 2
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GeV and 0y = 0.5,/1GeV/E(,  rad (cp = 2 GeV and 09 = /1GeV/E(,, rad). In

the plot legend, each number listed on the left side of the flavour symmetry is also the
number for each flavour symmetry listed in table 8.3.1. On the right side of each flavour
symmetry is written a scaling factor The reason for this is simply to give a better view
of the result, else all the various fits would have lied on top of each other. However, this
scaling can be deceiving since the scaling factor makes either a smaller (if scaling factor
is less than one) or a larger (if scaling factor is larger than one) separation than it is in
reality. The scaling factors have been kept fixed through the various four plots as the
resolution functions worsen. This is to see how the sensitivity changes as the resolution
functions worsen without changing the scaling factor. If both the resolution functions and
the scaling factor were changed, there would be no chance to determine if the reduction of
the sensitivity came from the scaling factor or the worsening of the resolution functions.
With the scaling factors kept fixed, the reduction of the sensitivity would be read of the
plots 8.3.1 and 8.3.2 as the resolution functions worsened.
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Figure 8.3.1: Ax? for the wrong octant obtained from the PINGU data with 3 years
statistics for various flavour symmetries. Mass spectrum is assumed to be normal. See
appendiz for larger versions.

The one called "flavour independent” is the fit from the plots 7.9.1 in the previous
chapter (the ones with the new systematic uncertainty) and shows the gain or reduction
of octant sensitivity in comparison. The hierarchy is kept fixed throughout the simula-
tions since it is believed that the hierarchy is already known at the time when the octant
determination is realized. An estimation of the determination of the neutrino mass hier-
archy is that it scales with number of years, so for 3 (5) years of data gives ~ 3 (~5) o

0.60
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C.L. [[60], [62]]. Also seen in the plots is that the "valley” becomes larger as the resolution
functions worsen, so less phase space is probed.
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Figure 8.3.2: Ax? for the wrong octant obtained from the PINGU data with 3 years
statistics for various flavour symmetries. Mass spectrum is assumed to be inverted. See
appendiz for larger versions.

8.4 Flavour symmetry comparison over multiple of years

From figures 8.3.1 and 8.3.2 can be seen that there is no significance between the various
models with 3 years of data. In this section, the simulations will be made over multiple
years, namely 5, 10 and 15 years after which a comparison will be made. At some point
there will be a difference between the various flavour symmetries.

A qualified guess for the operational time for PINGU is 15-20 years. After it is
installed, it only need fuel to keep it going. There is no physical reason why PINGU will
cease to operate. The digital optical module (DOM) failure rate is exceptionally low, and
the ice drifts uniformly such that there is no fear of cable shear during operation. This is
the reason the simulations have been made for 15 years as the maximum of operational
years. In principle it would only stop if it is not efficiently enough, there were no more
science for it to probe or due to economy.

This simulation is done for fixed resolution functions, namely op = 0.2E(,, and
o9 = 0.5\/1GeV/E{,, which is the resolution function used by the IceCube collaboration
[[15], [62]]. The plots are shown the following way: In the top left corner, there is the plot
with 3 years of statistics whereas in the top right corner, it has been made for 5 years

1o
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No. | Flavour symmetry | Hierarchy | sin®(fa3) sin?(f12) | sin?(6y3)
1| Ay [89] NH 0.51-0.56 0.31 0.0026-0.034f
2 | Ay [90] NH 0.42 0.35 0.017
0.371-0.456(NH) ®
3| Ay [91] NH or TH 0.604-0.671*(IH) 0.27-0.37 | 0.016-0.027
4 | Sy [92] NH 0.41-0.5 0.311 <0.030
(0.441 or 0.559)(NH)
5 | S, 93] NHor IH | (0.401 or 0.509)(TH) 0.329 0.025
SU(2) x Z2 x "
N 04] NH 0.51 0.26 0.014
SU(2) x Z3 x %
7 7o % 7 [95] NH 0.53 0.29 0.012
8 | SU(3) [96] NH 0.44-0.56 0.29-0.38 | 0.024
9 | SU(3) [97] NH 0.5-0.51 0.26-0.28 | 0.0009-0.016*
10 | R symmetry [98] | NH 0.44 0.31 0.0001-0.04
11 | U(1) x (22)? [99] | NH 0.49 0.29 0.019
12 | SU(3) x Z5 [100] | IH 0.47 0.31 0.012*
13 | QLC [101] 0.446 0.336 0.023
0.378-0.388 ®
14 LC [102 194-0.5" | 0.024-0.02
QLC [102] 0.612.0.623 0.194-0.5" | 0.024-0.028

Table 8.3.1: Flavour models used in simulations.

of data. In the bottom left corner, it is 10 years of data and next to it is with 15 years
of data. Again the number in the plot legend is also the number shown in table 8.3.1.
The resolution functions are given in the top right corner for each plot. We keep the test
hierarchy fixed to the true hierarchy displayed in the top of each plot.

Two features can be seen from the plots. First, the separation between each flavour
symmetry becomes larger, meaning it will be easier to distinguish between them. As
more and more years of data is included, less and less models need a scaling factor.
Second, more phase space is probed for the atmospheric angle. The "valley” around
sin?(f23) = 0.5 becomes smaller as more data is included. This comes from a bigger
seperation of event rates for the individual x? when taking the difference between y?(NH)
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and x?(IH). Including T2K and NOvA would greatly enhance the sensitivity to the octant
since they both depend on the atmospheric angle #23 and have sensitivity to its octant.
Additional data from the reactor experiments would constrain Amgﬂ which in turn would
give a higher octant sensitivity and more phase space would be probed.

Hierarchy : Normal Hierarchy : Normal

— Flavor independent T 0 —_ FI it ' ]
3years H— A g = 0.5\/ 1GeV [ Eggy rad Syears H— avimdepe"dm 0y =05 1GeV [ Egy rad 6
2)— Ay, scalefactor: 1/4 ') A 2)— As ' 7
3)— Ay, scalefactor: 1/4 —02E 3— A og=02Egy
2 s, scale factor: 1/2 e =05 Eew A
, H 4) Sy, scalefactor: 1/2
5)— Sy, scalefactor: 1/2 5)— S, scale factor: 1/2
6) — SU(Q) x Z; x Z, x Z,, scale factor: 3/4 6) — SU(2) X Z; X Z; X Zs, scale factor: 1/2
7) SU@) x Z; X Z, X Z,, scalefactor: 3/4 7 SU(2) X Z3 X Z5 X Zy, scalefactor: 1/2
8) SU), scalefactor: 54 8) SU), scalefactor: 3/2 50
9)--—  SU@), scalefactor: 54 9)----  SUE), scalefactor: 3/2
10y R symmetry, scale factor: 3/2 10y R symmetry, scale factor: 3/2
1) U x (27, scale factor: 3/2 LD U@ x (2o, scalefactor: 372
13)-  QLC, scalefactor: 7/4 13)--  QLC, scalefactor: 2
14)-  QLC, scalefactor: 7/4 14y QLC, scalefactor: 2 iao

Marginalized over sin?(853), sin®(2615) and | Amd |

30
\ 20
SN / 1o
040 045 050 040 045 050 055 0,60
Sin’(03) Sin*(623)
Hierarchy : Normal Hierarchy : Normal
S 7o —  Flavor independent
—  Flavor independent X 15years n— : _ ‘/7
1oyears Hh— A 74 =05y1GeV [ Egy rad w0l 22— 75=05Y16eV [ Egy rad
29— Ar i 3; - As g =02Egy
3)— Ay og =02Egy 451) o 2: 60
g) S 6) — SU@xZxZx2Z,
)— S 60 U@ X Zo X 23X Zs
0)— SUQ X ZzxZyx Z 83 SU(3), scalefactor: 3/2
7) SUDXZ X 22X 2o 3073 9)---  SU@), scalefactor: 32
8) SU@3), scale factor: 2 %8)--- R symmar);, zaalleffactor: 312 A
. === U)X (Zo)?, scale factor: 2 p/
9) SU(3), scale factor: 2 3 13}——— QLC, szcalefaclur: 2
i%)---- R symrnavzy, scalefactor: 2 2 14)-—  QLC, swalefactor: 2
=== U(D) X (Z)°, scalefactor: 2 B . . : :
13 QLC, salofactor: 2 o Marginalized over sin?(8z), sin®(2613) and | AmZ; |
1‘4)——~ QLC, scale factor: 2
Marginalized over sin?(83), Sin’(2613) and | AmZ; |
10|
10
040 050 Sa 050
Sin?(03) Sin’(6z3)

Figure 8.4.1: Ax? for the wrong octant obtained from the PINGU data over multiple years
(indicated in the left corner) for various flavour symmetries. Mass spectrum is assumed
to be normal. See appendix for larger versions.

As can be seen from the figures with 15 years of data, the "flavour independent” fit can
reach above 40 for sin?(f23) < 0.429 and sin?(fa3) > 0.599 for normal hierarchy and 2o
for sin?(fa3) < 0.415 and sin?(fa3) > 0.59. For the flavour symmetries there are different
output of confidence level depending on the true octant for the flavour symmetries. Some
are above or below the "flavour independent”, meaning that if it is below (above) the
"flavour independent”, it prefers a mixing angle 23 in the first (second) octant. If it is
only below, it prefers an octant sensitivity in the ”"valley” and the sensitivity is washed
out. However, if it is above, it prefers an octant outside of the range [0.4-0.6].
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Figure 8.4.2: Ax? for the wrong octant obtained from the PINGU data over multiple years
(indicated in the left corner) for various flavour symmetries. Mass spectrum is assumed

to be inverted. See appendiz for larger versions.






Conclusion

Since the first postulation of their existence in 1930 by Pauli, the field of neutrino physics
has raised many interesting and fundamental questions. However, experiments dealing
with almost non-interacting particles are naturally difficult to carry out. If neutrinos
acquire their masses through new physics at some very high energy scale, as in the see-
saw mechanism, this also raises big challenges for neutrino experiments. Theory must rely
on very little experimental data and not many constraints can be imposed when carrying
out model building. However, the many unknown aspects and the lack of hard data allow
for greater liberty and creativity when working in this field.

PINGU has great potential resolve various important physics questions. This thesis
focusses on the determination of the 653 octant and the level of confidence depends on the
resolution functions, statistics and hierarchy. With 3 years of data, PINGU is capable of
determining the wrong octant at ~ 3 (~ 2) o for normal (inverted) hierarchy, depending on
the resolution functions. A careful look was also taken at the systematic uncertainties and
their influence on the sensitivity to the octant determination. Two of the five uncertainties
had the most influence on the sensitivity, namely those concerning the arrival angle and
energy dependence of the atmospheric neutrino flux. These are the most important to
control if a high significance is required. A further insight to the sensitivity to the wrong
octant came from consideration of the systematic uncertainty in particle identification.

Following this analysis, a look was taken at various flavour symmetries which can
realize the neutrino mixing matrix. By implementing the different flavour symmetries gave
the sensitivity for each flavour symmetry to the wrong octant was obtained. With just
3 years of data, there is no significant difference between the various flavour symmetries
so one cannot distinguish between the various models. With more data however, the
difference between the various models becomes measurable. So PINGU can in principle
constrain flavour models in future.

As is also mentioned in the thesis, the octant sensitivity can be increased through the
introduction of more data from other experiments, including more information from the
PINGU detector, changing the shape and values of the resolution functions, etc.

There are other ways to constrain flavour symmetries. One could have an analysis
which looked at multiple (un)known neutrino oscillation parameters and see how they
complement each other in this regard. However, there is still a long way to go to achieve
the same precision of the mixing parameters as in the quark sector. This would ultimately
lead us to the true mechanism behind neutrino mixing.
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Plots of octant sensitivity

These images are the same as figures 7.7.1, only larger versions for readable purpose.
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Figure 1.0.3: Ax? for the wrong octant obtained from PINGU data with 3 years statistics,
as a function of sin®(0s3)(true). This plot is for normal hierarchy taken as true and x>
is varied over the oscillation parameters, |Amfﬁ| and sin®(20;3) in the allow range given
in table 7.2.1 and sin®(0s3) in interval [0.4-0.6], but the mass hierarchy is held fived to
the assumed true case in the fit. The four lines are for the four possible combinations for
the choices of the energy and angle resolution of PINGU.
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Hierarchy: Inverted
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Figure 1.0.4: The same as 1.0.3, but the true hierarchy is inverted.
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Figure 1.0.5: The same as 1.0.3, but the x? is not only varied over ]Amfﬁ|, sin®(260;3)
and sin®(0s3), but also keeping the mass hierarchy free in the fit.
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Hierarchy: Inverted
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Figure 1.0.6: The same as 1.0.5, just for inverted hierarchy.
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Plots of systematic uncertainties

These images are the same as figures 7.8.1, only larger versions for readable purpose.
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Figure 2.0.7: Impact of systematic uncertainties on the Ax? for the wrong octant obtained
from PINGU data with 3 years statistics, as a function of sin®(0s3). The assumption of
the width of the resolution functions are shown in the figure legend. The test hierarchy
is kept fixed at the true value for all cases whereas we vary over |Amfﬁ|, sin®(f3) and
sin®(205). This particular plot has og = 0.2E" and 0o = c\/1GeV/EY, ,, where c is

given in plot legend.
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Figure 2.0.8: Same plot as 2.0.7, but for inverted hierarchy.
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Figure 2.0.9: Same plot as 2.0.7, but has o = 2GeV.
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Hierarchy : Inverted
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Figure 2.0.10: Same plot as 2.0.9, but for inverted hierarchy.
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Plots including particle identification uncertainty

These images are the same as figures 7.9.1, only larger versions for readable purpose.

Figure 3.0.11: Ax? for the wrong octant obtained from PINGU data with 3 years statistics,
as a function of sin®(0s3)(true). This plot is for normal hierarchy taken as true and x>
is varied over the oscillation parameters, |Amfﬁ| and sin®(20;3) in the allow range given
in table 7.2.1 and sin®(0s3) in interval [0.4-0.6], but the mass hierarchy is held fived to
the assumed true case in the fit. The four lines are for the four possible combinations for
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the choices of the energy and angle resolution of PINGU.
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Figure 3.0.12: The same as 3.0.11, but the true hierarchy is inverted.
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Figure 3.0.13: The same as 3.0.11, but the x* is not only varied over \Amfﬁ\, sin®(260;3)
and sin®(0s3), but also keeping the mass hierarchy free in the fit.
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Figure 3.0.14: The same as 3.0.13, just for inverted hierarchy.






Introduction to Ay

The following is an outline of the A4 symmetry group [81]

This group is the alternating group of order 4, and is also the group of all even
permutations of four objects, isomorphic to the group of rotational symmetries of the
regular tetrahedron. It is a finite, non-Abelian subgroup of SO(3) and SU(3). Ay has
12 elements, which can be divided into 4 conjugacy classes with membership 1, 3, 4 and
4. The dimensionality theorem implies that there are 4 irreducible representations with
dimension d; such that Zj d? = 12. The only solution is dy = dy = d3 = 1 and dy = 3,
and the representations are labeled as 1, 1/, 1” and 3, which means that there are three
one-dimensional representations and one three-dimensional representation. The character
table of Ay is given by with w = ¢*™/3 and w? = e 2™/3. There are two bases for Ay

Class ‘ 1C1 204 3Cct 4C3
Y21 1 1 1
X[l’} 1 w w? 1
X[l"] 1 w? w 1
B 13 0 0 -1

Table 4.0.1: Character table of the group A,

commonly used in lepton symmetry models: The Ma-Rajasekaran basis and the Altarelli-
Feruglio basis. The former basis is generated by two basic permutations S and 7', given
by S = (4321) and T = (2314), where the generic permutation (1,2,3,4) — (n1, n2,ngny)
is denoted by (ningonsng). It follows that

S?2=T3=(ST)® =1 (4.0.1)

which defines the presentation of the group. The one-dimensional unitary representations
are generated by

1 S=1 T=1 (4.0.2)
: S=1 T=w (4.0.3)
17: S=1 T=u? (4.0.4)
and the three-dimensional unitary representation is given by
10 0 010
S=10 -1 0|, T=1[(0 0 1]. (4.0.5)
0 0 -1 100
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The 3 x 3 matrices of the natural three-dimensional representation 3 are

100
¢ (o1 0 (4.0.6)
00 1
00 1 0 0 1 0 0 -1 0 0 -1
Cy 1too0|, [-1t 0o of, [t 0o o, [-10 o] o7
10 0 -1 0 -1 0 0 1 0
010 0 1 0 0 -1 0 0 -1 0
Cs: |0 o0 1], 0 0 -1}, o o 1], (o o -1] (408
10 ~10 0 -1 0 0 1 0 0
1 0 0 -1 0 0 -1 0 0
Cy 0 -1 0|, 0o 1 0], 0 -1 0 (4.0.9)
0 0 -1 0 0 -1 0 o0 1

where each matrix is a product of the generators S and T'. It is evident that the char-
acters of the 3 representation are simply the traces of the matrices in each class. The
multiplication rules are given by

1x1=1 (4.0.10)
1'x1"=1 (4.0.11)
1"x1 =1 (4.0.12)
1'x1" =1" (4.0.13)
1"x1"=1 (4.0.14)
3x3=1+1+1+3,,+3, (4.0.15)

where 3,, and 3, are asymmetric and symmetric combinations respectively. If 3, ~
(a1,a2,a3) and 3, ~ (b1, by, b3) are two triplets transforming by the matrices in eq. 4.0.9,
then the three singlets and two triplets in the product of equations 4.0.10-4.0.15 are:

1 = a1by + asby + azbs (4.0.16)

1" = a1by + w?asby + wsbs (4.0.17)
1" = a1by + wasby + w?asbs (4.0.18)
31 ~ (azbs, asby, aibz) (4.0.19)

3y ~ (asbz, a1bs, azbr) (4.0.20)



103

This was the Ma-Rajasekaran basis where the generator S is diagonal. However, one can
also represent Ay in a basis where T is diagonal, obtained through the unitary transfor-
mation

10 0
T'=VITV=[0 w 0 (4.0.21)
0 0 w?
L[t 2 2
S’:VTSV:g 2 -1 2 (4.0.22)
2 2 -1
where
AR
V=-—"[1 w ?]. (4.0.23)
V3 1 w? w

Note that the matrix V is the so-called "magic matrix”, which appears in A4 models as
the unitary matrix that diagonalizes the charged lepton mass matrix. In the S’, T basis,
the multiplication rules are identical to those in equations 4.0.10-4.0.15, but the product
of two triplets gives the composition of the following irreducible representations:

1 = a1b1 + asbs + azbs (4.0.24)
1" = agbs + a1by + asb; (4.0.25)
1" = agby + a1bs + azb; (4.0.26)
3, ~ %(2@161 — agbs — agba, 2a3bs — a1by — asgby, 2a2by — a1bs — asby) (4.0.27)

1
Bas ™~ g(azb?, — asba, ar1by — asby, a1bs — azby) (4.0.28)






Plots of flavour symmetries

These images are the same as figures 8.3.1 and 8.3.2, only larger versions for readable
purpose.

Hierarchy : Normal
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H— A g9=05 \/ 1GeV [ Egey rad

2)— Ay, scale factor: 1/4 6o
3)— Ay, scalefactor: 1/4 B . |

4 Su, scalefactor: 1/2 0 =0.2Egey

5) S,, scale factor: 1/2

6)— SUQ) x Z; x Z; x Z,, scale factor: 3/4
7) SU) x Z, x Zp X Z,, scale factor: 3/4

8) SU(3), scale factor: 5/4
9)---- SU(3), scale factor: 5/4
3 10)---- R symmetry, scale factor: 3/2
N§ j.l) ---- U)X (Z,)?, scalefactor: 3/2
: 13)---- QLC, scalefactor: 7/4
;|.4) QLC, scalefactor: 7/4

Marginalized over sin?(8,3), Sin?(26,3) and | Améff |

050 05
Sin?(03)

Figure 5.0.15: Ax? for the wrong octant obtained from PINGU data with 8 years statistics
for various flavour symmetries, as a function of sin®(6s3). This plot is for normal hierar-
chy taken as true and x? is varied over the oscillation parameters, |Amfﬁ| and sin®(20,3)
in the allow range given in table 7.2.1 and sin®(0s3) in interval [0.4-0.6], but the mass
hierarchy is held fixed to the assumed true case in the fit. The specific resolution functions
are shown in the right corner.
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Figure 5.0.16: Same as 5.0.15, but with a worsen angular resolution function.
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Figure 5.0.19: Same as 5.0.15, but the true hierarchy is inverted.
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Figure 5.0.20: Same as 5.0.19, but with a worsen angular resolution function.
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Figure 5.0.21: Same as 5.0.19, but with a worsen energy resolution function.
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Figure 5.0.22: Same as 5.0.19, but with both resolution functions worsen.






Plots of flavour symmetries over time

These images are the same as figures 8.4.1 and 8.4.2, only larger versions for readable

purpose.
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Figure 6.0.23: Ax? for the wrong octant obtained from PINGU data for various flavour
symmetries, as a function of sin®(0s3). This plot is for normal hierarchy taken as true
and x? is varied over the oscillation parameters, ]Amfﬁ| and sin®(20;3) in the allow
range given in table 7.2.1 and sin®(0z3) in interval [0.4-0.6], but the mass hierarchy is
held fized to the assumed true case in the fit. The specific resolution functions are shown
in the right corner whereas the number of years taken data is listed in the left corner.



112

Hierarchy : Normal

Syears

— Flavor independent

1H— As
2)— Ag
3)— Ag
4) Sy, scale factor: 1/2
5— Sy, scale factor: 1/2

6) — SU(2) x Z, X Z, X Z,, scalefactor: 1/2
7 SU2) X Z, X Z, X Zy, scale factor: 1/2

8) SU(3), scale factor: 3/2

9)---- SU(3), scale factor: 3/2
10)---- R symmetry, scale factor: 3/2
D) U@ x @), scale factor: 32
13)---- QLC, scalefactor: 2
‘14)---- QLC, scalefactor: 2

g9=05 \/ 1GeV [ Egey rad

e =0.2Egy

Mar ginalized over sin®(63), Sin*(26s3)and | AmZ |

0.50
sin?(63)

Figure 6.0.24: Same as 6.0.23, but for 5 years of data.
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Figure 6.0.25: Same as 6.0.23, but for 10 years of data.




113

Hierarchy : Normal

A x%pincu

13)--
14)--

Flavor independent

SU@) X Zp X Zp X Zp
SUR)X Zy X Zy X Zy
SU(3), scale factor: 3/2
SU(3), scale factor: 3/2

10)--- R symmetry, scale factor: 3/2
11)--- UQ) x (Z»)?, scalefactor: 2

QLC, scalefactor: 2
QLC, scalefactor: 2

09=05 \/ 1GeV [ Egg, rad

og=02Egy

Mar ginalized over sin®(63), Sin*(2613)and | AmZ |

0.50
sin?(623)

Hierarchy : Inverted

Figure 6.0.26: Same as 6.0.23, but for 15 years of data.
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Figure 6.0.27: Same as 6.0.23, but for inverted hierarchy.
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Figure 6.0.28: Same as 6.0.27, but for 5 years of data.
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Figure 6.0.29: Same as 6.0.27, but for 10 years of data.
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Figure 6.0.30: Same as 6.0.27, but for 15 years of data.
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