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Preface

1.1 Abstract

This thesis studies the potential/reach for the Proposed IceCube Next Generation Up-
grade (PINGU) with respect to the determination of the octant of the atmospheric mixing
angle 𝜃23. In the neutrino sector, this is one of the still unknown parameters which have
to be determined by future experiments. Present measurements of 𝜃23 are not precise
enough to establish whether this mixing is maximal or not. If it is non-maximal, there
are two solutions to the neutrino oscillation data in that 𝜃23 can either be below or above
45 degrees, i.e. it lies in the first or second octant.

From Monte Carlo simulations the event rates of neutrinos in PINGU were calculated
and a chi square fit was done, assuming the theoretical predicted event rates were fitted in
the wrong octant of the atmospheric angle. This provides a way to constrain this mixing
parameter. In turn this can potentially differentiate among various flavour symmetries
which can underly the neutrino mixing matrix and thereby the oscillation parameters.
By implementing multiple flavour symmetries in the simulations, a comparison of the
sensitivities to the various models could be made. This in priciple provides a way to
experimentally determine the flavour symmetry for neutrinos.
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Introduction

The neutrino was proposed by W. Pauli in 1930 [1] and first detected by C. Cowan and F.
Reines in 1956 [2]. Later the solar neutrino deficit [3], the atmospheric neutrino anomaly
[4], and other neutrino oscillation results [5] have revealed that the neutrino masses are
non-zero. However essential questions concerning the absolute scale of their masses, their
type (whether Dirac or Majorana), etc. still remain unanswered.

Besides the reactor [6], Gallium [[7], [8]] and a few other neutrino anomalies, the
available neutrino data can be explained within the phenomenological model of three
light neutrinos with two mass splittings (squared mass differences): Δ𝑚21 ∼ 10−5 eV2

and |Δ𝑚31| ∼ 10−3 eV2 [5]. We call it the conventional neutrino theory (CNT). In case
of Majorana (Dirac) neutrinos the masses and mixings are generically parameterized in
CNT by 9 (7) free parameters: 3 masses, 3 mixing angles and 3 phases (1 phase).

The latest set of data from the reactor-based experiments Daya Bay [9], RENO [10]
and Double Chooz [11] have confirmed beyond all doubt what the accelerator-based ex-
periments T2K [12] and MINOS [13] had indicated earlier - namely the value of the
neutrino mixing parameter sin2(2𝜃13) ≃ 0.1. The implications of this discovery has far
reaching implications in neutrino physics. On the phenomenological front, this opens up
the possibility for the determination of the two missing links in the neutrino oscillation
physics, namely (i) the magnitude of CP violation in the lepton sector, and (ii) the sign
of Δ𝑚2

31, i.e. the neutrino ’mass hierarchy’. Next generation neutrino oscillation exper-
iments are being proposed to elucidate these two remaining issues. The optimal design
of such experiments will determine just how well they can measure CP violation and the
neutrino mass hierarchy, given that we now know that 𝜃13 is much larger than previously
thought. The fact that the sensitivity of the proposed experiment to one of these param-
eters could be restricted by the uncertainty of the other parameter makes the designing
of the experiments all the more challenging.

Of the two unknowns mentioned above, measurement of CP violation is trickier for a
variety of reasons. CP violation in neutrino oscillations is necessarily a sub-leading effect
and is expected to be in the 𝜃13-driven appearance channel, 𝑃 (𝜈𝜇 → 𝜈𝑒). Indeed, the
CP phase 𝛿𝐶𝑃 would be unphysical and hard to determine if 𝜃13 were zero. However, the
fact that 𝜃13 has turned to be relatively large might prove counter-productive for the CP
violation searches. Because CP violation effects in the appearance channel become even
more sub-dominant compared to the main CP independent 𝜃13 driven oscillations for such
large values of 𝜃13. This makes the latter an irreducible background, thereby decreasing
thereby the sensitivity of the experiment for CP searches [14]. The uncertainty regarding
the neutrino mass hierarchy introduces another limitation on these experiments through
the 𝛿𝐶𝑃 -mass hierarchy parameter degeneracy, further deteriorating the sensitivity of the
experiment to the CP phase.

Measurements of the neutrino mass hierarchy on the other hand certainly becomes
easier as the value of 𝜃13 increases. This parameter is expected to be measured using
the effects of propagation through the Earth on neutrino oscillations. The Earth matter
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effect increases monotonically with the value of 𝜃13, making their detection in terrestrial
experiments easier for larger 𝜃13. The atmospheric neutrino experiments could play a
crucial role in the field of neutrino physics in this regard. The possibility of measuring
the neutrino mass hierarchy in atmospheric neutrino experiments has been widely consid-
ered in the literature. Upcoming detectors for atmospheric neutrinos include the magne-
tized Iron CALorimeter detector at the India-based Neutrino Observatory (ICAL@INO),
the megaton-class water Cherenkov detectors such as the proposed Hyper-Kamiokande
project, large liquid argon detectors, as well as the giant ice detector PINGU (Proposed
IceCube Next Generation Upgrade).

PINGU [15] has been proposed as a low energy extension of the already existing and
successfully running IceCube detector. While the energy threshold of the full IceCube
detector is 100 GeV, PINGU is envisioned to have an energy threshold of a few GeV,
thereby allowing it to function as a low energy atmospheric neutrino experiment, with an
effective fiducial mass in the multi-megaton range. The plan is to increase the number of
strings, increasing the optical module density, hence increasing the photo-coverage of the
region. This will reduce the energy threshold for the detection of various particles. The
large fiducial mass gives PINGU an edge over other competitive experiments due to the
statistical amount of neutrino events.

Amongst the other issues in neutrino physics that remains to be probed, is the deter-
mination of the octant of 𝜃23 mixing angle, in case it is different from maximal. Various
ways have been suggested in the literature to determine the octant of 𝜃23 in the current
and next generation neutrino oscillation experiments. One way is to combine the data
from reactor experiments with the 𝜈𝑒-appearance data from conventional accelerator ex-
periments [16]. The reactor experiments return a pure measurement of the mixing angle
sin2(2𝜃13), while the 𝜈𝑒-appearance data from conventional accelerator experiments mea-
sure the combination sin2(𝜃23) sin

2(2𝜃13), at leading order. Using this combined analysis,
one could then extract information on the octant of 𝜃23.

Another approach studied in the literature has been to combine the 𝜈𝑒-appearance
channel in long baseline experiments with the 𝜈𝜇-disappearance channel [[17], [18]]. The
upshot of this reasoning is that the best-fit 𝜃23 preferred by the appearance channel is
different from the best-fit 𝜃23 favored by the disappearance channel. This generates a
synergy between the two data sets in the long baseline experiment, leading to an octant
sensitivity.

The third way is to use Δ𝑚2
21 dependent terms in the oscillation probability, which

depends on either sin2(𝜃23) or cos
2(𝜃23), leading to 𝜃23 octant sensitivity. This was shown

in the context of sub-GeV 𝜈𝑒-events from atmospheric neutrinos at a water Cherenkov
experiment like Super-Kamiokande where the Δ𝑚2

21 driven oscillatory terms brings in an
octant of 𝜃23 dependence in the low energy electron event sample. Finally, one can use
the octant of 𝜃23 dependence in the Earth matter effects in the 𝑃 (𝜈𝜇 → 𝜈𝜇) channel to
get a measure on this parameter. In particular, the issue of determining the octant of 𝜃23
was briefly discussed in [19].

Disclaimer: I have used Mathematica to plot various figures. Mathematica has the ten-
dency to squeeze words together in the plots as I am exporting them to pdf causing
spelling errors.
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The Standard Model of particle physics

An important feature of the Standard Model (SM) is that ”it works”: It is consistent with,
or verified by, all available data, with only a few compelling evidence for physics beyond.
Secondly, it is a unified description, in terms of ”gauge theories” of all the interactions of
known particles (except gravity). The joint description of the electromagnetic and the
weak interaction by a single theory certainly is one of major achievements of the physical
science in this century. The model proposed by Glashow, Salam and Weinberg in the
middle sixties has been extensively tested during the last 40 years. In this chapter the basic
features of the current Standard Model of elementary particle physics are discussed. As
the subject concerns neutrinos, the main focus of this chapter will consider the electroweak
interaction.

3.1 The V-A theory of the weak interaction

Historically, the first theoretical description of the weak interaction as an explanation of
the 𝛽-decay was given in the classical paper by Fermi [20]. Nowadays, we rate this as a low-
energy limit of the Glashow-Weinberg-Salam (GWS) model but it is still valid to describe
most of the weak processes. Fermi chose an ansatz quite similar to that in quantum
electrodynamics (QED). In QED, the interaction of a proton with an electromagnetic
field 𝐴𝜇 is described by a Hamiltonian

𝐻em = 𝑒

∫︁
𝑑3𝑥𝑝(𝑥)𝛾𝜇𝑝(𝑥)𝐴𝜇(𝑥) (3.1.1)

where 𝑝(𝑥) is the Dirac field-operator of the proton. In analogy, Fermi introduced an
interaction Hamiltonian for 𝛽-decay:

𝐻𝛽 =
𝐺𝐹√
2

∫︁
𝑑3𝑥(𝑝(𝑥)𝛾𝜇𝑛(𝑥))(𝑒(𝑥)𝛾𝜇𝜈(𝑥)) + ℎ.𝑐. (3.1.2)

The new fundamental constant 𝐺𝐹 is called the Fermi constant which is determined
experimentally to be 𝐺𝐹 = 1.16637(1) · 10−5 GeV−2. If we stay with a four-fermion
interaction, the following question arises: How many Lorentz-invariant combinations of
the two currents involved can be built? The weak Hamiltonian 𝐻𝛽 can be deduced from
the Lagrangian ℒ:

𝐻𝛽 = −
∫︁
𝑑3𝑥ℒ(𝑥) (3.1.3)

The most general Lagrangian for 𝛽-decay, which transforms as a scalar under a Lorentz
transformation, is [21]

ℒ(𝑥) =
5∑︁

𝑗=1

[𝑔𝑗𝑝(𝑥)𝑂𝑗𝑛(𝑥)𝑒(𝑥)𝑂
′
𝑗𝜈(𝑥) + 𝑔′𝑗𝑝(𝑥)𝑂𝑗𝑛(𝑥)𝑒(𝑥)𝑂

′
𝑗𝛾5𝜈(𝑥)] + ℎ.𝑐. (3.1.4)
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Operator Transformation properties(Ψ𝑓𝑂Ψ𝑖) Representation with 𝛾 matrices

𝑂𝑆 (S) scalar 1
𝑂𝑉 (V) vector 𝛾𝜇
𝑂𝑇 (T) tensor 𝛾𝜇𝛾𝜈 − 𝛾𝜈𝛾𝜇
𝑂𝐴 (A) axial vector 𝑖𝛾𝜇𝛾5
𝑂𝑃 (P) pseudo-scalar 𝛾5

Table 3.1.1: Possible operators and their transformation properties as well as their repre-
sentation.

with 𝑔𝑗 , 𝑔
′
𝑗 as arbitrary complex coupling constants and 𝑂𝑗 , 𝑂

′
𝑗 as operators. The possible

invariants for the operators 𝑂 are listed in table 3.1.1. The kind of coupling realized in
Nature was revealed by investigating allowed 𝛽-decay transitions. From the absence of
Fierz interference terms, it could be concluded that Fermi transitions are either of S or
V type, while Gamow-Teller transitions could only be due to T or A type operators.
P-type operators do not permit allowed transitions at all. After the discovery of parity
violation, the measurement of electron-neutrino angular correlations in 𝛽-decay and the
Goldhaber experiment, it became clear that the combination 𝛾𝜇(1−𝛾5) represented all the
data accurately. This is the (V-A) structure of weak interactions. After losing its leading
role as a tool for probing weak interactions, current investigations of nuclear 𝛽-decay are
used for searches S- and T-type contributions motivated by theories beyond the Standard
Model and searches for a non-vanishing rest mass of the neutrino. Models with charged
Higgs particles, leptoquarks and supersymmetry might lead to such S, T contributions. In
summary, classical 𝛽-decay can be written in the form of two currents 𝐽 (current-current
coupling)

ℒ(𝑥) = 𝐺𝐹√
2
𝐽𝐿 · 𝐽𝐻 (3.1.5)

where the leptonic current is given by (𝑒, 𝜈 as spinor fields)

𝐽𝐿 = 𝑒(𝑥)𝛾𝜇(1− 𝛾5)𝜈(𝑥) (3.1.6)

and the hadronic current by (using 𝑢, 𝑑 quarks instead of proton and neutron)

𝐽𝐻 = �̄�(𝑥)𝛾𝜇(1− 𝛾5)𝑑(𝑥). (3.1.7)

As we go from the quark level to nucleons, eq. 3.1.7 must be rewritten due to renormal-
ization effects in strong interactions as:

𝐽𝐻 = 𝑝(𝑥)𝛾𝜇(𝑔𝑉 − 𝑔𝐴𝛾5)𝑛(𝑥) (3.1.8)

The coupling constants 𝐺𝐹 , 𝑔𝑉 = 𝐼3𝑊 − 2 sin2(𝜃𝑊 )𝑄𝑓 and 𝑔𝐴 = 𝐼3𝑊 , where 𝐼3𝑊 and 𝑄𝑓

are, respectively, the third component of the weak isospin and the charge of fermions.
Measurements of 𝐺𝐹 in muon decay are in good agreement with those in nuclear 𝛽-decay
and lead to the concept of common current couplings (lepton universality), also justified
in measurements of 𝜏 -decays. The total leptonic current is

𝐽𝐿 = 𝐽𝑒 + 𝐽𝜇 + 𝐽𝜏 (3.1.9)

each of them having the form of eq. 3.1.6. The formalism allows most of the observed weak
interactions to be described. It contains maximal parity violation, lepton universality and
describes charged current interactions. How this picture is modified and embedded in the
current understanding of gauge theories will be discussed next
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3.2 Gauge theories

All modern theories of elementary particles are gauge theories. We will attempt to indi-
cate the fundamental characteristics of such theories without going into the details of a
complete presentation.

3.2.1 The gauge principle

The gauge principle can be explained by the example of classical electrodynamics. It
is based on the Maxwell equations and the electric and magnetic fields - measureable
quantities which can be represented as the components of the field-strength tensor 𝐹𝜇𝜈 =
𝜕𝜇𝐴𝜈 −𝜕𝜈𝐴𝜇. Here the four-potential 𝐴𝜇 is given by 𝐴𝜇 = (𝜑, 𝐴), and the field strengths
are derived from it as 𝐸 = ∇𝜑 − 𝜕𝑡𝐴 and 𝐵 = ∇ × 𝐴. If 𝜌(𝑡,𝑥) is a well-behaved,
differentiable real function, it can be seen that under a transformation of the potential
such as

𝜑′(𝑡,𝑥) = 𝜑(𝑡,𝑥) + 𝜕𝑡𝜌(𝑡,𝑥) (3.2.1)

𝐴′(𝑡,𝑥) = 𝐴(𝑡,𝑥) +∇𝜌(𝑡,𝑥) (3.2.2)

all observable quantities remain invariant. The fixing of 𝜑 and 𝐴 to particular values in
order to simplify the equations of motion is called fixing the gauge. In gauge theories, this
gauge freedom for certain quantities is raised to a fundamental principle. The existence
and structure of interactions is determined by the demand for such gauge-fixable but
physically undetermined quantities. The inner structure of the gauge transformation is
specified through a symmetry group. As mentioned before, symmetries and behavior
under symmetry operations play a crucial role and will be considered next.

3.2.2 Global symmetries

Internal symmetries can be subdivided into discrete and continuous symmetries. We
will concentrate on continuous symmetries. In quantum mechanics a physical state is
described by a wavefunction 𝜓(𝑥, 𝑡). However, only the modulus squared appears as a
measurable quantity. This means that as well as 𝜓(𝑥, 𝑡) the functions

𝜓′(𝑥, 𝑡) = 𝑒𝑖𝛼𝜓(𝑥, 𝑡) (3.2.3)

are also solutions of the Schrödinger equation, where 𝛼 is a real (space and time inde-
pendent) function. This is called a global symmetry and relates to the space and time
independence of 𝛼. Consider the wavefunction of a charged particle such as the electron.
The relativistic equation of motion is the Dirac equation:

(𝑖𝛾𝜇𝜕𝜇 −𝑚)𝜓𝑒(𝑥, 𝑡) = 0 (3.2.4)

The invariance under the global transformation

𝜓′
𝑒(𝑥, 𝑡) = 𝑒𝑖𝑒𝛼𝜓𝑒(𝑥, 𝑡) (3.2.5)

where 𝑒 is a constant (for example, the electric charge) is clear

𝑒𝑖𝑒𝛼𝑖𝛾𝜇𝜕𝜇𝜓𝑒(𝑥, 𝑡) = 𝑒𝑖𝑒𝛼𝑚𝜓𝑒(𝑥, 𝑡) (3.2.6)

𝑖𝛾𝜇𝜕𝜇𝑒
𝑖𝑒𝛼𝜓𝑒(𝑥, 𝑡) = 𝑚𝑒𝑖𝑒𝛼𝜓𝑒(𝑥, 𝑡) (3.2.7)
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𝑖𝛾𝜇𝜕𝜇𝜓
′
𝑒(𝑥, 𝑡) = 𝑚𝜓′

𝑒(𝑥, 𝑡). (3.2.8)

Instead of discussing symmetries of the equations of motion, the Lagrangian ℒ is often
used. The equations of motion of a theory can be derived from the Lagrangian ℒ(𝜑, 𝜕𝜇𝜑)
with the help of the principle of least action [22]. For example, consider a real scalar field
𝜑(𝑥). Its free Lagrangian is:

ℒ(𝜑, 𝜕𝜇𝜑) =
1

2

(︀
𝜕𝜇𝜑𝜕

𝜇𝜑−𝑚2𝜑2
)︀

(3.2.9)

From the requirement that the action integral 𝒮 is stationary

𝛿𝒮[𝑥] = 0 with 𝒮[𝑥] =
∫︁

ℒ(𝜑, 𝜕𝜇𝜑)𝑑𝑥 (3.2.10)

the equations of motion can be obtained

𝜕𝛼
𝜕ℒ

𝜕(𝜕𝛼𝜑)
− 𝜕ℒ
𝜕𝜑

= 0. (3.2.11)

The Lagrangian clearly displays certain symmetries of the theory. In general, it can be
shown that the invariance of the field 𝜑(𝑥) under certain symmetry transformations results
in the conservation of a four-current:

𝜕𝛼𝒥 𝛼 = 𝜕𝛼

(︂
𝜕ℒ

𝜕(𝜕𝛼𝜑)
𝛿𝜑

)︂
= 0 (3.2.12)

This is generally known as Noether’s theorem. Using this expression, time, translation and
rotation invariance imply the conservation of energy, momentum and angular momentum
respectively. We proceed to consider local symmetries, in which 𝛼 in eq. 3.2.3 is no longer
a constant function but shows a space and time dependence.

3.2.3 Local (=gauge) symmetries

If the requirement for space and time independence of 𝛼 is dropped, the symmetry becomes
a local symmetry. It is obvious that under transformations such as

𝜓′
𝑒(𝑥) = 𝑒𝑖𝑒𝛼(𝑥)𝜓𝑒(𝑥) (3.2.13)

the Dirac equation 3.2.4 does not remain invariant

(𝑖𝛾𝜇𝜕𝜇 −𝑚)𝜓′
𝑒(𝑥) = 𝑒𝑖𝑒𝛼(𝑥) [(𝑖𝛾𝜇𝜕𝜇 −𝑚)𝜓𝑒(𝑥) + 𝑒(𝜕𝜇𝛼(𝑥))𝛾

𝜇𝜓𝑒(𝑥)]

= 𝑒(𝜕𝜇𝛼(𝑥))𝛾
𝜇𝜓′

𝑒(𝑥) ̸= 0.
(3.2.14)

The field 𝜓′
𝑒(𝑥) is, therefore, not a solution of the free Dirac equation. If it were possible

to compensate the additional term, the original invariance could be restored. This can
be achieved by introducing a gauge field 𝐴𝜇, which transforms itself in such a way that
it compensates for the extra term. In order to achieve this, it is necessary to introduce a
covariant derivative 𝐷𝜇:

𝐷𝜇 = 𝜕𝜇 − 𝑖𝑒𝐴𝜇 (3.2.15)

The invariance can be restored if all partial derivatives 𝜕𝜇 are replaced by the covariant
derivative 𝐷𝜇. The Dirac equation becomes:

𝑖𝛾𝜇𝐷𝜇𝜓𝑒(𝑥) = 𝑖𝛾𝜇(𝜕𝜇 − 𝑖𝑒𝐴𝜇)𝜓𝑒(𝑥) = 𝑚𝜓𝑒(𝑥) (3.2.16)
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If one uses the transformed field 𝜓′
𝑒(𝑥), it is easy to see that the original invariance of the

Dirac equation can be restored if the gauge field transforms itself according to:

𝐴𝜇 → 𝐴𝜇 + 𝜕𝜇𝛼(𝑥) (3.2.17)

The equations 3.2.13 and 3.2.17 describe the transformation of the wavefunction and
the gauge field. They are called gauge transformations. The whole of electrodynamics
can be described in this way as a consequence of the invariance of the Lagrangian ℒ or,
equivalently, the equations of motion under phase transformations 𝑒𝑖𝑒𝛼(𝑥). The resulting
conserved quantity is the electric charge, 𝑒. The corresponding theory is called quantum
electrodynamics (QED) and, as a result of its enormous success, it has become a paradigm
of a gauge theory.

In the transition to classical physics, the gauge field 𝐴𝜇 becomes the classical vector
potential of electrodynamics. The gauge field can be associated with the photon, which
takes over the role of an exchange particle. It is found that generally in all gauge theories
the gauge fields have to be massless. This is logical because a photon mass term would
be proportional to 𝑚2

𝛾𝐴𝜇𝐴
𝜇, which is obviously not invariant. Any required masses have

to be built in subsequently. The case discussed here corresponds to the gauge theoretical
treatment of electrodynamcis. Group-theoretically, the multiplication with a phase factor
can be described by a unitary transformation, in this case the U(1) group. It has the unity
operator as generator. The gauge principle can easily be generalized for Abelian gauge
groups, i.e. groups whose generators commute with each other. It becomes somewhat
more complex in the case of non-Abelian groups, as we will see in the next section

3.2.4 Non-Abelian gauge theories (=Yang-Mills theories)

Non-Abelian means that the generators of the groups no longer commute, but are sub-
ject to certain commutator relations which constructs non-Abelian gauge theories. One
example for commutator relations are the Pauli spin matrices 𝜎𝑖

[𝜎𝑖, 𝜎𝑗 ] = 2𝑖𝜎𝑘 (3.2.18)

which act as generators for the SU(2) group. Generally SU(N) groups possess 𝑁2 −
1 generators. A representation of the SU(2) group is all unitary 2 × 2 matrices with
determinant +1. Consider the electron and neutrino as an example. Apart from their
electric charge and their mass these two particles behave identically with respect to the
weak interaction, and one can imagine transformations(︂

𝜓𝑒(𝑥)
𝜓𝜈(𝑥)

)︂′
= 𝑈(𝑥)

(︂
𝜓𝑒(𝑥)
𝜓𝜈(𝑥)

)︂
(3.2.19)

where the transformation can be

𝑈(𝑎1, 𝑎2, 𝑎3) = 𝑒𝑖
1
2
(𝑎1𝜎1+𝑎2𝜎2+𝑎3𝜎3) = 𝑒𝑖

1
2
𝑎(𝑥)𝜎. (3.2.20)

The particles are generally arranged in multiplets of the corresponding group (in eq.
3.2.19 they are arranged as doublets). Considering the Dirac equation and substituting
a covariant derivative of the normal derivative by introducing a gauge field 𝑊 𝜇(𝑥) and a
quantum number 𝑔 in analogy to eq. 3.2.15

𝐷𝜇 = 𝜕𝜇 +
𝑖𝑔

2
𝑊 𝜇(𝑥) · 𝜎 (3.2.21)

does not lead to gauge invariance. The gauge field 𝑊 𝜇(𝑥) also needs to transform in
addition to the introduction of the covariant derivative to have gauge invariance. However,
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because of the non-commutation of the generators, an additional term results, an effect
which did not appear in the electromagnetic interaction. Only transformations of the
gauge fields as

𝑊 ′
𝜇 = 𝑊 𝜇 +

1

𝑔
𝜕𝜇𝑎(𝑥)−𝑊 𝜇 × 𝑎(𝑥) (3.2.22)

supply the desired invariance (note the difference compared with eq. 3.2.17). The non-
commutation of the generators causes the exchange particles to carry ’charge’ themselves
(contrary to the case of the photon, which does not carry electric charge) because of this
additional term. Among other consequences, this results in a self-coupling of the exchange
fields.

3.3 Renormalization

When introducing loops in a quantum field theory, they most likely are divergent and
more importantly, they might not be normalizable. In a renormalizable quantum field
theory, however, an amplitude involving divergent diagrams can get a finite result through
renormalization. The renormalization is done using regulators to obtain the physical
masses and coupling constants, that will not depend on these regulators. The resulting
expression for the amplitude is then finite for the cutoff Λ → ∞. In a 𝜑4 theory, the
Lagrangian is defined as:

ℒ0 =
1

2
(𝜕𝜇𝜑)

2 − 1

2
𝑚2

0𝜑
2 − 𝜆0

4!
𝜑4 (3.3.1)

We now write 𝑚0 and 𝜆0 as the bare mass and coupling constant, not the values measured
in experiments. Since the theory is invariant under 𝜑 → −𝜑, all amplitudes with an odd
number of external legs vanish. The only divergent amplitudes are therefore

Ignoring the vacuum diagram, these amplitudes contain three infinite constants. Our goal
is to absorb these constants into the three unobservable parameters of the theory: The
bare mass, the bare coupling constant and the field strength. To accomplish this goal,
it is convenient to reformulate the perturbation expansion so that these unobservable
quantities do not appear explicitly in the Feynman rules. First we will eliminate the shift
in the field strength. The exact two-point function has the form∫︁

𝑑4𝑥⟨Ω|𝑇𝜑(𝑥)𝜑(0)|Ω⟩𝑒𝑖𝑝·𝑥 =
𝑖𝑍

𝑝2 −𝑚2
+ (terms regular at 𝑝2 = 𝑚2) (3.3.2)

where 𝑚 is the physical mass. We can eliminate the awkward residue 𝑍 from the equation
by rescaling the field:

𝜑 = 𝑍1/2𝜑𝑟 (3.3.3)

This transformation changes the values of correlation functions by a factor of 𝑍−1/2 for
each field. The Lagrangian is much uglier after the rescaling:

ℒ =
1

2
𝑍(𝜕𝜇𝜑𝑟)

2 − 1

2
𝑚2

0𝑍𝜑
2
𝑟 −

𝜆0
4!
𝑍2𝜑4𝑟 (3.3.4)
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The bare mass and coupling constant still appear in ℒ, but they can be eliminated as
follows. Define

𝛿𝑍 = 𝑍 − 1 𝛿𝑚 = 𝑚2
0𝑍 −𝑚2 𝛿𝜆 = 𝜆0𝑍

2 − 𝜆 (3.3.5)

where 𝑚 and 𝜆 are the physically measured mass and coupling constant. Then the
Lagrangian becomes:

ℒ =
1

2
(𝜕𝜇𝜑𝑟)

2 − 1

2
𝑚2𝜑2𝑟 −

𝜆

4!
𝜑4𝑟 +

1

2
𝛿𝑍(𝜕𝜇𝜑𝑟)

2 − 1

2
𝛿𝑚𝜑

2
𝑟 −

𝛿𝜆
4!
𝜑4𝑟 (3.3.6)

The first three terms now looks like the familiar 𝜑4-theory Lagrangian, but is written in
terms of the physical mass and coupling. The terms afterwards, known as counterterms,
have absorbed the infinite but unobservable shifts between the bare parameters and the
physical parameters. It is tempting to say that we have ”added” these counterterms to the
Lagrangian, but in fact we have merely split each term into two pieces. The definition in
eq. 3.3.5 are not useful unless we give precise definitions of the physical mass and coupling
constant. Equation 3.3.2 defines 𝑚2 as the location of the pole in the propagator. There
is no obviously best definition of 𝜆, but a perfectly good suggestion would be obtained by
setting 𝜆 equal to the magnitude of the scattering amplitude at zero momentum. Thus
we have the two defining relations:

These equations are called renomarlization conditions. Our new Lagrangian gives a new
set of Feynman rules. The propagator and the first vertex comes from the first few
terms in eq. 3.3.6, and are identical to the old rules except for the appearance of the
physical mass and coupling in place of the bare values. The counterterms give two vertices.
We can use these new Feynman rules to compute any amplitude in 𝜑4 theory. The
procedure is as follows. Compute the desired amplitude as the sum of all possible diagrams
created from the propagator and vertices. The loop integrals in the diagrams will often
diverge, so one must introduce a regulator. The result of this computation will be a
function of the three unknown parameters 𝛿𝑍 , 𝛿𝑚 and 𝛿𝜆. Adjust (or ”renormalize”)
these three parameters as necessary to maintain the renormalization conditions. After
this adjustment, the expression for the amplitude should be finite and independent of
the regulator. To make more sense of the renormalization procedure, let us carry out
explicitly at the one-loop level. First consider the basic two-particle scattering amplitude:

If we define 𝑝 = 𝑝1 + 𝑝2, then the second diagram is:

(−𝑖𝜆)2

2

∫︁
𝑑4𝑘

(2𝜋)4
𝑖

𝑘2 −𝑚2

𝑖

(𝑘 + 𝑝)2 −𝑚2
≡ (−𝑖𝜆)2 · 𝑖𝑉 (𝑝2) (3.3.7)

Note that 𝑝2 is equal to the Mandelstam variable 𝑠. The next two diagrams are identical,
except that 𝑠 will be replaced by 𝑡 and 𝑢. The entire amplitude is therefore:

𝑖ℳ = −𝑖𝜆+ (−𝑖𝜆)2[𝑖𝑉 (𝑠) + 𝑖𝑉 (𝑡) + 𝑖𝑉 (𝑢)]− 𝑖𝛿𝜆 (3.3.8)
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According to our renormalization conditions, this amplitude should equal −𝑖𝜆 at 𝑠 = 4𝑚2

and 𝑡 = 𝑢 = 0. We must therefore set:

𝛿𝜆 = −𝜆2[𝑉 (4𝑚2) + 2𝑉 (0)] (3.3.9)

We can compute 𝑉 (𝑝2) explicitly using dimensional regularization. Introduce a Feyn-
man parameter, shift the integration variable, rotate to Euclidian space and perform the
momentum integral. We obtain

𝑉 (𝑝2) =
𝑖

2

∫︁ 1

0
𝑑𝑥

∫︁
𝑑𝑑𝑘

(2𝜋)𝑑
1

(𝑘2 + 2𝑥𝑘 · 𝑝+ 𝑥𝑝2 −𝑚2)2

=
𝑖

2

∫︁ 1

0
𝑑𝑥

∫︁
𝑑𝑑ℓ

(2𝜋)𝑑
1

(ℓ2 + 𝑥(1− 𝑥)𝑝2 −𝑚2)2
(ℓ = 𝑘 + 𝑥𝑝)

= −1

2

∫︁ 1

0
𝑑𝑥

∫︁
𝑑𝑑ℓ𝐸
(2𝜋)𝑑

1

(ℓ2𝐸 + 𝑥(1− 𝑥)𝑝2 +𝑚2)2
(ℓ0𝐸 = −𝑖ℓ0)

= −1

2

∫︁ 1

0
𝑑𝑥

Γ(2− 𝑑/2)

(4𝜋)𝑑/2
1

(𝑚2 − 𝑥(1− 𝑥)𝑝2)2−𝑑/2

𝑑→4−−−→ − 1

32𝜋2

∫︁ 1

0
𝑑𝑥

(︂
2

𝜖
− 𝛾 + log(4𝜋)− log(𝑚2 − 𝑥(1− 𝑥)𝑝2)

)︂
(3.3.10)

where 𝜖 = 4− 𝑑. The shift in the coupling constant is therefore:

𝛿𝜆 =
𝜆2

2

Γ(2− 𝑑/2)

(4𝜋)𝑑/2

∫︁ 1

0
𝑑𝑥

(︂
1

(𝑚2 − 𝑥(1− 𝑥)4𝑚2)2−𝑑/2
+

2

(𝑚2)2−𝑑/2

)︂
𝑑→4−−−→ 𝜆2

32𝜋2

∫︁ 1

0
𝑑𝑥

(︂
6

𝜖
+ 3𝛾 + 3log(4𝜋)− log(𝑚2 − 𝑥(1− 𝑥)42)− 2log(𝑚2)

)︂ (3.3.11)

These expressions are divergent as 𝑑→ 4. But if we combine them according to 3.3.8, we
obtain the finite (if rather complicated) result:

𝑖ℳ = −𝑖𝜆− 𝑖𝜆2

32𝜋2

∫︁ 1

0
𝑑𝑥

[︂
log

(︂
𝑚2 − 𝑥(𝑥− 𝑥)𝑠

𝑚2 − 𝑥(1− 𝑥)4𝑚2

)︂
+ log

(︂
𝑚2 − 𝑥(1− 𝑥)𝑡

𝑚2

)︂
+log

(︂
𝑚2 − 𝑥(1− 𝑥)𝑢

𝑚2

)︂]︂ (3.3.12)

To determine 𝛿𝑍 and 𝛿𝑚 we must compute the two-point function. We define −𝑖𝑀2(𝑝2)
as the sum of all one-particle-irreducible insertions into the propagator:

Then the full two-point function is given by the geometric series:

𝑖

𝑝2 −𝑚2 −𝑀2(𝑝2)
(3.3.13)

The renormalization conditions require that the pole in this full propagator occur at
𝑝2 = 𝑚2 and have residue 1. These two conditions are equivalent, respectively, to:

𝑀2(𝑝2)|𝑝2=𝑚2 = 0 and
𝑑

𝑑𝑝2
𝑀2(𝑝2)|𝑝2=𝑚2 = 0 (3.3.14)
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Explicitly, to one-loop order:

−𝑖𝑀2(𝑝2) = −𝑖𝜆1
2

∫︁
𝑑𝑑𝑘

(2𝜋)𝑑
𝑖

𝑘2 −𝑚2
+ 𝑖(𝑝2𝛿𝑍 − 𝛿𝑚)

= − 𝑖𝜆
2

1

(4𝜋)𝑑/2
Γ(1− 𝑑/2)

(𝑚2)1−𝑑/2
+ 𝑖(𝑝2𝛿𝑍 − 𝛿𝑚)

(3.3.15)

Since the first term is independent of 𝑝2, the result is rather trivial: Setting

𝛿𝑍 = 0 and 𝛿𝑚 = − 𝜆

2(4𝜋)𝑑/2
Γ(1− 𝑑/2)

(𝑚2)1−𝑑/2
(3.3.16)

yields 𝑀2(𝑝2) = 0 for all 𝑝2, satisfying both of the renormalization conditions. The
vanishing of 𝛿𝑍 at one-loop order is a special feature of 𝜑4 theory, which does not occur in
more general theories of scalar fields. Yukawa theory gives an explicit example of a one-
loop correction for which the counterterm is required. Renormalization has presented a
constraint to the Standard Model, which does not allow non-renormalizable interactions.
However, when expanding the Standard Model, thus often being forced to introduce these
non-renormalizable interactions, a new approach has to be used, namely an effective field
theory approach.

3.4 Effective field theory

When a field theory is non-renormalizable, we have to make use of effective field theory
approach. When the Standard Model is extended to describe new physics, higher dimen-
sional operators are occasionally introduced and thus bring with them non-renormalizability.
To generate neutrino masses, a dimension 5 operator is commonly used, see eq. 4.5.1.
However, the effective field theory approach takes care of this. It is a realistic theory used
to describe physics at accessible energies, being a low energy approximation that includes
an infinite number of non-renormalizable interactions. We make use of the Wilsonian ap-
proach to illustrate how a theory becomes effective. In this functional integral approach,
the degrees of freedom of the quantum fields are variables of the integration. In a 𝜑4

theory, the generating functional, that is the partition function, is:

𝑍[𝐽 ] =

∫︁
𝒟𝜑𝑒𝑖

∫︀
[ℒ+𝐽𝜑] =

(︃∏︁
𝑘

∫︁
𝑑𝜑(𝑘)

)︃
𝑒𝑖

∫︀
[ℒ+𝐽𝜑] (3.4.1)

Imposing a sharp ultraviolet cutoff Λ, we restrict the number of the integration variables.
That is, we integrate only over 𝜑(𝑘) with |𝑘| ≤ Λ, and set 𝜑(𝑘) = 0 for |𝑘| > Λ. This
modification of the functional integral suggests a method for neglecting the influence of
the quantum fluctuations at very short distances or very large momenta. The cutoff is
imposed in Euclidian space to avoid the light-like very large momenta with very small
|𝑘|2. After the cutoff has been applied, and 𝐽 = 0, the partition function is:

𝑍[𝐽 = 0] =

∫︁
[𝒟𝜑]|𝑘|<Λ exp

[︂
−
∫︁
𝑑𝑑𝑥

[︂
1

2
(𝜕𝜇𝜑)

2 +
1

2
𝑚2𝜑2 +

𝜆

4!
𝜑4
]︂]︂

(3.4.2)

In the Lagrangian of eq. 3.4.2, 𝑚 and 𝜆 are the bare parameters, and so there are no
counterterms and also (𝜕𝜇𝜑)

2 = (𝜕𝜑𝜕𝜏 )
2 + (△𝜑)2. We now divide the integration variables

𝜑(𝑘) into two groups. Choose a fraction 𝑏 < 1. The variables 𝜑(𝑘) with 𝑏Λ ≤ |𝑘| ≤ Λ
are the high-momentum degrees of freedom that we will integrate over. To label these
degrees of freedom, let us define:

𝜑(𝑘) =

{︂(︂
𝜑(𝑘) if 𝑏Λ ≤ |𝑘| < Λ
0 otherwise

)︂}︂
(3.4.3)
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Next, let us define a new scalar 𝜑(𝑘), which is identical to the old for |𝑘| < 𝑏Λ and zero
for |𝑘| > 𝑏Λ. Then we can replace the old 𝜑 in the Lagrangian with 𝜑 + 𝜑, and rewrite
eq. 3.4.2 as:

𝑍 =

∫︁
𝒟𝜑
∫︁

𝒟𝜑 exp

(︂
−
∫︁
𝑑𝑑𝑥

[︂
1

2
(𝜕𝜇𝜑+ 𝜕𝜇𝜑)

2 +
1

2
𝑚2(𝜑+ 𝜑)2 +

𝜆

4!
(𝜑+ 𝜑)4

]︂)︂
=

∫︁
𝒟𝜑𝑒−

∫︀
ℒ(𝜑)

∫︁
𝒟𝜑 exp

(︂
−
∫︁
𝑑𝑑𝑥

[︂
1

2
(𝜕𝜇𝜑)

2 +
1

2
𝑚2𝜑2 + 𝜆

(︂
1

6
𝜑3𝜑+

1

4
𝜑2𝜑2 +

1

6
𝜑𝜑3 +

1

4!
𝜑4
)︂]︂)︂

(3.4.4)
In the final expression we have gathered all terms independent of 𝜑 into ℒ(𝜑). Note that
quadratic terms of the form 𝜑𝜑 vanish, since Fourier components of different wavelengths
are orthogonal. After the integration over 𝜑 is performed, we have:

𝑍 =

∫︁
[𝒟𝜑]𝑏Λ exp

(︂
−
∫︁
𝑑𝑑𝑥ℒeff

)︂
(3.4.5)

This new effective Lagrangian, which contains only momenta below 𝑏Λ, can be found
carrying out the integrals over 𝜑. We will see that ℒeff(𝜑) = ℒ(𝜑) plus corrections propor-
tional to powers of 𝜆. These correction terms compensate for the removal of the large-𝑘
Fourier components 𝜑, by supplying the interactions among the remaining 𝜑(𝑘) that were
previously mediated by fluctuations of the 𝜑. The integration over 𝜑 is done perturba-
tively since 𝑚2 << Λ. Then the leading-order term in the portion of the Lagrangian
involving 𝜑 is: ∫︁

ℒ0 =
1

2

∫︁
𝑏Λ≤|𝑘|<Λ

𝑑𝑑𝑘

(2𝜋)𝑑
𝜑*(𝑘)𝑘2𝜑(𝑘) (3.4.6)

This term leads to a propagator

⟨𝜑(𝑘)𝜑(𝑝)⟩ =
∫︀
𝒟𝜑𝑒−

∫︀
ℒ0𝜑(𝑘)𝜑(𝑝)∫︀

𝒟𝜑𝑒−
∫︀
ℒ0

=
1

𝑘2
(2𝜋)𝑑𝛿𝑑(𝑘 + 𝑝)Θ(𝑘) (3.4.7)

where Θ(𝑘) = 1 for 𝑏Λ ≤ |𝑘| < Λ and 0 otherwise. We will regard the remaining 𝜑 terms
in eq. 3.4.4 as perturbations, and expand the exponential. The various contributions
from these perturbations can be evaluated by using Wick’s theorem with eq. 3.4.7 as the
propagator. First consider the term that results from expanding to one power of the 𝜑2𝜑2

term in the exponent of eq. 3.4.4. We find

−
∫︁
𝑑𝑑𝑥

𝜆

4
𝜑2𝜑𝜑 = −1

2

∫︁
𝑑𝑑𝑘1
(2𝜋)𝑑

Δ𝑚2𝜑(𝑘1)𝜑(−𝑘1) (3.4.8)

where the coefficient Δ𝑚2 is the result of contracting the two 𝜑 fields

Δ𝑚2 =
𝜆

2

∫︁
𝑏Λ≤|𝑘|<Λ

𝑑𝑑𝑘

(2𝜋)𝑑
1

𝑘2
. (3.4.9)

The integral from this term therefore has the form:

exp

(︂
−
∫︁
𝑑𝑑𝑥

1

2
Δ𝑚2𝜑2 + ...

)︂
(3.4.10)

We will soon see that the rest of the perturbation series also organizes itself into this
form. The coefficient Δ𝑚2 therefore gives a positive correction to the 𝑚2 term in ℒ. The
higher orders of the perturbation theory in the correction terms can be worked out in
a similar way. As in our derivation of the standard perturbation theory for 𝜑4 theory,
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it is useful to adopt a diagrammatic notation. Represent the propagator eq. 3.4.7 by
a double line. This propagator will connect pairs of fields 𝜑 from the various quadratic
interactions. Represent the fields 𝜑 in these interactions, which are not integrated over,
as single external lines. Then, for example, the contribution of eq. 3.4.8 corresponds to
the following in figure 3.4.1:

Figure 3.4.1: Order 𝜆 contribution to the effective Lagrangian.

At order 𝜆2, we will have, among other contributions, terms involving the contractions of
two interaction terms 𝜆𝜑2𝜑2. Each term corresponds to a vertex connecting two single
lines and two double lines. There are two possible contractions:

Figure 3.4.2: Order 𝜆2 contribution to the effective Lagrangian.

Of these, the first, which is a disconnected diagram, supplies the order-𝜆2 term in the
exponential in eq. 3.4.10. The second is a new contribution, which will become a cor-
rection to the 𝜑4 interaction in ℒ(𝜑). Let us now evaluate this second contribution. For
simplicity, we consider the limit in which the external momenta carried by the factors 𝜑
are very small compared to 𝑏Λ, so we can ignore them. Then this diagram has the value

− 1

4!

∫︁
𝑑𝑑𝑥Δ𝜆𝜑4 (3.4.11)

where

Δ𝜆 = −4!
2

2!

(︂
𝜆

4

)︂2 ∫︁
𝑏Λ≤|𝑘|<Λ

𝑑𝑑𝑘

(2𝜋)𝑑

(︂
1

𝑘2

)︂2

. (3.4.12)

The effective Lagrangian is:

ℒeff =
1

2
(𝜕𝜇𝜑)

2 +
1

2
𝑚2𝜑2 +

𝜆

4!
𝜑4 + sum of connected terms (3.4.13)

Higher order contributions can be done similarly. Starting out with a partition function
for all 𝑘 lower than a cutoff Λ

𝑍 =

∫︁
𝒟𝜑|𝑘|<Λ exp

[︂
−
∫︁
𝑑𝑑𝑥

[︂
1

2
(𝜕𝜇𝜑)

2 +
1

2
𝑚2𝜑2 +

𝜆

4!
𝜑4
]︂]︂

(3.4.14)

a rescaling can be made, so that

𝑘′ = 𝑘/𝑏 𝑥′ = 𝑥𝑏. (3.4.15)

The integration of∫︁
𝑑𝑑𝑥

[︂
1

2
(1 + Δ𝑍)(𝜕𝜇𝜑)

2 +
1

2
(𝑚2 +Δ𝑚2)𝜑2 +

1

4
(𝜆+Δ𝜆)𝜑4 +Δ𝐶(𝜕𝜇𝜑)

4 +Δ𝐷𝜑6 + ...

]︂
(3.4.16)
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can then be done for |𝑘′| > Λ, which is the same as |𝑘| > 𝑏Λ, leaving the integration over
|𝑘′| < Λ, that is, the function∫︁

𝑑𝑑𝑥ℒeff =

∫︁
𝑑𝑑𝑥′

[︂
1

2
(𝜕′𝜇𝜑

′)2 +
1

2
(𝑚′)2(𝜑′)2 +

1

4
𝜆′(𝜑′)4 + 𝐶 ′(𝜕′𝜇𝜑

′)4 +𝐷′(𝜑′)6 + ..

]︂
(3.4.17)

where the new field is given by

𝜑′ = [𝑏2−𝑑(1 + Δ𝑍)]1/2𝜑. (3.4.18)

The new parameters of the Lagrangian are

(𝑚′)2 = (𝑚2 +Δ𝑚2)(1 + Δ𝑍)−1𝑏−2 𝜆′ = (𝜆+Δ𝜆)(1 + Δ𝑍)−2𝑏𝑑−4 (3.4.19)

𝐶 ′ = (𝐶 +Δ𝐶)(1 + Δ𝑍)−2𝑏𝑑 𝐷′ = (𝐷 +Δ𝐷)(1 + Δ𝑍)−3𝑏2𝑑−6 (3.4.20)

plus higher order. The original Lagrangian had 𝐶 = 𝐷 = 0, but the same equations
would apply if the initial values of 𝐶 and 𝐷 were non-zero. If the perturbation condition
is justified these corrections are very small and finite. This transformation can then be
continued over another shell of momentum space, which transforms the Lagrangian once
again, and so forth. This leads to an iteration of transformation, so that if 𝑏 → 1, the
transformations become continuous. This is the Renormalization group.

The Wilsonian approach to effective field theory is therefore to define a quantum field
theory through an action with a momentum cutoff. This cutoff can then be lowered
by integrating out the higher momenta degrees of freedom and from this change the
coefficients in the effective action. At an energy much lower than the initial cutoff, the
results can then be approximated to the same as those for a renormalized perturbation
theory up to small correction proportional to the energy over the initial cutoff. As a
result, every Lagrangian, as long as the couplings are significantly weak, can be described
at the energies of experiments by an effective Lagrangian. This is the effective field theory
approach. It is used when higher mass-dimensional operators are introduced to describe
physics beyond the Standard Model. We now proceed to discuss in more detail the non-
Abelian gauge theories of the electroweak interaction, which are unified in the Standard
Model of elementary particle physics. The main interest of this thesis lies in neutrinos.
Therefore, we concentrate on the electroweak part of the Standard Model.

3.5 The Glashow-Weinberg-Salam model

We now consider a treatment of electroweak interactions in the framework of gauge the-
ories. Theoretically, the Standard Model group corresponds to a direct product of three
groups, SU(3) ⊗ SU(2) ⊗ U(1), where SU(3) belongs to the color group of quantum chro-
modynamics (QCD), SU(2) to the weak isospin and U(1) belongs to the hypercharge. The
elementary particles are arranged as doublets for chiral left-handed fields and singlets for
right-handed fields in the form:(︂

𝑢
𝑑′

)︂
𝐿

(︂
𝑐
𝑠′

)︂
𝐿

(︂
𝑡
𝑏′

)︂
𝐿

(︂
𝑒
𝜈𝑒

)︂
𝐿

(︂
𝜇
𝜈𝜇

)︂
𝐿

(︂
𝜏
𝜈𝜏

)︂
𝐿

𝑢𝑅 𝑑𝑅 𝑠𝑅 𝑐𝑅 𝑏𝑅 𝑡𝑅 𝑒𝑅 𝜇𝑅 𝜏𝑅

(3.5.1)

We discuss the theory taking the first generation of the three known chiral lepton fields 𝑒𝑅,
𝑒𝐿 and 𝜈𝑒𝐿 as an example. An extension to all three generations and quarks is straight-
forward. Neglecting any mass and switching off weak interactions and electromagnetism
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the Lagrangian for the free Dirac fields can be written as:

ℒ(𝑥) = (𝜈𝑒𝐿(𝑥), 𝑒𝐿(𝑥))(𝑖𝛾
𝜇𝜕𝜇)

(︂
𝜈𝑒𝐿(𝑥)
𝑒𝐿(𝑥)

)︂
+ 𝑒𝑅(𝑥)𝑖𝛾

𝜇𝜕𝜇𝑒𝑅(𝑥) (3.5.2)

This Lagrangian is invariant with respect to global SU(2) transformations on the fields
𝜈𝑒𝐿 and 𝑒𝐿. Going to a local SU(2) transformation, the Lagrangian clearly is not invariant
but we can compensate for that by introducing a corresponding number of gauge vector
fields. In the case of SU(2) we have three generators and, therefore, we need three vector
fields called𝑊 1

𝜇 , 𝑊
2
𝜇 and𝑊 3

𝜇 . The Lagrangian including the W-fields can then be written
as:

ℒ(𝑥) =− 1

2
Tr(𝑊𝜇𝜌(𝑥)𝑊

𝜇𝜌(𝑥)) + (𝜈𝑒𝐿(𝑥), 𝑒𝐿(𝑥))𝑖𝛾
𝜇(𝜕𝜇 + 𝑖𝑔𝑊𝜇)

(︂
𝜈𝑒𝐿(𝑥)
𝑒𝐿(𝑥)

)︂
+ 𝑒𝑅(𝑥)𝑖𝛾

𝜇𝜕𝜇𝑒𝑅(𝑥)

(3.5.3)

The introduced gauge group SU(2) is called the weak isospin. Introducing the fields 𝑊±
𝜇

as

𝑊±
𝜇 =

1√
2
(𝑊 1

𝜇 ∓ 𝑖𝑊 2
𝜇) (3.5.4)

from eq. 3.5.3 the 𝜈-𝑒-𝑊 coupling term can be obtained as

ℒ =− 𝑔(𝜈𝑒𝐿, 𝑒𝐿)𝛾
𝜇𝑊𝜇

𝜎

2

(︂
𝜈𝑒𝐿
𝑒𝐿

)︂
= −𝑔(𝜈𝑒𝐿, 𝑒𝐿)𝛾𝜇

1

2

(︂
𝑊 3

𝜇

√
2𝑊+

𝜇√
2𝑊−

𝜇 −𝑊 3
𝜇

)︂(︂
𝜈𝑒𝐿
𝑒𝐿

)︂
= −𝑔

2
[𝑊 3

𝜇(𝜈𝑒𝐿𝛾
𝜇𝜈𝑒𝐿 − 𝑒𝐿𝛾

𝜇𝑒𝐿) +
√
2𝑊+

𝜇 𝜈𝑒𝐿𝛾
𝜇𝑒𝐿 +

√
2𝑊−

𝜇 𝑒𝐿𝛾
𝜇𝜈𝑒𝐿]

(3.5.5)

with 𝜎 as the Pauli matrices. This looks quite promising because the last two terms
already have the 𝛾𝜇(1 − 𝛾5) structure. Hence, by finding a method to make the W-
boson very massive, at low energy the theory reduces to the Fermi four-point interaction.
Before discussing masses we want to add electromagnetism. The easiest assumption for
associating the remaining field 𝑊 3

𝜇 with the photon field does not work, because 𝑊 3
𝜇

couples to neutrinos and not to 𝑒𝑅 in contrast to the photon. Going to eq. 3.5.3 beside
the SU(2) invariance one can recognize an additional invariance under two further U(1)
transformations with quantum numbers 𝑦𝐿, 𝑦𝑅:(︂

𝜈𝑒𝐿(𝑥)
𝑒𝐿(𝑥)

)︂
→ 𝑒+𝑖𝑦𝐿𝜒

(︂
𝜈𝑒𝐿(𝑥)
𝑒𝐿(𝑥)

)︂
𝑒𝑅(𝑥) → 𝑒+𝑖𝑦𝑅𝜒𝑒𝑅(𝑥)

(3.5.6)

However, this would result in two ’photon-like’ gauge bosons in contrast to Nature from
which we know there is only one. Therefore, we can restrict ourselves to one special
combination of these phase transitions resulting in one U(1) transformation by choosing:

𝑦𝐿 = −1

2
(3.5.7)

𝑦𝑅 is fixed later. This U(1) group is called the weak hypercharge 𝑌 . We can make this U(1)
into a gauge group as in QED, where the charge 𝑄 is replaced by the weak hypercharge 𝑌 .
Between charge, hypercharge and the third component of the weak isospin, the following
relation holds:

𝑄 = 𝐼3 +
𝑌

2
(3.5.8)

The necessary real vector field is called 𝐵𝜇 and the corresponding gauge coupling constant
𝑔′. Now we are left with two massless neutral vector fields 𝑊 3

𝜇 , 𝐵𝜇 and the question
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arises as to whether we can combine them in a way to account for weak neutral currents
and electromagnetism. Let us define two orthogonal linear combinations resulting in
normalized fields 𝑍𝜇 and 𝐴𝜇:

𝑍𝜇 =
1√︀

𝑔2 + 𝑔′2
(𝑔𝑊 3

𝜇 − 𝑔′𝐵𝜇) (3.5.9)

𝐴𝜇 =
1√︀

𝑔2 + 𝑔′2
(𝑔𝑊 3

𝜇 + 𝑔′𝐵𝜇) (3.5.10)

By writing

sin(𝜃𝑊 ) =
𝑔′√︀

𝑔2 + 𝑔′2
(3.5.11)

cos(𝜃𝑊 ) =
𝑔√︀

𝑔2 + 𝑔′2
(3.5.12)

we can simplify the expressions to

𝑍𝜇 = cos(𝜃𝑊 )𝑊 3
𝜇 − sin(𝜃𝑊 )𝐵𝜇 (3.5.13)

𝐴𝜇 = sin(𝜃𝑊 )𝑊 3
𝜇 + cos(𝜃𝑊 )𝐵𝜇. (3.5.14)

The angle sin(𝜃𝑊 ) is called the Weinberg angle and is one of the fundamental parameters
of the Standard Model. Replacing the fields 𝑊 3

𝜇 , 𝐵𝜇 in eq. 3.5.5 by 𝑍𝜇, 𝐴𝜇 results in:

ℒ =− 𝑔√
2
(𝑊+

𝜇 𝜈𝑒𝐿𝛾
𝜇𝑒𝐿 +𝑊−

𝜇 𝑒𝐿𝛾
𝜇𝜈𝑒𝐿)

−
√︁
𝑔2 + 𝑔′2𝑍𝜇

[︂
1

2
𝜈𝑒𝐿𝛾

𝜇𝜈𝑒𝐿 − 1

2
𝑒𝐿𝛾

𝜇𝑒𝐿 − sin2(𝜃𝑊 )(−𝑒𝐿𝛾𝜇𝑒𝐿 + 𝑦𝑅𝑒𝑅𝛾
𝜇𝑒𝑅)

]︂
− 𝑔𝑔′√︀

𝑔2 + 𝑔′2
𝐴𝜇(−𝑒𝐿𝛾𝜇𝑒𝐿 + 𝑦𝑅𝑒𝑅𝛾

𝜇𝑒𝑅)

(3.5.15)
One can note that the 𝑍𝜇 coupling results in neutral currents. However, 𝐴𝜇 no longer
couples neutrinos and is, therefore, a good candidate to be associated with the photon
field. To reproduce electromagnetism we have to choose the following

𝑦𝑅 = −1
𝑔𝑔′√︀
𝑔2 + 𝑔′2

= 𝑒 (3.5.16)

which immediately yields another important relation by using eq. 3.5.11

sin(𝜃𝑊 ) =
𝑒

𝑔
. (3.5.17)

This finally allows us to write the Lagrangian using electromagnetic, charged and neutral
currents

ℒ =− 𝑒

[︂
𝐴𝜇𝐽

𝜇
em +

1√
2 sin(𝜃𝑊 )

(𝑊+
𝜇 𝜈𝑒𝐿𝛾

𝜇𝑒𝐿 +𝑊−
𝜇 𝑒𝐿𝛾

𝜇𝜈𝑒𝐿) +
1

sin(𝜃𝑊 ) cos(𝜃𝑊 )
𝑍𝜇𝐽

𝜇
𝑁𝐶

]︂
(3.5.18)

with the currents
𝐽𝜇
em = −𝑒𝐿𝛾𝜇𝑒𝐿 − 𝑒𝑅𝛾

𝜇𝑒𝑅 = −𝑒𝛾𝜇𝑒 (3.5.19)

𝐽𝜇
𝑁𝐶 =

1

2
𝜈𝑒𝐿𝛾

𝜇𝜈𝑒𝐿 − 1

2
𝑒𝐿𝛾

𝜇𝑒𝐿 − sin2(𝜃𝑊 )𝐽𝜇
em. (3.5.20)
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3.5.1 Spontaneous symmetry breaking and the Higgs mechanism

In the formulation of the theory all particles have to be massless to guarantee gauge
invariance. The concept of spontaneous symmetry breaking is then used for particles to
receive mass through the so-called Higgs mechanism. Spontaneous symmetry breaking
results in the ground state of a system having no longer the full symmetry corresponding
to the underlying Lagrangian. Consider the following classical Lagrangian

ℒ = (𝜕𝜇Φ)
†(𝜕𝜇Φ)− 𝜇2Φ†Φ− 𝜆(Φ†Φ)2 (3.5.21)

where Φ(𝑥) is a complex scalar field. ℒ is invariant under the group U(1) of global
transformations equivalent to eq. 3.2.3. The kinetic energy term is positive and can
vanish only if Φ = constant. The ground state of the system will be obtained when the
value of the constant corresponds to the minimum of the potential:

𝑉 (Φ) = 𝜇2Φ†Φ+ 𝜆(Φ†Φ)2 (3.5.22)

If 𝜇2 > 0 and 𝜆 > 0, a minimum configuration occurs at the origin and we have a
symmetric ground-state configuration. If, however, 𝜇2 < 0, the minimum is at

𝜌 = ΦΦ† = −𝜇2/2𝜆 (3.5.23)

which means that there is a whole ring of radius

|Φ| ≡ 𝑣√
2
=
√︀

−𝜇2/2𝜆 (3.5.24)

in the complex plane. There are infinitely many ground states, degenerate with each other
but none shows the original symmetry of the Lagrangian any longer. The symmetry is
broken spontaneously. Generally, it can be shown that spontaneous symmetry breaking
is connected with the degeneracy of the ground state. Now we impose invariance under a
local gauge transformation, as it is implemented in the Standard Model. In the electroweak
model the simplest way of spontaneous symmetry breaking is achieved by introducing a
doublet of complex scalar fields, one charged, one neutral

𝜑 =

(︂
𝜑†

𝜑0

)︂
(3.5.25)

where the complex fields are given by:

𝜑† =
𝜑1 + 𝑖𝜑2√

2
𝜑0 =

𝜑3 + 𝑖𝜑4√
2

(3.5.26)

Adding a kinetic term to the potential eq. 3.5.22 leads to the following expression for the
Lagrangian:

ℒHiggs = (𝜕𝜇𝜑)
†(𝜕𝜇𝜑)− 𝜇2𝜑†𝜑− 𝜆(𝜑†𝜑)2 (3.5.27)

Proceeding as before, the potential 𝑉 (𝜑) has a minimum for 𝜇2 < 0 at:

𝜑†𝜑 =
−𝜇2

2𝜆
=
𝑣2

2
(3.5.28)

Here again the minima, corresponding to the vacuum expectation values for 𝜑 lie on a
circle with ⟨𝜑⟩ ≡ 𝑣/

√
2 =

√︀
−𝜇2/2𝜆. This ground state is degenerate and its orientation

in two-dimensional isospin space is not defined. It can choose the same radius in any
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orientation between [0, 2𝜋]. From this infinite number of possible orientations we choose
a particular field configuration which is defined as the vacuum state as

𝜑0 =
1√
2

(︂
0
𝑣

)︂
(3.5.29)

which is no longer invariant under SU(2) transformations. The upper component is mo-
tivated by the fact that a vacuum is electrically neutral. The field 𝜑(𝑥) can now be
expanded around the vacuum

𝜑 =
1√
2

(︂
0

𝑣 +𝐻(𝑥)

)︂
(3.5.30)

where a perturbation theory for 𝐻(𝑥) can be formulated as usual. Now consider the
coupling of this field to fermions first. Fermions get their masses through coupling to the
vacuum expectation value (VEV) of the Higgs field. To conserve isospin invariance of the
coupling, the Higgs doublet has to be combined with a fermion doublet and singlet. The
resulting coupling is called Yukawa coupling and has the typical form (given here for the
case of electrons):

ℒYuk = −𝑐𝑒𝑒𝑅𝜑†
(︂
𝜈𝑒𝐿
𝑒𝐿

)︂
+ ℎ.𝑐.

= −𝑐𝑒
[︂
𝑒𝑅𝜑

†
0

(︂
𝜈𝑒𝐿
𝑒𝐿

)︂
+ (𝜈𝑒𝐿, 𝑒𝐿)𝜑0𝑒𝑅

]︂
= −𝑐𝑒

[︂
𝑒𝑅

1√
2
𝑣𝑒𝐿 + 𝑒𝐿

1√
2
𝑣𝑒𝑅

]︂
= −𝑐𝑒𝑣

1√
2
(𝑒𝑅𝑒𝐿 + 𝑒𝐿𝑒𝑅)

= −𝑐𝑒
𝑣√
2
𝑒𝑒

(3.5.31)

Here 𝑐𝑒 is an arbitrary coupling constant. This corresponds exactly to mass term for the
electron with an electron mass:

𝑚𝑒 = 𝑐𝑒
𝑣√
2

(3.5.32)

The same strategy holds for the other charged leptons and quarks with their corresponding
coupling constant 𝑐𝑖. In this way fermions obtain their masses within the GWS model.
Neutrinos remain massless because with the currently accepted particle content there are
no right-handed 𝜈𝑅 singlet states and one cannot write down couplings like in eq. 3.5.31.
With the evidence for massive neutrinos, one is forced to generate the masses in another
way such as using Higgs triplets or adding right-handed neutrino singlets. Substituting
the covariant derivative for the normal derivative in ℒ as in eq. 3.2.15 leads directly to the
coupling of the Higgs field with the gauge fields. The gauge bosons then acquire masses
of

𝑚2
𝑊 =

𝑔2𝑣2

4
=

𝑒2𝑣2

4 sin2(𝜃𝑊 )
(3.5.33)

𝑚2
𝑍 =

(𝑔2 + 𝑔′2)𝑣2

4
=

𝑒2𝑣2

4 sin2(𝜃𝑊 ) cos2(𝜃𝑊 )
(3.5.34)

resulting in
𝑚𝑊

𝑚𝑍
= cos(𝜃𝑊 ). (3.5.35)
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The gauge bosons has been determined accurately with given values:

𝑚𝑍 = 91.1874± 0.0021 GeV/c2 and 𝑚𝑊 = 80.452± 0.091 GeV/c2 (3.5.36)

An estimate for 𝑣 can be given by eq. 3.5.33 resulting in:

𝑣 = (
√
2𝐺𝐹 )

−1/2 ≈ 246 GeV (3.5.37)

The inclusion of spontaneous symmetry breaking with the help of a complex scalar field
doublet has another consequence, namely the existence of a new scalar particle called the
Higgs boson, with a mass of 𝑚𝐻 , such that:

𝑚2
𝐻 = 2𝜆𝑣2 (3.5.38)

This particle was recently discovered by CMS (𝑚𝐻 = 125.5±0.4(stat)±0.5(sys) GeV/c2)
and ATLAS (𝑚𝐻 = 126.0± 0.4(stat)± 0.4(sys) GeV/c2) independently at the LHC-ring.
The discussion at the moment is whatever it is a Standard Model Higgs or a more exotic
Higgs [[23], [24], [25]]

3.5.2 Number of neutrino flavours from the width of the 𝑍0

The number 𝑁𝜈 of light (𝑚𝜈 < 𝑚𝑍/2) and active neutrinos was determined at LEP by
measuring the total decay width of the 𝑍0 resonance. Calling the hadronic decay width
Γhad (consisting of 𝑍0 → 𝑞𝑞) and assuming lepton universality (implying that there is
a common partial width Γℓ for the decay into charged lepton pairs ℓ+ℓ−), the invisible
width Γinv is [26]:

Γinv = Γ𝑍 − Γhad − 3Γℓ (3.5.39)

As the invisible width corresponds to

Γinv = 𝑁𝜈 · Γ𝜈 (3.5.40)

where the number of neutrino flavours 𝑁𝜈 can be determined. The partial widths of
decays in fermions Z → 𝑓𝑓 are given in electroweak theory by [27]

Γ𝑓 =
𝐺𝐹𝑚

3
𝑍

6
√
2𝜋

𝑐𝑓 [(𝑔𝑉 )
2 + (𝑔𝐴)

2] = Γ0𝑐𝑓 [(𝑔𝑉 )
2 + (𝑔𝐴)

2] (3.5.41)

with

Γ0 =
𝐺𝐹𝑚

3
𝑍

6
√
2𝜋

= 0.332 GeV. (3.5.42)

In this equation 𝑐𝑓 corresponds to a color factor (𝑐𝑓 = 1 for leptons, 𝑐𝑓 = 3 for quarks)
and 𝑔𝑉 and 𝑔𝐴 are the vector and axial-vector coupling constants respectively. They are
closely related to the Weinberg angle sin2(𝜃𝑊 ) and the third component of weak isospin
𝐼3 via

𝑔𝑉 = 𝐼3 − 2𝑄 sin2(𝜃𝑊 ) (3.5.43)

𝑔𝐴 = 𝐼3 (3.5.44)

with 𝑄 being the charge of the particle. Therefore, the different branching ratios [5] are:

Γ(𝑍0 → 𝑢�̄�, 𝑐𝑐) =

(︂
3

2
− 4 sin2(𝜃𝑊 ) +

16

3
sin4(𝜃𝑊 )

)︂
Γ0 = 0.286 GeV (3.5.45)



20 3.5. THE GLASHOW-WEINBERG-SALAM MODEL

Γ(𝑍0 → 𝑑𝑑, 𝑠𝑠, 𝑏�̄�) =

(︂
3

2
− 2 sin2(𝜃𝑊 ) +

4

3
sin4(𝜃𝑊 )

)︂
Γ0 = 0.369 GeV (3.5.46)

Γ(𝑍0 → 𝑒+𝑒−, 𝜇+𝜇−, 𝜏+𝜏−) =

(︂
1

2
− 2 sin2(𝜃𝑊 ) + 4 sin4(𝜃𝑊 )

)︂
Γ0 = 0.084 GeV (3.5.47)

Γ(𝑍0 → 𝜈𝜈) =
1

2
Γ0 = 0.166 GeV (3.5.48)

Summing all decay channels into quarks results in a total hadronic width Γhad = 1.687
GeV. The different decay widths are determined from the reaction 𝑒+𝑒− → 𝑓𝑓 for 𝑓 ̸= 𝑒
whose cross-section as a function of the centre-of-mass energy

√
𝑠 is measured (

√
𝑠 ≈ 𝑚𝑍)

and is dominated by the 𝑍0 pole. The cross-section at the resonance is described in the

Figure 3.5.1: Cross-section as a function of
√
s for the reaction e+e− → hadron as

obtained by the ALEPH detector at LEP. The different curves show the Standard Model
predictions for two, three and four light neutrino flavours.

Born approximation by a Breit-Wigner formula

𝜎(𝑠) = 𝜎0
𝑠Γ2

𝑍

(𝑠−𝑚2
𝑍)

2 + 𝑠2Γ2
𝑍/𝑚

2
𝑍

with 𝜎0 =
12𝜋

𝑚2
𝑍

Γ𝑒Γ𝑓

Γ2
𝑍

(3.5.49)

with 𝜎0 being the maximum of the resonance. Γ𝑍 can be determined from the width and
Γ𝑒Γ𝑓 from the maximum of the observed resonance (figure 3.5.1). Experimentally, the 𝑍0

resonance is fitted with four different parameters, namely:

𝑚𝑍 ,Γ𝑍 , 𝜎
0
had =

12𝜋

𝑚2
𝑍

Γ𝑒Γhad

Γ2
𝑍

and 𝑅𝑙 =
Γhad

Γℓ
(3.5.50)
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𝜎0had is determined from the maximum of the resonance in 𝑒+𝑒− → hadrons. Assuming
again lepton-universality, which is justified by the equality of the measured leptonic decay
width, the number of neutrino flavours can be determined as:

𝑁𝜈 =
Γinv

Γℓ

(︂
Γℓ

Γ𝜈

)︂
=

[︃√︃
12𝜋𝑅ℓ

𝑚2
𝑍𝜎

0
had

−𝑅ℓ − 3

]︃(︂
Γℓ

Γ𝜈

)︂
(3.5.51)

Using the most recent fit to the data of the four LEP experiments a number of

𝑁𝜈 = 2.9841± 0.0083 (3.5.52)

which is in excellent agreement with the theoretical expectation of three.





4

Neutrino mass: Beyond the Standard Model

Neutrinos hold a special place in the Standard Model because they only interact through
the weak force. Historically, the neutrino was first postulated by Pauli to explain energy
non-conservation in beta decay. Reines and Cowan observed the first interactions of
electron antineutrinos in 1953, for which Reines received the Nobel prize in 1995. In
1962, Lederman, Schwartz and Steinberger detected muon neutrino interactions showing
that neutrinos come in at least two types; they received the Nobel prize for this work in
1988. Evidence for tau neutrino interactions was published in 2000, thus filling out the
observation of the three neutrinos.

Two historical observations are particularly noteworthy. First, the observation of
neutrino neutral current interactions was key in establishing the Standard Model and
electroweak unification. The second was the observation of neutrino oscillations, first
proposed by Pontecorvo in 1957 [28]. Neutrino oscillations imply massive neutrinos, which
is the first indication of physics beyond the Standard Model. With this description, an
introduction to neutrino physics is presented.

4.1 Helicity and chirality

In quantum field theory spin-12 particles are described by four-component wavefunctions
𝜓(𝑥) (spinors) which obey the Dirac equation. The four independent components of 𝜓(𝑥)
correspond to particles and antiparticles with the two possible spin projections 𝐽𝑍 = ±1/2
equivalent to the two helicities ℋ = ±1. Neutrinos as fundamental leptons are spin-12
particles like other fermions; however, it is an experimental fact that only left-handed
neutrinos (ℋ = −1) and right-handed antineutrinos (ℋ = +1) are observed. Therefore,
a two-component spinor description should, in principle, be sufficient (Weyl spinors). In
a four-component theory they are obtained by projecting out of a general spinor 𝜓(𝑥),
the components with ℋ = +1 for particles and ℋ = −1 for antiparticles with the help of
the operators 𝑃𝐿,𝑅 = 1

2(1∓ 𝛾5). The Dirac equation is the relativistic wave equation for
spin-12 particles:

(𝑖𝛾𝜇𝜕
𝜇 −𝑚)𝜓 = 0 (4.1.1)

Here 𝜓 denotes a four-component spinor and the 4× 4 𝛾-matrices are given in the form

𝛾0 =

(︂
0 1
1 0

)︂
𝛾𝑖 =

(︂
0 𝜎𝑖

−𝜎𝑖 0

)︂
(4.1.2)

where 𝜎𝑖 correspond to the 2× 2 Pauli matrices. The matrix 𝛾5 is given by

𝛾5 = 𝑖𝛾0𝛾1𝛾2𝛾3 =

(︂
−1 0
0 1

)︂
(4.1.3)

and the following anticommutator relations hold

{𝛾𝛼, 𝛾𝛽} = 2𝑔𝛼𝛽 (4.1.4)
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{𝛾𝛼, 𝛾5} = 0 (4.1.5)

with 𝑔𝛼𝛽 = (+1,−1,−1,−1). Multiplying the Dirac equation from the left with 𝛾0 and
using 𝛾𝑖 = 𝛾0𝛾5𝜎𝑖 results in:(︀

𝑖𝛾20𝜕
0 − 𝑖𝛾20𝛾5𝜎𝑖𝜕

𝑖 −𝑚𝛾0
)︀
𝜓 = 0 𝑖 = 1, 2, 3 (4.1.6)

Another multiplication of eq. 4.1.6 from the left with 𝛾5 and using 𝛾5𝜎𝑖 = 𝜎𝑖𝛾5 leads to
(𝛾20 = 1, 𝛾25 = 1): (︀

𝑖𝜕0𝛾5 − 𝑖𝜎𝑖𝜕
𝑖 +𝑚𝛾0𝛾5

)︀
𝜓 = 0 (4.1.7)

Subtraction and addition of the last two equations results in the following system of
coupled equations: (︀

𝑖𝜕0(1 + 𝛾5)− 𝑖𝜎𝑖𝜕
𝑖(1 + 𝛾5)−𝑚𝛾0(1− 𝛾5)

)︀
𝜓 = 0 (4.1.8)

(︀
𝑖𝜕0(1− 𝛾5) + 𝑖𝜎𝑖𝜕

𝑖(1− 𝛾5)−𝑚𝛾0(1 + 𝛾5)
)︀
𝜓 = 0 (4.1.9)

Now let us introduce left- and right-handed components by defining two projection oper-
ators 𝑃𝐿 and 𝑃𝑅:

𝑃𝐿 =
1

2
(1− 𝛾5) and 𝑃𝑅 =

1

2
(1 + 𝛾5) (4.1.10)

Because they are projectors, the following relations hold:

𝑃𝐿𝑃𝑅 = 0 𝑃𝐿 + 𝑃𝑅 = 1 𝑃 2
𝐿 = 𝑃𝐿 𝑃 2

𝑅 = 𝑃𝑅 (4.1.11)

With the definition

𝜓𝐿 = 𝑃𝐿𝜓 and 𝜓𝑅 = 𝑃𝑅𝜓 (4.1.12)

it is obviously valid that:

𝑃𝐿𝜓𝑅 = 𝑃𝑅𝜓𝐿 = 0 (4.1.13)

Then the following eigenequation holds:

𝛾5𝜓𝐿,𝑅 = ∓𝜓𝐿,𝑅 (4.1.14)

The eigenvalues ∓1 to 𝛾5 are called chirality and 𝜓𝐿,𝑅 are called chiral projections of 𝜓.
Any spinor 𝜓 can be rewritten in chiral projections as:

𝜓 = (𝑃𝐿 + 𝑃𝑅)𝜓 = 𝑃𝐿𝜓 + 𝑃𝑅𝜓 = 𝜓𝐿 + 𝜓𝑅. (4.1.15)

The equations 4.1.8 and 4.1.9 can now be expressed in these projections as:(︀
𝑖𝜕0 − 𝑖𝜎𝑖𝜕

𝑖
)︀
𝜓𝑅 = 𝑚𝛾0𝜓𝐿 (4.1.16)

(︀
𝑖𝜕0 + 𝑖𝜎𝑖𝜕

𝑖
)︀
𝜓𝐿 = 𝑚𝛾0𝜓𝑅 (4.1.17)

Both equations decouple in the case of a vanishing mass 𝑚 = 0 and can be depicted as:

𝑖𝜕0𝜓𝑅 = 𝑖𝜎𝑖𝜕
𝑖𝜓𝑅 (4.1.18)

𝑖𝜕0𝜓𝐿 = −𝑖𝜎𝑖𝜕𝑖𝜓𝐿 (4.1.19)
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But this is identical to the Schrödinger equation (𝑥0 = 𝑡, ~ = 1)

𝑖
𝜕

𝜕𝑡
𝜓𝐿,𝑅 = ∓𝑖𝜎𝑖

𝜕

𝜕𝑥𝑖
𝜓𝐿,𝑅 (4.1.20)

or in momentum space (𝑖 𝜕𝜕𝑡 = 𝐸,−𝑖 𝜕
𝜕𝑥𝑖

= 𝑝𝑖)

𝐸𝜓𝐿,𝑅 = ±𝜎𝑖𝑝𝑖𝜓𝐿,𝑅. (4.1.21)

The latter implies that the 𝜓𝐿,𝑅 are also eigenfunctions to the helicity operator ℋ:

ℋ =
𝜎 · 𝑝
|𝑝|

. (4.1.22)

𝜓𝐿 is an eigenspinor with helicity eigenvalues ℋ = +1 for particles and ℋ = −1 for
antiparticles. Correspondingly 𝜓𝑅 is the eigenspinor to the helicity eigenvalues ℋ = −1
for particles and ℋ = +1 for antiparticles. Therefore, in the case of massless particles,
chirality and helicity are identical. For 𝑚 > 0 the decoupling of equations 4.1.16 and
4.1.17 is no longer possible. This means that the chirality eigenspinors 𝜓𝐿 and 𝜓𝑅 no
longer describe particles with fixed helicity and helicity is no longer a good conserved
quantum number.

4.2 Charge conjugation

While for all fundamental fermions of the Standard Model a clear discrimination between
particle and antiparticle can be made by their electric charge, for neutrinos it is not so
obvious. If the particle and antiparticle are not identical, we call such a fermion a Dirac
particle which has four independent components. If particle and antiparticle are identical,
they are called Majorana particles. The latter requires that all additive quantum numbers
(charge, strangeness, baryon number, lepton number etc.) have to vanish. Consequently,
the lepton number is violated if neutrinos are Majorana particles. The operator connecting
particle 𝑓(𝑥, 𝑡) and antiparticle 𝑓(𝑥, 𝑡) is charge conjugation 𝒞:

𝒞|𝑓(𝑥, 𝑡)⟩ = 𝜂𝑐|𝑓(𝑥, 𝑡)⟩ (4.2.1)

If 𝜓(𝑥) is a spinor field of a free neutrino then the corresponding charge conjugated field
𝜓𝑐 is defined by

𝜓
𝒞−→ 𝜓𝑐 ≡ 𝒞𝜓𝒞−1 = 𝜂𝑐𝒞𝜓𝑇 (4.2.2)

with 𝜂𝑐 as a phase factor with |𝜂𝑐| = 1. The 4 × 4 unitary charge conjugation matrix 𝒞
obeys the following general transformations:

𝒞−1𝛾𝜇𝒞 = −𝛾𝑇𝜇 𝒞−1𝛾5𝒞 = 𝛾𝑇5 𝒞† = 𝒞−1 = 𝒞𝑇 = −𝒞 (4.2.3)

A possible representation is 𝒞 = 𝑖𝛾0𝛾2. Using the projection operators 𝑃𝐿,𝑅, it follows
that:

𝑃𝐿,𝑅𝜓 = 𝜓𝐿,𝑅
𝒞−→ 𝑃𝐿,𝑅𝜓

𝑐 = (𝜓𝑐)𝐿,𝑅 = (𝜓𝑅,𝐿)
𝑐 (4.2.4)

It is easy to show that if 𝜓 is an eigenstate of chirality, 𝜓𝑐 is an eigenstate too but
it has an eigenvalue of opposite sign. Furthermore, from eq. 4.2.4 it follows that the
charge conjugation 𝒞 transforms a left(right)-handed particle into a left(right)-handed
antiparticle, leaving the helicity (chirality) untouched. Only the additional application of
a parity transformation changes the helicity as well.
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4.3 Parity transformation

A parity transformation 𝒫 operation is defined as:

𝜓(𝑥, 𝑡)
𝒫−→ 𝒫𝜓(𝑥, 𝑡)𝒫−1 = 𝜂𝑝𝛾0𝜓(−𝑥, 𝑡). (4.3.1)

The phase factor 𝜂𝑝 with |𝜂𝑝| = 1 corresponds for real 𝜂𝑝 = ±1 with the inner parity.
Using eq. 4.2.2 for the charge conjugated field, it follows that:

𝜓𝑐 = 𝜂𝑐𝒞𝜓𝑇 𝒫−→ 𝜂𝑐𝜂
*
𝑝𝒞𝛾𝑇0 𝜓𝑇 = −𝜂*𝑝𝛾0𝜓𝑐 (4.3.2)

This implies that a fermion and its corresponding antifermion have opposite inner parity,
i.e. for a Majorana particle 𝜓𝑐 = ±𝜓 holds which results in 𝜂𝑝 = −𝜂*𝑝. Therefore,
an interesting point with respect to the inner parity occurs for Majorana neutrinos. A
Majorana field can be written as

𝜓𝑀 =
1√
2
(𝜓 + 𝜂𝑐𝜓

𝑐) with 𝜂𝑐 = 𝜆𝑐𝑒
2𝑖𝜑, 𝜆𝑐 = ±1 (4.3.3)

where 𝜆𝑐 is sometime called creation phase. By applying a phase transformation

𝜓𝑀 → 𝜓𝑀𝑒
−𝑖𝜑 =

1√
2
(𝜓𝑒−𝑖𝜑 + 𝜆𝑐𝜓

𝑐𝑒𝑖𝜑) =
1√
2
(𝜓 + 𝜆𝑐𝜓

𝑐) ≡ 𝜓𝑀 (4.3.4)

it can be achieved that the field 𝜓𝑀 is an eigenstate with respect to charge conjugation
𝒞

𝜓𝑐
𝑀 =

1√
2
(𝜓𝑐 + 𝜆𝑐𝜓) = 𝜆𝑐𝜓𝑀 (4.3.5)

with eigenvalues 𝜆𝑐 = ±1. This means the Majorana particle is identical to its antiparticle,
i.e. 𝜓𝑀 and 𝜓𝑐

𝑀 cannot be distinguished. With respect to CP, one obtains

𝜓𝑀 (𝑥, 𝑡)
𝒞−→ 𝜓𝑐

𝑀 = 𝜆𝑐𝜓𝑀
𝒫−→ 𝜆𝑐√

2
(𝜂𝑝𝛾0𝜓 − 𝜆𝑐𝜂

*
𝑝𝛾0𝜓

𝑐)

= 𝜆𝑐𝜂𝑝𝛾0𝜓𝑀 = ±𝑖𝛾0𝜓𝑀 (−𝑥, 𝑡)

(4.3.6)

because 𝜂*𝑝 = −𝜂𝑝. This means that the inner parity of a Majorana particle is imaginary,
𝜂𝑝 = ±𝑖 if 𝜆𝑐 = ±1. Finally, from eq. 4.3.4 it follows that

(𝛾5𝜓𝑀 )𝑐 = 𝜂𝑐𝒞𝛾5𝜓𝑇
𝑀 = −𝜂𝑐𝒞𝛾𝑇5 𝜓𝑇

𝑀 = −𝛾5𝜓𝑐
𝑀 = −𝜆𝑐𝛾5𝜓𝑀 (4.3.7)

because 𝛾5𝜓𝑀 = (𝛾5𝜓𝑀 )†𝛾0 = 𝜓†
𝑀𝛾5𝛾0 = −𝜓𝑀𝛾5. Since 𝜓 and 𝜓𝑐 obey the Dirac

equation, 𝜓𝑀 will also do so [29].

4.4 Dirac and Majorana mass terms

Consider the case of free fields without interactions and start with the Dirac mass. The
Dirac equation can be deduced with the help of the Euler-Lagrange equation from a
Lagrangian

ℒ = 𝜓 (𝑖𝛾𝜇𝜕
𝜇 −𝑚𝐷)𝜓 (4.4.1)

where the first term corresponds to the kinetic energy and the second is the mass term.
The Dirac mass term is

ℒ = 𝑚𝐷𝜓𝜓 (4.4.2)
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where the combination 𝜓𝜓 has to be Lorentz invariant and Hermitian. Requiring ℒ to
be Hermitian as well, 𝑚𝐷 must be real (𝑚*

𝐷 = 𝑚𝐷). Multiplying two arbitrary spinors 𝜓
and 𝜑 with the same chirality gives

𝜓𝐿𝜑𝐿 = 𝜓†
𝐿𝛾0𝑃𝐿𝜑 = 𝜓† 1

2
(1− 𝛾5) 𝛾0𝑃𝐿𝜑

= 𝜓†𝛾0
1

2
(1 + 𝛾5)𝑃𝐿𝜑 = 𝜓

1

2
(1 + 𝛾5)𝑃𝐿𝜑 = 𝜓𝑃𝑅𝑃𝐿𝜑 = 0

(4.4.3)

𝜓𝑅𝜑𝑅 = 0 (4.4.4)

with 𝛾†5 = 𝛾5 and 𝛾5𝛾0 = −𝛾0𝛾5. It follows that:

𝜓𝜑 = (𝜓𝐿 + 𝜓𝑅)(𝜑𝐿 + 𝜑𝑅) = 𝜓𝐿𝜑𝑅 + 𝜓𝑅𝜑𝐿 (4.4.5)

In this way the Dirac mass term can be written in its chiral components (Weyl spinors)
as:

ℒ = 𝑚𝐷(𝜓𝐿𝜓𝑅 + 𝜓𝑅𝜓𝐿) and 𝜓𝑅𝜓𝐿 = (𝜓𝐿𝜓𝑅)
† (4.4.6)

Applying this to neutrinos, it requries both a left- and right-handed Dirac neutrino to
produce such a mass term. In the Standard Model of particle physics only left-handed
neutrinos exist, that is the reason why neutrinos remain massless.

In a more general treatment including 𝜓𝑐 one might ask which other combinations of
spinors behaving like Lorentz scalars can be produced. Three more are possible: 𝜓𝑐𝜓𝑐,
𝜓𝜓𝑐 and 𝜓𝑐𝜓; 𝜓𝑐𝜓𝑐 is also Hermitian and equivalent to 𝜓𝜓; 𝜓𝜓𝑐 and 𝜓𝑐𝜓 are Hermitian
conjugates, which can be shown for arbitrary spinors

(𝜓𝜑)† = (𝜓†𝛾0𝜑)
† = 𝜑†𝛾0𝜓 = 𝜑𝜓 (4.4.7)

using the relation 𝛾†0 = 𝛾0. With this we have an additional Hermitian mass term, called
the Majorana mass term given by

ℒ =
1

2
(𝑚𝑀𝜓𝜓

𝑐 +𝑚*
𝑀𝜓

𝑐𝜓) =
1

2
𝑚𝑀𝜓𝜓

𝑐 + ℎ.𝑐. (4.4.8)

were 𝑚𝑀 is called the Majorana mass. Now using the chiral projections with the notation

𝜓𝑐
𝐿,𝑅 = (𝜓𝑐)𝑅,𝐿 = (𝜓𝑅,𝐿)

𝑐 (4.4.9)

one gets two Hermitian mass terms

ℒ𝐿 =
1

2
𝑚𝐿(𝜓𝐿𝜓

𝑐
𝑅 + 𝜓𝑐

𝑅𝜓𝐿) =
1

2
𝑚𝐿𝜓𝐿𝜓

𝑐
𝑅 + ℎ.𝑐. (4.4.10)

ℒ𝑅 =
1

2
𝑚𝑅(𝜓

𝑐
𝐿𝜓𝑅 + 𝜓𝑅𝜓

𝑐
𝐿) =

1

2
𝑚𝑅𝜓

𝑐
𝐿𝜓𝑅 + ℎ.𝑐. (4.4.11)

with 𝑚𝐿,𝑅 as real Majorana masses. Lets us define two Majorana fields

𝜑1 = 𝜓𝐿 + 𝜓𝑐
𝑅 𝜑2 = 𝜓𝑅 + 𝜓𝑐

𝐿 (4.4.12)

which allows eq. 4.4.10 to be rewritten as

ℒ𝐿 =
1

2
𝑚𝐿𝜑1𝜑1 ℒ𝑅 =

1

2
𝑚𝑅𝜑2𝜑2. (4.4.13)
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While 𝜓𝐿,𝑅 are interaction eigenstates, 𝜑1,2 are mass eigenstates to 𝑚𝐿,𝑅. The most
general mass term (the Dirac-Majorana mass term) is a combination of equations 4.4.6
and 4.4.10

2ℒ = 𝑚𝐷(𝜓𝐿𝜓𝑅 + 𝜓𝑐
𝐿𝜓

𝑐
𝑅) +𝑚𝐿𝜓𝐿𝜓

𝑐
𝑅 +𝑚𝑅𝜓

𝑐
𝐿𝜓𝑅 + ℎ.𝑐.

= (𝜓𝐿, 𝜓
𝑐
𝐿)

(︂
𝑚𝐿 𝑚𝐷

𝑚𝐷 𝑚𝑅

)︂(︂
𝜓𝑐
𝑅

𝜓𝑅

)︂
+ ℎ.𝑐.

= Ψ̄𝐿𝑀Ψ𝑐
𝑅 + Ψ̄𝑐

𝑅𝑀Ψ𝐿

(4.4.14)

where, in the last step, the following was used

𝑀 =

(︂
𝑚𝐿 𝑚𝐷

𝑚𝐷 𝑚𝑅

)︂
Ψ𝐿 =

(︂
𝜓𝐿

𝜓𝑐
𝐿

)︂
=

(︂
𝜓𝐿

(𝜓𝑅)
𝑐

)︂
(4.4.15)

implying

(Ψ𝐿)
𝑐 =

(︂
(𝜓𝐿)

𝑐

𝜓𝑅

)︂
=

(︂
𝜓𝑐
𝑅

𝜓𝑅

)︂
= Ψ𝑐

𝑅. (4.4.16)

In the case of CP conservation the elements of the mass matrix 𝑀 are real. Coming back
to neutrinos, in the known neutrino interactions only 𝜓𝐿 and 𝜓𝑐

𝑅 are present (active neu-
trinos) and not the fields 𝜓𝑅 and 𝜓𝑐

𝐿 (sterile neutrinos), it is quite common to distinguish
between both types in the notation: 𝜓𝐿 = 𝜈𝐿, 𝜓

𝑐
𝑅 = 𝜈𝑐𝑅, 𝜓𝑅 = 𝑁𝑅, 𝜓

𝑐
𝐿 = 𝑁 𝑐

𝐿. With this
notation, eq. 4.4.14 becomes:

2ℒ = 𝑚𝐷(𝜈𝐿𝑁𝑅 + �̄� 𝑐
𝐿𝜈

𝑐
𝑅) +𝑚𝐿𝜈𝐿𝜈

𝑐
𝑅 +𝑚𝑅�̄�

𝑐
𝐿𝑁𝑅 + ℎ.𝑐.

= (𝜈𝐿, �̄�
𝑐
𝐿)

(︂
𝑚𝐿 𝑚𝐷

𝑚𝐷 𝑚𝑅

)︂(︂
𝜈𝑐𝑅
𝑁𝑅

)︂
+ ℎ.𝑐.

(4.4.17)

The mass eigenstates are obtained by diagonalizing 𝑀

𝜓1𝐿 = cos(𝜃)𝜓𝐿 − sin(𝜃)𝜓𝑐
𝐿 𝜓𝑐

1𝑅 = cos(𝜃)𝜓𝑐
𝑅 − sin(𝜃)𝜓𝑅 (4.4.18)

𝜓2𝐿 = sin(𝜃)𝜓𝐿 + cos(𝜃)𝜓𝑐
𝐿 𝜓𝑐

2𝑅 = sin(𝜃)𝜓𝑐
𝑅 + cos(𝜃)𝜓𝑅 (4.4.19)

while the mixing angle 𝜃 is given by

tan(2𝜃) =
2𝑚𝐷

𝑚𝑅 −𝑚𝐿
. (4.4.20)

The corresponding mass eigenvalues are:

�̃�1,2 =
1

2

[︂
(𝑚𝐿 +𝑚𝑅)±

√︁
(𝑚𝐿 −𝑚𝑅)2 + 4𝑚2

𝐷

]︂
(4.4.21)

To get positive masses, we use:

�̃�𝑘 = 𝜖𝑘𝑚𝑘 with 𝑚𝑘 = |�̃�𝑘| and 𝜖𝑘 = ±1 (𝑘 = 1, 2) (4.4.22)

To get a similar expression as eq. 4.4.12, two independent Majorana fields with masses
𝑚1 and 𝑚2 (with 𝑚𝑘 ≥ 0) are introduced via 𝜑𝑘 = 𝜓𝑘𝐿 + 𝜖𝑘𝜓

𝑐
𝑘𝑅 or, explicitly

𝜑1 = 𝜓1𝐿 + 𝜖1𝜓
𝑐
1𝑅 = cos(𝜃)(𝜓𝐿 + 𝜖1𝜓

𝑐
𝑅)− sin(𝜃)(𝜓𝑐

𝐿 + 𝜖1𝜓𝑅) (4.4.23)

𝜑2 = 𝜓2𝐿 + 𝜖2𝜓
𝑐
2𝑅 = sin(𝜃)(𝜓𝐿 + 𝜖2𝜓

𝑐
𝑅) + cos(𝜃)(𝜓𝑐

𝐿 + 𝜖2𝜓𝑅) (4.4.24)
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and, as required for Majorana fields,

𝜑𝑐𝑘 = (𝜓𝑘𝐿)
𝑐 + 𝜖𝑘𝜓𝑘𝐿 = 𝜖𝑘(𝜖𝑘𝜓

𝑐
𝑘𝑅 + 𝜓𝑘𝐿) = 𝜖𝑘𝜑𝑘. (4.4.25)

𝜖𝑘 is the CP eigenvalue of the Majorana neutrino 𝜑𝑘. So we finally get the analogous
expression to eq. 4.4.12:

2ℒ = 𝑚1𝜑1𝜑1 +𝑚2𝜑2𝜑2 (4.4.26)

From this general discussion one can take some interesting special aspects:

(1) 𝑚𝐿 = 𝑚𝑅 = 0 (𝜃 = 45𝑜): Resulting in 𝑚1,2 = 𝑚𝐷 and 𝜖1,2 = ∓1. As Majorana
eigenstates, two degenerated states emerge:

𝜑1 =
1√
2
(𝜓𝐿 − 𝜓𝑐

𝑅 − 𝜓𝑐
𝐿 + 𝜓𝑅) =

1√
2
(𝜓 − 𝜓𝑐) (4.4.27)

𝜑2 =
1√
2
(𝜓𝐿 + 𝜓𝑐

𝑅 + 𝜓𝑐
𝐿 + 𝜓𝑅) =

1√
2
(𝜓 + 𝜓𝑐) (4.4.28)

These can be used to construct a Dirac field 𝜓:

1√
2
(𝜑1 + 𝜑2) = 𝜓𝐿 + 𝜓𝑅 = 𝜓 (4.4.29)

The corresponding mass term eq. 4.4.26 is (because 𝜑1𝜑2 + 𝜑2𝜑1 = 0):

ℒ =
1

2
𝑚𝐷(𝜑1 + 𝜑2)(𝜑1 + 𝜑2) = 𝑚𝐷𝜓𝜓 (4.4.30)

We are left with a pure Dirac field. As a result, a Dirac field can be seen, using eq. 4.4.29,
to be composed of two degenerated Majorana fields, i.e. a Dirac 𝜈 can be seen as a pair
of degenerated Majorana 𝜈. The Dirac case is, therefore, a special solution of the more
general Majorana case.

(2) 𝑚𝐷 ≫ 𝑚𝐿,𝑚𝑅 (𝜃 ≈ 45𝑜): In this case the states 𝜑1,2 are, almost generated with
𝑚1,2 ≈ 𝑚𝐷 and such an object is called a pseudo-Dirac neutrino.

(3) 𝑚𝐷 = 0 (𝜃 = 0): In this case 𝑚1,2 = 𝑚𝐿,𝑅 and 𝜖1,2 = 1. So 𝜑1 = 𝜓𝐿 + 𝜓𝑐
𝑅 and

𝜑2 = 𝜓𝑅 + 𝜓𝑐
𝐿. This is the pure Majorana case.

(4) 𝑚𝑅 ≫ 𝑚𝐷,𝑚𝐿 = 0 (𝜃 = (𝑚𝐷/𝑚𝑅) ≪ 1): One obtains two mass eigenvalues:

𝑚𝜈 = 𝑚1 =
𝑚2

𝐷

𝑚𝑅
𝑚𝑁 = 𝑚2 = 𝑚𝑅

(︂
1 +

𝑚2
𝐷

𝑚2
𝑅

)︂
≈ 𝑚𝑅 (4.4.31)

and
𝜖1,2 = ∓1. (4.4.32)

The corresponding Majorana fields are:

𝜑1 ≈ 𝜓𝐿 − 𝜓𝑐
𝑅 𝜑2 ≈ 𝜓𝑐

𝐿 + 𝜓𝑅 (4.4.33)

It is interesting that with the largest Dirac mass eigenvalue of the order of the electroweak
scale, 𝑚𝐷 ∼ 200 GeV, the right handed scale 𝑚𝑅 ∼ 1015 GeV which is close to the typical
GUT scales, one obtains the mass of the heaviest of the light neutrinos𝑚𝜈 ∼ (10−2−10−1)
eV, which is just of the right order of magnitude for the neutrino oscillation. The last
scenario is especially popular within the seesaw model of neutrino mass generation and
will be discussed now.
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4.5 See-saw mechanism

Although the Standard Model has been marvelously successful for the last couple of
decades, in 1998 the breakthrough regarding the neutrino flavour oscillations became a
discovery. Indeed, the direct implication was that neutrinos could not be massless. Then
if neutrinos have mass we know they may be either Dirac or Majorana particles. But the
corresponding mass terms are not possible in the Standard Model because:

∙ Right-handed neutrinos are absent so that a Dirac mass is not possible

∙ Lepton number is exactly conserved so that a Majorana mass is not possible

Hence, any attempt to generate non-zero neutrino masses has to violate one of the above
two assumptions and is by that way demolishing the dream of the Standard Model as a
final theory. So, how can we extend the Standard Model so as to accommodate non-zero
neutrino masses? We have mainly three theoretical level:

∙ To extend the scalar content (the mass could come from another VEV)

∙ To extend the fermion content (coupling with heavy particles could generate mass)

∙ To enlarge the gauge group (i.e. add new symmetries)

The natural mass scale in the Standard Model is the electroweak scale which is of order
𝑣 ≃ 246 GeV. The smallness of, e.g., the electron mass 𝑚𝑒 ≃ 0.511 MeV is not explained;
however, it is easily accommodated in the Standard Model through the proper choice of
the corresponding Yukawa coupling, 𝑓𝑒 ≃ 3 · 10−6. At the same time, similar explanation
of the smallness of the electron neutrino mass, 𝑚𝜈𝑒 ≤ 5 eV, would require the Yukawa
coupling 𝑓𝜈𝑒 ≤ 3 · 10−11. Does this pose any problem? If we are willing to accept a very
small Yukawa coupling of the electron, why should not we accept small neutrino Yukawa
couplings as well? After all, 10−11 may be as good (or as bad) as 10−6. The problem is
that, except for neutrinos, the masses of all the fermions in each of the three generations
are within 1-2 orders of magnitude of each other. The inclusion of neutrinos leads to
huge disparities of the fermion masses within each generation. Therefore, if a future
more complete theory explains why there is a large mass hierarchy between generations,
it would still remain to be explained why neutrinos are so light compared to the other
fermions of the same generation.

The see-saw mechanism provides a very simple and attractive explanation of the small-
ness of neutrino mass. It generates a small non-zero mass with the existence of a very large
unknown scale Λ generated by higher dimensional operators. The operator needed in the
see-saw mechanism, and the lowest dimensional operator beyond the Standard Model, is
the dimension 5 operator,

𝒪5 =
1

𝑀
(𝜑𝜏2𝜓)

𝑇𝐶(𝜑𝜏2𝜓) (4.5.1)

where 𝑀 is the cutoff scale of the effective field theory. In the minimal standard elec-
troweak model there exists three types of see-saw models, leading to this effective operator
at tree-level, using only renormalizable interactions. The Standard Model lepton doublet
𝜓 = (𝜈𝐿, 𝑙𝐿)

𝑇 and the Higgs doublet 𝜑 = (𝜑+, 𝜑0)𝑇 are used in all three models, and
interact in the following ways.
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4.5.1 The type I see-saw mechanism

The most suggestive completion of the minimal Standard Model is the introduction of
𝜈𝑅 (per family of fermion), a gauge singlet chiral fermion. This is a right handed neu-
trino, whose existence is appealing from the structural quark-lepton symmetry. A new
renormalizable Yukawa coupling (written here for one generation case only) then follows:

ℒ = 𝑦𝐷 ℓ̄𝐿𝜎2Φ
*𝜈𝑅 +

𝑀𝑅

2
𝜈𝑇𝑅𝐶𝜈𝑅 + ℎ.𝑐. (4.5.2)

In type I, if we use same condition, we will get eigenvalues for the neutrinos from eq.
4.4.32. This is the original see-saw formula to accommodate small neutrino masses.

4.5.2 The type II see-saw mechanism

Instead of 𝜈𝑅, a 𝑌 = 2 triplet Higgs Δ𝐿 ≡ Δ𝐿 · 𝜎 can play the same role. From the new
Yukawas

ℒ(Δ) = 𝑦𝑖𝑗Δℓ
𝑇
𝑖 𝐶𝜎2Δ𝐿ℓ𝑗 + ℎ.𝑐. (4.5.3)

where 𝑖, 𝑗 = 1, ..., 𝑁 counts the generations, neutrinos get a mass when Δ𝐿 gets a VEV

𝑀𝜈 = 𝑦Δ⟨Δ⟩. (4.5.4)

The VEV ⟨Δ⟩ results from the cubic scalar interaction

𝑉 = 𝜇Φ𝑇𝜎2Δ
*
𝐿Φ+𝑀2

ΔTr[Δ
†
𝐿Δ𝐿] + .. (4.5.5)

with

⟨Δ⟩ ≃ 𝜇𝑣2

𝑀2
Δ

(4.5.6)

where one expects 𝜇 of order 𝑀Δ. If 𝑀Δ >> 𝑣, neutrinos are naturally light. Notice
that equations 4.5.4 and 4.5.6 reproduce again eq. 4.4.32 as it must be: For large scales
of new physics, neutrino mass must come from 𝑑 = 5 operator.

4.5.3 The type III see-saw mechanism

The Yukawa interaction in eq. 4.5.2 for new singlet fermions carries on straightforwardly
to SU(2) triplets too, written now in the Majorana notation (where for simplicity the
generation index is suppressed and also an index counting the number of triplet - recall
that at least two are needed in order to provide two massive light neutrinos):

ℒ(Σ) = 𝑦Σℓ
𝑇𝐶2𝜎 ·ΣΦ+𝑀ΣΣ𝐶Σ (4.5.7)

In exactly the same manner as before in type I, one gets a type III see-saw for 𝑀Σ >> 𝑣:

𝑀𝜈 = −𝑦𝑇Σ
1

𝑀Σ
𝑦Σ𝑣

2 (4.5.8)

Again, as in the type I case, one would need at least two triplets to account for the solar
and atmospheric neutrino oscillations (or triplet and a singlet). And, as before, eq. 4.5.8
simply reproduces eq. 4.4.32 for large𝑀Σ. This is some of the see-saw mechanisms in the
literature and there also exists other ways in generating non-zero neutrino masses. For
more information, look at [[30], [31], [32]].
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Neutrino oscillations

In the case of a non-vanishing rest mass of the neutrino, the weak and mass eigenstates
are not necessarily identical. This allows for the phenomenon of neutrino oscillations, a
kind of flavour oscillation which is already known in other particle systems. It can be
described by pure quantum mechanics. They are observable as long as the neutrino wave
packets from a coherent superposition of states. Such oscillations among the different
neutrino flavours do not conserve individual lepton numbers, only total lepton number.
We start with the most general case first, before turning to the more common two- and
three-flavour scenarios.

5.1 General formalism

Let us assume that there is an arbitrary number of 𝑛 orthonormal eigenstates. The 𝑛
flavour eigenstates |𝜈𝛼⟩ with ⟨𝜈𝛽|𝜈𝛼⟩ = 𝛿𝛼𝛽 are connected to the 𝑛 mass eigenstates |𝜈𝑖⟩
with ⟨𝜈𝑖|𝜈𝑗⟩ = 𝛿𝑖𝑗 via a unitary mixing matrix 𝑈

|𝜈𝛼⟩ =
∑︁
𝑖

𝑈𝛼𝑖|𝜈𝑖⟩ |𝜈𝑖⟩ =
∑︁
𝛼

(𝑈 †)𝑖𝛼|𝜈𝛼⟩ =
∑︁
𝛼

𝑈*
𝛼𝑖|𝜈𝛼⟩ (5.1.1)

with the relations

𝑈 †𝑈 = 1
∑︁
𝑖

𝑈𝛼𝑖𝑈
*
𝛽𝑖 = 𝛿𝛼𝛽

∑︁
𝛼

𝑈𝛼𝑖𝑈
*
𝛼𝑗 = 𝛿𝑖𝑗 . (5.1.2)

In the case of antineutrinos, i.e. 𝑈𝛼𝑖 has to be replaced by 𝑈*
𝛼𝑖:

|𝜈𝛼⟩ =
∑︁
𝑖

𝑈*
𝛼𝑖|𝜈𝑖⟩ (5.1.3)

In general, a unitary 𝑛× 𝑛 matrix depends on 𝑛(𝑛− 1)/2 angles and 𝑛(𝑛+ 1)/2 phases.
In the Dirac case, 2𝑛− 1 phases can be removed by a proper rephasing of the left-handed
fields, leaving 𝑛(𝑛 + 1)/2 − (2𝑛 − 1) = (𝑛 − 1)(𝑛 − 2)/2 physical phases. Thus, in the
Dirac case CP non-conservation is only possible in the case 𝑛 ≥ 3 generations. In the
Majorana case there is less freedom to rephase the fields since the Majorana mass terms
are of the form 𝜈𝐿𝜈𝐿+ℎ.𝑐. rather than the form 𝜈𝑅𝜈𝐿+ℎ.𝑐. and so the phases of neutrino
fields cannot be absorbed. Therefore, in the Majorana case only 𝑛 phases can be removed,
leaving 𝑛(𝑛+ 1)/2− 𝑛 = 𝑛(𝑛− 1)/2 physical phases. Out of these, (𝑛− 1)(𝑛− 2)/2 are
the usual Dirac-type phases while the remaining 𝑛− 1 are specific for the Majorana case,
so called Majorana phases.

The mass eigenstates |𝜈𝑖⟩ are stationary states and show a time dependence according
to

|𝜈𝑖(𝑡)⟩ = 𝑒−𝑖𝐸𝑖𝑡|𝜈𝑖⟩ (5.1.4)
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assuming neutrinos with momentum 𝑝 emitted by a source positioned at 𝑥 = 0 (𝑡 = 0)

|𝜈𝑖(0)⟩ = |𝜈𝑖⟩ (5.1.5)

and being relativistic

𝐸𝑖 =
√︁
𝑚2

𝑖 + 𝑝2𝑖 ≃ 𝑝𝑖 +
𝑚2

𝑖

2𝑝𝑖
≃ 𝐸 +

𝑚2
𝑖

2𝐸
(5.1.6)

for 𝑝 >> 𝑚𝑖 and 𝐸 ≈ 𝑝 as neutrino energy. The flavour neutrino is a coherent superposi-
tion of neutrino states with definite mass. Neutrinos are produced and detected as flavour
states. Therefore, neutrinos with flavour |𝜈𝛼⟩ emitted by a source at 𝑡 = 0 develop with
time into a mass eigenstate as follows:

|𝜈𝛼(𝑡)⟩ =
∑︁
𝑖

𝑈𝛼𝑖𝑒
−𝑖𝐸𝑖𝑡|𝜈𝑖⟩ =

∑︁
𝑖,𝛽

𝑈𝛼𝑖𝑈
*
𝛽𝑖𝑒

−𝑖𝐸𝑖𝑡|𝜈𝛽⟩ (5.1.7)

Different neutrino masses imply that the phase factor in eq. 5.1.7 is different. This means
that the flavour content of the final states differs from the initial one. At macroscopic
distances this effect can be large in spite of small differences in neutrino masses. The
time-dependent transition amplitude for a flavour conversion 𝜈𝛼 → 𝜈𝛽 is given by:

𝐴(𝛼→ 𝛽)(𝑡) = ⟨𝜈𝛽|𝜈𝛼(𝑡)⟩ =
∑︁
𝑖

𝑈*
𝛽𝑖𝑈𝛼𝑖𝑒

−𝑖𝐸𝑖𝑡 (5.1.8)

Using eq. 5.1.6 this can be written as

𝐴(𝛼→ 𝛽)(𝑡) = ⟨𝜈𝛽|𝜈𝛼(𝑡)⟩ =
∑︁
𝑖

𝑈*
𝛽𝑖𝑈𝛼𝑖exp

(︂
−𝑖𝑚

2
𝑖

2

𝐿

𝐸

)︂
= 𝐴(𝛼→ 𝛽)(𝐿) (5.1.9)

with 𝐿 = 𝑥 = 𝑐𝑡 being the distance between source and detector. In an analogous way,
the amplitude for antineutrino transitions is obtained:

𝐴(�̄�→ 𝛽)(𝑡) =
∑︁
𝑖

𝑈𝛽𝑖𝑈
*
𝛼𝑖𝑒

−𝑖𝐸𝑖𝑡 (5.1.10)

The transition probability 𝑃 can be obtained from the transition amplitude [33]

𝑃 (𝛼→ 𝛽)(𝑡) = |𝐴(𝛼→ 𝛽)|2 =
∑︁
𝑖

∑︁
𝑗

𝑈𝛼𝑖𝑈
*
𝛼𝑗𝑈

*
𝛽𝑖𝑈𝛽𝑗𝑒

−𝑖(𝐸𝑖−𝐸𝑗)𝑡

= 𝛿𝛼𝛽 − 4

3∑︁
𝑖>𝑗=1

Re(𝑈𝛼𝑖𝑈
*
𝛽𝑖𝑈

*
𝛼𝑗𝑈𝛽𝑗) sin

2

(︃
Δ𝑚2

𝑖𝑗𝐿

4𝐸

)︃

+ 4
3∑︁

𝑖>𝑗=1

Im(𝑈𝛼𝑖𝑈
*
𝛽𝑖𝑈

*
𝛼𝑗𝑈𝛽𝑗) sin

(︃
Δ𝑚2

𝑖𝑗𝐿

4𝐸

)︃
cos

(︃
Δ𝑚2

𝑖𝑗𝐿

4𝐸

)︃ (5.1.11)

with
Δ𝑚2

𝑖𝑗 = 𝑚2
𝑖 −𝑚2

𝑗 . (5.1.12)

If you want the probability for antineutrinos, you have to change the plus sign to a minus
sign in front of the third term in eq. 5.1.11. Using CP invariance (𝑈𝛼𝑖 real), this can be
simplified to:

𝑃 (𝛼→ 𝛽)(𝑡) = 𝛿𝛼𝛽 − 4
∑︁
𝑗>𝑖

𝑈𝛼𝑖𝑈𝛼𝑗𝑈𝛽𝑖𝑈𝛽𝑗 sin
2

(︃
Δ𝑚2

𝑖𝑗

4

𝐿

𝐸

)︃
(5.1.13)
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Evidently, the probability of finding the original flavour is given by:

𝑃 (𝛼→ 𝛼) = 1−
∑︁
𝛼 ̸=𝛽

𝑃 (𝛼→ 𝛽) (5.1.14)

As can be seen from eq. 5.1.11 there will be oscillatory behavior as long as one of the
involving neutrino mass eigenstates are different from zero and if there is a mixing (non-
diagonal terms in 𝑈) among the flavours. In addition, the observation of oscillations allow
no absolute mass measurement, oscillations are only sensitive to Δ𝑚2. Last but not least,
neutrino masses should not be exactly degenerated. Another important feature is the
dependence of the oscillation probability on 𝐿/𝐸. Majorana phases are unobservable.

5.2 CP and T violation in neutrino oscillations

Comparison of eq. 5.1.8 with eq. 5.1.10 yields a relation between neutrinos and antineu-
trinos

𝑃 (�̄�→ 𝛽)(𝑡) = 𝑃 (𝛼→ 𝛽)(𝑡) ̸= 𝑃 (𝛽 → 𝛼)(𝑡) (5.2.1)

if CPT is conserved. This relation is a direct consequence of the CPT theorem. CP
violation manifests itself if the oscillation probabilities of 𝜈𝛼 → 𝜈𝛽 is different from its CP
conjugate process 𝜈𝛼 → 𝜈𝛽. So an observable would be:

Δ𝑃𝐶𝑃
𝛼𝛽 = 𝑃 (𝜈𝛼 → 𝜈𝛽)− 𝑃 (𝜈𝛼 → 𝜈𝛽) ̸= 0 𝛼 ̸= 𝛽 (5.2.2)

Similarly, T violation can be tested if the probabilities of 𝜈𝛼 → 𝜈𝛽 are different from the
T conjugate process 𝜈𝛽 → 𝜈𝛼. If CPT conservation holds, violation of T is equivalent
to that of CP. From CPT invariance one finds Δ𝑃𝛼𝛽 = −Δ𝑃𝛽𝛼. Using 𝑈𝑃𝑀𝑁𝑆 (see eq.
5.4.1) it can be shown explicitly that in vacuum Δ𝑃𝐶𝑃

𝛼𝛽 and Δ𝑃 𝑇
𝛼𝛽 are equal:

Δ𝑃𝐶𝑃
𝛼𝛽 = Δ𝑃 𝑇

𝛼𝛽 =4𝑠12𝑐12𝑠13𝑐
2
13𝑐23𝑠23 sin(𝛿)

×
[︂
sin

(︂
Δ𝑚2

21𝐿

2𝐸

)︂
+ sin

(︂
Δ𝑚2

32𝐿

2𝐸

)︂
+ sin

(︂
Δ𝑚2

13𝐿

2𝐸

)︂]︂
(5.2.3)

Again for antineutrinos, you have to do the transformation 𝛿 → −𝛿. This expression
has several interesting features. Note that for CP or T violation effects to be present,
all the angles must be non-zero and, therefore, three-flavour mixing is essential. Second,
it vanishes in the limit 𝛿 = 0 or 𝛿 = 𝜋. Third, since the mass differences satisfy the
relation (if we don’t care about sterile neutrinos) Δ𝑚2

21+Δ𝑚2
32+Δ𝑚2

13 = 0, the CP-odd
asymmetry vanishes if even one of Δ𝑚2

𝑖𝑗 is zero. To be a bit more specific we now consider
the case of two flavour oscillations.

5.3 Oscillations with two flavours

In this case the relation between the neutrino states is described by one mixing angle 𝜃
and one mass difference Δ𝑚2 = 𝑚2

2 − 𝑚2
1. The unitary transformation in eq. 5.1.1 is

analogous to the Cabibbo matrix given by (taking 𝜈𝑒 and 𝜈𝜇):(︂
𝜈𝑒
𝜈𝜇

)︂
=

(︂
cos(𝜃) sin(𝜃)
− sin(𝜃) cos(𝜃)

)︂(︂
𝜈1
𝜈2

)︂
(5.3.1)

Using the formula from the previous section, the corresponding tranśıtion probability is:

𝑃 (𝜈𝑒 → 𝜈𝜇) = 𝑃 (𝜈𝜇 → 𝜈𝑒) = 𝑃 (𝜈𝑒 → 𝜈𝜇) = 𝑃 (𝜈𝜇 → 𝜈𝑒)

= sin2(2𝜃) sin2
(︂
Δ𝑚2𝐿

4𝐸

)︂
= 1− 𝑃 (𝜈𝑒 → 𝜈𝑒)

(5.3.2)
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This formula explicitly shows that oscillations only occur if both 𝜃 and Δ𝑚2 are non-
vanishing. That is the reason why neutrinos need mass. The phase factor can be rewritten
as

Δ𝑚2𝑐3𝐿

4~𝐸
=

GeV fm

4~𝑐
× Δ𝑚2

eV2

𝐿/km

𝐸/GeV
≈ 1.267× Δ𝑚2

eV2

𝐿/km

𝐸/GeV
(5.3.3)

where in the last step some practical units were used. The oscillatory term can be ex-
pressed as:

sin2

(︃
Δ𝑚2

𝑖𝑗𝐿

4𝐸

)︃
= sin2

(︂
𝜋
𝐿

𝐿0

)︂
with 𝐿0 = 4𝜋~𝑐

𝐸

Δ𝑚2
= 2.48

𝐸/GeV

Δ𝑚2/eV2 (5.3.4)

The oscillation length 𝐿0 describes the period of one full oscillation cycle. Increasing
the energy the oscillations becomes more damped whereas increasing Δ𝑚2 more rapid
oscillations occurs. The mixing angle sin2(2𝜃) determines the amplitude of the oscillation
while Δ𝑚2 influences the oscillation length.
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Figure 5.3.1: Probability P that a neutrino of flavour e oscillates into a neutrino of flavour
a = e, 𝜇 as a function of baseline L over energy E for the two flavour case. Oscillation
parameters: sin2 (2𝜃) = 1 ,Δm2 = 7 .59 · 10−5 eV2

5.4 The case for three flavours

A probably more realistic scenario to consider is that of three known neutrino flavours.
The mixing matrix 𝑈𝑃𝑀𝑁𝑆 can be parameterized by the following

𝑈Dirac
PMNS =

⎛⎝ 𝑐12𝑐13 𝑠12𝑐13 𝑠13𝑒
−𝑖𝛿

−𝑠12𝑐23 − 𝑐12𝑠23𝑠13𝑒
𝑖𝛿 𝑐12𝑐23 − 𝑠12𝑠23𝑠13𝑒

𝑖𝛿 𝑠23𝑐13
𝑠12𝑠23 − 𝑐12𝑠23𝑠13𝑒

𝑖𝛿 −𝑐12𝑠23 − 𝑠12𝑐23𝑠13𝑒
𝑖𝛿 𝑐23𝑐13

⎞⎠ (5.4.1)

where 𝑠𝑖𝑗 = sin(𝜃𝑖𝑗), 𝑐𝑖𝑗 = cos(𝜃𝑖𝑗), (i, j = 1, 2, 3). In the Majorana case, the requirement
of particle and antiparticle to be identical, restricts the freedom to redefine the funda-
mental fields. For three flavours two additional phases have to be introduced resulting in
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a mixing matrix of the form:

𝑈Majorana
PMNS = 𝑈Dirac

PMNSdiag(1, 𝑒
𝑖𝛼, 𝑒𝑖𝛽) (5.4.2)

Note that now more Δ𝑚2 quantities are involved both in magnitude and sign: Although
in two flavour oscillation in vacuum the sign does not enter, in three flavour oscillation,
which includes both matter effects (will be discussed later) and CP violation, the signs
of the Δ𝑚2 quantities enter and can, in principle, be measured. In the absence of any
matter effects, the probability is given by

𝑃 (𝜈𝛼 → 𝜈𝛽) =𝛿𝛼𝛽 − 4
3∑︁

𝑖>𝑗=1

Re(𝐾𝛼𝛽,𝑖𝑗) sin
2

(︃
Δ𝑚2

𝑖𝑗𝐿

4𝐸

)︃

+ 4

3∑︁
𝑖>𝑗=1

Im(𝐾𝛼𝛽,𝑖𝑗) sin

(︃
Δ𝑚2

𝑖𝑗𝐿

4𝐸

)︃
cos

(︃
Δ𝑚2

𝑖𝑗𝐿

4𝐸

)︃ (5.4.3)

where
𝐾𝛼𝛽,𝑖𝑗 = 𝑈𝛼𝑖𝑈

*
𝛽𝑖𝑈

*
𝛼𝑗𝑈𝛽𝑗 . (5.4.4)
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Figure 5.4.1: Probability P that a neutrino of flavour e oscillates into a neutrino of
flavour a = e, 𝜇, 𝜏 as a function of baseline L over energy E for the three flavour case.
Oscillation parameters: sin2 (𝜃12 ) = 0 .3127 , sin2 (𝜃13 ) = 0 .0245 , sin2 (𝜃23 ) = 0 .5 ,
Δm2

21 = 7 .59 · 10−5 eV2 , Δm2
32 = 2 .43 · 10−3 eV2 and 𝛿 = 0

As you can see in figure 5.4.1 there are two oscillations, a fast and a slow one. These
oscillations depends on the mass differences, which can be seen from eq. 5.3.4. From
this equation we can determine that the fast oscillation comes from Δ𝑚2

32 and the slow
oscillation comes from Δ𝑚2

21. Unlike in the two flavour case, transition probabilities in
general do not have a simple form. There are, however, several practically important
limiting cases in which one can obtain very simple approximate expressions for the oscil-
lation probabilities in terms of the two flavour ones. Assume first that the neutrino mass
difference have a hierarchy:

|Δ𝑚2
21| << |Δ𝑚2

31| ≃ |Δ𝑚2
32| (5.4.5)
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This means that either 𝑚1 << 𝑚2 << 𝑚3 (direct hierarchy) or 𝑚3 << 𝑚1 ≈ 𝑚2

(inverted mass hierarchy). These cases are of practical interest since the solar neutrino
data indicate that one needs a small mass difference Δ𝑚2

21 ∼ 10−5 eV2 for the solution
of the solar neutrino problem through matter-enhanced neutrino oscillations whereas the
explanation for the atmospheric neutrino experiments through the neutrino oscillations
requires Δ𝑚2

23 ∼ 10−3 eV2, much larger than Δ𝑚2
21. Consider first the oscillations over

the baselines 𝐿 for which:
Δ𝑚2

21𝐿

2𝐸
<< 1 (5.4.6)

This case is relevant for atmospheric, reactor and accelerator neutrino experiments. It fol-
lows from this assumption that the oscillations due to the small mass difference Δ𝑚2

21 are
effectively frozen in this case, and one can consider the limit Δ𝑚2

21 → 0. The probability
of 𝜈𝛼 → 𝜈𝛽 oscillations then takes a very simple form:

𝑃 (𝜈𝛼 → 𝜈𝛽) = 4|𝑈𝛼3|2|𝑈𝛽3|2 sin2
(︂
Δ𝑚2

13𝐿

4𝐸

)︂
(5.4.7)

It resembles the two flavour oscillation probability. The probabilities of oscillations be-
tween 𝜈𝑒, 𝜈𝜇 and 𝜈𝜏 are

𝑃 (𝜈𝑒 → 𝜈𝜇) = 4|𝑈𝑒3|2|𝑈𝜇3|2 sin2
(︂
Δ𝑚2

31𝐿

4𝐸

)︂
= 𝑠223 sin

2(2𝜃13) sin
2

(︂
Δ𝑚2

31𝐿

4𝐸

)︂
(5.4.8)

𝑃 (𝜈𝑒 → 𝜈𝜏 ) = 4|𝑈𝑒3|2|𝑈𝜏3|2 sin2
(︂
Δ𝑚2

31𝐿

4𝐸

)︂
= 𝑐223 sin

2(2𝜃13) sin
2

(︂
Δ𝑚2

31𝐿

4𝐸

)︂
(5.4.9)

𝑃 (𝜈𝜇 → 𝜈𝜏 ) = 4|𝑈𝜇3|2|𝑈𝜏3|2 sin2
(︂
Δ𝑚2

31𝐿

4𝐸

)︂
= 𝑐413 sin

2(2𝜃23) sin
2

(︂
Δ𝑚2

31𝐿

4𝐸

)︂
(5.4.10)

with 𝑃 (𝜈𝛽 → 𝜈𝛼) = 𝑃 (𝜈𝛼 → 𝜈𝛽). They depend only on the elements of the third column
of the lepton mixing matrix and one mass difference. The survival probability for electron
neutrinos takes a particularly simple form

𝑃 (𝜈𝑒 → 𝜈𝑒) = 1− sin2(2𝜃13) sin
2

(︂
Δ𝑚2

31𝐿

4𝐸

)︂
(5.4.11)

i.e. it coincides with the 𝜈𝑒 survival probability in the two flavour case with mass dif-
ference Δ𝑚2 = Δ𝑚2

31 and mixing angle 𝜃 = 𝜃13. Consider now another limiting case,
which is relevant for the solar neutrino oscillations and also for very long baseline reactor
experiments. We shall be again assuming the hierarchy eq. 5.4.5 and in addition

Δ𝑚2
31𝐿

2𝐸
≃ Δ𝑚2

32𝐿

2𝐸
>> 1 (5.4.12)

whereas the condition eq. 5.4.6 is no longer necessary. In this case the oscillations due to
the mass differences Δ𝑚2

31 and Δ𝑚2
32 are very fast and lead to an averaged effect; the 𝜈𝑒

survival probability is:

𝑃 (𝜈𝑒 → 𝜈𝑒) ≃ 𝑐413

[︂
1− sin2(2𝜃12) sin

2

(︂
Δ𝑚2

21𝐿

4𝐸

)︂]︂
+ 𝑠413 (5.4.13)

Finally, consider the limit 𝑈𝑒3 = 0 (the results will be also approximately valid for
|𝑈𝑒3| << 1). In this case one obtains

𝑃 (𝜈𝑒 → 𝜈𝜇) = 𝑐223 sin
2(2𝜃12) sin

2(Δ21) (5.4.14)
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𝑃 (𝜈𝑒 → 𝜈𝜏 ) = 𝑠223 sin
2(2𝜃12) sin

2(Δ21) (5.4.15)

𝑃 (𝜈𝜇 → 𝜈𝜏 ) = sin2(𝜃23)(−𝑠212𝑐212 sin2(Δ21) + 𝑠212 sin
2(Δ31) + 𝑐212 sin

2(Δ32)) (5.4.16)

where Δ𝑖𝑗 = Δ𝑚2
𝑖𝑗𝐿/(4𝐸) and no assumption about the hierarchy of the mass differences

has been made. Notice that the limiting cases are not mutually excluding, i.e. have some
overlap with each other. In general, when considering the propagation of solar neutrinos
in the Sun or in the Earth, one should take into account matter effects on neutrino
oscillations. The same is true for the terrestrial atmospheric and long baseline accelerator
neutrino oscillation experiments in which the neutrino trajectories or their significant
portions go through the matter of the Earth. Matter effects on 𝜈𝜇 ↔ 𝜈𝜏 oscillations are
relatively small (they vanish in the two flavour approximation), but they may be quite
appreciable for 𝜈𝑒 ↔ 𝜈𝜇 and 𝜈𝑒 ↔ 𝜈𝜏 oscillations.

5.5 Experimental consideration

The search for neutrino oscillations can be performed in two different ways - an appearance
or disappearance mode. In the latter case one explores whether less than the expected
number of neutrinos of a produced flavour arrive at a detector or whether the spectral
shape changes if observed at various distances from a source. This method is not able
to determine the new neutrino flavour. An appearance experiment searches for possible
new flavours, which do not exist in the original beam or produce an enhancement of an
existing neutrino flavour. The identification of the various flavours relies on the detection
of the corresponding charged lepton produced in the charged current interactions

𝜈ℓ +𝑁 → ℓ− +𝑋 with ℓ ≡ 𝑒, 𝜇, 𝜏 (5.5.1)

where 𝑋 denotes the hadronic final state. Several neutrino sources can be used to search
for oscillations. The most important are:

∙ nuclear power plants (𝜈𝑒)

∙ accelerators (𝜈𝑒, 𝜈𝜇, 𝜈𝑒, 𝜈𝜇)

∙ the atmosphere (𝜈𝑒, 𝜈𝜇, 𝜈𝑒, 𝜈𝜇)

∙ the Sun (𝜈𝑒)

Which part of the Δ𝑚2− sin2(2𝜃) parameter space is explored depends on the ratio 𝐿/𝐸.
The relation

Δ𝑚2 ∝ 𝐸/𝐿 (5.5.2)

shows that the various mentioned sources sometimes cannot probe each other, i.e. high-
energy accelerators (𝐸 ∼ 1−100 GeV, 𝐿 ∼ 1 km) are not able to check the solar neutrino
data (𝐸 ∼ 1 MeV, 𝐿 ∼ 108 km). The equation above also defines the minimal Δ𝑚2 which
can be explored. Three cases have to be considered with respect to a possible observation
of oscillation:

∙ 𝐿/𝐸 ≪ 4
Δ𝑚2 , i.e. 𝐿 ≪ 𝐿0. Here, the experiment is too close to the source and the

oscillations have no time to develop.
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Figure 5.5.1: Logarithmic plot of the oscillation probability P(𝜈𝛼 → 𝜈𝛼) as a function
of L/E for sin2 (2𝜃) = 0 .83 . The brackets denote three possible cases: (a) no oscilla-
tions (L/E ≪ 1/Δm2 ); (b) oscillation L/E ∼ 1/Δm2 ; and (c) average oscillation for
L/E ≫ 1/Δm2 .

∙ 𝐿/𝐸 ∼ 4
Δ𝑚2 , i.e. 𝐿 ∼ 𝐿0. This is a necessary condition to observe oscillations and

it is the most sensitive region

∙ 𝐿/𝐸 ≫ 4
Δ𝑚2 , i.e. 𝐿 ≫ 𝐿0. Several oscillations have happened between the source

and the detector. Normally, experiments do then measure L/E not precisely enough
to resolve the oscillation pattern but measure only an average transition probability.

Two points which influence the experimental sensitivity and the observation of oscillations
have to be considered. First of all, L is not often not well defined. This is the case when
dealing with an extended source (Sun, atmosphere, decay tunnels). Alternatively, E
might not be known exactly. This might be the case if the neutrino source has an energy
spectrum N(E) and E will not be measured in a detector. Last but not least, for some
experiments there is no chance to vary L and/or E because it is fixed (e.g. in the case of
the Sun); therefore, the explorable Δ𝑚2 region is constrained by Nature.

5.6 Neutrino mass hierarchy, 𝜃23 octant and matter effects

The mixing angles 𝜃𝑖𝑗 and the magnitudes of the mass differences Δ𝑚2
𝑖𝑗 are well measured

by several neutrino experiments, using neutrinos produced in the Sun, in the atmosphere,
in reactors or with accelerators [[34], [35], [36], [37]]. One remaining question is the order
of the neutrino masses. We differentiate between normal neutrino mass hierarchy (NH),
𝑚1 < 𝑚2 < 𝑚3, and inverted neutrino mass hierarchy (IH), 𝑚3 < 𝑚1 < 𝑚2 (see figure
5.6.1). The problem of the correct mass hierarchy cannot be solved by studying only
neutrino oscillations in vacuum because these oscillations do not depend on the sign of
Δ𝑚2

23. The situation changes if we take into account that neutrinos can interact with
nucleons and electrons if they propagate through matter on their way to the detector.
These matter effects can enhance three flavour transition and depend on the sign of
Δ𝑚2

32. This is also how the sign of Δ𝑚21 was measured. Knowing the mass hierarchy will
help alot in the determination of the octant of the mixing angle 𝜃23 since there will be
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one less parameter you have to vary in the fit (will be discussed later). However, the 𝜃23
octant can be resolved through matter effects even without the knowledge of the neutrino
mass hierarchy.

Figure 5.6.1: Pictorial representation of the possible neutrino mass hierarchies. Note
Δm2

atm is equivalent to Δm2
32 and Δm2

sol is equivalent to Δm2
21 .

5.6.1 Neutrino oscillation in matter

Neutrino oscillations in matter may differ from the oscillations in vacuum in a very sig-
nificant way. The most striking manifestation of the matter effects on neutrino oscilla-
tions is the resonance enhancement of the oscillation probability - the Mikheyev-Smirnov-
Wolfenstein (MSW) effect. In vacuum, the oscillation probability cannot exceed sin2(2𝜃0),
and for small mixing angles it is always small. Matter can enhance neutrino mixing, and
the probabilities of neutrino oscillations in matter can be large (close to unity) even if the
mixing angle in vacuum is very small. Matter enhanced neutrino oscillations of solar and
atmospheric neutrinos inside the Earth can be quite important.

How does the matter affect neutrino propagation? Neutrinos can be absorbed by
the matter constituents, or scattered off them, changing their momentum and energy.
However, the probabilities of these processes, being proportional to the square of the Fermi
constant 𝐺𝐹 , are typically very small. Neutrinos can also experience forward scattering,
an elastic scattering in which their momentum is not changed. This process is coherent,
and it creates mean potentials 𝑉𝛼 for neutrinos which are proportional to the number
densities of the scatters. These potentials are of the first order in 𝐺𝐹 , but one could still
expect them to be too small and of no practical interest. This expectation, however, would
be wrong. To assess the importance of matter effects on neutrino oscillations, one has to
compute the matter-induced potentials of neutrinos 𝑉𝛼 with the characteristic neutrino
kinetic energy differences Δ𝑚2/2𝐸. Although the potentials 𝑉𝛼 are typically very small,
so are Δ𝑚2/2𝐸; if 𝑉𝛼 are comparable to or larger than Δ𝑚2/2𝐸, matter can strongly
affect neutrino oscillations.

5.6.2 Evolution equation

We shall now consider neutrino oscillations in matter in some detail. Neutrinos of all
three flavours - 𝜈𝑒, 𝜈𝜇, 𝜈𝜏 - interact with electrons, protons and neutrons of matter through
neutral current (NC) interaction mediated by 𝑍0 bosons. Electron neutrinos in addition
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have charged current (CC) interactions with the electrons of the medium, which are
mediated by the 𝑊± exchange. Let us consider the CC interactions. At low neutrino
energies, they are described by the effective Hamiltonian [38]

𝐻𝐶𝐶 =
𝐺𝐹√
2
[𝑒𝛾𝜇(1− 𝛾5)𝜈𝑒][𝜈𝑒𝛾

𝜇(1− 𝛾5)𝑒] =
𝐺𝐹√
2
[𝑒𝛾𝜇(1− 𝛾5)𝑒][𝜈𝑒𝛾

𝜇(1− 𝛾5)𝜈𝑒] (5.6.1)

where we have used the Fierz transformation. In order to obtain the coherent forward
scattering contribution to the energy of 𝜈𝑒 in matter (i.e. the matter-induced potential
for 𝜈𝑒) we fix the variables corresponding to 𝜈𝑒 and integrate over all the variables that
correspond to the electron:

𝐻eff(𝜈𝑒) = ⟨𝐻𝐶𝐶⟩electron ≡ 𝜈𝑒𝑉𝑒𝜈𝑒 (5.6.2)

Furthermore, we have

⟨𝑒𝛾0𝑒⟩ = ⟨𝑒†𝑒⟩ = 𝑁𝑒 ⟨𝑒�⃗�𝑒⟩ = ⟨�⃗�𝑒⟩ ⟨𝑒𝛾0𝛾5𝑒⟩ = ⟨ �⃗�𝑒𝑝𝑒
𝐸𝑒

⟩ ⟨𝑒�⃗�𝛾5𝑒⟩ = ⟨�⃗�𝑒⟩ (5.6.3)

where𝑁𝑒 is the electron number density. For unpolarized medium of zero total momentum
only the first term survives, and we obtain:

(𝑉𝑒)𝐶𝐶 ≡ 𝑉𝐶𝐶 =
√
2𝐺𝐹𝑁𝑒 (5.6.4)

Analogously, one can find the NC contributions 𝑉𝑁𝐶 to the matter-induced neutrino
potentials. Since NC interaction are flavour independent, these contributions are the
same for neutrinos of all three flavours. In an electrically neutral medium, the number
densities of protons and electrons coincide, and the corresponding contributions to 𝑉𝑁𝐶

cancel. The direct calculation of the contribution due to the NC scattering of neutrinos off
neutrons gives (𝑉𝛼)𝑁𝐶 = −𝐺𝐹𝑁𝑛/

√
2, where 𝑁𝑛 is the neutron number density. Together

with eq. 5.6.4 this gives:

𝑉𝑒 =
√
2𝐺𝐹

(︂
𝑁𝑒 −

𝑁𝑛

2

)︂
𝑉𝜇 = 𝑉𝜏 =

√
2𝐺𝐹

(︂
−𝑁𝑛

2

)︂
(5.6.5)

For antineutrinos, one has to replace 𝑉𝛼 → −𝑉𝛼. Let us now consider the evolution of a
system of oscillating neutrinos in matter. In vacuum, the evolution is most easily followed
in the mass eigenstates basis. In matter it is more convenient to do that in the flavour
basis because the effective potentials of neutrinos are diagonal in this basis. Consider the
two flavour case. As usual, we write 𝜈𝑓𝑙 = 𝑈𝜈𝑚 where 𝜈𝑓ℓ and 𝜈𝑚 are two-component
vectors of neutrino fields in the flavour and mass eigenstate bases and the matrix 𝑈 is
given by the mixing matrix in two flavour case in vacuum. In the absence of matter,
the evolution equation in the mass eigenstate basis is 𝑖(𝑑/𝑑𝑡)|𝜈𝑚⟩ = 𝐻𝑚|𝜈𝑚⟩, where
𝐻𝑚 = diag(𝐸1, 𝐸2). This gives the evolution equation in the flavour basis: 𝑖(𝑑/𝑑𝑡)|𝜈𝑓𝑙⟩ =
𝐻𝑓𝑙 |𝜈𝑓𝑙⟩ = 𝑈𝐻𝑚𝑈

†|𝜈𝑓𝑙⟩. For relativistic neutrinos 𝐸𝑖 ≃ 𝑝+𝑚2
𝑖 /2𝐸𝑖, and we thus obtain:

𝑖
𝑑

𝑑𝑡

(︂
𝜈𝑒
𝜈𝜇

)︂
=

(︃
(𝑝+

𝑚2
1+𝑚2

2
4𝐸 )− Δ𝑚2

4𝐸 cos(2𝜃0)
Δ𝑚2

4𝐸 sin(2𝜃0)
Δ𝑚2

4𝐸 sin(2𝜃0) (𝑝+
𝑚2

1+𝑚2
2

4𝐸 ) + Δ𝑚2

4𝐸 cos(2𝜃0)

)︃(︂
𝜈𝑒
𝜈𝜇

)︂
(5.6.6)

Here 𝜈𝑒 and 𝜈𝜇 stand for time dependent amplitudes of finding the electron and muon
neutrino respectively. The expressions in the brackets in the diagonal elements of the
effective Hamiltonian in eq. 5.6.6 coincide. They can only modify the common phase of
the neutrino states and therefore have no effect on neutrino oscillations which depend on
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the phase differences. For this reason one can omit these terms. The evolution equation
describing neutrino oscillations in vacuum in flavour basis then takes the form:

𝑖
𝑑

𝑑𝑡

(︂
𝜈𝑒
𝜈𝜇

)︂
=

(︃
−Δ𝑚2

4𝐸 cos(2𝜃0)
Δ𝑚2

4𝐸 sin(2𝜃0)
Δ𝑚2

4𝐸 sin(2𝜃0)
Δ𝑚2

4𝐸 cos(2𝜃0)

)︃(︂
𝜈𝑒
𝜈𝜇

)︂
(5.6.7)

We now proceed to derive the neutrino evolution equation in matter. To do that, one has
to add the matter-induced potentials 𝑉𝑒 and 𝑉𝜇 to the diagonal elements of the effective
Hamiltonian 𝐻𝑓𝑙 in eq. 5.6.7. Notice that 𝑉𝑒 and 𝑉𝜇 contain a common term due to NC
interactions. As we already know, such common terms in the diagonal elements are of
no consequence for neutrino oscillations; we can therefore omit the NC matter-induced
potentials. This gives [39]:

𝑖
𝑑

𝑑𝑡

(︂
𝜈𝑒
𝜈𝜇

)︂
=

(︃
−Δ𝑚2

4𝐸 cos(2𝜃0) +
√
2𝐺𝐹𝑁𝑒

Δ𝑚2

4𝐸 sin(2𝜃0)
Δ𝑚2

4𝐸 sin(2𝜃0)
Δ𝑚2

4𝐸 cos(2𝜃0)

)︃(︂
𝜈𝑒
𝜈𝜇

)︂
(5.6.8)

This is the evolution equation which describes 𝜈𝑒 ↔ 𝜈𝜇 oscillations in matter. The equa-
tion for 𝜈𝑒 ↔ 𝜈𝜏 oscillations has the same form. In the two flavour approximation, 𝜈𝜇 ↔ 𝜈𝜏
oscillations are not modified in matter since 𝑉𝜇 = 𝑉𝜏 ; however, in the full three flavour
framework matter does influence the 𝜈𝜇 ↔ 𝜈𝜏 oscillations because of the mixing with 𝜈𝑒.

5.6.3 Constant density case

Let us now consider the evolution equation 5.6.8. In general, the electron number density
𝑁𝑒 depends on the coordinate along the neutrino trajectory or, in our description in eq.
5.6.8, on time t. We shall consider a simple case of constant matter density and chemical
composition, i.e. 𝑁𝑒 = constant. Diagonalization of the effective Hamiltonian gives the
following neutrino eigenstates in matter

𝜈𝐴 = 𝜈𝑒 cos(𝜃𝑚) + 𝜈𝜇 sin(𝜃𝑚) (5.6.9)

𝜈𝐵 = −𝜈𝑒 sin(𝜃𝑚) + 𝜈𝜇 cos(𝜃𝑚) (5.6.10)

where the mixing angle 𝜃𝑚 is given by

sin2(2𝜃𝑚) =
sin2(2𝜃0)(︁

cos(2𝜃0)∓ 2
√
2𝐺𝐹𝑁𝑒𝐸
Δ𝑚2

)︁2
+ sin2(2𝜃0)

(5.6.11)

where the minus sign is valid for neutrinos and the plus sign for antineutrinos. It is
different from the vacuum mixing angle 𝜃0 and therefore the matter eigenstates 𝜈𝐴 and
𝜈𝐵 do not coincide with mass eigenstates 𝜈1 and 𝜈2. The difference of neutrino eigenmass
in matter is

𝑚2
1𝑚,2𝑚 =

1

2

[︂
(Σ +𝐴)∓

√︁
(𝐴−Δ𝑚2 cos(𝜃0))2 + (Δ𝑚2)2 sin2(2𝜃0)

]︂
(5.6.12)

where Σ = 𝑚2
2 +𝑚2

1 and 𝐴 = 2
√
2𝐺𝐹𝐸𝑁𝑒. For 𝐴 → 0, it follows that 𝑚2

1𝑚,2𝑚 → 𝑚2
1,2

and 𝜃 → 𝜃0. Using the relation

Δ𝑚2
𝑚 = 𝑚2

2𝑚 −𝑚2
1𝑚 = Δ𝑚2

√︃(︂
𝐴

Δ𝑚2
− cos(2𝜃0)

)︂2

+ sin2(2𝜃0) (5.6.13)
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the oscillation probabilities in matter can be written analogously to those of the vacuum

𝑃𝑚(𝜈𝑒 → 𝜈𝜇) = sin2(2𝜃𝑚) sin2
(︂
Δ𝑚2

𝑚𝐿

4𝐸

)︂
(5.6.14)

𝑃𝑚(𝜈𝑒 → 𝜈𝑒) = 1− 𝑃𝑚(𝜈𝑒 → 𝜈𝜇) (5.6.15)

with a corresponding oscillation length in matter

𝐿𝑚 =
4𝜋𝐸

Δ𝑚2
𝑚

=
𝐿0√︁(︀

𝐴
Δ𝑚2 − cos(2𝜃0)

)︀2
+ sin2(2𝜃0)

=
sin(2𝜃𝑚)

sin(2𝜃0)
𝐿0. (5.6.16)

Note already that eq. 5.6.11 allows the possibility of maximal mixing in matter, sin(2𝜃𝑚) ≃
1, even for small sin(𝜃0) because of the resonance type form. It is called the MSW reso-
nance condition. For the resonance enhancement of neutrino oscillations in matter to be
possible, the rhs. of

𝐴 = Δ𝑚2 cos(2𝜃0) (5.6.17)

must be positive

Δ𝑚2 cos(2𝜃0) = (𝑚2
2 −𝑚2

1)(cos
2(𝜃0)− sin2(𝜃0)) > 0 (5.6.18)

i.e. if 𝜈2 is heavier than 𝜈1, one needs cos2(𝜃0) > sin2(𝜃0), and vice versa. It follows from
eq. 5.3.1 that the condition eq. 5.6.18 is equivalent to the requirement that of the two
mass eigenstates 𝜈1 and 𝜈2, the lower-mass one have a larger 𝜈𝑒 component. If one chooses
the convention cos(2𝜃0) > 0 then eq. 5.6.18 reduces to Δ𝑚2 ≡ Δ2

21 > 0. The resonance
condition for antineutrinos is then Δ𝑚2 < 0. Therefore, for a given sign of Δ𝑚2, either
neutrinos or antineutrinos (but not both - see figure 5.6.2) can experience the resonantly
enhanced oscillations in matter. For a more information about adiabatic approximation
and a more realistic three flavour oscillations in matter, look at [40] and [41]
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Figure 5.6.2: Mixing angle in matter in two flavour approximation for different vacuum os-
cillation parameters as a function of the matter-induced neutrino potential V =

√
2GFNe

and the neutrino energy, left for neutrinos and right for antineutrinos.
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Atmospheric neutrinos

In recent years the study of atmospheric neutrinos has become one of the most important
fields in neutrino physics. Atmospheric neutrinos are produced in meson and muon decays,
created by interactions of cosmic rays within the atmosphere. The study of these neutrinos
revealed evidence for neutrino oscillations. With energies in the GeV range and baselines
from about 10 km to as long as the Earth diameter (𝐿 ≈ 104 km), mass differences in the
order of Δ𝑚2 ≥ 10−4eV2 or equivalent values in the 𝐿/𝐸 ratio from 10−105 km GeV−1 are
probed. Most measurements are based on relative quantities because absolute neutrino
flux calculations are still affected by large uncertainties. The obtained results depend
basically on four factors: The primary cosmic-ray flux and its modulations, the production
cross-sections of secondaries in atmospheric interactions, the neutrino interaction cross-
section in the detector and the detector acceptance and efficiency. We want to discuss
the first few steps later in a little more detail. More quantitatively the observed number
of events is given by

𝑑𝑁ℓ(𝜃, 𝑝ℓ)

𝑑Ω𝜃𝑑𝑝ℓ
= 𝑡obs

∑︁
±

∫︁
𝑁𝑡

𝑑𝜑±𝜈ℓ(𝐸𝜈 , 𝜃)

𝑑Ω𝜃𝑑𝐸𝜈

𝑑𝜎±(𝐸𝜈 , 𝑝ℓ)

𝑑𝑝ℓ
𝐹 (𝑞2)𝑑𝐸𝜈 (6.0.1)

where ℓ stands for 𝑒± or 𝜇±, 𝑝ℓ the lepton momentum, 𝐸𝜈 the neutrino energy, 𝜃 the
zenith angle, 𝑡obs the observation time, 𝑁𝑡 the number of target particles, 𝜑±𝜈ℓ(𝐸𝜈 , 𝜃) the
neutrino flux and 𝜎(𝐸𝜈 , 𝑝ℓ) the cross-section. 𝐹 (𝑞

2) takes into account the nuclear effects
such as the Fermi momenta of target nucleons, Pauli blocking of recoil nucleons etc. The
summation (±) is done for 𝜈ℓ and 𝜈ℓ, since current observations do not distinguish the
lepton charge (except ICAL@INO).

6.1 Cosmic rays

The primary cosmic rays hitting the atmosphere consist of about 98 % hadrons and 2 %
electrons. The hadronic component itself is dominated by protons (≈ 87%) mixed with
𝛼-particles (≈ 11%) and heavier nuclei (≈ 2%). Because the neutrino flux depends on the
number of nucleons rather than on the number of nuclei, a significant fraction of the flux
is produced by He and CNO (+ heavier nuclei). The differential energy spectrum follows
a power law of the form

𝑁(𝐸)𝑑𝐸 ∝ 𝐸−𝛾𝑑𝐸 (6.1.1)

with 𝛾 ≃ 2.7 for 𝐸 < 1015 eV. From this point the spectrum steepens (the ’knee’) to
𝛾 ≃ 3. At about 1018 eV the sepctrum flattens again (the ’ankle’) and datasets for the
ultra-high energy part of cosmic rays well above are still limited by statistics. The part
of the comic-ray spectrum dominantly responsible for the current atmospheric neutrino
investigations is the energy range below 1 TeV.

The intensity of primary nucleons in that energy range can be approximated by [43]

𝐼𝑁 (𝐸) ∼ 1.8𝐸−2.7 nucleons cm−2 s−1 sr−1 GeV−1 (6.1.2)
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Figure 6.1.1: The all-particle spectrum as a function of E (energy-per-nucleus) from air
shower measurements [42]

where 𝐸 is the energy per nucleon. In the low energy range several effects can occur. First
of all, there is the modulation of the primary cosmic-ray spectrum with solar activity. The
solar wind prohibits low energy galactic cosmic rays from reaching the earth. This effect is
most prominent for energies below 10 GeV. Such particles have, in contrast, a rather small
effect on atmospheric neutrino fluxes, because the geomagnetic field prevents these low
energy particles from entering the atmosphere anyway. The geomagnetic field bends the
trajectories of cosmic rays and determine the minimum rigidity called the cutoff rigidity
for particles to arrive at the earth. The dynamics of any high energy particle in a magnetic
field configuration 𝐵 depends on the rigidity 𝑅 by

𝑅 =
𝑝𝑐

𝑧𝑒
= 𝑟𝐿 ×𝐵 (6.1.3)

with 𝑝 as the relativistic 3-momentum, 𝑧 as the electric charge and 𝑟𝐿 as the gyroradius.
Particles with different masses and charge but identical 𝑅 show the same dynamics in
a magnetic field. The cutoff rigidity depends on the position at the Earth surface and
the arrival direction of the cosmic ray. The geomagnetic field, therefore, produces two
prominent effects: The latitude (the cosmic-ray flux is larger near the geomagnetic poles)
and the east-west (the cosmic-ray flux is larger for east-going particles) effect. The last
one is an azimuthal effect not depending on any physics and can be used to check the
shower simulations. Such a measurement was performed by Super-Kamiokande (SK) with
a statistics of 45 kt × yr and cuts on the lepton momentum (400 < 𝑝𝑙 < 3000 MeV/c and
zenith angle | cos(𝜃)| < 0.5) to gain sensitivity, an east-west effect is clearly visible shown
in figure 6.1.2

6.2 Interactions within the atmosphere

The atmospheric neutrinos stem from the decay of secondaries produced in interactions
of primary cosmic rays with the atmosphere. The dominant part is the decay chain [45]:

𝜋+ → 𝜇+𝜈𝜇 𝜇+ → 𝑒+𝜈𝑒𝜈𝜇 (6.2.1)

𝜋− → 𝜇−𝜈𝜇 𝜇− → 𝑒−𝜈𝑒𝜈𝜇 (6.2.2)
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Figure 6.1.2: East-west effect observed by neutrino. Data points are from SK experiment,
and solid and dashed lines are prediction by using the one-dimensional calculation of
Honda et al. and Bartol group respectively. Dash-dot are predictions by Lipari taking into
account the muon bending normalized by the average value [44]

Depending on the investigated neutrino energy additional contributions come from kaon
decay, especially the modes:

𝐾± → 𝜇±𝜈𝜇(𝜈𝜇) (6.2.3)

𝐾𝐿 → 𝜋±𝑒±𝜈𝑒(𝜈𝑒) (6.2.4)

The latter is the dominant source for 𝜈𝑒 above 𝐸𝜈 ≈ 1 GeV. In the low energy range
(𝐸𝜈 ≈ 1 GeV) there is the previously mentioned contribution from muon decay. However,
for larger energies the Lorentz boost for muons is high enough in a way that they reach
the Earth surface. For example, most muons are produced in the atmosphere at about 15
km. This length corresponds to the decay length of a 2.4 GeV muon, which is shortened to
8.7 km by energy loss (a vertical muon loses about 2 GeV in the atmosphere by ionization
according to the Bethe-Bloch formula [46]). Therefore, at 𝐸𝜈 larger than several GeV this
component can be neglected. At higher energies the contribution of kaons becomes more
and more important. The general consensus of all these decays is that the ratio of fluxes

𝑅 =
𝜈𝑒 + 𝜈𝑒
𝜈𝜇 + 𝜈𝜇

(6.2.5)

can be predicted with an accuracy of about 5 % which is about 1/2 for sub-GeV and
becomes smaller for (𝐸𝜈 ∼ 1 GeV) since the muons reach the Earth. Therefore, the only
component of electron neutrinos in the multi-GeV energy range is eq. 6.2.4. Also at really
high energies, the pion and kaon would rather interact with the atmosphere then decay
into the various processes given above. From this fact, the atmospheric neutrino flux
is more steeply in the high energy range compared to neutrino flux coming from charm
decay.

However, in the absolute flux predictions there is some disagreement on the level of
20-30 % in the spectra and overall normalization of the neutrino flux. Recently two new
experimental approaches have arrived which might help to improve the situation con-
siderably. First of all, there are measurements of muons in the atmosphere. Strongly
connected with neutrino production from meson decay is the production of muons. As-
sume the two-body decays 𝑀 → 𝑚1+𝑚2. The magnitude of the momenta of secondaries
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in the rest frame of 𝑀 are given by:

𝑝*1 = 𝑝*2 = 𝑝* =
𝑀4 − 2𝑀2(𝑚2

1 +𝑚2
2) + (𝑚2

1 −𝑚2
2)

2

2𝑀
(6.2.6)

In the laboratory frame the energy of the decay product is

𝐸𝑖 = 𝛾𝐸*
𝑖 + 𝛽𝛾𝑝* cos(𝜃*) (6.2.7)

where 𝛽 and 𝛾 are the velocity and Lorentz factor of the parent in the laboratory system.
Therefore, the limits on the laboratory energy of the secondary 𝑖 are:

𝛾(𝐸*
𝑖 − 𝛽𝑝*) ≤ 𝐸𝑖 ≤ 𝛾(𝐸*

𝑖 + 𝛽𝑝*) (6.2.8)

In the absence of polarization there is, in addition,

𝑑𝑛

𝑑Ω* =
𝑑𝑛

2𝜋𝑑 cos(𝜃*)
∝ 𝑑𝑛

𝑑𝐸𝑖
= constant (6.2.9)

meaning that, in such cases, a flat distribution for a product of a two-body decay between
the limits of eq. 6.2.8 results. For example, for process eq. 6.2.3 this results in

𝑑𝑛

𝑑𝐸𝜈
=

𝑑𝑛

𝑑𝐸𝜇
=

0.635

1− (𝑚2
𝜇/𝑚

2
𝐾)𝑝𝐾

(6.2.10)

with 𝑝𝐾 as the laboratory momentum of the kaon and the factor 0.635 stems from the
branching ratio of decay eq. 6.2.8. Often we deal with decays of relativistic particles,
resulting in 𝛽 → 1, which would imply for decays 𝑀 → 𝜇𝜈 kinematic limits on the
laboratory energies of the secondaries of

𝐸
𝑚2

𝜇

𝑚2
𝑀

≤ 𝐸𝜇 ≤ 𝐸 (6.2.11)

and

0 ≤ 𝐸𝜈 ≤

(︃
1−

𝑚2
𝜇

𝑚2
𝑀

)︃
𝐸 (6.2.12)

with 𝐸 as the laboratory energy of the decay meson. Average values are:

⟨𝐸𝜇⟩/𝐸𝜋 = 0.79 and ⟨𝐸𝜈⟩/𝐸𝜋 = 0.21 for 𝜋 → 𝜇𝜈 (6.2.13)

⟨𝐸𝜇⟩/𝐸𝐾 = 0.52 and ⟨𝐸𝜈⟩/𝐸𝐾 = 0.48 for 𝐾 → 𝜇𝜈 (6.2.14)

It is a consequence of the kinematics that if one of the decay products has a mass close to
the parent meson, it will carry most of the energy. Since low energy muons are absorbed
in the atmosphere and decay with a high probability, only high altitude measurements
allow a precise measurement of muons that are most strictly associated with sub-GeV
neutrino events. A compilation of various atmospheric neutrino flux calculations are
shown in figure 6.2.1. As can be seen it consists basically of 𝜈𝜇 and 𝜈𝑒 neutrinos and
its antineutrinos. At very high energies (𝐸𝜈 ≫ TeV) neutrinos from charm production
become an additional source. A possible atmospheric 𝜈𝜏 flux is orders of magnitude less
than the 𝜈𝜇 flux. As can be seen from the atmospheric neutrino flux at first order, the
energy spectrum reflects the primary cosmic ray spectrum in the energy range from 10 to
100 GeV. At higher energies, it steepens asymptotically to 𝐸−𝛾−1. The harder spectrum
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Figure 6.2.1: Comparison of atmospheric neutrino fluxes calculated for Kamioka averaged
over all directions [47]

is a consequence of the decay probability being proportional to 𝐸−1, while the hadronic
interaction length stays constant.

Another important feature for the PINGU detector is the ratio of positive to negative
muons in the atmosphere. The measured value of ∼ 1.25 is nearly independent of energy.
It reflects the excess of protons over neutrons in the incident cosmic rays. But if this were
all, the charge ratio would go to zero at high energy because of multiplicity per collision
of produced pions (the parents of the muons) becomes very large so that one extra charge
becomes negligible. But this is not the whole story. Because of the steepness of the cosmic
ray energy spectrum, muons of a given energy come from relatively fast secondaries, i.e.
they reflect the projectile fragmentation region. Since the fragmentation region of the
proton reflects the momentum distribution of its quark, and since it has two u-quarks
of charge +2/3 each and only one d-quark (charge -1/3), positive pions are favored in
the fragmentation region. This causes an excess of positive over negative muons at all
energies [[48], [49]].

The zenith distribution for atmospheric neutrinos can be seen in figure 6.2.2. Neutrinos
enter the detector from both sides because the cross-section of neutrinos are so small
that they can pass the Earth’s interior without being absorbed as it is the case for the
atmospheric muons. The zenith distribution is not flat; more neutrinos enter the detector
from near the horizon. For small values of cos(𝜃), the average difference in height needed
for the decay of a pion or kaon is small. With increasing | cos(𝜃)| values, this difference
in height increases for muons, which results in a smaller number of electron neutrinos.
Therefore, the ratio of meson to electron neutrinos increases in these ranges [[44], [47]].

6.3 Neutrino cross-section

Neutrinos can interact with the nucleons in a medium over the exchange of charged 𝑊±-
bosons in charged-current interactions (CC), and neutral 𝑍0-bosons in neutral-current
interactions (NC). For neutrinos detection, the most important process at neutrino ener-
gies 𝐸𝜈 > 10 GeV is deep inelastic scattering, where the initial nucleon 𝑁 is destroyed
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Figure 6.2.2: The zenith angle dependence of atmospheric neutrino flux averaged over all
azimuthal angle calculated for Kamioka. Here 𝜃 is the arrival direction of the neutrino,
with cos(𝜃) = 1 for vertically downward going neutrinos, and cos(𝜃) = −1 for vertically
upward going neutrinos [47].

and a hadronic cascade 𝑋 is produced:

𝜈ℓ +𝑁 → ℓ+𝑋 (CC) (6.3.1)

𝜈ℓ +𝑁 → 𝜈ℓ +𝑋 (NC) (6.3.2)

This hadronic cascade is produced in both interaction types, CC and NC. A lepton ℓ
corresponding to the initial neutrino flavour is only produced in CC interactions. Thus,
the initial neutrino can be observed indirectly by detecting the secondary particles pro-
duced in these weak interactions. With the information from the CC interactions, NC
interactions are even less known, which make them very difficult to predict. This can be
seen in [50].

Figure 6.3.1: (Anti-)Neutrino CC cross sections divided by the neutrino energy for dif-
ferent processes: Quasi-elastic scattering (QE), resonance production (RES) and deep
inelastic scattering (DIS) [50]

For energies below 10 GeV (which are relevant for PINGU), cross-sections of futher pro-
cesses like quasi-elastic scattering (QE scattering - nucleon remains intact) and resonance
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production (nucleon is excited to a resonance state) start to dominate. For energies above
10 GeV, the total neutrino cross-section increases almost with energy. Because of helicity
arguments, the cross-section of antineutrinos is a factor of about two lower than neutrinos
[50].

The charged leptons, produced in CC interactions, lose energy while travelling through
the medium due to various processes. In the GeV regime, electrons dominantly lose energy
by bremsstrahlung, −𝑑𝐸/𝑑𝑥 = 𝐸0/𝑋0 with radiation length 𝑋0, and muons by ionization,
described by the Bethe-Bloch equation [46]. Taus decay almost instantly (lifetime of
∼ 10−13 s) into hadrons in ∼ 85% of the cases and induce further hadronic cascades.

6.4 Experimental consideration

Atmospheric neutrinos have the potential to resolve the octant of the atmospheric angle
𝜃23 via matter enhanced oscillation within the Earth. Resonant oscillation occurs either for
neutrinos in the case of the normal hierarchy, or antineutrinos for the inverted hierarchy.
Determination of the octant requires measurement of the energy and direction of Earth-
crossing atmospheric neutrinos with energies in the range 2 to 10 GeV. Massive detectors
(≥ Mton) are required to obtain sufficient signal statistics within a few years of operation.
Existing proposals use either water Cherenkov (PINGU, ORCA, HyperK), liquid Argon
TPC (LBNE, LBNO), or magnetized iron calorimeter (INO) detectors. Primary concerns
are detector properties such as total mass, energy resolution and angular resolution.

6.5 The Earth’s matter density profile

The Earth’s matter density profile is given by the Preliminary Reference Earth Model
(PREM) [51], shown in figure 6.5.1. It is based on measurements with seismic waves. The
inner Earth consists of three main density domains in each of which the change in density
is relatively slow: The mantle domain, the outer and inner core domain. The Earth’s core
consists mostly of iron mixed with light elements; its exact composition is not well known.
At the transition of outer core to mantle, the density decreases dramatically by a factor
of almost two, which has a significant impact on the oscillation probability of neutrinos.

Figure 6.5.1: Matter density (color-coded) according to the Preliminary Reference Earth
Model (PREM). The solid line represents the density profile.
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6.6 Atmospheric neutrino oscillations

The oscillation probability of neutrinos depends on the neutrino energy and on the base-
line. For atmospheric neutrinos traversing the inner Earth, the baseline is a function of
the neutrino zenith angle. Thus, neutrino oscillation in the Earth and the effect of matter
can be described completely by contours of equal oscillation probability in the plane of
neutrino energy versus cosine of the neutrino zenith angle as shown in figure 6.6.1 for
various transition respectively.
The oscillation pattern for electron neutrinos shows several distinct features:

1. Electron neutrinos with cos(𝜃) ≤ 0.84 travel only through the mantle domain and
exhibit a MSW resonance with the main peak between 5 to 7 GeV.

2. The oscillation pattern of core-crossing electron neutrino trajectories (cos(𝜃) > 0.84)
show three resonance ridges at 𝐸𝜈 > 3 GeV due to parametric enhancement.

3. Below 3 GeV, the core-crossing electron neutrinos exhibit an additional MSW reso-
nance with the main peak between 2.5 to 2.7 GeV.

4. For 𝐸𝜈 < 5 GeV and cos(𝜃) < 0.84, the oscillation probability shows a regular pattern
as it is expected for vacuum oscillations.

Matter effects in the Earth are driven by 𝜃13; higher values lead to more distinctive effects,
and only occur because of 𝜃13 being non-zero. In figure 6.6.1, the effects of the 1-2 mixing
are not shown because these effects are only important for energies smaller than about
0.2 GeV, below the expected energy threshold of the PINGU detector.

The oscillations of atmospheric muon neutrinos are also affected by matter due to
their mixing with electron neutrinos. As one can see in the bottom plot of figure 6.6.1,
the regular oscillation pattern for vacuum oscillations is distorted in the energy region
below ∼ 10 GeV. In this energy region, matter effects have the strongest effect on the
oscillation probability of electron neutrinos.

Oscillation of neutrinos are enhanced by matter in the case of normal neutrino mass
hierarchy while antineutrinos are not. The opposite is true in the case of inverted neutrino
mass hierarchy. Taking this into account, atmospheric muon neutrinos traveling through
the Earth facilitate to probe the neutrino mass hierarchy and are the subject of the study
on atmospheric neutrino oscillation with the PINGU detector [52].
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Figure 6.6.1: Neutrino energy versus cosine of the neutrino zenith angle, color-coded is
the probability of neutrinos in the Earth [52]. The left panel being neutrinos and right
panel being antineutrinos. Top being electron neutrino survival, middle muon neutrino to
electron neutrino and bottom being muon neutrino survival.
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Sensitivity of PINGU to the octant of 𝜃23

All the tools and knowledge needed for the computations are described in the previous
chapters. In the beginning of this chapter, the introduction of the numerical analysis is
descripted and later the sensitivity to the octant of mixing angle 𝜃23 is shown for various
resolution functions for energy and zenith angle. The main idea for the simulations are
taken from this article [53]. More information can be found in these additional articles
[54] and [55]. The intention of this thesis is to go beyond this simulation by considering
new systematic uncertainties, neutrino fluxes and other input.

7.1 Earth matter effects in oscillation probabilities

Atmospheric (anti)neutrinos are produced in both 𝜈𝜇 and 𝜈𝑒 (𝜈𝜇 and 𝜈𝑒) flavours. The
neutrinos, on their way of production in the atmosphere to the detector, undergo flavour
oscillations. On arrival at the detector, they produce the corresponding charged leptons
through charged current interactions on nucleons. Since the oscillated atmospheric neu-
trino ”beam” is a combination of all three flavours, they produce electrons, muons, as
well as tau leptons (and their antiparticle) in the detector. Since the oscillated muon
type neutrinos arriving at the detector are a combination of the survived 𝜈𝜇 and the
flavour oscillated 𝜈𝜇 coming from 𝜈𝑒 produced in the atmosphere, the oscillation proba-
bility channels relevant for atmospheric muon neutrinos are the survival probability 𝑃𝜇𝜇

and transition probability 𝑃𝑒𝜇 (we neglect the tau contribution).
The quantity describing the neutrino mass hierarchy is:

Δ𝑚2
eff = Δ𝑚2

31 − (cos2(𝜃12)− cos(𝛿𝐶𝑃 ) sin(𝜃13) sin(2𝜃12) tan(𝜃23))Δ𝑚
2
21 (7.1.1)

The reason as follows: We can see the role of 𝜃13-driven Earth matter effects by the
equation 5.6.11 and the neutrino mass hierarchy is determined by these effects. For
𝜃13 = 0, in the limit Δ𝑚2

21 = 0, the oscillation probabilities becomes 𝑃𝑒𝜇 = 0 and 𝑃𝜇𝜇 is
the same for both hierarchies. However, for non-zero 𝜃13 ̸= 0 we get a difference in 𝑃𝑒𝜇

and 𝑃𝜇𝜇 between Δ𝑚2
31 > 0 and Δ𝑚2

31 < 0 due the earth matter effects. All would be
perfect, if it were not for the assumption Δ𝑚2

21 = 0. For Δ𝑚21 ̸= 0, it turns out that
the survival probability 𝑃𝜇𝜇 becomes different for Δ𝑚2

31 > 0 and Δ𝑚2
31 < 0, even for

𝜃13 = 0. This aspect has been discussed in detail [[56], [57]]. To alleviate this issue we use
the definition 7.1.1 as a quantity for the neutrino mass hierarchy and define Δ𝑚2

eff > 0
(Δ𝑚2

eff < 0) as normal hierarchy (inverted hierarchy) [53]. The impact of the definition of
the neutrino mass hierarchy (whatever to use Δ𝑚2

31 or Δ𝑚
2
eff) as a measure of the neutrino

mass hierarchy (the sign of these quantities) seems to have no difference in determining
the neutrino mass hierarchy, only the oscillation probabilities [55].

Even though the Δ𝑚2
eff depends on 𝛿𝐶𝑃 , which is unknown, it will only influence the

value of the effective mass splitting, not the sign of it. This can be used to make a good
measurement of cos(𝛿𝐶𝑃 ) [57] and atmospheric neutrino can give the first hint of CP
violation [58].
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7.2 Description of numerical analysis

Since the PINGU detector measures charged leptons of the associated neutrino eq. 6.3.1,
the number of 𝜈𝜇-like events expected in PINGU after T years of running the experiment
is

(𝑁𝜇)𝑖𝑗 = 2𝜋𝑁𝑇𝑇

∫︁ (cos(Θ))𝑖+1

(cos(Θ))𝑖

𝑑 cos(Θ)

∫︁ 𝐸𝑗+1

𝐸𝑗

𝑑𝐸𝜖𝜌ice𝑉eff(𝐸)×[︂(︂
𝑑2𝜑𝜈𝜇

𝑑 cos(Θ′)𝑑𝐸′𝑃𝜇𝜇 +
𝑑2𝜑𝜈𝑒

𝑑 cos(Θ′)𝑑𝐸′𝑃𝑒𝜇

)︂
𝜎𝐶𝐶(𝐸)

+

(︂
𝑑2𝜑𝜈𝜇

𝑑 cos(Θ′)𝑑𝐸′𝑃�̄��̄� +
𝑑2𝜑𝜈𝑒

𝑑 cos(Θ′)𝑑𝐸′𝑃𝑒�̄�

)︂
�̄�𝐶𝐶(𝐸)

]︂ (7.2.1)

where 𝑁𝑇 are the number of targets in the detector, 𝑇 is the exposure time, 𝜖 is the
detector efficiency, 𝜌ice𝑉eff is the effective mass of the detector, 𝑉eff is the effective volume,
𝑑2𝜑𝛼/𝑑𝐸

′𝑑 cos(Θ′) is the neutrino flux of flavour 𝛼 at the South Pole [59], 𝜎𝐶𝐶(𝐸) is the
neutrino cross-section given by GENIE. Since the detector is not magnitized, it will not
be able to distinguish between particle and antiparticle. For this reason, the number of
events from neutrinos and antineutrinos are added together.

𝑅(𝐸,𝐸′) and 𝑅(Θ,Θ′) are the energy and angle resolution functions of the detector
respectively, and 𝑃𝜇𝜇 and 𝑃𝑒𝜇 are the muon neutrino survival probability and electron
neutrino to muon neutrino conversion probabilities respectively. The resolution functions
relate the true energy 𝐸′ and true zenith angle Θ′ with the reconstructed energy 𝐸 and
reconstructed zenith angle Θ of the neutrino. We assume Gaussian functional form for
the resolution functions with widths:

𝜎𝐸 = 𝑎+ 𝑏𝐸′
GeV 𝜎Θ = 𝑐 ·

√︃
1GeV

𝐸′
GeV

(7.2.2)

Since the final resolution widths for PINGU is still being estimated from detailed simula-
tions, two sets of values for the energy resolution width 𝜎𝐸 corresponding to 𝑎 = 0, 𝑏 = 0.2
and 𝑎 = 2, 𝑏 = 0, and two sets of values for the angle resolution width 𝜎Θ corresponding to
𝑐 = 1 (≃ 60) and 𝑐 = 0.5 (≃ 30), where 𝑐 is in radians (degrees), will be assumed. These
values for the resolution functions agree with that in the literature [[15], [19], [60], [61],
[62]]. The effective mass of the detector is read from [63] for the curve labelled ”Triggered
Effective Volume, R=100m”. The probabilities 𝑃𝜇𝜇 and 𝑃𝑒𝜇 are calculated numerically
solving the propagation equation of the neutrinos through the atmosphere and inside the
Earth, and using the PREM profile for the Earth matter density. For simplicity 𝜖 = 1,
since any flat 𝜖 can be easily adjusted against the exposure taken at the detector. The
index 𝑖 runs over the number of cos(Θ) bins in the data while 𝑗 runs over the number of
energy bins. We will take cos(Θ) to run from −1 to 0 while the energy runs from 1 GeV
to 20 GeV. The data is generated for the oscillation parameters given in table 7.2.1 for
either the normal or inverted hierarchy and for a given value of sin2(𝜃23). The simulated
𝜒2𝑖𝑠𝑓𝑖𝑡𝑡𝑒𝑑𝑤𝑖𝑡ℎ𝑡ℎ𝑒𝑤𝑟𝑜𝑛𝑔𝑜𝑐𝑡𝑎𝑛𝑡𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑜𝑓sin2(𝜃23) for the theoretical event rates, allow-
ing the test variables |Δ𝑚2

eff|, sin2(𝜃13), sin2(𝜃23) as well as the neutrino mass hierarchy
to vary in the fit. The statistical fit is performed using a 𝜒2 function defined as

𝜒2 = min𝜉𝑗
∑︁
𝑖𝑗

[︃
(𝑁 th

𝑖𝑗 −𝑁 ex
𝑖𝑗 )

2

𝑁 ex
𝑖𝑗

]︃
+

𝑘∑︁
𝑠=1

𝜉2𝑠 (7.2.3)

𝑁 th
𝑖𝑗 = 𝑁𝑖𝑗

(︃
1 +

𝑘∑︁
𝑠=1

𝜋𝑠𝑖𝑗𝜉𝑠

)︃
+𝒪(𝜉2𝑠 ) (7.2.4)
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where 𝑁 ex
𝑖𝑗 is the observed number of muon events in the 𝑖𝑡ℎ cos(Θ) and 𝑗𝑡ℎ energy bin

and 𝑁 th
𝑖𝑗 is the corresponding theoretically predicted event spectrum for the wrong octant

solution of 𝜃23. The 𝜋
𝑠
𝑖𝑗 is the 𝑖𝑗

𝑡ℎ systematic uncertainty in the 𝑖𝑡ℎ cos(Θ) and 𝑗𝑡ℎ energy
bin and 𝜉𝑠 is the pull variable corresponding to the uncertainty 𝜋𝑠𝑖𝑗 . Five systematic
uncertainties are included in the analysis. They are, a flux normalization error of 20 %,
a cross-section uncertainty of 10 %, a 5 % uncertainty on the zenith angle dependence
of the fluxes, a 5 % energy dependent ”tilt factor” of the fluxes and a 5 % additional
overall uncertainty [[60], [64]]. The parameters |Δ𝑚2

eff| and sin2(2𝜃13) are varied in the
fit obeying the contours (see figures 7.5.1 and 7.5.2) in the 3𝜎 range given in table 7.2.1.
For sin2(𝜃23)(test), we vary it freely in the range [0.4− 0.6] around the wrong octant for
any given sin2(𝜃23)(true). The values in the table comes from [65]. Finally, the 𝜒2 is
computed for both the test hierarchies and the minimum 𝜒2 is chosen.

Parameter True value used in data 3𝜎 range used in fit

Δ𝑚2
21 7.6× 10−5 eV2 [7.1 − 8.2]× 10−5 eV2

sin2(𝜃12) 0.323 [0.278 - 0.375]

|Δ𝑚2
eff| 2.4× 10−3 eV2 [2.1 − 2.6]× 10−3 eV2

𝛿𝐶𝑃 0 [0 − 2𝜋]

sin2(2𝜃13) 0.093 [0.071 − 0.115]

Table 7.2.1: Benchmark true values of oscillation parameters set in the simulations, unless
otherwise stated. The range over which they are allowed to vary in the 3𝜎 contours.
sin2 (𝜃23 )(true) is varied in the range [0 .4 − 0 .6 ] around the wrong octant sin2 (𝜃23 ) for
any given sin2 (𝜃23 )(true). In the simulations, Δm2

21 , sin
2 (𝜃12 ) and 𝛿CP are fixed at their

true value.

7.3 Neutrino flux

The fluxes of neutrinos reaching the Earth from the atmosphere are vital to this project.
Taking the data (ic79) of the neutrino fluxes released by the IceCube collaboration [[66],
[67]], it is superimposed to the low energy region by a 𝜒2 fit; however only the neutrino
fluxes. The antineutrino fluxes have been made by taking the neutrino fluxes and re-
ducing it by ∼ 30 % since there are an overproduction of positive charged pions over
negative charged pions. This gives the reason to reducing the antineutrino fluxes and
that phenomenon is described in a previous chapter. The fluxes are shown in figure 7.3.1
with the best chi square fit plus one sigma band. The colors are given as such: Muon
neutrino (red), muon antineutrino (light green), electron neutrino (dark green) and elec-
tron antineutrino (pink). Also shown in the plot are simulations of the neutrino fluxes
from [59] where the colors are given the flavour of neutrinos: Muon neutrino (dark blue),
muon antineutrino (cyan), electron neutrino (purple) and electron antineutrino (orange).
The data points and simulations do not lay on top on each other since the ’knee’ in the
primordial spectrum is neglected in article [59]. The atmospheric fluxes used in various
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IceCube simulations originate from a Honda model, but have an extenstion which takes
the ’knee’ into account [[68], [69]].
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Figure 7.3.1: Power-law fit to the Icecube data of the flux of neutrinos. Also shown is
simulations of flux from [59].

7.4 GENIE cross-section

GENIE (Generates Events for Neutrino Interaction Experiments) is a universal object-
oriented neutrino Monte Carlo generator supported and developed by an international
collaboration of scientists whose expertise covers a very broad range of neutrino physics
aspects, both phenomenological and experimental. GENIE is currently being used by
T2K, NOvA, MINERvA, MicroBooNE, ArgoNEUT, LAGUNA-LBNO, LBNE, INO, Ice-
CUBE, NESSiE and others. To give a familiar picture of the cross-section plus the uncer-
tainty, it is plotted in figure 7.4.1. The cross-section in figure 7.4.1 has similar shape as
the cross-section in figure 6.3.1 in the previous chapter. However, more low-energy points
are needed so that the theoretical predicted cross-section is the same as the experimental
evidence. For more technical information, look at [[70], [71], [72]].

7.5 Contour plots from global data

The measurement of the reactor angle 𝜃13 had influence on the other mixing parameters.
The solar angle 𝜃12 did not change much, however the atmospheric angle 𝜃23 changed
substantially. The figures 7.5.1 and 7.5.2 gives the allowed contours for some of the
mixing parameters [73]. There are several plots in each figure; top is for normal hierarchy
whereas the bottom is for inverted hierarchy. The three sets of columns add more data in
the global fit; left: LBL accelerator + solar + KamLAND, middle: + SBL reactor data
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Figure 7.4.1: GENIE generated cross-section for the charged 𝜈𝜇 interaction.

and right: + SK atmospheric data. The colors of the contours are different significance:
Pink (1𝜎), blue (2𝜎) and black (3𝜎).

The first figures show the contour of the (sin2(𝜃23),Δ𝑚
2)-plane whereas the other fig-

ures show the (sin2(𝜃23), sin
2(𝜃13))-plane. From these plots there is a slightly preference

for non-maximal mixing (𝜃23 ̸= 45∘). However, it gets diluted since T2K data prefer maxi-
mal mixing whereas MINOS and atmospheric data prefer non-maximal mixing. Moreover,
the indications about the octant appears to be unstable in different combinations of data
[73]. These plots are illustrative and gives information about their behavior as the param-
eters are varied. However, the parameters shown in the figures and the ones used in the
analysis are completely different. In the analysis is used sin2(2𝜃13) and Δ𝑚2

eff whereas in
the figures are shown sin2(𝜃13) and Δ𝑚2 = 𝑚2

3 − (𝑚2
1 +𝑚2

2)/2 = Δ𝑚2
31 −Δ𝑚2

21/2. How-
ever, by folding the mixing parameters correctly, then the mixing parameters used in the
analysis also obeys their own contours. There are only a minimal difference between the
contours shown in article [73] and the contours for the mixing parameters sin2(𝜃23)(test),
sin2(2𝜃13) and Δ𝑚2

eff.

7.6 Event rates

The event rates were calculated by eq. 7.2.1 and the fine-binned distribution of events
with Δ(cos(𝜃)) = 0.025∘ and Δ𝐸𝜈 = 0.5 GeV are shown in figure 7.6.1. The number of
events decreases with 𝐸𝜈 and the pattern of events follows the oscillatory picture due to
the main 𝜈𝜇 → 𝜈𝜇 mode of the oscillations with a clear distortion in the resonance region.
In the high event density bins the number of events reach ∼ 120, and the total number
of events are about 𝒪(70.000).

The neutrino fluxes for each neutrino flavour are built into the Monte Carlo generator
and the events are calculated as follows. Every 𝜈𝜇 event has a characterized true energy
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Figure 7.5.1: Results from global in the plane charted by (sin2 (𝜃23 ), Δm2 ), where all other
parameters are being marginalized away. From left to right, regions allowed at 1,2 and
3𝜎 refer to increasingly rich datasets: LBL accelerator + solar + KamLAND data (left
panels), plus SBL reactor data (middle panels), plus SK atmospheric data (right panels).
Best fits are marked by dots. The three upper (lower) panels refer to normal (inverted)
hierarchy [73].

Figure 7.5.2: As in figure 7.5.1, but in the plane (sin2 (𝜃23 ), sin
2 (𝜃13 )) [73].

and true zenith angle given by the event generator. For this neutrino energy and neutrino
zenith angle, the probabilities 𝑃𝜇𝜇 and 𝑃𝑒𝜇 are calculated numerically for any given set
of oscillation parameters. A random number 𝑅 between zero and one is generated. If
𝑅 < 𝑃𝑒𝜇, it is classified as a 𝜈𝑒 event, whereas if 𝑅 > (𝑃𝑒𝜇 + 𝑃𝜇𝜇), then it is classified
as a 𝜈𝜏 event. However, if it happens 𝑃𝑒𝜇 < 𝑅 < (𝑃𝑒𝜇 + 𝑃𝜇𝜇), then it means that this
event is an atmospheric 𝜈𝜇 which has survived as a 𝜈𝜇 and is hence selected as muon
neutrino event. Only the muon neutrino events are relevant for us, while the others are
discarded. Since we do this for a statistically large event sample, we get a 𝜈𝜇 ”survived”
event spectrum that follows the survival probability. One could also get muon neutrino
events in the detector from oscillations of atmospheric 𝜈𝑒s to 𝜈𝜇s. To find these events,
they are generated using the atmospheric 𝜈𝑒 fluxes but 𝜈𝜇 charged current interactions
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Figure 7.6.1: The fine-binned distribution of the number of 𝜈𝜇-like events in the
(E𝜈 , cos(𝜃)) plane that can be collected by the PINGU detector during 1 year; NH is
assumed.

in the detector, with the oscillation probability part of the code switched off. In order
to get the oscillated muon neutrino event from this sample, another random number 𝑆
is generated to classify these events. That is, if 𝑆 < 𝑃𝑒𝜇, then the event is taken as an
”oscillated” 𝜈𝜇 event, which is the only part relevant for us. The net number of muon
neutrino events are obtained by adding the ”survived” and the ”oscillated” 𝜈𝜇 events.

7.7 Sensitivity to the octant of the atmospheric angle 𝜃23

Ever since the MINOS experiment have released their results of the atmospheric angle
of sin2(2𝜃23) > 0.90 at 90 % confidence limit [74] (more recent results of sin2(𝜃23) =
[0.35 − 0.65] (90 % C.L.) for NH and sin2(𝜃23) = [0.34 − 0.67] (90 % C.L.) for IH [[34],
[75], [13]]), the scientific community have speculated if the atmospheric angle is maximal
or not. The global fit of neutrino oscillation data prefers non-maximal, however this is
diluted by the data samples from T2K which prefers maximal. This gives the scientific
community an opportunity to measure the atmospheric angle accurately since the current
precision of the mixing angle 𝜃23 is not good enough to solve this issue (see figure 4 in
[76]). The present and future neutrino experiments have entered the precision era.

However, there is a problem, namely a degeneracy if the atmospheric angle is non-
maximal (i.e. 𝜃23 ̸= 𝜋

4 ). This can be seen from this formula:

sin2(𝜃23) = 1− 1

2

[︂
1±

√︁
1− sin2(2𝜃23)

]︂
(7.7.1)

As seen from eq. 7.7.1, if sin2(2𝜃23) = 1, then sin2(𝜃23) = 0.5. This problem enters
in the transition probabilities since it depends mostly on sin2(2𝜃23)-terms which do not
have any sensitivity to the octant. However, the addition of sub-dominant terms in the
oscillation probabilities gives sensitivity to the octant since these terms contains sin(𝜃23).
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This breaks the degeneracy and gives sensitivity to the octant of the atmospheric angle
𝜃23, so it is distinguable between 𝜃23 being in the first octant (i.e. 𝜃23 <

𝜋
4 ) or the second

octant (i.e. 𝜃23 >
𝜋
4 ).

An idea for a possible way to distinguish between lower or higher octant is given in [77]
where they look at the transition probabilities [78] written as a series expansion of sin(𝜃13)

and 𝛼 =
|Δ𝑚2

21|
|Δ𝑚2

31|
to 𝒪(𝛼) for constant matter potential. A way to distinguish between these

two solutions are reparameterizing the atmospheric mixing angle as 𝜃23 = 𝜋
4 + 𝜖. Then

the probabilities have sensitivity to the sign of 𝜖 and can possibly be able to determine
the value of 𝜖. However, there is a 𝛿𝐶𝑃 degeneracy in the formulas which makes the
determination of the sign of 𝜖 more difficult. This idea was also for constant matter
potential which simplifies the calculation. By considering varying matter, it becomes
even more difficult.

With the event rates calculated, a 𝜒2 fit is performed by using eq. 7.2.3 where the pull
variables 𝜉𝑖 are minimized. The difference Δ𝜒2 = 𝜒2(𝑁𝐻) − 𝜒2(𝐼𝐻) is plotted on the
y-axis since the neutrino mass hierarchy is still unknown. In the simulations, the number
of years running the experiment is three where the result of our analysis to the octant of
𝜃23 is shown in fig. 7.7.1.

The figures shows the impact of a variety of things on the octant sensitivity at
PINGU. Let us start by looking at the impact of the resolution functions on the oc-
tant sensitivity. For top left panel, if the normal hierarchy was true and the test hi-
erarchy was kept fixed as normal, the wrong 𝜃23 octant could be ruled out more than
3𝜎 C.L. if sin2(𝜃23)(true) < 0.427 and sin2(𝜃23)(true) > 0.59 for 𝜎𝐸 = 0.2𝐸′

GeV and
𝜎Θ = 0.5

√︀
1GeV/𝐸′

GeV. To show the impact of the resolution functions on the oc-
tant sensitivity, the simulations were repeated for different combinations of 𝜎𝐸 and 𝜎Θ.
Keeping 𝜎Θ = 0.5

√︀
1GeV/𝐸′

GeV and changing 𝜎𝐸 from 0.2𝐸′
GeV to 2GeV reduces the

statistical significance of the octant measurement and a 3𝜎 sensitivity is expected for
sin2(𝜃23)(true) < 0.418 and sin2(𝜃23)(true) > 0.6. The impact of worsening the zenith
angle resolution have even a shaper effect on the sensitivity. This can be seen by keep-
ing 𝜎𝐸 = 0.2𝐸′

GeV and changing 𝜎Θ = 0.5
√︀

1GeV/𝐸′
GeV to 𝜎Θ = 1.0

√︀
1GeV/𝐸′

GeV, this
reduces the statistical significance of the octant measurement significantly and now there
is only 2𝜎 sensitivity for sin2(𝜃23)(true) < 0.417 and sin2(𝜃23)(true) > 0.586. For the case
where both energy resolution and angle resolution are worsened to 𝜎𝐸 = 2GeV and 𝜎Θ =
1.0
√︀

1GeV/𝐸′
GeV, the wrong octant can be ruled out only at 2𝜎 for sin2(𝜃23)(true) < 0.403

and sin2(𝜃23)(true) > 0.6.
The top right panel shows the sensitivity of PINGU to the octant of 𝜃23 if the inverted

hierarchy was true and the test hierarchy was kept fixed at inverted hierarchy. For inverted
hierarchy the sensitivity falls significantly, and even for sin2(𝜃23)(true) = 0.4, the wrong
octant lies just below the 2𝜎 C.L. As can be seen from the figures, there is a difference
between if the true hierarchy is normal or inverted. The reasoning for this difference can
be found in [53] where the final argumentation gives:

𝜒2(𝐼𝐻) <
𝜒2(𝑁𝐻)

4
(7.7.2)

This rough comparison between the expected octant sensitivity between normal and in-
verted mass hierarchy cases are seen to agree rather well with the results.

Another striking result from the plots are the difference between figures in the top and
bottom panel. For the true inverted hierarchy case there is no difference in keeping the
test hierarchy fixed or letting it vary in the fit. It has no impact on the octant sensitivity
of the experiment. However, for true normal hierarchy there is a significant reduction
in the Δ𝜒2 for low values of sin2(𝜃23)(true). In particular for sin2(𝜃23)(true) = 0.4, the
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Figure 7.7.1: Δ𝜒2 for the wrong octant obtained from the PINGU data with 3 years
statistics, as a function of sin2 (𝜃23 )(true). The left panel is for normal hierarchy taken
as true while the right panel is for inverted hierarchy taken as true. In the top panels, the
𝜒2 is varied over the oscillation parameters, sin2 (𝜃23 ), sin

2 (2𝜃13 ) and |Δm2
eff| as described

in the text, but the mass hierarchy is held fixed to the assumed true case in the fit. In
the bottom panels, the 𝜒2 is varied over the oscillation parameters, sin2 (𝜃23 ), sin

2 (2𝜃13 )
and |Δm2

eff| as weel as the mass hierarchy, keeping mass hierarchy free in the fit. The
four lines are for the four possible combinations for the choices of the energy and angle
resolution of PINGU. See appendix for larger verions.

statistical significance of the octant determination from 3 years of PINGU data, comes
down from Δ𝜒2 = 16.9 to Δ𝜒2 = 7.3 for the optimal resolution case of 𝜎𝐸 = 0.2𝐸′

GeV and
𝜎Θ = 0.5

√︀
1GeV/𝐸′

GeV. For the other choices of the combination of 𝜎𝐸 and 𝜎Θ we also
see a similar trend, wherein the data with true normal hierarchy is fitted with the wrong
test inverted hierarchy, reducing thereby the octant sensitivity from PINGU. However, for
sin2(𝜃23)(true) > 0.44 the variation over hierarchy does not have any impact what-so-ever
on the octant sensitivity of PINGU, even for the case of true normal hierarchy.

With the 3 years of data, there is a region around sin2(𝜃23)(true) ∼ 0.5 where the oc-
tant sensitivity disappears. This disappearence comes from the variation of the oscillation
parameters in the fit. If they were fixed, then the sensitivity to the octant would display
a parabola with only one point being zero, namely in sin2(𝜃23)(true) = 0.5. However,
this ”valley” can become visible by including more data from PINGU and/or include data
from other experiments which can further constrain the other oscillation parameters.
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7.8 Systematic uncertainties

In this section, the systematic uncertainties and their influence on the Δ𝜒2 are examined.
As mentioned before, there are 5 systematic uncertainties. They are a flux normalization
error of 20 %, a cross-section uncertainty of 10 %, a 5 % uncertainty on the zenith angle
dependence of the fluxes, a 5 % energy dependent ”tilt factor” of the fluxes and a 5 %
additional overall uncertainty.

In order to study the impact of these systematic uncertainties on the octant, the
sensitivity is shown with and without systematic uncertainties in figure 7.8.1. Systematic
uncertainties are the combined effect of theoretical and experimental uncertainties and
reduces the sensitivity of the analysis.

Three of the five systematic uncertainties, namely flux normalization, cross-section and
overall uncertainty has minimal impact on the final result. The reason can be understood
from the fact that the atmospheric neutrinos comes from all zenith angles and over a
wide range of energies. The flux normalization uncertainty is the same for all bins, while
the Earth matter effects are important only in certain zenith angle bins and range of
energies. Therefore, the effect of the flux normalization uncertainty get cancelled between
different bins. On the other hand, the ”tilt factor” could be used to modify the energy
spectrum of the neutrinos and the zenith angle uncertainty allows changes to the zenith
angle distribution. Therefore, these errors do not cancel between the different bins and can
dilute the significance of the data. In particular, the effects of the zenith angle and energy
dependent systematic errors on the atmospheric neutrino fluxes have a major impact on
lowering the Δ𝜒2 for the octant sensitivity.

The impact of the systematic uncertainties are shown in figure 7.8.1. For each plot
there is a specific energy resolution given in the upper right corner of the plot. There
the angular resolution is also given, though with a constant 𝑐. For each line there is a
specific constant 𝑐 shown in the plot legend. As can be seen, the dashed lines have 𝑐 = 0.5
rad while the solid lines have 𝑐 = 1.0 rad. The red color means there is no systematic
uncertainties in the fit whereas the black has all five systematic uncertainties included
in the fit. The other colors in the plot have one specific systematic uncertainty switch
off: Overall systematic (dark blue), cross-section (cyan), flux normalization (grey), energy
dependent ”tilt factor” (purple) and zenith dependence (green). As can be seen in the
figures, the systematic uncertainties that have the most impact on the 𝜒2 are the energy
and zenith dependent systematic uncertainties while the other uncertainties as mentioned
before have minimal impact as mentioned before. On the right side of the plots are shown
the significance level. Again the plots with normal hierarchy have higher significance than
the plots with inverted hierarchy.

7.9 Another relevant systematic uncertainty

In addition to the systematic uncertainties in the reconstruction of the incident neutrino
and energy, we wish to highlight the particle identification (PID) uncertainty as another
limiting factor for octant sensitivity. The five systematic uncertainties were original from
the article [53], whereas the sixth systematic uncertainty, a PID uncertainty is included
in this section. This is done by introducing a regularization function to the event rate eq.
7.2.1, reducing the effective mass of the detector. This uncertainty scales as a function of
energy, so that only a certain amount of the energy will get deposited into the detector.
The charged current 𝜈𝜇 will only deposit 30 % of its true energy at 3 GeV into the detector,
70 % at 8 GeV and 90 % at 13 GeV. At 15 GeV, it will be a 100 % up to 20 GeV. There
will be a correlation between the PID uncertainty and those concerning the energy and
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Figure 7.8.1: Impact of systematic uncertainties on the Δ𝜒2 for the wrong octant obtained
from the PINGU data with 3 years statistics, as a function of sin2 (𝜃23 )(true). The solid
lines show the Δ𝜒2 with 𝜎Θ = 1 .0

√︀
1GeV/E ′

GeV, while the dashed lines are obtained with
𝜎Θ = 0 .5

√︀
1GeV/E ′

GeV. The energy resolution is given in the plot. We show the results
for all combinations of 𝜎E and 𝜎Θ . The left panel is for normal hierarchy while the right
panel is for inverted hierarchy. The test hierarchy is kept fixed at the true value for all
cases. See appendix for larger versions.

angular dependence of the atmospheric neutrino flux.

The influence of this systematic uncertainty is shown in figure 7.9.1 which shows
the old fit with only five systematic uncertainties and the new fit with six systematic
uncertainties. As can be seen from the figure 7.9.1, this uncertainty have some impact
on the octant sensitivity since the low-energy of the 𝜈𝜇 gets poorly determined. The
parametric enhancement and the MSW effect gives a higher signal to the octant which
happens in the region below 10 GeV, so if the energy of the neutrinos are more poorly
determined by the PID uncertainty, the signal is reduced. This is the reason why the PID
uncertainty has a bigger influence on the octant sensitivity than the flux normalization
uncertainty. With the reduction of the sensitivity to the octant, a longer time is needed
for making the same confidence level with this sixth systematic included than if it was
without this systematic uncertainty. From figure 7.9.1 in top left corner, you can see that
with the resolution function 𝜎𝐸 = 0.2𝐸′

GeV and 𝜎𝜃 = 0.5
√︀

1GeV/𝐸′
GeV the reduction

from 3𝜎 to below 3𝜎 for sin2(𝜃23)(true)> 0.428 and sin2(𝜃23)(true)< 0.590 whereas for
the other combinations of resolution functions, the sensitivity also gets worse. In the
top right corner of figure 7.9.1, the old fit with resolution functions 𝜎𝐸 = 0.2𝐸′

GeV and
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𝜎𝜃 = 0.5
√︀

1GeV/𝐸′
GeV is already below 2𝜎 and the inclusion of the sixth systematic

uncertainty with the same resolution functions gives a 1.4𝜎 C.L for sin2(𝜃23(true)< 0.423
and sin2(𝜃23)(true)> 0.586. The other combinations of resolution functions gives a C.L.
below 2𝜎 and even below 1𝜎 for some combinations of resolution functions, with or without
this sixth systematic uncertainty.
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Figure 7.9.1: Same as 7.7.1, but also fits with the sixth systematic uncertainty in particle
identification. See appendix for larger versions.

With the results in the various plots from different subsections, a comparison between
the simulations from the IceCube-PINGU Collaboration in [15] and this thesis’s results
are presented. In chapter 6 of [15] is an analysis of the sensitivity to non-maximal 𝜃23
mixing. The main result is given in figure 21 and 22 which show the contour plot of
sin2(𝜃23) vs. Δ𝑚2

atm for both hierarchies and both octants. They show the separation is
achievable in 5 years between the current global best fit and maximal 𝜃23 mixing for some
combination of the true 𝜃23 octant and the true mass hierarchy. The octant sensitivity
is highly dependent on the true mass hierarchy and true 𝜃23 octant. This can be seen in
the two plots of figure 21 and 22 in [15]. If the true oscillation parameter of 𝜃23 lies in
the first octant and the true hierarchy is normal, PINGU may exclude the entire second
octant more than 5𝜎. If the oscillation parameter lies in the second octant, then PINGU
may exclude the first octant after five years by 3𝜎 for normal hierarchy, or by 1𝜎 for an
inverted hierarchy.

However, there are differences between the results in [15] and the plots in this thesis.
Their simulations is realized in 5 years of data whereas the projected time in this thesis is 3
years of data. This means they have accumulated more data which gives more significance
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to the octant. This difference can easily be fixed by a scaling factor to the event rates.
However, if Δ𝜒2 ≈ 0, then the scaling would not help and insight of the octant sensitivity
around sin2(𝜃23) = 0.5 would be lost. However, if the simulations are for 5 years of data,
the sensitivity would rise in the outer edges of this ”valley”. A second and more crucial
thing is that the resolution functions in [15] are fixed by a constant, i.e. 𝜎𝐸 = 2.5 GeV
and 𝜎𝜃 = 8.5∘ whereas in reality they depend on the energy. In a comparison, the 𝜎𝐸
is not that important since the energy resolution function could be fixed by a constant.
However, by fixing the 𝜎𝜃 to a constant increases the signal since there is a cross-over
where the constant 𝜎𝜃 performs better than one which depends on the energy. This cross-
over happens near 10 GeV (for 𝑐 = 0.5 rad) which is a crucial energy since the most
sensitivity to the octant is in the low-energy region from 1 to 10 GeV. If the constant in
front of the square root in the angular resolution function is one, then the performance is
even worse compared to a constant 𝜎𝜃.





8

Impact of different flavour symmetries on the
analysis

In the previous chapter the analysis was done from global fit data and without the knowl-
edge of which flavour symmetry is correct. However, in this chapter there is given a
introduction to flavour models and a comparison between different flavour symmetries.
By implementing various flavour symmetries, you will get different sensitivities to the
octant of the atmospheric angle. With this in hand, you can constrain flavour models as
the family symmetry. First is given a introduction to group theory which is an essential
part of flavour models and gives the allow terms in the Lagrangian and output of oscilla-
tion parameters. Thereafter will be shown some examples of flavour symmetries used in
models. These models are not correct any more since the prediction of mixing angles are
not in the allow range from neutrino data. However, it is suppose to show the idea behind
flavour models in the use of various flavour symmetries to explain the current neutrino
oscillation parameters.

8.1 Group theory

Non-Abelian (as well Abelian) discrete symmetries appear to play an important role in
understanding the physics of flavour. These are described by group theory and this is a
brief introduction to the main mathematical concepts of finite group theory. A group 𝐺
is a set consisting of elements {𝑔𝑖} together with a rule for multiplication. They satisfy
the following properties [79]:

∙ Closure under multiplication: If 𝑔1 and 𝑔2 are in 𝐺, so is 𝑔1 · 𝑔2.

∙ Associativity: For any three elements 𝑔1, 𝑔2, 𝑔3 ∈ 𝐺, 𝑔1 · (𝑔2 · 𝑔3) = (𝑔1 · 𝑔2) · 𝑔3.

∙ Identity: There exists an element 𝑒 ∈ 𝐺 such that 𝑒 · 𝑔 = 𝑔 for every 𝑔 ∈ 𝐺.

∙ Inverse: For every 𝑔 ∈ 𝐺 there exists an inverse, 𝑔−1 ∈ 𝐺, such that 𝑔 · 𝑔−1 =
𝑔−1 · 𝑔 = 𝑒.

The most basic way of defining a group is given in terms of the multiplication table, where
the result of each product of two elements is listed. In the case of the smallest non-Abelian
finite group, the permutation group 𝑆3, we have: The six elements are classified into the
identity element 𝑒, elements 𝑏𝑖 whose square is 𝑒 and finally elements 𝑎𝑖 for which the
square does not yield 𝑒 but, as can be seen easily, the cube does. It is generally true for
any finite group that there exists some exponent 𝑛 for each element 𝑔 such that 𝑔𝑛 = 𝑒.
The smallest exponent for which this holds is called the order of the element 𝑔. This is not
to be confused with the order of a group 𝐺 which simply means the number of elements
contained in 𝐺.
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𝑆3 𝑒 𝑎1 𝑎2 𝑏1 𝑏2 𝑏3
𝑒 𝑒 𝑎1 𝑎2 𝑏1 𝑏2 𝑏3
𝑎1 𝑎1 𝑎2 𝑒 𝑏2 𝑏3 𝑏1
𝑎2 𝑎2 𝑒 𝑎1 𝑏3 𝑏1 𝑏2
𝑏1 𝑏1 𝑏3 𝑏2 𝑒 𝑎2 𝑎1
𝑏2 𝑏2 𝑏1 𝑏3 𝑎1 𝑒 𝑎2
𝑏3 𝑏3 𝑏2 𝑏1 𝑎2 𝑎1 𝑒

Table 8.1.1: Multiplication table of the permutation group S3

8.1.1 Group presentation

Clearly, the definition of a finite group in terms of its multiplication table becomes cum-
bersome very quickly with increasing order of 𝐺. It is therefore necessary to find a more
compact way of defining 𝐺. Noticing that all six elements of 𝑆3 can be obtained by mul-
tiplying only a subset of all elements, we arrive at the notion of generators of a group.
Denoting 𝑎1 = 𝑎 and 𝑏1 = 𝑏, we obtain 𝑎2 = 𝑎2 as well as 𝑏2 = 𝑎𝑏 and 𝑏3 = 𝑏𝑎. In
other words, 𝑎 and 𝑏 generate the group 𝑆3. Being the group of permutations on three
objects which is isomorphic to the group of symmetry transformations of an equilateral
triangle, 𝑎 corresponds to a 120𝑜 rotation and 𝑏 to a reflection. This observation leads to
the definition of 𝑆3 using the so-called presentation

⟨𝑎, 𝑏|𝑎3 = 𝑏2 = 𝑒, 𝑏𝑎𝑏−1 = 𝑎−1⟩ (8.1.1)

where the generators have to respect the rules listed on the right. Depending the these
presentation rules, a group can be defined uniquely in a compact way. Unfortunately, such
an abstract definition of a group is not very useful for physical applications as it does not
show the possible irreducible representations of the group. We therefore quickly continue
our journey through the fields of finite group theory towards the important notion of
character tables.

8.1.2 Character table

In order to understand the meaning of a character table, is it mandatory to introduce the
idea of conjugacy classes and irreducible representations. Conjugacy classes are subsets
of elements of 𝐺 which are obtained from collecting all these elements related to a given
element 𝑔𝑖 by conjugation 𝑔𝑔𝑖𝑔

−1, for all 𝑔 ∈ 𝐺. The union of all possible conjugacy
classes is nothing but the set of all elements of 𝐺. In the case of 𝑆3 we find three different
classes:

1𝐶1(1) = {𝑔1𝑔−1|𝑔 ∈ 𝑆3} = {1} (8.1.2)

2𝐶3(𝑎) = {𝑔𝑎𝑔−1|𝑔 ∈ 𝑆3} = {𝑎, 𝑎2} (8.1.3)

3𝐶2(𝑏) = {𝑔𝑏𝑔−1|𝑔 ∈ 𝑆3} = {𝑏, 𝑎𝑏, 𝑏𝑎} (8.1.4)

Here we have used the notation 𝑁𝑖𝐶
𝑛𝑖(𝑔𝑖), where 𝑔𝑖 is an element of the class, 𝑁𝑖 gives

the number of different elements contained in that class, and 𝑛𝑖 denotes the order of these
elements, which is identical for all 𝑔𝑔𝑖𝑔

−1 with 𝑔 ∈ 𝐺.

The other ingredient for constructing a character table is the set of possible irreducible
representations of the group 𝐺. In general non-Abelian groups can be realized in terms
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of 𝑟× 𝑟 matrices, where the positive intergers 𝑟 depend on the group. Then, the abstract
generators of a group are promoted to matrices which satisfies the presentation rules. Such
matrix representations are called reducible if there exists a basis in which the 𝑟×𝑟 matrices
of all generators of 𝐺 can be brought into the same block diagonal form. If this is not
possible, the representation is called irreducible. Clearly, the trivial singlet representation
1, where all generators of 𝐺 are identically 1, satisfies any presentation rule and is thus an
irreducible representation of all groups. In the case of 𝑆3, the irreducible representations
compatible with the presentation rules of eq. 8.1.1 take the form:

1 : 𝑎 = 1, 𝑏 = 1 (8.1.5)

1′ : 𝑎 = 1, 𝑏 = −1 (8.1.6)

2 : 𝑎 =

(︂
𝑒2𝜋𝑖/3 0

0 𝑒−2𝜋𝑖/3

)︂
, 𝑏 =

(︂
0 1
1 0

)︂
(8.1.7)

The fact that 𝑆3 has three irreducible representations and also three conjugacy classes is
not a coincidence. It is generally true that the number of irreducible representations of a
finite group is equal to the number of its conjugacy classes. Moreover, summing up the
squares of the dimensions of all irreducible representations always yields the order of the
group 𝐺. For example, in 𝑆3 we get 11 + 12 + 22 = 6. These two facts can be used to
work out all irreducible representations of a given group 𝐺.

In the case of irreducible representations 𝑟 with 𝑟 > 1, the explicit matrix form of
the generators depends on the basis. In order to obtain a basis independent quantity,

one defines the character 𝜒
[𝑟]
𝑔𝑖 of the matrix representation of a group element 𝑔𝑖 to be its

trace. Since the elements of a conjugacy class are all related by 𝑔𝑔𝑖𝑔
−1 with 𝑔 ∈ 𝐺, it is

meaningful to speak of the character 𝜒
[𝑟]
𝑖 of the elements of a conjugacy class 𝑖. There-

fore one can define the character table where the rows list the irreducible representations
and the columns show the conjugacy classes. Using eq. 8.1.5-8.1.7, we find the following
character table of 𝑆3.

𝑆3 1𝐶1(1) 2𝐶3(𝑎) 3𝐶2(𝑏)

𝜒
[1]
𝑖 1 1 1

𝜒
[1′]
𝑖 1 1 −1

𝜒
[2]
𝑖 2 −1 0

Table 8.1.2: Character table of the permutation group S3

Defining a group in terms of its character table is much more suitable for physical appli-
cations than the previous definitions. First, it immediately lists all possible irreducible
representations which might be used in constructing particle physics models. Secondly,
it is also straightforward to extract the Kronecker products of a finite group 𝐺 from its
character table.

8.1.3 Kronecker products and Chebsch-Gordan coefficients

Multiplying arbitrary irreducible representations 𝑟 and 𝑠

𝑟 ⊗ 𝑠 =
∑︁
𝑡

𝑑(𝑟, 𝑠, 𝑡)𝑡 (8.1.8)
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one can calculate the multiplicity 𝑑(𝑟, 𝑠, 𝑡) with which the irreducible representation 𝑡
occurs in the product by

𝑑(𝑟, 𝑠, 𝑡) =
1

𝑁

∑︁
𝑖

𝑁𝑖𝜒
[𝑟]
𝑖 𝜒

[𝑠]
𝑖 𝜒

[𝑡]*
𝑖 (8.1.9)

where the sum is over all classes. 𝑁 denotes the order of the group 𝐺 and the asterisk
indicates complex conjugation. With this, we obtain the following non-trivial Kronecker
products from the 𝑆3 character table:

1′ ⊗ 1′ = 1 (8.1.10)

1′ ⊗ 2 = 2 (8.1.11)

2⊗ 2 = 1 + 1′ + 2 (8.1.12)

The Kronecker products are necessarily independent of the basis of the irreducible rep-
resentations 𝑟 with 𝑟 > 1. When formulating and spelling out the details of a model,
particular bases have to be chosen by hand. With the bases fixed, it is possible to work
out the basis dependent Clebsh-Gordan coefficients of a group. Denoting the compo-
nents of the two multiplet of a product by 𝛼𝑖 and 𝛽𝑗 , the resulting representation with
components 𝛾𝑘 are obtained from

𝛾𝑘 =
∑︁
𝑖,𝑗

𝑐𝑘𝑖𝑗𝛼𝑖𝛽𝑗 (8.1.13)

where 𝑐𝑘𝑖𝑗 are the Clebsch-Gordan coefficients. These are determined by the required
transformation properties of the components 𝛾𝑘 under the group generators. In the case
of 𝑆3 using the basis equations 8.1.5-8.1.7, one gets

1′ ⊗ 1′ → 1 𝛼𝛽 (8.1.14)

1′ ⊗ 2 → 2 𝛼

(︂
𝛽1
−𝛽2

)︂
(8.1.15)

2⊗ 2 → 1 𝛼1𝛽2 + 𝛼2𝛽1 (8.1.16)

2⊗ 2 → 1′ 𝛼1𝛽2 − 𝛼2𝛽1 (8.1.17)

2⊗ 2 → 2

(︂
𝛼2𝛽2
𝛼1𝛽1

)︂
(8.1.18)

where 𝛼𝑖 refers to the first factor of the Kronecker product and 𝛽𝑗 to the second. We
conclude our discussion of the most important concepts in finite group theory by pointing
out that - due to the choice of convenient bases - a representation which is real (that is
for which there exists a basis where all generators are explicitly real) may have complex
generators. This is for instance the case for the doublet of 𝑆3 in the basis of equations
8.1.5-8.1.7.
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8.1.4 Finite groups with triplet representations

For applications in flavour physics, we are interested in finite groups with triplet rep-
resentations. They can be found among subgroups of SU(3) and fall into four classes
[79]:

∙ Groups of the type (𝑍𝑛 × 𝑍𝑚)o 𝑆3

∙ Groups of the type (𝑍𝑛 × 𝑍𝑚)o 𝑍3

∙ The simples groups 𝐴5 and 𝑃𝑆𝐿2(7) plus a few more ”exceptional” groups

∙ The double covers of the tetrahedral (𝐴4), octahedral (𝑆4) and icosahedral (𝐴5)
groups

The latter are subgroups of SU(2), whose triplet representations are identical to the
triplets of the respective rotation groups. Many of the physically useful symmetries are
special cases within these general classes.

For instance, 𝑆4, the natural symmetry of tribimaximal mixing in direct models is
isomorphic to Δ(6𝑛2) = (𝑍𝑛 × 𝑍𝑛) o 𝑆3 with 𝑛 = 2. The presentation rules of Δ(6𝑛2)
can be given in terms of four generators, 𝑎, 𝑏, 𝑐, 𝑑:

𝑎3 = 𝑏2 = (𝑎𝑏)2 = 𝑐𝑛 = 𝑑𝑛 = 1, 𝑐𝑑 = 𝑑𝑐 (8.1.19)

𝑎𝑐𝑎−1 = 𝑐−1𝑑−1, 𝑎𝑑𝑎−1 = 𝑐, 𝑏𝑐𝑏−1 = 𝑑−1, 𝑏𝑑𝑏−1 = 𝑐−1 (8.1.20)

The dimensions of all irreducible representations can only take values 1, 2, 3 or 6. A
faithful triplet representation is found, e.g. in the following set of matrices

𝑎 =

⎛⎝0 1 0
0 0 1
1 0 0

⎞⎠ , 𝑏 = −

⎛⎝0 0 1
0 1 0
1 0 0

⎞⎠ , 𝑐 =

⎛⎝𝜂 0 0
0 𝜂−1 0
0 0 1

⎞⎠ , 𝑑 =

⎛⎝1 0 0
0 𝜂 0
0 0 𝜂−1

⎞⎠
(8.1.21)

where 𝜂 = 𝑒2𝜋𝑖/3. With 𝑛 = 2 this triplet representation is explicitly real, and therefore
does not correspond to the basis in which the 𝑆4 order three generator 𝑇 is diagonal and
complex. To make connection to the 𝑆4 triplet generators 𝑆, 𝑈 and 𝑇 we have to perform
the basis transformation

𝑆 = 𝑤𝑑𝑤−1, 𝑈 = 𝑤(𝑎𝑏𝑎−1)𝑤−1, 𝑇 = 𝑤𝑎𝑤−1 (8.1.22)

where

𝑤 =
1√
3

⎛⎝1 1 1
1 𝜔 𝜔2

1 𝜔2 𝜔

⎞⎠ (8.1.23)

with 𝜔 = 𝑒2𝜋𝑖/3 and 𝜔2 = 𝑒−2𝜋𝑖/3. This shows how the tribimaximal Klein symmetry
𝑍2 × 𝑍2 of the neutrino mass matrix in the diagonal charged lepton basis, generated by

𝑆 =
1

3

⎛⎝−1 2 2
2 −1 2
2 2 −1

⎞⎠ , 𝑈 = −

⎛⎝1 0 0
0 0 1
0 1 0

⎞⎠ (8.1.24)

is inherited from Δ(24) = (𝑍2 × 𝑍2)o 𝑆3: One 𝑍2 factor (namely 𝑆) originates from the
first factor, 𝑍2 × 𝑍2, and the other (namely 𝑈) is derived for the second, 𝑆3.
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Another series of groups can be obtained from the presentation of eq. 8.1.20 by
simply dropping the generator 𝑏, and consequently all conditions involving 𝑏. This results
in the group Δ(3𝑛2) = (𝑍𝑛 ×𝑍𝑛)o𝑍3 which only allow for irreducible representations of
dimensions 1 and 3. The case with 𝑛 = 2 generates the tetrahedral group 𝐴4 which will
be discussed later. With the formal introduction to group theory it will be shown where
the mixing matrix enters in the field of neutrino oscillation.

8.2 Flavour symmetries

The experimental efforts of the last decade have shown that neutrinos do mix, and the
mixing angles have been determined to a great degree of accuracy. The question is whether
the elements of the mixing matrix 𝑈𝑃𝑀𝑁𝑆 , and ultimately the elements of the lepton mass
matrices, are simply random numbers or whether they point to some deeper structure or
symmetry. It is natural to imagine that there is a family (flavour) symmetry that links
the three lepton families. The weak interaction terms involving W and lepton fields are
given by:

ℒ𝑊ℓ𝜈 =
𝑔√
2
𝑊+

𝜇 (𝑈 †
𝜈𝐿𝑈ℓ𝐿)𝑖𝛼𝜈

′𝑖
𝐿𝛾

𝜇ℓ′𝛼𝐿 + ℎ.𝑐. (8.2.1)

The lepton mixing matrix 𝑈𝑃𝑀𝑁𝑆 depends on mixing in both the charged lepton and
neutrino sectors given as:

𝑈𝑃𝑀𝑁𝑆 = 𝑈 †
ℓ𝐿𝑈𝜈𝐿 (8.2.2)

The unitary matrices 𝑈ℓ𝐿 and 𝑈𝜈𝐿 diagonalize the charged lepton and neutrino mass
matrices respectively, i.e.

𝑈 †
ℓ𝐿𝑀ℓ𝑈ℓ𝑅 = 𝑚𝛼𝛿𝑘𝑗 (8.2.3)

𝑈 †
𝜈𝐿𝑀𝜈𝑈𝜈𝑅 = 𝑚𝑘𝛿𝑘𝑗 (8.2.4)

where 𝑚𝛼 (𝛼 = 𝑒, 𝜇, 𝜏) and 𝑚𝑘 (𝑘 = 1, 2, 3) are the charged lepton and neutrino masses
respectively. The SM symmetries do not constrain the form of the mass matrices; the
matrix 𝑀𝑙 can be any 3× 3 matrix. The addition of a family symmetry, 𝐺family, extends
the SM symmetries to

𝐺 = 𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 ×𝐺family (8.2.5)

which constrains the mass matrices further, requiring that the Lagrangian remain invari-
ant under the following transformations of the three generations of left-handed lepton
doublets, right-handed charged lepton singlets and neutrinos:

𝐿𝐿 → 𝑋𝐿𝐿𝐿 ℓ𝑅 → 𝑋𝑅ℓ𝑅 𝜈 → 𝑋𝜈𝜈 (8.2.6)

The unitary matrices 𝑋𝜈 , 𝑋𝐿 and 𝑋𝑅 will belong to a representation of some symmetry
group (𝐺family), thus constraining the form of the mass matrices by:

𝑀𝜈 = 𝑋†
𝜈𝑀𝜈𝑋𝜈 (8.2.7)

𝑀ℓ = 𝑋†
𝐿𝑀ℓ𝑋𝑅 (8.2.8)

The models in the literature look to find an underlying symmetry that can explain the
pattern of neutrino mixing [[80], [81]]. Hereafter are given examples of flavour symme-
tries used to predict specific mixing matrices. These are not correct any more due to the
discovery of the non-zero 𝜃13. However, they are only to give the idea behind the use of
flavour symmetries to explain neutrino oscillation and they give a good zero order approx-
imation of the mixing matrix. Thereafter, you could extend the model by implementing
various effects which can accommodate the current mixing matrix.
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8.2.1 A 𝜇-𝜏 symmetric mass matrix

A class of models proposes a mass matrix that is invariant under exchange of the 𝜇 and
𝜏 elements. In the basis where the charged lepton mass matrix is diagonal, the neutrino
mass matrix, 𝑀𝜈 , is diagonalized by the unitary mixing matrix 𝑈 , i.e.:

𝑈𝑇𝑀𝜈𝑈 = 𝑚𝑘𝛿𝑘𝑗 (8.2.9)

The neutrino masses are given by 𝑚𝑘 for 𝑘 = 1, 2, 3. Now, if 𝑀𝜈 is 𝜇-𝜏 symmetric then

𝑀𝜈 =𝑀 (𝜇𝜏) ≡

⎛⎝𝑥 𝑦 𝑦
𝑦 𝑧 𝑤
𝑦 𝑤 𝑧

⎞⎠ (8.2.10)

and atmospheric mixing is maximal (|𝑈𝜇3| = |𝑈𝜏3|). This symmetry can be represented
by the matrix

𝑇 =

⎛⎝1 0 0
0 0 1
0 1 0

⎞⎠ (8.2.11)

so that 𝑇𝑀𝜈𝑇 = 𝑀𝜈 , which is a Z2 symmetry. Diagonalizing the mass matrix in eq.
8.2.10 gives the mixing matrix:

𝑈 =

⎛⎜⎜⎝
cos(𝜃12) sin(𝜃12) 0

− sin(𝜃12)√
2

cos(𝜃12)√
2

1√
2

− sin(𝜃12)√
2

cos(𝜃12)√
2

− 1√
2

⎞⎟⎟⎠ (8.2.12)

If the solar mixing angle is set to sin2(𝜃12) =
1
3 , a somewhat ad-hoc estimate, the matrix

eq. 8.2.12 becomes the tribimaximal (TBM) matrix:

𝑈𝑇𝐵𝑀 =

⎛⎜⎝
2√
6

1√
3

0

− 1√
6

1√
3

1√
2

− 1√
6

1√
3

− 1√
2

⎞⎟⎠ (8.2.13)

8.2.2 𝐶3 and 𝑆2 × 𝑆2 symmetry

This model was first introduced by [82], who proposed a simple model based on two
discrete symmetries. Their initial idea is the mass matrices are shown to be related to
the symmetry groups 𝐶3 and 𝑆3 and their class operators. In order to reproduce TBM,
one can start with mass matrices of the form [82]

𝑀ℓ =

⎛⎝ 𝑎 𝑏 𝑏*

𝑏* 𝑎 𝑏
𝑏 𝑏* 𝑎

⎞⎠ 𝑀𝜈 =

⎛⎝𝑥 0 𝑦
0 𝑧 0
𝑦 0 𝑥

⎞⎠ (8.2.14)

where 𝑎, 𝑏, 𝑏* are related to the charged lepton masses, and 𝑥, 𝑦, 𝑧 are related to three
independent neutrino masses. The matrix 𝑀ℓ is of circulant form, and can be generated
by a 𝐶3 symmetry (a cyclic permutation of three objects), whereas the matrix 𝑀𝜈 is
generated by an 𝑆2 × 𝑆2 symmetry. For an Abelian symmetry, a mass matrix that is
invariant under the regular representation of the group is a linear combination of the
representation matrices themselves [83]. In the case of 𝐶3, the regular representation is
given by ⎧⎨⎩

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠ ,

⎛⎝0 1 0
0 0 1
1 0 0

⎞⎠ ,

⎛⎝0 0 1
1 0 0
0 1 0

⎞⎠⎫⎬⎭ (8.2.15)
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and it is obvious that the matrix 𝑀ℓ in eq. 8.2.14 is a linear combination of the matrices
in eq. 8.2.15. The mass matrices 𝑀ℓ and 𝑀𝜈 in eq. 8.2.14 are diagonalized by

𝑈ℓ𝐿 = 𝑈ℓ𝑅 =
1√
3

⎛⎝1 1 1
1 𝜔 𝜔2

1 𝜔2 𝜔

⎞⎠ and 𝑈𝜈𝐿 = 𝑈𝜈𝑅 =
1√
2

⎛⎝1 0 −1

0
√
2 0

1 0 1

⎞⎠ (8.2.16)

respectively, where 𝜔 ≡ 𝑒2𝜋𝑖/3 and 𝜔2 ≡ 𝑒−2𝜋𝑖/3. Combining these two matrices using eq.
8.2.2 gives TBM eq. 8.2.13. In the case of the 𝐶3 Abelian symmetry, the columns of the
diagonalization matrix 𝑈ℓ𝐿 = 𝑈ℓ𝑅 correspond to the one-dimensional representations of
the group:

{1, 1, 1}, {1, 𝜔, 𝜔2}, {1, 𝜔2, 𝜔} (8.2.17)

In the case of the 𝑆2 × 𝑆2 symmetry, the representation to generate the neutrino mass
matrix 𝑀𝜈 is not the regular representation, but rather:⎧⎨⎩

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠ ,

⎛⎝0 1 0
0 0 1
1 0 0

⎞⎠ ,

⎛⎝0 0 1
1 0 0
0 1 0

⎞⎠⎫⎬⎭ (8.2.18)

The mixing matrix 𝑈𝜈 is in this case not clearly related to the representation of the
symmetry 𝑆2 × 𝑆2, but the mass matrix 𝑀𝜈 in eq. 8.2.14 is a linear combination of the
matrices in eq. 8.2.18.

However, the problem with this model is that it is not compatible with the 𝑆𝑈(2)𝐿
symmetry of the SM, with its left-handed lepton doublets. According to eq. 8.2.15 and
eq. 8.2.18, the left-handed neutrinos transform in a different way to the left-handed
charged leptons, breaking the 𝑆𝑈(2)𝐿 symmetry. In the general case, ”discrete unbroken
generation symmetries (Abelian and non-Abelian) with the 𝑆𝑈(2)𝐿 constraint...cannot
generate tri-bimaximal mixing” [83], so that Higgs scalars with non-zero VEVs must be
introduced into the framework of neutrino mass models.

8.2.3 Tetrahedral symmetry 𝐴4

Assuming TBM, the neutrino mass matrix can be written as

𝑀𝜈 = 𝑈𝑇𝐵𝑀𝑚𝑘𝛿𝑘𝑗𝑈
𝑇
𝑇𝐵𝑀 (8.2.19)

which, combined with eq. 8.2.13 gives

𝑀𝜈 =

⎡⎣𝑚3

2

⎛⎝0 0 0
0 1 −1
0 −1 1

⎞⎠+
𝑚2

3

⎛⎝1 1 1
1 1 1
1 1 1

⎞⎠+
𝑚1

6

⎛⎝ 4 −2 −2
−2 1 1
−2 1 1

⎞⎠⎤⎦ . (8.2.20)

The eigenvalues of 𝑀𝜈 are 𝑚1,𝑚2,𝑚3 with eigenvectors (−2, 1, 1)/
√
6, (1, 1, 1)/

√
3 and

(0, 1,−1)/
√
2, respectively, and the simplicity of these column vectors motivates an under-

lying non-Abelian family symmetry. There have been many attempts in the literature
to construct models of neutrino mass and mixing based on the non-Abelian group 𝐴4,
the tetrahedral group (as well as other flavour symmetries). The natural 3-dimensional
representation (denoted by 3) makes 𝐴4 a good candidate for describing the symmetry of
the three families observed in Nature. In constructing a model, different types of particles
are assigned to the irreducible representations of 𝐴4, which are 1, 1′, 1′′ and 3. The
group multiplication rules and product composition rules dictate the form of the resulting
Lagrangian, which in turn gives the structure of the neutrino and charged lepton mass
matrices (see appendix).
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Case study: The Altarelli-Feruglio 𝐴4 model

In the original Altarelli-Feruglio model [[84], [85]], lepton doublets are assigned to the
3 representation, and right-handed lepton singlets to the 1, 1′ and 1′′ representations.
There are two SM Higgs doublets, which are invariant under 𝐴4, along with two real
triplets 𝜑 and 𝜑′, and a real singlet 𝜉, all three of which are gauge singlets. Using the 𝐴4

multiplication rules, the Lagrangian of the Yukawa interactions in the lepton sector can
be written as

ℒYukawa = 𝑦𝑒𝑒
𝑐(𝜑ℓ) + 𝑦𝜇𝜇

𝑐(𝜑ℓ)′′ + 𝑦𝜏𝜏
𝑐(𝜑ℓ)′ + 𝑥𝑎𝜉(ℓℓ) + 𝑥𝑑(𝜑

′ℓℓ) + ℎ.𝑐.+ ... (8.2.21)

where (33) transforms as 1, (33)′ transforms as 1′, and (33)′′ as 1′′, and 𝑦𝑎, 𝑥𝑎 and 𝑥𝑑 are
coupling constants. The notation in this Lagrangian is simplified (for instance 𝑦𝑒𝑒

𝑐(𝜑ℓ)
stands for 𝑦𝑒𝑒

𝑐(𝜑ℓ)ℎ𝑑/Λ, 𝑥𝑎𝜉(ℓℓ) stands for 𝑥𝑎𝜉(ℓℎ𝑢ℓℎ𝑢)/Λ
2 and so on). The dots stand

for higher dimensional operators - in this model these are suppressed by additional powers
of the cut-off Λ, as long as the VEVs are sufficiently smaller than Λ. For the model to
work, the scalar fields must develop VEVs along the directions:

⟨𝜑⟩ = (𝑣, 𝑣, 𝑣) ⟨𝜑′⟩ = (𝑣′, 0, 0) ⟨𝜉⟩ = 𝑢 (8.2.22)

This vacuum alignment is crucial part of 𝐴4 models: The realization of these specific
alignments break the 𝐴4 symmetry in the correct way, so that TBM is achieved. In
general, corrections to the VEV alignment can come from higher order operators or the
tree-level exchange of heavy fermions. Assuming the VEV alignment, the mass matrices
𝑀𝑙 and 𝑀𝜈 for charged leptons and neutrino are

𝑀ℓ = 𝑣𝑑
𝑣

Λ

⎛⎝𝑦𝑒 𝑦𝑒 𝑦𝑒
𝑦𝜇 𝑦𝜇𝜔

2 𝑦𝜇𝜔
𝑦𝜏 𝑦𝜏𝜔 𝑦𝜏𝜔

2

⎞⎠ (8.2.23)

𝑀𝜈 =
𝑣2𝑢
Λ

⎛⎝𝑎 0 0
0 𝑎 𝑑
0 𝑑 𝑎

⎞⎠ (8.2.24)

where

𝑎 = 𝑥𝑎
𝑢

Λ
𝑑 = 𝑥𝑑

𝑣′

Λ
. (8.2.25)

The matrix diagonalizing the charged lepton mass matrix is

𝑉ℓ =
1√
3

⎛⎝1 1 1
1 𝜔2 𝜔
1 𝜔 𝜔2

⎞⎠ (8.2.26)

which is the same as the matrix in eq. 8.2.16 (with a phase change). This similarity comes
from the fact that 𝐶3 is a subgroup of 𝐴4. The charged fermion masses are:

𝑚𝑒 =
√
3𝑦𝑒𝑣𝑑

𝑣

Λ
𝑚𝜇 =

√
3𝑦𝜇𝑣𝑑

𝑣

Λ
𝑚𝜏 =

√
3𝑦𝜏𝑣𝑑

𝑣

Λ
(8.2.27)

To obtain the observed mass hierarchy among the masses in eq. 8.2.27, the authors intro-
duce an additional 𝑈(1)𝐹 symmetry, which only affects the right-handed lepton sector.
In the flavour basis, the neutrino mass matrix is

𝑀𝑓
𝜈 =

𝑣2𝑢
Λ

⎛⎝𝑎+ 2𝑑/3 −𝑑/3 −𝑑/3
−𝑑/3 2𝑑/3 𝑎− 𝑑/3
−𝑑/3 𝑎− 𝑑/3 2𝑑/3

⎞⎠ (8.2.28)
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which is diagonalized by the transformation

𝑈𝑇𝑀𝜈𝑈 =
𝑣2𝑢
Λ
diag(𝑎+ 𝑑, 𝑎,−𝑎+ 𝑑) (8.2.29)

with 𝑈 = 𝑈TBM. Thus TBM is achieved. Since the first paper containing 𝐴4 as the
flavour symmetry, many authors have constructed models based on 𝐴4 and many other
flavour symmetries. The model presented above is a simple case of the application of 𝐴4

to neutrino mixing, and this can be extended to more elaborate models.

8.3 Comparison between flavour symmetries

Flavour symmetries construct the neutrino mixing matrix. This gives octant sensitivity
by implementing various symmetries. These models implemented in the simulations were
found in [86] and randomly on the Internet. They are listed in table 8.3.1.

Original was [86] an overview of models which predicted sin2(𝜃13) from various flavour
symmetries and a lot of these models have been excluded since this mixing parameter
is now known. The article [86] had original 86 models whereas 55 of these models have
been excluded by the measurement of sin2(𝜃13) by more than 3𝜎. Additionally 4 models
are nearly within the 3𝜎 range of sin2(𝜃13) from a global fit result. However, only 10
models from [86] can be used in this thesis since not all models gives their preference of
octant. More models have been found on the Internet which is also listed together with
the other 10 models from [86]. Additional models besides the 14 listed in table ?? are
found, however they all state that they can accommodate the current results from the
neutrino mixing matrix. A simulation based on the current neutrino mixing matrix is
given in the previous chapter, which is why they are not included in this analysis. This
thesis is limited on time, which is the reason it does not include each and every flavour
model.

The table 8.3.1 is divided into various columns with numbers, names and mixing
parameters shown in the top. First is given a specific number to each flavour symmetry
making it easier to distinguish between each model when looking at the figures showing
the octant sensitivity. The next column is the actual flavour symmetry for that model and
thereafter are the various predictions of mixing parameters for the flavour symmetries.
The mass square differences are taken from global fits. Most models can only be realized
with normal hierarchy compared to inverted hierarchy. However, there are also models
which can be realized with both spectrums and models with no preference stated.

In the table there is also shown a star (*) and a dagger (†) symbol. The value of the
oscillation parameter which have a * is near the outer value of the 3𝜎 range of the global
fit. So this value can still be used as an oscillation parameter since it should have the
benefit of the doubt when it comes to global fits (in one global fit it is out of the 3𝜎 band
and in another global fit it is within the 3𝜎 band). The † on the other hand means that
the range listed in the table of some specific oscillation parameter contains the 3𝜎 range
and beyond from the global fit. In this case the oscillation parameter will be constrained
to the 3𝜎 range of the global fit. Global fits of neutrino oscillation data can be found here
[87] and here [88].

With these models listed, they are implemented in the simulations and the octant
sensitivities are shown in the plots 8.3.1 and 8.3.2. First a description of the plots itself.
They are divided into two groups; one only for normal hierarchy and one for inverted
hierarchy. The 4 plots in each group are given by the combination of resolution functions,
so upper left (upper right) has 𝜎𝐸 = 0.2𝐸′

GeV and 𝜎𝜃 = 0.5
√︀
1GeV/𝐸′

GeV rad (𝜎𝐸 =
0.2𝐸′

GeV and 𝜎𝜃 =
√︀

1GeV/𝐸′
GeV rad) whereas the lower left (lower right) has 𝜎𝐸 = 2



8.3. COMPARISON BETWEEN FLAVOUR SYMMETRIES 79

GeV and 𝜎𝜃 = 0.5
√︀
1GeV/𝐸′

GeV rad (𝜎𝐸 = 2 GeV and 𝜎𝜃 =
√︀
1GeV/𝐸′

GeV rad). In
the plot legend, each number listed on the left side of the flavour symmetry is also the
number for each flavour symmetry listed in table 8.3.1. On the right side of each flavour
symmetry is written a scaling factor The reason for this is simply to give a better view
of the result, else all the various fits would have lied on top of each other. However, this
scaling can be deceiving since the scaling factor makes either a smaller (if scaling factor
is less than one) or a larger (if scaling factor is larger than one) separation than it is in
reality. The scaling factors have been kept fixed through the various four plots as the
resolution functions worsen. This is to see how the sensitivity changes as the resolution
functions worsen without changing the scaling factor. If both the resolution functions and
the scaling factor were changed, there would be no chance to determine if the reduction of
the sensitivity came from the scaling factor or the worsening of the resolution functions.
With the scaling factors kept fixed, the reduction of the sensitivity would be read of the
plots 8.3.1 and 8.3.2 as the resolution functions worsened.
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Figure 8.3.1: Δ𝜒2 for the wrong octant obtained from the PINGU data with 3 years
statistics for various flavour symmetries. Mass spectrum is assumed to be normal. See
appendix for larger versions.

The one called ”flavour independent” is the fit from the plots 7.9.1 in the previous
chapter (the ones with the new systematic uncertainty) and shows the gain or reduction
of octant sensitivity in comparison. The hierarchy is kept fixed throughout the simula-
tions since it is believed that the hierarchy is already known at the time when the octant
determination is realized. An estimation of the determination of the neutrino mass hier-
archy is that it scales with number of years, so for 3 (5) years of data gives ∼ 3 (∼ 5) 𝜎
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C.L. [[60], [62]]. Also seen in the plots is that the ”valley” becomes larger as the resolution
functions worsen, so less phase space is probed.
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Figure 8.3.2: Δ𝜒2 for the wrong octant obtained from the PINGU data with 3 years
statistics for various flavour symmetries. Mass spectrum is assumed to be inverted. See
appendix for larger versions.

8.4 Flavour symmetry comparison over multiple of years

From figures 8.3.1 and 8.3.2 can be seen that there is no significance between the various
models with 3 years of data. In this section, the simulations will be made over multiple
years, namely 5, 10 and 15 years after which a comparison will be made. At some point
there will be a difference between the various flavour symmetries.

A qualified guess for the operational time for PINGU is 15-20 years. After it is
installed, it only need fuel to keep it going. There is no physical reason why PINGU will
cease to operate. The digital optical module (DOM) failure rate is exceptionally low, and
the ice drifts uniformly such that there is no fear of cable shear during operation. This is
the reason the simulations have been made for 15 years as the maximum of operational
years. In principle it would only stop if it is not efficiently enough, there were no more
science for it to probe or due to economy.

This simulation is done for fixed resolution functions, namely 𝜎𝐸 = 0.2𝐸′
GeV and

𝜎𝜃 = 0.5
√︀
1GeV/𝐸′

GeV which is the resolution function used by the IceCube collaboration
[[15], [62]]. The plots are shown the following way: In the top left corner, there is the plot
with 3 years of statistics whereas in the top right corner, it has been made for 5 years
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No. Flavour symmetry Hierarchy sin2(𝜃23) sin2(𝜃12) sin2(𝜃13)

1 𝐴4 [89] NH 0.51-0.56 0.31 0.0026-0.034†

2 𝐴4 [90] NH 0.42 0.35 0.017

3 𝐴4 [91] NH or IH
0.371-0.456(NH) ⊗
0.604-0.671*(IH)

0.27-0.37 0.016-0.027

4 𝑆4 [92] NH 0.41-0.5 0.311 <0.030

5 𝑆4 [93] NH or IH
(0.441 or 0.559)(NH)
or (0.401 or 0.599)(IH)

0.329 0.025

6
SU(2) x 𝑍2 x
𝑍2 x 𝑍2 [94]

NH 0.51 0.26 0.014*

7
SU(2) x 𝑍2 x
𝑍2 x 𝑍2 [95]

NH 0.53 0.29 0.012*

8 SU(3) [96] NH 0.44-0.56 0.29-0.38 0.024

9 SU(3) [97] NH 0.5-0.51 0.26-0.28 0.0009-0.016*

10 R symmetry [98] NH 0.44 0.31 0.0001-0.04†

11 U(1) x (𝑍2)
2 [99] NH 0.49 0.29 0.019

12 SU(3) x 𝑍2 [100] IH 0.47 0.31 0.012*

13 QLC [101] 0.446 0.336 0.023

14 QLC [102]
0.378-0.388 ⊗
0.612-0.623

0.194-0.5† 0.024-0.028

Table 8.3.1: Flavour models used in simulations.

of data. In the bottom left corner, it is 10 years of data and next to it is with 15 years
of data. Again the number in the plot legend is also the number shown in table 8.3.1.
The resolution functions are given in the top right corner for each plot. We keep the test
hierarchy fixed to the true hierarchy displayed in the top of each plot.

Two features can be seen from the plots. First, the separation between each flavour
symmetry becomes larger, meaning it will be easier to distinguish between them. As
more and more years of data is included, less and less models need a scaling factor.
Second, more phase space is probed for the atmospheric angle. The ”valley” around
sin2(𝜃23) = 0.5 becomes smaller as more data is included. This comes from a bigger
seperation of event rates for the individual 𝜒2 when taking the difference between 𝜒2(NH)
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and 𝜒2(IH). Including T2K and NOvA would greatly enhance the sensitivity to the octant
since they both depend on the atmospheric angle 𝜃23 and have sensitivity to its octant.
Additional data from the reactor experiments would constrain Δ𝑚2

eff which in turn would
give a higher octant sensitivity and more phase space would be probed.
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Figure 8.4.1: Δ𝜒2 for the wrong octant obtained from the PINGU data over multiple years
(indicated in the left corner) for various flavour symmetries. Mass spectrum is assumed
to be normal. See appendix for larger versions.

As can be seen from the figures with 15 years of data, the ”flavour independent”fit can
reach above 4𝜎 for sin2(𝜃23) < 0.429 and sin2(𝜃23) > 0.599 for normal hierarchy and 2𝜎
for sin2(𝜃23) < 0.415 and sin2(𝜃23) > 0.59. For the flavour symmetries there are different
output of confidence level depending on the true octant for the flavour symmetries. Some
are above or below the ”flavour independent”, meaning that if it is below (above) the
”flavour independent”, it prefers a mixing angle 𝜃23 in the first (second) octant. If it is
only below, it prefers an octant sensitivity in the ”valley” and the sensitivity is washed
out. However, if it is above, it prefers an octant outside of the range [0.4-0.6].
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Figure 8.4.2: Δ𝜒2 for the wrong octant obtained from the PINGU data over multiple years
(indicated in the left corner) for various flavour symmetries. Mass spectrum is assumed
to be inverted. See appendix for larger versions.
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Conclusion

Since the first postulation of their existence in 1930 by Pauli, the field of neutrino physics
has raised many interesting and fundamental questions. However, experiments dealing
with almost non-interacting particles are naturally difficult to carry out. If neutrinos
acquire their masses through new physics at some very high energy scale, as in the see-
saw mechanism, this also raises big challenges for neutrino experiments. Theory must rely
on very little experimental data and not many constraints can be imposed when carrying
out model building. However, the many unknown aspects and the lack of hard data allow
for greater liberty and creativity when working in this field.

PINGU has great potential resolve various important physics questions. This thesis
focusses on the determination of the 𝜃23 octant and the level of confidence depends on the
resolution functions, statistics and hierarchy. With 3 years of data, PINGU is capable of
determining the wrong octant at∼ 3 (∼ 2) 𝜎 for normal (inverted) hierarchy, depending on
the resolution functions. A careful look was also taken at the systematic uncertainties and
their influence on the sensitivity to the octant determination. Two of the five uncertainties
had the most influence on the sensitivity, namely those concerning the arrival angle and
energy dependence of the atmospheric neutrino flux. These are the most important to
control if a high significance is required. A further insight to the sensitivity to the wrong
octant came from consideration of the systematic uncertainty in particle identification.

Following this analysis, a look was taken at various flavour symmetries which can
realize the neutrino mixing matrix. By implementing the different flavour symmetries gave
the sensitivity for each flavour symmetry to the wrong octant was obtained. With just
3 years of data, there is no significant difference between the various flavour symmetries
so one cannot distinguish between the various models. With more data however, the
difference between the various models becomes measurable. So PINGU can in principle
constrain flavour models in future.

As is also mentioned in the thesis, the octant sensitivity can be increased through the
introduction of more data from other experiments, including more information from the
PINGU detector, changing the shape and values of the resolution functions, etc.

There are other ways to constrain flavour symmetries. One could have an analysis
which looked at multiple (un)known neutrino oscillation parameters and see how they
complement each other in this regard. However, there is still a long way to go to achieve
the same precision of the mixing parameters as in the quark sector. This would ultimately
lead us to the true mechanism behind neutrino mixing.
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A

Plots of octant sensitivity

These images are the same as figures 7.7.1, only larger versions for readable purpose.
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Figure 1.0.3: Δ𝜒2 for the wrong octant obtained from PINGU data with 3 years statistics,
as a function of sin2 (𝜃23 )(true). This plot is for normal hierarchy taken as true and 𝜒2

is varied over the oscillation parameters, |Δm2
eff| and sin2 (2𝜃13 ) in the allow range given

in table 7.2.1 and sin2 (𝜃23 ) in interval [0.4-0.6], but the mass hierarchy is held fixed to
the assumed true case in the fit. The four lines are for the four possible combinations for
the choices of the energy and angle resolution of PINGU.
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Figure 1.0.4: The same as 1.0.3, but the true hierarchy is inverted.
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Figure 1.0.5: The same as 1.0.3, but the 𝜒2 is not only varied over |Δm2
eff|, sin2 (2𝜃13 )

and sin2 (𝜃23 ), but also keeping the mass hierarchy free in the fit.
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Figure 1.0.6: The same as 1.0.5, just for inverted hierarchy.





B

Plots of systematic uncertainties

These images are the same as figures 7.8.1, only larger versions for readable purpose.
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Figure 2.0.7: Impact of systematic uncertainties on the Δ𝜒2 for the wrong octant obtained
from PINGU data with 3 years statistics, as a function of sin2 (𝜃23 ). The assumption of
the width of the resolution functions are shown in the figure legend. The test hierarchy
is kept fixed at the true value for all cases whereas we vary over |Δm2

eff|, sin2 (𝜃23 ) and

sin2 (2𝜃13 ). This particular plot has 𝜎E = 0 .2E ′ and 𝜎Θ = c
√︀
1GeV/E ′

GeV where c is
given in plot legend.
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Figure 2.0.8: Same plot as 2.0.7, but for inverted hierarchy.
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Figure 2.0.9: Same plot as 2.0.7, but has 𝜎E = 2GeV.
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Figure 2.0.10: Same plot as 2.0.9, but for inverted hierarchy.
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Plots including particle identification uncertainty

These images are the same as figures 7.9.1, only larger versions for readable purpose.
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Figure 3.0.11: Δ𝜒2 for the wrong octant obtained from PINGU data with 3 years statistics,
as a function of sin2 (𝜃23 )(true). This plot is for normal hierarchy taken as true and 𝜒2

is varied over the oscillation parameters, |Δm2
eff| and sin2 (2𝜃13 ) in the allow range given

in table 7.2.1 and sin2 (𝜃23 ) in interval [0.4-0.6], but the mass hierarchy is held fixed to
the assumed true case in the fit. The four lines are for the four possible combinations for
the choices of the energy and angle resolution of PINGU.
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Figure 3.0.12: The same as 3.0.11, but the true hierarchy is inverted.
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Figure 3.0.13: The same as 3.0.11, but the 𝜒2 is not only varied over |Δm2
eff|, sin2 (2𝜃13 )

and sin2 (𝜃23 ), but also keeping the mass hierarchy free in the fit.
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Figure 3.0.14: The same as 3.0.13, just for inverted hierarchy.





D

Introduction to 𝐴4

The following is an outline of the 𝐴4 symmetry group [81]

This group is the alternating group of order 4, and is also the group of all even
permutations of four objects, isomorphic to the group of rotational symmetries of the
regular tetrahedron. It is a finite, non-Abelian subgroup of SO(3) and SU(3). 𝐴4 has
12 elements, which can be divided into 4 conjugacy classes with membership 1, 3, 4 and
4. The dimensionality theorem implies that there are 4 irreducible representations with
dimension 𝑑𝑗 such that

∑︀
𝑗 𝑑

2
𝑗 = 12. The only solution is 𝑑1 = 𝑑2 = 𝑑3 = 1 and 𝑑4 = 3,

and the representations are labeled as 1, 1′, 1′′ and 3, which means that there are three
one-dimensional representations and one three-dimensional representation. The character
table of 𝐴4 is given by with 𝜔 = 𝑒2𝜋𝑖/3 and 𝜔2 = 𝑒−2𝜋𝑖/3. There are two bases for 𝐴4

Class 1𝐶1 2𝐶4 3𝐶4 4𝐶3

𝜒[1] 1 1 1 1

𝜒[1′] 1 𝜔 𝜔2 1

𝜒[1′′] 1 𝜔2 𝜔 1

𝜒[3] 3 0 0 −1

Table 4.0.1: Character table of the group A4

commonly used in lepton symmetry models: The Ma-Rajasekaran basis and the Altarelli-
Feruglio basis. The former basis is generated by two basic permutations 𝑆 and 𝑇 , given
by 𝑆 = (4321) and 𝑇 = (2314), where the generic permutation (1, 2, 3, 4) → (𝑛1, 𝑛2, 𝑛3𝑛4)
is denoted by (𝑛1𝑛2𝑛3𝑛4). It follows that

𝑆2 = 𝑇 3 = (𝑆𝑇 )3 = 1 (4.0.1)

which defines the presentation of the group. The one-dimensional unitary representations
are generated by

1 : 𝑆 = 1 𝑇 = 1 (4.0.2)

1′ : 𝑆 = 1 𝑇 = 𝜔 (4.0.3)

1′′ : 𝑆 = 1 𝑇 = 𝜔2 (4.0.4)

and the three-dimensional unitary representation is given by

𝑆 =

⎛⎝1 0 0
0 −1 0
0 0 −1

⎞⎠ , 𝑇 =

⎛⎝0 1 0
0 0 1
1 0 0

⎞⎠ . (4.0.5)
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The 3× 3 matrices of the natural three-dimensional representation 3 are

𝐶1 :

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠ (4.0.6)

𝐶2 :

⎛⎝0 0 1
1 0 0
0 1 0

⎞⎠ ,

⎛⎝ 0 0 1
−1 0 0
0 −1 0

⎞⎠ ,

⎛⎝0 0 −1
1 0 0
0 −1 0

⎞⎠ ,

⎛⎝ 0 0 −1
−1 0 0
0 1 0

⎞⎠ (4.0.7)

𝐶3 :

⎛⎝0 1 0
0 0 1
1 0 0

⎞⎠ ,

⎛⎝ 0 1 0
0 0 −1
−1 0 0

⎞⎠ ,

⎛⎝ 0 −1 0
0 0 1
−1 0 0

⎞⎠ ,

⎛⎝0 −1 0
0 0 −1
1 0 0

⎞⎠ (4.0.8)

𝐶4 :

⎛⎝1 0 0
0 −1 0
0 0 −1

⎞⎠ ,

⎛⎝−1 0 0
0 1 0
0 0 −1

⎞⎠ ,

⎛⎝−1 0 0
0 −1 0
0 0 1

⎞⎠ (4.0.9)

where each matrix is a product of the generators 𝑆 and 𝑇 . It is evident that the char-
acters of the 3 representation are simply the traces of the matrices in each class. The
multiplication rules are given by

1× 1 = 1 (4.0.10)

1′ × 1′′ = 1 (4.0.11)

1′′ × 1′ = 1 (4.0.12)

1′ × 1′ = 1′′ (4.0.13)

1′′ × 1′′ = 1′ (4.0.14)

3× 3 = 1 + 1′ + 1′ + 3𝑎𝑠 + 3𝑠 (4.0.15)

where 3𝑎𝑠 and 3𝑠 are asymmetric and symmetric combinations respectively. If 3𝑎 ∼
(𝑎1, 𝑎2, 𝑎3) and 3𝑏 ∼ (𝑏1, 𝑏2, 𝑏3) are two triplets transforming by the matrices in eq. 4.0.9,
then the three singlets and two triplets in the product of equations 4.0.10-4.0.15 are:

1 = 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3 (4.0.16)

1′ = 𝑎1𝑏1 + 𝜔2𝑎2𝑏2 + 𝜔3𝑏3 (4.0.17)

1′′ = 𝑎1𝑏1 + 𝜔𝑎2𝑏2 + 𝜔2𝑎3𝑏3 (4.0.18)

31 ∼ (𝑎2𝑏3, 𝑎3𝑏1, 𝑎1𝑏2) (4.0.19)

32 ∼ (𝑎3𝑏2, 𝑎1𝑏3, 𝑎2𝑏1) (4.0.20)
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This was the Ma-Rajasekaran basis where the generator 𝑆 is diagonal. However, one can
also represent 𝐴4 in a basis where 𝑇 is diagonal, obtained through the unitary transfor-
mation

𝑇 ′ = 𝑉 †𝑇𝑉 =

⎛⎝1 0 0
0 𝜔 0
0 0 𝜔2

⎞⎠ (4.0.21)

𝑆′ = 𝑉 †𝑆𝑉 =
1

3

⎛⎝−1 2 2
2 −1 2
2 2 −1

⎞⎠ (4.0.22)

where

𝑉 =
1√
3

⎛⎝1 1 1
1 𝜔 𝜔2

1 𝜔2 𝜔

⎞⎠ . (4.0.23)

Note that the matrix 𝑉 is the so-called ”magic matrix”, which appears in 𝐴4 models as
the unitary matrix that diagonalizes the charged lepton mass matrix. In the 𝑆′, 𝑇 ′ basis,
the multiplication rules are identical to those in equations 4.0.10-4.0.15, but the product
of two triplets gives the composition of the following irreducible representations:

1 = 𝑎1𝑏1 + 𝑎2𝑏3 + 𝑎3𝑏2 (4.0.24)

1′ = 𝑎3𝑏3 + 𝑎1𝑏2 + 𝑎2𝑏1 (4.0.25)

1′′ = 𝑎2𝑏2 + 𝑎1𝑏3 + 𝑎3𝑏1 (4.0.26)

3𝑠 ∼
1

3
(2𝑎1𝑏1 − 𝑎2𝑏3 − 𝑎3𝑏2, 2𝑎3𝑏3 − 𝑎1𝑏2 − 𝑎2𝑏1, 2𝑎2𝑏2 − 𝑎1𝑏3 − 𝑎3𝑏1) (4.0.27)

3𝑎𝑠 ∼
1

3
(𝑎2𝑏3 − 𝑎3𝑏2, 𝑎1𝑏2 − 𝑎2𝑏1, 𝑎1𝑏3 − 𝑎3𝑏1) (4.0.28)
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Plots of flavour symmetries

These images are the same as figures 8.3.1 and 8.3.2, only larger versions for readable
purpose.
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Figure 5.0.15: Δ𝜒2 for the wrong octant obtained from PINGU data with 3 years statistics
for various flavour symmetries, as a function of sin2 (𝜃23 ). This plot is for normal hierar-
chy taken as true and 𝜒2 is varied over the oscillation parameters, |Δm2

eff| and sin2 (2𝜃13 )

in the allow range given in table 7.2.1 and sin2 (𝜃23 ) in interval [0.4-0.6], but the mass
hierarchy is held fixed to the assumed true case in the fit. The specific resolution functions
are shown in the right corner.
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Figure 5.0.16: Same as 5.0.15, but with a worsen angular resolution function.
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Figure 5.0.17: Same as 5.0.15, but with a worsen energy resolution function.
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Figure 5.0.18: Same as 5.0.15, but with both energy and angular resolution functions
worsen.
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Figure 5.0.19: Same as 5.0.15, but the true hierarchy is inverted.
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Figure 5.0.20: Same as 5.0.19, but with a worsen angular resolution function.
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Figure 5.0.21: Same as 5.0.19, but with a worsen energy resolution function.
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Figure 5.0.22: Same as 5.0.19, but with both resolution functions worsen.





F

Plots of flavour symmetries over time

These images are the same as figures 8.4.1 and 8.4.2, only larger versions for readable
purpose.
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Figure 6.0.23: Δ𝜒2 for the wrong octant obtained from PINGU data for various flavour
symmetries, as a function of sin2 (𝜃23 ). This plot is for normal hierarchy taken as true
and 𝜒2 is varied over the oscillation parameters, |Δm2

eff| and sin2 (2𝜃13 ) in the allow

range given in table 7.2.1 and sin2 (𝜃23 ) in interval [0.4-0.6], but the mass hierarchy is
held fixed to the assumed true case in the fit. The specific resolution functions are shown
in the right corner whereas the number of years taken data is listed in the left corner.
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Figure 6.0.24: Same as 6.0.23, but for 5 years of data.
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Figure 6.0.25: Same as 6.0.23, but for 10 years of data.
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Figure 6.0.26: Same as 6.0.23, but for 15 years of data.
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Figure 6.0.27: Same as 6.0.23, but for inverted hierarchy.
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Figure 6.0.28: Same as 6.0.27, but for 5 years of data.
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Figure 6.0.29: Same as 6.0.27, but for 10 years of data.
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Figure 6.0.30: Same as 6.0.27, but for 15 years of data.
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