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Abstract

The improvement in the stability of current optical atomic clocks is obstructed by the linewidth
of the clock laser that interrogates the atomic transition. The linewidth of the clock laser
is reduced by referencing it against an optical cavity, but cavity length fluctuations due to
thermal noise in the mirrors limit the attainable linewidth. This thesis is concerned with
theoretical and experimental work that seeks to realize an alternative proposal, which allows
stabilizing the clock laser using direct spectroscopy of an ultranarrow optical transition, thereby
circumventing the limiting thermal noise. In this respect we show that the nonlinear physics
behind the proposal can be derived classically. Additionally, we trap strontium atoms magneto-
optically for subsequent spectroscopy. We also suggest an experimental design, which we
numerically show is capable of realizing this stabilization proposal in a continuous fashion.

Resumé

Forbedringer i stabiliteten af optiske atomure er begrænset af liniebredden af clock laseren,
der interrogerer den atomare overgang. Liniebredden af clock laseren reduceres ved at referere
den mod en optisk kavitet, men fluktuationer i kavitetslængden grundet termisk støj i spejl-
ene begrænser den opnåelige liniebredde. Denne afhandling beskæftiger sig med teoretisk og
eksperimentielt arbejde, der søger mod at realisere et alternativt forslag, der tillader at stabilis-
ere clock laseren ved brug af direkte spektroskopi på en ultrasmal atomar overgang, hvorved
den begrænsende termiske støj omgås. I denne forbindelse viser vi, at den ikke-lineære fysik
bag dette forslag kan udledes fuldstændig klassisk. Endvidere fanger vi strontium atomer
magneto-optisk med efterfølgende spektroskopi. Desuden foreslår vi et eksperimentielt de-
sign, som vi numerisk viser er i stand til at realisere dette forslag kontinuert.
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Chapter 1
Prologue

1.1 Introduction

An atomic clock is based on the same principles as any other clock: A laser acts as the local
oscillator (LO), whose frequency has to be referenced against a discriminator largely inde-
pendent of its environment in order to counteract noise and drift. An atomic transition is an
excellent realization of this passive, stable standard. The signal obtained from interrogating
the transition depends on the LO frequency and from it the discrepancy between LO and tran-
sition frequency can be deducted, whereby the former can be corrected. It is thus possible to
represent the atomic transition through the LO by utilizing a proper servo loop.

A timekeeping device is generally characterized by its frequency instability and accuracy,
where the latter refers to the difference in the measured oscillation frequency relative to the
nominal value. In the framework of atomic clocks it depends on how well systematic shifts in
the measured frequency due to environmental perturbations (such as AC Stark shifts, Zeeman
shifts, etc.) of the transition can be accounted for. The instability is expressed in terms of the
Allan deviation, quantifying how well the device can produce the same oscillation frequency
over a given measurement time. An accurate oscillator must then necessarily display low
instability over long time scales.

Several noise processes contribute to the Allan deviation, the most fundamental being that
of quantum-projection noise (QPN): Quantum fluctuations during detection of the atomic ex-
citation result in white noise, which ultimately sets the lower limit for atomic clocks. The
frequency instability for a QPN-limited system after an averaging time τ is characterized by
the fractional Allan deviation [1]

σy(τ) '
1

SNR

√
1

Q2
Tc

τ
, (1.1)

where Q = ν/δν gives the experimentally resolved line quality factor of the clock transition
and SNR =

√
N the signal-to-noise ratio achieved during the clock cycle duration Tc ≤ τ.

The ground state hyperfine transition
∣∣F = 3, mF = 0

〉
→

∣∣F = 4, mF = 0
〉

of Cs is well
suited as a reference because of its relatively high transition Q-value approaching 1011. In fact,
the second is defined as “the duration of 9 192 631 770 periods of the radiation corresponding
to the transition between the two hyperfine levels of the 133Cs atom”. The primary standard set
by this microwave transition has reached the limit set by the QPN, reaching instabilities at the
10−14/

√
τ-level when interrogated with a cryogenic sapphire oscillator [2]. This corresponds

to the clock losing one second every ∼107 year, given an averaging time 1 s.

1



2 Prologue

To lower the long-term instability further, current work is focused on utilizing optical tran-
sitions with frequencies ∼1015 Hz, which increases the Q-factor by almost five orders of magni-
tude given all other parameters are kept constant. Many systematic effects are reduced by mov-
ing to this part of the spectrum, since the relative frequency bias due to frequency-independent
external perturbations is scaled down accordingly. The bane of working with these frequen-
cies is that conventional electronics only provide sufficient resolution to measure microwave
frequencies, not optical frequencies. However, the link between the microwave and optical
domain has been established by the recent development of high-resolution octave-spanning
frequency combs [3]: By heterodyning the optical stabilized LO with the closest comb line, a
beat frequency in the microwave domain is created, which is then readily measured. Given
that the comb is referenced to the primary Cs standard, it is thus possible to extract the abso-
lute optical frequency of the LO through this downconversion. The beat frequency with other
modes conveniently falls outside the bandwidth of current detectors.

Other sources of white noise originate from shot-noise limited detection and LO noise
through aliasing effects. The latter affects the instability, since current optical clocks are se-
quentially operated: The interrogation time, during which the LO noise is determined, only
constitutes a fraction of the total clock cycle duration. The rest of the sequence consists of
technical issues such as prepation of atoms and readout, referred to as dead-time. As inter-
rogation happens periodically, the atoms downconvert certain high Fourier-frequency noise
components of the stabilized LO. This is referred to as the Dick effect after John Dick, who first
adressed it [4]. Following [5, 6], this is neatly illustrated by taking as LO frequency fluctuations
a perfect sine with zero average, whose frequency does not coincide with that of the interro-
gation cycle: Sampling the sine only partially results in a percieved error which the servo
incorrectly counteracts, offsetting the stabilized LO from the transition by a different amount
after each correction. This serves as a motivation for increasing the interrogation time, since
stability degradation due to this aliasing phenomenon is practically eliminated for continu-
ously operated systems. In turn this puts high requirements on the LO, since the interrogation
time is bound by its coherence time.

1.1.1 Neutral Atom Clocks

Current state-of-the-art optical clocks are based on using ∼ 103 neutral atoms trapped in an
optical lattice, ensuring that motional effects such as the first-order Doppler broadening are
suppressed. In one dimension such lattices are created by retro-reflecting a single red-detuned
beam capable of dipole trapping, thus creating an interference pattern of high-intensity regions
separated by half the wavelength in which the atoms are held. The strength of the harmonic
potential determines the degree of suppression, characterized by the Lamb-Dicke parameter
[7]. In this limit the photon recoil energy is absorbed more by the lattice than the atom itself
such that recoil effects are also suppressed. The lattice is operated at the magic wavelength,
where the AC Stark shift of both levels compromising the clock transition cancels out [8],
which would otherwise obstruct a precise frequency measurement. Since the trap constitutes a
conservative potential, the process leading to this confinement must go through several initial
stages of laser cooling.

To begin with atoms effuse out of a resistively heated oven. In the specific case of Sr the
vapor pressure is low (' 1 Pa at 523 ◦C), so the oven has to be heated to 500–600 ◦C in order
to obtain an appropriate output flux. At these temperatures atoms have thermal velocities
approaching 500 m/s due to which they have to be decelerated before lattice confinement.
The most common approach is to employ a Zeeman slower, consisting of a spatially varying
magnetic field along the atomic propagation axis. Its purpose is to compensate the changing



1.2 Thesis Outline 3

first-order Doppler shift associated with the atomic deceleration by a corresponding Zeeman
shift in order to keep the atoms resonant with the decelerating laser beam, which has a fixed
detuning. After reaching velocities around 30 m/s the atoms are able to be captured by a
standard magneto-optical trap. Depending on the specific transition for the trap, the atoms are
cooled down to the µK-level such that they can be transferred to the optical lattice.

These optical lattice clocks have the immediate advantage that the SNR is very favorable
due to the large number of simultaneously interrogated atoms in addition to long interaction
times approaching 1 s, thereby also increasing the resolution δν. These clocks operate with
alkaline earth-like atoms such as Sr and Mg since they have a magic wavelength, but also
due to the broad

∣∣1S0
〉
→
∣∣1P1

〉
transition, which is used for efficient deceleration after ef-

fusing from the oven and for the initial capture in the trap. Furthermore, they possess the
narrow intercombination line

∣∣1S0
〉
→
∣∣3P1

〉
, which has a Doppler temperature low enough

for the atoms to be transferred to an optical lattice. A clock running on the doubly-forbidden
transition

∣∣1S0
〉
→
∣∣3P0

〉
of fermionic 87Sr with natural linewidth of ∼ 1 mHz [9] has recently

demonstrated a fractional instability at the 10−17-level after averaging for 103 s [10].

1.1.2 Local Oscillator

A requirement for interrogating a transition is that the carrier spectral density of the LO is
narrow and stable enough to resolve the transition during the spectroscopy. In optical clocks
this is typically accomplished by stabilizing the free-running clock laser to a high-finesse cavity
by a Pound-Drever-Hall servo-lock (see appendix A), resulting in high bandwidth control and
low short-term instability. Short-term in this context refers to fluctuations over periods < 100 s
[11]. The cavity-reference is highly isolated from the external environment and vibration-
induced length fluctuations are strongly suppressed by a proper design and mounting [12].
Despite this, any residual noise perturbing the reference degrades the oscillation stability since
it is practically written onto the LO, making it difficult to take advantage of the high Q ∼1017

offered by optical clock transitions.
The fundamental limit to the instability at any time-scale for this passive setup is due to

Brownian thermo-mechanical noise in the cavity mirrors, which leads to fluctuations in the
optical length [13]. Current state-of-the-art cavities have been able to offer linewidths narrow
enough to resolve the doubly-forbidden intercombination line of 87Sr, limited by the Fourier
limit of the pulse [13]. Recently, a linewidth below 40 mHz has been achieved by locking a
free-running diode laser to an optical cavity based on a single silicon crystal [14].

Stabilizing an LO can also be achieved by locking it to an atomic transition1 via spec-
troscopy, thereby circumventing the thermal noise floor of reference cavities. However, per-
forming direct spectroscopy on ultranarrow sub-Hz optical transitions is extremely challeng-
ing, since the dipole is driven very weakly. As we will see, there are in theory ways to ease this
task through cavity-enhanced nonlinear spectroscopy [15], which forms the basis of this thesis.

1.2 Thesis Outline

This thesis deals with a recently proposed scheme by the authors of [15], which theoretically
allows direct spectroscopy on an ultranarrow optical transition through cavity-enhancement
of the atomic optical depth. This will allow for stabilization against these atomic transitions,
serving as an alternative to stabilization against a high-finesse optical cavity. In the current
experiment the scheme is to be implemented using the intercombination line

∣∣1S0
〉
→
∣∣3P1

〉
of

1For an extended-cavity diode laser preliminary stabilization to a high-finesse cavity is neccessary in order to
resolve linewidths at the Hz-level and below.



4 Prologue

88Sr, but given that the experiment is in its initial stage, this thesis merely deals with work that
will enable implementing the proposed spectroscopy.

The thesis is organized as follows. Chapter 2 describes the theory behind cavity-enhanced
nonlinear spectroscopy in detail and investigates what to anticipate when using 88Sr. Issues
regarding its implementation are also quantified and discussed. In chapter 3 a Zeeman slower
for Sr is designed and built in order to deliver a sufficient flux of cold atoms for interrogation.
The device is integrated in the vacuum system and its efficiency is measured. Concurrently,
a semiclassical Monte Carlo simulation of the atomic deceleration in the slower is developed.
Chapter 4 describes the magneto-optical trap for 88Sr and investigates the atomic cloud life-
time both analytically and experimentally. In chapter 5 an alternative realization of an atomic
beamline is investigated. More specifically, a beamline is suggested which is capable of pro-
ducing a sufficient flux of cold atoms for continuous cavity-enhanced nonlinear spectroscopy.
A semiclassical stochastic model is employed to investigate the beamline, and the obtained
parameters are compared to those required. The thesis is concluded with an outline of future
prospects.



Chapter 2
Cavity-Enhanced Spectroscopy

The purpose of this chapter is to introduce the concept of cavity-enhanced nonlinear spec-
troscopy. This in principle enables a novel stabilization scheme, where a laser is locked di-
rectly to an ultranarrow optical atomic transition, thereby circumventing the thermal noise
floor present when referencing against a passive optical cavity. This spectroscopy is performed
in a highly saturated limit, so we start by briefly reviewing the driven Jaynes-Cummings model
with dissipation. Following the work by the authors of [15], this will allow us to investigate
the dynamics associated with driving a coupled atom-cavity system with an arbitrary strength,
from which the desired stabilization scheme follows. Concurrently, the results are also ob-
tained in a purely classical framework. After applying the results to the intercombination line∣∣1S0

〉
→
∣∣3P1

〉
of 88Sr, considerations on the scheme and its implementation are presented.

In what follows the two-level atom is assumed to be in the Lamb-Dicke regime, where
motional effects are suppressed such that only the internal atomic degrees of freedom are of
interest.

2.1 Coherent Atom-Light Interaction

A system consisting of a single atom interacting with a single mode of an optical cavity is
described in the Jaynes-Cummings model. The cavity mode is represented by a harmonic
oscillator with an infinite number of equally spaced levels, and the two-level atom is compro-
mised of a ground state

∣∣g
〉

and an excited state
∣∣e
〉

with transition linewidth Γ, separated
in frequency by ωa. We assume that all atomic decay processes are due to energy relaxation,
i.e. the dipole dephasing rate T−1

2 is merely given by Γ/2, so there are no pure dephasing
processes present in the system. The cavity-mode with linewidth κ has the resonant frequency
ωc. Given that the combined system is continuously driven by a coherent external laser with
frequency ωl , the Hamiltonian in a frame rotating at ωl under the usual dipole-approximation
and RWA reads [16]

ĤJC = h̄Θâ† â + h̄∆σ̂+σ̂− + ih̄g(r)(â†σ̂− − âσ̂+), (2.1)

where the laser-term has been neglegted for now. The detunings are relative the system con-
stituents, i.e. ∆ = ωa−ωl and Θ = ωc−ωl . In what follows the laser linewidth Γlaser, given by
its inverse coherence time, is assumed vanishing. These definitions are summarized in figure
2.1.

The Pauli operators {σ̂z =
∣∣e
〉〈

e
∣∣−

∣∣g
〉〈

g
∣∣, σ̂+ =

∣∣e
〉〈

g
∣∣, σ̂− = σ̂†

+} correspond to inversion,
raising and lowering of the atomic state and obey the pseudo-spin algebra [σ̂+, σ̂−] = σ̂z and
[σ̂z, σ̂±] = ±2σ̂±. The creation and annihilation operators for photons in the mode of the cavity

5



6 Cavity-Enhanced Spectroscopy

ωa ωl ωc

Atom Γ
Laser Γlaser Cavity κ

Θ = ωc − ωl∆ = ωa − ωl

Figure 2.1: The Lorentzians associated with the atomic transition at ωa and linewidth Γ
(FWHM), external coherent laser with frequency ωl and linewidth Γlaser → 0 and cavity mode
with resonant frequency ωc and linewidth κ. Also shown are the detunings (∆, Θ) of the two
system constituents, both defined relative the laser. Linewidths are not drawn to scale.

(â†, â) satisfy the bosonic commutator relation [â, â†] = 1 and n̂ ≡ â† â is the intracavity photon
number operator relative the vacuum.

The first two terms in (2.1) describe the cavity mode and atom, respectively. The dipole
coupling g(r) between the cavity mode and atom characterizes their coherent interaction. It
depends on the standing wave structure of the resonator TEM00-mode profile ψ(r) with 1/e2-
waist w0 (radius) through g(r) = g0ψ(r), where [17]

g0 =

√
ωc

2h̄ε0Veff

〈
g
∣∣d̂
∣∣e
〉
. (2.2)

Under the assumption that the Rayleigh length of the cavity mode is longer than the cavity
length, the effective cavity mode volume reads

Veff =
∫
|ψ(r)|2dxdydz (2.3)

=
∫ ∣∣∣cos(2πz/λ)e−(x2+y2)/w2

0

∣∣∣
2
dxdydz (2.4)

=
1
4

πw2
0L, (2.5)

where L is the cavity length and z denotes the axial cavity direction. This last term of (2.1)
describes processes where an excitation of the cavity mode is annihilated (created) while excit-
ing (de-exciting) the atom, thus forming the bare states

∣∣g
〉
⊗
∣∣n
〉
≡
∣∣g, n

〉
and

∣∣e
〉
⊗
∣∣n− 1

〉
≡∣∣e, n− 1

〉
. The dynamics is completely confined to this two-dimensional space of bare states

for a fixed number of n cavity excitations.
The eigenstates can be found by diagonalization of (2.1), which in the case ωc = ωa = ω

(Θ = ∆) yields the system eigenstates [18]

∣∣n,±
〉
=

1√
2

(∣∣g, n
〉
±
∣∣e, n− 1

〉)
(2.6)

with eigenenergies En,± = nω ± g0
√

n for n ∈ N0. These are the well-known dressed states
that constitute the Jaynes-Cummings ladder of doublets, and represent the equal distribution
of excitation between atom and field. The coupling g0 breaks the degeneracy of the uncoupled
resonance, where the anharmonic level spacing increases with the square root of n as illustrated
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E
/

h̄

∣∣g
〉

ωa
∣∣e
〉

Γ
∣∣0
〉

ωc
∣∣1
〉

κ

2ωc
∣∣2
〉

κ

∣∣g, 0
〉

∣∣1,+
〉

∣∣1,−
〉±g0

∣∣2,+
〉

∣∣2,−
〉±

√
2g0

.

.

.

.

.

.

nωc
∣∣n + 1

〉
±√

ng0

∣∣n,+
〉

∣∣n,−
〉

Figure 2.2: Left column: Energy spectrum for an unperturbed two-level atom. Middle column:
Energy spectrum for an empty cavity with linewidth κ, represented by a harmonic oscillator
with an infinite number of equally spaced modes. Right column: Energy spectrum for the
coupled system, where the Lorentzian cavity transmission has split into two resonances. These
states are the tensor products of the two former.

in figure 2.2. The resonances of the first doublet is separated by 2g0, known as vacuum Rabi
splitting.

From the Schrödinger equation it follows that for a system initially prepared in
∣∣e, 0

〉
, the

inversion 〈σ̂z〉 oscillates between
∣∣e, 0

〉
and

∣∣g, 1
〉

with a maximum rate given by the single pho-
ton Rabi frequency 2g0, showing that the interaction of this closed system is highly coherent.
This is similar to the dynamics displayed by the semiclassical Rabi model [18].

2.1.1 Dissipation

The model treated so far has assumed negligible dissipation, a most unphysical feature since
signal transmission is required in order to extract information from the system. The dominant
loss channel associated with the cavity is due exponential field decay through the mirrors.
Since the intracavity electric field decays with rate κ, the intracavity number of photons decays
with 2κ, specifying the quality factor Q of the cavity, Q = ωc/2κ [19]. This does not add to
the decoherence of the combined system, since the light can be reintroduced into the system
again. In contrast, spontaneous emission into field modes different from the preferred cavity
mode with rate Γ will add to the decoherence.

Fast coherent excitation exchange between atom and cavity mode reduces dissipative decay
into free space, since the probability for a photon to escape the cavity is reduced. The strong
coupling required to see the vacuum Rabi splitting in figure 2.2 is consequently quantified by
the condition g0 � (Γ, κ). This requirement is also clear when recalling that the FWHM of
the combined resonances must scale by ∼ (κ + Γ), effectively setting a lower limit on g0 if the
splitting is to be resolved. The coupling is then conveniently characterized by the cooperativity
parameter C0, which for a system containing a single atom is defined as C0 ≡ g2

0/κT−1
2 .

Counteracting losses requires the inclusion of an external drive, and in the current setup
the system will be externally excited by a laser entering through one of the cavity mirrors.
Assuming perfect mode-matching and negligible mirror absorption, excitation of the cavity
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mode by the laser is included by adding to (2.1) the term

ĤP = h̄η(â† + â), (2.7)

where η characterizes the strength. This term shifts the amplitude of the intracavity coherent
state, which is verified in the following. Here the relation between η and the physical laser
power Pin will also be established, which is necessary in order to predict the experimental
outcome.

2.2 Maxwell-Bloch Equations

At this stage it is necessary to formally take into account the couplings (κ, Γ) to external
modes of the thermal reservoir. The extension to this so-called open quantum system requires
explicitly including the reservoir degrees of freedom, thus introducing the total density matrix
operator $̂. The part pertaining only to the system $̂S is obtained by tracing over the reservoir
degrees of freedom $̂S = TrR[$̂] under the usual Born-Markov approximation. The former
states that the interaction between reservoir and system is sufficiently weak such that the
reservoir is left unperturbed by the system. The Markov approximation assumes that the atom
interacts with a structureless reservoir, equivalent to it being memoryless on the natural system
timescale 1/(g0, κ, Γ). This yields the system master equation given by [20]

d$̂S
dt

= − i
h̄
[ĤJC, $̂S] + κL̂a$̂S +

Γ
2
L̂σ $̂S (2.8)

≡ L̂$̂S, (2.9)

where the coherent evolution of the closed system is described by the commutator. The Liou-
villians (L̂a, L̂σ) are written in the usual Lindblad form

L̂a$̂S ≡ 2â$̂S â† − â† â$̂S − $̂S â† â (2.10)

L̂σ $̂S ≡ 2σ̂−$̂Sσ̂+ − σ̂+σ̂−$̂S − $̂Sσ̂+σ̂− (2.11)

and describe the dissipation of the system, namely the coupling of the cavity mode and atom to
the reservoir, respectively. The master equation (2.9) can be used to find the temporal evolution
of an arbitrary system operator expectation value 〈Ô〉 through the general relation

d
〈
Ô
〉

dt
= Tr(ÔL̂$̂S). (2.12)

This enables relating the drive strength η to its physical intracavity power Pin. This we do
by first disregarding terms involving atomic operators in (2.1), since they serve no purpose for
this specific calculation: The stationary stable state of this system is a coherent state, whose am-
plitude is shifted by the laser. We can then make the shift â = ā + p̂ in the Hamiltonian, where
p̂† p̂ is the intracavity photon number operator relative to the new ground state amplitude ā.
With this displacement the cavity-dissipation term (2.10) becomes

κL̂a$̂S = κL̂p$̂S +
κ

2
[(ā∗ p̂− ā p̂†), $̂S], (2.13)

and with (2.8) in mind it is seen that the Hamiltonian gains the term (ā∗ p̂− ā p̂†)(ih̄κ/2), since
the last term in (2.13) has the form of a commutator. By choosing

ā =
h̄η

−Θ + ih̄κ/2
(2.14)
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the drive η and all terms linear in p̂ are eliminated in the Hamiltonian [21], which can be
shown by straightforward substitution. Thus, we have diagonalized the Hamiltonian since it
only contains the term h̄Θ p̂† p̂, where the new stable (with decay and drive included) coherent
ground state has amplitude ā, which is related to η through (2.14). We are more interested
in the intracavity photon number n̄ = |ā|2, which in the abscence of a laser decays1 as 2κ. In
steady-state this decay is compensated by the laser such that 2n̄κ = Pin/h̄ωl , so when the laser
is resonant with the cavity (Θ = 0) the two quantities are thus related by

η =

√
κPin

2h̄ωl
=

√
κΦin

2
, (2.15)

where Φin is the incoupled photon flux.

Now η has been calibrated, so we are in a position to realistically investigate the system
under the influence of a laser. Utilizing the commutator relations, the cyclic properties of
the trace and taking advantage of the fact that we work in a basis where σ̂zσ̂± = ±σ̂± it is
straightforward to derive the Maxwell-Bloch equations using (2.12)

d〈â〉
dt

= −(κ + iΘ)〈â〉+ g0〈σ̂−〉+ η (2.16)

d〈σ̂−〉
dt

= −(T−1
2 + i∆)〈σ̂−〉+ g0〈âσ̂z〉 (2.17)

d〈σ̂z〉
dt

= −Γ(〈σ̂z〉+ 1)− 2g0(〈â†σ̂−〉+ 〈σ̂+ â〉), (2.18)

which describe the dynamics of the system. An analytical solution to the set (2.16)-(2.18) is not
possible, since it is not closed. Nonetheless, the set reveals the consequences of the coupling g0
on the combined dynamics: The atomic radiation adds to the intracavity field through the term
g0〈σ−〉 in (2.16) in addition to the cavity field driving the atomic transition through g0〈âσ̂z〉 in
(2.17). The expected atomic behavior is obtained for g0 → 0 in (2.18), since the inversion 〈σ̂z〉
then decays.

The expansion to N noninteracting atoms is readily carried out by generalizing the master
equation according to the new Hamiltonian

ĤJC = h̄Θâ† â +
N

∑
j=1

h̄∆σ̂j,+σ̂j,− +
N

∑
j=1

ih̄gj(r)(â†σ̂j,− − âσ̂j,+) + h̄η(â† + â) (2.19)

L̂σ $̂S ≡
N

∑
j=1

(
2σ̂j,−$̂Sσ̂j,+ − σ̂j,+σ̂j,−$̂S − $̂Sσ̂j,+σ̂j,−

)
. (2.20)

The semiclassical limit is obtained when both N → ∞ and the cavity field is very large. Here
adding/removing an atom leaves the system largely unchanged, due to which each atom
contributes only weakly to the overall coupling. Consequently, C0 → 0 and C0N → const, and
in this limit the two subsystems are approximately uncorrelated, allowing for the compound
expectation values in the equations of motion to be factorized, 〈â†σ̂j,−〉 ≈ 〈â†〉〈σ̂j,−〉. Utilizing
this assumption yields the closed set of multi-atom Maxwell-Bloch equations (o ≡ 〈ô〉) given

1Taking g0 → 0 in the total Hamiltonian (2.1) and utilizing the cyclic properties of the trace operator, one readily
finds that d

〈
â† â
〉
/dt = −2κ

〈
â† â
〉
.
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by [15–17]

da
dt

= −(κ + iΘ)a + g0Nσj,− + η (2.21)

dσj,−
dt

= −(T−1
2 + i∆)σj,− + g0aσj,z (2.22)

dσj,z

dt
= −Γ(σj,z + 1)− 2g0(a†σj,− + σj,−a†). (2.23)

Note that it has been assumed that gj is constant for all atoms, resulting in considerable simpli-
fication since we can ignore the spatial features of ψ(r). This is valid when the atom cloud size
is much smaller than the probe laser field and the cavity is in a running-wave configuration.
Introducing the collective pseudospin operators

σ̂− =
N

∑
j=1

σ̂j,− and σ̂z =
N

∑
j=1

σ̂j,z (2.24)

allows casting the Maxwell-Bloch equations into the form

da
dt

= −(κ + iΘ)a + g0σ− + η (2.25)

dσ−
dt

= −(T−1
2 + i∆)σ− + g0aσz (2.26)

dσz

dt
= −Γ(σz + N)− 2g0(a†σ− + σ+a). (2.27)

These equations form the starting point for a numerical analysis of the system dynamics in
different domains.

2.2.1 Vacuum Rabi Splitting

As was illustrated in figure 2.2, a weakly driven single atom strongly coupled to a cavity
mode displays splitting of the Lorentzian resonance into two equal-amplitude dressed states∣∣1,±

〉
. The cavity resonance will emerge again with increasing atom-cavity detuning, since the

coupling is decreased. The weak-drive limit is formally quantified in the following section, but
until then it (vaguely) denotes drive strengths η, where the splitting occurs.

To a good approximation vacuum Rabi splitting scales as 2Σ in multi-atom systems, where
Σ ≡ g0

√
N is the collective coupling [17, 22, 23]. Figure 2.3 shows the steady-state intracavity

photon number |a|2, obtained by numerically solving (2.25)-(2.27) for three different relative
detunings. The resonances form an avoided crossing with the anticipated distance 2Σ occuring
for zero atom-cavity detuning ωa = ωc (Θ = ∆). In addition to reducing the coupling, increas-
ing the atom-cavity detuning will also affect the resonance amplitudes, since the two decou-
pled constituents have different transmissions. The parameters used here are (κ, Γ) = 2g0(1, 1).
With N = 4 · 102 atoms we are well within the strong coupling limit Σ > (κ, Γ), which corre-
sponds to the collective cooperativity C = NC0 = 200� 1. These parameters will also be used
in the following, unless otherwise stated.

These systems have also been realized physically. As an example the system treated in
[23] is in the limit (g0, κ, Γ)/2π = (0.12, 0.8, 2.6)MHz such that each atom-cavity interaction is
governed by incoherent free-space decay. However, the presense of N ' 105 atoms increases
C to the degree C � 1 that the Rabi splitting survives the dissipation, rendering it possible to
explicitly verify the linear dependence of g0

√
N on

√
N.
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Figure 2.3: Left: The Rabi splitting for various relations between the detunings ∆ = ωa − ωl
and Θ = ωc −ωl in a system with N = 4 · 102 atoms and (κ, Γ) = 2g0(1, 1). Right: The general
case for arbitrary detunings, normalized to the maximal value attained on the interval. The
case ∆ = Θ in the left figure corresponds to the diagonal.

Vacuum Rabi splitting can be explained classically, since (2.8) reduces to the master equa-
tion for two coupled harmonic oscillators in the weak-drive limit [17]. This is reasonable since
the cavity mode in the quantum picture by itself is a quantized harmonic oscillator, and for
weak drives the atom mimics a harmonic oscillator. The two observed resonances in figure 2.3
are thus similar to those obtained from this classical treatment, due to which their splitting is
also dubbed normal mode splitting (NMS).

An alternative way to derive this behavior in an entirely classical setting is by treating
the stationary atom as a classical dipole, where it merely acts as to coherently scatter the
continuously incoming narrowband radiation, represented by a Gaussian TEM00 mode. The
steady-state intracavity amplitude in this framework is determined by the resonance condition
that the combined field originating from the laser, cavity and dipoles after an integer number
of round trips is unchanged. In the RWA this leads to the following normalized transmitted
power PT [24]

PT =
1

[1 + CA(∆)]2 + [2Θ/κ + CD(∆)]2 , (2.28)

where A(∆) and D(∆) designate the atomic Lorentzian absorptive and dispersive response to
the applied field for a weak drive,

A(∆) = +
Γ2

Γ2 + 4∆2 (2.29)

D(∆) = − 2∆Γ
Γ2 + 4∆2 , (2.30)

which are related to each other through the usual Kramers-Kronig relations. This solution is
shown in figure 2.4 for the case Θ = 0 alongside the solution originating from solving (2.25)-
(2.27). The expected behavior is observed, c.f. figure 2.3 (right), where the intracavity power
goes to zero at exact resonance due to the avoided crossing.

As seen in (2.28), the atomic absorption decreases PT , whereas the dispersion acts as to
displace the cavity resonance. A classical explanation of NMS is thus readily apparent in this
picture: For strong coupling C � 1, the atomic absorption heavily degrades the cavity finesse
around resonance. However, the phase shift due to the atomic medium compensates the phase
mismatch between cavity and intracavity light when the laser is detuned by the right amount,
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Figure 2.4: The normalized intracavity photons given ωl = ωc (Θ = 0) for a system with
N = 5 · 106 atoms, κ/2π = 2.5 MHz, Γ/2π = 7.6 kHz and Pin = 30 nW, corresponding to
g0
√

N/2π = 8.3 MHz.

resulting in constructive interference and thus an enchanced PT at these points. Due to (2.30)
being odd, there are two such peaks symmetric with respect to ∆ = 0.

2.2.2 Optical Bistability

We will now go beyond the limit of a weak drive, and the analysis will follow the same lines
as in [15, 17]. The analytical steady-state solution to (2.25)-(2.27) for a system with Θ = 0
(ωc = ωl) is given by

σ− =
g0

Γ/2 + i∆
aσz (2.31)

σz = −
N

1 + (|a|2/n0)/(1 + 4(∆/Γ)2)
(2.32)

|a|2 =
η2

κ2
1 + 4(∆/Γ)2

(1− C0σz)2 + 4(∆/Γ)2 , (2.33)

where n0 ≡ ΓT−1
2 /(4g2

0) ∝ Γ/λ3 is denoted the saturation photon number. As seen later, in
the framework established by these equations it is natural to define the incoupled intensity as
Iin ≡ η2/(n0κ2), which is also a physically reasonable definition. Relating Iin to Pin is done by
(2.15).

The behavior of |a|2 with Iin is illustrated in figure 2.5, showing that three different domains
exist: The first domain is quantified by Iin < 4C = 800 and is that of a weak drive, which has
been treated so far: In the dispersive limit ∆ � Γ the atom-cavity interaction is very weak,
resulting only in a minor reduction in intracavity intensity. For ∆ ∼ 0 the drive is far detuned
from the normal modes and the decrease in |a|2 is from (2.33) seen to be ∼ C2 = 4 · 104

compared to the saturated case σz → 0. With figure 2.3 in mind, this is the expected behavior.
New behavior emerges for 4C = 800 < Iin < C2/4 = 104, where three real distinct values

for |a|2 exist out of which one is unstable, a signature of absorptive optical bistability [16, 17].
The dots in figure 2.5 show such a solution for the case ∆ = 15Γ: The rightmost arrow indicates
the increase in intracavity photons that occurs when adiabatically scanning from low to high Iin
across the bifurcation point. The leftmost arrow indicates the decrease in intracavity photons
occuring when tracing back again, similar to hysteric behavior. The unstable solution thus
constitutes a separator. For the strongly saturated case Iin > C2/4 = 104 the atoms leave
the transmission practically unaltered, since the atomic transition is maximally driven and
consequently transparent, in which case a unique solution appears again.
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Figure 2.5: Semiclassical calculation (2.33) of the intracavity steady-state intensity as a function
of incoupled intensity for different detunings ∆ = ωa − ωl given Θ = 0. Vertical dashed lines
indicate the threshold for bistability.

Figure 2.6 illustrates the corresponding behavior of the NMS. The normal modes bend
towards each other to form a closed structure when going beyond 4C = 800, showing that the
atoms no longer act in a coherent fashion with the cavity, since they are becoming saturated.
As expected, the Rabi peaks have formed a singlet structure at large saturations Iin > 104

resembling that of an empty cavity.
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Figure 2.6: Evolution of the two vacuum Rabi peaks as a function of Θ = ∆ for various the
incoupled intensities. For small incouplings Iin . 102 the normal modes are recovered.

The spectra along Θ = 0 (ωc = ωl) corroborate our observations for low-to-medium sat-
uration Iin = {0.5 · 103, 8.0 · 103}, as seen in figure 2.7 (left). However, for Iin > 104 = C2/4 a
peak emerges around resonance. The origin of the peak is visible in figure 2.7 (right), where
it is seen to emerge due to a kink around the combined resonance (Θ, ∆) ≈ 0. It occurs as the
system modes approach the cavity resonance and it vanishes again for Iin � C2/4, since the
atoms are completely transparent to the cavity field in this limit. Beyond this limit only the
cavity resonance remains, where |a|2/Iinn0 → 1 for all ∆ = ωa −ωl .

Since the transmission is determined by the intracavity field, the cavity output is also in-
creased drastically around ∆ ∼ 0. At first glance, this peak is not unusual in that its FWHM is
much greater than Γ, which increases further with incoupled power due to power broadening.
As we will see, however, the presence of the cavity makes this resonance highly desirable from
a metrological point of view in that it theoretically enables a novel laser stabilization scheme
relevant for ultranarrow transitions. This is explored further in the following section, but first
we must conclude the current section on the Maxwell-Bloch equations. It is in order to do
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Figure 2.7: Left: Normalized intracavity intensity as a function of the incident laser detuning
∆ = ωa − ωl for various incoupled intensities and Θ = 0. Right: The normalized intracavity
intensity as a function of both detunings for a large intensity, Iin = 1.5 · 104.

so by showing that the behavior for Iin > 4C described so far can also be obtained from the
classical model (2.28).

2.2.3 Classical Approach to Optical Bistability

It is possible to obtain the medium-to-high saturation phenomena optical bistability in a com-
pletely classically framework. This requires extending the model introduced in [24] by gener-
alizing the atomic susceptibilities (2.29)-(2.30) to arbitrary intensities. Since the backaction of
the atoms onto the cavity field has already been included in the original derivation of (2.28),
the generalization only needs to invoke the optical Bloch equations.

We start by looking at the induced polarization P in the ensemble of N two-level atoms.
Denoting their volume by V, it is readily found by considering them as a dielectric such that

P = <
[
ε0χ(∆)E0e−iωl t

]
(2.34)

= ε0E0[χ
′(∆) cos(ωlt) + χ′′(∆) sin(ωlt)], (2.35)

where E0 denotes the intracavity drive amplitude and χ = χ′+ iχ′′ the ensemble susceptibility.
Since the medium is assumed isotropic P is parallel to E0 and the tensor nature of χ can be
neglegted. Additionally, the medium has been assumed to adiabatically follow the applied
laser. The induced dipole moment per volume is also given by P = (N/V)

〈
d̂
〉
, where the

single-atom dipole operator is d̂ = d0(σ̂+ + σ̂−), purely off-diagonal in the atomic eigenbasis
due to parity. The expectation value

〈
d̂
〉

is thus given by [25]
〈
d̂
〉
= Tr ($̂d̂) (2.36)

= d0($geeiωl t + $ege−iωl t) (2.37)

= 2d0[u cos(ωlt)− v sin(ωlt)], (2.38)

where (u, v, w)T defines the Bloch vector for the two-level atom

u =
1
2
($ge + $eg) (2.39)

v =
1
2i
($ge − $eg) (2.40)

w =
1
2
($ee − $gg), (2.41)
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and $̂ in this context is the density matrix for a single atom. The steady-state solutions for u
and v are [25]

ut→∞ =
Ω
2

∆
∆2 + Γ2/4 + Ω2/2

(2.42)

vt→∞ =
Ω
2

Γ/2
∆2 + Γ2/4 + Ω2/2

, (2.43)

where the Rabi frequency h̄Ω ≡ −d0 · eE0 has been introduced through the interaction energy.
In the adiabatic approximation these solutions can be utilized in (2.38) which, by comparing
to (2.35), yields the general expressions for the atomic absorptive and dispersive response

A(∆) = +
1
4

Γ2

∆2 + Γ2/4 + Ω2/2
(2.44)

D(∆) = −1
2

∆Γ
∆2 + Γ2/4 + Ω2/2

. (2.45)

These expressions reduce to (2.29)-(2.30) in the limit Ω → 0 as required. The Ω2-term in the
denominators turns (2.28) into an implicit equation for PT , which we readily solve numerically.
All that remains now is to relate Ω to PT , which follows from the intracavity intensity I,
Ω = Γ

√
I/2Isat, and the transmission coefficient T is determined by the cavity finesse F =

π
√

1− T/T. As illustrated in figure 2.8, this classical approach almost yields the same signal
above bistability as the fully quantum mechanical approach, which has a certain novelty to
it. In addition it also reproduces bistability. A classical explanation of the peak is that away
from atomic resonance the phase shift imparted on the cavity field by the atoms prevents the
intracavity field from building up [15].
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Figure 2.8: The normalized intracavity photons derived in a quantum mechanical and classical
framework given ωl = ωc (Θ = 0), N = 5 · 106 atoms, κ/2π = 2.5 MHz, Γ/2π = 7.6 kHz and
Pin = 9 µW. The saturation parameter I/Isat = 180, corresponding to Iin = 24 · 103 > C2/4 '
8 · 103.

2.3 Lock Performance

Having introduced the theory, we are now ready to apply the presented results to the inter-
combination line

∣∣1S0
〉
→
∣∣3P1

〉
of 88Sr. We start by considering a realistic low-quality cavity

30 cm long with finesse F = 120 (κ/2π = 4.2 MHz), containing N = 5 · 106 atoms. Given that
the external coherent laser with waist 0.5 mm probes the transition

∣∣1S0
〉
→
∣∣3P1

〉
(689 nm,

Γ/2π = 7.6 kHz) of 88Sr, the collective cooperativity is C = 110� 1 such that strong coupling
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is present. Utilizing the relation in (2.14) yields that the limit C2/4 corresponds to the incou-
pled power Pin ' 2 µW. The spectrum for Pin = 2.5 µW is shown in figure 2.9 (left), displaying
a FWHM of 145 kHz. These are realistic parameters so they will be utilized in the following.
Going below this N requires a much smaller Pin, which is not feasible.
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Figure 2.9: Left: The transmission of cavity-enhanced nonlinear spectroscopy on the
∣∣1S0

〉
→∣∣3P1

〉
of 88Sr. Right: A Mach-Zehnder interferometer, which can be utilized to stabilize a laser

to the nonlinear transmission peak, where ψcav denotes the phase acquired by the light due to
interaction with the confined atoms when travelling along the signal arm. Dashed grey lines
denote beam-splitters, solid black lines mirrors.

In order to see the practical relevance of the cavity-enhanced peak, we will now investigate
the possibility of locking a laser to it following the approach by the authors of [15]. The
framework is set by the standard Mach-Zehnder interferometer illustrated in figure 2.9: The
laser to be stabilized is incident on a beam splitter (upper left corner), which splits up its
power to the signal arm and the local oscillator (LO) arm, both designated in the figure. The
cavity containing the atoms is placed in the signal arm, represented by a phase shift ψcav. It is
in order to note that the necessary condition Θ = 0 (ωc = ωl) translates into the cavity being
locked to the laser, which can be accomplished by a Pound-Drever-Hall lock (appendix A). The
signals from the two arms are recombined by a second beam splitter after which the signals
are collected by two photodetectors, whose photocurrents are subtracted. The phase acquired
in the signal (LO) arm is denoted ψsig (ψLO), where ψsig consists of a term originating from the
cavity ψcav and from the optical path of the arm ψl .

The generated photocurrents will contain the usual two constant terms originating from
the direct intensity detection in addition to the heterodyne mixing term, which depends on the
total phase difference between the two arms. For the two detectors the photocurrents i1,2 are
thus given by

i1,2 =
eηqe

hν

(
Psig

2
+

PLO

2
±
√

PsigPLO cos(ψsig − ψLO)

)
+ δi1,2(t), (2.46)

where Psig (PLO) denotes the power in the signal (LO) pathway, ηqe the detector quantum
efficiency, δi1,2 the photocurrent shot-noise at the respective detector and ν the laser frequency.
Choosing the relative arm lengths such that ψLO − ψl ' (2nπ + π/2), n ∈ Z, and assuming
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that the laser is close to the atomic resonance, ψcav � 1,

idiff ≡ i1 − i2 '
2eηqe

hν

√
PsigPLOψcav + δi(t) (2.47)

' 2eηqe

hν

√
PsigPLO

dψcav

dν
∆ν + δi(t) (2.48)

for δi(t) ≡ δi1(t)− δi2(t) and ψcav ' (dψcav/dν)∆ν, where ∆ν is the detuning from the com-
bined resonance. The assumption of a linear phase shift around resonance is well justified,
since we are basically probing an atomic transition close to resonance. This expression for
idiff constitutes the error signal provided by the interferometer. An expression for ψcav can be
found by first casting (2.31)-(2.33) into dimensionless form [16, 17]

y = x
(

1 + C 1− iT2∆
1 + |x|2 + (T2∆)2

)
, (2.49)

where y = η/(κ
√

n0) =
√

Iin determines the normalized incoupled intensity and x = a/
√

n0
the normalized intracavity buildup. It is clear from (2.33) that |x|2 → Iin in the saturated limit
β ≡ 4Iin/C2 > 1, which is expected since the transition is bleached. If C � T2∆ as well, (2.49)
is to first order given by

y ' x
(

1 +
4
Cβ

[1− iT2∆]
)

. (2.50)

The phase of the transmitted light relative the incoming light is given by ψcav = arg(x/y) =
arctan[=(x/y)/<(x/y)],

ψcav '
4T2

Cβ
∆, (2.51)

thus concluding the expression for the error signal. It is worth noting that power broadening
of the transmission peak is taken into account by β.

The ultimate performance provided by this error signal can be evaluated by finding the
quantum-limited linewidth provided by the lock. Since the noise process perturbing the system
is random, the autocorrelation function for the shot-noise photocurrent is given by

〈δi(t)δi(t + τ)〉 = e2ηqe

hν
(Psig + PLO)δ(τ) (2.52)

' e2ηqe

hν
PLOδ(τ), (2.53)

for Psig . PLO, where the prefactor in (2.52) is set by the shot-noise level which depends on
the rate of photons hitting the detector converted into photocurrent. During locked operation
the feedback control loop forces the DC difference current idiff to zero. However, the residual
frequency error ∆νerr due to δi(t) is readily found via the conversion factor established by
(2.48)

∆νerr(t) =
hν

2eηqe
√

PsigPLO(dψcav/dν)
δi(t) (2.54)

with autocorrelation function

〈∆νerr(t)∆νerr(t + τ)〉 = hν

4ηqePsig(dψcav/dν)2 δ(τ). (2.55)
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Utilizing the Wiener–Khinchin theorem, relating the power spectral density (PSD) of a sta-
tionary random process to the corresponding time-domain autocorrelation function, yields the
two-sided photocurrent noise PSD corresponding to (2.55)

S∆νerr( f ) =
∫ ∞

−∞
〈∆νerr(t)∆νerr(t + τ)〉 e−i2π f τ dτ (2.56)

=
hν

4ηqePsig(dψcav/dν)2 , (2.57)

constant for all Fourier frequencies, since the noise process is white. Consequently, the FWHM
of the PSD in the carrier-frequency domain is given by 2πS∆νerr( f ) for all time scales [7]. All
that remains is thus to find Psig, which in steady-state satisfies the relation Psig/hν = 2κ|a|2 =
κC2n0β/2. Inserting the parameters used in figure 2.9 (left), the shot-noise limited linewidth
of a laser locked to this resonance is given by

∆νFWHM =
C0

16πηqeΓT2
2

β (2.58)

' 5.5 mHz (2.59)

for ηqe = 1, β = 1.3 and Γ/2 = T−1
2 , which is below the sub-40 mHz linewidth recently attained

in [14]. This is an absolute lower limit since the atomic lifetime has been assumed infinite and
their motion has been completely disregarded, but it gives an idea of the performance poten-
tially provided by this nonlinear phenomena. Such a light source could readily be employed
as LO in an optical atomic clock due to its long coherence time.

We are now in a position to see why this locking scheme is useful. Placing a cavity around
an ensemble of atoms will augment their optical depth, since the average number of pho-
ton round trips in a cavity of finesse F is F/π. As a consequence the absorption profile is
considerably broadened in the linear regime I � Isat, which we have showed both quantum
mechanically and classically, c.f. figure 2.4.

Direct spectroscopy on an ultranarrow sub-Hz transition is extremely challenging, since
the dipole is driven very weakly. As an example the clock transition

∣∣1S0
〉
→
∣∣3P0

〉
of 87Sr

has Γ/2π ∼ 1 mHz. The usefulness of this setup thus lies in the framework of these ultranar-
row optical intercombination transitions, since the augmented optical depth boosts the output
power by C2 ∼ 104 above bistability, where Psig ∝ C2. This increase in output power makes it
strong enough to be used for feedback to the laser. Since this is the only function of the cavity,
it is not required to be high-Q nor is the lock limited by its thermal noise floor, but in turn this
is also why a free-space version of this scheme would not be able to reach the required strongly
saturated limit. The consequence is, however, that the atomic transition is considerably power
broadened, which is reflected in the lock precision ∆νFWHM through β. Nonetheless, the lock
precision is not degraded severely as (2.59) suggests.

2.4 Technical Considerations

Before realizing this scheme, it is in order to review the limitations imposed on us by the
current status of the experiment. There is no optical lattice available, so the 88Sr-atoms must be
confined by other means during spectroscopy of

∣∣1S0
〉
→
∣∣3P1

〉
. One way to do so is simply by

keeping the atoms in the initial 461 nm magneto-optical trap (MOT), but this potentially brings
about some consequences, which are investigated in the following.

First of all, we start by quantifying which atoms will mainly contribute to the nonlinear
signal when interrogation is performed in the 461 nm-MOT. An atom moving with velocity
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vz along the interrogation axis will be resonant with a red-detuned (blue-detuned) counter-
propagating (co-propagating) laser. Since the intracavity standing field of a laser is composed
of two counter-propagating travelling waves, the profile P(δ) in figure 2.9 will be shifted to
P(δ± vz/λ) for some velocity class vz. The total profile Ptot can then be obtained by integrating
over all velocity classes

Ptot(δ) =
∫ ∞

−∞
f (vz)[P(δ + vz/λ) + P(δ− vz/λ)] dvz, (2.60)

where f (vz) is the Maxwell-Boltzmann velocity distribution. As an example, the total profile
for a cloud temperature 0.1 mK is shown in figure 2.10. The signal around resonance is mainly
due to atoms with vz ∼ 0 m/s and this is found to be the case for cloud temperatures up to
T ∼ 5 mK.

We have assumed that all atoms are subjected to the same intracavity power, which is not
correct since an atom with vz 6= 0 m/s mainly interacts with one of the intracavity travelling
waves for a given detuning δ, whereas atoms with vz ∼ 0 m/s interact with both. Nonetheless,
taking into account the variation in Pin with vz will not change the fact that only atoms within
the velocity class |vz| . vD = Γ/k contribute to the nonlinear behavior around resonance.
Consequently, only they will be treated in the following, but it is important to keep in mind
that a more elaborate analysis is required in order to find the experimental profile that accounts
for all velocity classes.
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Figure 2.10: The transmission profile Ptot(δ) resulting from cavity-enhanced nonlinear spec-
troscopy of an atomic cloud with temperature T = 0.1 mK, after integrating over all velocity
classes.

Given that only a minor fraction of the velocity distribution is relevant to us, the MOT-
population must have a certain value in order to interrogate the desired 5 · 106 atoms that were
used to generate the signal in figure 2.9. Specifically, the fraction of atoms probed along z at
the realistic cloud temperature T = 1 mK with velocities within vD = Γ/k is

χ =

√
m

2πkBT

∫ vD

−vD

e−mv2
z /(2kBT) dvz ≈ 0.01, (2.61)

such that 5 · 108 atoms as a minimum must be confined. This will require optimal alignment,
since the trapping beams have a significant impact on the cloud temperature, which determines
χ. Misalignments between the cloud and the interrogation laser will also make it practically
impossible to see a signal, since the contrast between the maximum and minimum of the
transmission signal is very sensitive to N, as shown in figure 2.11. Despite this, these trap
populations and temperatures are realistic to obtain.
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Figure 2.11: The ratio between the maximum and minimum transmission in cavity-enhanced
nonlinear spectroscopy. With Pin = 2.5 µW ensemble sizes N > 5 · 106 atoms brings us into the
optically bistable domain.

Another issue is that the MOT-coils should ideally be turned off during the measurement
such that the transition is not Zeeman broadened. This is motivated by the fact that the
cloud has a finite spatial extension, so the Zeeman shift is not identical for all atoms. Since
a single multi-layered coil basically constitutes an LR-circuit, there is a finite transient time
τ = L/R ∼ 3 mH/0.2 Ω ∼ 15 ms when switching off the current. As the atoms escape the
trap within a few ms after turning it off, it is necessary to retain the magnetic field during
interrogation and instead quantify the resulting perturbation. It is not apriori clear what to
expect since the quantization axis varies inside the MOT, but this is investigated further in
the following section. We will start by introducing the necessary formalism using a two-
dimensional model, after which we will analyze the current situation.

2.4.1 Narrow Line Spectroscopy in a Quadropole Magnetic Field

We consider an atom compromised of a J = 0 ground state and J′ = 1 excited state with
transition linewidth Γ. We place it at the origin (0, 0, 0) and assume that no external magnetic
field perturbs it. The atom is irradiated by a coherent laser, whose polarization direction E is
parallel to x, as illustrated in figure 2.12.

x

z

y

k

E
Laser

Atom

Q θ

Figure 2.12: An atom irradiated by a coherent, linearly polarized drive. The angle between the
polarization direction E of the laser and quantization axis Q is denoted by θ.

We regard the electron as a classical oscillator: The polarization of the radiation required to
excite a given motion, and the corresponding quantum transition, is the same as that emitted.
Labelling the electronic motion requires choosing a quantization axis, which is arbitrary in this
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case. The natural choice for the present symmetry is x, in which case the incoming photons
will drive the π-transition (mJ′ − mJ ≡ ∆mJ = 0) of the atom. However, σ-transitions are
driven when it is chosen to lie along y, since electronic circular motion about the y-axis looks
linear when looking in the (x, z)-plane so the incoming laser only has a σ-component for this
choice. We can generalize this to an arbitrary quantization direction Q in the (x, y)-plane

Q = (xQ, yQ, 0)T , (2.62)

from which the amount of the two transitions driven relative each other can be found by
decomposing E into a component parallel (π) and perpendicular (σ) to Q. Denoting the
angle between E and Q by θ, the π-component is thus determined by the projection E ·Q =

E
√

x2
Q + y2

Q cos θ = ExQ such that the relative strength of the π-transition is

cos θ =
xQ√

x2
Q + y2

Q

. (2.63)

The remaining part of E lies in the plane to which Q is normal, so σ-transitions are quantified
by

sin θ =
yQ√

x2
Q + y2

Q

. (2.64)

The total spectrum S(δ) for this configuration as a function of the detuning δ between the two
levels is then given by

S(δ) = Lπ(δ) cos2 θ +

(
1
2
Lσ+(δ) +

1
2
Lσ−(δ)

)
sin2 θ, (2.65)

and since Lπ(δ) = Lσ±(δ) in the abscence of a magnetic field, S(δ) = Lπ(δ) for an arbitrary
choice of θ as required. In the limit θ → 0 (θ → π/2) the π-transition (σ-transition) is driven
as required.

This two-dimensional model calculation has introduced the necessary formalism to treat
the three-dimensional case relevant to us, namely where an inhomogeneous magnetic field is
applied to the atom. In a MOT the trapped atoms are subjected to the quadropole field

B = (−x,−y, 2z)T B0, (2.66)

where B0 is the field gradient in units of T/m. The quantization axis is chosen such that Q ‖ B
in order to simplify the calculations. We generalize the situation to describe an ensemble of
two-level atoms, spatially distributed according to

G(x, y, z) =
1

(Σ
√

2π)3
e−(x2+y2+z2)/2Σ2

, (2.67)

where Σ ' 0.42 mm such that the cloud FWHM = 2Σ
√

2 ln 2 ' 1 mm, which is a realistic
number. The interrogation laser will be incident from the radial direction in the experiment, so
in order to accomodate the symmetry we will take E ‖ z and k ‖ x, given (2.66). Nonetheless,
the same reasoning applies here, so the relative strength of the π-transition at some point
r = (x, y, z) is determined by

cos θ =
2z√

x2 + y2 + 4z2
, (2.68)
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where θ refers to the angle between E and B at r. Similarly we obtain for the σ-transitions

sin θ =

√
x2 + y2

√
x2 + y2 + 4z2

. (2.69)

The respective signal profiles Sπ,σ are determined by integrating over the entire atomic cloud

Sπ(δ) =
∫

R

cos2 θ G(x, y, z)Lπ(δ) dxdydz (2.70)

Sσ(δ) =
∫

R

sin2 θ

2
G(x, y, z)[Lσ+(δ) + Lσ−(δ)] dxdydz, (2.71)

where the normalized Lorentzian profiles are given by

Lπ(δ) =
Γ

2π

1
δ2 + Γ2/4

(2.72)

Lσ±(δ) =
Γ

2π

1
(δ∓ B0∇B

√
x2 + y2 + 4z2)2 + Γ2/4

(2.73)

with ∇B = µB/h = 1.4 MHz/G. For a vanishing magnetic field gradient we obtain Sπ(δ) +
Sσ(δ) = Lπ(δ) as required. The same is obtained if instead σ → 0 mm, since the Gaussian
distribution tends to a Dirac δ-function centered around the origin. For all other cases the ex-
pressions (2.70)-(2.71) have to be evaluated numerically. This can be done efficiently by utilizing
the cylindrical symmetry of the problem to express (2.68)-(2.69) in cylindrical coordinates. The
resulting profiles for the transition

∣∣1S0
〉
→
∣∣3P1

〉
are shown in figure 2.13.
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Figure 2.13: Line profile S for the various transitions of
∣∣1S0

〉
→
∣∣3P1

〉
of 88Sr in a quadropole

magnetic field, assuming an atomic cloud normally distributed with FWHM = 1 mm. The
field gradient has the typical value B0 = 4 G/mm.

The profiles reveal that the π-transition is unaltered by the presence of the quadropole
field, since it is not Zeeman-shifted to first order. In contrast, the σ-transitions are spread out
over a large spectral area due to the spatial extension of the atomic cloud and the spatially
dependent magnetic field. This latter observation means that the contrast Sπ(δ = 0)/[Sσ+(δ =
0) + Sσ−(δ = 0)] increases with increasing magnetic field gradient and/or cloud size.

Specifically, around resonance |δ| . 0.3 MHz the π-transition is more than five orders of
magnitude larger than the σ-transition. Thus, the conclusion is that the anticipated peak in
figure 2.9 is not affected by the presence of the quadropole field. If instead E ‖ y the σ-
transitions are scaled by almost a factor of two due to the quadropole cylindrical symmetry,
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but the contrast between the amplitudes still persists and we are, consequently, not sensitive
to the specific plane of polarization E. The same conclusion holds for any linear combination
constituting E, which is relevant since experimentally E will be slightly elliptical.

This model also reveals why it is important to place the cloud at the origin of the field,
since mainly σ-transitions will be driven if the cloud is positioned along x or y when E ‖ z.

It should be noted that these observations are ultimately possible since the linewidth
Γ ∼ kHz is narrow enough to see the effect of the varying Zeeman shifts for cloud sizes
approaching 1 mm. If instead Γ ∼ MHz the cloud would have to be at least twice as large to
obtain shifts large enough to yield a contrast comparable to the above, or the gradient could
be increased as an alternative.

2.5 Summary

This calculation concludes the current chapter, where the basic theory behind the planned
cavity-enhanced nonlinear spectroscopy has been presented. Additionally, its relevance to
laser stabilization against ultranarrow optical transitions has been treated. The scheme is to
be implemented using 88Sr, and due to the lack of an optical lattice, the atoms have to be
interrogated while confined in the MOT. We have shown that this is possible in theory, but
optimal alignment of the trapping beams is required in order to minimize the cloud tempera-
ture, which in turn will maximize the SNR. Furthermore, a stronger requirement is put on the
trapped population.

Since the experiment is currently in its initial stages, the next chapters will be concerned
with design and construction of the Zeeman slower and MOT needed to obtain the desired
trapped population ∼5 · 108 atoms.





Chapter 3
Deceleration of Neutral Atoms

An atom has external degrees of freedom related to the motion of its center of mass in addition
to its internal degrees of freedom realized by the level structure. Due to conservation of
momentum and energy, interaction with an electromagnetic field will thus perturb the external
variables of the atom in addition to its internal electronic states, serving as a handle on the
atomic velocity and thus position. In the following the theory behind atomic deceleration is
presented, which is then utilized to design and construct a device capable of producing slow
88Sr atoms, which enables subsequent optical trapping.

3.1 The Mechanical Effects of Light

Consider a neutral atom of mass m and momentum p in free space perturbed by a monochro-
matic field with angular frequency ω. The field is quasi-resonant with a single closed atomic
transition between the groundstate |g〉 and the excited state |e〉 with radiative lifetime 1/Γ. The
incident radiation is treated as a classical field with a photon flux much larger than the flux of
photons being absorbed by the atom. Any radiative shifts of the levels are assumed included
in the eigenfrequencies.

Upon excitation the atom is promoted from the combined state |p, g〉 to |p + h̄k, e〉. This is
a simple two-body problem, so the resonance condition of this event is from the kinematics
given by

ωres = (ωe −ωg) +
(p + h̄k)2

2mh̄
− p2

2mh̄
(3.1)

= (ωe −ωg) +
pk
m

+
h̄k2

2m
, (3.2)

where the second and third term in (3.2) denote the first-order non-relativistic Doppler shift
and the recoil shift of the atom, respectively. Unlike the Doppler shift, the recoil shift is seen
to be an inevitable part of a scattering event. The motion of the atom can be treated classically
when the step in momentum space due to a single event is so small that the interaction condi-
tion for the internal degree of freedom is not changed appreciably, i.e. under the condition

ωrec ≡
h̄k2

2m
� Γ. (3.3)

This is an adiabatic approximation stating that the time scale of the internal atom dynamics,
characterized by 1/Γ, is much faster than the external perturbation such that the internal
dynamics are in equilibrium during the external motion.

25
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The total Hamiltonian Ĥ for the system reads

Ĥ = ĤA + V̂AF, (3.4)

where the first term refers to the internal and external degrees of freedom of the atom. The
changes in the incident classical field due to interaction with the atom are negligible and not
accounted for. The atom-field Hamiltonian V̂AF contains two contributions, namely the atom-
reservoir interaction V̂AR leading to spontaneous emission and the atom-laser interacton V̂AL.
The latter term is given by the usual electric dipole approximation

V̂AL = −d̂ · E(r, t) (3.5)

= −d̂ · eE0(r) cos[ωt + φ(r)], (3.6)

where the external field E polarized along e has been written in general form with the atomic
center of mass r. In the limit of (3.3), a valid description of the light force acting on r is obtained
through Ehrenfest’s theorem [25]

〈
F̂
〉
≡ d〈p̂〉

dt
(3.7)

=
1
ih̄
〈
[p̂, Ĥ]

〉
(3.8)

= −
〈
∇V̂AL

〉
. (3.9)

With the average dipole given by (2.38) these assumptions yield
〈
F̂(r, t)

〉
= ∑

l

〈
d̂l

〉
∇El(r, t) (3.10)

= ∑
l

〈
d̂l

〉
el [cos(ωt)∇E0(r)− sin(ωt)E0(r)∇φ(r)] (3.11)

for l ∈ {x, y, z}, where el denotes a component of e. The time origin has without loss of
generality been chosen such that the phase is zero at the initial position of the atomic center
of mass1. Due to the adiabatic following in (3.3), (3.11) is thus determined by the steady-state
values of u and v, the components of the Bloch vector in phase and in quadrature with the
average dipole moment, respectively. Utilizing these expressions in (3.11) and time-averaging〈

F̂(r, t)
〉

over an optical period yields the following expression for the mean radiative force F
acting on the atomic center of mass r

F (r) = (d0 · e)[ut→∞∇E0(r) + vt→∞E0(r)∇φ(r)] (3.12)

= −h̄Ω(r)ut→∞
∇Ω(r)
Ω(r)

− h̄Ω(r)vt→∞∇φ(r) (3.13)

≡ FR(r) +FD(r). (3.14)

The first term is the usual reactive term involving no energy absorption from the driving
field, since it is proportional to the first component u of the Bloch vector. Writing out the
expression for FR yields

FR(r) = −
h̄δ

4
∇Ω(r)2

δ2 + Γ2/4 + Ω(r)2/2
(3.15)

≈ −∇ h̄Ω(r)2

4δ
(3.16)

1A nonzero phase could be retained, in which case it should also be included in the derivation of the optical Bloch
equations, since the atomic dipole follows the local phase of the electric field. However, the specific value is rendered
irrelevant when taking the temporal average of the mean force.
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where δ = (ω −ω0)− k · v ≡ δ0 − k · v denotes the Doppler-shifted detuning and δ � Ω has
been assumed in the last step. This shows that the reactive force derives from a conservative
potential corresponding to the AC Stark shift induced by the applied field. In the dressed state
picture, the origin of the reactive force is thus clear [26]: The atoms remain in their ground
state for a far off-resonance driving field, but they can reduce their potential energy by moving
to a region where the AC Stark shift lowers the ground state energy. The sign of the detuning
determines the response of the atoms to FR, i.e. atoms are attracted to field maxima (minima)
for a red-detuned (blue-detuned) driving field. This constitutes the dipole force.

A running wave has a phase gradient given by ∇φ(r) = −k and in addition FR vanishes
when no field gradient is present, leaving

FD(r) = h̄k
Γ
2

s0(r)
1 + s0(r) + (2δ/Γ)2 (3.17)

= h̄kΓρee,t→∞ (3.18)

with the on-resonance saturation parameter defined through the two-level saturation intensity

s0(r) ≡
2Ω(r)2

Γ2 =
I(r)
Isat

. (3.19)

The interpretation of (3.18) is clear: Upon absorbing a photon, the atom recieves a recoil h̄k.
If this is followed by stimulated emission, no net momentum is transferred to the atom since
the recoil is in the opposite direction of the absorbed recoil. However, if absorption is followed
by spontaneous emission, there is for times t � 1/Γ a net momentum transfer to the atom as
this occurs randomly in 4π. The net dissipative force thus reduces to the absorption recoil h̄k
weighted by the scattering rate Γρee,t→∞. Unlike the reactive term, for s0 → ∞ the dissipative
force saturates to

FD(r)→ h̄k
Γ
2

, (3.20)

which is a consequence of the fact that a two-level atom in steady-state absorbs and spon-
taneously emits a photon at the maximum rate Γ/2. For the broad transition

∣∣1S0
〉
→
∣∣1P1

〉

transition in 88Sr with Γ/2π = 32 MHz this force corresponds to an acceleration 9.90 · 105 m/s2,
more than 105 times the gravitational acceleration.

3.2 Zeeman Slower for Strontium

In order to load a MOT, a sufficient flux of atoms slower than the trap capture velocity is
required. The deceleration associated with the interaction with light suggests the use of the
dissipative force to slow the atoms down from thermal velocities after effusing from the oven.

Having an atom interact with a counter-propagating resonant laser beam in a uniform
magnetic field will slow it down until the change in Doppler shift takes it out of resonance.
This occurs when the Doppler shift is roughly half the natural linewidth, which in velocity
space corresponds to merely few tens of m/s. One way to keep the atom in resonance during
the slowing process is to chirp the laser frequency to match the varying Doppler shift [27]. In
practice the frequency is swept over a range of more than a GHz during a few ms. However,
this results in a pulsed slow atomic beam at a rate corresponding to the sweeping rate. Since
the resonance condition only depends on speed, transverse losses are invariably increased as
a significant amount of atoms are slowed immediately after the oven rather than right before
the trap.
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A far superior method is to construct a Zeeman slower, which consists of an inhomogeneous
magnetic field engineered such that the varying Doppler shift is compensated for by the first-
order Zeeman shift, resulting in a continuous cold atomic beam. This also has the advantage
that the resonance condition depends on both speed and position. Atoms with velocities
below the slower capture velocity will thus satisfy the resonance condition at some later point
in the slower and be decelerated for the remaining length. Transverse losses are still prevalent
due to transverse heating of the atomic beam associated with longitudinal deceleration, but
considerably reduced. The effective detuning for this setup reads

δ = δ0 − k · v− µ′

h̄
B(z) (3.21)

= δ0 + kvz −
µ′

h̄
B(z) (3.22)

for µ′ = (mJ,egJ,e −mJ,ggJ,g)µB, where µB is the Bohr magneton, gJ the Landé factor and B(z)
the magnetic field along z.

The maximum value of the local deceleration is determined by (3.17) at resonance, δ = 0.
Slowing atoms with this maximum force is an unstable process, since any increase in the
atomic velocity due to imperfections in the experimental magnetic field profile will decrease
the slowing force. As a consequence the discrepancy between the ideal and actual phase space
trajectory will increase until the atom is finally irreversibly lost from the slowing process. This
can be circumvented by choosing the deceleration z̈ such that z̈ = εz̈max for some slowing
parameter ε ∈ [0, 1], which is equivalent to imposing a condition on the field gradient along
the slower axis since

|z̈| =
∣∣∣∣vz

dvz

dz

∣∣∣∣ =
∣∣∣∣
vz

k
µB
h̄

dB(z)
dz

∣∣∣∣ < |z̈max|. (3.23)

The design parameters for this system are seen to depend strongly on the specific atom to be
slowed.

Solving for B(z) in FD = εFD,δ→0 yields a magnetic field profile given by

B(z) =
h̄
µ′

(
Γ
2

√
[1 + s0(z)]

1− ε

ε
+ kż + δ0

)
, (3.24)

where the negative solution has been chosen. From (3.21) we see that this negative solution
corresponds to δ < 0. The need for the parameter ε can be seen with the aid of figure 3.1:
Only for 0 < ε < 1 and the negative solution δ < 0 will an unexpected increase in the velocity
bring the atom closer to resonance. This auto-regulation keeps the atom in resonance despite
smaller field deviations, resulting in stable deceleration.

From (3.24) it is seen that a uniform bias field can be applied for a given field profile, which
allows three different field configurations. This offset does not alter the decrease in velocity
since this is approximately2 determined by the magnetic field range.

A decreasing-field geometry has its maximum at the beginning of the slowing process,
and consequently the slowing laser has to be operated at a small red detuning |δ0| ? Γ in
order to be resonant with the slow atoms at roughly zero field conditions. This configuration
requires slowing with σ+-polarized light (with respect to B) and was originally used by Phillips
and Metcalf [28]. The slowing laser in most cases has to pass through the trap, so the main
disadvantage is that the trap operation may be perturbed. Furthermore, it might slow atoms

2A rigorous calculation should take power broadening into account.
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Figure 3.1: The relative dissipative force as a function of the effective frequency detuning δ.

even after they have exitted the slower, yielding a negative final velocity3. The advantage of
this geometry is that it permits merging the field with the radial field from the MOT-coils,
enabling the realization of compact setups.

An increasing-field geometry attains its maximum value at the end of the slowing distance
and has zero field at the beginning. This requires slowing with σ−-light and the slowing laser
has to be red-detuned by many linewidths. The extraction of slow atoms is greatly improved by
the well-defined maximum and abrupt termination in resonance condition. The large residual
field at the MOT may have to be balanced somehow, e.g. by compensation coils.

A spin-flip geometry combines the previous two designs: The field profile decreases at
first, crosses zero at a point determined by δ0 and reverses its direction in order to attain a
maximum value. This geometry also permits a well defined field termination in addition to
avoiding high field gradients close to the MOT. The required absolute field strength is reduced,
which minimizes the power consumption and makes it easier to realize. Consequently, such a
design is sought in the following.

3.2.1 Quantization Axis

It is in order to briefly review the dynamics during slowing for the chosen configuration. The
local direction of the B-field defines the quantization axis, which changes direction roughly
midway. The slowing transition thus changes label from σ+ to σ−, as illustrated in figure
3.2. Most often, however, a fixed quantization axis is chosen such that a zero-crossing of the
magnetic field only leads to inversion in the sign of the magnetic sublevel Zeeman shift. This
will be the convention used from now on.

Even though the atoms retain their magnetic moment orientation when crossing the zero
field, it is flipped in the reference frame of the magnetic field, thus coining the term “spin-
flip”. It should be noted that it is possible that the atomic spin cannot adiabatically follow
the varying quantization axis, which would cause redistribution amongst different magnetic
hyperfine sublevels and thus leakage to potential dark states. This poses no issue in the current
system since 88Sr has no nuclear spin.

3.2.2 Theoretical Design

The field profile is analytically given for a uniform deceleration, but this assumption is not
correct since the slowing light is often tightly focused on the opening aperture of the oven.

3It should be noted that these issues can in principle be circumvented entirely by adding a bias field.



30 Deceleration of Neutral Atoms
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σ+ σ− +h̄

Figure 3.2: The evolution of the slowing light polarization in the atomic frame of reference for
a spin-flip Zeeman slower. In the first section, after the atom has effused from the oven, the
atomic spin is aligned with the quantization axis, whereas the relative orientation is reversed
when the magnetic field increases in the last part. Note that changing the current polarity
requires changing the handedness of the slowing light.

This maximizes the overlap between the dissipative force and the expanding atomic beam and
provides additional transverse cooling of the atoms. By solving the equations of motion nu-
merically one will find that the assumption of uniform deceleration is invalid even for the
simplest case of collimated light. Nonetheless, many successful designs are based on this an-
alytical expression, e.g. [29–31]. In order to keep things general, we abandon this assumption
and determine the field profile through the phase space trajectory

v̇z = −ε
h̄kΓ
2m

s0(z)
1 + s0(z)

(3.25)

ż = vz (3.26)

which we readily solve for by Runge-Kutta methods. Note that as
∣∣1S0

〉
→
∣∣1P1

〉
with Γ/2π =

32 MHz is used for slowing, this classical picture is valid since (3.3) is satisfied. The on-axis
saturation parameter for a Gaussian beam is given by

s0(z) =
2P

πw(z)2
1

Isat
, (3.27)

where the slowing beam has P = 30 mW of available power and Isat = 42.7 mW/cm2. In three
dimensions this is generalized to

s(r, z) = s0(z)e−2r2/w(z)2
. (3.28)

The beam radius w(z) is determined by the excellent approximation

w(z) = wi +
z
L
(wi − wo), (3.29)

where wi = 1 mm (wo = 8 mm) denotes the waist at the entry (exit) of the slower and L the
slower length. Setting ε = 0.4 and choosing the maximum slowable velocity 410 m/s results in
a theoretical exit velocity of 23 m/s for L = 30 cm, sufficiently below the trap capture velocity
estimated to be 30 m/s. Choosing δ0/2π = −560 MHz yields a symmetric field profile with
−325 G and 346 G at the ends. These parameters are inspired by [32, 33], who have obtained
designs with appropriate fluxes of slow atoms and optical traps with as much 109 atoms.

There are generally two contributions to the expansion of the atomic beam. Since the
divergence is inversely proportional to the transverse velocity component, axial slowing will
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increase it. Furthermore, absorption and the subsequent spontaneous emission of photons are
intrinsically stochastic processes, such that an atom does a random walk transversely leading
to heating. For this reason the design exit velocity was not chosen much smaller than needed.

Slowing of Sr is very efficient due to the broad cooling transition and can be achieved on
these relatively short distances, even with a small slowing parameter. In comparison, slowing
of 87Rb is performed on a transition with linewidth Γ = 2π · 6.07 MHz, yielding typical lengths
approaching a meter.

3.2.3 Experimental Realization

Under the assumption that the coils are connected in series, we find the desired coil config-
uration by summing each individual coil contribution numerically. During optimization an
attempt was made to avoid unnecessary steep field gradients due to (3.23). One way to avoid
this issue entirely is by using a design based on a single-layer helix with variable pitch [34],
but a more conventional approach is chosen here. The final arrangement is shown in figure
3.3.
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Figure 3.3: The coil configuration of the Zeeman slower resulting in a total wire length 36.4 m
and 241 coils. With a Ø3 mm cobber wire the resistance is expected to be around 0.1 Ω.

The coils are wound around a 36 cm CF-16 vacuum tube, which is used to integrate the
device in the vacuum system. In order to avoid residual fields at the trap, the slower is operated
inside a three-layer magnetic shield. The shield has the advantage that it increases the magnetic
field inside the enclosure, making it easier to obtain higher field gradients at the slower ends
in addition to providing an abrupt termination of the resonant field. Even though the power
consumption is only roughly 29 W, the device is water-cooled due to the enclosure.

During the numerical work the effect of the shield is modelled as creating a mirror image of
the field on each side of the shield, and the effect is seen from the measurements in figure 3.4.
The measurements with shielding are in good agreement with the numerical model, but the
field decreases slightly slower at the edges than expected. This discrepancy may be explained
by the fact that the shield is not perfectly reflecting and will ultimately result in a minor
decrease in the slower capture velocity, which is readily compensated for by increasing the
current and/or the detuning.

In order to verify the experimental field, the equation of motion mz̈ = F(ż, z) for the atoms
is integrated numerically. Since there is no reason to believe that the field is not well-behaved,
a smooth representation without discontinuities can be obtained by fitting a polynomial to the
discrete data points zi. Figure 3.5 shows the simulated trajectories with optimized parameters,
resulting in a maximal slowable velocity of 500 m/s.
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Figure 3.4: A comparison of the theoretical, numerical and experimentally realized slower field
at 17 A.

For low powers the atoms drop out of the slowing process at minor field irregularities.
Power broadening of the absorption profile at high saturations enables the atoms to stay in
resonance at these points. Increasing the power beyond this value will increase losses due to
dominating residual transverse velocities, and beyond this limit the atoms are accelerated back
towards the oven. The effect of terminating the field abruptly is clearly seen, since the atoms
are not slowed significantly after leaving the slower at z = 30 cm.
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Figure 3.5: Simulated phase space trajectories of atoms in a Zeeman slower at different satura-
tions, given a red-detuned slowing beam at δ0/2π = −560 MHz. The lower dashed, horizontal
line marks the MOT capture velocity assumed to be 30 m/s.

Following [30], the loading rate provided by the slower can be estimated by first looking at
the flux F of atoms leaving the oven through an aperture of surface A in direction (v, θ, φ) [35]

dF(v, θ, φ) =
nA

ξ3π
√

π
v3e−v2/ξ2

cos θ sin θ dvdθdφ, (3.30)

where ξ =
√

2kBT/m and n the atomic number density at vapor pressure P, which is given by
the ideal gas law n = P/kBT. In order to accomodate the symmetry of the problem, (3.30) is
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transformed to cylindrical coordinates (v⊥, φ, vz)

dF(v⊥, φ, vz) =
2nA

ξ3
√

π
vze−v2

z /ξ2
v⊥e−v2

⊥/ξ2
dv⊥dvz, (3.31)

which is integrated to yield

F =
nξA

4

(
1− e−v2

⊥,max/ξ2)(
1− e−v2

z,max/ξ2
)

. (3.32)

The upper axial velocity is the capture velocity of the slower. Disregarding transverse heating,
the upper transverse velocity is constrained by v⊥,max = Rc/t, where Rc ≈ 10 mm is the capture
radius of the MOT and t the total propagation time from oven to MOT. At thermal velocities,
the time-of-flight from oven to slower can be neglegted and with constant deceleration t is
given by simple kinematics, which yields

L ' 9.9 · 1010 atoms/s (3.33)

for T = 530 ◦C. This is a very optimistic estimate since the main loss mechanism has been
neglegted in addition to the focus of the slowing field, but gives an idea of the potential
performance of the Zeeman slower. The loading rate is measured in the next chapter.

3.2.4 Transverse Motion

The rms-width of an initially well defined transverse velocity component increases due to the
random walk as [36]

〈
v2
⊥
〉
= σ2

v,⊥ = 0.9
v2

rec
3

N, (3.34)

where N is the total number of scattered photons. The deviation of the dipolar radiation pat-
tern from an isotropic distribution is taken into account by the factor 0.9. Transverse spreading
is more pronounced for lighter atoms since vrec ∝ 1/mass.

We constructed a Monte-Carlo simulation in order to correctly model this effect, utilizing
the Mersenne twister [37] as the random number generator in order to avoid artifacts due
to biased statistics. This requires taking into account the varying axial field off-axis. The
general expressions for the axial and radial magnetic field for a circular current loop of radius
R displaced by D from the origin is [38]

Bz(ρ, z) =
µ0 I
2π

1√
(R + ρ)2 + (z− D)2

[
+K(k2) +

R2 − ρ2 − (z− D)2

(R− ρ)2 + (z− D)2 E(k)2
]

(3.35)

Bρ(ρ, z) =
µ0 I
2π

z− D√
(R + ρ)2 + (z− D)2

[
−K(k2) +

R2 + ρ2 + (z− D)2

(R− ρ)2 + (z− D)2 E(k)2
]

, (3.36)

where

k2 = 4
Rρ

(R + ρ)2 + (z− D)2 (3.37)

and K(k2) and E(k2) are the complete elliptic integrals of the first and second kind. The
variations off-axis are found to occur primarly at the critical slower ends. They are calculated
to be less than 10 G and consequently deemed negligible. Furthermore, the limited power is
ultimately the important parameter at large radial distances, not the minor variations in the
magnetic field.
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The trajectory of an atom through the slower is found by evaluating the scattering proba-
bility analogous to (3.17) [39]

S ≡ s0

1 + s0 + (2δ/Γ)2 (3.38)

at each timestep ∆t ' 1/Γ, which is then compared to a random number X ∈ [0, 1]. An
absorption event is simulated if S > X, in which case the direction of the subsequent change in
atomic momentum is determined by the focus of the slowing beam such that it is perpendicular
to the constant-phase wavefront. After a time 1/Γ, the recoil due to spontaneous emission is
added randomly in 4π through sphere point picking. The timesteps are chosen such that (3.20)
is not violated, i.e. for S → 1 the atom stays a duration 1/Γ in each state as required for a
two-level atom. Due to the low power this scenario is artificial and the specific value of ∆t thus
not critical.

Even though the following does not constitute a formal proof, there are several observa-
tions that corroborate that this method is a valid description of the atomic motion during
slowing: The stochastic evaluation of (3.38) takes into account that when the atom is in reso-
nance, it scatters with the maximum allowed rate. In the opposite limit s0 → 0 no scattering
occurs and the procedure reduces to a standard numerical integration of the classical equation
of motion. Secondly, as a test 105 atoms were slowed from vi = 300 m/s to vi ' 15 m/s,
resulting in 28.8 · 103 scattered photons. This is in the same range as the expected value
(vi − vf)/(h̄k/mSr) = 28.6 · 103. In return the atoms gain on average σv,⊥ = 0.87 m/s in
transverse velocity, which is similar to the value 0.91 m/s predicted by (3.34) for an infinite
ensemble. As illustrated in figure 3.6, it is able to reproduce the previous on-axis trajectories.
Thus, with a correct value for the timestep ∆t, the random walk in velocity space is to a good
approximation integrated in real space.
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Figure 3.6: A comparison between phase space trajectories found by solving the deterministic
equations of motion and by evaluating stochastic scattering events using (3.38). Only every
100th event is displayed.

The time evolution of a single two-level atom between emission events is more accurately
described by quantum jumps in terms of the probability density |ψ(t)|2 ∼ e−2Γt. Implementing
this variable retention time may potentially improve the statistics, but only by a small amount
since the expected amount of scattering events is almost reached. Our stepwise approach
outlined above is deemed sufficient for a qualitative describtion of the problem. In the presence
of absorption the intensity of the slowing laser is ideally a function of atomic density [40], but
the consequences of this effect are assumed negligible and not implemented either.
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The effect of the slower is seen in the distributions in figure 3.7. Atoms below the capture
velocity are effectively bunched into the final velocity class, accompanied by the inevitable
transverse heating. This compression of the thermal distribution increases the phase space
density, which is why a Zeeman slower cools the atomic beam in addition to slowing it.

0 200 400 600 800 1000 1200
0

0.015

0.03

0.045

0.06

0.6

0.615

0.63

vz [m/s]

P
(v

z
)

[1
/
(m

/
s)

]

−3 −2 −1 0 1 2 3
0

0.02

0.04

0.06

0.08

0.1

0.12

v⊥ [m/s]
P
(v

⊥
)

[1
/
(m

/
s)

]

Figure 3.7: A simulation with 103 atoms revealing the final (blue) velocity distributions, where
the dashed line indicates the slower capture velocity. The initial (green) transverse velocity
distribution is assumed to be Gaussian.

3.3 Characterization

For an atom moving at a velocity v and with an angle θ relative to a probe beam, the fluores-
cence signal will be a Doppler-shifted Lorentzian

L(δ0, v) =
Γ/2π

(δ0 − v cos θ/λ)2 + Γ2/4
. (3.39)

The velocity of the cold atoms can be determined by first scanning the probe a few hundred
MHz across the slowing transition. After this the velocity can be extracted by comparing the
spectrum to the Doppler-free signal originating from a 90° reference. The reference is ideally
used simultaneously in order to minimize possible drifts, but the feasibility of this depends on
how small the velocity to be measured is. The SNR is optimized by choosing an appropriate
polarization.

Figure 3.8 shows typical measurements for three different situations: When the slower is
operated at 10 A, 6 A and when no slowing light is applied. The expected behavior is observed,
where increasing the current increases the slower capture velocity in addition to reducing the
exit velocity. There is not a sharp cutoff at the capture velocity vc ∼ 300 m/s as one might
naïvely expect: For a given laser power, the efficiency is ultimately limited by the atoms that
drift too far from the beam center, which are subsequently lost since the small saturation
parameter does not decelerate them sufficiently. Thus, slowing atoms with initial velocities
around vc is ultimately terminated if the initial transverse velocity component is too large.
This loss channel is also responsible for the spread of (31± 3)m/s at the end of the slower,
consistent with a similar system [32] and the numerical prediction at roughly 24 m/s. For
currents & 14 A the cold atoms spend too much time in the probe and are scattered.
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Figure 3.8: Flourescent spectra of the atoms emerging from the slower illustrating their behav-
ior for various currents and when no slower light is applied. The small bumps occuring to
the left of the main slowed peaks originate from 86Sr, whose

∣∣1S0
〉
→
∣∣1P1

〉
transition is de-

tuned by 124.8 MHz [41]. The most probable velocity around 400 m/s agrees with the expected√
2kBT/m = 395 m/s at T ' 550 ◦C.

Using the same parameters as in the experiment, numerically it is found that the slower
increases the trap population by almost a factor of 19 compared to slowing with a 0 A-field. As
illustrated in figure 3.9 a range close to that value is also found by taking the ratio between the
experimental signals. This is supported by the factor of 22 observed in a similar system [42]. It
must be emphasized though that currently the model treats the thermal velocity distribution
of the atoms effusing from the oven approximatively, since the initial transverse velocities are
merely assumed to be Gaussianly distributed. Furthermore, the dynamics of the trap has
not been taken into account which may explain the quantitative disagreement. Representing
the slowing beam incorrectly will most certainly also have an effect, e.g. we have measured
the waists with finite precision and the beam may possess minor structure. Additionally,
the experimental current can only be resolved to within 0.1 A. Most importantly, the essential
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Figure 3.9: Gain in trapped atoms as a function of current through the Zeeman slower.

trends are well captured: For currents < 16 A the exit velocity is too large, whereas for I > 18 A
all capturable atoms are turned around. The maximum signal is attained around 17 A.

3.3.1 Optimization

For a given laser power, the trap loading rate is limited by the small power away from beam
center. Increasing the atomic spatial density by transverse two-dimensional cooling with a red-
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detuned beam immediately after effusing from the oven has also proven to be advantageous.
The anticipated and measured increase is presented in figure 3.10.
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Figure 3.10: The fractional increase in atoms reaching the trap as a function of transverse
cooling power. The simulation is based on 104 atoms, where each cooling beam measures
16 mm× 3 mm and the constant magnetic gradient is 60 G/cm. The detuning is set to δ0/2π =
−40 MHz, the same used for the trapping beams in the experiment.

The model is optimistic since it assumes perfectly cylindrical beams with evenly distributed
power. This is clearly not the case experimentally, where imperfect beam alignment can de-
grade the gain significantly and interference between optical elements may distort the struc-
ture. A single beam was used to cool in both dimensions, thereby maximizing the power but
in addition complicating the alignment significantly. These combined effects explain the rather
large discrepancy. From the numerical behavior one can infer that using more power will not
increase the efficiency due to power saturation.

Applying a constant magnetic field gradient further adds to the dissipation and enables
focusing the atomic beam. Including this effect yields almost an order of magnitude more
atoms if carried out properly and intuitively it makes sense that the trap population is sensitive
to these additions since the initial slowing area is only a few mm wide. With this effect the
total slowing force along x (and y) reads

Fx =
h̄kΓ

2

(
ns0

1 + 2ns0 + 4[(δ0 − kv− βx)/Γ]2
− ns0

1 + 2ns0 + 4[(δ0 + kv + βx)/Γ]2

)
, (3.40)

where β ≡ µB(dB/dx)/h̄, n = 4 is the total number of beams and the additional factor of 2
in the denominator compared to (3.17) takes into account saturation. In practice this can be
realized by two sets of permanent magnets, which require less space than manually wound
coils. Only 2D molasses was implemented at this stage and the final operational setup is shown
in figure 3.11.

The atomic divergence can potentially be reduced further by employing a second cooling
stage right after the slower, ideally where the exit velocity is attained. In the current setup
geometrical constraints force a second stage to be performed 92.5 mm after the exit. Employing
this feature in the model does not increase the loading rate: As trappable atoms that normally
overshoot the MOT have σv,⊥ & 1.2 m/s after the slower exit, this second collimation stage does
no good since many atoms will still overshoot due to its late occurrence. In fact, the prolonged
time-of-flight decreases the loading rate by more than a factor of two and consequently this
feature has not been implemented.

As mentioned earlier, the field from the anti-Helmholtz coils used for the MOT can in
principle be used to perform the last part of the slowing process. For the present setup it is
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Figure 3.11: Dimensions of the final deceleration setup. Not included in the sketch are two ion
pumps, which are connected to the oven (left) and the chamber (right).

thus important to choose the current-polarity of the MOT-coils such that the cold atoms are
not slowed further after exitting the slower. However, it is found that when merging the two
fields the trap population is experimentally increased by 54 % compared to figure 3.9 and the
simulated trajectories in figure 3.12 offer a clear physical explanation: The atoms are slowed
all the way to the MOT when combining the fields, effectively removing the 220 mm free time-
of-flight that would otherwise occur and the subsequent overshoot by some of the atoms. The
model predicts an increase by 75 %, comparable to the observation.
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Figure 3.12: Phase space trajectories under the combined field from the Zeeman slower (11 A)
and trap coils (56 A each). The field-contribution from the coils follows naturally from∇·B = 0
and the rotational symmetry, −Bz/2 = Bx = By.

It is worth noting that the resulting decrease in slower capture velocity is more than com-
pensated for, showing that considerations about the solid angle with which atoms emerge from
the slower are equally important for an optimal system. In retrospect this merging of the two
fields should have been approached from the beginning as in [29] due to the relatively long
time-of-flight after the slower. This also has the obvious benefit of reducing the total length
of the experiment by at least 15 cm, since only a single half of the current slower is needed.
No magnetic shield would be required either. A comparison of the steady-state signals for the
various slowing configurations is illustrated in figure 3.13.

3.4 Summary

A spin-flip Zeeman slower for 88Sr has been designed, built and implemented in the vacuum
system. In the following chapter its loading rate is measured explicitly. In addition a simple
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Figure 3.13: The measured steady-state MOT-flourescence for the three possible slowing
configurations: Slowing with the field originating from both the slower and the MOT-coils
(“MOT+Zeeman”), only the Zeeman-slower and only the field from the MOT-coils. The mean
values are 0.60 V, 0.39 V and 0.25 V, respectively, and are directly comparable to eachother.

semiclassical model has been developed, which takes into account the random walk associated
with atomic deceleration by photon collisions, displaying good qualitative correspondence
between observations and theory. It is not apriori clear what causes the quantitative disagree-
ment, but it is not unlikely that it may be corrected if the trap dynamics is taken into account
and/or by varying the trap capture radius/velocity.





Chapter 4
Magneto-Optical Trapping of Strontium

At this stage a Zeeman slower has been implemented, so we are now capable of producing a
continuous flux of cold atoms with velocities around 30 m/s. This chapter focuses on the sub-
sequent magneto-optical trapping and optimization, which will eventually lead to the desired
atomic population. The general theory of a magneto-optical trap (MOT) will be presented, in-
cluding considerations on the attainable temperature and trap capture velocity. The light used
for the MOT is analyzed and in addition the loss rate of the trapped atoms is investigated both
analytically and experimentally.

4.1 Optical Molasses

Up until now the scattering force in form of a single laser beam has been utilized to slow down
a counter-propagating atomic beam in one dimension. Atoms move in all three dimensions
and their mean square velocity in all spatial directions needs to be reduced in order to cool
them down. This can be achieved by three intersecting orthogonal pairs of oppositely directed
beams having the same frequency and intensity. A moving atom will always experience a force
opposing its direction of motion if the beams are red-detuned, since the counter-propagating
beam is closer to resonance. The pair of beams can be assumed to act independently of each
other in the low saturation limit s0 � 1, in which case the force F in each dimension is given
by

F = FD(δ0 − kv)−FD(δ0 + kv) (4.1)

' 4h̄k2s0
(2δ0/Γ)

[1 + (2δ0/Γ)2]2
v (4.2)

≡ −αv (4.3)

for kv � Γ. This represents a viscous damping force over a restricted velocity range since
δ0 < 0, asymptotically reducing the atomic velocity to zero due to which (4.3) is dubbed
optical molasses. The capturable velocities are vc ∼ ±Γ/k and the maximal damping occurs
for δ0 = −Γ/2.

Denoting the atomic mass by m, the classical equations of motion for this model predict that
for times much longer than m/α the velocity goes to zero and consequently that the attainable
temperature is zero. However, the stochastic nature of both absorption and emission causes the
atom to fluctuate around equilibrium, resulting in a nonzero steady-state Doppler temperature
TD determined by the cooling and heating process. In one dimension it can be estimated as
follows: The atomic motion is modelled as being governed by a viscous drag characterized by

41
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η ≡ α/m > 0 in addition to a classical random Langevin force F(t)

ṗ(t) = −ηp(t) + F(t). (4.4)

By definition 〈F(t)〉 = 0 and 〈F(t)F(t′)〉 = 2DG(t− t′), where D is the momentum diffusion
coefficient. The second-order correlation function G(t− t′) is a δ-function δ(t− t′) since F(t) is
assumed to be Markovian, i.e. two timescales exist τc � 1/η where τc gives the memory time
of F and 1/η the atomic damping time. Physically, this corresponds to the heavy atom colliding
very frequently with the lighter particles that constitute the homogeneous fluid, but the effect
of each collision is small. Note that the classical average used here is over all realisations.

The formal solution to (4.4) is readily found by integration [25]

p(t) = p(0)e−ηt +
∫ t

0
F(t′)e−η(t−t′) dt′, (4.5)

and averaging over timescales much longer than 1/η results in 〈p(t)〉 = p(0)e−ηt as antici-
pated. The mean square momentum will be affected by the stochastic momentum changes,
namely

〈
p2(t)

〉
=

〈(
p(0)e−ηt +

∫ t

0
F(t′)e−η(t−t′) dt′

)2
〉

(4.6)

= p2(0)e−2ηt +
∫ t

0

∫ t

0

〈
F(t′)F(t′′)

〉
e−η(t−t′)e−η(t−t′′) dt′dt′′ (4.7)

= p2(0)e−2ηt + 2
∫ t

0

∫ ∞

−∞
Dδ(t− t′)e−η(t−t′)e−η(t−t′′) dt′dt′′ (4.8)

= p2(0)e−2ηt +
D
η

(
1− e−2ηt

)
, (4.9)

where terms linear in 〈F(t)〉 vanish and the limits in (4.8) have been extended to ±∞, which
is valid as t � τc. The average kinetic energy K thus tends towards K = D/(2mη). In this
long-time limit ηt� 1 the combined system consisting of atom and bath is in equilibrium, due
to which K is also given by its equipartition value K = kBT/2. Comparing expressions yields
the first fluctuation-dissipation theorem

D = mηkBT, (4.10)

originally derived by Einstein and linking the friction and diffusion D experienced by the
particle to its equilibrium temperature T.

The Doppler cooling limit should ideally be derived by a microscopic Langevin approach,
through which the quantum analogue of F(t) can be found. The following line of reasoning is,
however, also applicable [43]: In random-walk theory D is defined as D = d

〈
∆p2〉/dt, where〈

∆p2〉 is the mean square momentum increase. As spontaneous emission occurs with step
size h̄k, in this framework D = h̄2k2Γρee,t→∞. Absorption events are uncorrelated for s0 � 1
and thus follow the same statistics, due to which the total total diffusion coefficient becomes
2h̄2k2Γρee,t→∞. Inserting expressions in (4.10) yields

kBTD =
h̄
2

δ2
0 + Γ2/4

δ0
, (4.11)

where TD is known as the Doppler temperature. This has the well-known minimum h̄Γ/2 at
δ0 = −Γ/2, independent of the atomic mass and optical wavelength. This result also holds in
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three dimensions, since the diffusion is generalized to D → 3D, where the additional factor is
compensated by the factor gained when generalizing K in (4.10) via the equipartition theorem.

A three-dimensional optical molasses is thus a velocity-dependent scattering force, leading
to compression in momentum-space. As long as the light can drive transitions between the
two states, the incoming polarization does not matter. Often the various magnetic substates
of an atom in combination with the polarization of the light are important, in which case the
above theory is rendered inexact, resulting in samples approaching the recoil limit through
sub-Doppler cooling. As even-isotope alkaline earth atoms have no nuclear spin and thus no
magnetic substates, the temperature of 88Sr is ultimately Doppler-limited.

4.2 Magneto-Optical Trap

The concept of optical molasses can be extended beyond momentum-space by adding to
it a position-dependent force resulting in spatial confinement as well. Employing a one-
dimensional model again, the principle behind a MOT can be explained by looking at an atom
with a J = 0 ground state and J′ = 1 excited state1 with magnetic sublevels mJ′ = 0,±1. The
atom is placed in a linearly increasing magnetic field with zero at the trap center, and irridiated
by two counter-propagating laser beams of opposite helicity. The beams are red-detuned with
respect to the unperturbed transition. For positions z > 0 (z < 0) the associated Zeeman shift
tunes the ∆mJ = −1 (∆mJ = +1) transition closer to resonance. With the transition selection
rules in mind, sending in the σ∓-polarized beam in from ±z thus yields a spatially dependent
scattering force, which pushes the atom back towards z = 0. Utilizing (3.21) in (4.1) yields for
a linear magnetic field B = B0z

F = Fσ+

D (δ0 − kv− µ′B/h̄)−Fσ−
D (δ0 + kv + µ′B/h̄) (4.12)

' 4h̄k2s0
(2δ0/Γ)

[1 + (2δ0/Γ)2]2
v + 4h̄k2s0

µ′B0

h̄k
(2δ0/Γ)

[1 + (2δ0/Γ)2]2
z (4.13)

≡ −αv− κz, (4.14)

where |µ′B0z/h̄| � Γ has been assumed in addition to the small velocity approximation kv� Γ
in order to linearize around small (v, z) in (4.13). This force describes a damped harmonic
oscillator and indicates that atoms inside the MOT perform damped harmonic oscillations
around the center of the trap with spring constant κ and damping coefficient α. They are
related by

κ =
µ′B0

h̄k
α. (4.15)

Typical values for 88Sr yield oscillation frequencies of
√

κ/m ∼ 104 Hz and damping rates
of α/m ∼ 105 s−1, indicating a strongly overdamped motion, where the atoms are effectively
pushed towards the trap center.

Extending this principle to three dimensions requires three orthogonal pairs of beams. Two
coaxial coils in the anti-Helmholtz configuration produce a spherical quadrupole field, which
to first order provide the required uniform field gradient close to the center. Denoting the
symmetry axis by z, Maxwell’s law ∇ · B = 0 along with the cylindrical symmetry of the field
yields

∂Bx(x, 0, 0)
∂x

=
∂By(0, y, 0)

∂y
= −1

2
∂Bz(0, 0, z)

∂z
, (4.16)

1These considerations apply equally well for any J → J′ = J + 1 optical transition
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i.e. the radial spring constant is reduced to half its axial value, resulting in an elongated atomic
cloud.

The strong dipole-allowed transition
∣∣1S0

〉
→
∣∣1P1

〉
at 461 nm used for deceleration is also

used to trap the atoms. The trapping beams typically carry a total power of 30 mW and
are detuned from resonance by δ0/2π = −40 MHz, which maximizes the trap population [44].
This is not a perfect two-level system, since there is a small decay channel to

∣∣1D2
〉

as illustrated
in figure 4.1. From here the atoms decay towards

∣∣3P1
〉

and the metastable dark state
∣∣3P2

〉

with branching ratios 66.7 % and 33.3 %, respectively. Atoms in the former state decay to the
ground state. However, in order to ensure that the trap lifetime is not solely constrained by
shelving, atoms in

∣∣3P2
〉

with a 520 s lifetime [45] need to be recycled. This requires a repumper
at 707 nm, which excites the atoms into

∣∣3S1
〉

after which they quickly decay to
∣∣3P1

〉
and

∣∣3P0
〉

and finally the ground state through the strong intercombination line
∣∣3P1

〉
→
∣∣1S0

〉
. A 679 nm

laser can be employed to prevent repumping leaks due to
∣∣3S1

〉
→
∣∣3P0

〉
.

The use of repumpers will extend both the population and the trap lifetime and thus the
timescales on which a measurable signal is available. Note that due to the small branching
ratio 1.95 · 10−3 % of

∣∣1P1
〉

to
∣∣1S0

〉
, shelving losses did not pose a problem during the relatively

quick Zeeman-slowing.
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Figure 4.1: A schematic of the partial electronic structure of Sr also showing the radiative
decay channels and A-coefficients [46]. The repumpers at 679 nm and 707 nm are also shown.
Dashed lines denote decay paths. Note that energies are not to scale.

4.2.1 Capture Range and Velocity

A three-dimensional MOT will only capture the atoms that are slow enough to be decelerated
inside its spatial extent, which are then pushed back towards the center. The trap radius Rc is
determined by the radius of the trapping beams, which defines the region in which atoms see
an effective red detuning of the trapping light. The field gradient B0 is then estimated through
the position at which zero-velocity atoms are in resonance with one of the laser beams, i.e.

B0 ≈
h̄δ0

µ′Rc
. (4.17)

The beam radius 8 mm is used in the experiment, corresponding to a gradient of roughly
35 G/cm. This is readily achieved with two anti-Helmholtz coils.

The trap population increases with the gradient given modest values < 100 G/cm, since
the trap depth κ in (4.15) is increased. Beyond ∼ 100 G/cm the maximum (resonant) value of
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the light force is already achieved within the trap, and a further increase in the gradient will
only shorten the deceleration distance and thus reduce the recapture ability, manifesting itself
in a higher collisional loss rate [47].

As in the case with optical molasses, it is possible to define a capture velocity vc as the
maximum velocity for which atoms entering the trap region are slowed down and confined.
A rough estimate is obtained by defining vc such that atoms entering the trap with velocity vc
should come to a complete stop after traversing the trap radius Rc, i.e.

v2
c = 2Rcaeff, (4.18)

where aeff < amax is the effective deceleration experienced by the atoms. A lower bound on aeff
can be estimated as amaxs0/(1 + s0), since it takes into account the dependency on the beam
intensity. With an estimated 5 mW per beam the capture velocity is

vc =

√
h̄kΓ
2m

s0

1 + s0
Rc (4.19)

' 26 m/s, (4.20)

which is a typical value. Generally, the capture velocity increases with power since the trap
depth is increased, but eventually decreases as the cooling transition becomes power broad-
ened. In this limit the counter-propagating radiative forces become indistinguishable, thus
reducing the frictional force [48]. Since the trap population for a constant volume is deter-
mined by vc and losses, the population decreases beyond this point.

4.2.2 Trapping Light

Having established the principle behind a MOT, it is in order to review the generation of the
461 nm trapping beams. The 461 nm light derives from continuous-wave second harmonic
generation by an AR-coated quasi phase-matched KTP crystal. The fundamental wavelength
922 nm is supplied by an ECDL in the Littrow configuration, the master laser. As the frequency-
doubled power scales with the square of the incident power, the 922 nm light is amplified by
a tapered amplifier to about 1 W after which it is coupled into a bow-tie cavity consisting
of highly reflecting (transmitting) mirrors at 922 nm (461 nm). A mode-matched input yields
∼100 mW.

Efficient frequency-doubling requires that the resonance condition of the fundamental beam
with respect to the bow-tie cavity is satisfied. In order to minimize the effects of acoustic noise
and frequency fluctuations in the incident beam, the Hänsch-Couillaud lock has at an earlier
stage been employed to control the cavity length [49]. The lock bandwidth is limited by the
first mechanical resonance of the combined piezo-mirror system in the bow-tie cavity, occuring
at a few tens of kHz.

4.2.3 Stabilization

Since the number of trapped atoms depend critically on frequency, it is necessary to refer-
ence the trapping light against the

∣∣1S0
〉
→
∣∣1P1

〉
transition of 88Sr. This is accomplished by

modulating the laser frequency harmonically at Ω = 9.1 kHz � Γ with depth δ by sending it
through an AOM. The first-order diffracted beam then intersects the atoms effusing from an
oven transversely in order to minimize the Doppler effect, while the signal is picked up by a
photomultiplier. Assuming a low drift of the center frequency ω, the laser frequency is given
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by ωl = ω + δ sin(Ωt). Expanding the measured intensity IM(ωl) and collecting terms yields

IM(ωl) = DC + sin(Ωt)
(

δ
dIM
dωl

+
δ3

6
sin2(Ωt)

d3 IM

dωl
3 + . . .

)

+ cos(2Ωt)
(
− δ2

4
d2 IM

dωl
2 + . . .

)

+ . . . .

(4.21)

Performing phase-sensitive detection at Ω will thus extract the first-order derivative of IM,
assuming a sufficiently small modulation depth δ � ω0. This is accomplished by feeding
the detected signal to a lock-in amplifier, whose output VO is proportional to the frequency
decomposition at Ω of the incoming signal VI

VO ∝ G
∫ T

0
sin(Ωt + φ)VI(t) dt, (4.22)

where T is the integration time of the low-pass filter (T � Ω−1), G the gain and φ a vari-
able phase shift. The detected signal and corresponding lock-in derivative is shown in figure
4.2. The dashed vertical lines show the nearest isotopes relative to 88Sr, specifically 86Sr at
−124.8 MHz and 87Sr (F = 9/2, F = 11/2, F = 7/2) = (−69,−51.8,−9.7)MHz [50]. These
known values have been used to calibrate the frequency axis.
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Figure 4.2: Spectrum from orthogonal crossed-beam spectroscopy of an atomic beam line when
scanning across

∣∣1S0
〉
→
∣∣1P1

〉
of Sr. Also shown is the corresponding derivative signal as a

function of 88Sr-detuning.

The lock-in signal yields a most useful error signal readily fed to a PID-controller con-
stituting the servo. Its output is used to modulate a high-voltage amplifier controlling the
master laser piezo-mounted grating, thus closing the loop. The relatively weak flourescence
prevents locking to third and higher (odd) orders. This could otherwise reduce the Doppler
background, yielding a more precise lock since the signal close to resonance is narrower, but
this would also result in a smaller recapture range. The SNR is optimized by adjusting the
direction of the incident linear polarization and by carefully retro-reflecting the beam as any
misalignment will broaden the signal width. The stability of the lock is characterized in the
next section.

A schematic of the setup is shown in figure 4.3. The modulation is generated by the lock-in
amplifier itself, which is sent to a sum amplifier (SA) such that a DC signal can be added to it.
This enables the possibility to offset-lock to the resonance. The combined signal is sent to the
voltage-controlled oscillator (VCO) driving the AOM.
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Figure 4.3: Schematic diagram of the locking system for the 461 nm laser. The VCO (voltage-
controlled oscillator) driving the AOM is fed a signal from the sum-amplifier (SA). The signal
provided by the SA is a constant DC-voltage added to the harmonically varying signal gener-
ated by the lock-in amplifier. The flourescence is picked up by a photomultiplier tube (PMT).

Generally, the spectrum from effusing atoms is a convolution between the thermally-broadened
Gaussian profile and a Lorentzian associated with the natural linewidth. This is known as a
Voigt function, represented as

SV(x, y) =
y
π

∫ ∞

−∞

e−u2

y2 + (x− u)2 du, (4.23)

where x =
√

ln 2(ν− ν0)/αG and y =
√

ln 2αL/αG. Here ν0 denotes the transition frequency
and αL (αG) the Lorentzian (Gaussian) HWHM.

Through nonlinear least squares fitting the FWHM of the 88Sr-signal can be extracted,
where the total spectrum is represented as the sum of five Voigt profiles, one for each isotope
and hyperfine component. Using the known values for the linewidth, relative abundances,
relative transition frequencies and hyperfine splittings [50], only three degrees of freedom are
left, namely an overall amplitude, signal background and Gaussian HWHM. Note that as (4.23)
is not available in closed form, the rapidly converging approximation [51] is used instead. The
resulting profile is shown in figure 4.4, yielding the total FWHM = (78.8± 0.3)MHz for 88Sr.
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Figure 4.4: Experimental spectrum of the Sr transition
∣∣1S0

〉
→
∣∣1P1

〉
(green dots) with the

associated fit (blue line), consisting of five Voigt profiles (dashed, black lines). The adjusted R2

of the fit is 0.994.
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From the Gaussian FWHM ∆G = (59.9± 0.3)MHz the transverse velocity HWHM σ⊥ is
estimated as σ⊥ = ∆Gλ/2 ' 14 m/s. It should be noted that this estimate implicitly assumes
that other broadening mechanism are negligible, but since the transit-time broadening ∆νtt ∼
kHz is much smaller than Γ and power saturation effects are negligible (I/Isat � 1), this is a
decent assumption.

An overview of the final trapping setup is shown in figure 4.5. A number of different
frequencies are required for both cooling and trapping, which are generated by three AOMs
that additionally serve as power controls and fast light switches.

SHG

SP
360 MHz

Sr (for lock)

SP

Sr

SP

MOT

Trap beams

δ0/2π = −40 MHz

δ0/2π = −500 MHz

Slowing beam

320 MHz

1st

0th
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Figure 4.5: Setup used for magneto-optical trapping of 88Sr using the
∣∣1S0

〉
→
∣∣1P1

〉
transition,

461 nm. For each AOM it is indiciated that it is operating in single pass (SP) configuration.

4.2.4 Characterizing the Lock

We utilize the Allan variance to characterize the stability provided by the lock, specifically the
two-sample deviation over the integration time τ with zero dead-time

σ2
y (τ) =

1
2

〈
(yk+1 − yk)

2
〉

, (4.24)

where yk denotes the frequency fluctuations sampled over τ for the kth measurement cycle

yk =
1
τ

∫ tk+τ

tk

y(t) dt. (4.25)

From (4.24) it is possible to infer what type and level of noise is present in the system. Oscillator
data is often nonstationary due to time dependent noise. For this reason the classical standard
deviation does not converge to a particular value, as it would for stationary data [52]. Herein
lies the usefulness of (4.24), since it basically differences successive data points.

The Allan deviation σy(τ) of the residual in-loop error signal is shown in figure 4.6. It is
dominated by a τ−1/2 behavior for slow time scales τ ? 20 ms, a signature of the stationary
white noise contributed by the continuously interrogated atoms. The instability is ultimately
limited by the shot-noise of both the signal as well as the atomic beam in addition to nonsta-
tionary electronic noise in the circuit and temperature fluctuations of the oven.

The lock is satisfactory when the trapping light is stable over time scales longer than the
typical MOT lifetime ∼ 50 ms. Specifically, the Allan deviation is found to be (20± 2) kHz at
50 ms, which is much smaller than Γ so the lock is sufficient. In principle the error signal can
be derived from a Doppler-free signal by going beyond the linear regime and thereby locking
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Figure 4.6: The Allan deviation of the residual error signal of the stabilized 461 nm-light. As
the integration time is increased, the instability of the carrier frequency decreases due to the
nature of the white noise in the system. The dashed line is proportional to τ−1/2. The bump
occuring at fast time scales is due to overcompensation by the servo loop as its bandwidth is
not sufficiently wide to account for mechanical vibrations at these time scales. The relative
standard deviation on σ(τ) is estimated as 0.87/

√
N, where N is the number of cycles at time

τ [53].

to the Lamb dip. The currently achieved short-term instability is, however, more than sufficient
for the MOT to function properly even though it is an underestimation due to the measurement
being in-loop. During operation the performance of the lock is limited by the SNR, but the
signal is generally sufficient when operating the oven at T = 450 ◦C.

4.3 Trap Dynamics

With the trapping light stabilized, the MOT is now operational. In the following the trap
dynamics will be discussed, which will enable characterizing the trap in terms of atomic pop-
ulation and loss rate. The loss rate is investigated in depth, which is necessary for subsequent
optimization.

The steady-state of a continuously operated MOT is a dynamic equilibrium: The number of
trapped atoms N is a balance between various loss channels and the rate at which new atoms
are captured. There are three different contributions to the rate equation: The loading rate L of
capturable atoms, one- and two-body losses, characterized by the rates α and β, respectively.
Higher-order losses become important at atomic densities much higher than those currently
attainable in our setup. The behaviour of the atomic cloud can thus be described by the time-
dependent phenomenological expression

Ṅ = L− αN − βN2. (4.26)

The atoms in the trap are often treated as being Gaussianly distributed. This assumption is
based on the steady-state solution to the Fokker-Planck equation for Brownian motion in an
external harmonic potential, equivalent to the Langevin equation (4.4) including spatial con-
finement [54]. This assumption breaks down when the optical trap depth is much greater than
1, in which case the distribution is practically uniform due to reabsorption of spontaneously
emitted photons [55]. However, for the present system it will be valid since sub-Doppler cool-
ing is not present and consequently the temperature and occupied volume is larger than in,
e.g., alkali-metal traps.

The one-body loss rate per atom α contains three terms: Collisions with thermal back-
ground atoms/molecules with rate αB, collisions with the thermal loading beam with rate
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αL and shelving losses αS. Ignoring the velocity of the cold atoms relative to the thermal
background and assuming every constituent i of the background (BG) atmosphere contributes
linearly to the loss rate, αB is given by

αB = ∑
i

nBG,i σSr−BG,i

√〈
v2

i
〉
. (4.27)

Here σSr-BG,i is the collisional cross section, which is assumed to be independent of the collision
velocity. Since the loss rate scales with the background density, a dense MOT requires optimal
vacuum conditions in addition to elimination of shelving losses.

The latter term in (4.26) accounts for two-body losses. These are due to inelastic collisions
between trapped atoms by which internal energy is converted to kinetic energy. At least one
atom per collision acquires enough energy to be ejected from the trap.

4.3.1 Loading Rate and One-Body Losses

For relatively small trap sizes ' 20 · 106 atoms, N(t) is well described by neglegting two-body
losses resulting in the loading behavior

N(t) = Nmax
(
1− e−αt), (4.28)

with Nmax = L/α. This is readily measured by observing the emitted power P during load of
the trap, which is related to the number of atoms N by

N =
P

h̄ω

τ

ρAA

1
Ωη

, (4.29)

where Ω is the solid angle from which the light is collected, τ the lifetime of the excited∣∣1P1
〉

trapping state, η = 0.962 the fraction of transmitted light and ρAA ≡ ρee,t→∞ the ex-
cited trapping state probability. From the loading curve in figure 4.7 it is found that L =
(2.56± 0.09) · 109 atoms/s at the oven temperature 530 ◦C, smaller than the predicted value
L ' 9.9 · 1010 atoms/s in (3.33). This was also expected, since the estimate did not take into ac-
count transverse heating. The measured value is in good correpondence with a similar system
[32].
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Figure 4.7: The loading of atoms in the MOT (blue line) and the corresponding fit to (4.28) (red
line). Each trapping beam carries roughly 5 mW/cm2.

As was explained in relation to the level diagram in figure 4.1, the one-body loss rate is
determined by leaks into the metastable triplet state

∣∣3P2
〉

and hence we can already state that
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it must depend on the scattering rate. We quantify this statement further by looking at the
dynamics of the trap, which is governed by

Ṅ0 = L + Γ10N1 − ρAAΓ12N0 − αT N0 (4.30)

Ṅ1 = Γ21N2 − Γ10N1 − αT N1 (4.31)

Ṅ2 = ρAAΓ12N0 − (Γ21 + Γ22)N2 − αT N2, (4.32)

where {N0, N1, N2} are the number of atoms in the atomic states {1S0, 3P1, 1D2}, αT accounts
for thermal losses including both αB and αL and the decay rates {Γ10, Γ12, Γ21, Γ22} denote
{Γ 3P1→ 1S0

, Γ 1P1→ 1D2
, Γ 1D2→ 3P1

, Γ 1D2→ 3P2
}. In order to simplify the expressions the main tran-

sition has been assumed to be a two-level system in steady-state, which is reasonable due to
the small leakage-probability per event. A further simplification can be carried out by adiabat-
ically eliminating Ṅ1 since Γ10 > Γ12. The trap population is detemined by atoms residing in
N0, so the loss rate α is readily found by Laplace transforming (4.30)-(4.32) and then solving
for N0(t). This yields two analytical solutions of the form (4.28), each having its own rate α,
which are given by

α =
1
2

αT +
1
2
(Γ21 + Γ22 + Γ12ρAA) (4.33)

± 1
2

√
(αT + Γ21 + Γ22 + Γ12ρAA)2 − 4(αTΓ21 + αTΓ22 + Γ12Γ22ρAA).

The positive solution is more than three orders of magnitude larger than the negative, and the
positive solution can thus be neglegted. The loading time in figure 4.7 is then given by the
remaining “slow” timescale, which can be expanded to

α ' 1
2

αT +
Γ22

Γ21 + Γ22
Γ12ρAA (4.34)

≡ 1
2

αT + B22Γ12ρAA, (4.35)

where the branching ratio B22 = 0.33 for
∣∣1D2

〉
→
∣∣3P2

〉
has been introduced. The loss rate

indeed depends on the trapping intensity through ρAA as we anticipated. Neglegting αT , this
expression is identical to the one derived in [56] by a more pragmatic approach: By realizing
that the decay to

∣∣1D2
〉

basically constitutes the trap losses at this stage, α must be given by
B22Γ12ρAA when

∣∣1D2
〉

is in steady state.
One channel has been neglegted so far, which is the loss due to

∣∣1D2
〉
-atoms leaving the

trapping area before decaying back to
∣∣1S0

〉
. This is readily taken into account by the factor

χ = ζ
∫ ∞

0
f (v)e−R/vτ dv (4.36)

= 4πζ

(
m

2πkBT

)3/2∫ ∞

0
v2e−mv2/2kBTe−R/vτ dv, (4.37)

where R is the trap radius and τ the lifetime of
∣∣1D2

〉
. It is reasonable to assume that atoms

can only escape between trapping beams, due to which the ratio is weighted by ζ = 1− [6×
2π(1− cos θ)]/4π. Assuming a spherical trap, the term 6× 2π(1− cos θ) is the solid angle
subtended by all six beams, where 2θ is the full apex of the cone inside the sphere, which
represents the area a single beam traces out. Taking θ = π/2 (ζ = 0.12) and a temperature
of 5 mK yields χ = 2 · 10−4 and thus it is neglegted in the following. It could otherwise be
included by generalizing Γ21N2 to (1− χ)Γ21N2.
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By utilizing (4.28) the loss rate has been measured for various trapping powers, shown in
figure 4.8. The value Γ12 = (4.15± 0.13) · 103 s−1 is obtained by a nonlinear least squares fit us-
ing (4.33), where Γ21 and Γ22 are assumed known. This is within the expected (3.85± 1.47) · 103 s−1

[57], but our result is of limited value since it is based on the laser intensity. This can pose a
problem if the beam possesses structure. The associated thermal loss is (7.62± 4.85) s−1 for an
oven temperature 530 ◦C.
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Figure 4.8: The one-body loss rate as a function of total trapping intensity (left side). The solid
line is a weighted nonlinear least squares fit to (4.33). The corresponding trap population is
shown to the right for the case where the repumper is not applied, normalized to its largest
value. Uncertainties for most data points are smaller than the dot size.

The population as a function of trapping intensity conforms with the presented theory, in
addition to the results obtained by [58], i.e. it decreases when the transition starts to saturate.

The 707 nm laser is a standard ECDL, mounted in the Littrow configuration. Its effect is
clearly seen on the measurements, where it decreases the loss rate by a factor 2.5 on average, in
reasonable correspondence with the factor of three usually obtained [46, 59]. This value should
ideally be the same for all our measurements, since the gain only depends on how efficiently
the atoms are pumped out of the dark state. Since the repumper in the current experiment is
free-running, it was necessary to tune it into resonance prior to each measurement, which may
have resulted in minor inconsistencies. The frequency should ideally have been modulated by
application of a sawtooth waveform to the piezo transducer, where the amplitude of modu-
lation frequency could easily have been chosen by empirically optimizing the trap size. The
effect of the repumper on the cloud dynamics is investigated in the next section.

The repumper does not alter the loading rate, so a given decrease in the loss rate α translates
into a corresponding increase in the number of trapped atoms.

4.3.2 Including the Repumper

Having succesfully implemented the 707 nm repumper and verified its effect, we now wish to
take its effect on the atomic dynamics into account by extending the rate equations.

The repumper is switched on at t = t0, which we describe by the step-function θ(t− t0).
The rate equations then become

Ṅ0 = L + Γ10N1 − ρAAΓ12N0 − αT N0 (4.38)

Ṅ1 = Γ21N2 + Γ41N4 − Γ10N1 − αT N1 (4.39)

Ṅ2 = ρAAΓ12N0 − (Γ21 + Γ22)N2 − αT N2 (4.40)

Ṅ3 = Π(t− t0)Γ22N2 − θ(t− t0)[R707(N3 − N4)− Γ43N4]− αT N3 (4.41)

Ṅ4 = θ(t− t0)[R707(N3 − N4)]− N4(Γ40 + Γ41 + Γ43)− αT N4, (4.42)
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where {N0, N1, N2, N3, N4} are the number of atoms in the states {1S0, 3P1, 1D2, 3P2, 3S1}. The
driving rate R707 is given by ρB43S(ν) with the Einstein B-coefficient B43, radiation density
ρ = I/c and Lorentzian profile S(ν). The decay rates are denoted according to {Γ40, Γ41, Γ43} =
{Γ 3S1→ 3P0

, Γ 3S1→ 3P1
, Γ 3S1→ 3P2

} = {9.0 · 106 s−1, 2.8 · 107 s−1, 4.6 · 107 s−1} [44].

The function Π(t− t0) occuring in (4.41) is defined as Π(t− t0) = 0.4[1− θ(t− t0)] + θ(t−
t0). This factor of 0.4 needs to be taken into account for times t < t0, since only the two
weak-field seeking substates mJ = {1, 2} of

∣∣3P2
〉

are confined in the magnetic trap when
the repumper is not applied. Since gJmJ > 0, only they are able to minimize the quantum
mechanical interaction energy U = µBgJmJ B originating from the interaction between their
magnetic dipole and the quadropole field B. In contrast, the strong-field seeking substates
mJ = {−1,−2} (gJmJ < 0) are repelled from the trap, since static field maxima in free space
are not permitted by Maxwell’s equations [60]. After applying the repumper, t > t0, all five
substates of

∣∣3P2
〉

will be excited to
∣∣3S1

〉
.

Neglecting thermal losses as a first approximation, the increase in steady-state trap popula-
tion after applying the repumper is analytically given by 1 + Γ43/Γ40 ' 4.11. It is independent
of R707, since the repumper in this case connects

∣∣3P2
〉

to
∣∣3S1

〉
. As the former is continuously

loaded (αT → 0), the population gain can only depend on the remaining loss channel Γ40.
Conversely, the gain is found to depend on R707 when taking into account that αT ≈ 0.2 s−1.

This is anticipated, since R707 determines the number of atoms coupled out of
∣∣3P2

〉
whose

steady-state value is now fixed by αT . An analytical solution is possible, but it is not elucidating
and consequently a numerical approach is taken in the following.

Figure 4.9 illustrates how the gain in trap population saturates when the intensity satisfies
R707 ∼ B22Γ12ρAA ≈ 59 s−1 (ρAA ' 0.05 with 5 mW/cm2 per trapping beam). The repumper
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Figure 4.9: The steady-state gain in trap population as a function of 707 nm intensity. The
dashed line I = 0.0022 mW/cm2 corresponds to R707 = B22Γ12ρAA ≈ 59 s−1.

is assumed to be detuned by 50 MHz, estimated with an optical wavemeter. Atoms entering∣∣3P2
〉

are immediately transferred to
∣∣3S1

〉
when the intensity is increased beyond B22Γ12ρAA,

and the gain is only weakly intensity-dependent in this domain.
The transient behavior N0(t) is illustrated in figure 4.10 for different repumping-rates:

Given that N0(t0)/N3(t0) . 0.1, when R707 & B22Γ12ρAA a transient overshoot occurs when
turning on the repumper at t0, since a large number of atoms on the order of N0(t = t0) enters
the trap during a very short time. Compared to other transients this happens almost instantly
since Γ41 is the fastest timescale in the system. Conversely, the gain is gradual in the opposite
limit R707 < B22Γ12ρAA. The load in this respect does not alter the gain as it merely acts as a
scaling factor for the various level populations.
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Figure 4.10: The transient behavior of N0(t) when turning on the MOT at t = 0 s and applying
the repumper at t = 0.5 s for various repumping rates corresponding to (from top to bottom):
0.0065 mW/cm2, 0.004 mW/cm2, 0.0025 mW/cm2 and 0.0015 mW/cm2.

Figure 4.11 shows a comparison between the predicted and measured temporal behavior
after switching on the repumper. Based on figure 4.9, at intensities on the order of mW/cm2

we would expect to be well within the domain of R707 � B22Γ12ρAA, which evidently is not
the case experimentally.
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Figure 4.11: The measured transient behavior of the MOT-population after applying the
707 nm-repumper at t0 = 0.5 s containing 20 mW/cm2 (R707 ≈ 5.4 · 105 s−1). Also shown is
the expected behavior for 20 mW/cm2.

There are several possible explanations for this lack of compatibility:

• The optical-frequency PSD of the grating-stabilized 707 nm diode laser is not peaked
around the

∣∣3P2
〉
→
∣∣3S1

〉
transition frequency, so the effective intensity in the required

mode is most likely lower.

• The model implicitly assumes that all atoms are affected by the repumper, which is
not necessarily the case. Geometrical misalignments between trap and repumper are
possible, such that only a fraction of the

∣∣3P2
〉
-atoms interact with the 707 nm laser at

a given time. As an example, in [61] it is estimated that only 1 % of the atoms interact
with the repumper. In the current setup, however, this effect is not believed to be a major
issue.

• Improper trapping beam alignment will increase the cloud temperature and thus alter
the atomic dynamics. The consequence of this enters through the quadropole field: The



4.4 Summary 55

repumper is linearly polarized so a rigorous analysis would have to properly take into
account how often π- and σ-transitions are driven. This will as a minimum alter the
steady-state population gain in figure 4.9 due to coupling to dark states. Specifically,∣∣3P2, mJ = ±2

〉
are dark states when π-transitions are driven.

Experimentally it is observed that the peak at t = t0 varies with trapping beam alignment,
suggesting that a proper treatment indeed requires taking into account the cloud dynamics. It
is possible that the discrepancy of a factor of 1.5 between steady-state values in figure 4.11 is
accounted for when solving the rate equations over the whole atomic cloud. In the case where
the trap radius goes to zero, this extended treatment should yield the idealized model we have
treated so far.

Besides dark states, the quadropole field will also decrease the rate R707 for a given intensity
due to the varying Zeeman shift, which occurs for both π- and σ-transitions as the Landé
factor is not the same for

∣∣3P2
〉

and
∣∣3S1

〉
. In [61, 62] this is remedied by rescaling the intensity-

dependency of R707 until there is a qualitative agreement with the data. This rudimentary
treatment is too simple for our system as it does not yield a better correspondence.

In principle it is possible to extract the various decay rates by fitting (4.38)-(4.42) to the data.
Given that the measurements are strongly sensitive to the trapping beam alignment, it does
not seem feasible to extract values with an acceptable precision through this approach, even
if the quadropole field is accounted for. The practical use of our model thus seems limited at
this stage.

4.4 Summary

This chapter has described the work leading to a functioning 88Sr-MOT, currently able to
trap ∼ 107 atoms. The one-body loss rate has been measured explicitly for various trapping
intensities and agree quantitatively with the theory derived for this system. The analytical
expressions reduce to already well-known decay descriptions for Sr, thereby corroborating the
model.

The 707 nm repumper has been succesfully employed in the experiment, increasing the
amount of trapped atoms by almost a factor of three after proper alignment, in good agree-
ment with similar systems. The theoretical model has been extending to account for this per-
turbation, and there is an acceptable qualitative agreement with the measurements within the
capabilities of the model. A full, quantitative understanding as a minimum requires extending
the rate equations to account for the individual magnetic sublevels of

∣∣3S1
〉
,
∣∣3P2

〉
and

∣∣3P1
〉

and the varying transition strengths. These equations would when have to be solved over the
Gaussianly distributed cloud in the quadropole field, thereby accounting for dark states and
Zeeman shifts. Given that this solves the discrepancy, it is possible to extract the various decay
rates by fitting the rate equations to a measured transient curve, such as the one in figure 4.11.
This will require excellent agreement between the experimental cloud size and the one used in
the model, which may render the method too crude for precise measurements.

Future work consist of employing the 679 nm repumper, which should increase the number
of trapped atoms by a total factor of six [59], and even ten has been reported [46]. This should
yield an atomic sample large enough to be able to see the anticipated signal in figure 2.9,
thereby directly confirming the considerations in chapter 2. One way to gauge the number
of trapped atoms is to look for two-body collisions, which should occur for & 108 atoms [63].
This manifests itself it a load- and decay behavior, which is not strictly exponential, c.f. (4.26).

Before performing the spectroscopy it is also necessary to set up the low-finesse cavity
around the trapped atoms, preferably mounting the mirrors directly onto the chamber in order
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to utilize common-mode rejection.
This chapter concludes the experimental part of this thesis, which has been focused on

achieving magneto-optical trapping of 88Sr. Consequently, we will not deal with the ongoing
experimental work towards performing nonlinear spectroscopy, but instead investigate the
possibility of producing a high flux of cold atoms, suitable for continuous cavity-enhanced
spectroscopy.



Chapter 5
Cold Atoms for Continuous Cavity-QED

The lifetime of localized atoms in an optical lattice is limited to a few seconds due to imperfect
vacuum and technical fluctuations in the harmonic lattice potential due to noise in the laser
creating the lattice. In the framework of cavity-enhanced nonlinear spectroscopy it is thus
necessary to feed the system with atoms, e.g. by loading the lattice periodically. An alternative
is to have a constant flux of cold atoms flow through the cavity, but this requires that the transit-
time broadening is less than the FWHM of the interrogated transition. For

∣∣1S0
〉
→
∣∣3P1

〉
of 88Sr

and an interrogation 1/e2-waist diameter of 1 mm (all beam sizes reported in the following also
refer to the 1/e2-waist diameter), velocities around 15 m/s result in a broadening of roughly
15 kHz. This is comparable to Γ/2π = 7.6 kHz such that the transition Q-factor is not degraded
severely.

These velocities are readily produced by conventional methods, as explained in chapter 3.
With (2.61) in mind a second requirement is that the atoms must have a velocity less than or
at least comparable to Γ/k = 0.52 cm/s along the axis of interrogation. In order to investigate
if it is possible to meet these requirements in theory, the Monte Carlo simulation introduced
to describe atomic deceleration in the Zeeman slower has been extended to find the atomic
trajectories for the apparatus proposed in figure 5.1.

θ
60 mm

−220 mm 0 mm 300 mm 350 mm

1 2 3

z

x
90 mm

Figure 5.1: A proposal for a beamline potentially capable of producing a sufficient flux of
cold atoms for continuous cavity-enhanced nonlinear spectroscopy, consisting of five separate
stages: An initial 2D MOT after the atoms effuse from the oven, a Zeeman slower, a bend, a
second 2D MOT stage for collimation and finally the cavity for spectroscopy. A blue (red) color
refers to cooling using the transition

∣∣1S0
〉
→
∣∣1P1

〉 (∣∣1S0
〉
→
∣∣3P1

〉)
.
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5.1 Monoenergetic Cold Strontium Beam

The beamline is divided into the following three sections: The oven/Zeeman slower to produce
a high flux of slow atoms, a deflection stage and the final 2D MOT stage for compression. The
optical resonator is assumed to support a TEM00 mode with waist 1 mm and Rayleigh length at
least a few cm. The three sections are separately investigated in the following in order to find
the various parameters that maximize the number of interrogated atoms in the cavity, whose
velocities satisfy the required criteria. We start by treating the section consisting of oven and
Zeeman slower.

5.1.1 First Section: Oven and Zeeman Slower

The oven at temperature T has an aperture of area A and contains atoms of mass m at density
n, which are assumed to be in thermal equilibrium. Given that the atomic mean free path
is much greater than the aperture radius, atoms will effuse out without colliding with each
other when a pressure gradient is present. This in turn implies that the equilibrium inside is
undisrupted. The velocity distribution of the atoms contained in the solid angle corresponding
to the opening aperture is then simply described by the standard 3D Maxwell-Boltzmann
distribution fv ∝ exp(−m(v2

x + v2
y + v2

z)/2kBT). Given that the walls of the oven are infinitely
thin, the atomic spatial distribution along A is flat. The atomic velocity distributions reaching a
second aperture A′ a distance d away can then be found by numerically propagating N atoms
from A to A′. The initial velocities are sampled from fv and the initial positions chosen to lie
randomly in A.

In this setup d = 220 mm and the radius of the circular aperture A (A′) is 0.5 mm (8 mm).
The speed distribution of 3.2 · 103 atoms reaching A′ is shown in figure 5.2, where N =
107 atoms initially left the oven. It follows the 3D Boltzmann distribution ∝ v2 exp(−mv2/2kBT)
as expected and fitting to the data yields an oven temperature (514± 13) ◦C in good correspon-
dence with T = 530 ◦C, which was used to generate the initial velocities. This oven temperature
will be used in the following. Given the limited statistics, there is good agreement with the
measured distribution.

0 200 400 600 800 1000 1200
0

0.01

0.02

0.03

Speed [m/s]

P
(v
)

[1
/

(m
/

s)
]

b b
b b

b b b b
b b

b

b b
b

b

b

b

b

b

b

b

b

b b b
b b

b

b
b

b

b
b
b
b
b b b

b
b b b b b

b

b

b

b
b
b
b b

b
b
b b b b b b b

b

b
b b b

b
b b

b

b b
b b b

b
b
b b

b b
b b b b b b b b b b b b b b b b b b b b

Measured distribution

Simulated distributionbb

Figure 5.2: The simulated speed distribution of atoms reaching an aperture with radius 8 mm
a distance d = 220 mm after the oven from which they effused out of (aperture with radius
0.5 mm). The solid blue curve is a fit to the 3D Boltzmann speed distribution. Also shown is
an experimental measurement of the distribution, but the laser was not able to scan through
the entire spectrum at the time of the measurement.

The individual velocity components of the atoms reaching A′ are shown in figure 5.3. The
axial component vz is to a good approximation distributed according to ∝ v2

z exp(−mv2
z/2kBT)



5.1 Monoenergetic Cold Strontium Beam 59

as well, but with a smaller temperature T ' 495 ◦C. This is also the anticipated behavior, since
a usual transverse component is small in comparison. The transverse velocity components are
normally distributed with mean ≈ 0 m/s and FWHM = 18.6 m/s, so the assumption utilized
when modelling the slower in chapter 3 was not that poor.
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Figure 5.3: The simulated velocity components (vx, vz) of the atoms reaching A′ and associated
fits (solid curves). Only vx is shown, but vy follows similar statistics.

Ideally > 105 atoms should reach A′ in order to obtain sufficient statistics, but this requires
a large initial sample, at least 108 atoms. Since each trajectory must be integrated through
Runge-Kutta methods, this large ensemble size requires an overwhelming computation time.
We can circumvent this issue by utilizing the velocity distributions in figure 5.3 at the oven
instead of the general fv. This ensures that the atoms that reach A′ to a good approximation
have velocities that obey the geometry defined by A, A′ and d.

With the initial distributions in order, it is now possible to realistically send a single batch
of N atoms through the system, out of which N′ reach A′ and εN′ reach the cavity, ε � 1. We
are, however, ultimately interested in the flux. This can be found by the relation (c.f. appendix
C)

Φ′ =
1
4

nA

√
8kBT
πm

A′

A′ + πd2 , (5.1)

which is the analytical expression for the flux of atoms that leave the oven through A and pass
through A′. From this the number N′ can be converted to flux, thus constituting the calibration
in the model.

A 2D MOT performed on the
∣∣1S0

〉
→
∣∣1P1

〉
transition is employed after the oven to increase

collimation. As shown in appendix B, four straight conducting wires arranged in a square
configuration will produce a quadropole magnetic field inside the square, whose magnitude
is determined by the current flowing through the wires. The gradient (B.5) is employed in
the model, assuming a realistic distance a = 10 mm between adjacent wires. This roughly
corresponds to a gradient 0.4 G/(cm A). Figure 5.4 shows how this combination is able to
focus the atoms in the extreme limit, where the cooling transition is highly saturated. Also
shown is the random walk in vx for a single atom starting at the center of the Zeeman slower
with velocity v = (0, 0, 300)T as an example.

The power, detuning and current in this compression stage is found by iteratively altering
their values and optimizing. The final optimized values are 20 mW per beam, −15 MHz and
20 A, respectively, given that the beams measure 20 mm× 10 mm. This value of the detuning
is corroborated by the same value employed in [64]. Figure 5.5 shows how the number of
interrogated atoms varies with both detuning and current for a constant power. This suggests
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Figure 5.4: Left: Compression of an atomic beam after effusing from an oven, where the dashed
lines mark the 2D MOT. The transition is highly saturated. Right: Random walk in a Zeeman
slower in vx-space as a function of scattered photons N for a single atom, plotted alongside
the expected average

√
0.9v2

recN/3 (solid blue line), c.f. (3.34). The initial velocity of the atom
is v = (0, 0, 300)T .

that the detuning δ0/2π = −40 MHz in our system is not the optimal value. It is interesting to
note that the gain decreases for currents above 20 A due to excessive compression of the atomic
beam, c.f. figure 5.4. This stage roughly yields a gain of a factor of 15 in interrogated atoms.
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Figure 5.5: Numerical behavior of the number of interrogated atoms (normalized to the largest
value) for various values of the detuning and current of the 2D MOT employed right after the
oven. The power is fixed at 20 mW per beam.

5.1.2 Second and Third Section: Deflection and Final Collimation

After exitting the slower the atoms are bent by an angle θ. This has two advantages, namely
that residual 461 nm light and hot atoms will not perturb the spectroscopy. In practice bending
the atoms is accomplished by employing yet another 2D MOT using the strong transition∣∣1S0

〉
→
∣∣1P1

〉
, where the 20 mm × 20 mm beams are tilted by the angle θ. The value θ =

20° is deemed sufficient for this purpose. Numerically, bending the atoms is simplified by
transforming to the coordinate system imposed by the bending beams, i.e. all coordinates are
rotated along y by an amount θ. The optimized values for the power, detuning and current
in the bend are 5 mW per beam, −5 MHz and 4 A. Figure 5.6 shows how the number of
interrogated atoms vary with current for fixed values of the detuning and power.
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Figure 5.6: Numerical behavior of the number of interrogated atoms (normalized to the largest
value) for various values of the current through the wires creating the quadropole field at the
bend. The detuning and power is fixed at δ0/2π = −5 MHz and 5 mW per beam, respectively.

The final compression consists of three independent stages, each having its own beam mea-
suring 50 mm× 20 mm which drives the narrow intercombination line

∣∣1S0
〉
→
∣∣3P1

〉
due to the

attainable 1D Doppler velocity
√

h̄Γ/2m = 0.42 cm/s. This allows us to reach velocities smaller
than Γ/k = 0.52 cm/s along the interrogation axis, in contrast to

∣∣1S0
〉
→
∣∣1P1

〉
which has a

Doppler velocity of 26.9 cm/s per dimension. It should be noted that our classical approach is
justified, since the condition (3.3) is also satisfied for the intercombination line.

In order to capture a broad range of atoms, the frequency of each stage is harmonically
scanned at a rate Ω = 50 kHz, in practice accomplished by each stage having its own dedicated
AOM. The scan depth has been optimized for each stage such that stage 1 oscillates through
the frequency interval δ1/2π = (−1.5,−0.8)MHz, stage 2 through δ2/2π = (−0.8,−0.3)MHz
and stage 3 through δ3/2π = (−0.3,−0.1)MHz. These values ensure that an atom with a
transverse velocity component up to 0.65 m/s can be captured and slowed down sufficiently.

The number of interrogated atoms is sensitive to the power used in each of the three red-
cooling stages, as shown in figure 5.7. Even though the saturation intensity of the transition
is merely Isat = 3 µW/cm2, the transition linewidth is heavily power-broadened for powers
above 1 mW, which increases the efficiency of sweeping the frequency. It is found that no
magnetic gradient is necessary at this section. The power 5 mW will be used in the following.
Table 5.1 summarizes the parameters obtained from optimizing the three sections treated so
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Figure 5.7: Numerical behavior of the number of interrogated atoms (normalized to the largest
value) as a function of the power per beam in each red-cooling stage. No magnetic gradient is
employed.
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far, and these parameters will be utilized from now on.

Section Transition Power per beam δ0/2π Current Beam dimensions
[mW] [MHz] [A] [mm×mm]

1
∣∣1S0

〉
→
∣∣1P1

〉
20 −15 20 20× 10

2
∣∣1S0

〉
→
∣∣1P1

〉
5 −5 4 20× 20

31
∣∣1S0

〉
→
∣∣3P1

〉
5 −(1.5 . . . 0.8) 0 50× 20

32
∣∣1S0

〉
→
∣∣3P1

〉
5 −(0.8 . . . 0.3) 0 50× 20

33
∣∣1S0

〉
→
∣∣3P1

〉
5 −(0.3 . . . 0.1) 0 50× 20

Table 5.1: Final parameters for the beamline in figure 5.1. The detuning δ0 is relative the
respective transition frequency.

For illustrative purposes, figure 5.8 shows the projected trajectories through the system for
various atoms. Here it is clearly seen how the divergence of the atomic beam is increased
during deceleration in the Zeeman slower.
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Figure 5.8: The computed trajectories for atoms (vz = 300 m/s) through the beamline with
transverse velocities ranging from (0 . . . ± 5) m/s in integer steps and ±12 m/s, where the
latter two atoms are not slowed down. The last part consisting of the red cooling stage has
not been included for clarity. The dashed lines are separators between the initial 2D MOT, the
Zeeman slower and the bend.

The distribution of the velocity component perpendicular to the interrogation axis is shown
in figure 5.9 (right) for the atoms entering the cavity. It has the mean 〈vz〉 = 11.7 m/s, such
that the transit-time broadening is merely 12 kHz ∼ Γ/2π = 7.6 kHz as desired. This velocity
component cannot be decreased further, since gravity will then degrade the flux substantially.
The spatial distribution of the atoms entering the cavity is shown in figure 5.9 (left), and it is
much denser around y ' −0.25 mm due to gravity. The atoms enter the cavity through an area
measuring 6 mm× 1 mm, placed at the cavity center (0, 0).

Through calibration the atomic flux through the area 6 mm× 1 mm at the cavity is found
to be 3.6 · 1011 atoms/s. The flux F in units of s−1 m−2 is related to 〈vz〉 by the particle density
ρ, F = ρ 〈vz〉. Utilizing this relation then yields a particle density 5.1 · 109 atoms/cm3, corre-
sponding to N = 3.1 · 107 atoms at each instant of time in the volume 6 mm× 1 mm× 1 mm
at the cavity center. This volume is covered by the cavity TEM00 mode, which we assumed
had a waist of 1 mm. It should be noted that in reality only 83 % of this population is 88Sr,
amounting to 2.5 · 107 atoms. This is the main result of this section.
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Figure 5.9: Left: The spatial distribution of 103 atoms reaching the cavity. The interrogation axis
is placed along x. Right: The distribution of the atomic velocity component vz perpendicular to
the interrogation axis for the atoms entering the cavity, displaying the mean 〈vz〉 = 11.7 m/s.

This atomic population is more than sufficient for nonlinear spectroscopy. Specifically, with
a cavity finesse of 200 and Pin = 16 µW of incoupled power, the attainable linewidth (2.58) with
N = 107 atoms is ∆νFWHM ' 11 mHz, showing that the proposed beamline in figure 5.1 is in
principle able to realize the spectroscopy scheme continuously. These numbers correspond to
a 1 Hz bandwidth-normalized SNR of

√
κC2n0β ' 3 · 106 [15], assuming unity photodetector

quantum efficiency.
It is interesting to investigate how this number behaves with the oven temperature. More

specifically, the vapor pressure P of Sr as a function of oven temperature T goes as [65]

log10(P [Pa]) = 14.232− 8572
T [K]

− 1.1926 log10(T [K]). (5.2)

Increasing T by roughly 100 K thus increases the flux by almost an order of magnitude, but
in turn this also shifts the axial velocity distribution to higher velocities, which reduces the
efficiency of the deceleration process in the Zeeman slower. The change in atomic population as
a function of T has been tested out explicitly, showing that the increase in flux is the dominant
effect. The results are shown in figure 5.10, revealing that the population is almost doubled
when increasing the oven temperature from 530 ◦C to 565 ◦C. The loading rate of a MOT
behaves similarly [32].

5.2 Summary

Our Monte Carlo simulation shows that the proposed beamline in figure 5.1 is promising in
the context of realizing cavity-enhanced nonlinear spectroscopy and may serve as a continuous
alternative to an optical lattice. One should keep in mind that the calculations in this chapter
are performed under highly idealized conditions and the number of interrogated atoms will
depend on how well the situation treated here is realized experimentally. As an example,
there may be structure in the beam used for the Zeeman slower which decreases its efficiency.
In this respect figure 3.9 suggests that we are describing the physics in the Zeeman slower
reasonably. Another discrepancy may be due to misaligned beams in the various 2D MOTs,
but it is reassuring that a decrease in interrogated atoms up to a factor of six due to imperfect
beam alignment can be compensated for by increasing the oven temperature.

The beamlime also has the feature that it can be used for other isotopes of Sr, simply by
varying the detunings of the various cooling beams by the associated isotope shifts.
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Figure 5.10: Numerical behavior of the number of interrogated atoms as a function of the oven
temperature T, normalized to the value at 530 ◦C treated so far. At 600 ◦C the number of atoms
is increased by roughly a factor of six.

It may also prove relevant in other experiments where a monoenergetic atomic beam is
desired. For example, it could be used when referencing a laser against an optical transitition
as was done with the trapping light used for the MOT in figure 4.3. Here the beamline would
completely eliminate the Doppler background, in which case locking to the transition would
yield the same performance as if one had locked directly to the Lamb dip. As a first approx-
imation, the obtained instability can be estimated using (1.1), where the clock cycle Tc is the
transit time, yielding σ(τ) ' 2.2 · 10−16/

√
τ. This is not a realistic estimate, since fluctuations

in the oven temperature and shot-noise of both the signal and atomic beam have not been
included. Nonetheless, it serves as a motivation for a more thorough analysis, revealing how
far down the instability can be integrated.



Chapter 6
Epilogue

The work presented in this thesis has been concerned with the theory and work towards re-
alization of cavity-enhanced nonlinear spectroscopy. This is motivated by the fact that it theo-
retically enables performing direct continuous spectroscopy on ultranarrow optical transitions
of localized atoms, something which is otherwise extremely complicated by the small sub-Hz
transition linewidth. This enables stabilizing a laser to the transition in question, thereby cir-
cumventing the fundamental limit on the stability caused by thermal noise in the mirrors of
the high-Q cavities that lasers are currently stabilized to.

6.1 Conclusion and Outlook

The main idea behind cavity-enhanced nonlinear spectroscopy is quite simple: Since the satu-
ration intensity of a transition scales with its linewidth, performing continuous spectroscopy
on ultranarrow optical transitions is technically challenging. One way to counteract this is to
increase the optical depth of the atomic sample, which is done by placing the atoms inside a
cavity. Since this is the only function of the cavity, it does not have to be high-Q. As we showed
both classically and quantum mechanically, in the linear regime I/Isat � 1 a consequence of
the increased optical depth is that the combined system is strongly absorptive over a frequency
range many linewidths broad. Consequently, very large intensities I/Isat & 100 are needed to
see a signal, which brings with itself nonlinear effects such as optical bistability. Above this
bistable domain we showed both classically and quantum mechanically that a transmission
peak emerges around the combined resonance of the atom and cavity due to strong bleaching
of the atomic transition. The cavity also increases the optical throughput by a factor on the or-
der of the cooperativity squared, amounting to at least three orders of magnitude. This is what
enables detecting the signal, but it is at the expense of a power-broadened transition. Despite
this, as we showed the ultimate lock precision can still potentially outperform state-of-the-art
currently set by the sub-40 mHz linewidth attained in [14].

The work performed during this thesis has been towards the realization of this spectroscopy
scheme with 88Sr, utilizing the

∣∣1S0
〉
→
∣∣3P1

〉
transition at 689 nm. This ideally requires local-

izing the atoms in a three-dimensional optical lattice during interrogation, operating at the
magic wavelength. However, this is not available in the experiment at the current stage. A
poor man’s approach is simply to keep the atoms confined in the magneto-optical trap operat-
ing on the

∣∣1S0
〉
→
∣∣1P1

〉
transition at 461 nm during interrogation, which we showed explicitly

does not pose a problem. The main disadvantage is that a stronger requirement is put on the
number of optically trapped atoms, but this is well within the limits of currently achievable
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populations.

Having established the framework of our system, we initiated the construction of a magneto-
optical trap. A large population of trapped atoms is greatly aided by a continuous flux of cold
atoms, and for this purpose we designed, built and implemented a Zeeman slower in the vac-
uum system. Its flux and efficiency has been measured, showing that its performance is similar
to that of other systems for 88Sr. Along with this a Monte Carlo simulation of the atomic tra-
jectories has also been constructed, which takes into account the transverse heating associated
with axial deceleration. This simulation optimized the implementation of the slower.

At this stage the magneto-optical trap is operational, which allows for spectroscopy on the
atomic cloud. We measured the one-body loss rate as a function of the total trapping beam
intensity, and the measurements corroborate our analytical treatment. A repumper has also
been employed, which increases the trap population by almost a factor of three. The same
efficiency is displayed in similar systems. We numerically investigated the dynamics of the
atomic cloud immediately after turning on the repumper, but no quantitiative agreement was
found between measurements and theory. It is plausible that this discrepancy is caused by
coupling to dark states and a reduced repumping efficiency due to the varying Zeeman shift
in the quadropole field, something that we have not included in our highly idealized model.
Future work on the trap consists of employing the 679 nm repumper in order to reach the
necessary trap population.

With cavity-enhanced nonlinear spectroscopy in mind, we have proposed a design for a
beamline which serves as a continuous alternative to the required three-dimensional optical
lattice. In order not to transit-time broaden the interrogated transition, the velocity of the
cold atomic beam must be on the order of 15 m/s. Additionally, the velocity along the inter-
rogation axis must be within one linewidth, ±Γ/k. We have simulated the proposed design
stochastically, and it is found that under optimal experimental conditions more than 107 atoms
can satisfy these requirements inside the cavity at each instant of time with a favorable SNR,
which is sufficient for our purpose.

6.2 Outlook

The beamline may also be relevant in observing and utilizing a completely different phe-
nomenon, namely superradiance which is based on collective emission. This is briefly outlined
in the following section, where it is also explained how this can be used for laser stabilization.

6.2.1 Superradiance

Looking at a single two-level atom placed in free space and in its excited state, it can either dis-
play resonant flourescence by continuously driving the dipole with an external quasi-resonant
EM-field or it can spontaneously decay. Assuming the incoming laser is linearly polarized, the
emitted intensity pattern of resonant flourescence is given by the usual expression ∝ sin2 θ,
where θ is taken relative the polarization axis and the pattern thus takes the shape of a torus.
Spontaneous emission is, however, due to the coupling of the atomic dipole to the vacuum
field modes and the associated exponential decay emerges from the Wigner-Weisskopf theory.
The characteristic decay time is τ = 1/Γ, where Γ is the transition linewidth.

We now turn to a dilute ensemble of N independent atoms, fully inverted at t = 0. Denoting
the random phase of each atom by φn and the electric field emitted by a single atom by E1, the
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intensity IN of the total spontaneous emission is

IN ∝

∣∣∣∣∣∑n
E1eiφn

∣∣∣∣∣

2

(6.1)

= I1

(
N + ∑

n 6=m
ei(φn−φm)

)
(6.2)

= I1N, (6.3)

where the last term of (6.2) is zero due to unit length random walk. Since the atoms are
independent, the emission pattern is completely isotropic. This situation describes the usual
incoherent spontaneous relaxation of an excited atomic ensemble.

The temporal and spatial behavior of the emitted pulse is altered considerably if the sample
is dense, N � 1. Specifically, by mapping the N two-level atoms onto a pseudo-spin system
of total spin N/2, Dicke [66] showed that the N atoms, which have no optical dipole moment
at t = 0, would be coupled together through their common radiation fields when their volume
V ≤ λ3, where λ is the emitted wavelength. In other words, the initial spontaneous emission
from a fraction of the system will correlate the various dipoles in the system, thereby forming
one macroscopic dipole moment. In the extreme case where all emitters become phase-locked
(φn = φ1) we obtain from (6.1) that IN = I1N2, and due to conservation of energy the col-
lective sample is deexcited after the characteristic time τ/N. This introduces the concept of
cooperative emission, generally known as superradiance. This process is inherently quantum
mechanical in nature, since vacuum fluctuations are required to initiate the relaxation process.
It also contains a classical aspect as the subsequent emission is due to the radiation of an
ordered array of dipoles, which has an immediate classical analogue in terms of coherently
radiating antennas.

The description so far has only treated superradiance in a transient domain, and since vac-
uum fluctuations initiate the process, the phases of independent bursts are not correlated. In
principle such a system can be realized in a three-level system with states {

∣∣0
〉
,
∣∣1
〉
,
∣∣2
〉
} [67].

The pump with rate w is resonant with the transition
∣∣0
〉
→
∣∣2
〉
, from which collective relax-

ation occurs to
∣∣1
〉
. Steady-state superradiance is achieved by periodically creating population

inversion on the superradiant transition
∣∣2
〉
→
∣∣1
〉
.

Recent proposals suggest using ultracold alkaline-earth atoms trapped in an optical lat-
tice inside a high-finesse cavity to achieve steady-state superradiance [68, 69]. Unlike dipole-
allowed transitions, narrow optical intercombination lines allow for population inversion to
build up in the metastable excited state faster than the depletion due to the fast collective
decay. Since Γ ∼ Hz and κ > kHz, this system operates deep in the optical bad-cavity limit
κ � Γ, where the intracavity photon number . 1. From the system master equation it follows
that the atom-field coupling g0 is directly responsible for the nonzero dipole correlations [68],
so in this setup the collective behavior does not originate from the sample size as in usual Dicke
superradiance. The correlation is instead mediated by the weak intracavity field, originating
from the coupling g0.

In addition to V/λ3 ∼ 1, the conditions for self-sustained superradiance are quantified
by NC0Γ � (Γ, T−1

2 ) and w ∼ NC0Γ [69]. Increasing the pumping rate above this threshold
destroys the coherences between various dipoles faster than the intracavity light can induce
them. The use of ultracold atoms in this respect minimizes the effective dephasing rate T−1

2 ,
allowing for longer superradiant behavior.

Such a light source is inherently different from conventional good-cavity lasers, where
κ . Γ. In a standard laser above threshold the coherence is contained in the photons propa-
gating inside the cavity. The phase information is retained through stimulated emission, but
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consequently the phase carried by the photons is easily perturbed by thermal motion of the
cavity mirrors. In contrast, in a superradiant light source the phase information is entirely con-
tained within the macroscopic dipole moment formed by the atoms. The intracavity photons
merely act as to synchronize the various moments and extract the phase through stimulated
emission, so the sensitivity to thermal and mechanical mirror motion is greatly reduced, allow-
ing them to reach linewidths given by ∆ν = C0Γ/π [68]. Specifically, for the doubly forbidden∣∣1S0

〉
→
∣∣3P0

〉
of fermionic 87Sr the linewidth of the emitted light is projected at the µHz-level,

two orders of magnitude smaller than current state-of-the-art. Such a stabilized laser could
readily be employed as LO in an optical lattice clock.

The output power only reaches the maximum P = h̄ωN2C0Γ/8 ∼ nW, but this is sufficient
for subsequent phase-locking [70] of a secondary laser. This characterizes an active system,
where the phase reference light is derived directly from the atomic transition, which is another
way to circumvent the residual thermal noise floor of reference cavity mirrors.

The proposed beamline is more than able to satisfy the required strong coupling NC0 =
C � 1 for

∣∣1S0
〉
→
∣∣3P1

〉
of 88Sr needed for superradiance. A cavity with finesse 200 has a

linewidth κ on the order of MHz � Γ such that the single-atom cooperativity C0 ∼ 10−5 and
the linewidth of the emitted light is projected at ∆ν ' 0.5 Hz. The authors of [71] have recently
demonstrated a superradiant laser with a linewidth of a few Hz that contains less than one
intracavity photon on average, but the emission only lasts for roughly 140 ms, limited by the
atomic loss of the one-dimensional optical lattice. The advantage of the beamline is that this
loss is not an issue, serving as a further motivation for obtaining superradiance in the proposed
system and for realizing the beamline.
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Appendix A

Pound-Drever-Hall Stabilization Scheme

The spectral width of a laser can be reduced by locking it to a stable reference. This can be
accomplished by the Pound-Drever-Hall scheme, which is a heterodyne sideband technique
that derives an antisymmetric error signal based on the phase of the light reflected from a
stable reference cavity.

The scheme is realized by modulating the phase of a linearly polarized laser beam by an
EOM. Assuming a modulation frequency Ω and depth β, the field impinging on the cavity can
be expanded in terms of sidebands using the Jacobi-Anger expansion

EI = E0ei[ωt+β sin(Ωt)] (A.1)

= E0

∞

∑
n=−∞

Jn(β)ei(ω+nΩ)t (A.2)

' E0

(
J0(β)eiωt + J1(β)ei(ω+Ω)t − J1(β)ei(ω−Ω)t

)
, (A.3)

where the relation J−1(β) = −J1(β) has been utilized in (A.3) in addition to the assumption
β� 2. Upon reflection from the cavity the field becomes

ER = F(ω)E0 J0(β)eiωt + E0 J1(β)
(

F(ω + Ω)ei(ω+Ω)t − F(ω−Ω)ei(ω−Ω)t
)

, (A.4)

where F(ω) denotes the reflection coefficent for the reference cavity of length L and FSR =
c/2L,

F(ω) ≡ ER
EI

= r
eiω/FSR − 1

1− r2eiω/FSR . (A.5)

The carrier and two FM sidebands are reflected with different phases. Their interference is
detected by a photodiode, which measures the power PR ≡ |ER|2, yielding [72]

PR = Pc|F(ω)|2 + Ps

[
|F(ω + Ω)|2 + |F(ω−Ω)|2

]

+ 2
√

PcPs<[F(ω)F∗(ω + Ω)− F∗(ω)F(ω−Ω)] cos(Ωt)

+ 2
√

PcPs=[F(ω)F∗(ω + Ω)− F∗(ω)F(ω−Ω)] sin(Ωt)

+O(2Ω),

(A.6)

where Pc = J2
0 (β)PI (Ps = J2

1 (β)PI) refers to the optical power in the carrier (single sideband
component). The first term of (A.6) is a DC term, whereas the second and third terms are in
phase and in quadrature with the photodiode current, respectively. The latter terms are due
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to the interference between the carrier and the sidebands, whereas the higher-order harmonics
are due to the sidebands interfering with each other and hence uninteresting. In what follows
they are neglegted, and in practice they are filtered away. The signal from the photodiode
(A.6) is then phase-sensitively detected by mixing it with the LO sin(Ωt + φ) after which it is
low-pass filtered (LPF), collectively realizing the signal lock-in. Assuming a relative LO phase
φ = 0 and a properly chosen cutoff frequency for the low-pass, only the DC term from sin2(Ωt)
survives resulting in the signal

ε(ω) = ηPDζ
√

PcPs=[F(ω)F∗(ω + Ω)− F∗(ω)F(ω−Ω)], (A.7)

where ηPD denotes the quantum efficiency of the photodetector and ζ the power-to-voltage
conversion factor. This constitutes the error signal, which is fed to the servo controlling the
laser frequency, thus locking the laser to a mode of the stable reference cavity. A setup is
illustrated in figure A.1, where the optical isolator (OI) ensures that no unwanted feedback is
sent to the laser.

Laser OI EOM

λ/4

Cavity

Photodetector

Mixer

LPF

PID

LO

Phase shifter

Figure A.1: The Pound-Drever-Hall locking setup. The optical isolator (IO) enures that no
unwanted feedback is sent to the laser. After the low-pass filter (LPF) the error signal ε(ω) is
fed to a PID controller, which constitutes the servo loop.

The term =[F(ω)F∗(ω + Ω)− F∗(ω)F(ω−Ω)] contains information about the phase of ER.
This is seen when recalling that Ω is generally large enough for the sidebands to be far from
resonance, in which case F(ω ±Ω) ' −1 such that =[F(ω)F∗(ω + Ω)− F∗(ω)F(ω−Ω)] =
−2=[F(ω)]. Unlike the intensity, the phase of the reflected light reveals which side of the
cavity resonance the reflected light is on, which is why this scheme works. The sidebands
in this respect effectively set a phase standard with which the phase of the reflected beam is
extracted through the beat pattern with the reflected carrier [72].

For F(ω±Ω) ' −1 the error signal (A.7) reduces to

ε(ω) = −2ηPDζ
√

PcPs=[F(ω)]. (A.8)

This expression can be explored more carefully when the carrier is close to resonance, in which
case

ω

FSR
= 2πn +

δω

FSR
(A.9)
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for n ∈ Z+ and δω is the deviation of the laser from resonance. In the limit R = |r|2 ' 1 the
cavity finesse F becomes

F ≡ FSR
κ

=
π
√

R
1− R

(A.10)

' π

1− R
. (A.11)

Expanding (A.5) to first order and utilizing (A.11) yields

F(ω) ' i
F

π FSR
κ, (A.12)

in which case (A.8) reduces to

ε(ω) = −2ηPDζ
√

PcPs
1

πκ
δω. (A.13)

The error signal is proportional to the laser frequency deviation from resonance. The quan-
tity −2ηPDζ

√
PcPs/(πκ) gives the slope of the error signal, and maximimizing this slope re-

quires maximizing J0(β)J1(β). Numerically the optimum value β ' 1.082 is found, yielding
J0(β)J1(β) ' 0.339. A high-finesse cavity is seen also to be a requirement for an efficient lock.
The error signal is shown in figure A.2.
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Figure A.2: The Pound-Drever-Hall error signal (A.7) given a cavity with finesse F = 5 · 104

and modulation frequency Ω/2π = 10 MHz.





Appendix B

Magnetic Field of Parallel Conductors

Four parallel straight wires are arranged at the corners of a square as illustrated in figure B.1
(left), where the currents in adjacent wires flow in opposite directions. The magnetic field
gradient ∇B must satisfy

dBx

dx
= −dBy

dy
≡ ∇B (B.1)

since ∇ ·B = 0. The magnetic field for a single wire situated at (xi, yi) is readily obtained from
the Biot-Savart law under the assumption that it is infinitely long and thin

B =
µ0 I
2π

(
1

(x− xi)2 + (y− yi)2

)
[−(y− yi)ex, (x− xi)ey]. (B.2)

Here we have utilized that the azimuthal angle φ of (r, φ, z) satisfies eφ = − sin(φ)ex + cos(φ)ey
and

sin
[
arctan

( y
x

)]
=

y
x
√

1 + y2/x2
(B.3)

cos
[
arctan

( y
x

)]
=

1√
1 + y2/x2

. (B.4)
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Figure B.1: Left: The square configuration resulting in a quadropole field. Right: The corre-
sponding gradient for the case where a = 6 mm and I = 60 A. Between wires typical gradient
magnitudes are around 0.4 G/(cm A).
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Summing the contribution from all four wires yields the gradient

∇B =− I(a + x)(a− y)µ0

π[(a + x)2 + (−a + y)2]2
+

I(−a + x)(a− y)µ0

π[(−a + x)2 + (−a + y)2]2

− I(−a + x)(−a− y)µ0

π[(−a + x)2 + (a + y)2]2
+

I(a + x)(−a− y)µ0

π[(a + x)2 + (a + y)2]2
,

(B.5)

shown in figure B.1. In reality the field magnitude at the ends will be smaller since they are of
finite length, but this discrepancy is neglegted in favor of the analytically simpler expressions.
As illustrated in figure B.2 the field is indeed linear inside the square.
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Figure B.2: A cross section along y = 1 mm of the magnetic field and gradient for the square
configuration in figure B.1 with a = 6 mm and I = 60 A.



Appendix C

Flux of a Collimated Atomic Beam

An ideal atomic gas at temperature T and density n is assumed to be in thermal equilibrium,
contained in an oven. Given that the oven is placed in vacuum and that it has a circular
aperture of area A, atoms will escape through it due to the pressure gradient. In what follows
the mean free path of escaping atoms is assumed much greater than the aperture radius, due
to which the atoms effuse out of the oven without colliding with eachother. In turn this implies
that the velocity distribution of the atoms left inside the oven is not changed by the presence
of the aperture and the equilibrium is thus left undisrupted.

We will start by finding the flux of atoms that effuse out of the oven at an angle θ with
speed v, see figure C.1. This corresponds to the volume Av cos θdt and the number of atoms

vdt

A cos θ

A′
d

θ φ

Figure C.1: Atoms with speed v effusing out of an oven with circular aperture A at an angle θ,
after which they are collimated by a secondary circular aperture of area A′ a distance d away.

nAv cos θdt, so the flux leaving through A during dt is given by nAv cos θ. Since the atoms are
in thermal equilibrium, the total flux is readily found by averaging over the speed probability
distribution, which in spherical coordinates (v, θ, φ) is given by

f (v)dv =

(
m

2πkBT

)3/2
exp

(
− mv2

2kBT

)
v2dv sin θdθdφ. (C.1)

The total flux Φ effusing through A (or, equivalently, into the solid angle π) is thus given by

Φ = 2πnA
∫ ∞

0
f (v)vdv

∫ π/2

0
cos θ sin θdθ (C.2)

=
1
4

nA〈v〉 , (C.3)

where 〈v〉 =
√

8kBT/πm is the average speed of the 3D Boltzmann gas.
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The effect of collimating the atomic beam a distance d away with an aperture of area
A′ can in the limit A′ � A be included by simply generalizing the maximal inclination to
arctan[(

√
A′/π)/d], yielding

Φ′ = Φ
A′

A′ + πd2 . (C.4)
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